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Many modern neural simulators focus on the simulation of networks of spiking neurons

on parallel hardware. Another important framework in computational neuroscience,

rate-coded neural networks, is mostly difficult or impossible to implement using these

simulators. We present here the ANNarchy (Artificial Neural Networks architect) neural

simulator, which allows to easily define and simulate rate-coded and spiking networks,

as well as combinations of both. The interface in Python has been designed to be

close to the PyNN interface, while the definition of neuron and synapse models can be

specified using an equation-oriented mathematical description similar to the Brian neural

simulator. This information is used to generate C++ code that will efficiently perform the

simulation on the chosen parallel hardware (multi-core system or graphical processing

unit). Several numerical methods are available to transform ordinary differential equations

into an efficient C++code. We compare the parallel performance of the simulator to

existing solutions.
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1. Introduction

The efficiency and flexibility of neural simulators becomes increasingly important as the size and
complexity of the models studied in computational neuroscience grows. Most recent efforts focus
on spiking neurons, either of the integrate-and-fire or Hodgkin-Huxley type (see Brette et al.,
2007, for a review). The most well-known examples include Brian (Goodman and Brette, 2008;
Stimberg et al., 2014), NEST (Gewaltig and Diesmann, 2007), NEURON (Hines and Carnevale,
1997), GENESIS (Bower and Beeman, 2007), Nengo (Bekolay et al., 2014), or Auryn (Zenke and
Gerstner, 2014). These neural simulators focus on the parallel simulation of neural networks on
shared memory systems (multi-core or multi-processor) or distributed systems (clusters) using
either OpenMP (open multi-processing) or MPI (message parsing interface). Recent work address
the use of general-purpose graphical processing cards (GPU) through the CUDA or OpenCL
frameworks (see Brette and Goodman, 2012, for a review). The neural simulators GeNN1, NCS
(Thibeault et al., 2011), NeMo (Fidjeland et al., 2009), and CARLsim (Carlson et al., 2014) provide
in particular support for the simulation of spiking and compartmental models on single or multiple
GPU architectures.

A common approach to most of these neural simulators is to provide an extensive library of
neuron and synapse models which are optimized in a low-level language for a particular computer

1The GeNN project, http://sourceforge.net/projects/genn/.
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architecture. These models are combined to form the required
network by using a high-level interface, such as a specific
scripting language (as in NEST or NEURON) or an interpreted
programming language (e.g., Python). As these interfaces
are simulator-specific, the PyNN interface has been designed
to provide a common Python interface to multiple neural
simulators, allowing a better exchange of models between
researchers (Davison et al., 2008). The main drawback of
this approach is that a user is limited to the neuron and
synapse models provided by the simulator: if one wants to even
marginally modify the equations of a model, one has to write a
plugin in a low-level language without breaking the performance
of the simulator. This can be particularly tedious, especially for
CUDA code on GPUs.

A notable exception is the Brian simulator, which allows the
user to completely define the neuron and synapse models using a
simple mathematical description of the corresponding equations.
Brian uses a code generation approach to transform these
descriptions into executable code (Goodman, 2010), allowing
the user to implement any kind of neuron or synapse model.
The first version of Brian executes the code in Python directly
(although some code portions can be generated in a lower-level
language) using vectorized computations (Brette and Goodman,
2011), making the simulation relatively slow and impossible to
run in parallel on shared memory systems. The second version
in development (Brian 2, Stimberg et al., 2014) proposes a
complete code generation approach where the simulation can be
implemented in different languages or parallel frameworks. This
approach is promising as it combines flexibility in model design
with efficient and parallel simulation performance.

Rate-coded networks, however, do not benefit much from
the advances of spiking simulators. Rate-coded neurons do
not communicate through discrete spike events but through
instantaneous firing rates (real values computed at each step
of the simulation). Rate-coded simulators are either restricted
to classical neural networks (static neurons learning with
the backpropagation algorithm) or optimized for particular
structures such as convolutional networks. To our knowledge, no
rate-coded simulator provides a flexibility similar to what Brian
proposes. The Emergent simulator (Aisa et al., 2008) provides
some features—including parallel computing—and is used in a
number of models in computational neuroscience (e.g., O’Reilly
and Frank, 2006) but is restricted to a set of neuron and synapse
models provided by the Leabra library. Topographica (Bednar,
2009) and CNS (Cortical Network Simulator, Mutch et al., 2010)
primarily focus on convolutional networks. DANA (Distributed,
Asynchronous, Numerical and Adaptive computing framework,
Rougier and Fix, 2012) is a generic solver for distributed
equations which can flexibly simulate dynamical rate-coded
networks, but it does not address parallel computing yet.

Rate-coded networks are nevertheless an important paradigm
in computational neuroscience, as they allow to model complex
structures and dynamics with a smaller computational footprint
than spiking networks. Each unit of a rate-coded network can
model the dynamics of several biological neurons, so a rate-
coded network typically requires less units to perform a function
than a functionally equivalent spiking network. The rate-coded

domain also benefits from a wide range of biologically realistic
learning rules—such as the Bienenstock-Cooper-Munro (BCM)
rule (Bienenstock et al., 1982) or the Oja learning rule (Oja,
1982). Synaptic plasticity in spiking networks, including spike-
timing dependency plasticity (STDP), is an active research field
and the current implementations can be hard to parameterize.
Except in cases where synchronization mechanisms take place
or where precise predictions at the single-cell level are required,
rate-coded networks can provide a valid approximation of the
brain’s dynamics at the functional level, see for examplemodels of
reinforcement learning in the basal ganglia (O’Reilly and Frank,
2006; Dranias et al., 2008; Schroll et al., 2014), models of visual
attention (Zirnsak et al., 2011; Beuth and Hamker, 2015) or
models of gain normalization (Carandini and Heeger, 2012).

Another reason why rate-coded networks should not be
neglected by neural simulators is that advances in computational
neuroscience allow to aim at complete functional models of the
brain which could be implemented in simulated agents or robots
(e.g., Eliasmith et al., 2012). However, spiking networks may
not yet be able to perform all the required functions, especially
when in a learning context. Hybrid architectures, combining rate-
coded and spiking parts, may prove very useful to achieve this
goal. We consider there is a need for a parallel neural simulator
which should: (1) be flexible for the definition of neuron and
synapse models, (2) allow the definition of rate-coded, spiking
and hybrid networks, (3) be computationally efficient on CPU-
and GPU-based hardware and (4) be easy to interface with
external programs or devices (such as robots).

This article presents the neural simulator ANNarchy
(Artificial Neural Networks architect) which allows to simulate
rate-coded, spiking as well as hybrid neural networks. It proposes
a high-level interface in Python directly inspired from PyNN
for the global structure and Brian for the definition of neuron
and synapse models. It uses a C++ code generation approach
to perform the simulation in order to avoid the costs of an
interpreted language such as Python. Furthermore, rate-coded
and spiking networks raise different problems for parallelization
(Dinkelbach et al., 2012), so code generation ensures the required
computations are adapted to the parallel framework. ANNarchy
is released under the version 2 of the GNU Public License. Its
source code and documentation2 are freely available.

2. Interface of the Simulator

2.1. Structure of a Network
The interface of ANNarchy focuses on the definition of
populations of neurons and their interconnection through
projections. Populations are defined as homogeneous sets of
identical neurons, while projections gather all synapses formed
between the neurons of the pre-synaptic population and the ones
of the post-synaptic population. Each projection is associated to
a target name (e.g., “exc” for excitatory synapses and “inh” for
inhibitory ones). This allows the post-synaptic neurons receiving
these synapses to integrate them differently, for example to
implement modulatory effects. The target can represent the

2http://bitbucket.org/annarchy/annarchy and http://annarchy.readthedocs.org.
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excitatory/inhibitory nature, the corresponding neurotransmitter
(“ampa,” “nmda,” “gaba”) or even the functional role of a synapse
(“feedforward,” “feedback”).

Figure 1 shows a simple example implementing the pulse-
coupled spiking network proposed by Izhikevich (2003). It
creates a population of 1000 Izhikevich neurons and splits it
into two subsets of 800 excitatory and 200 inhibitory neurons
each. These neurons are reciprocally connected with each other
(all-to-all connection pattern) through excitatory and inhibitory
synapses. Such a pulse-coupled network exhibits oscillating
pattern at various frequencies, depending on the strength of the
connections. The example uses Izhikevich neurons, which are
defined by Equation (1):

I(t) = gexc(t)− ginh(t)+ n · χ

dv(t)

dt
= 0.04 · v(t)2 + 5 · v(t)+ 140− u(t)+ I(t)

du(t)

dt
= a · (b · v(t)− u(t))

if v(t) > vthresh: v(t) = c and u(t) += d
(1)

with I(t) being the total input current to a neuron at time t, gexc(t)
(resp. ginh(t)) the total current current injected by excitatory

FIGURE 1 | ANNarchy script reproducing the pulse-coupled spiking

network described in Izhikevich (2003). A population of 1000 Izhikevich

neurons is created and split into subsets of 800 excitatory and 200 inhibitory

neurons. The different parameters of the Izhikevich neuron are then initialized

through attributes of the two populations. a, b, c , and d are dimensionless

parameters, noise is a multiplicative factor on the random variable

Normal(0., 1.) drawn each step from the standard normal distribution

N (0,1), v_thresh is the spiking theshold of the neurons and tau is the time

constant in milliseconds of the membrane conductances. The network is fully

connected, with weight values initialized randomly using uniform distributions

whose range depend on the pre-synaptic population. The source code for the

network is then generated, compiled and simulated for 1000ms.

(resp. inhibitory) synapses, v(t) the membrane potential and u(t)
a recovery variable. χ is an additive random variable following
a standard normal distribution and n a multiplicative factor.
When the membrane potential v(t) exceeds a threshold vthresh,
a spike is emitted, the membrane potential is reset and the
recovery variable is incremented. a, b, c, and d are dimensionless
parameters specifying the dynamics of the neuron type.

Populations are defined by three fields: (1) the geometry,
which can represent either the total number of neurons (a single
integer) or a multi-dimensional structure (tuple) similar to the
shape of a Numpy array (van der Walt et al., 2011); (2) the type
of neuron used in the population (either a pre-defined neuron
model or one defined by the user, see Sections 2.3 and 2.4) and
(3) an optional unique name allowing to access the population
globally. Defining a multi-dimensional geometry is primarily
useful for visualization purposes and when defining distance-
dependent connection patterns between two populations, but the
internal data is arranged in one-dimensional arrays (see Section
3.1).

Once the populations are created, the value of each parameter
and variable can be directly set using population attributes, by
providing either a single value (which will be the same for
all neurons) or lists/Numpy arrays of the same size/shape as
the population. Like many other simulators, but unlike Brian,
parameters and variables use implicit physical units: except for
time which is expressed in milliseconds, the user must decide
if the value of a variable represents volts or millivolts, for
example. Brian uses explicit physical units, which allows to ensure
consistency between the parameters. The neurons of a population
can be accessed either individually or in subsets (similar to the
PopulationViews of PyNN), allowing a finer control over the
parameter values. Subsets use the slice notation of NumPy.

Projections are defined by four values: (1) the pre-synaptic
population, (2) the post-synaptic population, (3) the associated
target (e.g., “exc” or “inh”) and (4) optionally the synapse type.
Subsets of a population can also be used to create the projection.
A connecting method has to be applied on the projection in
order to create the synapses using a pre-defined scheme and
initialize the corresponding weights and delays. The network
is here fully connected, using the connect_all_to_all()

method. Several methods are provided by the simulator (all-
to-all, one-to-one, distance-dependent, probabilistic. . . ) but the
user can also define its own connection patterns in Python, or
load connection matrices from a file. Compatibility with the
Connection Set Algebra proposed by Djurfeldt (2012) is currently
under development.

Once the populations and projections are defined and
initialized, the corresponding C++code has to be generated
and compiled by calling the compile() method. If the network
structure has not changed since the last execution of the
script, compilation is skipped. The C++ structures storing the
parameters and variables of the populations and projections are
then initialized with the values previously defined. The network
can be then simulated for a certain duration in milliseconds. The
values of all population/projection attributes can be read and
modified at any point between two calls to simulate() , allowing
an easy definition of complex experimental protocols.
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This simple script outlines the high-level interface necessary
to create a network: in its most simple form, all implementation
details (including the neuron/synapse models) are hidden to the
user. At this level, there is also no distinction between rate-
coded and spiking networks. This distinction only appears when
defining or using neuron and synapse models.

2.2. Equation-Oriented Description
Neuron and synapse models are described using an equation-
oriented approach, where each equation is expressed by a
simple textual description. The goal of the syntax is to provide
a high flexibility to the user while being close to natural
mathematical descriptions (Stimberg et al., 2014). Our equation-
oriented syntax has been designed to be close to the Brian syntax
(Goodman and Brette, 2008), although some differences had to be
introduced to take into account the semantic difference between
rate-coded and spiking neurons.

The syntax chosen for the equations ruling each variable
allows to describe most common mathematical operations. Each
variable has to be described by an equation, either regular
or differential. For the moment, ANNarchy only supports
first-order ordinary differential equations (ODE). For regular
equations, the left side must hold only the name of the
variable which will be updated (e.g., a = b + c ). The available
operators are assignment (=) and the different augmented
assignments (+=, -=, * =, /= ). For ODEs, the left term
can be more complex (tau * dv/dt + v = E is the same as
dv/dt = (E - v)/tau ), but only the assignment operator is
allowed. The right term can use single operations (+, -, * , / )
or power functions (y^d ) of other parameters or variables.
Different mathematical functions are available (given they exist
in the C math library), for example cos, sin, exp, log . . .

Conditional statements (if/then/else) can be useful for some
rate-coded neurons, although they are classically avoided in
spiking neurons. They follow a Python-like syntax using the if

and else keywords and : as a separator. The rectifier transfer
function can for example be implemented like this:

r = if v > 0.0: v else : 0.0

with r being the output of a neuron and v its net activation. The
condition can use any parameters or variable of the neuron or
synapse. All relational operators are available (<, >, <=, >=, ==,
!= . . . ), and they can be combined using the and and or logical
operators. Conditioal statements can be nested.

2.3. Rate-coded Neurons and Synapses
2.3.1. Rate-coded Neurons
The definition of a rate-coded neuron model is done by
instantiating a Neuron object, with arguments specifying the
parameters and variables of the neuron. Let us consider a simple
noisy leaky-integrator rate-coded neuron:

τ ·
dr(t)

dt
+ r(t) =

N∑

i=1

wi · ri(t)+ B(t)+ U(−1, 1) (2)

where r(t) is the instantaneous firing rate of the neuron at time t,
τ its time constant, B(t) its baseline firing rate (which can change

over time), U(−1, 1) a random variable taken at each time t in
the uniform range [−1, 1] in order to add noise and

∑N
i=1 wi · ri

represents the weighted sum of excitatory inputs to a particular
neuron. Figure 2A shows a possible implementation of such a
neuron in ANNarchy.

The first argument parameters is a string or multi-line string
defining two parameters: tau , the time constant of the neuron,
initialized to 10 ms, and B, the baseline firing rate, initialized
to 0. Parameter definitions can be placed on different lines or
separated by semi-colons. Once a population is created, these
parameters are accessible and modifiable through population
attributes. Various flags can be set after the : symbol. In this
example, the flag population tells the code generator that the
value of tau will be shared by all neurons of a population, so it
only needs to store one value. It is also possible to specify the
type of the parameter: parameters (and variables) are by default
represented by double precision floating-point values. The int

and bool flags change the type of the attribute to integer or
boolean, if needed.

The second argument equations defines the variables of the
neuron, whose value will evolve with time during the simulation.
The number of variables defined in the model is unlimited,

FIGURE 2 | Examples of rate-coded neuron and synapse definitions.

(A) Noisy leaky-integrator rate-coded neuron. It defines a global parameter

tau for the time constant and a local one B for the baseline firing rate. The

evolution of the firing rate r over time is rules by an ODE integrating the

weighted sum of excitatory inputs sum(exc) and the baseline. The random

variable is defined by the Uniform(–1.0, 1.0) term, so that a value is

taken from the uniform range [−1,1] at each time step and for each neuron.

The initial value at t = 0 of r is set to 1.0 through the init flag and the

minimal value of r is set to zero. (B) Rate-coded synapse implementing the

IBCM learning rule. It defines a global parameter tau , which is used to

compute the sliding temporal mean of the square of the post-synaptic firing

rate in the variable theta . This variable has the flag postsynaptic , as it

needs to be computed only once per post-synaptic neuron. The connection

weights w are then updated according to the IBCM rule and limited to positive

values through the min=0.0 flag.
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but at least one of them should be named r , as this is the
default variable used by post-synaptic neurons to compute their
weighted sum of inputs. The code corresponding to Equation (2)

is straightforward. The temporal derivative of r(t) is symbolized
by the term dr/dt . The random variable U(−1, 1) is generated
by the term Uniform(-1.0, 1.0) , where –1.0 and 1.0 and the

FIGURE 3 | Examples of spiking neuron and synapse definitions.

(A) Izhikevich neuron. The parameters and equations fields follow

the same principles as for rate-coded neurons. The variable I gathers

the inputs to the neuron, namely the sum of the excitatory g_exc and

inhibitory g_inh input currents and a constant current i_offset . The

membrane potential v and the recovery variable u are updated

according to the desired dynamics, with initial values specified with the

init keyword. The spike field defines the condition for emitting a

spike, here when the membrane potential v exceeds the threshold

v_thresh . The reset field specifies the modifications happening after

a spike is emitted. Here the membrane potential is clamped to the

value c and the recovery variable u is incremented by d. The refractory

period is determined by the refractory field, here 2 ms. (B)

Short-term plasticity (STP) synapse. For this synapse, the increment of

the post-synaptic conductance g_target when a pre-synaptic spike

arrives depends not only on the synaptic efficiency w, but also on the

value of variables internal to the synapse x and u. These are updated

through two mechanisms: the equations field specifies their

exponentially-decreasing dynamics, while the pre_spike defines their

increments when a pre-synaptic spike arrives at the synapse. However,

the integration of the corresponding ODEs is event-driven through the

use of the event-driven flag: when a pre- or post-synaptic spikes

occurs, the new value of these variables is directly computed using the

analytical solution of the ODE. This can speed up the simulation if the

number of spiking events is low. (C) Spike-timing dependent plasticity

(STDP) synapse. For this synapse, the post-synaptic conductance is

increased by w after a pre-synaptic spike is received, but the synaptic

efficiency is adapted depending on two internal variables Apre and

Apost . The pre_spike field states what should happen when a

pre-synaptic spike arrives at the synapse, while the post_spike field

describes the changes occuring when the post-synaptic neuron fires.

The variables Apre and Apost are integrated in an event-driven

manner. The clip() function is used to maintain w in the range [0,

w_max]. (D) NMDA non-linear synapse. This synapse does not transmit

information to the post-synaptic neuron in an event-driven manner.

Rather, the synaptic variable g is summed at each time step by the

post-synaptic neuron, as for rate-coded networks. This is specified by

the psp field. When a pre-synaptic spike occurs, the variable x is

increased by w, which in turn will modify the evolution of g through the

coupled equations described in the equations field. These equations

cannot be solved with the event-driven method, as their values should

be available at each time step.
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bounds of the uniform range. Different distributions can be used
in an equation, including the normal, log-normal, exponential
and gamma distributions. The weighted sum of excitatory inputs
is represented by sum(exc) , which sums over all projections
possibly reaching a particular neuron the product between the
connection weight w and the firing rate of the pre-synaptic
neuron r . The term exc corresponds to the target name defined
when creating the projections. By default, this ODE will be solved
using the explicit (forward) Euler method, but other methods are
available, see Section 3.4. The flag init defines the initial value of
the variable for all neurons and min defines a lower bound for the
variable (if r is negative after an update, it will be set to 0), as the
firing rate r is usually ensured positive in rate-coded networks.
The maxflag is also available.

2.3.2. Rate-coded Synapses
When the pre-synaptic population of a projection is rate-coded,
the synapses of the projection are assumed to be also rate-
coded. A synapse is represented by a fixed connection weight (or
synaptic efficiency) named wand a delay in synaptic transmission
d (in milliseconds). Each synapse will participate in the weighted
sum of inputs of the post-synaptic neuron with w(t) ∗ r(t − d),
where r(t − d) is the firing rate of the pre-synaptic neuron at
time t − d. Synaptic delays in a network must be a multiple of
the fixed integration step dt (see Section 3.4), but each synapse
of a projection can define a different delay. The minimal delay is
dt , as neurons can only access the value of variables computed
at the previous time step (synchronous computation). Note that
the Brian simulator can simulate rate-coded synapses, but only
without delay.

In a learning context, connection weights evolve with time
according to a variety of learning rules (Dayan and Abbott, 2001).
Synapse models can be created to override the default behavior
and implement synaptic plasticity or non-linear transmission.
Figure 2B shows a possible implementation of the IBCM
learning rule (Intrator and Cooper form of the BCM rule)
(Intrator and Cooper, 1992). It is a Hebb-like product of the pre-
synaptic firing rate and a quadratic function of the post-synaptic
firing rate. The quadratic function uses a dynamical threshold
θ(t) which is defined as the expectation of the square of the
post-synaptic firing rate:

θ(t) = E(y2(t))

dw(t)

dt
= y(t) · (y(t)− θ(t)) · x(t)

(3)

where x(t) is the pre-synaptic firing rate, y(t) the post-synaptic
one,w(t) the connection weight and θ(t) is defined as the moving
average of y2(t) through the E() expectation operator. In the code
displayed on Figure 2B, the moving average is calculated using a
first-oder ODE integrating the square of the post-synaptic firing
rate, with a time constant tau of 2 s by default. Pre- and post-
synaptic neural variables (usually the firing rate r , but any other
variable can be used) can be accessed by prefixing the variable
name by pre. and post. , respectively.

The update rule for the weight w is simply derived from
Equation (3) using these conventions. theta is a post-synaptic

variable, as it only depends on the post-synaptic neural activity.
It would therefore be a waste of resources to compute it for
each synapse: once per post-synaptic neuron is enough. The
equation for theta (as well as the corresponding parameter tau )
is associated with the flag postsynaptic , which has a similar
meaning as population for a neuron: the global variable will be
updated only once per post-synaptic neuron. The variable w is
local to a synapse, so the flag should not be set. Instead, min=0.0

is used to ensure that the weight will not become negative over
time.

In a rate-coded neuron model, the term sum(exc) represents
by default the weighted sum of excitatory inputs to this neuron.
It is possible to change this behavior in the synapse definition by
adding a psp argument to the synapse definition, whose default
value is "w * pre.r" . Non-linear synapses, where for example
wi · log(ri) should be summed over all synapses instead of wi ·

ri, can be implemented by setting psp = "w * log(pre.r)" .
The summation operation can also be changed, by defining the
operator argument, whose default value is "sum" . If "max" ,
"min" or "mean" is used, the maximal (resp. minimal or mean)
value of psp is calculated over all synapses associated to the target
exc will be returned by sum(exc) . This is particularly useful for
pooling operations, which are used for example in hierarchical
visual processing (Riesenhuber and Poggio, 1999; Hamker, 2004).

2.4. Spiking Neurons and Synapses
2.4.1. Spiking Neurons
Integrate-and-fire neurons (IF) describe the temporal evolution
of the membrane potential v(t) through a system of first-
order ODEs. When the membrane potential exceeds a given
threshold, a spike is emitted and the value of the different neural
variables is clamped to a reset value for a certain duration
called the refractory period. The condition for spike emission as
well as the reset and refractory behaviors have to be explicitly
defined in addition to the internal dynamics. More complex
spiking neurons such as the Hodgkin-Huxley neuron model have
their own dynamics for the reset and refractory mechanisms.
Figure 3A shows a possible implementation of the Izhikevich
neuron described by Equation (1).

As for rate-coded neurons, the argument parameters

describes the different parameters of the neuron model: a, b, c

and d are dimension-less parameters, v_thresh is the spiking
threshold, noise is a multiplying factor on the noise random
variable and tau is the time constant in milliseconds of the
conductances. The argument equations describes the evolution
of the three variables I , v and u of Equation (1). Normal(0., 1.)

is a random variable taken fromthe standard normal distribution.
g_exc and g_inh represent the total excitatory and inhibitory
currents or conductances generated by incoming pre-synaptic
spikes. They are the equivalent for spiking neurons of sum(exc)

and sum(inh) for rate-coded neurons. The syntax g_target is
different from the rate-coded case because they have a different
behavior: while sum(target) is computed at every time step
of the simulation by summing pre-synaptic activity, g_target

is event-driven. Every time a pre-synaptic spike arrives to a
neuron, the corresponding conductance is increased from a value
corresponding to the weight (or efficiency) w of the synapse. If
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no spike arrives, the conductance evolves with its own dynamics,
independently from inputs.

The default behavior for conductances is governed by
instantaneous synapses: once all the incoming spikes have been
summed, the total conductance is reset to 0 for the next time
step. More realistic models use exponentially decreasing or
alpha (double exponential) functions to model the dynamics of
the conductance. The example of Figure 3A uses exponentially
decreasing synapses, by specifying a linear first-order ODE for
the conductances g_exc and g_inh . If no spike arrives for a
certain duration, the conductances will progressively decay back
to 0, with a time constant defined by the parameter tau .

Two other arguments of the Neuron object have to be defined:
spike defines the spiking condition, i.e., the condition that must
be satisfied in order to emit a spike (typically when themembrane
potential exceeds a given threshold); reset describes what should
happen after a spike is emitted. The spiking condition has to
be a boolean expression; it can depend on any parameter or
variable, possibly combined through the logical operators and

and or . The reset statement forces some neural variables to take
predefined values after a spike is emitted: here the membrane
potential is clamped to a reset value c and the recovery variable is
incremented by d.

Spiking neurons can also define a refractory period, during
which the ODEs are not evaluated (i.e., the membrane potential
stays at its reset value), except for the conductances g_exc and
g_inh . This corresponds to the hyper-polarized state of a neuron
after spike emission, where no spike can be further emitted. The
duration of this refractory period is set through the refractory

argument, which takes here a constant value of 2 ms, but the
name of a parameter or variable can be given, allowing for
dynamical refractory period: for example, the refractory period
can be progressively increased if the firing rate becomes too high.

As shown in Stimberg et al. (2014), the five arguments
parameters , equations , spike , reset , and refractory are
sufficient to describe the dynamics of most point-spiking
neurons, including IF and Hodgkin-Huxley models, and are
directly related to the Brian syntax (although parameters is
implicit in Brian). They are not well suited to describe multi-
compartment models, which are the main focus of simulators
such as NEURON or GENESIS. However, Brian 2 introduces
support for this kind of models.

2.4.2. Event-driven Synaptic Transmission
Synaptic behavior in spiking networks is also different from
rate-coded networks, and requires additional description. The
basic type of synapses is the linear synapse, where synaptic
transmission is event-driven: when the pre-synaptic neuron
emits a spike, it increases the corresponding post-synaptic
conductance by a given value (generally the synaptic efficiency
w). If no spike occurs, the synapse does not need to transmit any
information: the dynamics of conductances are already defined
at the post-synaptic neuron level. As in Brian, a spiking synapse
can therefore define two additional arguments: pre_spike which
specifies what should happen when a pre-synaptic spike arrives
at the synapse (potentially after a given delay) and post_spike

when the post-synaptic neuron emits a spike. The default linear

synapse only defines pre_spike with the value g_target += w .
g_target is a generic name for the conductance associated to
the synapse. Depending on the target of the projection, g_target

will be replaced by g_exc or g_inh , for example. The underlying
idea is that the same synapse type can be used in different
projections, regardless of their target.

Some event-driven synapse models modify the post-synaptic
conductance with a value depending on specific synaptic
variables. This is for example the case in short-term plasticity
(STP) synapses (Markram et al., 1998), where the increment
of the post-synaptic conductance depends on the history of
the synapse. Frequent stimulation of a facilitating synapse leads
to an increased influence on the post-synaptic neuron, while
depressing synapses show the opposite effect. A possible model
of STP synapses uses two internal variables u(t) and x(t), which
evolve continuously according to linear ODEs:

τrec ·
dx(t)

dt
= 1− x(t)

τfacil ·
du(t)

dt
= U − u(t)

(4)

When a pre-synaptic spike arrives at the synapse, the post-
synaptic conductance should be incremented withw(t)·u(t)·x(t),
while the synaptic variables should be modified according to:

x(t)← x(t) · (1− u(t))

u(t)← u(t)+ U · (1− u(t))
(5)

Figure 3B shows an implementation of a synapse with short-
term plasticity. The parameters are tau_rec , tau_facil , and
U, which define the dynamics of the synapse and whether it is
facilitating or depressing. The two variables u and x directly relate
to Equation (4). The pre_spike argument defines what should be
modified when the pre-synaptic spike occurs: g_target should
be incremented with w* u* x instead of w by default, and u and x

are modified according to Equation (5).
The equations for u and x use the flag event-driven . As

explained later in Section 3.4, this defines the numerical method
used to integrate the ODE. Here both variables are defined by
first-order linear ODEs, so their current value can be directly
calculated whenever a pre- or post-synaptic spike occurs, based
on the time elapsed since the last event (exponentially decreasing
function of time). This can spare a lot of computations if the
number of spikes in the network is not very high.

An event-driven synapse does not need to rely only on
spike times for its dynamics. As for rate-coded synapses, it can
access pre- and post-synaptic variables during updates: the pre-
(resp. post-) synaptic membrane potential is accessed with pre.v

(resp. post.v ). Pre-synaptic variables are delayed if necessary.
However, only the post-synaptic conductance g_target can be
modified by a synapse, contrary to Brian 2.

2.4.3. Synaptic Plasticity
Synaptic plasticity can also be described using event-driven
mechanisms: the weight w of a synapse usually only needs to
be updated when a pre- or post-synaptic spike occurs. Most
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biologically-realistic synaptic plasticity mechanisms in spiking
networks indeed derive from the spike timing dependent plasticity
(STDP) rule (Gerstner et al., 1996; Markram et al., 1997).
Although many different implementations exist, there is an
online version of STDP which is event-driven (Song et al., 2000).
With this rule, each synapse integrates two variables Apre(t) and
Apost(t) which represent traces of the pre- and post-synaptic
spikes, respectively. Between two spikes, they follow linear first-
order ODEs:

τ+ ·
dApre(t)

dt
= −Apre(t)

τ− ·
dApost(t)

dt
= −Apost(t)

(6)

When a pre-synaptic spike occurs, the pre-synaptic trace Apre(t)
is incremented by a fixed value, and at the same time the post-
synaptic trace Apost(t) is substracted from the synaptic efficiency
w(t), allowing long-term depression (LTD):

Apre(t)← Apre(t)+ A+ · wmax

w(t)← w(t)− Apost(t)
(7)

with wmax being the maximal value allowed for the weight.
When a post-synaptic spike occurs, the post-synaptic trace is
incremented, and the synaptic efficiency w(t) is increased from
the pre-synaptic trace, allowing long-term potentiation (LTP):

Apost(t)← Apost(t)+ A− · wmax

w(t)← w(t)+ Apre(t)
(8)

Figure 3C shows a possible implementation of this STDP
plasticity rule. The equations for Apre and Apost can be
integrated with an event-driven method, as their value is only
required when a pre- or post-synaptic spike occurs. Synaptic
transmission is linear, so pre_spike defines g_target += w .
The increments in pre_spike and post_spike follow Equations
(7) and (8), while the weight w is clipped between 0 and wmax

by using the clip function. An alternative implementation could
have used the min and max flags instead of the clip function, as
w is a variable of the synapse.

2.4.4. Continuous Synaptic Transmission
In some cases, synaptic transmission cannot be described
in an event-driven framework. Synapses using the NMDA
neurotransmitter are for example often modeled as non-linear
synapses (Wang, 2002). These synapses require the post-synaptic
conductance to be a sum of synapse-specific variables, as for
rate-coded neurons, and not simply incremented when a pre-
synaptic spike occurs. This is similar to the summedflag of Brian
2. NMDA synapses can be represented by two variables x(t) and
g(t) following first-order ODEs:

τ ·
dx(t)

dt
= −x(t)

τ ·
dg(t)

dt
= −g(t)+ x(t) · (1− g(t))

(9)

When a pre-synaptic spike occurs, x(t) is incremented by the
weight w(t). However, it does not directly influence the post-
synaptic neuron, as the output of a synapse is the signal g(t). The
post-synaptic conductance is defined at each time t as the sum
over all synapses of the same type of their variable g(t):

gexc(t) =

Nexc∑

i=1

gi(t) (10)

Figure 3D shows a possible implementation of such a non-linear
NMDA synapse. The main difference with the previous models is
that it defines a psp argument whichmeans that the post-synaptic
conductance should be summed over this value (g in this case)
at every time step. It is therefore not possible to use the event-
driven scheme for such non-linear synapses. The psp argument
can access any synaptic variable, as well as any pre- or post-
synaptic variable. For example, it can be used for gap junctions
(also called electrical synapses) which do not exchange spikes
but directly a function of the pre- and post-synaptic membrane
potentials.

2.5. Additional Features
2.5.1. Standard Neurons and Synapses
Although the definition of neuron and synapse types is
rather simple, the library provides a set of predefined models
which can be used directly when creating populations
and projections. Spiking neuron models are conveniently
standardized, especially since the introduction of the PyNN
interface (Davison et al., 2008). Using the PyNN nomenclature
for the model names and parameters, ANNarchy provides
the main neuron models common to most neural simulators:
simple integrate-and-fire neuron, using either exponentially-
decaying or alpha-shaped conductances or currents
(IF_curr_exp, IF_cond_exp, IF_curr_alpha, IF_cond_

alpha ), adaptive integrate-and-fire neurons (Izhikevich,

EIF_cond_alpha_isfa_ista, EIF_cond_exp_isfa_ista ), or
Hodgkin-Huxley neurons (HH_cond_exp ). Synapse models
include short-term plasticity (STP) and spike-timing dependent
plasticity (STDP). Each model is associated with a docstring
describing completely the parameters and equations, allowing
to easily create a new derivative model. Rate-coded neuron
models are less standardized than spiking ones. The library only
provides a generic leaky-integrator neuron similar to Equation
(2). Rate-coded synapses include the Hebbian learning rule
(Hebb), the Oja learning rule (Oja ) and the IBCM learning
rule described by Equation (3) (IBCM). The available rate-coded
models will be extended in future versions.

2.5.2. Specific Populations
Specific populations are available to provide functions which
are difficult or unnecessarily complicated to implement with
single neuron models. The PoissonPopulation class allows to
directly create a population of spiking neurons whose spikes
are generated from a Poisson distribution. The rate underlying
the distribution can be a single value or one value per neuron
(homogeneous Poisson process, as the rate for each neuron
is constant), or a string expression defining the evolution of
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rate over time (e.g., ’1 + sin(2 * pi * t)’ , heterogenous Poisson
process). The SpikeArray class allows to create a population and
to specify for each neuron the exact times at which they will
emit a spike. These spiking times can be modified between two
simulations using attributes.

The ImagePopulation class allows to represent images
through the firing rates of a rate-coded population with the
same geometry as the image (two-dimensional for grayscale,
three for colored images, the last dimension representing the
R, G, and B components). Firing rates are normalized between
0 and 1. It relies on the Python Imaging Library (PIL), which
allows the use of many file formats, including JPEG. Similarly,
the VideoPopulation class allows to grab image streams from
webcams and use them as firing rates of a population. It relies
on the OpenCV 2.x C++ library to access the desired hardware.
Grabbing images has to be explicitly called by the user between
two simulations.

2.5.3. Hybrid Networks
Apart from the neuron and synapse definitions, there is no
difference in the interface between rate-coded and spiking
networks: populations and projections behave the same
regardless of the framework. It then becomes possible to
create hybrid networks, composed of rate-coded and spiking
populations interacting with each other. Interaction between
the two types of neurons is achieved by introducing specific
populations and projections to perform the conversion.

Converting a rate-coded population into a spiking one is
straightforward: the output r of the rate-coded population is
interpreted as an instantaneous firing rate in Hz and used
to generate spikes according to a Poisson distribution. The
abovementioned PoissonPopulation object accepts a target

argument, stating that the rate of each Poisson neuron is
determined by its weighted sum of inputs:

pop1 = Population(1, Neuron(equations= "r = 1
+ sin(2 * pi * t)" ))

pop2 = PoissonPopulation(100, target= ’exc’ )
proj = Projection(pop1, pop2, ’exc’ )
proj.connect_all_to_all(1.0)

The connectivity matrix can have any form, but in the most
simple case one single rate-coded neuron should determine the
firing rate of a group of spiking neurons (one-to-many pattern).
The weight of the connection determines the scaling: a weight
of 1.0 means that a pre-synaptic rate of 1.0 will generate Poisson
spike trains at 1 Hz. With a weight of 100.0, the train would be at
100 Hz. Other distributions than Poisson will be added in future
versions.

Converting a spiking population into a rate-coded one is a
much more difficult problem. Estimating neural firing rates from
single spike trains instead of averaging over multiple trials is
an open issue in neuroscience (Cunningham et al., 2009). The
main methods include peri-stimulus time histograms (PSTH,
Gerstein and Kiang, 1960), smoothing kernels (Nawrot et al.,
1999), Kalman filters (Wu et al., 2004), or Bayesian estimation
(Shimokawa and Shinomoto, 2009). All these methods are biased
and can only infer firing frequencies in a particular bandwidth.
Here, the problem is even more difficult as it has to be performed

online during the simulation: in the interval between two spikes
of the same neuron, it is not possible to predict the real
instantaneous firing rate of the neuron, as future incoming spikes
are still unknown.

ANNarchy provides a simple method to infer online the firing
rate of a spiking population, using the assumption that a rate-
coded neuron usually represents a large group of spiking neurons.
The two populations are connected with a specific projection
object DecodingProjection and a many-to-one pattern. For
example, a single rate-coded neuron could decode the firing rate
of a population of 1000 Poisson neurons:

pop1 = PoissonPopulation(1000, rates=100.0)
pop2 = Population(1, Neuron(equations= "r=sum(exc)" ))
proj = DecodingProjection(pop1, pop2, ’exc’ ,

window=10.0)
proj.connect_all_to_all(1.0)

The input sum(target) of a post-synaptic neuron at time t is a
weighted sum of all spikes received during a sliding window of
duration T (defined by the argument window ), normalized by the
total number of synapses to this neuron:

sum(target)(t) =
Weighted sum of spikes received in [t − T, t]

T ∗Number of incoming synapses
(11)

It approximates the mean firing rate in the pre-synaptic
population during the last T milliseconds. By default, T is equal
to the simulation step dt , but the decoded rate may be fluctuating
if the number of pre-synaptic neurons is too small. One should
either increase T or apply a low-pass filter to sum(target) in the
post-synaptic neuron. The weights of the projection can be used
to scale the output firing rate: by default, an input firing rate at 1
Hz leads to sum(target)=1.0 .

Figure 4 illustrates the use of hybrid networks. A single rate-
coded neuron is used to activate a population of 1000 Poisson
neuron with a firing rate increasing every 250 ms (0, 10, 50, and
100 Hz). Figure 4A shows a raster plot of the spikes emitted
by the Poisson population. Figure 4B shows the original (blue)
and decoded (green) firing rate, for a single rate-coded neuron
connected to all 1000 Poisson neurons. The projection uses a
sliding window of 10 ms to smoothen the rate. The decoded
firing rate follows the original one, but with a small variance
due to the stochastic nature of the Poisson spike trains, and
with a small temporal lag corresponding to the sliding window:
when the firing rate suddenly increases, it takes approximately T
milliseconds to completely reflect the change.

Figure 4C shows the effect of the number of connected
neurons on the precision of the decoding. For the three
stimulations at 10, 50, and 100 Hz, we measure the mean of
the normalized error between the decoded firing rate r(t) and

its target value F ∈ [10, 50, 100]: ǫ = 1
250

∫ 250
t=0
|r(t)−F|

F dt
for post-synaptic neurons receiving 1–1000 inputs from the
Poisson population. Unsurprisingly, the more inputs are used for
decoding, the better is the precision. The sliding window method
is also more precise at high frequencies, as more spikes can be
used to estimate the firing rate. The remaining error for a high
number of neurons is mostly due to the temporal lag of the
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FIGURE 4 | Example of an hybrid network encoding a rate-coded

population into a spiking population (PoissonPopulation) and

decoded back to the rate-coded domain (DecodingProjection). The

script for this plot is provided in the Supplementary Material. (A) Raster plot of

the spiking population reacting to step-wise inputs for 1 s. Each step lasts 250

ms (0, 10, 50, and 100 Hz). (B) Firing rate of a single rate-coded neuron

decoding the corresponding spiking neuron. The blue line shows the firing rate

in the input population and the green line shows the decoded firing rate. It

follows the original firing rate with some noise due to the stochastic nature of

the spike trains and some delay due to the integration window. (C) Relative

decoding error (ǫ = 1
250

∫ 250
t=0

|r(t)−F|
F dt) depending on the number of spiking

neurons used for decoding, for different input firing rates (10, 50, and 100 Hz).

For small number of neurons, the decoding error is high as individual spike

trains are stochastic. When the number of neurons is increased (over 200), the

decoding error is reduced. Decoding is relatively more precise at high

frequencies than at low ones.

integration. The script allowing to reproduce Figure 4 is given
in the Supplementary Material.

2.5.4. Weight Sharing and Convolution Operations
Regular projections instantiate a set of connection weights per
post-synaptic neuron. This can be a waste of resources when the
weights are identical for each neuron, the only difference being
the coordinates of the corresponding neurons in the pre-synaptic
population, as it is the case in convolutional networks (Lecun

et al., 1998) or image filtering. Such convolution operations can
be implemented by creating a SharedProjection instead of a
Projection and calling the “convolve()” connector method:

proj = SharedProjection(pre=pop1, post=pop2,
target= ’exc’ )

proj.convolve(weights=kernel)

The generated code depends on the respective geometry of
the pre- and post-synaptic populations, as well as on the
weights kernel. If they all have the same number of dimensions
(for example two-dimensional), a regular convolution will be
performed:

sumexc(x, y) =

di∑

i=−di

dj∑

j=−dj

W(i, j) · pre.r(x− i, y− j) (12)

with (di, dj) representing the extent of the weights kernel W. If
the pre- and post-populations do not have the same number of
neurons in each dimension (for example 200 ∗ 200 and 100 ∗
100, corresponding to a sub-sampling ratio of 2), the mapping
between the coordinates of the post-synaptic neurons and the
center of the corresponding pre-synaptic region is automatically
computed, but this can be overwritten.

The convolution operation can also be performed in parallel
over a specific dimension of the pre-synaptic population. For
example, if the last dimension of the population represents the
RGB color channels of an image, the first two being the width
and height, a two-dimensional filter can be applied on each color
channel separately. The post-synaptic population has then three
dimensions too. It is also possible to apply a bank of filters on
the pre-synaptic population (e.g., edge detection with different
orientations), leading to a post-synaptic population with one
additional dimension (feature map).

Pooling (e.g., max-pooling) can also be implemented using a
shared projection. The operationmust be specified when creating
the projection, before calling the pooling connector method:

proj = SharedProjection(pre=pop1, post=pop2,
target= ’exc’ , operation= ’max’ )

proj.pooling()

Each post-synaptic neuron will be associated to a region of the
pre-synaptic population and will extract the maximal firing rate
in this region, without defining any weight. For example, if
the two populations are 200 ∗ 200 and 100 ∗ 100, each post-
synaptic neuron covers a 2 ∗ 2 area. The extent of the region is
automatically computed based on the respective geometries, but
this can be overwritten. The operation can be changed to the
minimal or mean firing rate in the region (’min’ and ’mean’ ).
Weight sharing is for the moment only possible for rate-coded
networks and learning is disabled. This will be improved in future
versions.

2.5.5. Recording of Variables
All neural and synaptic variables (defined in the equations

argument of a neuron or synapse) can be recorded during
a simulation. Populations (or subsets of a population) and
projections can be associated to a Monitor object together with
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a list of variable names. A frequency of recording can also
be defined, e.g., once every 10 ms. In the following calls to
simulate() , the value of these variables for all neurons/synapses
will be internally appended to a vector until get() is called, which
returns a matrix containing the recorded values and empties
the recording vectors. Recording can be stopped, paused and
resumed using methods of Monitor .

The advantage of this recording method is that the user is
not bound to a specific file format: the returned values are a
dictionary of Numpy arrays (one per variable) which can be
directly manipulated or saved into a file. The drawback is that the
available RAM can quickly be filled, especially when recording
synaptic variables such as weights. It is the user’s responsibility
to record only the necessary periods of the simulation (using
pause/resume) and to save intermediary results regularly.

2.5.6. Conditional Simulations
By default, simulate() runs the simulation for a fixed duration.
In some cases it may be useful to simulate until a criterion
is reached, for example when the maximal firing rate in a
population crosses a threshold, or a neuron has emitted a
certain number of spikes. This can be used to run conditional
simulations, e.g., the network has made a decision and we need
to perform the corresponding action. Each population accepts
a stop_condition argument, which states the condition that
must be true to stop the simulation. In the following example,
the simulation would be stopped when one or more neurons of
the population have a firing rate r higher than 1:

pop1 = Population( ... , stop_condition = "r > 1.0" )

The stop condition can use any neural parameter or variable,
and can combine several boolean predicates using the and , or ,
and not operators. If the simulation should be stopped when
the condition is true for all neurons, not just any of them, the
: all flag can be appended to the condition. The simulation can
then be run with the simulate_until() method, which accepts
amaximal duration for the simulation (if the criteria is nevermet)
and a (list of) population(s) whose criteria should be checked.

2.5.7. Structural Plasticity
The number of synapses in a network is determined at the time
when projections are created and is usually constant during
the simulation. Some networks require to dynamically add
or remove synapses between neurons during the simulation,
a mechanism called structural plasticity (Butz et al., 2009).
Projections define create_synapse() and prune_synapse()

methods which allow to dynamically create or delete synapses
between any pair of neurons. These functions are called from
Python, so the user has to regularly stop the simulation and
check if the conditions for creating or deleting a synapse are
met, depending on some neural or synaptic variable or randomly.
If the structural plasticity mechanism is applied frequently, it
will slow down the simulation because of the constant switches
between Python and C++.

Alternatively, simple rules for the creation or deletion of a
synapse can be passed to the definition of the synapse model.
The pruning argument takes a simple boolean expression which,

when true, will lead to the online deletion of the synapse.
Oppositely, the creating argument defines a binary condition
which leads to the creation of a synapse if it does not exist yet.
Creation or deletion can be made probabilistic by passing the flag
proba after the rule. The weight and delay of created synapses
can also be specified.

In the following example, each synapse updates an age

variable which is incremented at each simulation step, but
is reset to 0 when both pre- and post-synaptic neurons are
simultaneously active. When the age of a synapse exceeds a
given threshold, the synapse is pruned with a probability of
0.5. Similarly, a synapse can be created when two unconnected
neurons are strongly active at the same time.

StructuralPlasticity = Synapse(
parameters = "max_age = 1000.0 : postsynaptic" ,
equations = "age = if pre.r * post.r > 0.9:

0.0 else: age + dt" ,
pruning = "age > max_age : proba=0.5" ,
creating = "pre.r * post.r > 0.9 : proba=0.5,

w=0.5"
)

Creation and pruning of synapses have to be explicitly started
with start_creating() and start_pruning() methods,
which also accept a period argument defining how often
the structural plasticity conditions will be checked (by default
at every time step, which is computationally inefficient and
probably unnecessary in most cases). Structural plasticity is
available for spiking networks, but creating and pruning can not
be linked to events such as the emission of a spike: it must rely on
continuous variables.

2.5.8. Reporting
As noted by Stimberg et al. (2014), the equation-based
representation of neural networks allows the automatic
documentation of models. Parameters are known, equations
can be parsed to LATEX mathematical code, and the structure
of the network is simply defined in terms of populations and
projections. User-defined neuron or synapse models can be
documented by adding a name and a detailed text description
of its behavior. Calling the report() method will generate a
complete LATEX file, organized in tables as suggested by Nordlie
et al. (2009). It contains a summary of the network, a list of all the
populations (including their size and the neuron model), a list of
all the projections with a description of the connectivity and the
synapse model, a textual description of each neuron and synapse
models used in the network (with the parsed equations) and
finally the initial value of the parameters used in each population
and projection. The generated file still requires some editing
before being published, but it should ease the modeler’s work.

3. Code Generation

The approach chosen for the neural simulator is based on a
complete code generation mechanism. As noted in Goodman
(2010), code generation allows to couple the flexibility of a
high-level language (here Python) with the speed and hardware
specificities of a low-level language (C++). This approach is
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used in Brian to speed up some code portions and is further
extended in Brian 2 where a complete C++code for the network
can be optionally generated at runtime (cpp_standalone mode,
Stimberg et al., 2014). ANNarchy relies entirely on this concept,
by generating and compiling a shared C++ library during the call
to compile() . Only this library will hold the data representing
the model. The library is then imported by the Python script
which transfers the initial value of all parameters and variables
and starts the simulation. The Python script has only an indirect
access to the C++ data and possible recordings through Cython
wrappings. Cython is a Python-like compiled language allowing
to execute instructions at C-speed and to access C or C++ data
structures and methods (Behnel et al., 2009). Cython was for
example used to create maintainable bindings to NEST (Zaytsev
and Morrison, 2014).

The main advantage of a complete code generation in
comparison to a simple interface to a low-level simulator (as
in PyNest; Eppler et al., 2008) is that it allows to optimize the
execution regarding the structure of the network. For example, if
the model does not use delays in synaptic transmission (which
require to implement queues for the output variables), or if
no structural plasticity mechanism is involved (requiring more
flexible data structures for the synapses), the corresponding
code is not generated, reducing the complexity of the code
and avoiding unnecessary overhead. Furthermore, the code can
be adapted to the parallel computing platform, either a shared
memory system with OpenMP (the parallel strategy can be
different depending on whether 4 or 256 cores are available) or
a graphical processing unit with CUDA (depending on its model
or version). A drawback is that the structure of the network
cannot be changed after the call to compile() : no population
or projection can be added, or equations modified. The only
changes possible are parameter or variable values, as well as
the dynamical addition or suppression of synapses in case of
structural plasticity.

3.1. Internal Representation of Data
Each population and projection is represented by a
C++structure storing each attribute, either a parameter or
a variable. Their name is easily extracted from the parameters

and equations arguments to the neuron model: they are alone
on the left side of the equation, except for ODEs where it is
surrounded by d and /dt . Local attributes of a population
are represented by a standard C++ vector with as many
elements as neurons in the population while global ones
(annotated by the population flag) are represented by a single
value. Indexing is simple because all neurons have the same
attributes.

For projections, the data representation depends on the
platform: on shared memory systems with openMP, local
attributes are represented by a vector of vectors, one per post-
synaptic neuron receiving connections. Each of these vectors
represents all synapses reaching this post-synaptic neuron (they
can have different sizes). The connectivity matrix is therefore
stored as a list of lists (LIL) structure in order to associate each
value to the corresponding synapse. On graphical cards with
CUDA, the connectivity is stored in the compressed sparse row

(CSR) format, where the values of each attribute are flattened
into a single vector and a list of row pointers allow to attribute
portions of this array to a single post-synaptic neuron (see
Brette and Goodman, 2011, for a review). These different
data structures lead to a better parallel performance: CSR
representations ensure a coalesced access to the attributes (i.e., the
data is contiguous in memory), which is a strong condition for
GPU computations to be efficient (Brette and Goodman, 2012),
while the LIL structure allows a faster distribution of the data
to the different OpenMP threads (Dinkelbach et al., 2012). LIL
and CSR representations have similar memory requirements, but
LIL is more adapted to the dynamical addition or suppression
of synapses: structural plasticity is very inefficient on the GPU
platform and is currently disabled.

The ability to adapt the data structures to the hardware is a
clear advantage of the code generation approach, especially when
the number and type of attributes is a priori unknown. These
data structures can furthermore be easily exported to the Python
namespace through the generation of Cython bindings, so the
choice of the data structure is transparent to the user.

3.2. Simulation Steps
ANNarchy performs the simulation with an equidistant time
grid, where the integration step size dt is fixed for all equations.
Although this scheme is natural for rate-coded networks, it can
have a negative influence on spiking networks because of the
forced alignment of spike times on this grid (Morrison et al.,
2007). Brian also allows the use of different clocks for different
parts of the model, which is currently impossible in ANNarchy.
Future versions will address this issue.

Each simulation step is composed of several successive
computational processes, which are mainly common to spiking
and rate-coded networks:

1. Propagation: the results of the previous simulation step is
propagated in the network. For rate-coded projections, the
weighted sum of pre-synaptic firing rates is accumulated in the
post-synaptic population. For spiking projections, the post-
synaptic conductances are increased from the synaptic weight
(or any other value defined in the pre_spike argument of
the synapse) if the corresponding pre-synaptic neuron has
emitted a spike. The variable updates defined in pre_spike

are also processed if they exist (e.g., in the STDP rule). In
both cases, if delays in synaptic transmission are defined, these
operations are performed on the value of these variables at the
corresponding time.

2. Neural update: the variables of each population are updated
according to their definition in the equations argument
of the neuron model. For spiking populations, the spiking
condition is then evaluated. If the condition is met, the rank
of the neuron is appended to a vector, the reset statement is
evaluated and the neuron is possibly put into a refractory state.
However, if a spiking neuron is in the refractory state, only the
ODEs corresponding to the conductances are updated until
the refractory period has elapsed, so no spike can be emitted.

3. Delayed outputs: before the simulation starts, each population
computes the maximal delay in synaptic transmission
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required by outgoing projections and instantiates a double-
ended queue of the adequate size. In this step, the new value
of the output variable (firing rate or spike) is appended to the
queue while the oldest value is removed.

4. Synaptic updates: the variables of each projection (if any) are
updated, including synaptic plasticity.

5. Post-synaptic events: for each spiking projection where a
post-synaptic neuron has emitted a spike, the post_spike

statement is evaluated for all synapses reaching this neuron.
6. Structural plasticity: if structural plasticity is defined, the

addition/suppression of synapses is evaluated.
7. Recording: each neural or synaptic variable is associated with

a boolean flag which enables the recording of the variable with
a given period. When the criterion is met, the value of the
variable is appended to a vector.

Finally, the internal time t is incremented. These steps are
all performed sequentially to ensure the correctness of the
simulation. Parallel computations only occur within each of
these steps if possible. The only difference between rate-coded
and spiking networks are the pre_spike and post_spike

statements, as well as the spike emission mechanism. This
common structure allows hybrid networks to be simulated.

3.3. Mathematical Parser
The different mechanisms described above are based on the
equations defined at the neural or synaptic level. As the
simulation is performed in C++, the computations are not
vectorized, so an update rule for the variable has to be defined
for each neuron of a population or each synapse of a projection.
The transformation between the mathematical equation and the
corresponding C++ code snippet is performed through the use
of the Sympy library (Joyner et al., 2012) coupled with regular
expressions.

The first step in the analysis of a neuron or synapse model
is to determine with regular expressions the list of parameters
and variables (by analysing the left side of the equation), their
locality (presence of population or postsynaptic in the flags),
their type (int, float or bool), bounds (min and max), initial value
(init) and eventually the associated numerical method. The value
of each parameter (e.g., tau = 10.0 ) is stored in a temporary
dictionary which will be transferred to the C++library when it is
instantiated.

For each variable, the equation is first manipulated to extract
non-standard vocabulary. For example, the weighted sum in a
rate-coded neuron (sum(exc) ) is extracted and replaced by a
temporary variable name (_sum_exc_ ). The same is done for
random number distributions (Uniform(0, 1) is replaced by
_rand_ ) and global operations (mean(pre.r) by _mean_pre_r ).
Conditional statements (if A: B else : C ) are also extracted
and each of the three terms are recursively analyzed. These
temporary variables are added to the list of parameters and
variables of the model.

This list allows to build a dictionary where the correspondence
between the name of an attribute and its C++ equivalent
is calculated. Each attribute belongs to a C++ structure
representing a population or projection, so the name of the

attribute must be prepended by the instance of the structure:
pop%(id)s. for populations, proj%(id)s. for projections,
where %(id)s will be replaced by the ID of the population or
projection when the complete code is generated. As the update
will be performed in a loop over all neurons or synapses, the
index of the neuron in its population ([i] ) or of the synapse in
the projection ([i][j] for the LIL structure) is appended to this
name. For example, the firing rate r of a neuron is represented
by pop%(id)s.r[i] while the weight of a synapse becomes
(proj%(id)s.w[i][j] ).

Once the dictionary is built, Sympy is able to directly
generate the C++ code equivalent to each side of the equation:
constants (such as numbers) and functions of the C math
library are automatically recognized and correctly translated. The
temporary variables introduced for the weighted sums or random
distributions are finally replaced by the adequate code thanks to
regular expressions. As an example, the following equation for a
neuron:

r = sum(exc) + B + cos(2 * pi * t)

with B being a global parameter and t the current time in
milliseconds, leads to the following code:

pop%(id)s.r[i] = pop%(id)s.sum_exc[i] + pop%(id)s.B
+ cos(2.0 * M_PI* double(t) * dt))

3.4. Numerical Methods
A special case has to be made for ODEs, as the desired numerical
method will influence the resulting C++ code. Additionally, a
neuron or synapse can be described by a set of coupled ODEs,
so the code generation must be performed globally depending
on the numerical method. We retained an approach similar
to the one described in Stimberg et al. (2014), except that
we do not explicitly generate an abstract code representation
of the equations, but rather directly manipulate Sympy
symbols.

To illustrate how the numerical methods are applied, we take
the example of a simple spiking neuron defined by the Equation
(13), but the principle is similar for synapses or rate-coded
models, regardless of the number of ODEs.

τ ·
dv(t)

dt
+ v(t) = gexc(t)− u(t)

τ ·
du(t)

dt
+ u(t) = v(t)

(13)

Such a neuron could be represented by the following description:

tau * dv/dt + v = g_exc - u
tau * du/dt + u = v

with tau being a global parameter of the population. The
problem to be addressed by the numerical method is to find the
next value of the variables v and u based on the value they had at
the previous time step and the current value of the conductance
g_exc . Figure 5 shows the code generated for these equations by
the different available numerical methods (explicit , implicit ,
exponential and midpoint ).
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FIGURE 5 | Example of code generated for the Equation (13) using

different numerical methods: 1. Explicit Euler; 2. Implicit Euler; 3.

Exponential Euler; 4. Midpoint (Runge-Kutta method of order 2). pop0 is

a C++ structure holding the different attributes of the population: the vectors v

and u for the two variables, the vector g_exc for the excitatory inputs and the

double value tau for the time constant. All methods compute first the

increments _v and _u before adding them to v and u, in order to make sure the

update rules use the previous values of these variables. The number of

elementary operations differs from one method to another, increasing the

simulation runtime, but the numerical precision and stability of the more complex

methods might be required in some cases.

3.4.1. Explicit Euler
The explicit (or forward) Euler method evaluates the gradients
dv/dt and du/dt at the current time t. In the textual
representations of the equations, dv and du are simply replaced
by two new variables _v and _u , and the system of equations
is solved and simplified to find the value of these increments
as a function of v , u, tau , and g_exc . Here, the problem is
simple because _v and _u are present only once per equation: the
equations are not coupled. The increments are translated into a
C++code snippet using the same dictionary-based approach as
for regular equations, and the increments are then added to the
previous value of v and u.

3.4.2. Implicit Euler
The implicit (or backward) Euler method evaluates the gradients
dv/dt and du/dt at the next time t + dt. dv and du are replaced

by _v - v and _u - u , where _v and _u represent the next value
of the variables, and all occurrences of v and u are replaced by _v

and _u . This leads to a system of two linear equations with two
variables, which is solved using the Sympy linear solver. Contrary
to the explicit method, the equations are coupled, and the solver
will only succeed if the equations are linear in v and u. The parser
will return an error if not. Once the solution is found, we subtract
v and u to _v and _u and simplify the equation in order to find
the increment that will be added to the previous value of the
variables.

3.4.3. Exponential Euler
The exponential Euler method is a special forward method which
has the smallest numerical error on uncoupled linear first-order
ODEs. The first step is to canonize each equation in the form

τ ·
dx(t)
dt
+ x(t) = A(t), with τ being the time constant of

the variable and A(t) its steady state. Here the equations are
already in this form, but a conductance-based neuron with
the equation tau * dv/dt + v = g_exc * (E-v) would have an
equivalent time constant of tau/(1+g_exc) and a steady state of
g_exc * E/(1+g_exc) . Once these equivalent time constants and
steady states are identified and simplified for each equation, the
increments can be directly obtained through:

x(t + dt) = x(t)+ (1− exp(−
dt

τ
)) · (A(t)− x(t))) (14)

3.4.4. Midpoint
The midpoint method is a Runge-Kutta method of order 2,
described in Stimberg et al. (2014). It evaluates successively
the gradient at t and in the middle of the interval [t, t + dt].
The gradient at t is evaluated using the same mechanism as
in the explicit Euler method and stored in the variables _k_v

and _k_u . These variables allow to estimate the value of v and
u by v + dt/2 * _k_v and u + dt/2 * _k_u , respectively. The
equations are againmanipulated, by replacing all occurrences of v

and u by their estimates at t+dt/2 and finding the corresponding
increment using the explicit Euler method. This method has a
much smaller numerical error and is more stable than the explicit
or implicit methods, but requires more computations during the
simulation, as the gradient is evaluated twice.

3.4.5. Event-driven Integration
This method is only available for spiking synapses, if the ODEs
are linear (which is the case for the online STDP rule). For this
method, the equations are not evaluated at each time step, but
only when a pre- or post-synaptic spike occurs for a synapse.
The new value of the variables is then computed exactly, using
the time elapsed since the last event. Event-driven integration is
not yet available for neural equations, as it requires to predict the
occurrence of the next spike. Future versions of ANNarchy will
address this mechanism. However, it may only speed simulations
up if the network is small and does not generate too many spikes
per step (Brette et al., 2007; Morrison et al., 2007).

3.5. OpenMP and CUDA Code Generation
Once the structure of network is known and all equations have
been analyzed, the C++code corresponding to the simulation
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can be generated depending on the desired parallel framework.
Each simulation step described in Section 3.2 leads to the
generation of a code portion for the corresponding populations
and projections which is then integrated into themain simulation
code. Figure 6 shows an example of a code portion for the update
of the neural variables of a population pop0 whose 1000 neurons
are defined by the neuron model described on Figure 6A. It
defines a global parameter tau and the firing rate r is defined
by the ODE tau * dr/dt = sum(exc) - r , limited to positive
values with the flag min=0.0 . The OpenMP implementation on
Figure 6B is in this case simple: the code snippet corresponding
to the ODE (here using the explicit Euler method) is integrated
into a for-loop over the 1000 neurons, where the value of each
element in the corresponding vector is updated sequentially.
The parallel execution of this loop over the available cores is
ensured through the addition of an OpenMP #pragma statement.
The complete code is pasted in a standard C++file called
ANNarchy.cpp and compiled using g++ on Linux or clang++ on
MacOS X.

The code generated for the same population in the CUDA
framework is more complex, as shown on Figure 6C. The
instructions executed on the GPU have to be compiled with the
NVIDIA compiler nvcc , so the code is generated in a special
file called ANNarchy.cu . CUDA code generally consists of two
sections: one is intended to run on the CPU (host code) while the
other (flagged with the keywords __global__ or __device__ )
will be executed on the GPU (device code). At the beginning of
the simulation, the vectors holding population and projection

data are transferred to the GPU using the CUDA method
cudaMemcpy() . The CUDA object will work on these copies
during the whole simulation and they will be transfered back to
the host at the end, allowing the Python script to analyze the
results. An exception is during the recording of variables: the
arrays to be recorded are transferred to the host at each time step,
as the amount of memory is usually limited on GPUs.

Figure 6C shows the corresponding host and device code
portions: the host code simply calls the device method with a
copy of the necessary data. The device code updates the passed
variables in parallel according to the desired numerical method.
The same mechanism is used for all steps of the simulation.
The weighted sum of inputs is for example executed in parallel
over blocks of post-synaptic neurons with OpenMP. In contrast,
parallel reduction is used in the CUDA implementation, as it
leads to better performance (Dinkelbach et al., 2012). The main
advantage of this code generation approach is that only the
required steps are generated: spike-only mechanisms are skipped
for rate-coded networks, as well as mechanisms for synaptic
delays or structural plasticity if the network does not define them.
This allows to minimize the code overhead and improves the
readability of the generated code.

4. Benchmarks

We here report the parallel performance of the neural simulator
but do not attempt to study it in all details. It is planned to issue
future releases of ANNarchy, most improvements concerning

FIGURE 6 | Code generated for a single population pop0 of 1000

identical neurons. (A) Neuron model used for code generation: a

global parameter tau and a local variable r following a linear ODE and

limited to positive values. (B) Code generated for the OpenMP

framework. The code is pasted into the main C++ code

ANNarchy.cpp and called at each step. It iterates over the 1000

neurons of the population and updates their firing rate depending on the

corresponding code snippet. It operates directly on the data contained

in the structure pop0 . A simple #pragma statement allows parallel

processing over the available threads. (C) Code generated for the CUDA

framework. The code is pasted into the specific ANNarchy.cu file. A

copy of the vectors _sum_exc and r (prefixed by gpu ) is sent to the

device (GPU) through the call to cuPop0_step by the host (CPU). The

code inside cuPop0_step is executed in parallel on the device for the

1000 neurons and updates the array corresponding to r . This copy of

r is transfered back to the CPU at the end of the simulation block for

analysis in Python. Note that the parser can be configured to not

generate the struct prefixes as for the OpenMP backend.
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the parallel performance. Nevertheless, we want to highlight that
code generation already allows to obtain a parallel performance
comparable to most specialized simulators. The OpenMP tests
are performed on a Linux machine with 2 Intel XEON X5675 at 3
GHz (12 physical cores in total, with hyperthreading disabled)
and 12 GB RAM. The CUDA tests are performed on a Linux
machine with 2 Intel XEON E5-2650 at 2.6 GHz, 128 GB RAM
and a NVIDIA Tesla K20m graphical card. The simulation times
are measured and averaged over 10 different trials with the same
initial conditions (standard deviations are omitted as they are
negligible in all cases). All scripts used in this section are provided
in the Supplementary Material.

4.1. Rate-coded Benchmark
To test the parallel performance of rate-coded networks, we used
a simple network of two populations composed of N = 1000
(resp. 4000) neuron each, connected with a all-to-all projection
representing 1 (resp. 16) million connections. Each neuron is
a simple leaky-integrator of excitatory inputs with a firing rate
defined by the ODE tau * dr/dt + r = sum(exc) , tau being
a global parameter of the population. Unlike spiking networks,
the simulation time of a rate-coded network does not depend
on the activity in the network and the summation of inputs
for all-to-all connectivity patterns hugely overcomes the update
of neural variables (Dinkelbach et al., 2012), so such a simple
network is sufficient to exhibit the parallel performance of the
simulation. As outlined in the introduction, we are not aware of
parallel simulators of rate-coded networks which could simply
implement this network, so we only present in Figure 7 the
speed-up ratio of the simulation time when using 1–12 threads
with OpenMP or when using CUDA as the simulation backend.
The single-threaded implementation is performed without the
OpenMP primitives, so it avoids the small sequential overhead
of OpenMP. The CUDA implementation uses the default
configuration used by ANNarchy (32 threads for the neural
variables updates, 192 threads for the weighted sums), but this
can be changed by the user.

The network with 1000 neurons in each population shows
a fairly efficient scaling behavior, while the network with 4000
neurons quickly saturates to a speed-up of approximately 2.9.
This can be explained by the fact that the connectivitymatrix with
16 million synapses (each connection weight being represented
by a double floating-point value) cannot fit into the cache, so
we have a memory-bound problem where memory transfers
between the RAM and the processor limit the efficiency of
the parallel implementation on shared-memory systems. This
limitation is well-known for this kind of operation, especially
because of the LIL structure used for the connectivity matrix.
We chose this structure as it allows easier modification through
structural plasticity mechanisms and internal tests showed that
a CSR structure does not improve much the performance. We
will investigate further the influence of data structures on parallel
performance. The main operation performed here is a matrix-
vector multiplication. The strategy to efficiently parallelize this
operation depends on the sparseness of the connectivity matrix.
Depending on this type, there are multiple methods available,
including single-instruction-multiple-data operations (SIMD),

FIGURE 7 | Speedup ratio obtained by ANNarchy for a fully connected

rate-coded network composed of two populations of 1000 (resp. 4000)

neurons each. The speedup ratio is defined by the ratio between the

execution time (measured for a simulation of 1 s) of the single-threaded

implementation and the one measured when using T threads. The

single-threaded implementation does not use OpenMP nor CUDA primitives.

For the OpenMP implementation, the number of threads is varied between 2

and 12. For the CUDA implementation, the default configuration of ANNarchy

(32 threads for the neural variables updates, 192 threads for the weighted

sums) is used. The CUDA implementation is run on a different machine for

technical reasons, so the single-threaded baseline measured on this machine

differs from the one used for OpenMP. Nevertheless, only the scaling ratio is

interesting here, not the absolute execution times. The black line denotes the

ideal linear scaling, the blue line the scaling of the network with 1000 neurons,

the green one the scaling for 4000 neurons. With OpenMP, the scaling for

1000 neurons is slightly sub-optimal, while the one for 4000 neurons saturates

quickly at a ratio of 2.9. The situation is reversed with CUDA: the network with

1000 neurons only achieves a speedup ratio of 3.8, while the network with

4000 neurons achieves a ratio of 7.15.

cache blocking, loop unrolling, prefetching and autotuning
(Williams et al., 2007; Kelefouras et al., 2015). Thanks to the
code generation approach used in ANNarchy, we will be able in
future versions to implement these improvements depending on
the known connectivity before compilation.

The situation is reversed for the CUDA implementation:
the network with 1000 neurons is speeded up by a factor 3.8,
while the network with 4000 neurons obtains a speedup of
7.15, more than three times the maximal speedup obtained with
OpenMP. This confirms our previous work showing that rate-
coded networks with a relatively small number of connections
might benefit more from a CPU-based implementation, while
networks with many connections should be run on a GPU
(Dinkelbach et al., 2012).

4.2. Spiking Benchmark
For spiking networks, we compare the parallel performance
of ANNarchy with other neural simulators on the COBA
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benchmark proposed in Brette et al. (2007) and based on the
model of Vogels and Abbott (2005). The network is composed
of 4000 integrate-and-fire neurons (3200 excitatory and 800
inhibitory) using exponentially-decreasing conductance-based
synapses:

C ·
dv(t)

dt
= gL · (El − v(t))+ ge(t) · (Ee − v(t)) (15)

+gi(t) · (Ei − v(t))+ I

τe ·
dge(t)

dt
= −ge(t)

τi ·
dgi(t)

dt
= −gi(t)

All neurons are randomly connected with a probability of
0.02. We implemented this benchmark on ANNarchy (version
4.4.0), Brian (version 1.4.1), Brian 2 (version 2.0b3), NEST
(with Python bindings, version 2.4.2), and Auryn (version
0.4.1). As noted in Zenke and Gerstner (2014), NEST uses by
default the precise but very expensive Runge-Kutta-Fehlberg
4(5) (RK45) numerical method, while Brian and Auryn use
the faster explicit Euler method. We therefore also applied the
patch provided by Zenke and Gerstner (2014) to force NEST to
use the Euler method (noted NEST-Euler as opposed to NEST-
RK45). The Auryn simulator was modified to use synaptic delays
of 0.1 ms. The code for Brian 2 uses the cpp_standalone

mode to generate efficient C++ code and OpenMP parallel
processing. All simulations were run using the same parameters,
random number generator seeds (for the initial values of the
membrane potential) and connectivity matrix (generated as a
Scipy sparse matrix and loaded into the different simulators).
The ANNarchy and Brian implementations produced exactly
the same spiking patterns, while the other simulators showed
only minor deviations. The time needed for 10 s of simulation
(excluding building time) was measured using the Python
time module, except for Auryn where MPI timer routines
were used.

The results are shown on Figure 8. In agreement with
the results of Zenke and Gerstner (2014), the default NEST
implementation with RK45 is roughly ten times slower than the
modified NEST version with explicit Euler, but both have a very
good scaling behavior. In the single-threaded version, Brian 2
is much faster than Brian and comparable to ANNarchy, but
its scaling behavior is not as optimal as other simulators. It
should be noted that Brian 2 is still in development, so this result
is only preliminary. Auryn is almost one order of magnitude
faster than the other simulators and with an satisfying scaling
behavior (although the number of MPI processes must be a
multiple of 2). The single-threaded implementation of ANNarchy
is in comparison fairly efficient, but the scaling properties
could be further improved. This is mostly due to the spike
propagation mechanism (increasing post-synaptic conductances
when a spike is emitted), which scales poorly in comparison to
the neural variable updates. Future work will investigate different
implementations of this mechanism.

FIGURE 8 | Comparison of the simulation times of different

simulators depending on the number of threads on a

shared-memory system. The parallel performance of the simulators

Brian (version 1.4.1), Brian 2 (version 2.0b3), NEST (with Python

bindings, version 2.4.2), Auryn (version 0.4.1), and ANNarchy (version

4.4.0) are investigated up to 12 threads. Two versions of NEST are

used: one using the Runge-Kutta-Fehlberg 4(5) method (noted

NEST-RK45), and a patched version using the explicit Euler method

(NEST-Euler). The simulation times are normalized to show the real-time

ratio: a normalized time of 1 means that simulating the network for 1 s

takes exactly 1 s of computer time (simulations are run for 10 s). Both

axes use a logarithmic scale. Brian only allows single-threaded

simulations. Brian 2, NEST and ANNarchy use OpenMP, while Auryn

uses MPI (openMPI 1.4.3). Auryn only allows a number of processes

which is a multiple of 2. The single-threaded version of ANNarchy

compares well to other neural simulators, but its scaling properties are

not optimal compared to NEST.

5. Discussion

We have described the core principles of the neural simulator
ANNarchy. It provides a high-level interface in Python similar
to PyNN to facilitate the creation of rate-coded, spike-coded
or hybrid neural networks. An important set of neuron and
synapse models can be implemented with an equation-oriented
syntax close to the one proposed by Brian. These definitions
are used to generate an entire C++library optimized for the
underlying parallel framework (OpenMP for shared memory
systems, CUDA for GPU cards). Different numerical methods
are available for solving the possible ODEs. Code generation
allows complete control over data structures and computational
methods, which leads to the execution of fine-tuned and simple
code. It allows to obtain a parallel performance comparable to
specialized simulators.

ANNarchy brings the flexibility of the Brian interface to rate-
coded networks, while being compatible with state-of-the-art
spiking simulators. Although several features and concepts for
spiking networks are comparable to other simulators (especially
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Brian 2, Stimberg et al., 2014), ANNarchy also provides novel
features to the community. Structural plasticity can be easily
implemented through simple synapse-specific rules. Any neural
or synaptic variable can be easily recorded during the simulation.
The network can be easily interfaced to external C/C++libraries
through the Cython bindings, so images or video streams can
efficiently be fed to the network, or neural activity read to control
robots in real-time. Automatic reporting allows to generate
complete reports in LATEX about the current network model,
including the network structure, the equations used for the
neurons and synapses, as well as the different parameters used.
Brian 2 provides a similar feature as it is also based on Sympy,
but only for individual equations. Some features are implemented
only for rate-coded networks (such as convolution or pooling
operations which do not make much sense for spiking networks),
but the hybrid ability of ANNarchy allows for example to
integrate convoluted rate-coded networks for vision with spiking
cognitive models.

The chosen equation-oriented approach is very powerful,
but has some limitations, some of which are already listed in
Stimberg et al. (2014). The number of explicit neural states
is limited to two for spiking neurons (active or refractory)
and only one for rate-coded ones. However, the syntax allows
the use of conditional statements which can modify entirely
the properties of a neuron, mimicking additional states. The
equation-oriented syntax is also limited in its current form to
the description of point-neurons, neglecting the effects of the
neurons’ morphology on their properties. Such neurons would
require the use of another simulator such as NEURON or
GENESIS.

As Brian 2 and ANNarchy are based on the principles
stated in Stimberg et al. (2014), one should highlight the main
differences between the two equation-oriented interfaces for
spiking networks. Brian 2 proposes a powerful mechanism
to incrementally build connection matrices by accessing the
underlying data structure, possibly through text-based rules. It
is also possible to dynamically add and remove populations and
projections between two simulations. This is currently impossible
with ANNarchy: all data structures are linked to the generated
library and are only indirectly accessible in Python. Synapse
definition in Brian 2 allows to modify any pre- or post-synaptic
neural variable. Because of the way the code is generated,
ANNarchy only allows the synapse to modify the post-synaptic
conductance in addition to synaptic variables. Brian 2 allows to
solve stochastic differential equations (SDE), while ANNarchy is
limited for now to ODEs: one can only use random variables
inside an ODE to simulate for example intracellular noise, but
this is not a stochastic process. Brian 2 allows a finer control on
the evolution of neural variables during the refractory period,
while ANNarchy freezes all variables during this period except
for the conductances. SDEs and control over variables during
the refractory period will be progressively introduced in future
versions. On the other hand, ANNarchy proposes a solution to
structural plasticity and hetero-synaptic plasticity (through the
possible use of global post-synaptic variables in a projection)
which could be integrated in Brian 2. It also provides additional
control over the evolution of variables, such as their initial value

and the minimal or maximal value they can take over the course
of a simulation.

ANNarchy will be further maintained and new features
will be integrated in future releases. Learning in rate-coded
networks is focused on biologically-plausible rules where all
information is local to the synapse, which currently rules out
methods such as backpropagation. Synaptic delays are currently
only implemented between the pre-synaptic neuron and the
synapse, while some plasticity models rely on an additional
delay between the synapse and the soma of the post-synaptic
neuron. Exact event-based integration of neural dynamics needs
to be implemented (Morrison et al., 2007), as it allows to
simulate faster low-firing networks of linear neurons. Additional
numerical methods (such as Runge-Kutta of order 4) will
be progressively introduced. Computations are limited to an
equidistant time grid, as it is the easiest method for rate-coded
networks. Some networksmay nevertheless benefit from adaptive
time steps, or of the use of different clocks in different parts of
the model. This may be particularly useful for hybrid networks,
as rate-coded networks often behave well with integration steps
of 1 ms, while some spiking networks require at least 0.1 ms.
Finally, as the chosen interface is very close to PyNN (Davison
et al., 2008), we will implement a fully compatible interface so
that ANNarchy can be used as an alternative simulation backend
using the available standard models.

As the interface is already stable, there is room for
improvement regarding the parallel performance. OnCPU-based
sharedmemory systems, the OpenMP implementation is efficient
for rate-coded networks (in the limit of memory bandwidth),
but the spike propagation mechanism does not scale linearly yet,
introducing a strong sequential component to the simulation.
This issue will be investigated in future releases: based on our
experiments, simulators using array-based computations (Brian
2, ANNarchy and partially Auryn) tend to scale sub-optimally,
while NEST performs better. A possible reason for this difference
is linked to the object-oriented design of NEST: each thread
computes individual neurons, leading to a more cache-friendly
access to the variables, especially when using synaptic delays. In
contrast the array-based approach share neural and synaptic data
among several threads and quickly fill the cache. The opposite
effect seems to be true for the update of neural variables (Zenke
and Gerstner, 2014). Hybrid solutions between array-based and
object-oriented implementations might lead to a better parallel
performance for spiking networks.

Parallel computing on distributed memory systems is also
planned. The performance of NEST on such systems suggests
that this is an interesting solution for spiking networks, although
it has been shown that memory transfers might impair scaling
already for medium-scale spiking networks (Zenke and Gerstner,
2014). Communication costs might become a problem for rate-
coded networks, as firing rates must be exchanged at each
simulation step. However, if synaptic data is appropriately
distributed on each node, it may increase the total available
memory bandwidth, which is an important limiting factor. We
are currently investigating hybrid MPI/OpenMP solutions which
may minimize the communication costs through a structural
analysis of the network’s topology.
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The generation of CUDA code for simulation on GPU
platforms is still experimental and currently only available
for rate-coded networks. One major issue is the choice of
the correct configuration depending on the network, such as
the number of threads per operation (the optimal number
of threads for the summation of inputs is different from
the one for the update of neural or synaptic variables).
ANNarchy currently proposes a default configuration which can
be overwritten by the user, but we will investigate solutions using
auto-tuning of the simulation parameters (Dinkelbach et al.,
2012).
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