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tracking of the online users also has benefits relating public
safety and security.

The growing threat of online crimes ranging from messages
focused at propagating hatred, to cyberbullying and spread of
fake news and false information for the purpose of promoting
malicious selfish intentions; personal or political gains have
continued to cause governments, corporate organisations and
individuals cause for concern. Social media is a good tool for
the promotion of information but the fact that it is uncensored -
stemming from the notion of freedom of speech which obtains
in most democracies tend to be abused. It is crucial that law
enforcement bodies are able to track down the location of
these offenders and the origin of these messages to curtail
their spread before they begin to ‘infect‘ the behaviours and
actions of other online users.

The large footprint of Twitter makes it an important mar-
ketplace for advertisers to reach their consumers, and serve as
projection platforms for the government to its citizens. Knowl-
edge of users who interact on Twitter may be quite useful
for organisations that render these services. There exist third
party domains and other sources such as knowledge bases.
These sources amongst others are useful for estimating user
locations [4]. However, they may be unreliable and insufficient
for effectively estimating the location of users. This brings the
need to infer locations from transmitted messages solely based
on the content alongside other relevant metadata information
captured with the tweets such as user description and time
zone information etc.

In this paper we propose a novel non-uniform grid-based
approach for location inference from Twitter messages com-
bining quadtree spatial partitions and semantic understanding
using Natural Language Processing (NLP). The contributions
made in this work is given as follows.

• A discriminative grid-based approach for the determina-
tion of tweet locations based on the content,

• A Quadtree spatial indexing technique for inferring loca-
tions based on variable nodes,

• A NLP based hybrid word embedding model consisting
of Cosine and Jaccard similarity measures [5] for dimen-

Abstract—Inferring locations from user texts on social media 
platforms is a non-trivial and challenging problem relating 
to public safety. We propose a novel non-uniform grid-based 
approach for location inference from Twitter messages using 
Quadtree spatial partitions. The proposed algorithm uses natural 
language processing (NLP) for semantic understanding and 
incorporates Cosine similarity and Jaccard similarity measures 
for feature vector extraction and dimensionality reduction. We 
chose Twitter as our experimental social media platform due to 
its popularity and effectiveness for the dissemination of news 
and stories about recent events happening around the world. 
Our approach is the first o f i ts k ind t o m ake l ocation inference 
from tweets using Quadtree spatial partitions and NLP, in hybrid 
word-vector representations. The proposed algorithm achieved 
significant classification accuracy and outperformed state-of-the-
art grid-based content-only location inference methods by up 
to 24% in correctly predicting tweet locations within a 161km 
radius and by 300km in median error distance on benchmark 
datasets.

I. INTRODUCTION

The task of inferring user locations on Twitter as well as
most social media platforms is non-trivial spurring the interests
of many researchers in the field o f a rtificial intelligence,
computer science and behavioural sciences alike for almost
a decade. Studies show that only less than 2% of Twitter
users disclose or geotag the location of tweets [1] [2] due to
fears of being tracked by online predators thus preserving their
personal safety or by advertisers that use cookies to continually
send them often times unsolicited product advertisements that
have been personalised to their tracked location. Some social
media sites even offer tailored location-based services such
as Snapchat offering a new addition called SnapMap1 where
one can track the location of friends using the App and even
know the status of their current activity including if they are
sleeping or in ridding a car or shopping. These information are
quite private and the users may not even be aware they have
provided such information which could lead to stalking and
posing threats especially for children [3]. However location

1www.snapchat.com
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sionality reduction in the feature vector, and representa-
tion [6].

• Improvement in grid-based location inference based
solely on the content of Twitter messages.

A functional block diagram of the proposed algorithm is
depicted in Fig. 1. In the remainder of this paper Section II
gives related works in the field of location inference and
NLP, Section III gives description of the methodology used
during the experiment. Analysis and results are presented in
Section IV while Section V gives the conclusions.

II. RELATED WORKS

Location inference also referred to in literature as Geoloca-
tion Prediction has enjoyed a fair amount of research interests
by several authors working within the space. A few works have
been written on the inference of location of Twitter users. The
one most related to this work is the [7] where the authors
estimated user locations solely based on the content of their
messages using supervised classification. The work extracted
local words from the messages of users with the assumption
that users from specific geographic locations would normally
use words that are local to that geographic location. For
example the word howdy which is hello in English would be
considered to be more frequently used in the US state of Texas.
However, the authors did not actively seek out to recognise
entities such the names of people, places and organisation
within twitter messages as part of their location inference
technique unlike our proposal in this work. It should be noted
that some of such local words they identified could also be
geo-entities, for instance their probabilistic method identified
the word ucsb to show a peak distribution around the state of
California as this was the abbreviation for the University of
California located in the city of Santa Barbara.

Location inference and privacy of geo-spatial data have
always been an area of concern. Krumm [21] examined the
identification of users from web search data and was able to
successfully identify their locations to the granularity level of
home addresses from GPS data. This is was possible due to
the very high degree of correctness that GPS data typically
offers. However, the availability of location information is
not always guaranteed which introduce additional challenges.
Our approach aims to address this issue by inferring the
user locations to a city-level accuracy by analysing user
texts available from social media. Privacy continues to be
an emerging area of research discussion [20] with people
choosing to hide their online identities to keep an anonymous
profile from other users and in some cases for the safety and
the fear of being trolled online by cyberbullies especially in
the social media and Twitter in particular.

Han et al. [22] used words referred as Location Indicative
Words (LIWs) and provided a spatial clue to indicate the
whereabouts of the users. It was proposed that users were more
likely to be successful in preserving their privacy if they refrain
from mentioning these LIWs in their online conversations and
also to actively delete location meta data from their online
footprint. This seems far from being realistic as users will

most likely be tracked by the social media platforms who
passively collect and retain time-stamped information such as
time-zones and IP addresses of their users, Most of these meta
data is then made available to the public via the Twitter API
and can be linked it to the users who created them. Other
works done in the field can be found in [11] that proposed a
method which learns association from locations and keywords
from previous user messages to predict subsequent messages.
The challenge with this method is that to effectively train a
location classifier the past tweets of a user would have to be
collected and analysed and may be prove to be technically
infeasible because at the moment the Twitter REST API only
allows the retrieval of the last 3200 messages of any user.
Secondly there is the possibility that users can relocate over
time from one city to another or even from one country and
time zone to another. Thus online themes and conversations
that they tweet about today may be different tomorrow. Our
approach is not user-specific and relies on word-usage and
geo-entities associated with locations.

Jurgens [23] applied label propagation of location assign-
ments to the knowledge of locations. The work relied on
the friends connections also known as their ego network
locations including self-reported ones found in the free-text
fields of the user profiles. Compton et al. [15] inferred location
from the friends network with known locations. Their work
presented the largest dataset utilised till date for the training
and testing of their location inference classifier accounting for
tweets captured from over 100 million Twitter users. Chang
et al. [12] used Gaussian mixture models and maximum
likelihood estimation (MLE) which is purely content-based
in addition to the use of local words distribution within
messages. Mahmud et al. [16] used an ensemble of statistical
and heuristic classifiers. Their approach also followed a hybrid
of both tweet content and social network profile information
including the friends networks. Ajao et al. [4] gave an insight
into a range of clues for estimating user locations in addition to
the message content. They outlined three various locations that
had been inferred in on Twitter including tweeting location,
user home residence and message context that have mentions
or references to certain geographical locations or points of
interests. Various partitioning algorithms are proposed in the
literature to infer Tweet locations including k-dimensional
trees [13], [17] or uniform grids [9], [19]. A further breakdown
of reported results from related works is presented in Table I.

We believe the task of location inference from tweets and
other sources that involves the use of text, relies on natural
language processing models and machine learning techniques
to understand the semantics. There are over 500 million
messages sent by Twitter users each day2. Thus, it is humanly
impossible to manually sift through the contents of these mes-
sages and make meaning of them. NLP models such as word
embedding and pattern recognition capabilities of machine
learning models are useful in the identification of patterns [24]
within the text. This helps in machine understanding of the

2www.twitter.com

www.twitter.com


Fig. 1. Functional diagram illustrating the tweets location inference task.

TABLE I
METHODS AND OUTCOMES FROM RELATED WORKS IN TWITTER LOCATION INFERENCE

Author Input Method Technique ACC(%) Radius

Cheng et al. [7] content words Probabilistic(ML) 51 160km

Eisenstein et al. [8] content geo-topic Geo-Topic Model 24 State

Wing et al. [9] content locations Grid-based(Uniform) - -

Kinsella et al. [10] content locations Language Models 13.9 Zip Code

Kinsella et al. [10] content locations Language Models 29.8 Town

Ikawa et al. [11] content words ML classification 20-60 10-30km

Chang et al. [12] content words GMM & MLE 49.9 160km

Roller et al. [13] content locations Grid-based(kd-tree) 34.6 160km

Li et al [2] content,
network

hybrid Probabilistic(ML) 66 160km

Schulz et al. [14] content, context hybrid Gazetteer - -

Compton et al. [15] Network closeness Network 80

Mahmud et al. [16] content, context locations Ensemble classifiers 58 city-level

Wing et al. [17] content locations Grid-based(kd-tree) 90.2 160km

Ryoo & Moon [18] content words Location services 56.7 10km

Hulden et al. [19] content words Grid-based(Uniform) - -

Han et al. [20] content words Neural Net 40.9 -

human language and drawing insights suitable for the process.
NLP methods applied in this work includes the use of the
continuous bag of word (CBOW) model [25] for embedding
the words into vectors. Additionally, Jaccard similarity and
Cosine distance of word vectors [5], [26] was computed for
feature extraction and word dimensionality reduction to get
prediction-relevant text. To the best of our knowledge our
approach is the first to use Quadtree spatial indexes combining
with NLP for content-aware location prediction on Twitter.

III. METHODOLOGY

We propose a new grid-based approach for location infer-
ence from Twitter messages using quadtree spatial partitions.
The proposed algorithm incorporates Cosine similarity and
Jaccard similarity measures for NLP-based feature vector
extraction and dimensionality reduction. The summary of the
illustration of our approach towards content-based location
inference is given in Fig. 1 and described in detail in this
section.

A. Feature Vector Creation using NLP

The proposed work incorporates natural language process-
ing methods in creating the feature vector. This includes
word embedding, where the words are converted to numbers
in order to process them effectively and forming the vector

Fig. 2. Methods of Word Embedding in Natural Language Processing

representation of those words. There are two broad cate-
gories of word embedding namely, a) frequency-based and b)
prediction-based word embeddings as seen in Fig. 2. Available
models for word embedding include the continuous bag-of-
words CBOW model [27], Word2vec model [25] and Glove
model [28]. Prediction based word embedding techniques such
as word2vec are proved to be the state-of-the-art technique
and have the advantages over deterministic methods such
as conventional bag-of-words or count vectors. These also
have the ability to incorporate neural networks improves their
performance compared to their predecessors. For our work we
adopted the word2vec model proposed in [25].

Our NLP based text processing for feature vector creation
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Fig. 3. Interaction between precision and log of uniform grid counts

includes following three central steps:

Calculation of linear vector: Linear vector calculations are
implemented on feature vectors using word2vec. An
example of this is King - Man + Woman = Queen.
This is inherent in the fact that once words are con-
verted into vectors they lend themselves to algebraic and
mathematical operations thus revealing the association
and relationships that exist between them. In the above
example the gender is the relationship between them.

Identification of synonyms used in the messages: Words
that have the same semantic meaning are given the
same representation. In essence it looks out for word
synonyms avoids redundancy and significantly reduces
the size of the feature vector and computing time. For
example the two sentences S1 = {That is a small thing}
and S2 = {That is a little thing} will be considered the
same, thus improving the effectiveness of their respective
word-vector representation.

Determination of similarity threshold: Similarity
thresholds can be specified where the distance between
the feature vectors is measured with the cosine similarity
functions (described in Eq. (1) and Eq. (2)). In this
regard, words that have similar syntactic appearance
but were however mis-spelt, exaggerated or abbreviated
would be recognised and given the same representation
within the vector space. This can be achieved by the
cosine function to compare their similarity with the
English language dictionary. For example, Yeeeees is
equivalent to Yes or Gooooood is recognised as Good.

In order to measure the closeness between the word feature
vectors we have used two types of similarity measures [5]: a)
Cosine similarity and b) Jaccard similarity as described below.
Considering two non-zero vectors, p and q, each having com-
ponent values 1, 2, ...n, their cosine similarity (Simc(p, q))

Fig. 4. Geo-located US Tweets partitioned with our Quadtree algorithm

Fig. 5. US cities with population over 5,000.

can be calculated as:

Simc(p, q) =
p.q

‖p‖2.‖q‖2
=

n∑
i=1

pi.qi√
n∑

i=1

p2i .

√
n∑

i=1

q2i

. (1)

For the same vectors the Jaccard similarity (Simj(p, q)) is
calculated by:

Simj(p, q) =
|p ∩ q|
|p ∪ q|

. (2)

B. Sparsity of Tweets and Quadtree

Tweeting geo-locations bear close resemblance to actual
population demographies, showing similar density patterns.
Comparing Fig. 4 and Fig. 5 and considering that the conti-
nental United States has a total geographic area of 6,110,264
square miles [29], we observed this challenge with the dataset
is due to the geographical outlay of the country as some areas
were more inhabited than others. Thus tweets were considered
to have a sparse distribution in some area. As such when
the map was uniformly split some contained too little while
some contained too much. This presented a major limitation
in the estimation of location of the users using a uniform grid
method. In contrast, Quadtrees being hierarchical spatial data
structures [30] offers a solution that can dynamically address



Fig. 6. Spatial partitioning method illustrating decomposition and equivalent
Quadtree representation of an object

such issue. Fig. 3 shows the correlation between the number
of tweets within each of the grids namely 4x4, 8x8, 16x16
and 32x32 all done using the uniform spatial partitioning
method. The precision value was plot against each of the 4
split grids. We found a direct relationship between the log-
value of the counts of observations each uniformly partitioned
grid and their precision. This implies the presence of a bias
favouring highly populated grids while the less populated ones
got lower precision. Following this observation, we chose to
cluster the dataset in a discriminatory manner now dependent
on the counts of observations within each grid. This created
more effective labeled training dataset for the classifiers.

1) Quadtree Data Partitioning: Quadtree is a hierarchi-
cal data structure and partitioning technique for efficiently
organizes data in a pre-defined discriminative manner. As a
result, we find it suitable in addressing the bias mentioned
earlier in this section. Quadtree illustration is given in Fig. 6.
The object is first decomposed into four quadrants or nodes;
numbered 1,2,3 and 4. Nodes 2 and 3 are further split based
on spatial interest into 4 leaves each. Quadtrees effectively
handle spatial querying of geographic data [31] and proven
applications in the areas of collision detection and image
processing [30]. We employ the method because in the area
of location inference application of the algorithm would be to
query the location of users around a predefined radius or some
location of interest such as a geo-political region. This method
fulfills this requirement and as such within a conventional
database ultimately support searches, insertions and deletions
within the parent and leaf nodes of the dataset.

Another advantage that the Quadtree method has over
uniform grids is also the time saved in implementation as
the nodes with little or no data points can be easily dropped
from the query. Our implementation considered a variable
resolution constraint which can be adjusted. For empirical
purposes and during the decomposition process we set the
maximum number of points in each grid in multiples of 5,000
or lesser, i.e., 10000, 15000, 20000 etc. As the dataset is
now more fairly split across more grids we observe significant
correlation between the log values of the grid counts as well
as improvement in the level of accuracy, AED, MED further
described in Section IV.

2) Tweet based bias removal: In addition to the Quadtree
partitioning we also use a population based bias removal

Fig. 7. Geo-located US Tweets partitioned with our Quadtree algorithm

technique. The geo-spatial visualisation of the US tweets (refer
Fig. 4) indicates more visible activities towards the North East
of the country; this bears a true resemblance of Fig. 5 which
illustrates the population of the United States [32] as discussed
earlier. This implies that there is a bias favoring a larger count
size as opposed to less dense grids. This is clearly a problem
due to the sparse distribution of the tweets and as we see from
the geographical map, tweets on the East coast (around New
York etc tend to have normally a larger population density
and thus more user tweets are included in the training data for
this purpose). In order to further remove this bias we used a
weighted measurements of the outcome and incorporated this
within the measurement metric as discussed in Section IV.
Fig. 7 was generated using our Quadtree structure.

C. Training of Location Classifier

The task of content-based location inference can be inter-
preted a classification problem. A number of machine learning
classifiers were examined including the Logistic Regression
(LOGIT) / Maximum Entropy, Random Forests, Decision
trees, Artificial Neural Networks and the Multinomial Naive
Bayes (MNB) classifier for supervised classification of more
than 730,000 messages geotagged to the continental United
States. Preliminary investigation with baseline datasets namely
GEOTEXT [8] and UTGEO-Small [13] indicates better perfor-
mances by Multinomial Naive Bayes and Logistic Regression
which are also commonly used in similar dataset by other
researchers. This subsection briefly revisited these two clas-
sifier before reporting the results. In the classification, the
words served as the features while the grids served as the
labels or predicted results of the task. In training and testing
the classifier, we implemented a ten-fold cross validation
technique for training both LOGIT and MNB models. In line
with Twitter’s privacy policy, the dataset used is anonymised.
user names are discreetly represented as randomly assigned
numbers. During the pre-processing stages of our training
dataset, we removed duplicate messages. However, it should
be noted that chat bots may not always generate duplicate
messages. In such instance, there may be a bias towards such
locations. We leave the review of this impact to future studies.

1) Multinomial Nave Bayes: This is quite popular with
discrete probability distributions such as word counts in text
classification. They are straight forward to implement. We
set an alpha value at 1 and learn class prior probabilities;
they were also adjusted according to the classes within the



dataset. With a multinomial event model, samples (feature
vectors) represent the frequencies with which certain events
have been generated by a multinomial (p1, ..., pn) where pi
is the probability that event i occurs (or K such multinomials
in the multiclass case). A feature vector X = (x1, ..., xn)
is then a histogram xi, with counting the number of times
event i was observed in a particular instance. This is the event
model typically used for document classification, with events
representing the occurrence of a word in a single document
(see bag of words assumption). The likelihood of observing a
histogram x is given by:

p(x|Ck) =
(
∑

i xi)!∏
i xi!

∏
i

pkxi
i (3)

2) Logistic Regression: Also known as the Maximum En-
tropy or Logit classifier is a regression model where the de-
pendent variable(s) are categorical; In the generalized additive
form consider a set of independent variables X1, X2, ..., Xp

predicting a likely outcome (Y) with fj(f1, f2, ..., fp) unspec-
ified smooth functions. The model is given as:

log

(
µ(X)

1− µ(X)

)
= α+f1(X1)+f2(X2)+ ...+fp(Xp) (4)

In our experiment the Logit classifier outperformed all the
classifiers in terms of precision, accuracy and recall. We
use the L2-penalty as it is more robust and handles sparse
data well; A phenomena that is quite common with geo-
located Twitter data sets. We did not implement dual or primal
formulation as the number of samples far exceeded the number
of the features in the task. We adopt a balanced class scaling
applied to handle the L2 penalty. We set the maximum number
of iterations at 100.

IV. RESULTS AND DISCUSSIONS

This section describes the measurement metrics that were
used for evaluation of our proposed method, the results and
related discussions.

A. Data

Two datasets were used in training our MNB and LOGIT
classifiers and evaluation of our technique. These include
the UTGEO-Small Dataset [13]. This consists of 670,000
geolocated Twitter messages from the continental United
States. The GEOTEXT dataset by [8] was also used. This had
approximately 380,0000 geotagged US tweets.

B. Data Analysis: Measuring Classifier Efficiency

After the texts were cleaned the resultant vector was signif-
icantly reduced. Afterwards matrices were parsed into word
vectors before the machine learning task was performed on
them. Given a set of geo-tagged tweets Ti = {t1, t2, ..., tN}
with ground truth location of ActualLoci and a predicted
location ExpectedLoci. We evaluate the classifiers perfor-
mance using the Average Error Distance (AED), Median Error
Distance (MED)and Distance-Based Accuracy.

1) Calculating Error Distance: In calculating the error
distance (in km) between the predicted and actual location
we apply the Haversine formula [33], [34] also known as the
Great Circle Distance between any two geo-coordinates on
the earth’s surface assuming an spherical shape of the Earth.
This method was chosen as we found suitable and stable in
determining the distance estimation of several diverse and
closely located geo-coordinate pairs.

2) Average Error Distance: The average error distance
(AED) measures the arithmetic average error of predictions for
the messages within the dataset, however it should be noted
that this metric can be easily skewed by large ranges of values
within the dataset and would particularly be unreliable if there
where a presence of an anomaly in the training of the classifier.
The AED for the classifier is given thus:

AED =
1

|N |

N∑
i=1

({|ActualLoci − ExpectedLoci|}) . (5)

3) Median Error Distance: The median error distance
(MED) overcomes the limitation of the AED by considering
only the error values close to the median. We find this to be
most reliable and gives a truer indication of the performance.
This is represented as:

MED =MedianDistance{|ActualLoci, ExpectedLoci|}.
(6)

4) Distance-Based Accuracy: Accuracy levels at a set dis-
tance and more specifically around a distance d is a renowned
benchmark and this was applied in this work also. It is
estimated as the ratio of correctly predicted location with an
error margin less than d = 161km compared to the entire tweets
count

ACC@161 =
{|ActualLoci − ExpectedLoci|} ≤ 161km

|N |
.

(7)

C. Experimental Results and Discussion

The summary performance of our method, measured against
various metrics such as average error distance (AED) as cal-
culated in Eq. (5), median error distance (MED) and predicted
accuracy to the nearest 161km from Eq. (6) and Eq. (7)
respectively are shown in Table IV. A detailed breakdown of
each of the classifiers (MNB) and (Logit) for both GEOTEXT
datasets is given in Table II while that of the UTGEO-Small
dataset is given in Table III.

On the GEOTEXT dataset from Table II we achieved
significant improvements when the grid counts are reduced
from 20,000 all the way to 5,000 tweets in all three metrics
specifically MED of 39.15km, AED of 598.44km and 59.47km
performing better than methods that had been applied on the
same dataset [8], [9], performing better than [19] by more than
150km in AED and almost 300km in MED Similarly, from
Table III and IV our method performed better than [13] by



TABLE II
QUADTREE-BASED CLASSIFICATION SHOWING ERROR DISTANCE AND

COMPUTE TIME FOR TWO DIFFERENT CLASSIFIERS ON GEOTEXT
DATASET

Grid Med-ED Avg-ED ACC@161 Time
Count (km) (km) (mins)

Logit - GeoText dataset

20,000 143.98 571.39 51.72 68

15,000 125.73 700.76 53.84 70

10,000 129.18 620.81 52.04 73

5,000 39.15 598.44 59.47 79

MNB - GeoText dataset

20,000 411.22 721.11 38.57 58

15,000 1009.82 579.44 41.61 58

10,000 279.78 876.67 30.76 58

5,000 400.62 853.33 42.57 58

TABLE III
QUADTREE-BASED CLASSIFICATION SHOWING ERROR DISTANCE AND
COMPUTE TIME FOR TWO DIFFERENT CLASSIFIERS ON UTGEO-SMALL

DATASET

Grid Med-ED Avg-ED ACC@161 Time
Count (km) (km) (mins)

Logit - UTGeo-small dataset

20,000 249.45 833.10 43.70 78

15,000 124.44 651.81 54.75 78

10,000 92.86 618.07 57.30 79

5,000 45.00 600.79 60.24 81

MNB - UTGeo-small dataset

20,000 665.31 1093.45 30.20 71

15,000 449.78 907.65 40.07 71

10,000 418.08 828.13 42.56 71

5,000 380.76 855.64 43.76 71

24% in terms of ACC@161, more 400km better prediction for
median error distance and over 250km more accurate average
error distance.This implies that we are unable to go beyond
the maximum grid size and a granularity level finer than 5000
tweets as this could be lead to overfitting of the training data.

In terms of the computing time to execute both methods
using our algorithm we see from both datasets the MNB was
quicker to execute than the Logit classifier. On average about
20 minutes longer to execute. While our method performs
better on all metrics namely AED, MED and ACC@ 161, it
should be noted that the AED is less influenced by anomalous
values in the training dataset as it relies on median values.
However, MED should be given more consideration over the
AED as the latter can be affected by a range of very low and
very high error distances thus not giving a fair assessment of
the classifier performance.

We have also shown the performances of the method with

TABLE IV
OUR METHOD AND OTHER GRID-BASED RESULTS

Author Method AED MED ACC@161

GeoText dataset

Eisenstein et al. [8] Topic Models 900 494 24

Wing et al. [9] Uniform 967 479 N/A

Hulden et al. [19] Uniform 764.8 357.2 N/A

Our Quadtree 598.44 39.15 59.47

UTGeo-small dataset

Roller et al. [13] kd-tree 860.0 463.0 34.6

Our Quadtree 600.79 45.00 60.24

TABLE V
ERROR DISTANCE IN MILES FOR ACC@90% BY OUR LOGIT

CLASSIFIERS

Logit-20k Logit-15k Logit-10k Logit-5k
GEOTEXT 1,046.28 1,733.03 1,237.38 1,193.57
UTGEO - Small 1,558.73 1,253.70 1,230.40 1,289.83

and without considering demographical biases as discussed in
III-B2. It is evident the performance has improved significantly
while we removed the bias using a weighting parameter that
is proportional to the demographic distribution. Finally we
compare our method with other grid-based methods in Table
IV. The result indicates that our method outperformed the
existing grid-based location inference techniques on Twitter.
Showing significantly better results in terms of AED, MED
and Accuracy at an error distance of 161km radius. Wrong
predictions are also included in the visualisation in Fig. 7

According to the 2017 US Census [35], the average size of
a city with a population above 100,000 is approximately 100
sq miles. The average land area of a US state is over 57,000
sq miles. While an average county size is 1,124 sq miles.
At an error distance of just over 1,100 miles we achieve 90%
accuracy as shown in Table V. Thus, we place the performance
of our Logit classifier quite competitive with the state-of-the
art at the city-level granularity and much more so at the county
level. It would be interesting to know how our results compare
against deep learning text classification methods, if there’s
significant improvement in terms of accuracy, AED and MED.
It is currently out of the scope of this study.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a new non-uniform Quadtree grid-
based approach for location inference from Twitter messages.
The proposed algorithm uses natural language processing for
semantic understanding and incorporates Cosine similarity and
Jaccard similarity measures for feature vector extraction and
dimensionality reduction. The result of the grid classification
shows good improvement over the existing state-of-the-art grid
based approaches in city-level location inference on existing
benchmark dataset of the GEOTEXT and UTGEO-Small Twit-
ter corpuses. 60% of tweets are accurately predicted within



an error distance of 161km (100 miles radius). The results
show the effectiveness of our Quadtree spatial indexing tech-
nique in combination with a Logistic regression classification
model which outperforms other grid-based methods in location
inference. Future work could look the location prediction in
real-time from live Twitter data streams and possibly linking
with other location-based networks and for other geographical
regions of the world. There is also a potential application in
helping to address online social media issues such as fake
news detection [36] and tracking the origin of online malicious
content-based messages.
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