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An important goal in nanoelectromechanics is to cool the vibrational motion, ideally to its quantum ground
state. Cooling by an applied charge current is a particularly simple and hence attractive strategy to this effect.
Here we explore this phenomenon in the context of the general theory of thermoelectrics. In linear response,
this theory describes thermoelectric refrigerators in terms of their cooling efficiency η and figure of merit ZT .
We show that both concepts carry over to phonon cooling in nanoelectromechanical systems. As an important
consequence, this allows us to discuss the efficiency of phonon refrigerators in relation to the fundamental Carnot
efficiency. We illustrate these general concepts by thoroughly investigating a simple double-quantum-dot model
with the dual advantage of being quite realistic experimentally and amenable to a largely analytical analysis
theoretically. Specifically, we obtain results for the efficiency, the figure of merit, and the effective temperature of
the vibrational motion in two regimes. In the quantum regime in which the vibrational motion is fast compared
to the electronic degrees of freedom, we can describe the electronic and phononic dynamics of the model in
terms of master equations. In the complementary classical regime of slow vibrational motion, the dynamics is
described in terms of an appropriate Langevin equation. Remarkably, we find that the efficiency can approach the
maximal Carnot value in the quantum regime, with large associated figures of merit. In contrast, the efficiencies
are typically far from the Carnot limit in the classical regime. Our theoretical results should provide guidance to
implementing efficient vibrational cooling of nanoelectromechanical systems in the laboratory.
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I. INTRODUCTION

Cooling nanomechanical systems into the quantum ground
state has attracted much attention for some years now. One
of the most explored mechanisms is the coupling of the
nanomechanical motion to photons in optical cavities. Inspired
by the laser cooling of Bose-Einstein condensates and cold
atoms, this technique enabled the observation of features
related to the quantum zero-point fluctuations of a mechanical
device [1,2].

The electron-phonon coupling offers an alternative route
towards cooling a nanomechanical system. This mechanism
has the appealing property that it is operated simply by a bias
voltage driving an electronic current through a suitably engi-
neered nanoelectromechanical structure (NEMS). Exploiting
the electron-phonon interaction to refrigerate a NEMS with
a dc current has been studied in several theoretical works
[3,4], focusing on carbon nanotubes [5] as well as molecular
setups [6–9]. The principal ingredient is an asymmetry in the
operation of the device that favors the absorption over the
emission of phonons. The underlying processes exhibit some
similarity to electron cooling as implemented experimentally
in quantum dots and micrometer-scale electronic systems
containing normal and superconducting pieces [10–12]. Yet
another approach to refrigerating a nanomechanical system
which we will not consider here uses pumping of phonons
[13].

Our present study of electronic cooling of nanomechanical
motion is motivated by two recent developments. Theoreti-
cally, there has been increasing interest in thermoelectrics for
quantum nanostructures [14–19]. The basic approach typically
relies on linear-response relations for both charge and heat
currents and uses general principles such as the second law of

thermodynamics to derive relations between these coefficients
as well as bounds on the efficiency of thermoelectric machines.
Previous works on the electronic cooling of nanomechanical
motion have not made the connection with this general theory.
As we will show, establishing this connection explicitly
allows one to describe phonon refrigerators in terms of the
efficiencies and figures of merit which are customary in
thermoelectrics. Experimentally there have been significant
advances in controlling the electronic and phononic structure
as well as their interaction in suspended carbon nanotubes
[20,21]. These advances should have significantly reduced
the engineering challenges in realizing some of the cooling
devices discussed in the literature. In this paper we discuss
the refrigeration device sketched in Fig. 1. It consists of two
gate-tunable quantum dots coupled by a suspended tunnel
junction. Electrons tunneling between the quantum dots can
excite the (for simplicity: single) vibrational mode of the
suspended section. Besides its realism, this model has the
added benefit that it is amenable to an essentially analytical
description if we assume that the tunneling between the dots
is weak compared to their couplings to the leads. A similar
model was considered in Ref. [22] to describe rectification in
molecular junctions.

This device operates as a refrigerator for the mechanical
motion when the dot levels increase in energy in the direction
of current flow [3,4]. In this setting, electron transport is
preferentially accompanied by the absorption of phonons and
thus causes phonon refrigeration. We explore the efficiency of
this cooling mechanism in two regimes, which we refer to as
quantum and classical. In the quantum regime, the tunneling
amplitude between the two dots is weak so that the mechanical
frequency is large compared to the rate at which electrons are
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FIG. 1. (Color online) Top: Sketch of the setup under considera-
tion. A suspended nanostructure (e.g., a carbon nanotube) is contacted
by left and right electrodes. The setup consists of two gate-tunable
quantum dots. Tunneling between the quantum dots couples to
vibrational motion of the suspended part of the structure. Bottom:
Configuration for vibrational cooling. The electronic levels εL and εR

of the quantum dots are arranged such that electron tunneling between
the dots is preferentially accompanied by phonon absorption, enabled
by the dependence of the tunneling amplitude t(x̂) on the vibrational
mode coordinate x̂. We also consider the situation when the system
is in contact with an additional phonon bath of temperature Tph.

passing through the structure. In this regime, the vibrational
mode completes many oscillations between two tunneling
electrons and the vibrational states are reasonably described in
terms of the quantum eigenstates of the phonon mode. In view
of the electron-phonon coupling, electron tunneling between
the dots stochastically changes the vibrational quantum state
and the corresponding rates can be obtained from Fermi’s
golden rule. Then, the vibrational state can be captured in
terms of the occupation probability of the vibrational eigen-
states which obeys a rate equation [6,23]. This rate equation
allows one to calculate the nonequilibrium phonon distribution
as well as the general linear-response coefficients entering
the general theory of thermoelectric response. In the quantum
regime, cooling can be thought of in terms of phonon-assisted
tunneling of electrons. In the complementary classical regime,
the mechanical oscillations are slow compared to the rate at
which electrons are passing through the structure. In this limit
there are many electrons traversing the structure during a single
oscillation of the vibrational mode. Then, it is adequate to de-
scribe the vibrational mode in classical terms and the electrons

effectively exert average forces on the vibrational mode which
depend on both the position and the velocity of the vibrational
motion. Due to the stochastic nature of electron flow, these
average forces have to be complemented by a fluctuating
force so that the vibrational motion is analogous to Langevin
dynamics and described in terms of a classical Langevin
equation [24–26]. In this classical regime, cooling has not yet
been investigated theoretically, although this regime is actually
important in several recent experiments [20,21]. Specifically,
experiments on suspended carbon nanotubes can be performed
in both the quantum and the classical regime. However, flexural
modes of suspended carbon nanotubes typically have low
frequencies, often requiring a classical description.

To characterize the refrigeration device, we consider two
setups. In one setup we assume that the mechanical motion is
strongly coupled to a phonon reservoir with fixed temperature
Tph (see also Refs. [18,19]). This is appropriate when the
coupling of the mechanical motion to the phonon reservoir
(i.e., to nonelectronic degrees of freedom) causes faster
relaxation processes than the coupling to the electrons. The
cooling strength of the device can then be characterized in
terms of the heat current that is extracted from the phonon
reservoir. The associated efficiency is defined as the ratio of the
extracted heat current and the power invested in the electron
system. We evaluate this efficiency within linear response,
valid when the electron temperature T is not too different from
the phonon temperature Tph and compare it to the maximal
Carnot efficiency. In another setup we assume that the phonon
motion is entirely controlled by the coupling to the electrons.
This is appropriate when the coupling of the mechanical
motion to a reservoir is sufficiently weak or entirely absent.
The cooling power is now characterized by the effective
temperature of the mechanical motion, defined through the
condition that no heat current flows between the mechanical
mode and a (fictitious) weakly coupled phonon reservoir
[27–32]. Within linear response, this effective temperature
can also be obtained directly from the general linear-response
coefficients.

This article is organized as follows. Section II introduces
the model by which we describe the device in Fig. 1 (Sec. II A)
and briefly summarizes essential results of the theory of the
thermoelectric response (Sec. II B). In Sec. III we consider
the quantum regime of fast mechanical motion. Section IV
discusses the complementary classical regime of fast electronic
dynamics. We summarize and conclude in Sec. V. Some details
of the calculations are relegated to Appendixes.

II. MODEL AND THERMOELECTRIC RESPONSE

A. Model

The two-quantum-dot setup described above and depicted
in Fig. 1 can be modeled by the Hamiltonian

H = Hel + HT + Hv + Hph + Hc,ph. (1)

Here the first term accounts for the two quantum dots and their
couplings to the two electrodes,

Hel =
∑

α=L,R

(Hα + Hc,α + εαd†
αdα). (2)
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Both quantum dots α = L,R host one electronic state of en-
ergy εα , with corresponding creation (annihilation) operators
d†

α (dα). The dots are assumed noninteracting and in contact
with one electron reservoir each. The reservoirs are modeled
by the free-electron Hamiltonians

Hα =
∑
kα

εkα
c
†
kα

ckα
, (3)

where c
†
kα

(ckα
) creates (annihilates) an electron in state kα of

electrode α and the hybridization between quantum dots and
electrodes is described by

Hc,α =
∑
kα

wkα
c
†
kα

dα + H.c., (4)

with the amplitude wkα
.

The vibrational mode couples to the electronic degrees of
freedom through the tunnel coupling between the two quantum
dots,

HT = t(x̂)d†
LdR + H.c. (5)

Specifically, the tunneling amplitude t(x̂) = t0e
−λx̂ depends

on the vibrational coordinate x, which provides the electron-
phonon coupling of strength λ [33]. For simplicity we assume
that the mechanical motion is characterized by a single
normal-mode coordinate. Expressing this coordinate in terms
of phononic creation and annihilation operators, x̂ = â + â†,
the free motion of the vibrational mode is governed by the
Hamiltonian

Hv = ω
(
a†a + 1

2

)
, (6)

where ω is the frequency.
Finally, the last two terms of the Hamiltonian (1) represent a

phonon bath and its coupling to the vibrational mode. We will
provide some further details for these contributions in Secs. III
and IV.

For the most part of the paper we will set � = kB = 1 unless
a restoration of conventional units facilitates the discussion.

B. Thermoelectric description

We briefly review some aspects of the general theory of
thermoelectric response [15] in a form adapted to the refriger-
ation of a vibrational mode. In many ways our discussion here
follows Refs. [18,19], which consider a three-terminal setup
including two electron reservoirs and one phonon reservoir.

We focus attention on thermoelectric cooling of the vibra-
tional mode coupled to a phonon reservoir at temperature Tph

and assume that the two electron reservoirs are at the same
temperature T . Charge currents JC between the two electron
reservoirs and heat currents JQ from the phonon to the electron
reservoirs can be induced by applying a chemical potential
difference �μ = μL − μR between the electron reservoirs
or a temperature difference �T = Tph − T . Within linear
response, the thermoelectric effects are then described in terms
of a 2 × 2 matrix L,

(
JC/e

JQ

)
=

(
L11 L12

L21 L22

)(
�μ/T

�T/T 2

)
,

or in short J = L · X. Here the quantities X1 = �μ/T and
X2 = �T/T 2 are known as affinities. The Onsager reciprocity
relations yield L12(B) = L21(−B) in the presence of a mag-
netic field B. From now on we will assume that the system is
time-reversal symmetric so that L12 = L21.

Our device operates as a refrigerator as long as JQ > 0
for Tph < T . Given a certain bias voltage V = �μ/e, this
is the case for phonon temperatures in the interval T (1 −
L21�μ/L22) < Tph < T .

We can characterize the operation of the device in Fig. 1 as
a refrigerator through the coefficient of performance η, which
is defined as the ratio of the rate at which heat is extracted from
the cold reservoir (i.e., the phonon reservoir) and the invested
electric power,

η = Q̇

Ẇ
= JQ

(JC/e)�μ
= L21X1 + L22X2

T X1(L11X1 + L12X2)
. (7)

This efficiency can be related to the rate of entropy production
Ṡ = (JC/e)X1 + JQX2 which yields

η = ηC

(
1 − T Ṡ

(JC/e)�μ

)
. (8)

Thus, as a consequence of the second law of thermodynamics,
the efficiency η is always smaller than the Carnot efficiency
for refrigeration (given here to linear-response accuracy),

ηC = T

|�T | . (9)

We also note another consequence of the second law. Writing
the rate of entropy production in linear response,

Ṡ = Xt · L · X, (10)

we conclude that L is positive semidefinite, i.e.,

L11, L22 > 0,
(11)

L11L22 − L2
12 � 0.

In addition to the currents JC and JQ, there will also be
a heat current flowing between the two electron reservoirs
in our device. However, this current does not contribute to
entropy production as it flows between two reservoirs of equal
temperature. More generally, it does not play an essential role
in the following.

We can also define a figure of merit ZT for our three-
terminal setup in the usual manner. Indeed, for a given
temperature difference �T , the efficiency can be maximized
as function of voltage. This yields the maximal efficiency

η = ηC

√
1 + ZT − 1√
1 + ZT + 1

, (12)

where

ZT = L2
12

det (L)
(13)

is the figure of merit. Thus the Carnot efficiency would be
attained as ZT → ∞.

So far we assumed that the vibrational mode is coupled to
a phonon reservoir which fixes its temperature to Tph. Alterna-
tively, we could consider the vibrational mode decoupled from
the phonon reservoir. In this case, cooling can be characterized
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by an effective temperature of the vibrational mode which is
smaller than the electron temperature, as done in previous
works.

For a general nonequilibrium situation, the distribution
function of the vibrational mode will not be thermal so that
we need to specify what we mean by effective temperature. A
possible definition in a nonequilibrium transport setup relies
on coupling the vibrational mode to a thermometer, a reservoir
with infinitesimal coupling to the vibrational mode [27,30–32].
The effective temperature is then defined as the temperature at
which there is vanishing heat flow between thermometer and
vibrational mode. This definition was originally introduced by
Engquist and Anderson [27] and has been widely adopted in
many transport setups. This definition allows us to obtain the
effective temperature of the vibrational mode within the above
formalism by requiring that JQ = 0 which yields

T eff = T

(
1 − eV

L12

L22

)
. (14)

Note that this is just the minimal phonon temperature at which
the device with a phonon thermostat operates as a phonon
refrigerator.

III. QUANTUM REGIME

We first consider the quantum regime in which the tunneling
rate between the quantum dots is small compared to the
vibrational frequency. Moreover, we assume that the coupling
between quantum dots and leads is strong compared to the
coupling between the quantum dots. In this limit we can
describe the system in terms of a master (or rate) equation
for the occupation probability Pn of the phonon mode. Here
Pn denotes the probability that the phonon state of energy nω is
occupied. The state of the phonon mode can change whenever
an electron tunnels between the two quantum dots and the
corresponding rates can be readily derived from Fermi’s golden
rule.

A. Rate equation

We first set up the master equation for the dynamics of the
phonon population. Following Ref. [23], the master equation
for Pn takes the form

Ṗn = −Pn

∑
n′

Wn→n′ +
∑
n′

Pn′Wn′→n − 1

τ

[
Pn − P eq

n

]
,

(15)

where Wn→n′
denotes the rate of transitions from phonon state

n to n′. The last term in Eq. (15) accounts for the coupling of the
oscillator to the phononic environment in a phenomenological
manner [23]. We assume that this phonon heat bath is at a
temperature Tph, so that the phonon distribution Pn will relax
to the equilibrium distribution

P eq
n = e−nω/Tph (1 − e−ω/Tph ), (16)

within the relaxation time τ . In the limit of fast relaxation,
1/τ → ∞, the distribution Pn approaches the equilibrium
distribution P

eq
n , while in the opposite limit of slow relax-

ation, 1/τ → 0, the phonon distribution function is entirely
controlled by electron-induced processes.

For small interdot tunneling, we can evaluate the transition
rates Wn→n′

by Fermi’s golden rule, working to lowest order
in the hopping amplitude t0. By accounting for tunneling
processes between the quantum dots going in both directions,
the rates can be expressed as Wn→n′ = ∑

α �=β Wn→n′
αβ with

Wn→n′
αβ = |Mn→n′ |2|t0|2I n→n′

αβ . (17)

Here we label the leads by Greek indices, α = L,R. The
transition rates involve the Franck-Condon matrix elements
Mn→n′ = 〈n′|e−λx̂ |n〉 [23]. An explicit evaluation of these
matrix elements yields

|Mn→n′ |2 = e−λ2[
λQ−q

√
q!/Q! LQ−q

q (λ2)
]2

, (18)

with the abbreviations q = min(n,n′) and Q = max(n,n′),
while Ln

m(x) denotes the generalized Laguerre polynomials.
The electronic contribution to the transition rates in Eq. (17)

is

I n→n±m
αβ = 2π

∫
dεfα(ε)[1 − fβ(ε∓)]ρα(ε)ρβ(ε∓), (19)

with ε∓ = ε ∓ mω. Here fα(ε) = 1/(e(ε−μα)/T + 1) is the
Fermi distribution function for lead α (with chemical poten-
tial μα and temperature T ). Accounting for the coupling to the
leads, the local density of states of the quantum dot α is given
by

ρα(ε) = �α

2π [(ε − εα)2 + (�α/2)2]
, (20)

where εα is the renormalized level energy and �α denotes the
lead-induced broadening of the level.

B. Thermoelectric response matrix L

We can use the rate equations (15) to compute the ther-
moelectric linear-response matrix L. Within the rate-equation
formalism, the charge current between the electron reservoirs
and the heat current out of the phonon bath can be expressed as

JC = e
∑
n,n′

(
P eq

n Wn→n′
LR − P

eq
n′ Wn′→n

RL

)
,

(21)
JQ = ω

2

∑
n,n′

(n − n′)
(
P eq

n Wn→n′ − P
eq
n′ Wn′→n

)
.

In linear response, the phonon distribution function is close
to equilibrium (at temperature Tph) at all times. Hence, these
expressions involve the equilibrium distribution function
P

eq
n given in Eq. (16). One readily verifies that in strict

equilibrium, i.e., for eV = �T = 0, the rates satisfy detailed
balance P

eq
n Wn→n′

αβ = P
eq
n′ Wn′→n

βα , implying JC = JQ = 0 as
expected.

We can now work out the charge and heat currents to linear
order in eV and �T . After some algebra, this yields

L11 = (2π )|t0|2(1 − e−βω)
∑
n,n′

λn,n′ ,

L12 = (2π )ω|t0|2(1 − e−βω)
∑
n,n′

(n − n′)λn,n′ , (22)

L22 = (2π )ω2|t0|2(1 − e−βω)
∑
n,n′

(n − n′)2λs
n,n′ ,
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for the thermoelectric response functions. Here we used the
shorthand

λn,n′ = |Mn→n′ |2
∫ ∞

−∞
dεeβ(ε−μ)Fn,n′ (ε)ρn,n′

LR (ε),

λs
n,n′ = 1

2
|Mn→n′ |2

∫ ∞

−∞
dεeβ(ε−μ)Fn,n′ (ε) (23)

×[
ρ

n,n′
LR (ε) + ρ

n,n′
RL (ε)

]
,

with

Fn,n′(ε) = f (ε + nω)f (ε + n′ω),
(24)

ρ
n,n′
αβ (ε) = ρα(ε + n′ω)ρβ(ε + nω),

in terms of f (ε) = 1/[eβ(ε−μ) + 1]. It can be verified that these
expressions satisfy the Onsager relation L12 = L21.

To illustrate the response functions Lij , we calculate them
explicitly as functions of the electron temperature for a system
in the resonant configuration εR − εL = ω and with a chemical
potential which is located slightly below the energy of the left
quantum-dot level. We also express all energies in units of ω.
The results are shown in Fig. 2 for the case of a weak electron-
phonon coupling λ. The two panels correspond to different
values of the coupling between the dots and the reservoirs
�. For this resonant configuration of the quantum dot levels,
the dominant tunneling process involves the absorption of one
phonon quantum, as sketched in Fig. 3. Thus, the sums in
Eq. (22) are dominated by n = 1 and n′ = 0 for sufficiently
weak �. Hence, L22 ∼ ωL12 ∼ ω2L11 (see upper panel). As
� increases (see lower panel of the figure), direct tunneling
without the absorption of a phonon quantum becomes more

0
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L ij /t
02

0 0.5 1 1.5 2
T

0
1
2
3
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5
6

L ij/t 02

FIG. 2. (Color online) Thermoelectric response coefficients L11

(solid line), L12 = L21 (circles), and L22 (squares) as function of
temperature for weak electron phonon interaction λ = 0.1. The upper
(lower) panel corresponds to a coupling to the electron reservoirs of
� = 0.01 (� = 0.1). The quantum-dot levels are in the resonance
configuration εR − εL = ω with εL = 0.025 and εR = 1.025 with
chemical potential μ = 0. Energies and temperatures are expressed
in units of ω. Differences in units between the response coefficients
are also compensated by factors of ω.

FIG. 3. (Color online) Sketch of the phonon-absorption process
in the resonant situation εR = εL + ω.

likely, in addition to the tunneling with phonon absorption.
The direct tunneling process corresponds to terms with n =
n′ = 0 in Eq. (22) and thus contributes only to L11. Hence, for
larger hybridizations �, the thermoelectric coefficients satisfy
L11 > ωL12 and L12 ∼ ωL22.

C. Efficiency and figure of merit

Based on the coefficients Lij , we can now calculate the
efficiency with which heat can be extracted from the phonon
bath [see Eq. (7)] as well as the associated figure of merit
[Eq. (13)]. As we will see, the result of the previous section that
the ratios of the response coefficients are of order unity (when
made dimensionless by appropriate powers of ω) implies both
a large figure of merit and efficiencies which are near the
Carnot limit.

Representative results for the efficiency and the figure
of merit are presented in Fig. 4, for the same resonant
configuration discussed in the previous section. We observe
that large values of ZT and efficiencies close to the Carnot
limit are attained for small hybridizations between quantum
dots and leads (see left panels of Fig. 4). Then, the dominant
process is the one sketched in Fig. 3, which corresponds to
electron tunneling accompanied by single-phonon absorption.
The strength of this process increases with increasing electron-
phonon interaction λ. Hence, the efficiency increases with λ.

0 0.5 1 1.5 20.00

0.01
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100.00

ZT

0 0.5 1 1.5 2

0 0.5 1 1.5 2
T
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η/
η C

0 0.5 1 1.5 2
T

FIG. 4. (Color online) Figure of merit ZT and efficiency η of
the refrigerator for different hybridization strengths �L = �R =
� = 0.01,0.1 (left and right panels, respectively). Solid (dashed)
lines correspond to electron-phonon interaction λ = 1 and λ = 0.1,
respectively. Other parameters are as in Fig. 2.
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This can be deduced by comparing the solid and the dashed
lines in the plots, which correspond to higher and lower λ,
respectively. In contrast, increasing the hybridization with the
reservoirs characterized by �, tends to decrease the efficiency
(compare left and right plots), as increasing � increases the
direct tunneling of electrons without phonon absorption.

D. Effective temperature

We now turn to characterize the refrigeration device by the
effective (nonequilibrium) temperature of the phonon mode.
This characterization is appropriate when τ → ∞, i.e., when
the heating of the phonon mode by the coupling to the
phononic bath becomes negligible relative to the electron-
induced processes.

1. Linear response

In linear response we can use Eq. (14) for the effective
temperature. Thus, the effective temperature depends on the
ratio L12/L22. As discussed in the previous section and shown
in Fig. 2, this ratio approximately equals 1/ω in the resonant
configuration εR − εL = ω when the single phonon absorption
process dominates and it is basically independent of the
hybridization � and the electron-phonon coupling λ. Thus,
we have

T eff � T (1 − eV/ω) (25)

over a wide range of parameters in the linear-response regime
(eV � ω).

2. Beyond linear response

Beyond linear response we can characterize the cooling
power by directly computing the effective temperature from
the rate equations. Here it is more convenient to define the
effective temperature based on the stationary (nonequilibrium)
phonon distribution P stat

n through

T eff = ω

ln(1 + 1/nstat)
, (26)

where nstat = ∑
n nP stat

n is the average phonon excitation
corresponding to the stationary phonon distribution. Thus,
Eq. (26) simply mimics the relation between temperature
and average phonon excitation for a thermal equilibrium
distribution like Eq. (16) with Tph = T eff . Notably, in the
linear-response regime this definition of the effective temper-
ature coincides with the previous definition based on the heat
current from a fictitious phonon reservoir (a thermometer).

We note in passing that similar definitions were used, e.g., in
Refs. [6,9,28–32]. One can readily check the usefulness of this
definition of effective temperature a posteriori by comparing
the full stationary phonon distribution with the thermal
equilibrium distribution for temperature T eff . An example is
shown in Fig. 5, where the exact nonequilibrium distribution
function, obtained by the numerical solution of Eq. (15) in
the stationary case (see solid lines), is shown along with the
thermal distribution function P

eq
n of Eq. (16), corresponding

to Tph = T eff (circles). The thermal distribution function
corresponding to Tph = T is also shown for comparison (see
dashed lines).

0
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P n

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8n n

FIG. 5. (Color online) Points connected with solid lines: Proba-
bility distribution function Pn calculated from the numerical solution
of Eq. (15) in the stationary nonequilibrium case by considering up
to 13 phonon modes. Circles: Equilibrium probability distribution
function P eq

n [see Eq. (16)] corresponding to a phonon temperature
Tph = T eff , where the effective temperature is defined in Eq. (26).
Dashed lines: P eq

n for Tph = T . Left (right) panel corresponds to
T = 1, V = 0.5 (T = 1, V = 2.5) in which case Teff/T = 0.67
(Teff/T = 0.3). We are considering a small relaxation rate 1/τ

(τ |t0|2λ2/ω = 10), t0 = 0.1, and weak coupling to the reservoirs
� = 0.01. All other parameters are as in Fig. 2 and all the energies
are expressed in units of ω.

An important question which can be addressed with this
definition concerns the processes which limit the cooling
power of the device and hence the limiting temperature which
can be reached. Considering again the resonant configuration
discussed above, we can make analytical progress in the limit
of weak electron-phonon coupling λ where single-phonon
processes dominate. In this regime the relevant rates involved
are

Wn→n±1 � max(n,n ± 1) λ2|t0|2I±, (27)

where we abbreviate I± = I n→n±1. This allows one to rewrite
the rate equation (15) in terms of the average phonon number
n = ∑

n nPn, which yields

ṅ � [λ2|t0|2(I+ − I−) − 1/τ ]n + λ2|t0|2I+ + neq/τ. (28)

Here neq = (eβω − 1)−1 denotes the average phonon number
in equilibrium at the bath temperature. This equation readily
yields the stationary solution

nstat = nstat
0 + 1

λ2|t0|2τ
neq − nstat

0

I− − I+ + 1/(λ2|t0|2τ )
, (29)

where nstat
0 = I+/(I− − I+) denotes the solution in the ab-

sence of a phonon bath (τ → ∞). In order to cool the system,
i.e., nstat < neq, it is necessary that nstat

0 < neq. Thus, this
condition will allow us to identify the temperature range for
which cooling is possible.

The integrals I±
αβ become particularly simple when assum-

ing the limit � � T which allows one to obtain analytical
results (see Appendix A for details). The leading absorption
process is depicted in Fig. 3. The important emission processes
are shown in Fig. 6, with their relative magnitude depending
on the ratio of voltage and phonon frequency.

For small voltages, eV < ω, the phonon absorption mainly
competes with the phonon emission process in upstream
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FIG. 6. (Color online) Phonon-emission processes which limit the phonon refrigeration in the resonant situation εR = εL + ω. The process
on the left (right) is dominant for eV < ω (eV > ω).

tunneling of electrons between the dots, see Fig. 6 (left). This
process is possible at finite temperature (though exponentially
suppressed) due to the thermal broadening of the Fermi
functions of the leads. Specifically, for 1/τ → 0, one has
I−  I+, so that nstat � I+/I− and we find an effective
temperature

T eff

T
� ω/T

ln(1 + e(ω+eV )/T )
� ω

ω + eV
. (30)

Thus, the transport current does indeed cool the phonon mode,
with the effective temperature decreasing for increasing bias
voltage. It is interesting to note that this result reduces to the
earlier linear-response result Eq. (25) when eV � ω.

For larger biases, eV > ω, there is an additional heating
channel associated with downstream tunneling of electrons,
see Fig. 6 (right). This process actually dominates heating
when T � eV . Consequently we find

T eff � ω

2 ln(2ω/�)
. (31)

This shows that for eV > ω, cooling is possible only for
relatively large temperatures ω/[2 ln(2ω/�)] < T < eV .

3. Beyond linear response—numerical results

We complete this section with numerical results for the
effective temperature T eff which cover a wider range of
parameters than accessible analytically. The efficiency of the
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FIG. 7. (Color online) T eff/T vs detuning of the electronic en-
ergy levels and bias voltage, for weak electron-phonon coupling
λ = 0.1, small relaxation rate 1/τ (τ |t0|2λ2/ω = 10), �/ω = 0.01,
and T/ω = 1.

refrigerator depends crucially on the electronic levels. This
is illustrated in Fig. 7 for a small relaxation rate 1/τ . One
observes that the energy-level configuration which is most
favorable for cooling is indeed the resonant configuration
εR − εL = ω sketched in Fig. 3 (with μL = μR + eV ). More
generally, we find that cooling is possible for a wide range
of values of the ratio (εR − εL)/ω as well as a wide range of
voltages V . We verified that the lowest effective temperatures
are achieved at resonance and high voltages eV , in agreement
with Eqs. (30) and (31). Increasing the phonon relaxation
rate 1/τ or the degree of coupling of the quantum dots
to the electron reservoirs favor the thermalization with the
external bath. Thus, these effects work against cooling as can
be easily verified numerically. Changing the electron-phonon
coupling λ does not introduce relevant qualitative changes in
the behavior of T eff over a wide range of values.

IV. CLASSICAL REGIME

A. Langevin dynamics and thermoelectric response functions

We now turn to the classical regime in which the phonon
frequency is small compared to the rate at which electrons are
passing between the reservoirs, ω � � and ω � t0. In this
regime the vibrational dynamics can be described in terms of
a Langevin equation

MẌ = −Mω2X + F (X) − γ Ẋ + ξ (t) , (32)

where M is the effective mass of the vibrational mode,
which is now represented by the classical coordinate X(t).
The first term on the right-hand side is the elastic restoring
force of the vibrational mode. The remaining terms originate
from coupling to the electrons and the phonon reservoir. The
Born-Oppenheimer force F (X) can be accounted for by a
renormalization of the elastic restoring force which will be
left implicit in the following.

Both the friction coefficient γ and the stochastic force ξ (t)
have (additive) contributions from the coupling to the electrons
and the phonon reservoir,

γ = γe + γph,
(33)

ξ (t) = ξe(t) + ξph(t).

When a phonon reservoir is present, it by definition keeps
the vibrational mode in thermal equilibrium at all times.
Then, the phonon contributions γph and ξph are much larger
than their electronic counterparts. The fluctuating forces are
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characterized by the correlators

〈ξe(t)ξe(t)〉 = Deδ(t − t ′),

〈ξph(t)ξph(t)〉 = Dphδ(t − t ′), (34)

〈ξe(t)ξph(t)〉 = 0.

The phonon reservoir is in thermal equilibrium at the phonon
temperature Tph. Thus, the fluctuation-dissipation theorem
implies that

Dph = 2γphTph. (35)

At the same time, when a voltage bias is applied to the
electronic system, the corresponding friction and fluctuation
coefficients contain a nonequilibrium contribution (labeled by
the superscript ne) in addition to the equilibrium one (labeled
by eq),

γe = γ eq
e + γ ne

e , (36)

De = Deq
e + Dne

e . (37)

Again, the fluctuation-dissipation theorem implies the relation

Deq
e = 2γ eq

e T (38)

in terms of the electron temperature T .
The coefficients γe and De can be evaluated for the micro-

scopic model under consideration. Before doing so, we present
a general derivation of the thermoelectric response functions
from the Langevin dynamics. We start by considering the
heat current JQ flowing from the phonon to the electron
reservoir. This heat current is effected by the coupling between
vibrational mode and electrons as encoded in the friction γe

and the force correlator De. We can compute the heat current
by multiplying the Langevin equation by Ẋ and rewriting it
as an equation for the time derivative of the energy stored
in the vibrational mode. In a stationary state, this energy is
time independent on average, with the heat current lost to the
electron system compensated by the phonon reservoir. Thus,

JQ = −
[

d

dt

〈
1

2
MẊ2 + 1

2
Mω2X2

〉]
e

= γe〈Ẋ(t)2〉 − 〈ξe(t)Ẋ(t)〉. (39)

As we are assuming that the vibrational mode is fully
thermalized with the phonon reservoir, by equipartition we
have 〈Ẋ(t)2〉 = Tph/M . The fluctuating contribution δXe(t) of
the vibrational coordinate is proportional to ξe(t). Hence,

δXe(�) = 1

−M�2 + Mω2 + iγ�
ξe(�). (40)

Here the last relation follows from the Langevin equation
written in Fourier space. Inserting this into the correlator
〈ξe(t)Ẋ(t)〉, using the correlator of the fluctuating force ξe,
and performing the frequency integration, we obtain

JQ = γeTph

M
− De

2M
. (41)

We can now use this general expression to compute both L21

and L22.
To compute L22, we first assume a small temperature

difference �T = Tph − T between phononic and electronic

reservoirs, but zero applied bias V . Then, the electrons are in
thermal equilibrium and we can use the fluctuation-dissipation
theorem to replace De. This yields

JQ = γ
eq
e

M
(Tph − T ) (42)

and thus

L22 = γ
eq
e T 2

M
. (43)

Similarly, we consider Tph = T with nonzero applied bias V

to compute L21. Then, the equilibrium contributions of γe and
De cancel in JQ and only the nonequilibrium contributions
remain,

JQ = γ ne
e T

M
− Dne

e

2M
. (44)

This yields

L21 = T

2M

[
d

d(eV )

(
2γ ne

e T − Dne
e

)]
eV =0

. (45)

Note that by Onsager’s relation, L12 = L21. Finally, we remark
that up to factors of temperature, L11 is simply the conductance
of the system.

B. Results for the microscopic model

We are now in a position to derive expressions for
the thermoelectric response coefficients as functions of the
parameters of the microscopic model. As shown in previous
works, both the friction coefficient and the force correlator can
be conveniently evaluated in terms of the Green functions of
the the underlying microscopic model [24], or alternatively in
terms of the electronic scattering matrices [25,26]. For weak
electron-phonon coupling λ, the interdot hopping amplitude
[cf. Eq. (5)] becomes

t(X) � t0(1 − λX), (46)

and the general expressions yield

γe(X) = (t0λ)2
∑
α,β

Re

[∫ ∞

−∞

dε

2π
∂εG

f,>

α,β (ε,X)Gf,<

β,α
(ε,X)

]
,

De(X) = (t0λ)2
∑
α,β

Re

[∫ ∞

−∞

dε

2π
G

f,>

α,β (ε,X)Gf,<

β,α
(ε,X)

]
.

(47)

Here α,β = L,R and L = R, R = L. We note that in general,
these coefficients depend on the vibrational coordinate X.
In the following we assume the limit of small oscillations
so that we can linearize the Langevin equation about the
vibrational equilibrium and approximate γe and De by their
values at X = 0. The integrands involve the lesser and greater
Green functions, which are given in Appendix B. We find it
convenient to express the results in terms of the partial densities
of states

ρδ
αβ(ε) = G

f,R

αδ (ε)�δG
f,A

δβ (ε) (48)

and the associated total density of states

ραβ(ε) =
∑

δ=L,R

ρδ
αβ(ε). (49)
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This yields

γ eq
e = − (t0λ)2

2

∑
α,β

∫ ∞

−∞

dε

2π
∂εf (ε)ρα,β(ε)ρβ,α(ε),

Deq
e = (t0λ)2

∑
α,β

∫ ∞

−∞

dε

2π
f (ε) [1 − f (ε)] ρα,β (ε)ρβ,α(ε),

(50)

for the equilibrium contributions and

γ ne
e = −eV (t0λ)2

∑
α,β

∫ ∞

−∞

dε

2π
∂εf (ε)∂εραβ(ε)ρL

βα
(ε),

Dne
e = −T eV (t0λ)2

∑
α,β

∫ ∞

−∞

dε

2π
∂εf (ε)∂ε

[
ραβ(ε)ρL

βα
(ε)

]
,

(51)

for the nonequilibrium contributions. One readily confirms that
the equilibrium contributions obey the fluctuation-dissipation
theorem.

Combining these relations with our expressions (43) and
(45) for the thermoelectric response coefficients, we obtain

L11 = −T

∫ ∞

−∞

dε

2π
∂εf (ε)�11(ε),

L22 = −T 2

M

∫ ∞

−∞

dε

2π
∂εf (ε)�22(ε), (52)

L21 = L12 = − T 2

2M

∫ ∞

−∞

dε

2π
∂εf (ε)�12(ε),

with

�11(ε) = 1

2

∑
α

�αρα
α,α(ε),

�12(ε) = (t0λ)2
∑
α,β

[
∂ερ

R
α,β (ε)ρL

β,α
(ε) − ρR

α,β(ε)∂ερ
L

β,α
(ε)

]
,

�22(ε) = (t0λ)2

2

∑
αβ

ρα,β (ε)ρβ,α(ε). (53)

These expressions can be readily evaluated numerically.
To provide some intuition, we first plot the integrands

�11(ε), �22(ε), and �12(ε). These functions are shown in
Fig. 8 and have a similar qualitative behavior. In particular,
they have peaks at the positions of the electronic levels. We
note that in the present regime, where we consider a large
hopping parameter t0 between the two dots, the energies of
the levels of the double-dot structure differ significantly from
the bare energies εL and εR . Importantly, these functions are
positive, which implies that the direction of the charge and heat
currents are fully determined by the temperature and voltage
biases �T and �μ, respectively.

1. Efficiency

We can now evaluate the efficiency η and the figure of merit
ZT for the refrigerator in the classical regime. We saw above
that the efficiency can approach the Carnot limit in the quantum
regime. In contrast, the efficiency will typically be far from

-2 -1 0 1 2 3
ε
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11

, Λ
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/(t
0λ)

2 , Λ
22

/(t
0λ)

2

FIG. 8. (Color online) �11(ε),�12(ε)/(t0λ)2,�22(ε)/(t0λ)2 de-
fined in Eq. (53), corresponding, respectively, to solid, dashed, and
dot-dashed lines, for �L = �R = 0.5. The amplitude of the interdot
hopping is t0 = 1 and sets the energy scale. The energies of the levels
of the dots are εL = 0.025 and εR = 1.025.

the Carnot limit in the classical regime. This can be seen by
parametric estimates of the response coefficients. Starting with
Eqs. (52) and (53), we find L11 ∼ T , L22 ∼ (λ2t2

0 T 2/M�2),
and L12 ∼ λ2t2

0 T 3/M�3. Thus, we obtain

ZT � L2
12

L11L22
∼

(ω

�

)2
(

t0

�

)2 (
T λ2

k

)
, (54)

where we used ω2 = k/M for the vibrational frequency in
terms of the elastic force constant k. ZT is small as all
three factors on the right-hand side are small. For the first
two factors, this follows by the basic relation ω � t0 � �

underlying the classical regime [34]. In addition, the third
factor is small whenever we are allowed to linearize the
electron-phonon coupling as we did in Eq. (46). Indeed,
this linearization is allowed when λX ∼ λ(T/k)1/2 � 1. Note
specifically that this implies that we cannot increase ZT

arbitrarily by reducing M as one might have naively assumed
based on Eq. (52).

These considerations are confirmed by the numerical results
shown in Fig. 9 for the figure of merit ZT and the efficiency
η in the classical regime. The efficiency is far from the Carnot
value, in contrast to the quantum regime, and in agreement
with Eq. (54), the efficiency and figure of merit increase
linearly with temperature. The efficiency also increases with
decreasing �. This can be interpreted by noting that the system
moves towards the quantum regime when decreasing �.

In the quantum regime, cooling strongly peaks at the
resonance condition εR − εL = ω. In the classical regime, in
contrast, ω sets the lowest energy scale and is specifically small
compared to � which rules out resonant phonon absorption.
Thus, the dependence on εL and εR is much weaker. Mainly,
the magnitude of ZT and η decrease as εL and εR approach one
another. This just reflects that for εL = εR , the configuration
becomes symmetric, which implies �12(ε) → 0. Finally, we
note that ZT peaks when the chemical potential lies within the
peaks of the coefficients �ij as shown in Fig. 10 (cp. Fig. 8).
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FIG. 9. (Color online) Efficiency and figure of merit as a function
of the temperature T in the classical regime. We chose M = 1, μ =
−0.8, and λ = 0.1. Solid and dashed lines correspond to � = 0.5
and � = 1, respectively. The unit of energy is set by t0 = 1, while the
energies of the levels of the dots are εL = 0.025 and εR = 1.025.

2. Effective temperature

Within linear response, the effective temperature in Eq. (14)
can be expressed in terms of the thermoelectric coefficients
(52). This yields

T eff � T

[
1 + eV

2γ eq

∫
dε∂εf (ε)�12(ε)

]
. (55)

This actually coincides with the effective temperature

T eff = De

2γe
(56)
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FIG. 10. (Color online) Figure of merit vs temperature T and
chemical potential μ in the classical regime for � = 0.5. The mass
of the oscillator is M = 1, the energies of the levels of the dots are
εL = 0.025 and εR = 1.025, while t0 = 1 defines the scale for the
energies.
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FIG. 11. (Color online) T eff/T as a function of the temperature T

of the electron reservoirs. Different plots correspond to different
voltages V = 0.5,1,1.5,2. The chemical potentials are μR = −0.8
and μL = μR ± V , where the upper (lower) sign corresponds to the
left (right) panel. The energies of the levels of the dots are εL = 0.025
and εR = 1.025, while t0 = 1 defines the scale for the energies as in
the previous figures.

motivated by the fluctuation-dissipation relation. Note that
here γe and De represent nonequilibrium parameters. In fact,
expanding the nonequilibrium contributions Dne

e and γ ne
e to

linear order in V , one recovers Eq. (55) (see Refs. [28,29] for
a related calculation). Of course the cooling effect depends
on the right direction of current flow. Accordingly, Eq. (55)
predicts T eff < T for eV > 0, and T eff > T for eV < 0.

Numerical results beyond linear response are shown in
Fig. 11. The bias voltage is chosen such that the chemical
potential is close to the peaks of the function �ij (ε). In
particular, we choose μR slightly below the peak at lower
energy and μL = μR ± eV . The left panel corresponds to
a level arrangement such that there can be a cooling effect
and accordingly T eff/T < 1 when the electron temperature T

exceeds a threshold value. The right panel of Fig. 11 shows
results for the opposite configuration μL = μR − eV , where
cooling is not expected and hence, T eff/T � 1 for all V and T .

V. SUMMARY AND CONCLUSIONS

The vibrational motion of a nanoelectromechanical system
can be cooled by a charge current when the electronic levels
are appropriately arranged to favor phonon absorption over
emission. In this paper we have explored this phenomenon in
the context of the general theory of thermoelectrics. In linear
response, this theory allows one to define the efficiency of
cooling as well as the figure of merit ZT . We have shown that
both concepts carry over to phonon cooling in nanoelectrome-
chanical systems. As an important consequence, this allowed
us to discuss the efficiency of these phonon refrigerators in
relation to the fundamental Carnot efficiency.

We have illustrated these concepts for a specific model of a
sequential double quantum dot, arranged such that electron
flow is preferentially accompanied by phonon absorption.
Our motivation to study this system was twofold: First,
recent progress in the device fabrication of suspended carbon
nanotubes should make it possible to realize such a structure
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in the laboratory. Second, the model is amenable to a largely
analytical treatment with controlled approximations.

We have first considered the limit in which the phonon
frequency is large compared to the rate at which the electrons
are passing through the system. In this quantum limit we
could describe the electronic and phononic dynamics by means
of master equations. Clearly in this regime cooling is most
effective when the levels of the two quantum dots are tuned
such that they differ exactly by the phonon frequency, with
increasing level energies in the direction of the current flow.
Indeed, we have shown that in this case, the efficiency can
approach the Carnot efficiency and that the figure of merit
can be very large. Similarly, when the vibrational degree of
freedom is effectively decoupled from a heat bath, the effective
temperature of the phonon mode can be reduced significantly
below the electron temperature.

Second, we have considered the complementary classical
regime in which the phonons are slow compared to the
electron dynamics. Suspended nanotube devices typically
operate in or near this regime when the relevant phonon
mode is the flexural vibrational mode. In this regime we
could describe the vibrational motion in terms of a Langevin
equation which properly accounts for the nonequilibrium
electronic dynamics. We have found that even in this regime,
a double dot structure can operate as a phonon refrigerator but
the typical efficiencies and figures of merit are much reduced
compared to the quantum regime.

Our results not only put recent work on electron-current
cooling of vibrational motion into the context of the general
theory of thermoelectrics, but also provide relevant guidance
to future experiments. Most importantly, our results indicate
that efficient cooling of vibrational motion requires an effort
to design structures of suspended carbon nanotube samples
closer to the quantum regime. This could be achieved either
by a shorter suspended section or by engineering a larger
string tension. The possibility of efficient cooling of vibrational
modes with an electron current may also provide interesting
applications in refrigerating systems into states in which
electronic and vibrational degrees of freedom are entangled.
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APPENDIX A: SIMPLIFIED EXPRESSIONS FOR THE
INTEGRALS I±

αβ IN THE LIMIT OF VERY SMALL
COUPLING BETWEEN THE DOTS AND THE RESERVOIRS

In the limit of small coupling between the dots and the
reservoirs the the integrals (19) with the Lorentzian density of
states of Eq. (20) can be written as

I±
αβ � F±

αβ

2�

(εβ − εα ± ω)2 + (�/2)2

+ F
±
αβ

2�

(εα − εβ ∓ ω)2 + (�/2)2
, (A1)

with F∓
αβ = fα(εβ ± ω)[1 − fβ(εβ)] and F

±
αβ = fα(εα)[1 −

fβ(εα ∓ ω)].
We now consider a configuration like the one depicted in

Fig. 3 with the phonon frequency resonant with the separation
between the dot levels, ω = εR − εL. For small bias voltage,
μL − μR = eV < ω, we assume that only the left level lies
within the transport window and we can assume that it lies
perfectly at the center of the transport window. For larger
voltages eV > ω, we assume the two levels are symmetrically
aligned between the two chemical potentials of the reservoirs.

With these assumptions it is rather straightforward to get
explicit expressions for I±

αβ in two limits: (a) The first one
corresponds to T setting the smallest energy scale after �,
i.e., T � ω and T � V . (b) The other limit corresponds to T

setting the largest energy scale, i.e., T  ω and T  V .
The results for case (a) are

I−
LR � 2

�
, ∀ V, ω,

I−
RL � �

(2ω)2
e−β(V ±ω), for eV <,>ω,

I+
LR � �

(2ω)2
e−β(ω−V/2), for eV < ω, (A2)

� �

(2ω)2
, for eV > ω,

I+
RL � 2

�
e−β(ω+V ), ∀ V, ω.

The results for case (b) are

I−
LR � I+

RL � 1

2�
,

(A3)

I−
RL � I+

LR � �

8ω2
.

APPENDIX B: FROZEN GREEN’S FUNCTIONS

The lesser and greater Green’s functions entering the forces
coefficients are

G
f,<(>)
α,β (ε,X) =

∑
γ

Gf,R
αγ (ε,X)�<(>)

γ (ε)Gf,A

γβ (ε,X), (B1)

where G
f,A

αβ (ε,X) = [Gf,R

βα (ε,X)]∗ are, respectively, the frozen
advanced and retarded Green’s functions. The latter retarded
Green’s function becomes [with t̃ = t0(1 − λX)]

Gf,R(ε,X) = 1

g

(
ε − εR + i�R t̃

t̃ ε − εL + i�L

)
,

(B2)

where g(X) = (ε − εL + i�L)(ε − εR + i�R) − t̃ 2. The
lesser and greater “self-energies” are

�<(>)
γ (ε) = λ<(>)(ε)γ �γ , (B3)

with λ<
γ (ε) = ifγ (ε) and λ>

γ (ε) = −i[1 − fγ (ε)], where fγ (ε)
is the Fermi function, which depends on the temperature T

and chemical potential μγ of the reservoir γ . In what follows,
we omit explicit reference to the parameter X, which enters
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only in the effective hopping parameter t̃ since we will focus
on small λ, thus t̃ = t .

In order to perform an expansion of the different coefficients
in V , it is useful to recast the lesser and greater functions as
follows:

G
f,<(>)
αβ (ε) = G

f,eq,<(>)
αβ (ε) + G

f,ne,<(>)
αβ (ε), (B4)

where

G
f,eq,<(>)
αβ (ε) = λeq,<(>)(ε)ραβ(ε),

(B5)
G

f,ne,<(>)
αβ (ε) = λne(ε)ρL

αβ(ε),

where the functions λeq,<(>)(ε) = λ
<(>)
R (ε), which are related

to the Fermi distribution function corresponding to the temper-
ature of the reservoirs and the chemical potential μR , which
we take as a reference, while λne(ε) = i [fL(ε) − fR(ε)], with
μL = μR + eV . The total and partial densities of states ραβ(ε)
and ρL

αβ(ε) were, respectively, defined at (49) and (48).

An alternative route to derive the coefficients (47) is by
expanding the scattering matrix [25,35–37] S to leading order
in Ẋ,

S(ε,t) � S(ε,X(t)) + Ẋ(t)A(ε,X(t)), (B6)

where the strictly adiabatic S matrix is given by

S(ε,X) = 1 − 2πiW (ε)Gf,R(ε,X)W †(ε) . (B7)

We have defined

W =
√

�L/π
σ 0 + σ 3

2
+

√
�R/π

σ 0 − σ 3

2
, (B8)

where σμ,μ = 0, . . . ,3 denote the Pauli matrices in the two-
site basis defined by the two quantum dots. The A matrices
also take a simple form for this model and is given by

A(ε,X) = −iλ

√
�L�R

g2
σ 2. (B9)
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