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1. Introduction

Life history characteristics are associated with growth, 
reproduction, and survivorship that can affect the life 
table of an organism, which were thought to be strongly 
influenced by natural selection (Fox et al., 2001; Roff, 
1992). Only populations with adaptive life history can 
survive, reproduce and evolve in an unstable environment 
(Stearns, 1992). Recently, there have been multiple 
ecological research about life history characteristics, 
which includes body size and growth pattern, sex ratio, 
age-specific survivorship (i.e., Galliard et al., 2005; 
Molinazuluaga et al., 2015; Wu et al., 2005; Zhao and 
Liu, 2014). 

Sex ratio is an important topic in population 
demographic studies (Caswell, 2001; Jirotkul, 1999; 
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Abstract   Phrynocephalus guinanensis has sexual dimorphism in abdominal coloration, but its ontogenetic 
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juveniles. Male-biased SSD in tail length and head width existed in adults rather than in hatchling or juvenile lizards. 
The growth rates in body dimensions were undistinguishable between the sexes during the age from hatchling to 
juvenile, but the growth rate in head length from juvenile to adult was significantly larger in males than females. Average 
growth rate of all morphological measurements from hatchling to juvenile were larger compared with corresponding 
measurements from juvenile to adult, but only being significant in tail length, head width, abdomen length in females 
and snout-vent length in males. We provided a case study to strengthen our understanding of the important life history 
traits on how a viviparous lizard population can survive and develop their morphology in cold climates.

Kvarnemo and Ahnesjo, 1996). Fluctuations in sex 
ratio are regulated (Pettersson et al., 2004), and mainly 
influenced by intrasexual competition and sex-specific 
mortality or emigration in a population (Cluttonbrock  
et al., 2002; Wolff et al., 2002). Sex-specific mortality 
is also likely to result from different predator preference 
on males or females (Johnston, 2011; Stuart-Fox  
et al., 2003). Males generally expend more energy in 
displaying and fighting during the breeding season, which 
leads to increased mortality due to injury and greater 
exposure to predation (Christe et al., 2006; Owensmith, 
1993). In addition, females likely invest more energy 
in reproduction than males which could lead to higher 
female mortality (Schwarzkopf and Shine, 1992).

Sexual dimorphism is frequently illustrated as sexual 
difference in body size, body shape and coloration 
(Bonnet et al., 1998; Parker, 1992; Pinto et al., 2005), 
and generally driven by sexual selection and natural 
selection (Cooper and Vitt, 1989; Ji et al., 1997). Sexual 
selection is generally determined by intensity of male-
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male competition and female mate choice (Anderson, 
1994), while natural selection is mainly associated with 
sex-specific growth rate, survivorship, life span, feeding 
divergence and different partitioning of energy for growth 
(Berry and Shine, 1980; Cooper and Vitt, 1989; Cox  
et al., 2006; Haenel and John-Alder, 2002; Johnston, 
2011; Powell and Russell, 1985; Stamps, 1993). Recently, 
SSD is viewed as a developmental process, and the 
proximate mechanisms of SSD have been determined 
in some lizards from an ontogenetic perspective (Cox 
et al., 2006; Cox et al., 2009; John-Alder et al., 2007; 
Johnston, 2011). The SSD is likely caused by different 
ecological conditions for males and females during 
the developmental process (Cox et al., 2009). Hence 
comparison of development pattern in both sexes is a 
critical necessary step to clarify the different pressures 
responsible for SSD.

The toad-headed lizard, Phrynocephalus guinanensis 
was named recently based on its morphological 
differences (Ji et al., 2009). This species is restricted to 
small areas of sand dunes in Guinan County, Qinghai 
Province (Jin et al., 2014), which is largely different 
to other Phrynocephalus species in China and middle 
Asian countries. It is sexually dimorphic in abdominal 
coloration and showed SSD in tail, head and limbs (Ji 
et al., 2009). Nonetheless, our knowledge on population 
ecology of the species is very lack (Jin et al., 2016; Zhang 
et al., 2017). This study conducted three years’ mark-
recapture investigation and studied the survivorship, sex 
ratio, growth rate and the ontogenetic development of 
SSD in P. guinanensis.

2. Materials and Methods

2.1. Data Collection   The study site is located on sand 
dunes (35.79° N, 101.04° E; datum = National Geodetic 
Coordinate System 1980; 3190 m above sea level) in 
Guinan County, Qinghai Province, China. The quadrat is 
about 200 m in length and 100 m in width, and covered 
all areas that active P. guinanensis were observed. The 
potential dispersion of the lizard is limited as the quadrat 
is a semi isolated area surrounded with mountainous 
slopes or river bank. In August 2014, we randomly 
collected active hatchling and juvenile lizards by hand 
during four days, and measured and numbered each 
captured individual with a unique toe-clip before release. 
We recaptured the active lizards by hand and released 
them after measurements were taken during four days in 
August 2015. We recaptured surviving lizards throughout 
the quadrat and all potential dispersing areas by hand and 

digging holes during four working days of August 2016. 
The hatchling, juveniles and adults could be distinguished 
easily based on their distinct non-overlappling range of 
body size, and the sex of hatchlings could be determined 
through the sex of corresponding recaptured juveniles or 
adults. The following measurements were made for each 
lizard: snout-vent length (SVL); tail length (TL, from 
the vent to the tail tip); head length (HL, from the snout 
to the posterior end of the skull); head width (HW, taken 
at the posterior end of mandible); forelimp length (FLL, 
humerus plus ulna); hindlimp length (HLL, femur plus 
tibia); abdomen length (AL, from the posterior base of the 
fore-limb to the anterior base of the hind-limb); abdomen 
width (AW, maximum width of abdomen); distance 
between axillae (DBA); distance between iliac crests 
(DBI). Newly-born lizards in the first year of growth, 
annotinous lizards in the second year, and mature lizards 
with two or more years of age are clearly different each 
other in body size, which were considered as hatchling, 
juvenile and adult lizards, respectively. Individuals with 
two or more years of age were considered to be mature 
as some female individuals could be pregnant after two 
years of growth. SSD was determined for each age, and 
all measurements on body sizes were compared between 
two sexes. 

2.2. Data analysis  Kolmogorov-Smirnov test and the 
Levene’s test were employed to test the variable normality 
and homogeneity. Analysis of variance (ANOVA) was 
used to test for differences in mean SVL between males 
and females of the same age, while body-length adjusted 
size differences were tested using analysis of covariance 
(ANCOVA, with SVL as a covariate). We used two-way 
ANOVA to compare the SVL between sexes and among 
ages, while two-way ANCOVA was used to compare 
other morphologies when SVL was controlled for.

For each age category, growth rate was calculated by 
the following function: (SVLt2–SVLt1)/(∆t), where SVLt2 
is the SVL at recapture, SVLt1 is the SVL at birth or last 
recapture, and ∆t is the time difference between birth and 
recaptures (mm/month as unit, May to September, not 
including hibernation). We tested for correlations between 
the growth rate and average SVL of the initial capture. If 
there was no significant correlation, ANOVA was used 
to examine the difference in growth rate between two 
sexes, otherwise ANCOVA was used (using mean SVL 
as the covariate). The same approach was used to test 
for intrasexual differences in growth rate between age 
categories.

The survivorship of a lizard was determined by 
the final capture time. If a lizard disappeared and was 
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not subsequently observed in all potential dispersed 
areas described above, it was treated as having died. 
The primary sex ratio was assumed to be 1:1, and the 
life tables for each sex were made up by survivorship, 
survival rate and life expectancy.

3. Results

A total of 100 hatchlings and 24 juveniles were marked 
in 2014; 16 juveniles (14 females, 2 males) and 10 adults 
(6 females, 4 males) with toe-clipping marking were 
recaptured in 2015; 10 adults (7 females, 3 males) were 
recaptured in 2016. In 2016, 105 individuals (79 females, 
26 males) were captured in total, comprising 69 adults 
(51 females, 18 males) and 36 juveniles (28 females, 8 
males). The growth rate of 29 lizards were successfully 
determined, including 14 females and 2 males from 
hatchling to juveniles, and 8 females and 5 males from 
juvenile to adult.

3.1. Survivorship and Sex Ratio   There was a 
considerable difference in survival rate between males 
and females. Males had a lower survival rate (6%) than 
females (14%) between hatchling and adult. The average 
sex ratio of males to females was 1:3 in this population, 
with 1:3.5 in juveniles and 1:2.8 in adults.

3.2. Sexual Size Dimorphism There was no significant 
difference of SVL between males and females for 
hatchlings (F1,21 = 0.173, P = 0.681), juveniles (F1,38 = 
1.807, P = 0.187) or adults (F1,18 = 0.016, P = 0.900) 
(Figure 1A). And, there was no age/sex interaction for 
SVL (F2,80 = 0.686, P = 0.507).

In hatchling lizards, the following measurements (see 
in Figure 1B–1J) were not different between sexes while 
SVL was controlled for (TL: F1,21 = 0.008, P = 0.928; HL: 
F1,21 = 0.839, P = 0.371; HW: F1,21 = 0.020, P = 0.888; 
FLL: F1,21= 0.015, P = 0.903; HLL: F1,21 = 0.010, P = 
0.992; AL: F1,21 = 0.700, P = 0.413; AW: F1,21 = 0.078, P = 
0.783; DBA: F1,21 = 0.133, P = 0.719; DBI: F1,21 = 0.015, 
P = 0.905). The same result was obtained for juvenile 
lizards (TL: F1,38 = 0.004, P = 0.952; HL: F1,38 = 0.632, 
P = 0.432; HW: F1,38 = 0.858, P = 0.360; FLL: F1,38 = 
0.242, P = 0.625; HLL: F1,38 = 0.386, P = 0.538; AL: F1,38 

= 0.344, P = 0.561; AW: F1,38 = 0.006, P = 0.939; DBA: 
F1,38 = 2.053, P = 0.160; DBI: F1,38 = 0.103, P = 0.750). 
In adult lizards, significant sexual difference was found 
in TL (F1,18 = 4.964, P = 0.040) and HW (F1,18 = 4.963, 
P = 0.045), but not in HL (F1,18 = 3.430, P = 0.081), FLL 
(F1,18 = 3.316, P = 0.086), HLL (F1,18 = 2.926, P = 0.105), 
AL (F1,18 = 0.043, P = 0.838), AW (F1,18 = 1.416, P = 

0.250), DBA (F1,18 = 0.236, P = 0.633) or DBI (F1,18 = 
3.153, P = 0.094). The influence of interaction between 
age and sex was significant to variation of TL (F2,80 = 
6.685, P = 0.002), HL (F2,80 = 5.240, P = 0.007) and HW 
(F2,80 = 4.339, P = 0.016) between each age, but not to the 
variation of FLL(F2,80 = 0.007, P = 0.993), HLL (F2,80 = 
0.615, P = 0.543), AL (F2,80 = 0.931, P = 0.399), AW (F2,80 
= 2.684, P = 0.075), DBA (F2,80 = 0.270, P = 0.764) and 
DBI (F2,80 = 0.593, P = 0.555).

3.3. Growth Rate The growth rate of SVL in the age 
group from hatchling to juvenile was significantly larger 
than that in the age group from juvenile to adult in males 
(t1,5 = 4.821, P = 0.005), but no significant difference was 
found in females between different age groups (F1,20 = 
2.272, P = 0.151). In each age group, the growth rate was 
not different between males and females (age group from 
hatchling to juvenile: t1,14 = –1.252, P = 0.231; age group 
from juvenile to adult: F1,11 = 0.721, P = 0.414) (Figure 
2A).

The growth rates of TL (F1,20 = 4.522, P = 0.0491), 
HW (F1,20 = 8.610, P = 0.010), AL (F1,20 = 9.282, P = 
0.008) and AW (F1,20 = 5.609, P = 0.030) in the age group 
from hatchling to juvenile were significant larger than the 
age group from juvenile to adult in females, although no 
difference was found in other measurements between age 
group (HL: F1,20 = 0.581, P = 0.457; FLL: F1,20 = 0.202, 
P = 0.659; HLL: F1,20 = 0.980, P = 0.337; DBA: F1,20 = 
0.368, P = 0.553; DBI: F1,20 = 1.296, P = 0.271). In males, 
there was no difference between two age groups (TL: F1,5 
= 0.962, P = 0.359; HL: F1,5 = 960, P = 0.356; HW: F1,5 = 
1.802, P = 0.216; FLL: F1,5 = 0.523, P = 0.490; HLL: F1,5 
= 2.362, P = 0.163; AL: F1,5 = 0.291, P = 0.606; AW: F1,5 
= 2.312, P = 0.167; DBA: F1,5 = 0.159, P = 0.702; DBI: 
F1,5 = 0.299, P = 0.600) (Figure 2B–2J).

During growth from hatchling to juvenile, the growth 
rates of all other measurements (except SVL) showed 
no differences between males and females (TL: F1,14 = 
3.276, P = 0.093; HL: F1,14 = 0.558, P = 0.467; HW: F1,14 
= 0.075, P = 0.788; FLL: F1,14 = 0.136, P = 0.718; HLL: 
F1,14 = 0.014, P = 0.906; AL: F1,14 = 0.089, P = 0.771; AW: 
(F1,14 = 0.747, P = 0.402; DBA: F1,14 = 2.610, P = 0.128; 
DBI: F1,14 = 0.636, P = 0.439). During the juvenile to 
adult growth period, the growth rate of HL in males was 
significant large than females (F1,11 = 7.490, P = 0.019), 
but other measurements showed no significant differences 
between both sexes (TL: F1,11 = 0.915, P = 0.359; HW: 
F1,11 = 3.939, P = 0.073; FLL: F1,11 = 1.665, P = 0.223; 
HLL: F1,11 = 0.744, P = 0.407; AL: F1,11 = 0.295, P = 
0.598; AW: F1,11 = 0.441, P = 0.520; DBA: F1,11 = 0.019, P 
= 0.894; DBI: F1,11 = 0.039, P = 0.847).
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Figure 1  Comparison of morphologies between sexes and among ages in toad-headed lizard P. guinanensis in Guinan County, Qinghai 
Province, China. The data are presented as means ± SE. P < 0.05 was considered as statistically significant (*P < 0.05).
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Figure 2  Growth rates of SVL and other proportional measurements of male and female P. guinanensis in Guinan County, Qinghai Province, 
China. The abbreviation in each graph represents that: SVL (snout-vent length); TL (tail length); HL (head length); HW (head width); FLL 
(forelimp length); HLL (hindlimp length); AL (abdomen length); AW (abdomen width); DBA (distance between axillae); DBI (distance 
between iliac crests). The data are presented as means ± SE. P < 0.05 was considered as statistically significant (*P < 0.05).
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4. Discussion

Our study concluded that the female-biased sexual ratio is 
correlated with a sex-specific survival rate. There was no 
SSD of SVL in any age group of P. guinanensis, except 
for adult male-biased SSD in head width and tail length 
which might be resulted from sexual selection. Male 
lizards had a very high mortality during the first year of 
life and relative low mortality in the second year, and 
female lizards had a relative low and stable mortality. 
The differential mortality between both sexes might 
be responsible for the female-biased sex ratio of this 
population. Males usually have larger home ranges than 
females and male-male conflict could force smaller male 
lizards to disperse (Qi et al., 2013; Stamps, 1993; Wang  
et al., 2004), which will lead to increased mortality of 
males due to injury and greater exposure to predation 
(Christe et al., 2006; Owensmith, 1993), while the 
locomotor costs of pregnancy in Phrynocephalus could 
potentially increase the injury of adult females (Lu et al., 
2015). 

While there is no significant SSD in SVL in P. 
guinanensis among age groups, the ontogenetic SSD of 
male-biased head size and tail length might result from 
male-male competition. Male-male competition and 
female mate choice likely favor males with large head and 
high bite force, to increase the advantages during male-
male conflict and strength female preference (Herrel et al., 
2010; Kaliontzopoulou et al., 2012). The tail in lizards was 
generally related to the speed and balance (Damme et al., 
1998; Herrel et al., 2001; Losos, 1990; Vanhooydonck  
et al., 2006), and maybe used for visual signalling during 
territory defending of Phrynocephalus (Qi et al., 2011). 
Lizards with long tails likely have advantages in territory 
defence and social status maintenance (Brecko et al., 
2008; Kaliontzopoulou et al., 2007). In addition, SSD in 
head width and tail length were revealed in adult lizards 
at the age ranged from juvenile to adult. Therefore, sexual 
selection should be preferred to be correlated with male 
biased SSD in head width and tail length. 

Alternatively, SSD in head size and tail length might be 
associated with other selection pressures, such as sexual 
specific growth rate. For example, sexual difference 
in growth pattern could give rise to male-biased SSD 
(Cox, 2006; Johnston, 2011). Individual growth rates 
are often related to food consumption, energetic cost of 
reproduction or reproductive behaviour (Cox, 2006; Cox 
et al., 2006; Cox and Calsbeek, 2010; Haenel and John-
Alder, 2002; Pearson et al., 2002). Different sexual trade-
offs between growth and reproduction could also give rise 

to SSD (Madsen and Shine, 1993; Zhao and Liu, 2014). 
Nevertheless, we did not find any sexual difference in 
growth rates of SVL among three different age groups 
of P. guinanensis, implying the less influences of sexual 
specific growth rate on SSD. 

The discovered quite low sexual survival rates 
from hatchlings to adults should remind researchers of 
expanding marked sample sizes (at least far more than 
100 marked hatchlings) in future recapture experiments 
on Phrynocephalus viviparity. The low sample size used 
into this study could not rule out the potential weakness 
of our statistics due to using a small number of recaptured 
individuals, such as the estimation of growth rate, survival 
rate etc. However, the intrinsic value of our general 
conclusion should far outweigh the above weakness.

In conclusion, our study detected individuals of a rare 
animal when its knowledge on life history characteristics 
associated with population survival and development 
is really unknown. The species has a female-biased 
sexual ratio associated with sexual specific mortality, 
but the underlying causes of higher male mortality 
remains unknown while males do have larger head sizes 
associated with male-male competition, future studies on 
sex-specific dispersal ability and predation pressure might 
help to explain this pattern.
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