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Abstract. We study the effect of increasing the perturbation strength
on the global structure of QAP fitness landscape induced by Iterated
Local Search (ILS). The global structure is captured with Local Op-
tima Networks. Our analysis concentrates on the number, characteris-
tics and distribution of funnels in the landscape, and how they change
with increasing perturbation strengths. Well-known QAP instance types
are considered. Our results confirm the multi-funnel structure of QAP
fitness landscapes and clearly explain, visually and quantitatively, why
ILS with large perturbation strengths produces better results. Moreover,
we found striking differences between randomly generated and real-world
instances, which warns about using synthetic benchmarks for (manual
or automatic) algorithm design and tuning.

Keywords: Local Optima Network, Quadratic Assignment Problem, QAP, It-
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1 Introduction

The Quadratic Assignment Problem (QAP) requires the assignment at minimal
cost of a set of facilities to a set of locations, given the flows between facilities and
the distances between locations. The QAP is one the most difficult combinatorial
optimisation problems. Current exact algorithms can solve mostly problems of
up to 30 to 40 facilities, therefore, metaheuristics are frequently used to solve
larger instances. The most successful are Hybrid Evolutionary Algorithms [1, 2]
and Iterated Local Search (ILS) with variable perturbation strengths [3, 4].

Several studies have analysed QAP fitness landscapes [1, 3, 5]. The local
properties are usually studied through an autocorrelation analysis, while the
global structure through a fitness distance correlation analysis. The existence of
plateaus and the structure of basins have also been studied [5]. These studies sug-
gest that QAP instances have unstructured landscapes. The distances between
local optima and the best-known solutions, as well as the average distances be-
tween local optima are very close to the landscape diameter (n the instance size).
The local optima are neither restricted to a small region of the search space, nor
seem to be correlated, QAP landscape do not seem to have a ‘big-valley’.
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Beyond fitness distance correlation analysis, there are no tools available to
understand the global structure of fitness landscapes. Local Optima Networks
(LONs) [6], fill this gap by providing a compressed model of landscapes, where
nodes are local optima, and edges possible transitions among them. They model
the distribution and connectivity pattern of local optima, and thus help to char-
acterise the underlying landscape global structure. LONs have been recently used
to study the multi-funnel structure of fitness landscapes [7–9]. A funnel refers to
a grouping of local optima, forming a coarse-level gradient towards a low cost
solution at the end. When sub-optimal funnels exist, search can get trapped and
thus fail to reach the global optimum despite a large computing time.

Iterated local search is a simple yet powerful search strategy. It works by
iteratively alternating an intensification stage (local search) with a diversification
stage (perturbation or kick). We will refer to the strength of a perturbation as
the number of solution components that are modified. Such components are, for
example, the number of jobs to move in production scheduling, or the number of
edges to interchange in the Travelling Salesperson Problem (TSP) [10]. Recent
studies using LONs have shown that increasing the perturbation strength of ILS
can ‘smooth’ the multi-funnel structure, i.e., cause some funnels to disappear or
merge, with the effect of improving the algorithm performance [11, 12].

For some problems, such as the TSP [10, 12], an appropriate perturbation
strength can be small and rather independent of the instance size. ILS imple-
mentations to solve the QAP, instead, have shown to benefit from large per-
turbation sizes. As reported in [10], the best perturbation size depends on the
particular instance. For some instances, altering as many as 75% of the solution
components produced the best performance. We argue that this behaviour can
be better understood by studying the underlying landscape global structure.

The effect of increasing the perturbation strength on the global structure of
QAP fitness landscapes has not yet been studied. In this article, we use LONs
to characterise and contrast the landscapes of QAP instances of different classes
and perturbation strengths. Our goal is twofold. First, to offer a deeper under-
standing of why an increased perturbation strength proves advantageous for the
QAP. Second, to illustrate visually and quantitatively, the structural differences
between real-world and synthetic QAP instances. Another contribution of this
article is a more rigorous description of the notion of funnels, formalising the no-
tion of monotonic sequences from the study of energy landscapes in theoretical
chemistry [13] to the context of LONs for combinatorial optimisation.

2 The Quadratic Assignment Problem

A solution to the QAP is generally written as a permutation s of the set
{1, 2, ..., n}, where si gives the location of item i. Therefore, the search space
is of size n!. The cost, or fitness function associated with a permutation s is a
quadratic function of the distances between the locations, and the flow between
the facilities, f(s) =

∑n
i=1

∑n
j=1 aijbsisj , where n denotes the number of facili-



ties/locations and A = {aij} and B = {bij} are the distance and flow matrices,
respectively.

Our goal is to visualise and characterise in detail the global structure of
QAP fitness landscapes. Therefore, we consider a group of 8 instances from the
QAPLIB3 [14] with sizes ranging from 30 to 42 facilities, which are of moderate
size yet not trivial to solve. Specifically, we selected the largest available real-
world instances around this range, and complemented them with instances of
similar sizes from the other types. According to [15, 3], most QAPLIB instances
can be classified into four types. We selected two instances of each type as
indicated below.

1. Uniform random distances and flows. In these problems, denoted by tainna,
where nn is the problem size, flows and distances are randomly drawn from
a uniform distribution. They are known to be the hardest to solve optimally,
however, heuristic methods generally find solutions 1 or 2 per cent above the
optimum in short computation time [15]. We selected two instances of this
group: tai30a and tai35a.

2. Random flows on grids. These problems consider a rectangular tiling of n1×
n2 squares of unit size. A location is one of these squares and the distances
between them are measured. The flows are randomly generated, but not
necessarily uniformly. These problems are known to be symmetrical and to
have multiple of 4 (n1 6= n2) or 8 (n1 = n2) different optimal solutions. We
selected two instances of this group: nug30 and sko42.

3. Real-world problems. These problems arise from practical applications. We
briefly describe the instances used in this article. The Krarup and Pruzan
instances, denoted by kra, contain real world data and were used to plan
the Klinikum Regensburg in Germany. In the Steinberg’s instances, denoted
by ste, the goal is to minimise the length of connections between units that
have to be placed on a rectangular grid [14]. We selected two instances of this
group: kra30a and ste36a (notice that there are no real-world instances of
size around 40 in QAPLIB).

4. Random real-world like problems. These instances, denoted by tainnb, are
randomly generated in a way that they resemble the structure of the real-
world instances. We selected two instances of this group: tai30b and tai40b.

3 Algorithms and Definitions

We use the implementation of ILS by Stützle [3], which allows us to explore the
effect of different perturbation strengths. The local search stage uses a first im-
provement hill-climbing variant with the pairwise (2-exchange) neighbourhood.
This operator swaps any two positions in a permutation. The perturbation oper-
ator exchanges k randomly chosen items, which corresponds to a random move
in the k-opt neighbourhood. Algorithm 1 outlines the pseudo-code.

3 http://www. seas.upenn.edu/qaplib/



Algorithm 1 Iterated Local Search (ILS)

Require: Search space S, Fitness function f(S),
Perturbation strength k, Stopping threshold t

1: Choose initial random solution s0 ∈ S
2: l ← LocalSearch(s0)
3: i← 0
4: repeat
5: s′ ← Perturbation(l, k)
6: l′ ← LocalSearch(s′)
7: if f(l′) ≤ f(l) then
8: l← l′

9: i← 0
10: end if
11: i← i + 1
12: until i ≥ t
13: return l

3.1 Monotonic LON Model

Local optima. We assume a search space S with a fitness function f(S) and a
neighbourhood function N(s). A local optimum, which in the QAP is a minimum,
is a solution l such that ∀s ∈ N(l), f(l) ≤ f(s). Notice that the inequality is not
strict, in order to allow the treatment of neutrality (local optima of equal fitness),
which we found to occur in some QAP instances. The set of local optima, which
corresponds to the set of nodes in the network model, is denoted by L.

Monotonic perturbation edges. Edges are directed and based on the per-
turbation operator (k-exchange, k > 2). There is an edge from local optimum l1
to local optimum l2, if l2 can be obtained after applying a random perturbation
(k-exchange) to l1 followed by local search, and f(l2) ≤ f(l1). These edges are
called monotonic as they record only non-deteriorating transitions between op-
tima. Edges are weighted with estimated frequencies of transition, specifically,
integers indicating the number of times an edge was visited during the sampling
process (see Section 4). The set of edges is denoted by E.

Monotonic LON. Is the weighted, directed graph MLON = (L,E) where
nodes are the local optima L, and edges E are the monotonic perturbation
edges.

3.2 Compressed Monotonic LON Model

We have observed neutrality at the LON level (i.e. connected sets of optima that
share the same fitness value) on several combinatorial problems. This lead us to
propose a coarser LON model [9], which compresses the local optima that are
connected by neutrality into single nodes. We found this type of neutrality on
some QAP instances, specifically, the grid-based and real-world instances (see
Section 2). Therefore, we considered the compressed model in this study.



Compressed local optima. A compressed local optimum is a set of connected
nodes in the MLON with the same fitness value. Two nodes in the MLON are
connected if there is a monotonic perturbation edge between them. The set of
connected MLON optima with the same fitness, denoted by CL, corresponds to
the set of nodes in the Compressed Monotonic LON model.

Compressed Monotonic LON. Is the weighted, directed graph CMLON =
(CL,CE ), where nodes are the compressed local optima CL. The edges CE are
aggregated from the monotonic edge set E by summing up the edge weights.

Monotonic Sequence. A monotonic sequence is a path of connected nodes
MS = {cl1, cl2, . . . , cls} where cli ∈ CL. By definition of the edges, f(cli) ≤
f(cli−1). There is a natural end to every monotonic sequence, cls, when no
improving transitions can be found. In the directed CMLON network, cls will
be a node without outgoing edges (or sink)4.

Funnel. A funnel can be loosely described a grouping of local optima, con-
forming a coarse-grained gradient towards a low cost optimum. More formally,
we characterise funnels in the CMLON as the aggregation of all monotonic se-
quences ending at the same point (or sink). Funnels can be seen as basins of
attraction at the level of local optima.

4 Experimental Setting

Exhaustive enumeration of the search space, and thus complete extraction of the
LON models, is not feasible for permutation sizes larger than 10. Our instances
have sizes n ≥ 30, therefore sampling is required. The sampling procedure con-
sists of running an instrumented version of Stützle [3] ILS (described in Section
3), where the stopping threshold is set to t = 10 000 iterations without any im-
provement. This serves the purpose of empirically estimating the funnel ends,
i.e., solutions at the end of the ILS trajectory, where escaping is difficult, if not
impossible. Our ILS only accepts improving or equal fitness from perturbation
moves in order to model monotonic sequences. While running ILS, we store in
a set L all the unique optima obtained after the local search stage, and in a set
E all the unique edges obtained after a perturbation followed by local search.
To construct the MLONs for each instance and perturbation strength, these sets
of nodes and edges are aggregated over 200 runs, started from different random
configurations. Five perturbation strengths p, corresponding to k-exchanges, are
explored (summarised in Table 1), ranging from k = n

8 to a complete restart.
Once the MLONs are constructed, we proceed to identify the connected compo-
nents with shared fitness, and thus construct the respective compressed models.

There are multiple performance and network metrics that can be computed
and used to understand search difficulty and landscape structure. We selected a

4 In directed graphs, a node without outgoing edges is called a sink.



Table 1: Perturbation strengths.

flag (p) 1 2 3 4 5

size (k) n
8

n
4

n
2

3n
4

restart

minimal subset characterising the key global structural properties. ILS perfor-
mance is measured with two metrics: (i) success rate, i.e., the proportion of runs
that reached a global optimum, and (ii) the normalised proximity to the global
optimum evaluation (i.e the inverse of the performance gap). These metrics are
gathered from 200 independent runs on each instance and perturbation strength.

Table 2: Performance and local optima network metrics.

Perf.
Metrics

success Success rate of finding a global optimum

proximity Normalised proximity to the global optimum evaluation

Network
Metrics

noptima Number of optima (including both local and global)

compresssion Ratio of number of compressed to total number of optima

pglobal Proportion of funnels that are globally optimal

strength Normalised incoming strength of globally optimal sink(s)

The landscapes’ global structure is assessed using four characteristics, sum-
marised in Table 2. The number of optima (noptima) is the number of nodes of
the MLON model. Since we compute the compressed model CMLON, we report
also the ratio of the number of compressed optima to the number of optima
(compression). For characterising the multi-funnel structure, we measure the
proportion of funnels that end at the global optimum level (pglobal). This is the
ratio of the number of global funnels to the total number of funnels. Finally, as
a measure of the centrality and reachability of the global optima, we compute
the normalised incoming strength (weighted degree) of the global optimal sinks
(strength). This is computed as the sum of the incoming strengths of the globally
optimal sinks divided by the sum of the incoming strengths for all sinks.

5 Results

5.1 Visualisation

A first step in analysing the structure of networks is often to visualise them.
Figure 1 illustrates four compressed MLONs of a single QAP instance, sko42



at different perturbation strengths p ∈ {1, 3, 4, 5}. sko42 is representative for
other QAP instances and also the largest in our set. The number of optimal and
suboptimal funnels and the ILS success rate are also indicated. Each node is a
compressed optimum, and edges are monotonic transitions with the correspond-
ing perturbation strength.
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(c) p=4, f=(4,136), sr=0.01
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(d) p=5, f=(1,196), sr=0.005

Fig. 1: Compressed monotonic local optima networks for instance sko42 at
four different perturbation strengths p ∈ {1, 3, 4, 5}. The number of funnels
f (optimal, suboptimal) and the ILS success rate sr are indicated. The size of
nodes is proportional to their incoming strength. Red highlights the global op-
timal funnels, while blue suboptimal funnels. Funnel ends (sinks) are indicated
in more intense colours.

The networks in Figure 1 capture the whole set of sampled nodes and edges
for each network, whose sizes range from 1,976 nodes (plot (d)) to 3,234 nodes
(plot (a)). Plots were produced with the R statistical language using force-



directed layout methods as implemented in the igraph library [16]. The decora-
tions reflect features relevant to search dynamic; the size of nodes is proportional
to their incoming weighted degree (strength), which indicates how much a node
‘attracts’ the search process. Red nodes belong to the funnel(s) containing a
global optimum, while blue nodes to suboptimal funnels. The funnels’ termi-
nating nodes (sinks) are highlighted with a black outline and a more intense
colour. A visual inspection reveals clear structural differences among the four
perturbation strengths. For the smallest strength (p = 1, plot (a)), four global
optima can be seen in red, but there is no clear funnel basin structure. However,
for p = 2 (plot (b)), a clear pattern emerges, showing the basins (i.e collection
of monotonic sequences with a common ending point) of four optimal funnels in
red, and a number of suboptimal funnels in blue. The success rate increases to
0.53, the highest for this instance. For a stronger perturbation, (p = 4, plot (c))
the performance deteriorates. The four global optimal funnels can still be seen,
but their basins become small, and a multitude of sub-optimal funnels appear.
Finally, for a complete restart (p = 5, plot (d)), only one of the four global
optima was found by the sampling process, the number of sub-optimal funnels
is almost 200 and the success rate is close to zero.

In order to have a view of the global structure of the remaining three types of
QAP instances, Figure 2 shows the network plots for a uniform random instance
tai30a (plots (a) and (b)), a real-world instance kra30a (plots (c) and (d)),
and a random real-world like instance tai40a (plots (e) and (f)). Due to space
constraints, only two perturbation strengths are shown, p = 1 (left plots) and
the value of p producing the highest success rate (right plots). The most striking
observation from these plots are the structural differences between the randomly
generated instances and the real-world instance. The random instances have
a single global optimum, whereas the real-world (and indeed the grid based
instances, see Fig. 1), generally have several global optima. The random uniform
instances (tai30a, plots (a) and (b)) are very difficulty to solve to optimality.
Even for the best-performing perturbation strength (p = 3, plot (b)), the single
global optimum belongs to a tiny funnel, so it is difficult to find. On the other
extreme, the random real-world like instances (e.g. tai40b, plots (e) and (f)),
are far too easy to solve, reaching 100% success for p = 3. Importantly, for both
perturbation strengths, a single funnel structure is observed (there are no blue
nodes in plots (e) and (f)), which clearly contrasts with the multi-funnel nature
of the other instances.

The tai40b networks (plots (e) and (f)) show some intermediate nodes with
high strengths (larger pink nodes) in the path to the global optima (red node
with black outline). However, there are escape edges from these intermediate
attractors, so the perturbation operator is able to overcome them and reach the
global optimum. These instances are therefore easy to solve, and the success rate
will be 1.0 even for a low perturbation, given enough running time. Regarding
the real-world instance kra30a, for a perturbation strength p = 3 (plot (d)), the
four optimal funnels observed for p = 1 (plot (c)) merge into a single funnel with
a large incoming strength, explaining the high success rate in this case.
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(a) tai30a, p=1, f=(1,188), sr=0.015
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(b) tai30a, p=3, f=(1,94), sr=0.03
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(c) kra30a, p=1, f=(4,63), sr=0.18 (d) kra30a, p=4, f=(1,0), sr=0.97

(e) tai40b, p=1, f=(1,0), sr=0.48 (f) tai40b, p=3, f=(1,0), sr=1.0

Fig. 2: Compressed monotonic local optima networks for instances of the three
remaining types and two perturbation strengths, p = 1 (left) and the best per-
forming perturbation (right). For more details see caption of Fig. 1



5.2 Structural and performance metrics

Figure 3 shows the network and performance metrics described in Table 2 for
the eight QAP instances selected. Results were collected for five perturbations
strengths as indicated in Table 1. For most instances, the best performance, as
measured by both success rate and proximity to the optimum cost, is achieved
with an intermediate perturbation strength of p = 3, which corresponds to 50%
changes to the solution. A perturbation strength of p = 4 (75% alterations to
the solution), produces the best performance for one of the instances, kra30a.
For the random uniform instances (tai30 and tai35), success rates are rather low,
however, the solutions found are not far in evaluation from the global optimum
as indicated by the proximity metric. The network metrics, strength and pglobal,
seem to correlate well with the performance metrics. The reduction of the number
of sub-optimal funnels and the increased strength of the global optimal sink,
obtained with perturbation strengths p = {3, 4}, offer an explanation for the
increased success rate from the point of view of the landscape global structure.

The most remarkable observations from the plots in Figure 3 are the notable
differences between the randomly generated instances and the real-world and
grid-based instances. Looking at the compression metric, we can observe that
both the random uniform and random real-world like instances show zero com-
pression, which means that there is no neutrality at the level of local optima.
The grid-based (nug30 and sko42) and real-world(kra30a and sko42) instances,
on the other hand, show neutrality at the local optima level, which decreases
with the perturbation strength, indicating that local optima with the same fit-
ness become connected and thus merged. The uniform random instances (tai30a
and tai35a) have very low levels of strength and ratio of global optimal funnels
(pglobal), whereas the random real-world like instances (tai30b and tai40b) go
to the other extreme, showing a single funnel leading to the global optimum.

6 Conclusion

We have extracted and analysed the compressed monotonic local optima net-
works induced by iterated local search with different perturbation strengths
on QAP instances of different types. Our results confirm that large pertur-
bation strengths, of around 50% or occasionally even 75% alterations to the
solution, produce the best performance. Our analysis explains this behaviour; a
multi-funnel structure generally occurs with low perturbation strengths. With
increased perturbation strength, the number of sub-optimal funnel decreases,
while the size of the optimal funnel increases, which facilitates reaching the
global optimum. We found striking differences between the randomly generated
instances, the real-world instances and the grid-based instances. The latter have
more than one global optimum, and several local optima sharing the same fitness,
which is not the case on the random instances. Moreover, the uniform random
instances are very difficult to solve to optimality; they show multiple funnels
with very small basins, which do not merge with increased perturbation. On
the other extreme, the random real-world like instances are very easy to solve



to optimality; their global structure shows a single funnel with a large basin.
This is in stark contrast with the multi-funnel structure of the real-world and
grid-based instances.
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Fig. 3: Structural and performance metrics (as defined in Table 2) for five per-
turbation strengths (as defined in Table 1).

We argue that care should be taken when using randomly generated instances
to improve the manual or automatic design of heuristic methods. It is not clear
that knowledge extracted from random instances will generalise to real-world
instances. Future work will explore the effect of adding crossover, and whether
the most effective perturbation strength can be inferred from cheap estimations
of the global structure of the underlying landscapes.
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