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We present a microscopic description of plasmon-enhanced optical absorption in graphene, which is based
on perturbation theory. We consider the interaction of graphene with a lattice of plasmonic nanoparticles,
as was previously realized experimentally. By using tight-binding wave functions for the electronic states of
graphene and the dipole approximation for the plasmon, we obtain analytic expressions for the coupling matrix
element and enhanced optical absorption. The plasmonic nanostructure induces nonvertical optical transitions
in the band structure of graphene with selection rules for the momentum transfer that depend on the periodicity
of the plasmonic lattice. The plasmon-mediated optical absorption leads to an anisotropic carrier population
around the K point in phase space, which depends on the polarization pattern of the plasmonic near field in the
graphene plane. Using Fourier optics, we draw a connection to a macroscopic approach, which is independent from
graphene-specific parameters. Each Fourier component of the plasmonic near field corresponds to the momentum
transfer of an optical transition. Both approaches lead to the same expression for the integrated optical absorption
enhancement, which is relevant for the photocurrent enhancement in graphene-based optoelectronic devices.

DOI: 10.1103/PhysRevB.97.235417

I. INTRODUCTION

Graphene possesses extraordinary optical properties, such
as a constant optical absorption over a broad spectral range,
a strongly nonlinear optical response, and tunable intrinsic
plasmons [1,2]. The optical response is efficiently tuned by
gating, doping, and chemical functionalization, which makes
graphene an attractive material for broadband photodetection
and ultrafast light modulation [3,4]. Although graphene’s
optical absorption and quantum efficiency are exceptionally
high (2.3% per monolayer) for a single layer of atoms [5,6], it
remains too low for building photonic devices.

The linear optical properties of graphene are well described
by microscopic formalisms that are based on a tight-binding
approximation for the electronic states [7–10]. The micro-
scopic approaches give insight into the distribution and dy-
namics of photoexcited carriers and are key for understanding
the doping and excitation-energy dependence of graphene’s
optical absorption and Raman response [9,11,12]. The linear
and gapless energy dispersion of graphene close to the Dirac
points gives rise to a number of fascinating optical phenom-
ena. An anisotropic population of photogenerated carriers
was predicted around the K point as a manifestation of
the sublattice pseudospin [9,13]. The anisotropy and ultra-
fast carrier relaxation was measured in polarization-resolved
pump-probe experiments, which showed good agreement with
the microscopic calculations [14–19]. Furthermore, it might
explain a dependence of the photocurrent in graphene-based
photodetectors on the light polarization [20].

The optical response of graphene may be modified and
tailored by a combination with other materials [21,22]. It
was proposed that molecular dipole fields on functionalized
graphene induce indirect optical transitions with a momentum
transfer proportional to the molecular density [23]. This effect

could be exploited for the activation of intrinsically dark optical
processes, such as excitons in transition metal dichalcogenides
[24]. A promising approach to enhance the optical response
of graphene is the coupling to electromagnetic near fields
generated by localized surface plasmon resonances (LSPR)
in noble metal nanostructures [22]. It was experimentally
demonstrated that a lattice of gold nanoparticles deposited on
top or below graphene can enhance the quantum efficiency
in photodetectors as well as the Raman response by more
than one order of magnitude [25–28]. The exact mechanism
of photocurrent generation remains a matter of debate. Hot
electron injection and thermoelectric effects were proposed
to act additionally to the electromagnetic field enhancement
[20,28–30]. The enhancement of optical processes in graphene
by the local near fields of localized surface plasmons was so
far only described by a purely electromagnetic theory [25–28];
a microscopic approach is missing.

Here we present a microscopic theory of optical transitions
in graphene that are induced by the coupling to localized
surface plasmon resonances in metallic nanostructures. Our
theoretical framework is based on perturbation theory and
a tight-binding model for the electronic states of graphene.
We consider a lattice of plasmonic nanoparticles that cou-
ples to graphene via its electric near field. To obtain a
qualitative description of the interaction, we derive analytic
expressions for the interband transition amplitudes and the
optical absorption enhancement. The plasmonic nanostructure
induces nonvertical interband transitions in graphene with
momentum transfers that depend on the periodicity of the
plasmonic lattice. We show that each momentum transfer
corresponds to the spatial frequency of one Fourier component
of the plasmonic near field. The distribution of photoex-
cited carriers in phase space depends on the polarization
pattern of the electric field in the graphene plane. The optical
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absorption enhancement that is relevant for the photocurrent
in optoelectronic devices is independent of graphene-specific
parameters and identical with the enhancement obtained from
a macroscopic approach.

The paper is organized as follows. In Sec. II we present
the theoretical framework that is used throughout the paper.
In Sec. III we derive the plasmon-electron matrix element. In
Sec. IV we calculate the distribution of photoexcited carriers in
phase space and compare plasmon-mediated optical transitions
with transitions by direct absorption of the incident light. In
Sec. V we calculate the integrated optical absorption, which
is, e.g., relevant for the photocurrent enhancement, and draw a
comparison to a macroscopic approach. Finally, in Sec. VI we
estimate how a generalization beyond the quasistatic approxi-
mation affects the main conclusions of the paper. Section VII
contains the conclusions.

II. METHODS

A. Optical response of the nanoparticle lattice

Following past experiments [25–27], we consider a square
lattice of plasmonic particles, where the spacing �R between
the particles is larger than half of the lateral particle size
(schematically depicted in Fig. 1). We use the quasistatic
approximation and dipole approximation for the electric po-
tential generated by the plasmonic lattice

φpl(r) =
∑
Rpl

p · (r − Rpl)

4πε0|r − Rpl|3 (1)

to obtain an analytic expression for the interaction matrix
element. The sum is carried out over the positions Rpl of
each plasmonic nanoparticle. p = 4πε0αpl(ω)E0εpt is the
dipole moment induced in each particle by an external light
field with amplitude E0, frequency ω, and polarization εpt.
αpl(ω) is the polarizability of a nanoparticle in the plasmonic
lattice; see below. The dipole approximation is strictly only
valid for spherical particles that are much smaller than the
wavelength of the incoming light. We therefore abstain from a
quantitative comparison to experiments in this work and focus
on a qualitative understanding of the interaction between the
plasmonic lattice and graphene. In the following we assume
that the plasmonic dipoles are placed in the xy plane at z = Rz

and the graphene sheet at z = 0. Furthermore, we consider

FIG. 1. Sketch of the experimental system that is considered in
this work. A rectangular lattice of gold nanoparticles is deposited on
graphene.

incident light that propagates perpendicular to the xy plane,
i.e., εpt = {εpt

x ,ε
pt
y }.

To calculate the polarizability αpl(ω) of the nanoparticles,
we use an analytical model for the dielectric function of gold
εAu(ω) from Ref. [31] to reproduce the experimental data from
Ref. [32]. We assume that the gold nanoparticles have the
shape of oblate spheroids, with the radii rx = ry =: rxy and
rz < rxy (see inset of Fig. 2). The optical polarizability of a
single nanoparticle is calculated as [33]

αos
pl (ω,rxy,rz) = r2

xyrz

3

εAu(ω) − εm

LxyεAu(ω) + εm(1 − Lxy)
, (2)

with

Lxy = 1

2e2
0

⎛
⎝

√
1 − e2

0

e0
arcsin e0 − 1 + e2

0

⎞
⎠ (3)

and

e0 = 1 − r2
z

r2
xy

. (4)

εm is the dielectric constant of the background medium. We
consider εm = 1 in this work. We neglect the coupling between
the nanoparticles, as near field interactions or lattice resonances
lead only to negligible shifts for the gap sizes considered in this
work [34]. The lattice of Au nanoparticles that is considered in
this work has a localized-surface plasmon resonance at 2.3 eV;
see Fig. 2.

B. Tight-binding wave functions of graphene

We use a tight-binding model for the electronic wave
functions of graphene that is suitable for obtaining analytic
expressions for the optical response of graphene at visible
light frequencies [7–10]. The wave functions are written as a
linear combination of Bloch sums for the two sublattices A and

FIG. 2. Plot of the polarizability |αos
pl (ω)|2 of a nanoparticle in the

plasmonic lattice with an optical resonance at 2.3 eV. The nanoparticle
is modeled as an oblate Au spheroid with rxy = 20 nm and rz = 10 nm;
see inset.
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B [35]:

|	β(k,r)〉 =
∑

j=A,B

Cv
j (k)|�j (k,r)〉, (5)

with the band index β = v,c. The Bloch sums

|�j (k,r)〉 = 1√
Nc

∑
Rj

eik·Rj |ψpz(r − Rj )〉 (6)

are calculated over a finite number of Nc unit cells of the
graphene sublattices j = A,B with atomic positions Rj . We
use a Gaussian basis set from Ref. [36] for the atomic carbon
2pz orbitals ψpz(r) that is fit into ab initio data from Ref. [37];
see the Supplemental Material [38]. We use the wave-function
coefficients [36]

Cv
A(k) = Cc

A(k) =
√

α(k)

2|α(k)| (7)

and Cv
B(k) = −Cc

B(k) = [Cv
A(k)]∗, where

α(k) =
3∑

j=1

eik·δj , (8)

with the nearest-neighbor vectors δi . We neglected the nearest-
neighbor overlap s0.

Close to the K points K+ = 4π/(3
√

3acc){√3/2,1/2} and
K− = 4π/(3

√
3acc){√3/2, − 1/2} in the Brillouin zone of

graphene, the energy dispersion can be approximated as a cone
εc

el(k±) = h̄vF|k±| and εv
el(k±) = −h̄vF|k±|, where k± = k −

K± (linear-band approximation). vF = 3accγ0/2h̄ ≈ 8.5 ×
105 m/s is the Fermi velocity, with the nearest-neighbor
hopping parameter γ0 ≈ 2.6 eV and the carbon-carbon dis-
tance acc = 1.42 Å [39]. The wave-function coefficients are
simplified with the approximation α(k±) ≈ 3acc(ik±

x ± k±
y )/2.

III. INTERACTION MATRIX ELEMENTS

We first derive an analytic expression for the plasmon-
electron matrix element, which is used later to calculate
the transition probability and enhanced optical absorption of
graphene. The gauge independent single-electron interaction
Hamiltonian is [40]

Hel-pl(r) = − ih̄e

4m
[∇r · Apl(r) + 2Apl(r) · ∇r]

− e

2
φpl(r) + O

(
A2

pl

)
, (9)

with the vector potential Apl(r) and scalar potential φpl(r) of the
plasmonic nanostructure. We assume time-harmonic fields and
used the rotating-wave approximation. Within the quasistatic
approximation, i.e., considering that the size of each plasmonic
particle is much smaller than the wavelength of light, the
interaction Hamiltonian reduces to the electrostatic potential

Hel-pl(r) ≈ − e

2
φpl(r). (10)

The matrix element for a plasmon-induced optical transition
from an electronic state with wave vector kv in the valence band
to a state kc in the conduction band is

Mkc,kv
el-pl = − e

2
〈	c(kc,r)|φpl(r)|	v(kv,r)〉. (11)

Considering only 0th-neighbor interactions, we obtain

Mkc,kv
el-pl = − e

2Nc

∑
j=A,B

(
Cc

j (kc)
)∗

Cv
j (kv)

×
∑
Rj

ei(kv−kc)·Rj φpl(Rj ). (12)

We approximated

〈ψpz(r − Rj )|φpl(r)|ψpz(r − Rj )〉 ≈ φpl(Rj ), (13)

because the potential of the plasmonic nanostructure φpl(r)
may be considered constant over the volume of the car-
bon pz orbital. We also confirm that first-nearest-neighbor
contributions to Mel-pl are negligible within the quasistatic
approximation [38].

One might proceed here by directly calculating the lattice
sums that appear in Eq. (12). This would require the choice
of a unit cell, which leads to an expression similar to the
dipole matrix element −er · E that describes the interaction
of light with molecules [38]. It was shown by Binder and
co-workers that this matrix element cannot be applied for Bloch
wave functions with periodic boundary conditions [41,42]. We
therefore proceed by calculating the matrix element in Fourier
space, as was done for the interaction of molecular dipole
potentials with graphene [23].

Because of its periodicity, the electric potential of the
plasmonic nanostructure can be expressed as a Fourier sum
[38]

φpl(r) = − iNpl

2ε0

∑
�q �=0

p · �q
|�q| ei�qxxei�qyye−|�q||z−Rz|, (14)

where Npl is the density of the plasmonic nanoparticles. Each
of the Fourier components oscillates with a spatial frequency
�qx = 2πmx/�R and �qy = 2πmy/�R in the xy plane,
where mx,my ∈ Z and �q = {�qx,�qy} (see Fig. 3). The
Fourier components drop exponentially with the magnitude
of the spatial frequency |�q| and the distance |z − Rz| to the
plane of plasmonic dipoles. Using Eq. (14) and the relation

1

Nc

∑
Rj

ei[�q−(kc−kv)]·Rj = δ�q,kc−kv , (15)

it is straightforward to calculate the lattice sums in Eq. (12).
We obtain the analytic expression

Mkc,kv
el-pl = ieNpl

4ε0

∑
�q �=0

δ�q,kc−kv

∑
j=A,B

(
Cc

j (kc)
)∗

Cv
j (kv)

× p · (kc − kv)

|kc − kv| e−|Rz||kc−kv| (16)

that is independent from the choice of unit cell in the graphene
lattice. The interaction of graphene with the plasmonic
nanostructure does not depend on the relative orientation of
the two lattices as expected.

Interestingly, the plasmonic lattice imposes selection rules
on the optical transitions in graphene. A momentum transfer
kc − kv from the plasmonic nanostructure to the electronic
states of graphene leads to nonvertical optical transitions.
Because of the periodicity of the square lattice of plasmonic
nanoparticles, only momentum transfers that satisfy kc

x −
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(a)

(b)

FIG. 3. (a) Sketch of equipotential lines generated by the plas-
monic lattice in the xz plane. The plasmonic excitation in each
nanoparticle is represented by a point dipole. (b) Plot of the electric
potential φpl in the graphene plane along the x axis (blue) and its
Fourier components. The Fourier components are calculated as the
sum of all components with |mx | = 1 (orange), |mx | = 2 (green), and
|mx | = 3 (red). Parameters: εpt = ex , �R/Rz = 4.

kv
x = 2πmx/�R and kc

y − kv
y = 2πmy/�R are allowed. The

momentum transfer is inversely proportional to the spacing
�R between the plasmonic nanoparticles. Each momentum
transfer corresponds to the spatial frequency �q of one Fourier
component of the electric potential φpl(r) in Eq. (14). The
matrix element vanishes for vertical transitions from valence
to conduction band, i.e., kc = kv, because there is no Fourier
component of φpl(r) with �q = 0. Our theory can be also
applied to plasmonic lattices with other periodicity than the
square lattice, which would lead to different selection rules for
the momentum transfer.

To draw a comparison, we also calculate the matrix element
for photon-electron interaction without intermediate excitation
of a localized-surface plasmon. The interaction Hamiltonian

Hel-pt = − ih̄e

2m
Apt · ∇r (17)

is obtained from Eq. (9) using the Coulomb gauge ∇r · Apt =
0. The photon-electron matrix element

Mk
el-pt = − ih̄e

2m
Apt · 〈	c(k,r)|∇r|	v(k,r)〉 (18)

is calculated with the approximation k = kc = kv, neglecting
the (small) photon momentum that is oriented perpendicular
to the graphene lattice. The matrix element vanishes for 0th-
neighbor interactions and can be explicitly calculated for first-
nearest-neighbor interactions as

Mk±
el-pt = ∓ 3eh̄

4mω
E0

ε
pt
x k±

y − ε
pt
y k±

x

|k±| mopt (19)

within the linear-band approximation, where mopt ≈
4.66 nm−1 [13,38].

(a) (b)(a) (b)

(c)

(d)

FIG. 4. (a) Sketch of a nonvertical optical transition in the energy
dispersion of graphene close to the K point. The dotted lines
indicate all possible initial and final electronic states in the valence
and conduction band for a specific momentum transfer {mx,my} =
{2π/(10 nm),0}. (b) Sketch of the equienergy lines in the valence
band of graphene around the K point. The red line indicates all
initial electronic states kv(ϕ) for a momentum transfer along kx . (c)
Mkv,kc

el-pl (ϕ) plotted around the K point for the specific momentum
transfer mx = 1, my = 0 using the tight-binding model (TB) or
the linear-band approximation (LB). (d) Mk

el-pt(ϕ) plotted along an
equienergy contour around the K point. Parameters: Lattice of oblate
Au spheroids with rxy = 20 nm, rz = 10 nm, �R = 60 nm, Rz =
10 nm; εpt = ex , h̄ω = 2.3 eV, incident light power 1 mW/μm2;
tight-binding band structure from Ref. [8].

IV. LOCAL OPTICAL ABSORPTION IN PHASE SPACE

For photon energies below 3 eV, optical excitations occur
close the K points in the Brillouin zone of graphene [13,42].
For a specific momentum transfer kc − kv and energy of the
light field h̄ω, all optical transitions that satisfy energy conser-
vation εc

el(kc) − εv
el(kv) = h̄ω form a ring around the K point

[Fig. 4(a)]. εv
el and εc

el are the energy dispersions of valence
and conduction band. In Fig. 4(b) we plot the equienergy lines
of the valence band as gray lines. For kc − kv �= 0, the initial
electronic states kv and final electronic states kc of the optical
transitions are shifted with respect to the equienergy lines in
the band structure [red line in Fig. 4(b)]. We define an angle
ϕ of the initial electronic state wave vector kv to the kx axis,
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(a)

(b)

(c)

FIG. 5. Probability |Mkv,kc
el-pl (ϕ)|2 for optical transitions around the K point for specific momentum transfers with (a) different mx and my = 0

and (b) different my and mx = 1. ϕ is the angle between the initial state wave vector kv and the kx axis, see Fig. 4(b). (c) Polarization of the
plasmonic near field Epl(r) in the graphene plane. The vectors show the polarization direction and the contour plot the strength of the electric
field. Parameters: Lattice of oblate Au spheroids with rxy = 20 nm, rz = 10 nm, �R = 60 nm, Rz = 10 nm; εpt = ex , h̄ω = 2.3 eV.

such that increasing ϕ corresponds to a rotation around the
K point. In Fig. 4(c) we plot the plasmon-electron matrix
element Mel-pl(ϕ) for a specific momentum transfer along
kx ; the effect of other momentum transfers will be discussed
later. For comparison, we also plot the photon-electron matrix
element Mel-pt(ϕ) [Fig. 4(d)]. Overall, Mel-pl possesses the
same functional dependence as Mel-pt. While Mel-pt is a real
number, Mel-pl is complex because of the complex optical
polarizability α(ω) of the metallic nanostructure. The real parts
have opposite sign because most of the plasmonic near field
in the graphene plane is opposite to the incident light field
[see Fig. 5(c)]. We use either the linear-band approximation
(LB) or a tight-binding model (TB) for the electronic wave
functions and energy dispersion of graphene. There are only
slight differences between both approximations [compare solid
and dashed lines in Figs. 4(c) and 4(d)]. The trigonal warping
of the electronic band structure induces an additional asym-
metry in the angular dependence of the matrix elements. The
magnitude of the matrix elements is highly inhomogeneous
around the K point and vanishes for two angles ϕ. It was
previously shown for photon-electron interaction that these
angles depend on the polarization of the light field [9,13].
For linearly polarized light, Mel-pt vanishes for momentum
directions along the polarization of the incident light field and
is maximum perpendicular to it.

The optical absorption probability is given by the square
of the interaction matrix element. In Fig. 5 we illustrate the
effect of different momentum transfers kc − kv on the local
absorption probability |Mel-pl(ϕ)|2 around the K point. We
consider a light polarization along x and use the linear-band ap-
proximation. For a momentum transfer along kx the absorption
probability is proportional to sin2 ϕ and largest for mx = ±1
and my = 0 [Fig. 5(a)]. The combination {mx,my} for which
the matrix element is largest depends on the light polarization,
the spacing �R of the plasmonic dipoles, and their distance Rz

to the graphene lattice. In Fig. 5(b) we plot the transition proba-
bility for different momentum transfers along ky . A momentum
transfer solely along ky is forbidden for light polarization along
x, because p · (kc − kv) = 0 in Eq. (16). We therefore consider
mx = 1. Interestingly, the angles ϕ for which the transition
probability vanishes are shifted by a momentum transfer along
ky , such that |Mel-pl(ϕ)|2 ∝ sin2 (ϕ + �ϕ) [Fig. 5(b)].

The shift �ϕ of the nodes in the optical absorption can
be understood by the polarization of the local electric field
Epl,xy(r) that is generated by the plasmonic nanostructure in
the graphene plane [see Fig. 5(c)]. For a polarization along x,
the nodes occur at kx = 0, i.e., at the angles ϕ = 0 and π , and
for a polarization along y at ky = 0 (i.e., ϕ = π/2 and 3π/2)
[13]. The shift �ϕ in Fig. 5(b) is therefore attributed to the
components of the plasmonic near field that are polarized along
y. This can be made more clear by writing the electric field
Epl,xy(r) in terms of its Fourier components. Using Eq. (14)
and Epl(r) = −∇ϕpl(r) we obtain

Epl,xy(r) = Npl

2ε0

∑
�q �=0

p · �q
|�q| ei�qxxei�qyye−|�q||Rz|�q. (20)

The polarization of each Fourier component Ẽpl,xy(r,�q) is
parallel to the spatial frequency �q, which equals the momen-
tum transfer kc − kv of an optical transition. A momentum
transfer along kx therefore corresponds to a Fourier component
with polarization along x and a momentum transfer along ky

corresponds to a Fourier component with polarization along y.
In Fig. 6 we plot the total angular transition probability

Wel-pl(ϕ) =
∑

mx,my

∣∣Mkv,kc
el-pl (mx,my,ϕ)

∣∣2
, (21)

which is the probability of all transitions associated with the
angle ϕ of the initial state wave vector kv to the kx axis. The
transition amplitudes are summed incoherently, i.e., the matrix
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FIG. 6. Probability of all optical transitions associated with an
angle ϕ of the initial state wave vector kv to the kx axis in the presence
of plasmonic enhancement (solid line) and without plasmonic en-
hancement (dashed line). Parameters: Lattice of oblate Au spheroids
with rxy = 20 nm, rz = 10 nm, �R = 60 nm, Rz = 10 nm; εpt = ex ,
h̄ω = 2.3 eV.

element is squared before calculating the sum, because each
optical transition has a different final state. For comparison,
we also plot the transition probability Wel-pt(ϕ) = |Mel-pt(ϕ)|2
for direct light absorption. While Wel-pt vanishes for ϕ = 0
and π , this is no longer the case in the presence of plasmonic
enhancement (compare solid and dashed lines in Fig. 6).
Wel-pl is finite for all angles ϕ because the plasmonic near
field Epl,xy(r) is not solely polarized along x. It contains the
incoherent sum over transition amplitudes that are associated
with different optical polarizations of Epl,xy(r) [i.e., the sum
of the curves in Figs. 5(a) and 5(b)]. This clearly shows that
in phase space the plasmon-mediated optical absorption is not
just the product of an enhancement factor with the direct optical
absorption.

V. INTEGRATED OPTICAL ABSORPTION

We now use the expression for Mel-pl in Eq. (16) to cal-
culate the integrated plasmon-enhanced optical absorption of
graphene P

el-pl
abs (ω), which is, e.g., relevant for the photocurrent

enhancement in graphene-based photonic devices [26–28].
Using perturbation theory, we obtain [38]

P
el-pl
abs (ω) = 2h̄ωμ0c

E2
0

gs

∫∫
dkv,xdkv,y

(2π )2

∑
kc

η
el-pl
kv,kc

, (22)

with the transition rate

η
el-pl
kv,kc

= 2π

h̄

∣∣Mkv,kc
el-pl

∣∣2
δ
[
εc

el(kc) − εv
el(kv) − h̄ω

]
. (23)

The integration and summation is carried out over the entire
Brillouin zone of graphene or alternatively for low-energy
excitations around one K point. For the latter case one has
to multiply the expression in Eq. (22) by the valley degeneracy
gv = 2. The integral and sum over all kv and kc is calculated
after squaring the matrix element Mel-pl because each optical
transition has a different final state. The factor gs = 2 accounts
for spin degeneracy and the Delta function for energy conser-
vation.

Equation (22) accounts only for the plasmon-mediated
optical transitions and neglects transitions that are induced

by direct absorption of the incident light field. The enhanced
optical absorption of graphene is calculated by summing the
plasmon-mediated absorption P

el-pl
abs (ω) and the direct optical

absorption P
el-pt
abs (ω) incoherently, because of the different

initial and final states. More precisely, P
el-pt
abs involves only

vertical optical transitions because the photon momentum is
perpendicular to the graphene sheet, whereas P

el-pl
abs involves

only nonvertical transitions due to the momentum transfer �q
by the plasmonic lattice with the selection rule �q �= 0.

The enhancement of the optical absorption is calculated as
Enh(ω) = [P el-pl

abs (ω) + P
el-pt
abs (ω)]/P el-pt

abs (ω). Using Eqs. (16),
(22), and (23) and the linear-band approximation, we obtain
the explicit expression [38]

Enh(ω) = 1 + 4π2|α(ω)|2
�R4

∑
�q

|εpt · �q|2e−2|�q||Rz|. (24)

The enhancement only depends on parameters that are specific
for the plasmonic nanostructure and excitation of the LSPR.
Except for the distance Rz of graphene to the plasmonic lattice,
any graphene-specific parameters canceled.

The excitation-energy dependence of the plasmon-
enhanced optical absorption is plotted in Fig. 7(a). While the
intrinsic optical absorption is approximately constant (blue
lines), the plasmonic lattice induces a resonance which is given
by the polarizability |α(ω)|2 of the metallic nanostructure (red
lines). The energy of the resonance depends on the material,
shape, and coupling of the metallic nanoparticles. There
is overall a good agreement between the full tight-binding
calculations (solid lines) and the linear-band approximation
(dashed lines). The tight-binding calculations deviate from
the linear-band approximation with increasing excitation en-
ergy because of the trigonal warping and nonlinearity of the
electronic band structure [5]. The deviations are similar for
the plasmon-enhanced and the intrinsic optical absorption and
vanish when calculating the enhancement [Fig. 7(b)]. This
shows that the plasmonic enhancement is independent from
graphene-specific material parameters and Eq. (24) is valid
independent of the linear-band approximation.

In our microscopic model of optical absorption enhance-
ment, the scattering amplitudes that are either associated
with plasmon-mediated transitions or direct transitions were
summed incoherently because of different final states. This
appears to contradict the macroscopic (electromagnetic) ap-
proach, where the optical absorption is considered to be
proportional to the coherent sum of the incident electric
field Einc = E0εpt and the plasmonic near field Epl(r), i.e.,
|Einc + Epl(r)|2 [25–28]. In the following we show that both
models are consistent and Eq. (24) can be also derived within
a purely electromagnetic theory.

The integrated enhancement of the optical absorption is
calculated within the macroscopic theory as

EnhEM(ω) =
∫∫ �R/2

−�R/2
dx dy

|Einc + Epl,xy(r,ω)|2
�R2E2

0

. (25)

The z component of the plasmonic near field is dropped be-
cause graphene can only interact with the in-plane components
Epl,xy . Next, we rewrite the plasmonic near field in terms
of its Fourier components Epl,xy(r,ω) = ∑

�q Ẽpl,xy(r,�q).
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(a)

(b)

FIG. 7. (a) Optical absorption of graphene as a function of
excitation energy with plasmonic enhancement (red) and without
plasmonic enhancement (blue), calculated either with the linear-band
approximation (dashed, LB) or with a tight-binding model (solid, TB).
(b) Enhancement of the optical absorption calculated with a tight-
binding model (solid) or the linear-band approximation (dashed).
Parameters: Lattice of oblate Au spheroids with rxy = 20 nm, rz =
10 nm, �R = 60 nm, Rz = 10 nm, εpt = ex ; tight-binding band
structure from Ref. [8].

While the incident electric field Einc is constant, each Fourier
component of the plasmonic near field Ẽpl,xy oscillates with
a spatial frequency �q = 2π/�R{mx,my} that satisfies pe-
riodic boundary conditions at the border of the integration
area, see Eq. (20). Consequently, the interference term of
|Einc + Epl,xy(r,ω)|2 vanishes when calculating the integral in
Eq. (25). We obtain∫∫ �R/2

−�R/2
dx dy |Einc + Epl,xy(r,ω)|2

=
∫∫ �R/2

−�R/2
dx dy |Einc|2 + |Epl,xy(r,ω)|2. (26)

The coherent and the incoherent sum of the field amplitudes
Einc and Epl,xy are identical when calculating the integrated
optical absorption enhancement. The same argument can
be made about the Fourier components Ẽpl,xy(r,�q) of the
plasmonic near field. As a result of the microscopic approach,
each Fourier component corresponds to optical transitions with
a different momentum transfer kc − kv = �q. The matrix
elements Mkv,kc

el-pl were summed incoherently in Eq. (22).
Indeed all interference terms of |∑�q Ẽpl,xy(r,�q)|2 vanish

when calculating the integral in Eq. (25), such that

∫∫ �R/2

−�R/2
dx dy

∣∣∣∣∣∣
∑
�q

Ẽpl,xy(r,�q)

∣∣∣∣∣∣
2

=
∫∫ �R/2

−�R/2
dx dy

∑
�q

∣∣Ẽpl,xy(r,�q)
∣∣2

. (27)

Since Ẽpl,xy(r,�q) ∝ ei�qxxei�qyy , the position dependence of
each component becomes zero when calculating the absolute
square and we find

EnhEM(ω) = 1 +
∑
�q

∣∣Ẽpl,xy(r,�q)
∣∣2

/E2
0 , (28)

which is identical with the enhancement obtained within
the microscopic approach, see Eq. (24). We thereby confirm
that the integrated plasmon-enhanced optical absorption in
graphene is the product of the intrinsic absorption with the
purely electromagnetic enhancement factor in Eq. (25). The
electromagnetic enhancement factor can be also calculated
for more complex plasmonic nanostructures using standard
numerical techniques, such as the finite-difference time domain
or the finite-elements method [43].

VI. EFFECTS OF FIELD RETARDATION

All analytic expressions that were derived so far were based
on the quasistatic approximation because we aimed to obtain
compact and comprehensible expressions. The sizes of the
nanoparticles in previous experimental works were typically
on the order of 100 nm or even larger so that field retardation
can in general not be neglected [25–28]. The aim of this section
is to estimate how a generalization of the equations beyond the
quasistatic approximation affects the main conclusions of the
paper.

In Eq. (1) we approximated the electric field of the
plasmonic nanoparticle lattice with the electrostatic poten-
tial φpl, which can be derived from the Poisson equa-
tion ∇2φpl(r) = −ρ(r)/ε0. By using the Lorentz gauge
φpl(r) = −iω/k2

pt∇r · Apl(r) and the Helmholtz equation
(∇2 + k2

pt)φpl(r) = −ρ(r)/ε0 instead of the Poisson equation
we account for the finite wavelength of the light (given by the
wave number kpt = 2π/λ) and obtain [38]

φret
pl (r) = Npl

2ε0

∑
�q

p · �q√
k2

pt − |�q|2
ei�q·{x,y}ei

√
k2

pt−|�q|2|Rz|.

(29)

This expression reduces to Eq. (14) for the approximation kpt =
0. Furthermore, we also have to account for the vector potential
(for a derivation see the Supplemental Material [38])

Aret
pl (r) = k2

ptNplp

2ωε0

∑
�q

ei�q·{x,y} e
i
√

k2
pt−|�q|2|Rz|√

k2
pt − |�q|2

. (30)

In contrast to the scalar potential, the vector potential has a non-
vanishing Fourier component with �q = 0 that corresponds to
the radiation of a plane electromagnetic wave into the far field.
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(a)

(b)

FIG. 8. Effect of field retardation on the transition probability
around the K point. Solid lines show the probability of all plasmon-
mediated transitions for retarded fields (ret) and dashed lines for the
quasistatic approximation (stat). The dotted lines show the probability
for plasmon-mediated vertical transitions with �q = 0 that are
allowed for retarded fields. (a) Lattice of oblate Au spheroids with
rxy = 20 nm, rz = 10 nm, �R = 60 nm, Rz = 10 nm; εpt = ex ,
h̄ω = 2.3 eV. (b) All size parameters of (a) are scaled by a factor
of 2.5.

We calculate the plasmon-electron matrix element with the
interaction Hamiltonian

Hret
el-pl(r) = − e

2
φpl(r) − ih̄e

2m
Apl(r) · ∇r. (31)

This Hamiltonian is obtained from Eq. (9) by neglecting the
∇r · Apl(r) term as it is by a factor h̄ω/2mc2 ≈ 10−6 smaller
than the φpl term when using the Lorentz gauge. The analytic
expression and derivation of the matrix element can be found in
the Supplemental Material [38]. We obtain the same selection
rules for the plasmon-mediated optical transitions as before,
with the exception that vertical optical transitions can be
excited by the far field that is emitted by the plasmonic lattice.

In Fig. 8 we plot the probability of the plasmon-mediated
optical transitions around the K point, similar to Fig. 6 above;
see also Eq. (21). The solid lines show the transition probability
when accounting for field retardation and the dashed lines
for the quasistatic approximation. We also plot the proba-
bility for plasmon-mediated vertical transitions with �q = 0
which are only allowed for the retarded case. For a particle
diameter of 40 nm and a lattice constant of 60 nm, which
we considered above, the effect of retardation is negligible
[Fig. 8(a)]. However, when scaling all size parameters by a
factor of 2.5, which resembles better the case of previous
experiments [25–27], the transition probability is larger for the
retarded case than for the quasistatic approximation [Fig. 8(b)].
The probability of plasmon-mediated vertical transitions is no
longer negligible. Despite these quantitative differences, the

FIG. 9. Maximum optical absorption enhancement as function
of the particle diameter, accounting for retardation and quantum
interference (solid line, disks), for retardation but not for quantum
interference (dotted line, squares) and within the quasistatic approxi-
mation (dashed line, circles). The enhancement is calculated, both,
with the microscopic theory (symbols) and with the macroscopic
theory (lines). All size parameters, i.e., rz, �R, and Rz, were scaled
by the same factor as the particle diameter 2rxy . Parameters for 20 nm
particle diameter: Lattice of oblate Au spheroids with rxy = 10 nm,
rz = 5 nm, �R = 30 nm, Rz = 5 nm; εpt = ex , h̄ω = 2.3 eV.

transition probability remains finite for all angles ϕ and the
conclusions drawn in Sec. IV remain valid.

When accounting for the far field of the plasmonic
nanostructure, the enhancement of the optical absorption can
no longer be calculated by summing the plasmon-mediated
and the direct optical absorption incoherently, i.e., Enh(ω) =
[P el-pl

abs (ω) + P
el-pt
abs (ω)]/P el-pt

abs (ω). For each direct optical tran-
sition with wave vector k that is induced by the incident light
field there exists a plasmon-induced transition with �q = 0
that has the same initial and final electronic state. This leads to
quantum interference between both absorption pathways, i.e.,
the transition probability is given by |Mk

el-pt + Mk,ff
el-pl|2 and not

by |Mk
el-pt|2 + |Mk,ff

el-pl|2, where Mk,ff
el-pl is the component of the

plasmon-electron matrix element with �q = 0.
To estimate the effect of field retardation and quantum inter-

ference, we plot the maximum optical absorption enhancement
as a function of the size of the plasmonic nanostructure in Fig. 9
(see the Supplemental Material for details on the calculation
[38]). We obtain perfect agreement between the enhancement
calculated with the microscopic and the macroscopic approach;
compare symbols and lines in Fig. 9. The major conclusion
drawn in Sec. V, that the plasmon-enhanced optical absorption
of graphene is the intrinsic optical absorption multiplied by a
purely electromagnetic enhancement factor, therefore remains
also valid for retarded fields.

Interestingly, the enhancement factor that includes field
retardation (solid line) deviates less than 3% from the qua-
sistatic approximation (dashed line). From Fig. 8(b) one would
expect an increase in enhancement when accounting for field
retardation. The quasistatic approximation, however, slightly
overestimates the enhancement factor (Fig. 9). This is ex-
plained by destructive quantum interference between different
absorption pathways as can be seen from a comparison to
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an enhancement factor that neglects quantum interference
(dotted line). The far field that is emitted by the plasmonic
nanostructure Eret,ff

pl = 2πikptNplαpl(ω)E0εpt partly cancels
the incoming light field Einc = E0εpt in the graphene plane,
which leads to a decrease of the field enhancement. We find
that the quasistatic approximation can be used to estimate the
optical absorption enhancement independent of the size of the
plasmonic nanoparticles and their spacing, for the geometry
that is considered in this paper. Overall, the main conclusions
that were drawn in the previous sections remain valid for a
generalization beyond the quasistatic approximation.

VII. CONCLUSIONS

We presented a microscopic theory for the interaction of
graphene with a lattice of metallic nanoparticles that supports
localized surface plasmon resonances. The electric near field
of the plasmonic excitation induces indirect optical interband
transitions in graphene with a momentum transfer that
depends on the localization of the plasmonic near field and the
periodicity of the metallic nanostructure. The population
of photoexcited carriers in phase space depends on the
polarization pattern of the plasmonic near field in the

graphene plane and differs from the one generated by the
incident light field. We also drawed a connection to a purely
electromagnetic theory of the optical absorption enhancement.
The momentum transfer of each plasmon-mediated optical
transition corresponds to the spatial frequency of a Fourier
component of the plasmonic near field in the graphene
plane. We obtain the same expression for the integrated
optical absorption enhancement using the microscopic
and the macroscopic approach. Our work leads to a better
understanding of the photocarrier generation in graphene that is
coupled to plasmonic nanostructures. The analytic expression
for the plasmon-electron matrix element can be used in future
works to calculate the plasmon-enhanced Raman spectrum
of graphene and to study the carrier dynamics in hybrid
graphene-metallic nanostructure optoelectronic devices.
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