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Abstract: 

We studied the activity of the fluorescently labeled membrane transporter MalGFK2, which transports 

maltose at the expense of ATP hydrolysis. We used a commercially available Malachite Green assay 

(SensoLyte MG Phosphate Assay Kit, Anaspec) to quantify the liberated phosphate upon ATP 

hydrolysis. However, strong variations in phosphate concentration were measured when using the 

supplier’s handling protocol. We optimized the protocol, taking into account the effects mediated by 

glycerol, SDS and fluorescence label in the sample. As a result we obtained highly reproducible 

phosphate concentration values under conditions optimal for solubilized membrane proteins. 

 

Key words: inorganic phosphate detection, malachite green, integral membrane proteins, enzymatic 

ATP hydrolysis, ABC transporter, fluorescent reporter groups 
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Advanced fluorescence based methods are widely used to obtain information about structure, function 

and dynamics of biological macromolecules. When endogeneous fluorophores are not present, the 

biomolecule of interest can be covalently labeled with organic fluorescent dyes [1-4]. A prerequisite to 

use fluorescently labeled biomolecules in these studies is that the label does not interfere with the 

biological function of the molecule. Colorimetric assays are often utilized to test the activity of the 

biomolecule, such as colorimetric phosphate assays for enzymatic ATP hydrolysis [e.g. 5,6], and 

possible interference of the attached fluorescence reporter group with the color reaction has to be 

considered. Moreover, in most cases the available protocols are not optimally suited for solubilized 

proteins. Glycerol and SDS, used for stabilizing the solubilized protein and to quench enzymatic 

activity before adding the color reagent, respectively, are known to affect the color reaction [5, 7].  

 

In this paper we describe a variation to a Malachite Green assay that introduces advantages for 

investigating solubilized membrane proteins, using the maltose/maltodextrin ABC-transporter MalGFK2 

as an example. The maltose transporter is a multimeric complex that consists of two transmembrane 

domains (MalG and MalK), and a cytoplasmic nucleotide binding domain dimer (MalK2) that binds and 

hydrolyzes ATP and powers the transport. To study the dynamics of MalGFK2 and its interaction with 

the maltose binding protein MalE [8], we labeled the periplasmic side of MalF (in position 177) and 

MalE in position 13 with the fluorescent dye fluorescein. To achieve covalent binding we used the 

reactive thiol group of cysteine residues introduced at the desired amino acid position by site-directed 

mutagenesis [9] and the iodoacteamido-derivative of fluorescein (IAF) [10,11]. Briefly, 400µM of IAF 

was reacted with 10µM of the respective cysteine variant of MalGFK2 or MalE in 20%glycerol, 50mM 

Tris–HCl (pH8.0), 0.01% dodecyl maltoside (DDM), 40µM DTT at room temperature for 1 h. A labeling 

stoichiometry of about 1:1 was obtained.  

Since the MalK subunits power the transport, functional activity of the ABC-transporter is determined 

by the ability of MalK to hydrolyze ATP under transport conditions, i.e. in the presence of maltose and 

MalE [9,12]. Non-radioactive colorimetric methods are common to determine the concentration of 

liberated inorganic phosphate upon ATP hydrolysis, such as the classical molybdate method [5] or the 

complex formation of phosphomolybdic heteropolyacid with the basic dye malachite green [6]. A 

disadvantage of the molybdate method is that the reagent containing ascorbic acid must be prepared 

freshly at the time of use and more than one pipetting step is required for the color reaction [5]. A 

known drawback of this method is the presence of SDS and glycerol in the sample [5]. SDS only from 
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certain companies and purity can be used, as other SDS products lead to blue color of the solution 

interfering with the phosphate-based color development [5]. Glycerol was shown to decrease the 

phosphate-based absorbance by 67% when using 20% glycerol [5]. The advantage of the malachite 

green method is that only one pipetting step is required and the coloring reagent stock can be stored 

at room temperature [6]. The stable malachite green (MG) reagent is also commercially available from 

Anaspec (SensoLyte MG Phosphate Assay Kit). According to the suppliers’ protocol, 20µl MG 

reagent were added to 80µl of the test sample and well mixed for 5-10 minutes at room temperature. 

Color will develop in 10-40 minutes and absorbance at 600-660nm can be measured to calculate 

phosphate concentration.  When using this reagent to test the activity of the solubilized transporter 

sample, large variations in phosphate concentration (with a coefficient of variation of about 65%) were 

measured under conditions optimal for the solubilized membrane protein (0.01% DDM, 20% glycerol, 

50mM Tris pH 8, SDS to quench ATP hydrolysis).   

 

In the following we describe the modifications introduced in the protocol. Fig. 1A shows the absorption 

spectrum of the fluorescein labeled maltose transporter in the MalF subunit (MalF(T177C-AF)) with the 

absorbance band of fluorescein at around 500nm. The absorbance band of the malachite green 

phosphate complex is relative broad with an absorbance maximum at around 650nm (Fig. 1B). 

Addition of SDS to the reagent mixture yields a relatively narrow absorbance band with a peak 

centered at 620nm (Fig. 1B), directly within the recommended wavelength window for color detection 

between 600-660nm. Thus, a measurement within this wavelength region suffers from a large 

background absorbance and consequently yields a higher variability in the determined phosphate 

concentrations or was found to make phosphate analysis impossible [7]. This SDS complex 

absorbance band, however, is sufficiently blue shifted compared to the malachite green phosphate 

complex absorbance (Fig. 1B). Thus, using a detection wavelength of 700 nm, the background 

absorbance due to SDS is negligible and phosphate concentration can be determined with high 

precision (SEM<1%).  

When 20% glycerol is present in the reaction mixture, we found a delay in the kinetics of color 

development and maximum absorbance is reached after 200 min (Fig. 1C). Using a 5-fold dilution to 

4% glycerol, color development is complete after 60 min (Fig. 1C). Since a correlation between 

ammonium molybdate concentration and color development kinetics was documented [13], we added 

additional ammonium molybdate (2%) to the reaction mixture containing 4% glycerol to speed up color 
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development (Fig. 1C). The presence of additional ammonium molybdate accelerated the kinetics 

sufficiently (Fig. 1C) and reproducible absorbance values can be measured 20 min after addition of the 

coloring reagent. The accuracy of the determined phosphate concentrations is demonstrated by the 

calibration curve obtained in the presence of SDS and glycerol (Fig. 1B inset and D). These calibration 

curves are highly reproducible, with a coefficient of variation of about 4% (Fig. 1D), even when the 

measurements were several weeks apart (Fig. 1D inset). 

 

Fig. 2A shows control measurements of ABC transporter activity. Since the functional activity of the 

ABC transporter is determined by the ability of the MalK subunits to hydrolyze ATP under transport 

conditions, i.e. in the presence of maltose and MalE, the basal activity of MalK (w/o maltose and MalE) 

serves as a background value. Possible artifacts leading to false positive results in the maltose 

transporter activity assay are hydrolysis of organic phosphate in acidic environment as present in the 

MG reagent [6], ATP hydrolysis in the presence of MalE or its fluorescently labeled variants, and color 

development in the presence of the liberated fluorescent dye fluorescein under acidic conditions. This 

was tested and the respective control measurements yield absorbance values hardly above the blank 

measurement, except for hydrolysis of ATP under acid conditions and ATP hydrolysis in the presence 

of wild type MalE with slightly elevated values (Fig. 2A). These values are, however, well below the 

values of basal transporter ATPase activity with A700-values of about 0.2OD.  As shown in Fig. 2B the 

basal ATP hydrolysis activity of the transporter is minor compared to the value under transport 

conditions, i.e. upon addition of MalE and maltose, in agreement with published data [9]. An increase 

in ATP hydrolysis activity under transport condition was also observed for the fluorescently labeled 

variants MalF(T177C-AF)GK2(C40S) and MalE(G13C-AF). The corresponding kinetics of the 

enzymatic reaction are shown in Fig. 2C and D. For both fluorescently labeled proteins we observed a 

2-3 fold increase in activity over the basal value, indicating that fluorescence labeling does not 

interfere with ABC transporter function. 

 

In summary, our experiments show that two modifications in a commercially available malachite green 

assay overcome the drawbacks of the presence of SDS and glycerol in the sample to be tested. The 

detection wavelength of 700nm accounts for the interference with SDS-malachite green complex 

absorbance and the addition of higher concentrations of ammonium molybdate accelerate the delayed 

kinetics of color development in the presence of glycerol. Under these conditions highly reproducible 
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values for the concentration of phosphate can be obtained for membrane protein samples stabilized in 

glycerol and by using SDS to quench ATPase activity. 
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Figure legends 

 

Figure 1 

A) Absorbance spectrum of MalF(T177C-AF)GK2(C40S) in 50 mM Tris pH 8.0, 20% Glycerin, 

0.01%DDM, 0.1mM PMSF, 20°C. Thr177 in MalF is exchanged to cysteine to allow fluorescence 

labeling with IAF. Cys40 of MalK is exchanged to serine to avoid unspecific labeling. The absorbance 

peak of fluorescein is indicated. 

B) Absorbance spectrum of 0.3% SDS (- -) after 3 minutes incubation and absorbance spectra of 

phosphate standard solution (H2PO4-buffer, ) at different Pi concentrations (0, 0.78, 1.56, 3.12, 6.25, 

12.5, 25, and 50µM) after 20 minutes incubation in the presence of MG reagent. Inset: phosphate 

standard solution at different concentrations after 20 minutes incubation in the presence of MG 

reagent, additional 2% ammonium molybdate, 4% glycerol, 0.4% SDS, 0.002% DDM, 0.02mM PMSF, 

10mM Tris pH 8.0. 

C) Kinetics of color development measured at 700 nm with 6.25µM phosphate buffer in the presence 

of MG reagent and a) additional 2% ammonium molybdate, 4% glycerol, and b) 4% glycerol. 

Absorbance values were measured at 650nm for c) with a phosphate concentration of 12.5µM in 20% 

glycerol. The maximum absorbance of c) was normalized to the values obtained in a) and b).  

D) Calibration curves (see text). Inset: Overlay of two calibration curves measured several weeks 

apart. 
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Figure 2 

A) Control measurements of malachite green color development at 700nm and using additional 2% 

ammonium molybdate. The samples were incubated for 5 min at 37 °C prior to colorimetric reaction 

and analysis. Samples a)-c) are in the presence of 0.4% SDS, 10mM Tris pH 8.0, 4% glycerol, 0.002% 

DDM, 0.02mM PMSF. Samples d)-h) are in the presence of 1.92mM ATP, 9.6mM MgCl2, 10µM 

maltose, 0.4% SDS, 10 mM Tris pH 8.0, 4% glycerol, 0.002% DDM, 0.02mM PMSF.   

a)
Blank value, 

b)
9.5µM fluorescein (IAF), 

c)
1.92mM ATP and 9.6mM MgCl2, 

d)
0.416mg/ml MalE, 

e)
 

0.416mg/ml MalE(G13C), 
f)
0.416 mg/ml MalE(G13C-AF),  

g)
0.013mg/ml MalFGK2(C40S), 

h)
 

0.013mg/ml MalF(T177C-AF)GK2. 

B) Basal and transport enzymatic activity of MalFGK2(C40S),MalFGK2(C40S) with MalE(G13C-AF) 

and MalF(T177C-AF)GK2(C40S). Absorbance values of malachite green color development at 700 nm 

are given. ATPase reaction conditions in 60µl volume (1.92mM ATP, 9.62mM MgCl2, 50mM Tris pH 

8.0, 20% glycerol, 0.01% DDM, 0.1mM PMSF):  Basal - 0.013mg/ml transporter; Transport - 

0.013mg/ml transporter, 0.416mg/ml MalE, and 10µM maltose. ATPase activity was quenched by 

addition of 10µl 10% SDS. The colorimetric MG assay was performed with additional 2% ammonium 

molybdate after 5-fold sample dilution in H2O resulting in a final concentration of 4% glycerol and 0.4% 

SDS. The samples were assayed in duplicate. SD is given. 

C) Basal and transport enzymatic activity of MalF(T177C-AF)GK2(C40S). The kinetics of the 

normalized Pi concentrations were fitted with Pimax-Pimax*exp(-k*t).   

D) Basal and transport enzymatic activity of MalE(G13C-AF).  
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