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1.  Introduction

Forest skinks of the reproductively bimodal genus 
Sphenomorphus Fitzinger, 1843 occur in South-East Asia, 
Asia, Indochina and Central America (Linkem et al., 
2011). Of some 145 currently recognized Sphenomorphus 
species (Linkem et al., 2011), six (S. courcyanus, S. 

incognitus, S. indicus, S. maculatus, S. taiwanensis and S. 
tonkinensis) can be found in China, with S. taiwanensis 
endemic to Taiwan Province of the country (Huang, 
1999; Nguyen et al., 2011, 2012). Despite its wide 
geographic distribution, high species diversity and the 
fact that it is morphologically, zoogeographically and 
taxonomically well known, the ecology and biology of 
the genus Sphenomorphus remain poorly studied. Several 
investigators have studied sexual dimorphism and female 
reproduction but, to the best of our knowledge, they only 
reported descriptive data for five species (S. incognitus: 
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Huang, 2010; S. indicus: Huang 1996; Ji and Du, 2000; 
Ji et al., 2006; S. jagori: Auffenberg and Auffenberg, 
1989; S. maculates: Huang, 1999; S. taiwanensis: Huang, 
1997, 1998). Detailed data on female reproductive traits 
do not exist for all these species except for S. indicus (Ji 
and Du, 2000; Ji et al., 2006). For example, ten female 
S. incognitus (Huang, 2010), nine female S. taiwanensis 
(Huang, 1997) and a unknown number of female S. 
jagori (Auffenberg and Auffenberg, 1989) were measured 
for fecundity (clutch size), but in none of these species 
were egg mass and reproductive output (clutch mass) 
documented.

Sphenomorphus incognitus studied here ranges from 
Southern-Central China (Anhui, Fujian, Guangdong, 
Guangxi, Hainan, Hubei, Taiwan, Yunnan and Zhejiang) 
to North Vietnam (Huang, 1999; Lau, 2005; Nguyen et 
al., 2012; Tang and Huang, 2014; Chen et al., 2017). 
This medium sized (up to 107 mm snout-vent length, 
SVL), oviparous terrestrial skink shows a preference 
for stream habitats, forest edges and riverbeds (Huang, 
1999; Nguyen et al., 2012). The skink is morphologically 
similar to S. indicus, its viviparous congener, and this 
similarity contributes to the confusion about taxonomic 
identity, habitat use and geographic distribution of 
these two species (Chen et al., 2017). Previous studies 
presented very limited descriptive data for S. incognitus 
from mainland China (Huang, 1999), and a bit more 
detailed data for a population on Lanyu Island, Taiwan, 
China (Huang, 2010). From Huang’s (2010) study on S. 
incognitus from Lanyu Island we know the following. 
First, males are larger in terms of linear body size (SVL) 
and thus S. incognitus is among species that show male-
biased sexual size dimorphism (SSD). Second, females 
exhibit spring and summer vitellogenesis and lay eggs 
from March to July. Third, females lay 3–6 eggs per 
clutch, with clutch size being independent of female SVL. 
Here, we presented data for S. incognitus from South 
China. Based on morphological measurements taken 
for adults in the field and clutches laid in the laboratory, 
we studied sexual dimorphism in body size and shape, 
female reproduction and egg incubation. Our aims were: 
(1) to show sexual dimorphism in several morphological 
characters (body size, head size, head width, abdomen 
length, and fore- and hind-limb lengths) likely to be 
associated with reproductive success and performance; 
(2) to investigate the relationships among egg size (and 
thus hatchling size), clutch size and female size; and 
(3) to examine the effects of constant versus fluctuating 
temperatures on incubation length and hatchling 
morphology.

2. Materials and Methods

We collected 263 adult skinks (92 females and 171 
males) larger than 80 mm SVL in three consecutive years 
between 2013 and 2015 from Guangzhou, Wuzhishan 
and Zhaoqing in South China. Most of these skinks (65 
females and all males) were released at their point of 
capture following the collection of morphological data. 
Measurements taken for each skink with Mitutoyo digital 
calipers included SVL, abdomen length (AL, between the 
insertion points of the fore- and hind-limbs), head length 
(HL, from the snout to the anterior edge of tympanum) 
and head width (HW, the posterior end of the mandible) 
(Sun et al., 2012). Of the 263 adults, 123 (42 females and 
81 males) were also measured for fore-limb length (FLL, 
humerus plus ulna) and hind-limb length (HLL, femur 
plus tibia) (Ji et al., 2007).

We palpated all adult females in the field and 
transported 27 females with enlarged follicles to our 
laboratory in Nanjing, where they were individually 
housed in 540 × 400 × 320 mm3 plastic cages placed in 
a room inside which temperatures varied from 20 °C 
to 28 °C. All cages had a substrate consisting of moist 
soil (~150 mm depth) covered with cobblestones, grass 
and fallen leaves, and females were able to regulate 
body temperature using natural sunlight. Mealworms 
(Tenebrio molitor), house crickets (Achetus domesticus), 
cockroaches (Blaptica dubia) and water enriched with 
vitamin and minerals were provided or refreshed daily.

Females laid a single clutch of eggs between early May 
and mid-August. We checked the cages at least thrice 
daily for freshly laid eggs after the first female laid eggs, 
thereby collecting, weighing and measuring (for length 
and width) eggs always less than 6 h post-laying. Post-
oviposition females were weighed and measured for SVL. 
Of the 27 females, two were excluded from analyses 
because they laid unfertilized eggs or abnormal eggs 
with condensed yolk. We calculated relative clutch mass 
(RCM) by dividing clutch mass by the post-oviposition 
female mass (Shine, 1992). To account for the influence 
of variation in female size on fecundity, we calculated 
relative fecundity by using the residuals derived from 
the regression of clutch size on female SVL (Olsson and 
Shine, 1997).

We collected 142 fertilized egg, of which eight, 
each from one of eight clutches, were used to identify 
the Dufaure and Hubert’s (1961) stage of embryonic 
development at laying. The remaining eggs were 
individually placed into covered plastic jars (50 ml) with 
moist vermiculite at –12 kPa (Ji and Braña, 1999). All 
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incubating egg were 2/3 buried in the substrate, with the 
surface near the embryo exposed to air inside the jar. Eggs 
from the same clutch were assigned as equally as possible 
among five incubators (Binder, Germany): three set at 22, 
25 and 28 °C, respectively; the other two set at 25 ± 3 °C 
and 25 ± 5 °C, respectively. Thermal fluctuations were 
maintained at 12 h (+) and 12 h (–) and were confirmed 
with Tinytalk temperature loggers (Gemini Pty, Australia) 
placed inside jars. We rotated jars at 4-d intervals to 
minimize the influence of thermal gradients. Substrate 
water potential was adjusted at 4-d intervals by weighing 
jars. Incubation length was defined as the time between 
laying and pipping. Upon emergence, hatchlings were 
collected, weighed and measured for SVL, AL, HL and 
HW.

We used linear regression analysis to examine if the 
relationship between a selected pair of dependent and 
independent variables was significant. We calculated 
regression residuals of an examined morphological 
variable (AL, HL, HW, FLL, or HLL) against SVL, and 
then used one-way ANOVA to see if the variable differed 
between male and female adults. Data on egg size, 
incubation length and hatchling morphology from the 
same clutch were pooled to avoid pseudo-replication. We 
used G-test and one-way ANOVA to see if eggs incubated 
under different thermal regimes differed in hatching 
success, mean mass at laying and mean incubation length. 
We used one-way ANCOVA to test for slope homogeneity 
of regressions lines and to see if hatchlings from eggs 
assigned to different treatments differed morphologically 
after accounting for egg mass at laying. Prior to 
parametric analyses, all data were tested for normality 
using the Kolmogorov-Smirnov test, and for homogeneity 
of variances using Bartlett’s test. All statistical procedures 
were performed in Statistica 8.0 (StatSoft; Tulsa, OK, 
USA), and statistical significance was assumed at P < 
0.05. Values are presented as mean ± standard error (SE) 
and range.

3. Results and Discussion

3.1. Sexual dimorphism  The largest male and female 
were 110 mm and 108 mm SVL, respectively. Both values 
are greater than the maximal sizes ever reported for S. 
incognitus from mainland China (107 mm SVL; Huang, 
1999) and Taiwan, China (94 mm SVL; Huang, 2010). 
The mean SVL did not differ between male (97 ± 0.5 mm) 
and female (96 ± 0.7 mm) adults (ANOVA; F1, 261 = 0.45, 
P = 0.50; Figure 1), suggesting that S. incognitus from 
South China is sexually monomorphic in terms of adult 

body size (SVL). This pattern of SSD differs from male-
biased SSD reported for S. incognitus from Taiwan, China 
(Huang, 2010), and it also does not support the hypothesis 
that lizards on islands are more likely to exhibit male-
biased SSD (Hernández-Salinas et al., 2014). Much more 
adults were measured in this study (92 females and 171 
males) than in the earlier one (43 females and 45 males; 
Huang, 2010), thus allowing more accurate determination 
of SSD. 

The evolution and maintenance of a given pattern of 
SSD often result from sexual differences in reproductive 
success relating to adult body size (Cooper and Vitt, 1989; 
Hews, 1990; Mouton and Van Wyk, 1993; Reeve and 
Fairbairn, 2001; Cox et al., 2003). Within scincid lizards, 
selection through male contest competition is the key 
factor for male-biased SSD in Plestiodon chinensis (Lin 
and Ji, 2000), Plestiodon elegans (Du and Ji, 2001; Zhang 
and Ji, 2004) and Eutropis multifasciata (Ji et al., 2006), 
whereas selection on fecundity or reproductive output 
is the main cause for increased female size in S. indicus 
(Ji and Du, 2000), Scincella modesta and Scincella 
reevesii (Yang et al., 2012). Sexual size monomorphism 
(SSM) often occurs in species where these two selective 
forces cancel each other out and has been documented 
in a wide range of lizard taxa. In lizard species so far 
studied in China, SSM has been documented in Calotes 
versicolor (Ji et al., 2002), Eremias argus (Chen et al., 
2015), Eremias brenchleyi (Xu and Ji, 2003), Eremias 
multiocellata (Li et al., 2006), Japalura splendida 
(Lin, 2004), Phrynocephalus frontalis (Qu et al., 2011), 
Phrynocephalus grumgrzimailoi (Liu and Shi, 2009), 
Phrynocephalus guinanensis (Ji et al., 2009), Shinisaurus 
crocodilurus (He et al., 2011), Takydromus septentrionalis 
(Ji et al., 1998; Zhang and Ji, 2000) and Takydromus 
sexlineatus (Xu et al., 2014).

The rates at which HL (Figure 2a) and HW (Figure 
2b) increased with SVL were greater in adult males 
(ANCOVA for slope homogeneity, both P < 0.001), 
and the rates at which AL (Figure 2c), FLL (Figure 2d) 
and HLL (Figure 2e) increased with SVL did not differ 
significantly between the sexes (ANCOVA for slope 
homogeneity; all P > 0.09). The mean values of residuals 
from the regressions of HL, HW, FLL and HLL on SVL 
were greater in adult males (ANOVA; all P < 0.0001), 
whereas the mean value of residuals from the regressions 
of AL (ANOVA; F1, 261 = 64.20, P < 0.0001) on SVL 
was greater in adult females. The greater relative head 
size in males and the greater relative abdomen size in 
females are the rule in nearly all lizard lineages (Olsson 
et al., 2002; Cox et al., 2003; Kratochvíl et al., 2003; 
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Pincheira-Donoso and Tregenza, 2011; Sun et al., 2012; 
see also Huang, 1996). It is therefore not surprising 
that S. incognitus shares these features. Head size (both 
length and width) and abdomen length are sexually 
dimorphic largely because these traits are directly linked 
to the reproductive role of each sex (Bulté et al., 2008), 
although in some species the greater relative head size 
in males may also have a secondary role in reducing 
intersexual resource competition by amplifying food 
niche divergence between the sexes (Braña, 1996; Lin and 
Ji, 2000; Zhang and Ji, 2000, 2004). Sexual dimorphism 
in appendage (limb) length has been poorly known. Like 
Phrynocephalus przewalskii (Zhao and Liu, 2014) and 
S. incognitus from Taiwan, China (Huang, 2010), S. 
incognitus from South China shows male-biased sexual 
dimorphism in appendage length.

3.2. Female reproductive characteristics  Table 1 
shows female reproductive traits of S. incognitus from 
South China. Females laid a single clutch of 3–10 eggs 
per breeding season from early May to mid-August, with 
the egg-laying season being about three months longer 
than that (from March to July) reported for S. incognitus 
from Taiwan, China (Huang, 2010). Clutch size was 
positively related to female SVL (r2 = 0.18, F1,23 = 5.09, 
P = 0.034), suggesting that, as in most other lizard 
species (Ramírez-Bautista et al., 2017), female size is an 
important determinant of fecundity in S. incognitus. Such 
a relationship between clutch size and female SVL was 
nonetheless not statistically significant in S. incognitus 

from Taiwan, China (Huang, 2010). The mean clutch size 
was greater in South China (5.2; Table 1) than in Taiwan, 
China (4.0; Huang, 2010). This difference could be in 
part due to the fact that females of this study (81–108 mm 
SVL; Table 1) were larger than those studied in Taiwan, 
China (73–87 mm SVL; Huang, 2010), as S. incognitus 
is among species where larger females are more fecund 
than smaller ones. Egg mass and clutch mass had never 
been examined in S. incognitus. In this study, we found 
that neither clutch mass (r2 = 0.12, F1,23 = 3.23, P = 
0.085) nor egg mass (r2 = 0.04, F1,23 = 0.99, P = 0.33) 
was significantly related to female SVL. These findings 
suggest that female size is not an important determinant 
of reproductive output or investment per offspring in 
S. incognitus. Egg mass was independent of relative 
fecundity (r2 = 0.03, F1,23 = 0.64, P = 0.43), suggesting 
that, as in Eutropis longicaudata (Sun et al., 2012) and S. 
modesta (Yang et al., 2012), the egg size-number trade-
off does not exist in S. incognitus.

Among oviparous skinks so far studied in mainland 
China, the mean RCM was smaller in S. incognitus (0.25; 
Table 1) than in S. modesta (0.72; Yang et al., 2012), E. 
longicaudata (0.34; Sun et al., 2012), P. chinensis (0.33; 
Lin and Ji, 2000) and P. elegans (0.31; Du and Ji, 2001), 
the proportion of variation in clutch mass explained by 
female SVL was lower in S. incognitus (12%) than in P. 
chinensis (51%; Lin and Ji, 2000), P. elegans (46%; Du 
and Ji, 2001), E. longicaudata (42%; Sun et al., 2012) and 
S. modesta (37%; Yang et al., 2012), and the proportion 

Figure 1  Frequency distributions of SVL of adult Sphenomorphus incognitus (92 females and 171 males), showing sexual size 
monomorphism.
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Figure 2  Linear regressions of head length (a), head width (b), abdomen length (c), fore-limb length (d) and hind-limb length (e) on SVL in 
adult Sphenomorphus incognitus. Filled circles: females; open circles: males.
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of variation in clutch size explained by female SVL is 
lower in S. incognitus (18%) than in P. chinensis (52%; 
Lin and Ji, 2000), S. modesta (40%; Yang et al., 2012), 
P. elegans (37%; Du and Ji, 2001) and E. longicaudata 
(35%; Sun et al., 2012). These comparisons provide an 
inference that selection on increased maternal body size 
and thus increased body volume available to hold eggs is 
comparatively weak in S. incognitus.

3.3.  Egg incubation and hatchling phenotype  
Embryonic stages at laying ranged from Dufaure and 
Hubert’s (1961) stage 31 to 32, with a mean stage of 31.3. 
Embryonic stage at laying is a causal factor of inter- and 
intra-specific variation in incubation length in oviparous 
lizards (Wang et al., 2013). However, incubation 
length at any given temperature may vary considerably 
among species that differ in phylogeny, egg size and/or 
distribution (Lin et al., 2010; Li et al., 2012, 2013; Sun 
et al., 2013). Within sincid lizards, for example, the mean 
incubation length at 28 °C is much longer in S. incognitus 
(~40 d; Table 2) than in S. modesta (~20 d; Lu et al., 

2006) and P. chinensis (~24 d; Lu et al., 2012, 2014; Shen 
et al., 2017), although the mean DH stage at laying does 
not differ between S. incognitus and S. modesta (31.1; Lu 
et al., 2006) and is about one stage earlier in S. incognitus 
than in P. chinensis (~32.5; Lu et al., 2012, 2014; Shen 
et al., 2017). In Phrynocephalus lizards the changeover 
from the DH stage 30 to 31 shortens the mean incubation 
length at 28 °C by 3 d (Wang et al., 2013; Zeng et al., 
2013).

Eggs assigned to the five temperature treatments did 
not differ significantly in mean mass (F4, 42 = 2.44, P = 
0.06) or hatching success (G = 2.62, df = 4, P > 0.50). 
Hatching successes varied from 64% (16/25) in the 25 ± 5 
°C treatment to 82% (9/11) in the 28 °C treatment, with a 
mean of 74% (Table 2). Within each treatment incubation 
length was independent of egg mass (linear regression 
analysis: all P > 0.20). Mean values for incubation length 
differed among the five treatments (F4, 42 = 45.62, P < 
0.0001). For eggs incubated at constant temperatures, 
the mean incubation length was shortened by 22.0 and 
13.2 d for every 3 °C increase from 22–28 °C (Table 2). 

Mean Standard error Range
Snout-vent length (mm) 96.4 1.2 81.4–107.6
Postpartum body mass (g) 17.9 0.7 11.0–28.3
Clutch size 5.5 0.3 3–10
Egg mass (g) 0.8 0.03 0.6–1.5
Egg length (mm) 14.8 0.2 11.9–17.2
Egg width (mm) 9.6 0.2 8.6–12.4
Clutch mass (g) 4.3 0.3 2.0–7.4
Relative clutch mass 0.25 0.02 0.1–0.5

Table 1  Reproductive traits of female Sphenomorphus incognitus (N = 25).

Constant temperatures (°C) Fluctuating temperatures (°C)
22 25 28 25 ± 3 25 ± 5

N 9 20 9 22 16

Initial egg mass (g)
0.72 ± 0.03 0.82 ± 0.02 0.74 ± 0.03 0.80 ± 0.03 0.82 ± 0.04
0.58-0.91 0.68-0.97 0.59-0.89 0.67-1.04 0.65-1.08

Hatching success (%) 69.2 (9/13) 76.9 (20/26) 81.8 (9/11) 78.6 (22/28) 64.0 (16/25)

Incubation length (d)
75.5 ± 1.20 53.5 ± 2.05 40.3 ± 0.54 52.9 ± 2.25 43.7 ± 2.26
68.0-79.5 45.5-72.0 38.0-43.0 45.0-73.5 35.0-53.5

Snout-vent length (mm)
30.6 ± 0.34 30.6 ± 0.30 30.3 ± 0.31 30.3 ± 0.55 30.0 ± 0.38
29.4-32.8 29.4-32.3 29.1-31.6 27.7-32.7 28.4-31.3

Body mass (g)
0.78 ± 0.03 0.78 ± 0.03 0.72 ± 0.03 0.72 ± 0.03 0.72 ± 0.03
0.66-0.96 0.62-0.90 0.58-0.84 0.56-0.87 0.58-0.87

Abdomen length (mm)
14.1 ± 0.28 14.0 ± 0.30 14.0 ± 0.25 14.1 ± 0.33 13.2 ± 0.28
13.1-16.6 13.1-16.3 12.7-15.1 12.4-15.3 12.4-14.2

Head length (mm)
8.1 ± 0.08 7.9 ± 0.12 7.9 ± 0.10 8.0 ± 0.089 7.9 ± 0.10

7.8-8.7 7.0-8.4 7.5-8.4 7.7-8.4 7.5-8.3

Head width (mm) 5.9 ± 0.06 5.7 ± 0.06 5.7 ± 0.13 5.5 ± 0.11 5.7 ± 0.11
5.5-6.2 5.3-6.1 5.0-6.2 5.1-6.1 5.2-6.1

Table 2  Hatching success and descriptive statistics (expressed as mean ± SE and range) for egg mass at laying (initial egg mass), incubation 
length and wet body mass and morphology of hatchling Sphenomorphus incognitus from eggs incubated under five thermal regimes.



    Li MA et al.    Morphology and Reproduction in a SkinkNo. 2 125

This pattern of thermal sensitivity of incubation length is 
consistent with earlier studies on turtles (Ji et al., 2003, 
Du et al., 2007, 2010), lizards (Ji and Braña, 1999; Lin 
et al., 2007; Wang et al., 2013; Shen et al., 2017), snakes 
(Ji and Du, 2001; Lin et al., 2005; Lin et al., 2010) and 
crocodiles (Piña et al., 2003; Charruau, 2012) where 
incubation length decreases at an ever decreasing rate as 
temperature increases across the range where successful 
embryonic development can take place, explaining 
why eggs take a longer time to hatch at fluctuating 
temperatures than at constant temperatures with the same 
mean in some species (Shine, 2004a; Hao et al., 2006; 
Braña and Ji, 2007; Les et al., 2007; Lu et al., 2009; Li 
et al., 2012). However, contrast to what was expected 
the fluctuating temperature treatments result in shorter 
incubation lengths relative to constant temperatures in S. 
incognitus. This suggests that, as in Bassiana duperreyi 
(Shine, 2004b), Lycaena tityrus (Fischer et al., 2011), 
Naja atra (Lin et al., 2008) and Xenochrophis piscator 
(Lu et al., 2009), incubation at stable temperatures may 
lead to delayed hatching in S. incognitus.

Incubation temperatures higher than 28 °C substantially 
reduce hatching success and adversely affect hatchling 
phenotypes in forest skinks (Lu et al., 2006; Li et al., 
2012). Here we found that hatchlings from eggs incubated 
at 25 ± 5 °C did not differ from those from eggs incubated 
under other four thermal regimes in any examined trait 
after accounting for egg mass at laying (ANCOVA; all P 
> 0.19; Table 2). This finding is overall consistent with 
that reported for a wide range of reptile taxa, including 
turtles (Pelodiscus sinensis: Du and Ji, 2003; Ji et al., 
2003), lizards (E. argus: Hao et al., 2006; Heteronotia 
binoei: Andrewartha et al., 2010; Lacerta agilis: Li et 
al., 2013; P. chinensis: Chen et al., 2003) and snakes 
(Rhabdophis tigrinus lateralis: Chen and Ji, 2002; Ptyas 
mucosus: Lin and Ji, 2004; N. atra: Lin et al., 2008; X. 
piscator: (Lu et al., 2009). In all these species, incubation 
temperature has no role in modifying hatchling traits as 
long as eggs are not exposed to extreme temperatures for 
prolonged periods of time.

4. Conclusions

Sphenomorphus incognitus  is a morphologically, 
zoogeographically and taxonomically well known species, 
but its ecology and biology remain sparsely studied. Here 
we used adults collected from South China to study sexual 
dimorphism, female reproduction and egg incubation 
in this species. From this study we know the following. 
First, the skink is a sexually monomorphic species in 

terms of adult SVL but shows sexual dimorphism in head 
size, abdomen length and limb length, with males being 
larger in head size (both length and width), longer in fore- 
and hind-limb lengths and shorter in abdomen length than 
females of the same SVL. Second, females larger than 80 
mm SVL lay a single clutch of 3–10 eggs per breeding 
season from early May to mid-August, with larger 
females generally laying more (but not always larger) 
eggs per clutch than do smaller ones. Third, the positive 
relationship between clutch mass and female SVL is 
not significant, and the offspring size-number trade-
off does not exist in S. incognitus. Fourth, embryonic 
stages at laying range from Dufaure and Hubert’s (1961) 
stage 31 to 32, and the mean incubation length at a given 
temperature is much longer in S. incognitus compared 
to S. modesta with nearly the same embryonic stage at 
laying. Last, eggs of S. incognitus incubated at fluctuating 
temperatures take a shorter time to hatch than those 
incubated at stable temperatures with the same mean, and 
incubation temperature has no role in modifying hatchling 
morphology as long as eggs are not exposed to extreme 
temperatures for prolonged periods of time.
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