Accepted for publication in *Ecology* published by Wiley.

1 Exploring drivers of litter decomposition in a greening Arctic: Results from a

- 2 transplant experiment across a tree-line
- 3 Running head: Decomposition in a greening Arctic
- 4 Author list:
- 5 Thomas C. Parker^{1,2*}, Jonathan Sanderman³, Robert D. Holden⁴, Gesche Blume-

6 Werry⁵, Sofie Sjögersten⁶, David Large⁷, Miguel Castro-Díaz⁷, Lorna E. Street⁸, Jens-

- 7 Arne Subke¹ & Philip A. Wookey¹
- 8

9	¹ Biological and Environmental Sciences, School of Natural Sciences, University of
10	Stirling, Stirling, UK, FK9 4LA, ² Department of Animal and Plant Sciences, Alfred
11	Denny Building, University of Sheffield, Sheffield, UK, S10 2TN, ³ Woods Hole
12	Research Center, 149 Woods Hole Road, Falmouth, MA, USA, 02540, ⁴ Abisko
13	Scientific Research Station, Vetenskapens väg 38, SE-981 07 Abisko, Sweden, ⁵
14	Experimental Plant Ecology, Institute of Botany and Landscape Ecology, Greifswald
15	University, 17487 Greifswald, Germany, ⁶ School of Biosciences, University of
16	Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK, LE12
17	5RD, ⁷ Department of Chemical and Environmental Engineering, University of
18	Nottingham, Nottingham, UK, NG7 2RD. ⁸ School of GeoSciences, University of
19	Edinburgh, Edinburgh, EH9 3FF, UK
20	* Corresponding author email: <u>tomparker999@gmail.com</u> phone: (+44)1786 467840
21	

22 Key words: vegetation change, litter, decomposition, Arctic, tundra, forest, snow

23 Abstract

24 Decomposition of plant litter is a key control over carbon (C) storage in the soil. The biochemistry of the litter being produced, the environment in which the decomposition 25 26 is taking place, and the community composition and metabolism of the decomposer organisms exert a combined influence over decomposition rates. As deciduous shrubs 27 and trees are expanding into tundra ecosystems as a result of regional climate warming, 28 29 this change in vegetation represents a change in litter input to tundra soils and a change in the environment in which litter decomposes. To test the importance of litter 30 biochemistry and environment in determining litter mass loss, we reciprocally 31 32 transplanted litter between heath (*Empetrum nigrum*), shrub (*Betula nana*) and forest (Betula pubescens) at a sub-arctic tree-line in Sweden. As expansion of shrubs and trees 33 promotes deeper snow, we also used a snow fence experiment in a tundra heath 34 35 environment to understand the importance of snow depth, relative to other factors, in the decomposition of litter. Our results show that B. pubescens and B. nana leaf litter 36 37 decomposed at faster rates than E. nigrum litter across all environments, while all litter species decomposed at faster rates in the forest and shrub environments than in the 38 39 tundra heath. The effect of increased snow on decomposition was minimal, leading us 40 to conclude that microbial activity over summer in the productive forest and shrub vegetation is driving increased mass loss compared to the heath. Using *B. pubescens* 41 and *E. nigrum* litter, we demonstrate that degradation of carbohydrate-C is a significant 42 43 driver of mass loss in the forest. This pathway was less prominent in the heath, which is consistent with observations that tundra soils typically have high concentrations of 44 45 'labile' C. This experiment suggests that further expansion of shrubs and trees may stimulate the loss of undecomposed carbohydrate-C in the tundra. 46

Climate warming in the Arctic of 1 - 4 °C since 1960 (Serreze and Francis 2006, 49 Serreze and Barry 2011) has resulted in large areas of tundra becoming more 50 51 productive, with some landscapes showing increases in aboveground biomass of 10 g m^{-2} yr ⁻¹ (Epstein et al. 2012). In many of these areas, shrubs and trees have been 52 observed to increase in cover and height (Myers-Smith et al. 2011, Elmendorf et al. 53 2012) and are generally thought to contribute to the increase in "greenness" that is 54 observed from space (Tape et al. 2006). Earth system models have predicted that 55 increased productivity in arctic ecosystems will increase carbon (C) sequestration at the 56 57 biome level (Cramer et al. 2001, Qian et al. 2010, Todd-Brown et al. 2013) through increased litter-fall. However, these predictions are at odds with observations in the 58 Arctic of lower soil organic matter (SOM) storage under shrub and tree species than 59 60 adjacent tundra systems (Wilmking et al. 2006, Hartley et al. 2012, Parker et al. 2015). This suggests that we do not yet fully understand the interactions between plant 61 62 functional types (PFTs), litter input and decomposition rates and ecosystem carbon cycling in the Arctic. 63

64 Plant litter is the primary input of C into soil (Aber and Melillo 2001); its

65 decomposition contributes towards humic substances which can lead to the formation of

stable soil organic matter (SOM) (Melillo et al. 1989, Sollins et al. 1996). Along with

67 physico-chemical environmental controls (i.e. temperature, humidity, pH, mineralogy),

the species identity and functional type are key to determining the rate of

69 decomposition of their litter and eventual contribution to SOM (Dorrepaal et al. 2005,

70 Cornelissen et al. 2007, Cornwell et al. 2008, Brovkin et al. 2012). More specifically,

the chemical composition of litter is important in determining its decomposition in any

72 given environment (Coûteaux et al. 1995) with low carbon: nitrogen and high cellulose:

lignin content favoring faster decomposition (Melillo et al. 1989). The decomposition
of litter can be highly dependent on the interaction between litter species identity and
the decomposer environment (Freschet et al. 2012, Keiser et al. 2014). Understanding
the decomposition of different litter types in relevant contrasting environments will give
insight into how litter decomposition may be altered under future global change.

Empetrum nigrum is widespread across arctic and alpine tundras of Fennoscandia and 78 79 boreal forests across Eurasia (Bell and Tallis 1973, Tybirk et al. 2000, Büntgen et al. 2014). Decomposition of *E. nigrum* leaf litter is very slow due to its production of 80 allelopathic compounds (Wardle et al. 1998, Gallet et al. 1999) and high concentrations 81 82 of the lipid polymer cutin, which is particularly slow to break down (Tegelaar et al. 1989, Rasse et al. 2005) as a result of a well-developed waxy cuticle (Bliss 1962, 83 Hetherington et al. 1984). In addition, its physical structure (small, needle-like leaves 84 85 with low specific leaf area (Tybirk et al. 2000, Kleyer et al. 2008, Kattge et al. 2011)), is also likely contribute to slow decomposition in the field. By contrast, leaf litter of 86 87 deciduous shrubs and trees decomposes faster than that of evergreen species such as E. nigrum (Aerts et al. 2006, Cornwell et al. 2008, McLaren et al. 2017). Litter inputs are 88 89 also known to stimulate the decomposition of SOM (Subke et al. 2004), in particular, 90 high quality litter inputs from deciduous boreal systems are linked to faster biogeochemical cycling and lower soil carbon stocks than evergreen systems (Melvin et 91 al. 2015). A replacement of ericaceous evergreen species with deciduous shrubs and 92 forests could thus stimulate litter decomposition and eventually higher turnover of 93 SOM. 94

95 Previous work at the arctic tree-line has found that local site characteristics –

specifically, the presence or absence of forest cover – exerted the strongest control on

97 the decomposition of *B. pubescens* leaf litter, with higher rates of decomposition in

98 birch forests than nearby tundra heaths (Sjögersten and Wookey 2004). This vegetation 99 contrast was apparently more important than differences in regional climate (in contrast to the findings of other studies; Dorrepaal et al., 2005; Cornelissen et al., 2007) and 100 101 experimental warming. The authors hypothesized that litter moisture in the birch forest was important in enhancing decomposition rates, but other abiotic factors such as 102 103 deeper snow cover and therefore warmer winter soils and more active microbial 104 communities (Grogan and Jonasson 2006, Blok et al. 2016) could also contribute to this. Contrasting decomposition rates between forest and tundra sites may therefore 105 106 reflect the combined influence of several factors, both biotic and abiotic, the 107 disentangling of which remains challenging. Saprotrophic fungi that grow in litter horizons of forest floors have the capacity to 108 degrade a large range of simple and complex plant-derived structural molecules and are 109 110 therefore key to the decomposition of litter (Hatakka 1994, Rytioja et al. 2014, Talbot et al. 2015). Decomposition in tundra soils, by contrast, may be under different controls, 111 112 where strong environmental pressure, such as low temperature (Robinson 2001) and a 113 'closed' C and N cycle dominated by ericoid mycorrhizal fungi (Read and Perez-Moreno 2003), may restrict the growth and activity of other fungi. A comparison of the 114 115 components of soil C in forest and tundra heath supports this view, showing that tundra has a more 'labile' signature, with more poorly-decomposed, cellulose-related fractions 116 than the soil of mountain birch forest (Sjögersten et al. 2003). This would suggest that 117 there is less fungal activity in the tundra, especially that of 'brown-rot' fungi which 118 target cellulose as their primary energy source (Talbot et al. 2015). An expansion of 119 120 forests could result in increased metabolism of previously poorly-decomposed litter should the appropriate decomposer community become present. 121

122	Usi	ing a decomposition experiment whereby litter from the dominant species of three
123	imp	portant vegetation types (forest, shrub and tundra heath) was reciprocally
124	trai	nsplanted across a sub-arctic tree-line, we aimed to understand the key drivers of
125	dec	composition rates in this ecosystem. We tested the following specific hypotheses:
126	1.	Litter from the more productive vegetation types (forest and shrub) decomposes at
127		the fastest rates, regardless of the local soil environment;
128	2.	The forest and shrub environments are more favorable than tundra heath for the
129		decomposition of all litter types, irrespective of origin;
130	3.	Deep winter snow and associated soil microclimates, which are characteristic of
131		forest and shrub environments, increase litter decomposition compared to heath
132		environments.

1344. *Materials and methods*

135 *Sites description*

The study area spans a 2 km^2 , permafrost-free landscape around the sub-arctic/alpine 136 tree-line at Nissunsnuohkki (Abisko area, Sweden; ca. 68°18'N 18°49' E, ~600 m asl). 137 The tree-line is formed by mountain birch (Betula pubescens Ehrh. ssp czerepanovii 138 139 (Orlova) Hämet Ahti), with an ericaceous understorey, and the ecotone typically comprises of a thick layer of shrub vegetation before transitioning to tundra heath 140 141 dominated by Empetrum nigrum L. ssp hermaphroditum (Hagerup) Böcher and Vaccinium vitis-idaea L. The intermediate shrub zone is dominated by Betula nana L. 142 and grey willow (Salix) species (typically Salix glauca, often accompanied by Salix 143 144 lanata; other Salix spp., including S. hastata and S. lapponum, occur less frequently). Soil pH in the organic horizon is 4.5 ± 0.1 at forest and 4.3 ± 0.1 at heath locations in 145 the Abisko area (Table 1). Twelve independent, short (<100 m) transects were 146 147 established across the multiple forest patches in the tree-line study area. Transect 148 lengths ranged from 52 to 97 m depending on the sharpness of the forest - heath ecotone transition. The soils at all sites are well-drained (Sjögersten and Wookey 2002) with 149 150 standing-water only observable for a short number of days every year at snow melt (Parker, Personal Observation). Care was taken to select vegetation transitions that were 151 not influenced by local topography, for example where water and snow accumulation 152 153 due to dips and hollows dominate site conditions, and avoiding steep slopes (mean elevation change from heath to forest plots of 2.7 m). For more details on study sites, 154 155 see Parker et al. (2015).

Three plots (approximately 2 m²) were established along each transect in order to
represent the transition in vegetation from heath to forest. These were designated:

tundra heath (H), shrub (S) and forest (F) (see Table 1 for further plot details). H plots
were chosen for an open heath environment with low *B. nana* cover and a low canopy
height, and with vegetation dominated by *E. nigrum*. S plots were identified as areas
dominated by *B. nana* with shrub height characteristically between 40 and 60 cm. F
plots were chosen to be in areas dominated by *B. pubescens*, approximately 10 to 15 m
inside the forest edge.

164 Snow fences and snow depth measurements

Five replicate 3.5 m wide, 1.5 m high snow fences were erected on tundra heath sites 165 between 0.1 and 1 km north of the transect sites (Fig. S1). They were erected before 166 snowfall in 2012 and in 2013 (and lowered during the summer to avoid shading the 167 vegetation and influencing evapotranspiration), and designed to create snow drifts of 168 comparable depth to the typical seasonal snow-cover at F and S plots on the transects. 169 To replicate the snow at F plots, plots were set up 2 m to the leeward side of the fence, 170 171 7 m for the S plots and 20 m for the H plots (no extra snow). Snow depths were measured at both snow fence and transect plots, once each between 14/3 and 29/3 in 172 2013 and between 29/3 and 30/3 in 2014. At each of the transects, snow depth was 173 174 recorded at five points taken within 1.5 m of the logged position of the litter bags (the horizontal accuracy of the GPS unit was 3 m). At the snow fences this was not 175 176 necessary due to the exact known location of the litter bags under the snow, and one measurement was taken per plot. The snow fence treatment that replicated shrub snow 177 depths increased snow depths by 17 cm (compared to 19 cm in the shrub sites). The 178 snow fence plots that replicated snow found in the forests increased snow depth by 55 179 cm (compared to 46 cm in the forest sites (Table 1)). 180

181

182 *Litter bags*

Litter was collected from four different transects at the Abisko study site from 183 2/9/2012-12/9/2012. Freshly fallen B. pubescens and B. nana litter was collected from 184 the top of the litter layer, taking care to exclude older litter (which was easily 185 186 identified). E. nigrum litter was collected by carefully removing senesced leaves from 187 the stem of extracted *Empetrum* shoots. Only recently senesced leaves were taken (light brown colour, 2-4 years old according to growth scars). Litter was collected from the 188 189 'home' plots in which each species is dominant; i.e. B. pubescens from F plots, B. nana 190 from S plots, and E. nigrum from H plots. All litter was sorted to remove any adhering particles or litter from other species, and air dried at 40°C for 72 hours. For each 191 192 species, 0.5 ± 0.01 g of litter was weighed into 7 x 7 cm polyester mesh bags with a 0.3 193 mm mesh size and heat sealed. Note that the relatively small mesh size required to 194 contain the E. nigrum litter will exclude many soil and litter fauna. All litter bags were placed in the field on 17/9/2012. Six bags of each species were placed at every plot on 195 196 all 12 transects and at snow fences. Care was taken to ensure that every bag had good 197 contact with the L horizon at each plot. Two corners of each bag were fastened to the 198 ground using stainless steel pins and all bags were tied with nylon thread to nearby vegetation. Bags were also deployed in the same manner on the leeward side of the 199 200 snow fences. Ten additional 0.5-g samples of each species were oven dried at 60°C for 72 hours, and the mass of undecomposed litter at the initiation of field emplacement 201 202 was corrected according to the residual moisture of air-dried litter. 203 On 13/6/2013 (269 days of incubation), 24/7/2013 (310 days), 16/9/2013 (365 days),

 $203 \qquad \text{On } 15/6/2015 (20) \text{ days of medodilon}, 24/7/2015 (510 \text{ days}), 10/5/2015 (505 \text{ days}),$

 $204 \quad 20/6/2014 (641 \text{ days}) \text{ and } 18/10/2015 (1126 \text{ days}) \text{ one litter bag of each species (one to})$

two on the final harvest, see later text)) at each plot at both transect and snow fence

sites was retrieved from the field and oven dried at 60°C for 72 hours. Once ingrown

vegetation was removed, the remaining litter was extracted, weighed, and percentage
mass remaining calculated. Due to the duration of field emplacement (>3 years) some
litter bags were lost or disturbed (9.8 %); at the final harvest, if two bags were
remaining at a plot and both bags were not damaged, a mean percentage remaining of
the two was calculated.

212 Solid state CPMAS ¹³C NMR

213 Five samples of *B. pubescens* and *E. nigrum* in either the H or F sites at the 641-day harvest were taken forward for solid state ¹³C nuclear magnetic resonance CPMAS ¹³C 214 NMR (cross-polarization/magic angle spinning ¹³C nuclear magnetic resonance 215 spectroscopy) and elemental (C and N) analysis. Samples were randomly selected 216 217 within each of the four groups Samples were randomly selected from a pool of 12 samples within each of the four groups (species (B. pubescens, E. nigrum) and site 218 219 (Forest, Heath) combinations). For both species, three randomly selected 220 undecomposed litter samples (from a pool of ten undecomposed samples at the beginning of the experiment) were taken forward for CPMAS ¹³C NMR. This totalled 221 26 samples taken for CPMAS ¹³C NMR. *Betula pubescens* and *E. nigrum* was selected 222 for the for CPMAS ¹³C NMR analysis as they had the most contrasting decomposition 223 224 rates.

CPMAS ¹³C NMR spectra were obtained using a Bruker Avance 300 spectrometer
(Bruker Analytik GmbH, Rheinstetten, Germany). 2500 scans were obtained from
approximately 0.25 g of ball-milled leaf material of each sample, packed into a
cylindrical zirconia rotor with approximately 0.02 g Tetrakis (trimethylsilyl) silane
(TKS) packed on top and sealed with a Bruker Kel-F drive cap (Bruker Analytik
GmbH, Rheinstetten, Germany). The scanning parameters were as follows: 200 MHz

231	frequency, 1000 ms contact time, 1.5 s relaxation time, 5500 Hz spinning speed, and
232	line broadening of 50 Hz. Chemical shift values were obtained compared to TKS. Total
233	signal intensities from NMR spectra were integrated into eight major chemical shift
234	regions (Table 3).

236 FTIR-NMR spectra transformation

Diffuse reflectance Fourier transform infrared (FTIR) spectroscopy in combination with 237 multivariate statistical techniques represents a robust and low-cost way of predicting 238 239 major properties of various materials including NMR-observed chemistry (Forouzangohar et al. 2015). We applied FTIR spectroscopy to build a predictive model 240 241 from the 26 samples with NMR spectra. This model was later used to predict change in 242 litter organic chemistry for the final harvest. For these 26 samples, FTIR spectra were acquired on a Bruker Vertex 70 (Bruker Optics, Billerica, MA, USA) equipped with a 243 wide-range Si beam splitter and mid infrared detector with Csl windows and a Pike 244 245 Autodiff (Pike Technologies, Madison, WI USA) diffuse reflectance accessory for finely ground samples from undecomposed and 641-day harvests which already had 246 247 associated NMR spectra (n = 26), as well as on 20 samples from the 1126-day harvest that did not have associated NMR spectra. Consistent with the sample selection for 248 NMR, 5 replicates of each treatment were randomly selected from the 1126-day harvest 249 (n = 20). Spectra were acquired on finely ground material over 6000-180 cm⁻¹ with a 250 resolution of 4 cm⁻¹. For each sample, 60 scans were collected and averaged using the 251 OPUS software package (Bruker Optics) and then corrected for background signal 252 253 (average of 60 scans) and transformed into absorbance spectra.

The acquired FTIR spectra were truncated to 4000-630 cm⁻¹ and normalized using the 254 255 standard normal variation (SNV) transformation. A partial least squares regression (PLSR) analysis was used to predict the eight major NMR chemical shift regions on the 256 257 26 samples that had associated NMR data. Given the small sample size (n = 26), a full cross-validation procedure was used. The PLSR analysis was able to produce good 5-258 factor models for the dominant chemical shift regions, with less reliability for the 259 260 regions with only minor contributions (Table S1). These models were then used to 261 predict the signal intensity in each chemical shift region, along with prediction errors 262 (De Vries & Ter Braak, 1995), for the unknown samples that decomposed for 1126 days in the field. All data processing and analysis was performed using the Unscrambler 263 264 X software (CAMO Software AS, Oslo Norway). To aid in the interpretation of the ¹³C 265 NMR data, the distribution of signal intensity from each of the chemical shift regions 266 (Table 3) at each time point (undecomposed, 641-day, 1126-day) was used in a molecular mixing model (Baldock et al. 2004) which calculates the best linear fit of the 267 268 distribution of NMR signal intensity of five major biochemical components (carbohydrates, protein, lignin, lipids and carboxyl C). 269 After analysis by CPMAS ¹³C NMR (undecomposed and 641-day), samples were 270 separated from TKS, ensuring no contamination of the sample, and were analysed for 271 272 carbon and nitrogen content after combustion in a Vario EL Cube elemental analyser (Elementar, Hanau, Germany). After FTIR analysis, the 1126-day samples were 273 analysed for carbon and nitrogen content using a Flash 2000 CN analyser (Thermo 274 Scientific, Waltham, MA, USA). The carbon content data were then applied to the 275 actual mass of the litter remaining and estimated fractions of C components to calculate 276 the mass of carbon remaining in each component. 277

278 Statistical analysis

280 Decay constants (*k*) were calculated for the loss of litter mass of every replicate species 281 and site combination on both the snow fence and natural transect experiments according 282 to the negative exponential litter decay model

283
$$\ln (M_t/M_0) = -kt$$
 equation (1)

where M_0 is the initial dry mass of the sample and M_t is the mass at time t (years). The 284 first two harvests (269 days and 310 days) were omitted for this calculation because 285 they do not fit the long-term exponential decay model as a result of low mass loss in the 286 287 first winter. Differences in k between site (heath, shrub and forest (or snow level in the case of the snow fence experiment)) and species (*E. nigrum*, *B. nana* and *B. pubescens*) 288 289 were compared using a linear mixed effects model in the 'nlme' package (Pinheiro et al. 290 2017) of the R statistical software (R Development Core Team 2016). In the linear mixed effects model, 'Transect' was expressed as a random intercept factor due to 291 292 unquantified baseline differences in decomposition between transects. The interaction 293 between 'site' and 'species' was found not to be statistically significant in the original model (P = 0.64) and was therefore removed from the analysis (Crawley 2007). 294 295 Pairwise comparisons of decomposition rates between different levels of species and site types were carried out by comparing Least-Square means derived from the 296 297 statistical models with a Tukey HSD test. The mass remaining and the percentage of undecomposed samples remaining of 298 299 carbohydrates, lipids and lignin estimated from NMR spectra were analysed using a

three-way ANOVA with time, site (heath and forest) and species (*B. pubescens* and *E.*

301 *nigrum*) as treatment effects. The percentage data were arcsin- square root transformed

prior to analysis. All analyses were carried out using R v3.3.1. (R Development Core

303 Team 2016).

304 *Results*

305 *Litter decomposition rate*

306	Decomposition rates differed significantly between species on both the natural transects
307	(P < 0.001, Table 2) and at the snow fence experiment $(P < 0.001, Table 2)$. Betula
308	pubescens, with an average decomposition constant of 0.25 year-1 across all sites,
309	decomposed significantly faster than both <i>B. nana</i> (0.18 year ⁻¹ ($P < 0.001$)) and <i>E</i> .
310	nigrum (0.15 year ⁻¹ ($P < 0.001$)) (Fig. 1a), B. nana decomposed faster than E. nigrum (P
311	= 0.0018). The host site (in which litter was decomposing) was also highly significantly
312	related to decomposition rates in the litter transplant experiment ($P < 0.001$, Fig. 1a,
313	Table 2). On average, across litter types, litter decomposed marginally faster in the
314	forest (decomposition constant = 0.21 year ⁻¹) than in the shrub sites (0.20 year ⁻¹ (P =
315	0.06) and heath sites (0.18 year ⁻¹ ($P < 0.001$)). Overall, decomposition was faster in the
316	shrub sites than the heath sites ($P = 0.011$). There was no effect of different snow
317	treatments on litter decomposition rates in the snow fence experiment ($P = 0.9$ Fig. 1b,
318	Table 2). At the end of the experiment, B. pubescens in the forest and shrub plots had
319	the least mass remaining (51 % each (Fig. 2)) and E. nigrum in the heath had the most
320	(71 % (Fig. 2)).

321 ¹³C NMR and carbon components of litter

322 Prior to decomposition, *E. nigrum* and *B. pubescens* differed substantially in the relative

323 contributions of different regions of their NMR spectra, with *E. nigrum* dominated by

alkyl-containing compounds and *B. pubescens* dominated by O- alkyl-containing

325	compounds (Table 3). These initial proportional differences in NMR spectra were still
326	apparent after litter had decomposed after 641 and 1126 days in the field (Table 3). The
327	proportion of O-alkyl compounds in both litter types reduced through time whilst alkyls
328	remained stable as a proportion of the litter remaining in both litter types, resulting in an
329	increase in Alkyl:O-alkyl ratio (Table 3). The C:N ratio of fresh <i>B. pubescens</i> litter was
330	(60.8) under half of that measured in <i>E. nigrum</i> (138.3). Over time the C:N ratio
331	decreased rapidly for both litter types, especially in the forest plots where C:N ratio at
332	the end of the experiment reduced to 23.6 and 50.8 in for B. pubescens and E. nigrum
333	respectively (compared to 31.9 and 64.3 at the heath plots (Table 3)).
334	Prior to decomposition, litter from <i>B. pubescens</i> contained 1.7 times more
335	carbohydrate-C than E. nigrum, whereas E. nigrum had 4.9 times more lipid-C in its
336	biomass compared to B. pubescens. Amounts of lignin were similar between the litter
337	types (Fig. 3). After incubation in the field, there was a highly significant effect of site
338	(F = 28, P < 0.001 (Table S2)) and species of litter $(F = 26, P < 0.001 (Table S2))$ on
339	the mass of carbohydrates remaining in litter, whereby this mass was lower in litter
340	decomposing in forest plots and B. pubescens contained higher amounts of
341	carbohydrates than E. nigrum, respectively (Fig. 3a). In the forest, litter carbohydrates
342	initially decomposed rapidly between 0 and 614 days, and then stabilized at
343	approximately 40 % (B. pubescens, Fig. S3a) and 50 % (E. nigrum, Fig. S3a), after
344	which there was only marginal mass loss (Fig. 3). In contrast, the decomposition of
345	litter carbohydrates in the heath followed a more linear pattern, with slower
346	decomposition to 614 days, which then continued to 1126 days. The final percentage
347	mass remaining of carbohydrates of both <i>B. pubescens</i> (49%) and <i>E. nigrum</i> (54%) at
348	the end of the experiment in the heath was within 10 % and 6 %, respectively, of the
349	litter in the forest, despite slower initial decomposition rates (Fig. S3a).

350 Due to very high alkyl-C contents in *E. nigrum* litter, the mass of lipids modelled to be 351 present in this litter was also very high (Fig. 3b), resulting in a highly significant relationship between species type and mass of lipids in extracted litter samples (F = 352 353 690, P < 0.001). There was also a strong effect of site on mass of lipids, with lower amounts remaining in both E. nigrum and B. pubescens at the forest plots (F = 15, P < 100354 0.001 (Table S2)). When expressed as a proportion of the original lipid mass, the results 355 show a strong effect of 'species' (F = 18, P < 0.001 (Table S2)) and 'site' (F = 12, P =356 0.002 (Table S2)); B. pubescens had 60 % of lipid mass remaining in the forest and 70 357 358 % in the heath, whereas E. nigrum had 82 % remaining in the forest and 96 % in the heath (Fig. S3b). 359

Lignin was present in low amounts in litter (Fig. 3c) and there were no significant

differences in mass of lignin remaining over the study duration between site (F = 0.4, P

362 = 0.5 (Table S2)) or species (F = 0.0003, P = 0.98 (Table S2)), but there was a

significant decline in mass with time (F = 11, P = 0.002 (Table S2)). Although initial

amounts of lignin were low (Fig. 3c), it decomposed in all species-site treatments to

about 50 % of its original amount (Fig. S3c)

366

367 Discussion

368 The greater decomposition rates of *B. pubescens* and *B. nana* than *E. nigrum* regardless

369 of decomposition environment clearly support the first hypothesis that litter from an

arctic tree and shrub species decomposes at a faster rate than the typical heath species,

E. nigrum. This difference is consistent with the differences in C stocks in the

environments that these species dominate respectively i.e. low C stocks in forest and

high C stocks in tundra heath (Hartley et al. 2012, Parker et al. 2015).

374 Litter of *E. nigrum*, a key species of tundra heaths, decomposed very slowly. This is 375 likely due to high levels of aliphatic compounds (alkyls) which make up the lipids of its waxy cuticle (Bliss 1962, Hetherington et al. 1984). Lipid levels in E. nigrum litter were 376 377 over four times higher than in B. pubescens, and showed very low rates of mass loss, especially in the tundra heath environment. Whilst our methods cannot distinguish 378 between plant- vs. microbe-derived alkyls (Baldock et al. 1997), it is clear that these 379 380 compounds are contributing substantially to the persistence of *E. nigrum* litter in this experiment. The strong contribution of lipids to long-term SOC storage in tundra heaths 381 382 is also corroborated by the components of C found in the SOM of ericaceous tundra 383 around Abisko (Sjögersten et al. 2003), which also contained high levels of alkyls. This 384 link between aliphatic compounds in *E. nigrum* litter and a resulting alkyl signature in 385 the soil has also been found in Norwegian tundra heath systems (Väisänen et al. 2015), 386 emphasizing that this could be a significant driver of high SOM storage in tundra. Although we could not explicitly address the potential role of the physical structure of 387 388 the litter studied here, it is important in determining decomposition rates (Cornelissen et 389 al. 1999). E. nigrum has a far lower surface area: mass ratio (Specific leaf area) than the 390 Betula species used in this study (Kleyer et al. 2008) which may render the substrate more immediately available to decomposer communities. 391

In contrast to *E. nigrum*, *B. pubescens* lost substantial mass in the initial stages of
decomposition. The measurements of remaining carbon suggest that this initial rapid
decomposition was due to the metabolism and breakdown of the initially high levels of
carbohydrates (predominately O-alkyls). This loss of carbohydrates is a likely
contributing factor to rapid turnover of C and ultimately low storage of C in the soil in
deciduous arctic and boreal ecosystems (Parker et al. 2015, Melvin et al. 2015).
Carbohydrates in *B. pubescens* litter decomposed to a similarly low residual level in the

399 tundra as in the forest, even though their initial decomposition was not as rapid. This supports the hypothesis that litter identity is central to its eventual decomposability 400 (Coûteaux et al. 1995, Cornelissen et al. 2007), irrespective of *in situ* processing rates. 401 We also examined the decomposition rates of leaf litter from *B. nana*, a shrub species 402 which has been observed to be expanding its range over arctic tundra in response to 403 404 climate change (Tape et al. 2006, Myers-Smith et al. 2011). This litter also lost 405 significantly more mass than E. nigrum, and observations of high soil C flux from these 406 shrub systems (Parker et al. 2015) may in part be explained by this more rapid leaf litter turnover. However, B. nana decomposed at slower rates than B. pubescens, which could 407 408 be due to a number of factors including differences in specific leaf area (a facet of physical structure; note earlier paragraph), N content and structural C compounds. 409 410 Indeed, with regards to the litter chemistry Väisänen et al. (2015) reported carbohydrate 411 concentration of 39 % and alkyl to O-alkyl ratio around 0.51 indicating that the intermediate decomposition rates of *B. nana* may be attributed to its intermediate levels 412 413 of carbohydrates (Väisänen et al. 2015). Based on our observed species-specific 414 decomposition rates, any expansion of *B. pubescens* forests is likely to increase leaf litter decomposition in tundra to a greater extent than an expansion of *B. nana*, but both 415 are likely to increase C cycling rates if only PFT (deciduous) of the litter input is 416 considered. 417 The second overarching hypothesis of this study, that litter would decompose fastest in 418

the forest and shrub environments compared with the heath, was supported by the majority of the data, with the exception of the shrub *B. nana*. Our snow fence experiment gives some insight into separating the influence of abiotic (snow depth, temperature and, potentially, moisture) effects on decomposition from the confounding biological factors (i.e. vegetation/microbial). There were no increases in litter loss with

424 increased winter snow depth over the 2 years of study, concurring with findings of 425 another study in arctic tundra (DeMarco et al. 2014) but not those of Blok et al. (2016). As the experimentally manipulated snow depth did not influence decomposition rates, 426 427 we must conclude that the naturally deep snow cover was not the driver behind the rapid decomposition which we observed in the forest. We however, do not rule out a 428 429 longer-term effect of many years of snow cover on microbial communities and resulting decomposition rates. Litter moisture is an abiotic factor that we could not take directly 430 431 into account in the present study. It is known to be important in controlling microbial 432 activity and litter turnover in boreal forests (Schimel et al. 1999), and low surface 433 moisture in heath ecosystems has been implicated in slowing decomposition (Sjögersten 434 and Wookey 2004). We acknowledge that there are abiotic controls other than snow 435 depth that we have not accounted for, but conclude that the major differences in 436 decomposition that we observe along the tree-line are due to microbial and biochemical differences. 437

438 We propose that the rapid decomposition of carbohydrate rich litter in the forest was 439 driven by two interlinked processes: Firstly, there is a rich and active fungal community (especially brown-rot fungi) in the litter horizons of the forest (Lindahl et al. 2007) 440 capable of producing an array of enzymes that can target initially available cellulose-441 related structures (Talbot et al. 2015) until this source of C is depleted. Secondly, there 442 is a biochemically favorable environment that 'primes' the decomposition of cellulose 443 in the forest plots due, in part, to the high-cellulose content of previous litter-falls. 444 445 Temperature (Pietikainen et al. 2005) and pH (Rousk and Bååth 2011) are important in 446 determining fungal and bacterial growth rates, but soil pH and thaw-season soil 447 temperature is remarkably similar across the study ecotones (Table 1). This leaves the biochemical environment as a key remaining factor explaining why fungi may grow 448

449 well in the birch forests. Experimental additions of cellulose have been found to

450 increase fungal growth (Subke et al. 2004, Meidute et al. 2008) and enzyme production

451 (Talbot and Treseder 2012). Thus, it is feasible that in the mountain birch forests in the

452 present study there are tight linkages between the carbohydrate rich litter, increased

453 fungal activity and rapid turnover of C (Parker et al. 2015).

454 The production of allelopathic compounds by *E. nigrum* is a process that can have

455 ecosystem-wide influence (Wardle et al. 1998). Production of poly-phenolic secondary

456 compounds by *E. nigrum* has been linked to inhibited activity of soil fungi and animals

and as a result lowered decomposition rates and increased build-up of SOM (Wardle et

al. 1998, Tybirk et al. 2000). Slow decomposition rates of *E. nigrum* in the present

study may partially be due to remaining residues of allelopathic compounds on the litter

and in the surrounding litter in the heath. However, it should be noted that the forest

sites also have high cover of *E. nigrum* across the understory (Parker et al. 2015) yet

462 carbon turnover is very high compared with the heath. Although assessing the

463 importance of allelopathy across the sub-arctic tree-line is not in the scope of this work,

it may have important controls over decomposition.

465 *Betula pubescens* litter in the forest plots decomposed to half of its original mass within

466 18 months, with limited further mass loss for the remainder of the time in the field. This

is consistent with observations that the most labile components of litter are decomposed

468 initially, whilst remaining litter residue starts to form soil organic matter (Melillo et al.

1989, Sjögersten and Wookey 2004). This prompts the question; how is carbon

470 processed after this initial mass loss, bearing in mind that standing stocks of soil

organic matter are very low in these forests (Hartley et al. 2012, Parker et al. 2015)? In

boreal forests, ectomycorrhizal fungi (EMF) grow in the organic and mineral horizons

below the litter (Lindahl et al. 2007) and have been shown to be able to stimulate

474 decomposition of macromolecular complexes through the production of extracellular

enzymes, specifically, peroxidases (Bödeker et al. 2014, Lindahl and Tunlid 2015).

476 Although other pathways are plausible, we propose that the decomposition of litter in

- this forest ecosystem is characterized by an initial rapid mass loss due to metabolism by
- 478 saprotrophic fungi and bacteria of relatively simple organic molecules e.g.

carbohydrates, and a subsequent steadier decomposition by EMF of the remaining more

480 complex compounds. Taken together, this could result in a thin organic soil horizon and

low net C storage in the ecosystem (Hartley et al. 2012).

482 This study has shown that litter of a common tundra heath species, *E. nigrum*,

decomposes faster in forest or shrub environments than in tundra heath, and that this

decomposition will be driven in the first instance by carbohydrate loss. As forests are

485 expanding in range and cover in some areas of the sub-Arctic (Tømmervik et al. 2009,

486 Rundqvist et al. 2011, Hofgaard et al. 2013) and shrubs have been observed be

487 increasing in community dominance in many locations across the arctic tundra (Tape et

al. 2006, Myers-Smith et al. 2011), the findings of the current study have important

489 implications for the future of arctic C stocks. If tundra heath soils, rich in less-

490 decomposed forms of C (Sjögersten et al. 2003), are colonized by deciduous forest,

491 with its associated fungal community (including EMF which are also potentially

492 efficient decomposers (Lindahl and Tunlid 2015)), then this C will be rapidly

493 metabolized and a significant part of the C currently stored in tundra heath will be

released to the atmosphere. This would represent a positive feedback to climate

495 warming.

496 In conclusion, the dominant litter types across the forest-heath ecotone decomposed

497 faster of litter in the most productive ecosystems. We hypothesize that this is due to a

498 carbohydrate-rich input of litter from the birch canopy and the presence of a

499 decomposer community that can metabolize this relatively labile source of C. Using a 500 snow fence experiment on tundra soils, we show that the effect of increased snow in the forest compared to the heath alone is modest and that the effect of environment on 501 502 decomposition rates in the forest is likely exerted via microbial metabolism over the summer. We raise the hypothesis that microbially-accessible litter C from tundra heath 503 504 species is vulnerable to decomposition should more productive deciduous species 505 further expand onto heaths, resulting potentially in a net emission of CO₂ to the atmosphere. 506

507 Acknowledgements

508 This work was supported by NERC (UK Natural Environment Research Council)

research Studentship training grant NE/J500434/1. The research leading to these results

510 has also received funding from the European Union Seventh Framework Programme

511 [FP7/2007-2013] under grant agreement n° 262693 [INTERACT]. We would like to

thank staff at Abisko Scientific Research Station warmly for hosting us and for

supporting this work. Thanks to Duncan Cameron and Gareth Phoenix for support at the

514 University of Sheffield. We thank Karina Clemmensen and Björn Lindahl for

515 constructive comments on a previous version of this paper. Thanks to two anonymous

516 reviewers for constructive comments.

- Aber, J. D., and J. M. Melillo. 2001. Terrestrial Ecosystems. Second edition. Brooks
 Cole.
- Aerts, R., R. van Logtestijn, and P. S. Karlsson. 2006. Nitrogen supply differentially
 affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species.
 Oecologia 146:652–658.
- 524 Baldock, J. A., C. A. Masiello, Y. Gélinas, and J. I. Hedges. 2004. Cycling and
- 525 composition of organic matter in terrestrial and marine ecosystems. Marine526 Chemistry 92:39–64.
- 527 Baldock, J. A., J. M. Oades, P. N. Nelson, T. M. Skene, A. Golchin, and P. Clarke.

528 1997. Assessing the extent of decomposition of natural organic materials using
529 solid-state C-13 NMR spectroscopy. Australian Journal of Soil Research 35:1061–
530 1083.

- Bell, J. N. B., and J. H. Tallis. 1973. Biological flora of British-Isles Empetrum
 nigrum L. Journal of Ecology 61:289–305.
- Bliss, L. C. 1962. Caloric and lipid-content in alpine tundra plants. Ecology 43:753–
 757.
- Blok, D., B. Elberling, and A. Michelsen. 2016. Initial Stages of Tundra Shrub Litter
 Decomposition May Be Accelerated by Deeper Winter Snow But Slowed Down
 by Spring Warming. Ecosystems 19:155–169.
- 538 Bödeker, I. T. M., K. E. Clemmensen, W. de Boer, F. Martin, Å. Olson, and B. D.

539	Lindahl. 2014. Ectomycorrhizal Cortinarius species participate in enzymatic
540	oxidation of humus in northern forest ecosystems. New Phytologist 203:245–256.
541	Brovkin, V., P. M. van Bodegom, T. Kleinen, C. Wirth, W. K. Cornwell, J. H. C.
542	Cornelissen, and J. Kattge. 2012. Plant-driven variation in decomposition rates
543	improves projections of global litter stock distribution. Biogeosciences 9:565–576.
544	Büntgen, U., L. Hellmann, W. Tegel, S. Normand, I. Myers-Smith, A. V Kirdyanov, D.
545	Nievergelt, and F. H. Schweingruber. 2014. Temperature-induced recruitment
546	pulses of Arctic dwarf shrub communities. Journal of Ecology 103:489-501.
547	Cornelissen, J. H. C., P. M. van Bodegom, R. Aerts, T. V Callaghan, R. S. P. van
548	Logtestijn, J. Alatalo, F. S. Chapin, R. Gerdol, J. Gudmundsson, D. Gwynn-Jones,
549	A. E. Hartley, D. S. Hik, A. Hofgaard, I. S. Jonsdottir, S. Karlsson, J. A. Klein, J.
550	Laundre, B. Magnusson, A. Michelsen, U. Molau, V. G. Onipchenko, H. M.
551	Quested, S. M. Sandvik, I. K. Schmidt, G. R. Shaver, B. Solheim, N. A.
552	Soudzilovskaia, A. Stenstrom, A. Tolvanen, O. Totland, N. Wada, J. M. Welker,
553	X. Zhao, and M. O. L. Team. 2007. Global negative vegetation feedback to climate
554	warming responses of leaf litter decomposition rates in cold biomes. Ecology
555	Letters 10:619–627.
556	Cornelissen, J. H. C., N. Perez-Harguindeguy, S. Diaz, J. P. Grime, B. Marzano, M.
557	Cabido, F. Vendramini, and B. Cerabolini. 1999. Leaf structure and defence
558	control litter decomposition rate across species and life forms in regional floras on
559	two continents. New Phytologist 143:191–200.
560	Cornwell, W. K., J. H. C. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T. Eviner, O.
561	Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Perez-Harguindeguy, H. M.

562	Quested, L. S. Santiago, D. A. Wardle, I. J. Wright, R. Aerts, S. D. Allison, P. van
563	Bodegom, V. Brovkin, A. Chatain, T. V Callaghan, S. Diaz, E. Garnier, D. E.
564	Gurvich, E. Kazakou, J. A. Klein, J. Read, P. B. Reich, N. A. Soudzilovskaia, M.
565	Victoria Vaieretti, and M. Westoby. 2008. Plant species traits are the predominant
566	control on litter decomposition rates within biomes worldwide. Ecology Letters
567	11:1065–1071.
568	Coûteaux, M. M., P. Bottner, and B. Berg. 1995. Litter decomposition, climate and
569	litter quality. Trends in Ecology & Evolution 10:63–66.
570	Cramer, W., A. Bondeau, F. I. Woodward, I. C. Prentice, R. A. Betts, V. Brovkin, P. M.
571	Cox, V. Fisher, J. A. Foley, A. D. Friend, C. Kucharik, M. R. Lomas, N.
572	Ramankutty, S. Sitch, B. Smith, A. White, and C. Young-Molling. 2001. Global
573	response of terrestrial ecosystem structure and function to CO2 and climate
574	change: results from six dynamic global vegetation models. Global Change
575	Biology 7:357–373.
576	Crawley, M. J. 2007. The R Book. First edition. Wiley, Chichester.
577	DeMarco, J., M. C. Mack, and M. S. Bret-Harte. 2014. Effects of arctic shrub expansion
578	on biophysical vs. biogeochemical drivers of litter decomposition. Ecology
579	95:1861–1875.
580	Dorrepaal, E., J. H. C. Cornelissen, R. Aerts, B. Wallen, and R. S. P. Van Logtestijn.
581	2005. Are growth forms consistent predictors of leaf litter quality and
582	decomposability across peatlands along a latitudinal gradient? Journal of Ecology
583	93:817–828.
584	Elmendorf, S. C., G. H. R. Henry, R. D. Hollister, R. G. Bjork, N. Boulanger-Lapointe,

585	E. J. Cooper, J. H. C. Cornelissen, T. A. Day, E. Dorrepaal, T. G. Elumeeva, M.
586	Gill, W. A. Gould, J. Harte, D. S. Hik, A. Hofgaard, D. R. Johnson, J. F.
587	Johnstone, I. S. Jonsdottir, J. C. Jorgenson, K. Klanderud, J. A. Klein, S. Koh, G.
588	Kudo, M. Lara, E. Levesque, B. Magnusson, J. L. May, J. A. Mercado-Diaz, A.
589	Michelsen, U. Molau, I. H. Myers-Smith, S. F. Oberbauer, V. G. Onipchenko, C.
590	Rixen, N. M. Schmidt, G. R. Shaver, M. J. Spasojevic, P. E. Porhallsdottir, A.
591	Tolvanen, T. Troxler, C. E. Tweedie, S. Villareal, CH. Wahren, X. Walker, P. J.
592	Webber, J. M. Welker, and S. Wipf. 2012. Plot-scale evidence of tundra vegetation
593	change and links to recent summer warming. Nature Climate Change 2:453–457.
594	Epstein, H. E., M. K. Raynolds, D. A. Walker, U. S. Bhatt, C. J. Tucker, and J. E.
595	Pinzon. 2012. Dynamics of aboveground phytomass of the circumpolar Arctic
596	tundra during the past three decades. Environmental Research Letters 7:15506.
597	Forouzangohar, M., J. A. Baldock, R. J. Smernik, B. Hawke, and L. T. Bennett. 2015.
598	Mid-infrared spectra predict nuclear magnetic resonance spectra of soil carbon.
599	Geoderma 247–248:65–72.
600	Freschet, G. T., R. Aerts, and J. H. C. Cornelissen. 2012. Multiple mechanisms for trait
601	effects on litter decomposition: moving beyond home-field advantage with a new
602	hypothesis. Journal of Ecology 100:619–630.
603	Gallet, C., M. C. Nilsson, and O. Zackrisson. 1999. Phenolic metabolites of ecological
604	significance in Empetrum hermaphroditum leaves and associated humus. Plant and
605	Soil 210:1–9.
606	Grogan, P., and S. Jonasson. 2006. Ecosystem CO2 production during winter in a

607 Swedish subarctic region: the relative importance of climate and vegetation type.

Global Change Biology 12:1479–1495.

609	Hartley, I. P., M. H. Garnett, M. Sommerkorn, D. W. Hopkins, B. J. Fletcher, V. L.
610	Sloan, G. K. Phoenix, and P. A. Wookey. 2012. A potential loss of carbon
611	associated with greater plant growth in the European Arctic. Nature Climate
612	Change 2:875–879.
613	Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi -
614	production and role in lignin degradation. Fems Microbiology Reviews 13:125-
615	135.
616	Hetherington, A. M., M. I. S. Hunter, and R. M. M. Crawford. 1984. Evidence contrary
617	to the existence of storage lipid in leaves of plants inhabiting cold climates. Plant,
618	Cell & Environment 7:223–227.
619	Hofgaard, A., H. Tommervik, G. Rees, and F. Hanssen. 2013. Latitudinal forest
620	advance in northernmost Norway since the early 20th century. Journal of
621	Biogeography 40:938–949.
622	Kattge, J., S. Díaz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bönisch, E. Garnier, M.
623	Westoby, P. B. Reich, I. J. Wright, J. H. C. Cornelissen, C. Violle, S. P. Harrison,
624	P. M. Van Bodegom, M. Reichstein, B. J. Enquist, N. A. Soudzilovskaia, D. D.
625	Ackerly, M. Anand, O. Atkin, M. Bahn, T. R. Baker, D. Baldocchi, R. Bekker, C.
626	C. Blanco, B. Blonder, W. J. Bond, R. Bradstock, D. E. Bunker, F. Casanoves, J.
627	Cavender-bares, J. Q. Chambers, F. S. Chapin Iii, J. Chave, D. Coomes, W. K.
628	Cornwell, J. M. Craine, B. H. Dobrin, L. Duarte, W. Durka, J. Elser, G. Esser, M.
629	Estiarte, W. F. Fagan, J. Fang, F. Fernández-méndez, A. Fidelis, B. Finegan, O.
630	Flores, H. Ford, D. Frank, G. T. Freschet, N. M. Fyllas, R. V Gallagher, W. A.

631	Green, A. G. Gutierrez, T. Hickler, S. I. Higgins, J. G. Hodgson, A. Jalili, S.
632	Jansen, C. A. Joly, A. J. Kerkhoff, D. Kirkup, K. Kitajima, M. Kleyer, S. Klotz, J.
633	M. H. Knops, K. Kramer, I. Kühn, H. Kurokawa, D. Laughlin, T. D. Lee, M.
634	Leishman, F. Lens, T. Lenz, S. L. Lewis, J. Lloyd, J. Llusià, F. Louault, S. Ma, M.
635	D. Mahecha, P. Manning, T. Massad, B. E. Medlyn, J. Messier, A. T. Moles, S. C.
636	Müller, K. Nadrowski, S. Naeem, Ü. Niinemets, S. Nöllert, A. Nüske, R. Ogaya, J.
637	Oleksyn, V. G. Onipchenko, Y. Onoda, J. Ordoñez, G. Overbeck, W. A. Ozinga,
638	S. Patiño, S. Paula, J. G. Pausas, J. Peñuelas, O. L. Phillips, V. Pillar, H. Poorter,
639	L. Poorter, P. Poschlod, A. Prinzing, R. Proulx, A. Rammig, S. Reinsch, B. Reu, L.
640	Sack, B. Salgado-negret, J. Sardans, S. Shiodera, B. Shipley, A. Siefert, E.
641	Sosinski, Jf. Soussana, E. Swaine, N. Swenson, K. Thompson, P. Thornton, M.
642	Waldram, E. Weiher, M. White, S. White, S. J. Wright, B. Yguel, S. Zaehle, A. E.
643	Zanne, and C. Wirth. 2011. TRY – a global database of plant traits. Global Change
644	Biology 17:2905–2935.
645	Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling
645 646	Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling the mechanisms underlying functional differences among decomposer
645 646 647	Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102:603–609.
645 646 647 648	 Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102:603–609. Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein,
645 646 647 648 649	 Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102:603–609. Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J. M. Van Groenendael, L. Klimeš, J. Klimešová, S. Klotz, G. M.
645 646 647 648 649 650	 Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102:603–609. Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J. M. Van Groenendael, L. Klimeš, J. Klimešová, S. Klotz, G. M. Rusch, M. Hermy, D. Adriaens, G. Boedeltje, B. Bossuyt, A. Dannemann, P.
645 646 647 648 649 650 651	 Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102:603–609. Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J. M. Van Groenendael, L. Klimeš, J. Klimešová, S. Klotz, G. M. Rusch, M. Hermy, D. Adriaens, G. Boedeltje, B. Bossuyt, A. Dannemann, P. Endels, L. Götzenberger, J. G. Hodgson, A. K. Jackel, I. Kühn, D. Kunzmann, W.
645 646 647 648 649 650 651 652	 Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102:603–609. Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J. M. Van Groenendael, L. Klimeš, J. Klimešová, S. Klotz, G. M. Rusch, M. Hermy, D. Adriaens, G. Boedeltje, B. Bossuyt, A. Dannemann, P. Endels, L. Götzenberger, J. G. Hodgson, A. K. Jackel, I. Kühn, D. Kunzmann, W. A. Ozinga, C. Römermann, M. Stadler, J. Schlegelmilch, H. J. Steendam, O.
645 646 647 648 649 650 651 652 653	 Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102:603–609. Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J. M. Van Groenendael, L. Klimeš, J. Klimešová, S. Klotz, G. M. Rusch, M. Hermy, D. Adriaens, G. Boedeltje, B. Bossuyt, A. Dannemann, P. Endels, L. Götzenberger, J. G. Hodgson, A. K. Jackel, I. Kühn, D. Kunzmann, W. A. Ozinga, C. Römermann, M. Stadler, J. Schlegelmilch, H. J. Steendam, O. Tackenberg, B. Wilmann, J. H. C. Cornelissen, O. Eriksson, E. Garnier, and B.
 645 646 647 648 649 650 651 652 653 654 	 Keiser, A. D., D. A. Keiser, M. S. Strickland, and M. A. Bradford. 2014. Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology 102:603–609. Kleyer, M., R. M. Bekker, I. C. Knevel, J. P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, J. M. Van Groenendael, L. Klimeš, J. Klimešová, S. Klotz, G. M. Rusch, M. Hermy, D. Adriaens, G. Boedeltje, B. Bossuyt, A. Dannemann, P. Endels, L. Götzenberger, J. G. Hodgson, A. K. Jackel, I. Kühn, D. Kunzmann, W. A. Ozinga, C. Römermann, M. Stadler, J. Schlegelmilch, H. J. Steendam, O. Tackenberg, B. Wilmann, J. H. C. Cornelissen, O. Eriksson, E. Garnier, and B. Peco. 2008. The LEDA Traitbase: A database of life-history traits of the Northwest

 Finlay. 2007. Spatial separation of litter decomposition and mycorrhizal nitre uptake in a boreal forest. New Phytologist 173:611–620. Lindahl, B. D., and A. Tunlid. 2015. Ectomycorrhizal fungi – potential organic m decomposers, yet not saprotrophs. New Phytologist 205:1443–1447. McLaren, J. R., K. M. Buckeridge, M. J. van de Weg, G. R. Shaver, J. P. Schimel L. Gough. 2017. Shrub encroachment in Arctic tundra: Betula nana effects o above- and belowground litter decomposition. Ecology 98:1361–1376. Meidute, S., F. Demoling, and E. Bååth. 2008. Antagonistic and synergistic effect fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry 40:2334–2343. Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal For Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Vent Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	656	Lindahl, B. D., K. Ihrmark, J. Boberg, S. E. Trumbore, P. Högberg, J. Stenlid, and R. D.
 uptake in a boreal forest. New Phytologist 173:611–620. Lindahl, B. D., and A. Tunlid. 2015. Ectomycorrhizal fungi – potential organic m decomposers, yet not saprotrophs. New Phytologist 205:1443–1447. McLaren, J. R., K. M. Buckeridge, M. J. van de Weg, G. R. Shaver, J. P. Schimel L. Gough. 2017. Shrub encroachment in Arctic tundra: Betula nana effects o above- and belowground litter decomposition. Ecology 98:1361–1376. Meidute, S., F. Demoling, and E. Bååth. 2008. Antagonistic and synergistic effect fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry 40:2334–2343. Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal Fo Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	657	Finlay. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen
 Lindahl, B. D., and A. Tunlid. 2015. Ectomycorrhizal fungi – potential organic m decomposers, yet not saprotrophs. New Phytologist 205:1443–1447. McLaren, J. R., K. M. Buckeridge, M. J. van de Weg, G. R. Shaver, J. P. Schimel L. Gough. 2017. Shrub encroachment in Arctic tundra: Betula nana effects o above- and belowground litter decomposition. Ecology 98:1361–1376. Meidute, S., F. Demoling, and E. Bååth. 2008. Antagonistic and synergistic effect fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry 40:2334–2343. Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal Fc Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Vent Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	658	uptake in a boreal forest. New Phytologist 173:611–620.
 decomposers, yet not saprotrophs. New Phytologist 205:1443–1447. McLaren, J. R., K. M. Buckeridge, M. J. van de Weg, G. R. Shaver, J. P. Schimel L. Gough. 2017. Shrub encroachment in Arctic tundra: Betula nana effects o above- and belowground litter decomposition. Ecology 98:1361–1376. Meidute, S., F. Demoling, and E. Bååth. 2008. Antagonistic and synergistic effect fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry 40:2334–2343. Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal Fo Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	659	Lindahl, B. D., and A. Tunlid. 2015. Ectomycorrhizal fungi – potential organic matter
 McLaren, J. R., K. M. Buckeridge, M. J. van de Weg, G. R. Shaver, J. P. Schimel L. Gough. 2017. Shrub encroachment in Arctic tundra: Betula nana effects o above- and belowground litter decomposition. Ecology 98:1361–1376. Meidute, S., F. Demoling, and E. Bååth. 2008. Antagonistic and synergistic effect fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry 40:2334–2343. Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal Fc Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	660	decomposers, yet not saprotrophs. New Phytologist 205:1443-1447.
 L. Gough. 2017. Shrub encroachment in Arctic tundra: Betula nana effects o above- and belowground litter decomposition. Ecology 98:1361–1376. Meidute, S., F. Demoling, and E. Bååth. 2008. Antagonistic and synergistic effect fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry 40:2334–2343. Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal Fc Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	661	McLaren, J. R., K. M. Buckeridge, M. J. van de Weg, G. R. Shaver, J. P. Schimel, and
 above- and belowground litter decomposition. Ecology 98:1361–1376. Meidute, S., F. Demoling, and E. Bååth. 2008. Antagonistic and synergistic effect fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry 40:2334–2343. Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C. Linked to Forest Tree Species Composition in a Mid-Successional Boreal For Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Vent Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	662	L. Gough. 2017. Shrub encroachment in Arctic tundra: Betula nana effects on
 Meidute, S., F. Demoling, and E. Bååth. 2008. Antagonistic and synergistic effect fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry 40:2334–2343. Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal For Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venn Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	663	above- and belowground litter decomposition. Ecology 98:1361–1376.
 fungal and bacterial growth in soil after adding different carbon and nitrogen sources. Soil Biology & Biochemistry 40:2334–2343. Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal Fo Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venn Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	664	Meidute, S., F. Demoling, and E. Bååth. 2008. Antagonistic and synergistic effects of
 sources. Soil Biology & Biochemistry 40:2334–2343. Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal Fc Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	665	fungal and bacterial growth in soil after adding different carbon and nitrogen
 Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. Carbon and nitrogen dynamics along the decay continuum - plant litter to soi organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal For Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Vent Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	666	sources. Soil Biology & Biochemistry 40:2334–2343.
 Carbon and nitrogen dynamics along the decay continuum - plant litter to sol organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal For Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Vent Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	667	Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. 1989.
 organic-matter. Plant and Soil 115:189–198. Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C. Linked to Forest Tree Species Composition in a Mid-Successional Boreal For Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	668	Carbon and nitrogen dynamics along the decay continuum - plant litter to soil
 Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal For Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	669	organic-matter. Plant and Soil 115:189–198.
 Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient C Linked to Forest Tree Species Composition in a Mid-Successional Boreal Fo Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	670	Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. A. G.
 Linked to Forest Tree Species Composition in a Mid-Successional Boreal For Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	671	Schuur. 2015. Differences in Ecosystem Carbon Distribution and Nutrient Cycling
 Ecosystems 18:1472–1488. Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	672	Linked to Forest Tree Species Composition in a Mid-Successional Boreal Forest.
 Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	673	Ecosystems 18:1472–1488.
 Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ro L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	674	Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D.
 L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	675	Tape, M. Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ropars,
 M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venr Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga 	676	L. Hermanutz, A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, N.
678 Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Groga	677	M. Schmidt, G. Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venn, S.
	678	Goetz, L. Andreu-Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Grogan, H.

679	E. Epstein, and D. S. Hik. 2011. Shrub expansion in tundra ecosystems: dynamics,
680	impacts and research priorities. Environmental Research Letters 6:45509.

- Parker, T. C., J.-A. Subke, and P. A. Wookey. 2015. Rapid carbon turnover beneath
- shrub and tree vegetation is associated with low soil carbon stocks at a subarctic
 treeline. Global Change Biology 21:2070–81.
- Pietikainen, J., M. Pettersson, and E. Baath. 2005. Comparison of temperature effects
 on soil respiration and bacterial and fungal growth rates. Fems Microbiology
 Ecology 52:49–58.
- Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. 2017. {nlme}: Linear
 and Nonlinear Mixed Effects Models.
- 689 Qian, H., R. Joseph, and N. Zeng. 2010. Enhanced terrestrial carbon uptake in the
- 690 Northern High Latitudes in the 21st century from the Coupled Carbon Cycle
- 691 Climate Model Intercomparison Project model projections. Global Change
- 692 Biology 16:641–656.
- R Development Core Team. 2016. R: A Language and Environment for Statistical
- 694 Computing. R Foundation for Statistical Computing, Vienna.
- Rasse, D. P., C. Rumpel, and M. F. Dignac. 2005. Is soil carbon mostly root carbon?
 Mechanisms for a specific stabilisation. Plant and Soil 269:341–356.
- 697 Read, D. J., and J. Perez-Moreno. 2003. Mycorrhizas and nutrient cycling in
- 698 ecosystems a journey towards relevance? New Phytologist 157:475–492.
- Robinson, C. H. 2001. Cold adaptation in Arctic and Antarctic fungi. New Phytologist
- 700 151:341–353.

- Rousk, J., and E. Bååth. 2011. Growth of saprotrophic fungi and bacteria in soil. FEMS
 Microbiology Ecology 78:17–30.
- Rundqvist, S., H. Hedenas, A. Sandstrom, U. Emanuelsson, H. Eriksson, C. Jonasson, 703 704 and T. V Callaghan. 2011. Tree and Shrub Expansion Over the Past 34 Years at the Tree-Line Near Abisko, Sweden. Ambio 40:683–692. 705 706 Rytioja, J., K. Hildén, J. Yuzon, A. Hatakka, R. P. de Vries, and M. R. Mäkelä. 2014. 707 Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes. Microbiology 708 and Molecular Biology Reviews 78:614-649. 709 Schimel, J. P., J. M. Gulledge, J. S. Clein-Curley, J. E. Lindstrom, and J. F. Braddock. 1999. Moisture effects on microbial activity and community structure in 710 711 decomposing birch litter in the Alaskan taiga. Soil Biology and Biochemistry 712 31:831-838. 713 Serreze, M. C., and R. G. Barry. 2011. Processes and impacts of Arctic amplification: A 714 research synthesis. Global and Planetary Change 77:85-96.
- Serreze, M. C., and J. A. Francis. 2006. The arctic amplification debate. Climatic
 Change 76:241–264.
- Sjögersten, S., B. L. Turner, N. Mahieu, L. M. Condron, and P. A. Wookey. 2003. Soil
 organic matter biochemistry and potential susceptibility to climatic change across
 the forest-tundra ecotone in the Fennoscandian mountains. Global Change Biology
 9:759–772.
- Sjögersten, S., and P. a. Wookey. 2002. Climatic and resource quality controls on soil
 respiration across a forest-tundra ecotone in Swedish Lapland. Soil Biology and
 Biochemistry 34:1633–1646.

724	Sjögersten, S., and P. A. Wookey. 2004. Decomposition of mountain birch leaf litter at
725	the forest-tundra ecotone in the Fennoscandian mountains in relation to climate
726	and soil conditions. Plant and Soil 262:215–227.

727 Sollins, P., P. Homann, and B. A. Caldwell. 1996. Stabilization and destabilization of

soil organic matter: Mechanisms and controls. Geoderma 74:65–105.

- 729 Subke, J. A., V. Hahn, G. Battipaglia, S. Linder, N. Buchmann, and M. F. Cotrufo.
- 730 2004. Feedback interactions between needle litter decomposition and rhizosphere731 activity. Oecologia 139:551–559.
- Talbot, J. M., F. Martin, A. Kohler, B. Henrissat, and K. G. Peay. 2015. Functional
- guild classification predicts the enzymatic role of fungi in litter and soil
 biogeochemistry. Soil Biology and Biochemistry 88:441–456.
- Talbot, J. M., and K. K. Treseder. 2012. Interactions among lignin, cellulose, and
 nitrogen drive litter chemistry-decay relationships. Ecology 93:345–354.
- 737 Tape, K., M. Sturm, and C. Racine. 2006. The evidence for shrub expansion in

738 Northern Alaska and the Pan-Arctic. Global Change Biology 12:686–702.

- Tegelaar, E. W., J. W. Deleeuw, and P. J. Holloway. 1989. Some mechanisms of flash
 pyrolysis of naturally-occurring higher-plant polyesters. Journal of Analytical and
 Applied Pyrolysis 15:289–295.
- 742 Todd-Brown, K. E. O., J. T. Randerson, F. Hopkins, V. Arora, T. Hajima, C. Jones, E.
- 743 Shevliakova, J. Tjiputra, E. Volodin, T. Wu, Q. Zhang, and S. D. Allison. 2013.
- Changes in soil organic carbon storage predicted by Earth system models during
- the 21st century. Biogeosciences Discuss. 10:18969–19004.

746	Tømmervik, H., B. Johansen, J. A. Riseth, S. R. Karlsen, B. Solberg, and K. A. Hogda.
747	2009. Above ground biomass changes in the mountain birch forests and mountain
748	heaths of Finnmarksvidda, northern Norway, in the period 1957-2006. Forest
749	Ecology and Management 257:244–257.
750	Tybirk, K., M. C. Nilsson, A. Michelson, H. L. Kristensen, A. Shevtsova, M. T.
751	Strandberg, M. Johansson, K. E. Nielsen, T. Rils-Nielsen, B. Strandberg, and I.
752	Johnsen. 2000. Nordic Empetrum dominated ecosystems: Function and
753	susceptibility to environmental changes. Ambio 29:90–97.
754	Väisänen, M., S. Sjögersten, D. Large, T. Drage, and S. Stark. 2015. Long-term
755	reindeer grazing limits warming-induced increases in CO 2 released by tundra
756	heath soil: potential role of soil C quality. Environmental Research Letters
757	10:94020.
758	Wardle, D. A., M. Nilsson, C. Gallet, and O. Zackrisson. 1998. An ecosystem-level
759	perspective of allelopathy. Biological Reviews 73:305-319.
760	Wilmking, M., J. Harden, and K. Tape. 2006. Effect of tree line advance on carbon
761	storage in NW Alaska. Journal of Geophysical Research-Biogeosciences
762	111:G02023.
763	

764	Table 1: Site characteristics along transects at Abisko (means ± 1 SEM, n = 12).
765	'Canopy height' refers to the actual vegetation canopy for Heath, and Shrub
766	communities, and the understorey of the Forest (where mountain birch trees - Betula
767	pubescens - comprise the canopy). Snow depths measured over transects are paired in
768	either 2013 or 2014 with snow depth data from the snow fence experiment, at plots
769	which were selected to mimic snow depth along the transect. Vegetation and soil data
770	(except temperature data) are adapted from Parker et al. (2015). Soil temperature data
771	are average seasonal temperatures at 5 cm depth across six of the twelve transects. The
772	start of each season is defined by soil temperatures deviating and remaining above
773	(Summer) or below (Winter) 0 °C.

	Year	Property	Heath	Forest		
		Distance from Heath (m)		$28.3 \hspace{0.2cm} \pm \hspace{0.2cm} 2.9$	$67.6 \hspace{0.2cm} \pm \hspace{0.2cm} 5.9$	
		Canopy height (cm)	$14.7 \hspace{0.2cm} \pm \hspace{0.2cm} 0.7$	32.0 ± 2.4	19.0 ± 1.7	
Vegetation		<i>B. pubescens</i> density (trees ha ⁻¹)			$785.0 \hspace{0.1 in} \pm \hspace{0.1 in} 109.0$	
		<i>B. nana</i> cover (%)	21.2 ± 2.7	60.3 ± 4.8	8.0 ± 2.2	
		<i>E. nigrum</i> cover (%)	65.4 ± 3.3	$66.9 \hspace{0.2cm} \pm \hspace{0.2cm} 4.7$	45.4 ± 4.2	
		pH (organic horizon)	4.3 ± 0.1	$4.4 \hspace{0.2cm} \pm \hspace{0.2cm} 0.1$	4.5 ± 0.1	
		Organic horizon carbon (kg m ⁻²)	7.0 ± 0.8	3.0 ± 0.5	2.0 ± 0.3	
	Mineral horizon carbon (kg m		2.0 ± 0.3	3.3 ± 1.3	2.5 ± 0.4	
Soil	2012-13	Summer temperature (°C)	5.4 ± 0.3	5.1 ± 0.3	5.5 ± 0.2	
		Winter temperature (°C)	-3.9 ± 0.2	-1.3 ± 0.2	-1.1 ± 0.2	
	2012 14	Summer temperature (°C)	6.6 ± 0.3	$6.6 \hspace{0.2cm} \pm \hspace{0.2cm} 0.6$	7.1 ± 0.2	
	2013-14	Winter temperature (°C)	-2.5 ± 0.5	-1.0 ± 0.1	-0.2 ± 0.1	
	2012 12	Snow depth at transects	13.1 ± 1.8	35.4 ± 4.0	46.8 ± 3.4	
C	2012-15	Snow depth at snow fences (cm)	13.9 ± 2.2	$22.6 \hspace{0.2cm} \pm \hspace{0.2cm} 2.9$	58.5 ± 13.3	
Snow	2012 14	Snow depth at transects	14.4 ± 3.5	$29.7 \hspace{0.2cm} \pm \hspace{0.2cm} 5.3$	72.2 ± 9.1	
	2013-14	Snow depth at snow fences (cm)	13.0 ± 1.5	$39.0 \hspace{0.2cm} \pm \hspace{0.2cm} 8.7$	$78.2 \hspace{0.2cm} \pm \hspace{0.2cm} 10.4$	

Table 2: The effect of species of litter and incubation site on decomposition rate (*k*) on
the natural transects ('Site' represents differences both in abiotic factors (e.g. snow
cover, thermal and moisture regimes) and biotic factors e.g. microbial community and
others)) and at the snow fences (where 'Environment' initially represents differences in
abiotic factors associated with altered snow only).

Natural Transects									
Factor	d.f.	F	Р						
Species	2,89	94.4	< 0.001						
Site	2,89	13.3	< 0.001						
Snow fence experiment									
Factor	d.f.	F	Р						
Species	2,36	86.9	< 0.001						
Snow	2,36	0.2	0.9						

- Table 3: Percentage contributions of chemical shift regions to ¹³C NMR spectra, Alkyl:
- 786 O-Alkyl ratios and C:N ratios of litter samples of *Betula pubescens* and *Empetrum*
- *nigrum* that were decomposing in forest or heath environments at 0 days
- (undecomposed), 614 days and 1126 days. Error values signify \pm 1 SEM (n = 5 for
- decomposed field samples, n = 3 for undecomposed samples).

	0 days			641 days					1126 days						
			F	Forest Heath		Forest			Heath						
	Me	an ±	SE	Me	an± \$	SE	Me	ean±	SE	M	ean±	SE	Me	ean±	SE
Betula pubescens															
Alkyl (0-45 ppm)	15.5	±	0.3	20.9	±	1.2	18.5	±	0.2	20.8	±	1.4	25.8	±	7.3
N-Alkyl/Methoxyl (45-60 ppm)	5.1	±	0.1	6.6	±	0.6	6.2	±	0.1	6.6	±	0.1	6.6	±	0.2
O-Alkyl (60-95 ppm)	47.6	±	0.9	38.3	±	1.6	45.7	±	0.7	38.3	±	1.0	40.2	±	4.8
Di-O-Alkyl (95-110 ppm)	11.3	±	0.2	8.7	±	0.5	10.4	±	0.1	8.7	±	0.3	8.9	±	1.2
Aryl (110-145 ppm)	11.1	±	0.8	11.4	±	0.8	9.6	±	0.3	11.3	±	0.4	9.4	±	0.6
O-Aryl (145-165 ppm)	4.2	±	0.2	4.5	±	0.8	3.6	±	0.3	4.7	±	0.4	3.1	±	0.5
Amide/Carboxyl (165-190 ppm)	5.1	±	0.3	9.5	±	1.9	6.0	±	0.4	9.7	±	0.7	5.9	±	1.1
Alkyl/O-Alkyl	0.3	±	0.0	0.5	±	0.0	0.4	±	0.0	0.5	±	0.0	0.8	±	0.4
C:N	60.8	±	4.3	31.5	±	1.9	49.7	±	0.9	23.6	±	1.3	31.9	±	3.2
Empetrum nigrum															
Alkyl (0-45 ppm)	43.9	±	1.0	50.3	±	1.7	51.6	±	1.3	52.3	±	2.3	54.4	±	0.9
N-Alkyl/Methoxyl (45-60 ppm)	4.7	±	0.2	5.0	±	0.3	5.5	±	0.2	6.0	±	0.1	6.0	±	0.1
O-Alkyl (60-95 ppm)	26.9	±	1.0	21.4	±	1.1	24.8	±	0.6	21.3	±	1.7	21.7	±	0.5
Di-O-Alkyl (95-110 ppm)	6.2	±	0.1	4.8	±	0.4	5.0	±	0.1	4.4	±	0.5	4.4	±	0.2
Aryl (110-145 ppm)	9.9	±	0.1	9.6	±	0.3	7.9	±	0.4	8.7	±	0.2	7.9	±	0.1
O-Aryl (145-165 ppm)	3.9	±	0.3	4.0	±	0.4	2.4	±	0.3	2.9	±	0.1	2.4	±	0.1
Amide/Carboxyl (165-190 ppm)	4.4	±	0.3	4.9	±	0.5	2.8	±	0.6	4.3	±	0.1	3.2	±	0.2
Alkyl/O-Alkyl	1.6	±	0.1	2.4	±	0.2	2.1	±	0.1	2.6	±	0.4	2.5	±	0.1
C:N	138.3	±	3.0	74.6	±	4.5	111.6	±	5.0	50.8	±	3.9	64.3	±	3.1

791

795 Figure 1: Decomposition constants (k) of E. nigrum, B. nana and B. pubescens litter 796 across (a) transects across natural tree-lines from heath to forest and (b) under three 797 different snow depths simulating snow accumulation found at different vegetation 798 types: Heath (control), + Snow (Shrub) and ++ Snow (Forest). Error bars represent ± 1 799 SEM (transects n = 12, snowfences n = 5). 800 801 Figure 2: Percentage mass remaining of litter over time of three different species: (a,d) Empetrum nigrum, (b,e) Betula nana, (c,f) Betula pubescens in either distinct 802 803 vegetation communities (heath, shrub or forest), distributed across natural transects (a,b,c), or under three different snow depths simulating snow accumulation found at 804 805 different vegetation types: Heath (control), + Snow (Shrub) and ++ Snow (Forest) 806 (d,e,f). Error bars represent ± 1 SEM (transects n = 12, snowfences n = 5). The extent 807 of the shaded areas on the x axis indicates the length of the snow covered season in the first two years of study. 808

809

810	Figure 3: M	ass of (a) Ca	rbohydrates, (b)) Lipids and (c)) Lignin of in	Betula pubescens
-----	-------------	---------------	------------------	------------------	----------------	------------------

811 (green diamonds) and *Empetrum nigrum* litter (grey squares) in forest (open shapes)

and heath (closed shapes) environments at initial levels (0 days), and after 614 and 1126

days of decomposition (t5). Error bars represent ± 1 SEM (initial litter: n = 3,

814 decomposed samples: n = 5). Bold lettering in the inset text indicates significant (*P*

<0.05) factors and interactions in three way analysis of variance; number of asterisks

816 indicate level of significance: *** P < 0.001, ** P < 0.01, * P < 0.05, see table S2 for

817 further statistics relating to these data.

Species

819 Fig.1

825 Fig.3