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Broken symmetries in graphene affect the massless nature of its charge carriers. We present an analysis
of scattering by defects in graphene in the presence of spin-orbit interactions (SOIs). A characteristic
constant ratio (≃2) of the transport to elastic times for massless electrons signals the anisotropy of the
scattering. We show that SOIs lead to a drastic decrease of this ratio, especially at low carrier
concentrations, while the scattering becomes increasingly isotropic. As the strength of the SOI determines
the energy (carrier concentration) where this drop is more evident, this effect could help evaluate these
interactions through transport measurements in graphene systems with enhanced spin-orbit coupling.
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The discovery of graphene has stimulated numerous
theoretical and experimental works [1], opening new doors
for promising new technology due to its low dimensionality
and high carrier mobility. The low energy electron dynam-
ics is described by two inequivalent points at the Brillouin
zone (K and K0) known as Dirac points, since the linear
dispersion is equivalent to two-dimensional massless Dirac
fermions [2,3].
The importance of graphene on transport devices also

motivates the identification and understanding of spin
dynamics [4], as an important element in the development
of spintronics. In graphene, interface or bulk broken
symmetries allow for the existence of two kinds of spin-
orbit interaction (SOIs) that affect spin dynamics in differ-
ent ways [5]. The hexagonal arrangement of carbon atoms
allows an intrinsic SOI that respects lattice symmetries
and can be seen to arise from the atomic SO coupling.
This generates a gap in the spectrum, a mass term in the
Dirac equation with sign depending on the spin, pseudo-
spin, and Dirac valley [6,7]. An inversion asymmetry in
graphene could also generate an extrinsic Rashba SOI,
resulting from the effect of substrates, impurities generat-
ing sp3 distortions—such as hydrogen, fluorine, or
gold—perpendicular electric fields, or lattice corrugations
[8–13]. Intercalation of gold under graphene deposited on
nickel substrates results in very large Rashba interactions
[13], while a large enhancement was observed in weakly
hydrogenated samples [14]. In addition, recent theoretical
studies have shown that decoration of graphene with heavy
atoms such as indium and thallium will result in the
enhancement of an intrinsiclike SOI in graphene and the
associated quantum spin Hall state [15].
Adsorbed impurities [16,17], as well as lattice vacancies

and other local defects in the lattice [18] provide natural
short-range scattering centers known as resonant scatter-
ers. Sources of resonant scatterers are also organic groups
[19], clusters of impurities [20], or even artificially

controlled metallic islands deposited on the surface of
graphene [21]. Extensive work has identified the existence
of resonant scatterers as the main mechanism limiting
carrier mobility in graphene samples [19,22,23]. These
conclusions are supported by the insensitivity to screening
effects provided by the different substrates used [24,25], by
the independence of the ratio of the transport to elastic
times to the carrier concentration [26], and by the universal
presence of the Raman D peak in graphene devices and its
stability after high-temperature annealing of samples
[27,28]. Experiments performed by Monteverde et al.
[26] used the transport (τtr) and elastic (τe) scattering times
extracted from magnetotransport measurements to probe
the nature of the impurities in single and bilayer graphene.
The ratio of these two characteristic times, ξ ¼ τtr=τe,
describes at low Fermi energies (low carrier concentration)
the degree of angular anisotropy of the scattering process,
offering an interesting insight on the type of impurities
present in samples. One should comment that other work
argues that carrier mobility in graphene is mainly limited by
long range scattering from charged impurities [29–32],
also related to the formation of electron-hole puddles
[2,24,30,33].
Short range scatterers are categorized according to the

total cross section σt they produce [26]: “Small cross
section scatterers” have σt ∝ k, where k is the carrier
Fermi wave number (k ∝ EF ∝ ffiffiffiffiffi

nc
p

, with nc the carrier
density). “Medium cross section scatterers” are referred to
in the literature also as resonant scatterers, and display a
different dependence, σt ∝ 1=ðk ln2 kÞ. Finally, the “large
total cross section scatterers” or “unitary” are associated
with the presence of a long-lived quasibound state [34,35],
and exhibit σt ∝ 1=k. An important common property
shared by all these regimes is that the ratio of the transport
to elastic times is determined fully by the conservation of
pseudohelicity, leading to a value of 2 at low energies, as
we will discuss below.
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We will show that the presence of SOIs leads to an
important transformation of scattering processes in gra-
phene, from highly anisotropic (zero backscattering) to
more or fully isotropic at low energies, depending on the
strength of these interactions. We show that the Rashba SOI
results in the appearance of new unitary resonances for
short-range scatterers, whenever Rashba coupling is com-
parable to the Fermi energy. Moreover, we show that the
three different types of short range scatterers (off resonant,
resonant, and unitary), lead to processes with different
levels of angular isotropy, unlike the case with no Rashba
SOI when all short range scatterers display similar
anisotropy. These findings suggest that transport experi-
ments performed at low carrier concentration could unveil
the local enhancement of the Rashba interaction produced
by impurities, lattice corrugations, or substrate effects, and
provide a direct measurement of its strength.
We consider the presence of intrinsic SOI, affecting the

carriers throughout the graphene system, while an extrinsic
scatterer generates a local potential obstacle and the
corresponding Rashba SOI; the Hamiltonian for this system
close to the Dirac points is then given by

H ¼ Ho þHV þHSO þHR; (1)

where Ho ¼ ℏvFðτzσxpx þ σypyÞ describes Dirac fer-
mions in graphene, HSO ¼ ΔSOσzτzsz is the intrinsic
SOI, HV ¼ VΘðR − rÞ is the scattering potential charac-
terized by strength V over a region r < R, and HR ¼
λRðτzσxsy − sxσyÞΘðR − rÞ is the Rashba SOI [5] over the
same region; here, ℏvF ≃ 6.6 eVÅ, while σμ and sμ are
Pauli matrices representing the electron pseudospin (A, B)
and spin (↑, ↓), respectively, and τz ¼ �1 identifies the K
or K0 valleys. ΔSO and λR are the strengths of intrinsic and
Rashba interactions, and Θ is the Heaviside function. The
characteristic size of the scatterers is assumed to be much
larger than the lattice spacing in graphene for the con-
tinuum Dirac description of graphene to be appropriate,
and to neglect intervalley scattering [2,36].
The analytical form of the spinors [37] allows one to use

a partial wave decomposition to study the scattering of an
incoming flux of electrons along the x direction [38], which
takes the asymptotic form away from the scattering center

ψ ≈ eikr cos θχin þ f̂ðθÞ e
ikrffiffiffi
r

p χin; (2)

where χin ¼ ðc1∣↑i; c2∣↓iÞT is a spinor describing the spin
weights of the incoming flux with jχinj2 ¼ 1,
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ2

SO

p
=ℏvF, and f̂ðθÞ is a matrix containing

the different scattering amplitudes. The conservation of
total angular momentum Jz ¼ Lz þ ℏτzσz=2þ ℏsz=2,
where Jzψn ¼ ℏnψn [37], allows consideration of separate
partial wave components of the incoming wave with a
given spin s, ψ ð−Þ

n jsi. Hence, the full wave function away
from the scattering area is given by

ψout
n ðr; θÞ ¼ ψ ð−Þ

n jsi þ
X
s0
Sn;ss0ψ

ðþÞ
n js0i; (3)

where s, s0 ¼ ↑, ↓ and ψ ðþÞ
n is an outgoing wave. The

asymptotic form of the Henkel functions and the Jacoby-
Anger expansion [37] allows one to relate the wave
functions in (2) and (3), and characterize the scattered part
of the wave function as s̄ ¼ −s,

ψ sct
n ¼ e−iπ=4ffiffiffiffiffiffiffiffi

2πk
p ððSn;ss − 1Þψ ðþÞ

n jsi þ is̄Sn;ss̄ψ
ðþÞ
n js̄iÞ; (4)

leading to the scattering amplitude matrix

f̂ðθÞ ¼ e−iπ=4

i
ffiffiffiffiffiffiffiffi
2πk

p
X
n

�
fn;↑↑ fn;↓↑
fn;↑↓ fn;↓↓

�
einθ; (5)

where fn;ss ¼ Sn;ss − 1, fn;ss̄ ¼ is̄Sn;ss̄, and the sum over n
in (5) runs over all integers. Conservation of flux for each
channel of angular momentum (unitarity of S), imposes the
condition jSn;ssj2 þ jSn;ss̄j2 ¼ 1, so that one can relate
the scattering amplitudes to the phase shifts gained during
the scattering process by Sn;ss ≡ e2iδn;ss cos δn;ss̄ and
Sn;ss̄ ≡ sin δn;ss̄, where δn;ss is the phase for spin preserving
processes and δn;ss̄ is conveniently defined for spin-flipping
events [39–41]. The description above, an extension of the
partial wave component method [38], allows for the
exploration of spin-dependent phenomena [39] and observ-
ables such as the differential cross section σðθÞ, that
explicitly displays the anisotropy of the scattering, the
transport cross section σtr, related to the transport mean free
time, τ−1tr ¼ nimpvFσtr, and the total cross section σt, related
to the elastic scattering time, τ−1e ¼ nimpvFσt, where nimp is
the impurity concentration in the sample. In the presence
of SOIs the scattering includes spin-preserving and spin-
flip events. Correspondingly, all these cross sections are
spin-dependent matrices given by

σss0 ðθÞ ¼
1

2πk

����
X

n
fn;ss0einθ

����
2

; (6a)

σt;ss0 ¼
1

k

X
n

jfn;ss0 j2; (6b)

and

σtr;ss0 ¼ σt;ss0 −
1

k

X
n

Reðfn;ss0f�nþ1;ss0 Þ: (6c)

In the absence of SOIs the pseudohelicity, σ · p=p is a
conserved quantity [2,38] and results in the equality
fm ≡ f−ðm−1Þ, where m is an integer (n ¼ m∓ 1

2
for

↑=↓) [37,38], which leads to a vanishing differential cross
section at θ ¼ π (Klein tunneling), σðθ ¼ πÞ ¼ 0, indicat-
ing the anisotropic character of the scattering process and
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the near transparency of barriers in graphene [42–45]. At
low carrier concentrations, kR ≪ 1, f0 ≡ f1 and
fm≠0;1 ≈ ðkRÞm, leading to σt ≃ 2σtr, and, therefore,
ξ ¼ τtr=τe ≃ 2. Therefore, scattering of massless Dirac
fermions in graphene from short range potential scatterers
results in ξ≃ 2, for all V and R, as long as the carrier
density is small, kR ≪ 1 [26]. This ratio is fully determined
by the number and equal weights of the angular momentum
channels contributing to the scattering process. As we will
see below, this situation is drastically changed in the
presence of SOI.
Graphene with intrinsic SOI.—Graphene systems with

uniform intrinsic SOI (for space dependent ΔSO see [37]),
ΔSO ≠ 0, represent a rich opportunity to explore topologi-
cal effects. An example of such a system is predicted by
appropriate deposition of heavy metal atoms on graphene
[15]. In those cases, the eigenstates no longer have a well-
defined pseudohelicity, due to the carrier mass generated by
the SOI; notice, however, that although this mass is spin
dependent, it does not cause intravalley spin-flip processes,
and the scattering can still be analyzed in terms of
independent spins. The broken pseudo-helicity, however,
results in δn;ss ≠ δ−ðn−1Þ;ss. However, effective time reversal
symmetry [46] imposes the relations fn;ss ¼ f−n;s̄ s̄, and
fn;ss̄ ¼ f−n;s̄s, and since spin mixing is not produced by the
intrinsic SOI, we have δn;ss̄ ¼ δ−n;s̄s ¼ 0.
As one could suspect, the isotropy of the scat-

tering process depends on the ratio of ΔSO=E, as shown
in Fig. 1: the scattering is anisotropic—with an absence of
backscattering—for ΔSO ¼ 0, while it becomes increas-
ingly isotropic with larger ΔSO=E, and for ΔSO ≈ E, the
scattering is equally probable in all directions.
The change in the isotropy of the scattering process is

related to the total number of angular momentum channels

contributing to the cross section. For an incoming electron
flux with “high” energy, 0 ≤ ΔSO=E ≪ 1, the system
exhibits approximately equal contributions from two scat-
tering channels, n ¼ 0 and n ¼ 1 for ↑ incoming flux
(or n ¼ 0 and n ¼ −1 for ↓ incident flux), and these
contributions satisfy f0;↑↑ ≈ f1;↑↑ (or f0;↓↓ ≈ f−1;↓↓). In
contrast, we observe an increase in the isotropy of the
scattering as E decreases, approaching ΔSO, due to the
vanishing contribution of the n ¼ 0 channel to the total
cross section, ϑðk3R4Þ, compared to resonant contribution
of the n ¼ �1 channels π2=½k ln2ðkRÞ� [37]. This leads to
the “isotropic” ratio of ξ ¼ τtr=τe ≈ 1, which is character-
istic of the scattering of massive particles at low energies; in
other words, one of the spinor components dominates the
scattering process in this range of energy and leads to a
fully isotropic differential scattering cross section. As ΔSO
determines the energy scale for which the isotropy would
play a larger role, the exploration of decorated graphene
samples would be an interesting system in which to test
these results [15].
Graphene with Rashba SOI.—We now analyze the case

of graphene samples containing scattering centers that also
produce Rashba interactions [9,10,13,14], ΔSO ≪ λR ≠ 0
[37], allowing spin flip events. This requires a detailed
analysis of the spin dependent scattering processes. When
kR ≪ 1, we have two contributing channels, depending on
the spin of the incoming particle (n ¼ 0, 1 for spin up, and
n ¼ 0, −1 for spin down), similar to the case discussed
above forΔSO ≠ 0. Effective time reversal symmetry within
the Dirac cone allows one to study the scattering of a given
spin without loss of generality [37,46].
Curves of total cross section vs scattering potential

strength V are shown in Fig. 2(a) for kR ≪ 1, and different
values of the Rashba SOI interaction, λR; analytical
expressions for the different contributions can be obtained
as well [37]. Figure 2(a) shows how the location and
number of resonances change in the presence of Rashba
SOIs. The resonances at χ0 ¼ χ0 � λRR=ℏvF for both σt;ss
and σt;ss̄, can be identified as resonances of the n ¼ 0

FIG. 1 (color online). Polar plots of the differential cross
section, normalized to its maximum, for different values of the
intrinsic spin-orbit interaction,ΔSO—here ER=ðℏvFÞ ¼ 8 × 10−3

and VR=ðℏvFÞ ¼ 1.5. Top inset: σmaxðθÞ, which increases as
1=½k ln2ðkRÞ� for ΔSO=E ≈ 1, sets the scale used in the polar
plots. Bottom inset: Dependence of ξ ¼ σt=σtr ¼ τtr=τe vs
ΔSO=E. Notice that σðθÞ=σmax and ξ do not depend on the value
of V in this regime; V only determines the amplitude of σmax in
the top inset.

(a) (b)

FIG. 2 (color online). (a) Total cross section for spin-preserving
processes as a function of the scattering potential shift V, for
different values of the Rashba SOI, with kR ¼ 1.5 × 10−3 and
ΔSO ¼ 0 (for ΔSO ≠ 0 see [37]). Inset: Total cross section for
spin-flip processes. (b) The ratio ξR ¼ ðσt;↑↑ þ σt;↑↓Þ=ðσtr;↑↑ þ
σtr;↑↓Þ for different values of Rashba SOI [legend as in (a)].
Notice ξR ¼ 1 at σt resonances.
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channel, while the resonance at χ0 ≈ χ0 þ ϑð½λRR=ðℏvFÞ�2Þ
can be identified as coming from the n ¼ 1 (−1) for s ¼ ↑
(↓) incoming spin, where χ0 is the location of the unitary
resonance in the absence of SOIs. Similarly, Fig. 2(b)
demonstrates that the scattering isotropy at resonant values
is different from the case of no SOI, by showing that the
ratio ξR ¼ ðσt;↑↑ þ σt;↑↓Þ=ðσtr;↑↑ þ σtr;↑↓Þ takes on differ-
ent values in the different regimes, being ξR ≃ 1 for unitary
resonances, 1 < ξR < 2 for medium scatterers, and ξR ≃ 2
when off-resonance. This qualitative difference arises from
the fact that the scattering amplitudes of the two contrib-
uting channels are not equal for all the scattering regimes,
in contrast to the case of scattering in the absence of the
Rashba interaction, where ξ≃ 2 for all regimes, off- and
on-resonance.
Tofurtherexplore theconsequencesof thisSOI-dependent

behavior on transport experiments [26], we consider a
random distribution of scatterers in a typical graphene
sample. The distribution is assumed to be of low density,
as we ignore multiple scattering events. Moreover, as the
parameter in the theory is VR, we assume a random
distribution for that quantity in the range 1.5 to 2.4 (in units
ofℏvF). For a fixed valueV ≃ 2 eV, for example, thiswould
correspondtoavariation inR from≃5 to8Å,notunlike those
considered before [9,26]. The results of such an averaging
procedure are shown in Fig. 3, where ξR ¼ hσt;↑↑þ
σt;↑↓i=hσtr;↑↑ þ σtr;↑↓i is shown as a function of (Fermi)
energy for different values of the Rashba SOI strength λR,
whileV ¼ 2 eV iskept fixed.Notice that the rangeofE in the
figure satisfies kR < 0.24 for all values shown and can
therefore be understood in terms of the analytical expansions
above—however, the curves shown are obtained from a full
numerical evaluation of the different cross sections that
consider multiple channels. As one would expect, as the
energy (or carrier density) increases, the ratio ξR approaches
the anisotropic, effectively SOI-free limit, ≈2, while at low
energies,ξR approaches the isotropicscatteringlimitof1.The
drop occurs for a characteristic energy given by λR, with
ξR ≃ 1.8 for E≃ λR=2; this condition can be traced back to
the shifting resonances of the n ¼ 0 channel under Rashba
SOI. One can also analyze the dependence of ξR on the
Rashba coupling for different carrier densities (energies),
as shown in the inset of Fig. 3. It is evident that the effect
of a small Rashba coupling is more pronounced at lower
energies.
From the preceding analysis, it appears that the exper-

imental evaluation of the transport to elastic times ratio at
low carrier densities would be able to provide an alternative
measure of the effective Rashba SOI present, as produced
by impurities and defects, either intrinsic or purposely
introduced. Such careful experiments have already
explored this ratio [26], and as the carrier density has been
reduced down to E ≈ 100 meV, it appears the induced
Rashba SOI in those samples was well below that number
(i.e., λR < 200 meV), since ξR ≃ 2 over the entire range

explored. We believe it would be interesting to repeat those
experiments in systems with higher mobility, such as
graphene on boron nitride substrates, which may allow
reaching even lower carrier densities without large inho-
mogeneities. Considering that in systems with adatoms the
expected SOI is λR ≈ 10 meV [9,10,14], this requires rather
low carrier densities, such as those attained on boron nitride
substrates [47,48].
We should comment that the observed renormalization

of the Fermi velocity near the Dirac point [47,48], which
sees the velocity increase as the energy (or carrier density)
drops, should result in ξR dropping down from 2 at a higher
energy than in the absence of the velocity renormalization
(for a given λR, and assuming a large enough VR, so that vF
rescaling at V is negligible).
In conclusion, we have shown that SOIs in graphene lead

to clear signatures in the scattering processes and therefore
to observable consequences in electronic transport. The
drop in value of the ratio of transport to elastic times from
its known value of≃2 reflects the presence of SOI, with the
ratio dropping to ≃1 as EF falls close to the SOI energy
scale. We have also shown qualitative changes in the
number and nature of resonances produced in scattering
due to impurities and the Rashba SOI they induce. Three
different regimes of scattering can be distinguished
based on the levels of isotropy they produce, with the
isotropy becoming more pronounced at low carrier con-
centrations. Measuring the ratio of scattering times with
precision at low carrier densities should enable the exper-
imental characterization of impurity-induced spin-orbit
interactions.
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FIG. 3 (color online). The ratio ξR for 500 randomly sized
impurities in the range of 5 Å ≤ R ≤ 8 Å, for different values of
the Rashba coupling and V ¼ 2 eV, as a function of carrier
energy. Notice a clear drop of ξR from 2 for E < λR=2. Inset: ξR as
a function of Rashba coupling for different energies.
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