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Abstract. We propose a pipeline for text extraction from infographics
that makes use of a novel combination of data mining and computer
vision techniques. The pipeline defines a sequence of steps to identify
characters, cluster them into text lines, determine their rotation angle,
and apply state-of-the-art OCR to recognize the text. In this paper, we
formally define the pipeline and present its current implementation. In
addition, we have conducted preliminary evaluations over a data corpus
of 121 manually annotated infographics from a broad range of illustration
types such as bar charts, pie charts, and line charts, maps, and others.
We assess the results of our text extraction pipeline by comparing it
with two baselines. Finally, we sketch an outline for future work and
possibilities for improving the pipeline.
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1 Introduction

Information graphics (short: infographics) are widely used to visualize core in-
formation like statistics, survey data or research results of scientific publications
in a comprehensible manner. They contain information that is frequently not
present in the surrounding text [3]. Current (web) retrieval systems do not con-
sider this additional text information encoded in infographics. One reason might
be the varying properties of text elements in infographics that makes it difficult
to apply automated extraction techniques. First, information graphics contain
text elements at various orientations. Second, text in infographics varies in font,
size and emphasis and it comes in a wide range of colors on varying background
colors.

Therefore, we propose a novel infographic processing pipeline that makes
use of an improved combination of methods from data mining and computer
vision to find and recognize text in information graphics. We evaluate on 121

Copyright © 2015 by the paper’s authors. Copying permitted only for private and
academic purposes. In: R. Bergmann, S. Görg, G. Müller (Eds.): Proceedings of
the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB. Trier, Germany, 7.-9.
October 2015, published at http://ceur-ws.org

20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/199409475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


infographics extracted from an open access corpus of scientific publications to
demonstrate the effectiveness of our approach. It significantly outperforms two
baselines based on the open source OCR engine Tesseract3.

Subsequently, we discuss the related work. Section 3 presents our pipeline
for text extraction and Section 4 specifies the experiment set-up and dataset
used. The results regarding our OCR accuracy are presented in Section 5 and
discussed in Section 6.

2 Related Work

Research on analyzing infographics is commonly conducted on classifying the
information graphics into their diagram type [27] or separating the text from
graphical elements [1], [6], [21]. Information graphics show a variety in appear-
ance, which makes such classifications challenging. Thus, many researchers focus
on specific types of infographics, e. g., extracting text and graphics from 2D plots
using layout information [14]. Other works intend to extract the conveyed mes-
sage (category) of an infographic [16]. Many research works focus on bar charts,
pie charts and line charts when extracting text and graphical symbols [5], reengi-
neer the original data [7], [22], or determine the infographic’s core-message [4] to
render it in a different modality or make it accessible to visually impaired users.

In any case, one requires clean and accurate OCR results for more complex
processing steps, e. g. determining a message. Therefore, they use manually en-
tered text. A different approach [13], [15] to make infographics available to sight
impaired users is to translate infographics into Braille, the tactile language,
which requires text extraction and layout analysis. This research is similar to
our approach but relies on a semi-automatic approach which requires several
minutes of human interaction per infographic. Furthermore their approach is
challenged by image noise and their supervised character detection algorithm
works under the assumption that the text has a unified style, i. e., font, size,
and others. Another more specialized approach for mathematical figures [25] de-
scribes a pipeline for (mathematical-)text and graphic separation, but only for
line graphs and the evaluation corpus is very small and they do not conduct any
kind of OCR to verify the results. The assumption to automatically generate
high-quality OCR on infographics with today’s tools is certainly far-fetched.

3 TX Processing Pipeline

Our Text eXtraction from infographics (short: TX) pipeline consists of five steps
plus a final evaluation step as shown in Figure 1. It combines certain ideas from
related research [11], [13], [21] to build an automated pipeline which takes an
infographic as input and returns all contained text. An initial version of our
pipeline was briefly presented in [2]. Here we elaborate in detail on the steps of
the pipeline, formalize it, and extend our evaluation. Given the heterogeneous
3 https://github.com/tesseract-ocr, last access: Sep 07, 2015
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Fig. 1: Novel processing pipeline for text extraction from infographics

research field, a formalization is required to map the related work for a thorough
comparison and assessment. In our pipeline, an information graphic I is defined
as a set of pixels P with p = (x, y) ∈ P∧x ∈ {1 . . width(I)}∧y ∈ {1 . . height(I)}
where the latter two are integer arrays. The color information of each pixel p
is defined by a function Ψ : P → S, where S is a color space. We use this
information implicitly during our pipeline and use multiple Ψ functions to map
to certain color spaces (e.g. RGB, grey scale,. . .). A set of text elements T is
generated from P by applying the text extraction function Υ :

Υ : P, Ψ → T (1)

Each text element τ ∈ T is a sequence of regular expressions ωi specified as
τ =< ω1, ..., ωn >, separated by blank space characters, and with ω = [A-Za-z0-
9!"§$%&/()=?´°{[]}\‘+-*,.;:|’#@_∼<>eé£©®¥¢]∗. In the following, we break
down the formalization of Υ into five sub-functions υj , one function for each step
in our pipeline. We define Υ as a composition:

Υ := υ5 ◦ υ4 ◦ υ3 ◦ υ2 ◦ υ1 (2)

An overview of the notation used in this paper can be found in Table 1.

Table 1: Symbol notation used in this paper to formalize the TX pipeline
Υ , υj text extraction function Υ and its sub-functions υj

P , p set of pixels P and individual pixel p ∈ P

R , r set of regions R and individual region r ∈ R

C , c a clustering C and individual cluster c ∈ C

C′ , c′ a set of text lines C′ and individual text line c′ ∈ C′

Ω , ω a set of words Ω and individual word ω ∈ Ω

A , α set of text line orientations A and individual orientation α ∈ A

T , τ set of text elements T and individual text element τ ∈ T

(1)Region extraction: The first step is to compute a set of disjoint regions
R from the infographic’s pixel set P using adaptive binarization and Connected
Component Labeling [20]. This step is formally defined as:

υ1 : P → R,R := {r|r ⊂ P ∧ r 6= ∅ ∧ ∀i, j, i 6= j : ri ∩ rj = ∅} (3)

Each region r ∈ R is a set of pixels forming a connected space, i.e. each region
has a single outer boundary, but may contain multiple inner boundaries (holes).
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Furthermore, the constraints in equation 3 ensure that all regions are non-empty
and disjoint. First, we perform a newly-developed hierarchical, adaptive bina-
rization that splits the infographic into tiles. The novelty of this approach is that
it computes individual local thresholds to preserve the contours of all elements.
This is based on the assumption that the relevant elements of an infographic are
distinguishable through their edges. We start with a subdivision of the original
image into four tiles by halving its height and width. For each tile, we apply the
popular Sobel operator [24] to determine the edges. We compute the Hausdorff
distance [9] over the edges of the current tiles and their parent tile. We further
subdivide a tile, by halving its height and width, if a certain empirical value
is not reached. A threshold for each tile is computed with Otsu’s method [18]
and the final threshold per pixel is the average of all thresholds for that pixel.
This procedure appeared to be more noise tolerant and outperformed the usual
methods, e. g., fixed threshold or histogram, during preliminary tests. The result-
ing binary image is labeled using the Connected Component Labeling method.
This method iterates over a binary image and computes regions based on the
pixel neighborhood giving each region a unique label. From the binary image,
we compute for each region r the relevant image moments [10] mpq as defined
by:

mpq =
∑

x

∑
y

xpyqΨ with p, q = 0, 1, 2, . . . (4)

Please note that p, q hereby denote the p, qth moment and may not be mistaken
with the notation used in the remaining paper. For binary images, Ψ takes the
values 0 or 1 and therefore only pixels contained in a region are considered
for the computation of the moments. Using the first-order moments, we can
compute each regions center of mass. Afterwards, we apply simple heuristics
to perform an initial filtering. We discard all regions that fulfill the following
constraints: (a) Either width or height of the region’s bounding box are above
average width/height plus 3 times standard deviation (e.g. axes) or (b) bounding
box is smaller than 0.001% of the infographic’s size (noise) as well as (c) elements
occupying more than 80% of their bounding box (e.g. legend symbols). The
function υ1 generates a set of regions R, which can be categorized into “text
elements” and “graphic symbols”, the two types of elements in an infographic.
Thus, in a next step we need to separate good candidates for text elements from
other graphical symbols.

(2) Grouping regions to text elements: The second step computes a clustering
C from the set of regions R by using DBSCAN [26] on the regions’ features:

υ2 : R→ C, C := {c ⊆ R|c 6= ∅ ∧ ∀i, j, i 6= j : ci ∩ cj = ∅} (5)

Each cluster c ∈ C is a subset of the regions R and all cluster are disjoint. For
each region, the calculated feature vector comprises the x/y-coordinates of the
region’s center of mass, the width and height of its bounding box, and its mass-
to-area ratio. Due to the huge variety of infographics, we apply the density-based
hard clustering algorithm DBSCAN to categorize regions into text elements or
noise (graphic symbols and others). This step outputs a clustering C where each
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cluster is a set of regions representing a candidate text element. We assume that
these cluster contain only text while all graphical symbols are classified as noise.

(3) Computing of text lines: In this step, we generate a set of text lines C ′ on
the clustering C by further subdividing each cluster c ∈ C. A text line c′ is a set
of regions that forms a single line, i.e. the OCR output for these regions is a single
line of text. Each clustering c instead may generate multiple lines of text when
processed by an OCR engine and therefore may implicitly contain other white
space characters. To this end, we apply a second clustering based on a Minimum
Spanning Tree (MST) [26] on top of the DBSCAN results, since clusters created
by DBSCAN do not necessarily represent text lines. We compute a forest of
Minimum Spanning Trees, one MST for each DBSCAN cluster. By splitting up
the MST, a set of text lines for each cluster will be built. The rationale is that
regions belonging to the same text lines a) tend to be closer together (than other
regions) and b) the edges between those regions are of similar orientation. This
is defined as:

υ3 : C → C ′, C ′ := {c′ ⊆ c|c ∈ C ∧ c′ 6= ∅ ∧ ∀i, j, i 6= j : c′i ∩ c′j = ∅} (6)

Each text line c′ ∈ C ′ contains a subset of the regions of a specific cluster c ∈ C.
Again, all text lines are non-empty and disjoint. For each cluster, the MST is built
using the regions’ center of mass coordinates which are the first two elements of
the feature vectors computed in Step 2. We compute a histogram over the angles
between the edges in the tree and discard those edges that differ from the main
orientation. The orientation outliers are estimated from the angle histogram by
finding the maximal occurring orientation and defining an empirical estimated
range of ±60 degrees, where everything outside is an outlier.

(4) Estimating the orientation of text lines: In Step 4, we compute an ori-
entation α ∈ A for each text line c′ ∈ C ′ so that we can rotate each line into
horizontal orientation for OCR. This can be formalized as:

υ4 : C ′ → C ′ ×A, A := Z ∩ [−90, 90] (7)

Every orientation angle α ∈ A for a text line c′ can have an integer value from
-90 to 90 degree. While the MST used in the previous step can well produce
potential text lines, it is not well suited for estimating the orientation of text
lines as it is constructed on the center of mass coordinates which differ from
region to region. Thus, we apply a standard Hough line transformation [12]
to estimate the actual text orientation. During the Hough transformation, the
coordinates of the center of mass of each element are transformed into a line
in Hough space, which is defined by angle and distance to origin, creating a
maximal intersection at the lines’ orientation. This computation is robust with
regard to a small number of outliers that are not part of the main orientation.

(5) Rotate regions and apply OCR: The final step rotates the text lines along
an angle of −α in order to apply a standard OCR tool. It is defined as:

υ5 : C ′ ×A→ T (8)
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We cut sub-images from the original graphic using the text lines C ′ from υ3,
rotate them based on their orientation A from υ4 and finally apply OCR.

Step 6, the evaluation of the results, is described in detail below.

4 Evaluation Setup

We assess the results of our pipeline TX by comparing it with two baselines based
on Tesseract, a state-of-the-art OCR engine. In our evaluation, we compute the
performance over 1-,2- and 3-grams as well as words. During the evaluation, we
match the results of TX and the baselines with some gold standard. Both, the
position of the text elements as well as their orientation are considered in this
process. We use different evaluation metrics as described in Section 4.4.

4.1 Dataset and Gold Standard
Our initial corpus for evaluating our pipeline consists of 121 infographics, which
are manually labeled to create our gold standard. Those 121 infographics were
randomly retrieved from an open access corpus of 288,000 economics publica-
tions. 200,000 candidates for infographics were extracted from these publica-
tions. All selected candidates have a width and height between 500 and 2000
pixel, since images below 500 most likely do not contain text of sufficient size
and images above 2000 pixel appear to be full page scans in many cases. From
the candidate set, we randomly picked images - one at a time - and presented
them to a human viewer to confirm that it is an infographic. We developed a
labeling tool to manually define text elements in infographics for the generation
of our gold standard. For each text element we recorded its position, dimension,
rotation and its alpha-numeric content. Please note that we considered using
existing datasets like the 880 infographics from the University of Delaware4, but
they were incomplete or of poor quality.

4.2 Baselines
Today’s tools are incapable of extracting text from arbitrary infographics. Even
approaches from recent research works, as presented in Section 2, are too re-
strictive to be applicable on information graphics in general. This holds also for
specialized research like rotation-invariant OCR [17], [19]. Since no specialized
tools exist that could be used as a baseline, we rely on Tesseract, the state-of-
the-art OCR engine, as our initial baseline (BL-1). It is reasonable to use this
baseline, since Tesseract supports a rotation margin of ±15° [23] and is capable
of detecting text rotated at ±90° due to its integrated layout analysis. Since
infographics often contain text at specific orientations (0°,±45°,±90°), we also
apply a second baseline. This second baseline (BL-2) consists of multiple runs of
Tesseract with the rotated infographic at the above specified angles. We combine
the five results from the different orientations by merging the results between
those sets and in case of overlaps we take the element with greatest width.
4 http://ir.cis.udel.edu/~moraes/udgraphs/, last access: Sep 07, 2015
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4.3 Mapping to Gold Standard

The most accurate approach to compare OCR results with the gold standard
would be to evaluate the results on the level of individual characters. Our
pipeline, the baselines and the gold standard generate their output on vary-
ing levels. Only our pipeline supports the output of individual character regions.
Tesseract supports only words, as specified in the hOCR standard5, on the lowest
level. Thus, we transform the gold standard and pipeline output to word level
under the assumption of equality in line height and character width. Each text
element is defined by its position, i.e. x/y coordinates of the upper left corner
of the bounding box , its dimensions determined by width and height of the
bounding box and its orientation in terms of a rotation angle around its center.
We subdivide each text element τ into words by splitting at blank spaces and
carriage returns. The new position and dimensions for each word ω ∈ Ω are
computed while retaining the text element’s orientation. This is defined by:

Φ : T × C ′ ×A→ Ω × C ′′ ×A (9)
Ω := {ω ∈ τ |τ ∈ T} (10)
C ′′ := {c′′ ⊆ c′|c′ ∈ C ′ ∧ c′′ 6= ∅ ∧ ∀i, j, i 6= j : c′′i ∩ c′′j = ∅} (11)

The bounding boxes of the individual words are matched between TX and gold
standard as well as baselines and gold standard for evaluation. For each word
ω ∈ Ω we compute the contained n-grams for further evaluation.

4.4 Evaluation Metrics

As previously mentioned, we are evaluating our pipeline over n-grams and words.
Since infographics often contain sparse and short text as well as short numbers,
we only use 1-,2-, and 3-grams. We use standard metrics precision (PR), re-
call (RE), and F1-measure (F1) for our n-grams evaluation as defined by:

PR = |Extr ∩Rel|
|Extr|

, RE = |Extr ∩Rel|
|Rel|

, F1 = 2 · PR ·RE
PR+RE

(12)

Here, Extr refers to the n-grams as they are computed from text elements that
are extracted from an infographic by TX and the baseline, respectively. Rel
refers to the relevant n-grams from the gold standard. For comparing individual
words (i. e. sequences of alpha-numeric characters separated by blank or carriage
return), we use standard Levenshtein distance. The same n-gram can appear
multiple times in both the extractions result from TX, the baselines, as well as
the gold standard. Thus, we have to deal with multisets when computing our
evaluation metrics. In order to accommodate this, we have to slightly modify the
standard definitions of PR and RE, respectively. To properly account for the
number of times an n-gram can appear in Extr or Rel, we define the counter
5 The hOCR Embedded OCR Workflow and Output Format:

http://tinyurl.com/hOCRFormat, last access: Sep 07, 2015
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function CM (x) := |{x|x ∈M}| (as an extension of a set indicator function) over
a multiset M . For an intersection of multisets M and N , the counter function is
formally defined by:

CM∩N (x) := min{CM (x),CN (x)} (13)

Based on CM∩N (x), we define PR and RE for multisets:

PR =
∑

x∈Extr∪Rel CExtr∩Rel(x)∑
x∈Extr CExtr(x) (14)

RE =
∑

x∈Extr∪Rel CExtr∩Rel(x)∑
x∈Rel CRel(x) (15)

Specific cases may happen when either one of the sets Extr or Rel is empty.
One case is that our pipeline TX or the baselines do not extract text where they
should, i. e., Extr = ∅ and Rel 6= ∅. When such a false negative happens, we
define PR := 0 and RE := 0 following Groot et al. [8]. For the second situation,
when the approaches we compare find something where they shouldn’t (false
positives), i. e., Extr 6= ∅ and Rel = ∅, we define PR := 0 and RE := 1.

5 Results

This section presents the results of our initial evaluation to assess the quality of
the OCR results using our pipeline. We start with a descriptive statistics of the
gold standard and the extraction results over the infographics. Subsequently, we
present the evaluation results in terms of precision, recall and F1-measure for
infographic and word-level evaluation of TX and the two baselines as well as the
Levenshtein distances computed for the extracted text and the gold standard.

Data Characteristics: Table 2 presents the average numbers and standard de-
viation (in brackets) with regard to n-grams, words and word length for our
extraction pipeline (TX), both baselines (BL-1/-2), and gold standard (GS).
Table 2 clearly shows that our novel pipeline detects at least 1.5 as many n-
grams and words as BL-1 and still some more than BL-2. Compared with the
gold standard, TX extracts more n-grams and words. In addition TX and the
baselines extract words shorter than the gold standard. Overall, we observe high
standard deviations in the gold standard and the extraction results.

Evaluation results on word-level n-grams: The average precision (PR), recall
(RE) and F1-measures for n-grams in Table 3 (standard deviation in brackets)
show a relative improvement (Diff.) of TX over BL-1 of about 30% on aver-
age. The differences are computed by setting the pipeline results into relation
with the baselines. We verified the improvement using significance tests, i.e.,
if the two distributions obtained from TX and BL-1/2 significantly differ. We
checked whether the data follows a normal distribution and has equal variances.
Subsequently, we have applied Student’s t-tests or the non-parametric Wilcoxon
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Table 2: Average number of n-grams and words of the 121 infographics and
average word length for GS/TX/BL-1/BL-2

1-grams 2-grams 3-grams Words Length
GS 150.65 (122.28) 115.93 (103.09) 84.95 (85.61) 35.46 (22.24) 4.22 (1.48)
TX 177.21 (128.21) 127.34 (100.51) 89.34 (79.35) 50.07 (31.95) 3.63 (2.69)
BL-1 106.30 (87.71) 80.17 (69.12) 60.79 (54.54) 25.21 (22.12) 4.15 (2.25)
BL-2 135.08 (125.56) 100.20 (98.20) 75.08 (78.10) 35.25 (33.94) 4.08 (1.95)

signed rank test. For all statistical tests, we apply a standard significance level
of α = 5%. All TX/BL-1 comparison results are significant with p < .01 except
for the recall over trigrams which has p < 0.046. The test statistics for t-tests
are between −7.5 and −3.1 and for the Wilcoxon tests between 1808 and 2619.
The second part of Table 3 reports the comparison between TX and BL-2. The
results are similar to the previous comparison, but for recall over unigrams and
F1-measure over trigrams the improvement is smaller. Here, all differences are
significant with a p-value of p < .01 except for the recall and F1-measure over
trigrams with p < 0.049 and p < 0.027, respectively. The test statistics for t-tests
are between −6.8 and −3.1 and between 1652 and 2626 for non-parametric tests.
Finally, we observe a smaller performance increase when comparing the results
from 1-grams to 3-grams as well as overall high standard deviations.

Table 3: Average PR, RE, F1 measures for TX and BL-1/BL-2
word level infographic level

n-gram PR RE F1 PR RE F1

TX
1 .50 (0.41) .68 (0.36) .47 (0.39) .67 (0.23) .79 (0.20) .71 (0.21)
2 .58 (0.39) .54 (0.38) .54 (0.34) .60 (0.27) .67 (0.25) .62 (0.25)
3 .52 (0.39) .48 (0.37) .49 (0.37) .57 (0.29) .60 (0.29) .57 (0.28)

BL-1
1 .37 (0.36) .48 (0.36) .36 (0.35) .67 (0.29) .54 (0.31) .58 (0.30)
2 .42 (0.33) .42 (0.34) .42 (0.33) .60 (0.33) .50 (0.33) .53 (0.32)
3 .42 (0.31) .42 (0.31) .36 (0.33) .55 (0.35) .48 (0.34) .49 (0.34)

Diff.
1 35.14% 41.67% 30.06% 0.00% 46.30% 22.41%
2 38.10% 28.57% 28.57% 0.00% 34.00% 16.98%
3 23.81% 14.29% 36.11% 3.64% 25.00% 16.33%

BL-2
1 .37 (0.37) .51 (0.38) .36 (0.36) .65 (0.25) .59 (0.29) .60 (0.26)
2 .42 (0.34) .42 (0.35) .42 (0.34) .57 (0.31) .52 (0.31) .53 (0.30)
3 .42 (0.32) .42 (0.32) .42 (0.32) .51 (0.33) .50 (0.34) .49 (0.32)

Diff.
1 35.14% 33.33% 30.06% 3.08% 33.90% 18.33%
2 38.10% 28.57% 28.57% 5.26% 28.85% 16.98%
3 23.81% 14.29% 16.67% 11.76% 20.00% 16.33%

Evaluation results on infographic level n-grams: We conducted another eval-
uation on infographic level where we did not consider the location mapping
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constraint between words and compared the n-grams for the whole infographic.
The results are shown in Table 3 for both baselines BL-1 and BL-2. While hav-
ing on average higher values for all metrics in both comparisons, the relative
improvement for precision, recall, and F1-measure compared with the word level
evaluation decreases in most cases. The significance of the results is only given
for recall and F1-measure, but not for precision. For recall and F1-measure we
have p < .04 and the test statistics are between −9.2 and −2.4 for t-tests.

Evaluation on words (Levenshtein): For TX the Levenshtein distance is on av-
erage 2.23 (SD=1.29). Hence, for an exact match one has to alter about two
characters. The average Levenshtein distance for BL-1 is 2.53 (SD=1.59) and
we verified that they differ significantly (t(120) = 2.10, p < .04). The difference
in Levenshtein from BL-2 to TX with an average distance of 2.54 (SD=1.51) is
significant as well (V (120) = 4713, p < .01).

Special case evaluations: The number of special cases for TX are on average
12.94 (SD=17.88) false negatives and 49.87 (SD=31.52) false positives. For BL-
1 we can instead report 17.01 (SD=17.40) false negatives and 5.67 (SD=9.42)
false positives on average. BL-2 generates on average 9.03(SD=15.61) false neg-
atives and 17.01(SD=17.40) false positives. Comparing TX pipeline with BL-1
shows that TX produces significantly less false negatives (V (120) = 4503.5, p <
.01), but simultaneously generates significantly more false positives (t(120) =
−16.6, p < .001). The second baseline is on average better than TX with regard
to false negatives and false positives.

6 Discussion

Our novel pipeline shows promising results for the extraction of multi-oriented
text from information graphics. The difference between word and infographic
level evaluation can be explained by the constraints induced by the matching
procedure on word-level. The main reason for the performance improvement is
the increased recall, which is a result of finding text at non-horizontal angles.
We define all elements as non-horizontal which have an orientation outside of
Tesseract’s tolerance range of ±15 degree. About 20% of the words in an info-
graphic are on average at non-horizontal orientation, as specified by the gold
standard. Our pipeline output consists to 37% of non-horizontal words while ex-
tracting 41% more words on average than actually present in the gold standard.
On the other hand, the first baseline which extracts only about 77% as many
words as actually contained, all of horizontal orientation. The second baseline is
closest to the gold standard with respect to the number of extracted words and
contains on average 31% non-horizontal words. In addition, we have improved
precision and therefore an overall performance increase, collected through the
F1-measure, with TX. The standard deviation is in all cases quite high, which
can be explained by the variance in the gold standard. Consequently, these are
dataset characteristics and not issues of TX or the baselines.
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The lower number of 3-grams, which are on average only half as many as
1-grams, is a potential negative influence on the results. As reported in Table 2,
there is a high standard deviation of the number of n-grams in the gold standard.
Thus, some graphic might not even contain 3-grams. However for most cases,
there are on average 85 3-grams per infographic as denoted by the gold standard
statistics in Table 2, which is enough for reasonable results.

Furthermore, TX produces less false negatives, i. e., it extracts more text ele-
ments from the gold standard than BL-1. But it still makes more mistakes with
regard to extracting text elements where there are none in the gold standard.
This is reflected in Table 2, where TX extracts on average more text elements
than there are actually present in the gold standard. These false positives of-
ten consist of special characters such as colons, semicolons, dots, hyphens, and
others. Removing them will be a future extension of our work.

7 Conclusion

We have presented our novel pipeline for multi-oriented text extraction from
information graphics and proved its concept on a set of 121 infographics. Our
text extraction shows a significant increase in F1-measure over two baselines,
which is explained by detecting text elements at non-horizontal angles. In our
future work, we plan to add a merge step after the MST clustering to reduce the
Levenshtein distance and to perform entity detection over the text extraction
results. In addition, we want to apply our pipeline to a larger set of infographics
for a more thorough evaluation. We will create the required gold standard using
crowd-sourcing in the near future. Finally, we plan to include alternative OCR
engines like Ocropus to find the best solution for our needs.
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