
Towards Flexible Indices for Distributed Graph Data:
The Formal Schema-level Index Model FLuID

Till Blume
ZBW – Leibniz Information Centre for Economics

Christian-Albrechts-Universität zu Kiel
Kiel, Germany

tbl@informatik.uni-kiel.de

Ansgar Scherp
ZBW – Leibniz Information Centre for Economics

Christian-Albrechts-Universität zu Kiel
Kiel, Germany

asc@informatik.uni-kiel.de

ABSTRACT
Graph indices are a key to manage huge amounts of dis-
tributed graph data. Instance-level indices are available
that focus on the fast retrieval of nodes. Furthermore, there
are so-called schema-level indices focusing on summarizing
nodes sharing common characteristics, i. e., the combination
of attached types and used property-labels. We argue that
there is not a one-size-fits-all schema-level index. Rather,
a parameterized, formal model is needed that allows to
quickly design, tailor, and compare different schema-level
indices. We abstract from related works and provide the
formal model FLuID using basic building blocks to flexibly
define different schema-level indices. The FLuID model pro-
vides parameterized simple and complex schema elements
together with four parameters. We show that all indices
modeled in FLuID can be computed in O(n). Thus, FLuID
enables us to efficiently implement, compare, and validate
variants of schema-level indices tailored for specific applica-
tion scenarios.

Keywords
linked data, schema-level indices, formal model

1. INTRODUCTION
Summarizing data can help to efficiently manage huge

amounts of data, and for many application scenarios indices
are available that fit the specific information need [11].
For graph data, we can distinguish between instance-level
indices and schema-level indices. Instance-level indices focus
on the fast retrieval of nodes or answering queries regarding
reachability, distance, and shortest path [17]. For example,
they can be queried to search for metadata about a book
by its title “Towards a clean air policy” [21]. Schema-level
indices (SLIs) focus on summarizing nodes sharing com-
mon characteristics, i. e., the combination of attached types
and used property-labels. Thus, SLIs support the efficient
execution of structural queries, e. g., searching for biblio-
graphic metadata using the type bibo:book [3]. For example,

30th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 22.05.2018 - 25.05.2018, Wuppertal, Germany.
Copyright is held by the author/owner(s).

Figure 1: A bibliographic metadata record provided by the
British National Library (instance-level information) and a
type-only schema structure (schema-level information).

instead of indexing the instance-level information illustrated
in Fig. 1, a simple schema-level index would only mem-
orize the combined use of the types, e. g., bibo:Book and
dct:BibliographicResource. With such SLIs, search systems
like LODeX [1, 2] and LODatio [10] support their users in
finding and exploring data sources. In the past, different
SLIs have been developed for different purposes that lack a
common formalization and thus compatibility and compa-
rability [9, 14, 16, 4, 13, 2, 20, 19]. We firmly believe the
future development and further research on this topic can
benefit from a common formal model. Thus, we conduct an
in-depth study of existing approaches. We abstract from the
related work and provide the formal model FLuID (Formal
schema-Level Index model for the web of Data) consisting
of basic building blocks to flexibly define SLIs.

The remainder of the paper is organized as follows: In
Sect. 2, we discuss the related work. In Sect. 3, we show
how equivalence relations can model any SLI. Subsequently
in Sect. 4, we define our building blocks as equivalence rela-
tions, i. e., schema elements and their parameterizations. In
Sect. 5, we analyze the space and build-time complexity of
indices defined with FLuID and in Sect. 6.1 we conduct an
empirical evaluation to support the analysis. We then out-
line a processing pipeline as well as a search prototype in
Sect. 6.2, before we conclude in Sect. 7.

2. RELATED WORK
Schema-level indices (SLIs) support to efficiently execute

structural queries over distributed graph data. Structural
queries focus on how nodes (resources) are described, i. e.,
which combinations of types and properties are used to
model the resources. There are various different possibilities
and variants of how to define an SLI and different definitions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/199408972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of SLI allow for capturing different schemas. In the follow-
ing, we present an overview of SLIs with emphasis on their
schema structure, their application scenario, and how they
were formalized.

Characteristic Sets [16] summarize instances along com-
mon incoming properties and outgoing properties. They
were defined as sets of instances using a first-order-logic
expression over triples. They were evaluated with respect to
the accuracy of cardinality estimations for queries in RDF
databases. SemSets [4] are defined as sets of instances that
share the same outgoing properties which are connected
to a common target resource. They were defined as sets
over their own “Property Graph Data Model”. They were
developed to discover semantically similar sets in knowledge
graphs in order to improve keyword-based ad-hoc retrieval.
Christodoulou et al. [3] applied a hierarchical clustering algo-
rithm on RDF data in order to determine clusters, i. e.,
sets of instances that are characterized by the same set of
properties. They were defined as sets in an textual def-
inition. The clusters are annotated using the RDF type
information of the clustered instances, which is then used
to derive a schema from the data sources on the Web of
Data. ABSTAT [20] and LODeX [1, 2] summarize instances
based on a common set of RDF types and properties link-
ing to resources with the same set of types. ABSTAT’s
schema structure was informally defined as triples in a tex-
tual description. Additionally, ABSTAT selects a minimal
number of types from the set of types such that all remaining
types are sub-classes of the selected types. LODeX’s schema
structure was defined using a new grammar for their own
model. LODeX uses a clustering of RDF types to select a
representative type. Thus, they can comprehensively visu-
alize several datasets hosted on DataHub. TermPicker [19]
summarizes instances based on a common set of types, a
common set of properties, and a common set of types of all
property-linked resources. The schema structure was infor-
mally introduced by examples. The goal was to make data-
driven recommendations of vocabulary terms.

One of the first SLIs using bisimulation is DataGuides [9,
14]. Bisimulation operates on state transition systems and
defines an equivalence relation over states [18]. Two states
are considered equivalent (or bisimilar) if they change into
equivalent states with the same type of transition. Interpret-
ing a labeled graph as a representation of a state transition
system allows for the application of bisimulation on RDF
data in order to discover structurally equivalent parts in the
graph. Thus, DataGuides [9, 14] summarizes instances for
which all outgoing paths for the whole subgraph are equiva-
lent. DataGuides were evaluated on relational database sys-
tems using the Object Exchange Model (OEM). Since then,
several SLIs adapted the idea of bisimulation and applied a
stratified k-bisimulation on RDF and OEM [15, 13]. A strat-
ified k-bisimulation is a bisimulation where the maximum
length of the considered path is k edges long [18]. Another
example is SchemEX [13], that summarizes instances similar
to ABSTAT and LODeX, based on a common set of types
and properties linking to resources with a common set of
types. However, it does not perform any selection of types
for the purpose of cluster labeling.

All SLIs presented above define a single, fixed schema
structure. Considering the primary focus of the paper,
the schema structures are often defined informally in a
textual description or only explained by examples [4, 3,

20, 19]. One investigated SLI is defined using a mathe-
matical model, which, however, was designed not for the
SLI directly but rather the surrounding context [2]. Only
few indices are defined using basic first-order-logic [9, 16,
13], which could be reused. However, to the best of our
knowledge, there is only a single parameterization of an
SLI suggested by Tran et al. [22]. They model a label-
parameterized and height-parameterized index. With label-
parameterization, only specific properties are considered and
height-parameterization limits the maximum path-length of
the subgraphs stored in the index. In summary, there
exists no single, fully parameterized model which formally
describes SLIs in general and which can be reused in order
to develop, compare, and validate SLIs.

3. EQUIVALENCES OVER GRAPH DATA
A data graph G is defined by G ⊆ VUB × P × (VUB ∪ L),

where VUB denotes the set of URIs and blank nodes, P the
set of properties, and L the set of literals. A triple is a
statement about a resource s ∈ VUB ∪ P in the form of a
subject-predicate-object expression (s, p, o) ∈ G. Moreover,
the properties P can be divided into disjoint subsets P =
Ptype ∪̇ Prel, where Ptype contains the properties denoting
type information and Prel contains the properties between
instances in the data graph. If not stated otherwise, Ptype

only contains rdf:type and Prel all p ∈ P \ Ptype.
As discussed in Sect. 2, SLIs summarize instances based

on their schema, i. e., common use of types and properties.
For SLIs, we can distinguish between abstract schema level
and the entity mapping level [7]. In our context, the abstract
schema level defines the schema given by the index defini-
tion, e. g., taking only properties into account. We call these
the Schema Elements. The entity mapping level is a concrete
assignment of an instance to such an Schema Element. We
will call Schema Elements with instances mapped to them
Instantiated Schema Elements.

Each instance uses a defined set of types and properties
and thus exactly one schema. Therefore, the mapping of
instances to Instantiated Schema Elements is unique. SLIs
partition the data graph into disjoint subsets of instances,
where each subset is described by an Instantiated Schema
Element. Equivalence relations can describe this graph par-
titioning in a formal way [8].

Definition 1 (Equivalence Relation). For a given
set X, an equivalence relation on X is a subset EQR ⊆
X × X, that is reflexive, symmetric, and transitive. When
(x, y) ∈ EQR, we say that x is equivalent to y or x ∼ y.
For any y ∈ X, the subset of X of all x that are equivalent
to y is called the equivalence class of y, denoted [y]EQR.

Any two equivalence classes are either disjoint or coincide.
This means that any equivalence relation on X defines a
partition (decomposition) of X, and vice versa [8]. Further-
more, it can be shown that the intersection of two equiva-
lence relations over X is also an equivalence relation.

In order to ensure the correctness of the approach, we
formally define instances as equivalence relation over the
data graph G. With instances being defined as equivalence
relation any equivalence relation on top of instances conse-
quently will be an equivalence relation over the data graph.

Definition 2 (instance). Instances are sets of triples
in the data graph G sharing a common subject URI. The

equivalence relation I ⊆ G×G is defined as ((i1, p1, o1), (i2,
p2, o2)) ∈ I ⇔ i1 = i2. We write [i]I or Ii to denote the
equivalence class of the instance with subject URI i.

This definition of an instance maps each triple in G to
exactly one instance determined by its subject URI. Thus,
Def. 2 defines a partition over the data graph G and con-
sequently qualifies as an equivalence relation [8]. In the
context of SLI, we call equivalence classes of instances the
schema elements. We connect the schema elements to gen-
erated instance information by using the notion of pay-
load [10]. The payload comprises information about the
actual data, e. g., all instances or only references to their
data source. In summary a SLI can be defined over the data
graph G, an equivalence relation EQR, and an n-tuple of
payload functions PAY.

Definition 3 (Schema-level Index (SLI)).
Formally, a schema-level index is a 3-tuple (G,EQR,
PAY), where G is the data graph which is indexed, EQR
is an equivalence relation over instances in G, and PAY
is an n-tuple of payload functions, which map instance
information to equivalence classes in EQR.

4. FLuID’S BUILDING BLOCKS
The FLuID model consists of basic building blocks, which

can be combined to define any SLI. We have simple and
complex schema elements, which can be further specialized
with our four parameterizations. This section is organized
into two parts: first we define simple schema structures and
then we continue with complex schema structures.

4.1 Simple Schema Structures
We start by defining a simple schema element called

Object Cluster. Object Clusters partition the data graph
by mapping instances based on a common set of neighboring
objects. Please note that the definition qualifies as equiva-
lence relation since it is reflexive, symmetric and transitive.

Definition 4 (Object Cluster OC). Object Clus-
ters partition the data graph by mapping instances [i1]I
and [i2]I , based on a common set of triples where only
the object is considered. The equivalence relation OC is
defined as follows: ([i1]I , [i2]I) ∈ OC ⇔ ∀(i1, p1, o1)∃(i2, p2,
o2) : o1 = o2 ∧ ∀(i2, p2, o2) ∃(i1, p1, o1) : o1 = o2

The Object Cluster summarizes instances, not taking any
property information into account. This can be changed
using our first parameterization, the label parameterization
lp, which allows ignoring a certain set of properties.

Definition 5 (Label Parameterization lp). The
label parameterization is a function lp(EQR,Pr), which
takes as input an equivalence relation EQR and a set of
properties Pr ⊆ P and returns an equivalence relation
EQRPr . The returned equivalence relation EQRPr is a
restriction of EQR in terms that all assertions about the
triples in EQR only need to be true iff the property of the
triple is included in the parameter property set Pr.

Restricting any schema element with such a property set in
fact relaxes the constraints given by the schema element.
For example, the label parameterization lp applied on the
Object Cluster OC using the properties Ptype summarizes

instances which have the same set of resources connected
over the property rdf:type. This means any other object is
not relevant to determine the equivalence. Please note, any
label parameterized schema element still qualifies as equiv-
alence relation since the same principle as before applies.

To sufficiently cover all SLIs we need more schema ele-
ments in FLuID. Therefore, we can analogously define two
further simple schema elements called Property Cluster
(PC) and Property-Object Cluster (POC). The PC sum-
marizes instances based on the same properties (p1 = p2)
and the POC based on the same property-object tuples
(p1 = p2 ∧ o1 = o2). The Property-Object Cluster is suffi-
cient for a schema structure defined by SemSets [4] since it
compares objects and properties combined.

So far, our schema elements OC, PC, and POC only
take outgoing properties into account. However, schema
structures like Characteristic Sets [16] consider also incom-
ing properties. To address incoming properties, an undi-
rected version of the three simple schema elements can be
defined by additionally considering the incoming triples (x,
p, i) ∈ G with i as the subject of the instance being in object
position. We omit the formal definition of all undirected
schema elements and only present the undirected Property
Cluster u-PC as an example. ([i1]I , [i2]I) ∈ u-PC ⇔ ([i1]I ,
[i2]I) ∈ PC ∧ ∀(x1, p1, i1) ∈ G ∃(x2, p2, i2) ∈ G : p1 =
p2 (and vice versa). The undirected Property Cluster u-PC
resembles the schema structure of Characteristic Sets [16].

4.2 Complex Schema Structures
The simple schema elements introduced above summa-

rize instances by comparing incoming and outgoing triples
of an instance. However, some SLIs like SchemEX [13],
TermPicker [19], ABSTAT [20], and LODeX [1, 2] define
schema structures that go beyond the scope of a single
instance. The simple schema elements are already combi-
nations of equivalence relations by using the identity equiv-
alence “=” on properties and objects. We define complex
schema elements as an extension of simple schema elements.

Definition 6 (Complex Schema Element CSE).
A complex schema element partitions the data graph by
summarizing instances based on three given equivalence
relations ∼s, ∼p, and ∼o. It can be described as 3-tuple
CSE := (∼s, ∼p, ∼o). Two instances [i1]I , [i2]I are
considered equivalent, iff i1 ∼s i2 ∧ p1 ∼p p2 ∧ o1 ∼o o2
holds true for all triples in both instances.

Example 1. We demonstrate the benefit of complex
schema elements by defining CSE-1 := (PC, T, PC)
and CSE-2 := (PC,=, PC), with T being an arbitrary
tautology. Since T considers all properties equal, the
Property Cluster in object position of CSE-1 considers sets
properties. In contrast, CSE-2 uses the identity equivalence
on predicate position, thus, all 2-hop property paths have
to match exactly. The two instances [i3]I and [i4]I with
outgoing properties as illustrated in Fig. 2 are considered
equal according to the equivalence of CSE-1 since the 1-hop
properties are equal and the 2-hop properties are equal.
However, according to CSE-2, they are not considered
equal, since the property paths are not identical.

We apply the same concept to model TermPicker [19]:

(lp(OC,Ptype) ∩ lp(PC,Prel), lp(=, ∅), lp(OC,Ptype))

Figure 2: Sample data graph which is summarized to either
three Object Clusters or one instance parameterized Object
Clusters using SameAs Instances [I]σ.

To model TermPicker, we make use of the intersection of the
label parameterized Object Cluster and the label parameter-
ized Property Cluster. This way, instances need to have the
same type sets and the same Property Cluster. The indepen-
dence of the objects’ type sets and the connecting properties
can be achieved using lp(=, ∅) as predicate equivalence ∼p

in the complex schema element. The identity equivalence on
the empty set is a tautology. The schema of ABSTAT [20],
LODeX [1, 2], and SchemEX [13] is defined straigth forward:

(lp(OC,Ptype), lp(=, Prel), lp(OC,Ptype))

To generalize the concept of taking multiple neighboring
instances into account, we define the chaining parameter-
ization cp. As suggested by Tran et al. [22], we parame-
terize regarding the maximal path length of the subgraph
structure. As illustrated in Fig. 2, the complex schema
element can consider the neighborhood of up to two hops.
When chaining k schema elements, the pattern is recursively
applied up to k hops.

Definition 7 (Chaining Parameterization cp).
The chaining parameterization is a function cp(CSE, k),
which takes a complex schema element CSE := (∼s,∼p,
∼o) and a chaining parameter k ∈ N as input and returns
an equivalence relation CSEk. Formally, this chaining
of k complex schema elements up to length k can be
recursively defined as bisimulation [18]. Two instances
[i1]I and [i2]I are equivalent according to cp(CSE, k) if
three conditions hold true: (1) For k = 0 the subject
equivalence i1 ∼s i2. (2) For k > 0 all three equivalences
i1 ∼s i2 ∧ p1 ∼p p2 ∧ o1 ∼o o2. (3) For k > 0 the
recursion step ([o1]I , [o2]I) ∈ cp(CSE, k − 1).

4.2.1 Support for Unions of Instances
FLuID supports a parameterization of the instance defi-

nition which allows considering instances that resemble the
same real-world entity by using the owl:sameAs property.
In order to take this information into account, we formally
introduce SameAs instances.

Definition 8 (SameAs Instance). The equivalence
relation σ summarizes instances based on the semantics
of owl:sameAs in equivalence classes [I]σ, called SameAs
instance. For all instances [i1]I , [i2]I ∈ [I]σ, there is a path
over all edges (independent of the edges direction) labeled
owl:sameAs in G from i1 to i2.

Furthermore, it can be shown, that the assignment of an
instance to a SameAs Instance is unique, by reducing the
problem to finding weakly connected components in an
owl:sameAs-labeled subgraph of G, as is has been done by
Ding et al. [6]. With the notion of σ, we can now define
the instance parameterization to consider SameAs instances
instead of single instances.

Definition 9 (Instance Parameterization ip).
The instance parameterization is a function ip(EQR, σ),
which extends any simple or complex schema element EQR
to additionally consider all connected instances following the
instance equivalence relation σ. The returned equivalence
relation EQRσ is an extension of EQR, which restricts the
triples to be in [I]σ.

As an example, we apply the instance parameterization ip
on the Object Cluster equivalence relation OC using the
SameAs instances: (I1, I2) ∈ ip(OC, σ) ⇔ ∀(i1, p1, o1) ∈
[I1]σ ∃(i2, p2, o2) ∈ [I2]σ : o1 = o2 (and vice versa).

As the example shows, the instance parameterized OC
considers the SameAs network [6] and thus merges instances.
Fig. 2 shows an example graph. According to the Object
Cluster definition, the instances [i1]I , [i2]I , and [i3]I are
not equivalent. Summarizing [i1]I and [i2]I to a SameAs
instance [I]σ leads to the equivalence of all three instances.

4.2.2 Support for Ontology Inferencing
In the Web of Data, there are assertions about individuals

and assertions about RDF types and properties [5]. For
example, a dataset can contain the following assertions:

<http://bnb.data.bl.uk/doc/resource/009670097> <dct:creator>

<http://bnb.data.bl.uk/id/organization/GreatBritain[..]> .

<dct:creator> <rdfs:domain> <bibo:Document> .

<dct:creator> <rdfs:range> <foaf:Person> .

The triples using rdfs:domain and rdfs:range allow inferring
additional knowledge about individuals using the property
dct:creator. The schema summarization tool ABSTAT [20]
incorporates information derived from an ontology by infer-
ring triples based on a subtype schema graph. ABSTAT’s
schema graph is constructed by extracting the contained
schema assertions. We extend the idea of the schema
graph from ABSTAT but include all RDFS properties
in the schema graph. Thus, our RDFS schema graph
contains hierarchical dependencies of rdfs:subClassOf and
rdfs:subPropertyOf in a tree structure with further cross con-
nections regarding rdfs:range and rdfs:domain.

Definition 10 (Schema Graph). Let SG := (VC ∪P,
E) be an edge-labeled directed multigraph and E ⊆ (VC∪P)×
(VC ∪ P). The set of nodes is the union of the set of RDF
classes and properties. The edge-label function ϕ : E → P
assigns labels from a given set of possible properties P to all
edges e ∈ E.

We construct the RDFS schema graph by extracting
all triples containing RDFS vocabulary terms, namely all
properties PRDFS = {rdfs:subClassOf , rdfs:subPropertyOf ,
rdfs:range, rdfs:domain} and label the schema graph using
the RDFS edge-label function ϕRDFS . In the following,
we denote the schema graph constructed using the labeling
function ϕRDFS with SGRDFS . Having the hierarchically
dependencies of types and properties represented using a
Schema Graph, additional triples can be inferred if possible,
e. g., when a property p1 is used in the data graph and exists
as node in the schema graph.

Definition 11 (Inferencing Parameterization).
The inferencing parameterization is a function Φ(G,SG),
which takes any data graph G and schema graph SG as input
and based on the entailment rules defined in the schema
graph SG returns a data graph GΦ, which additionally
includes all inferred triples.

5. SPACE AND TIME COMPLEXITY
In this section, we analyze the complexity of the compu-

tation process of SLIs defined with FLuID. To this end, we
conduct a space and time complexity analysis of the compu-
tation process with a particular focus on the impact of the
parameterizations. To compute an SLI, the instance data
needs to be mapped to instantiated schema elements. This
can be done, for example, by extracting all properties of an
instance to form a Property Cluster. For instances using
the same properties, the same schema element is computed.
This can be efficiently implemented using hash maps, which
ensure constant time access. As discussed in Sect. 4, each
SLI defined with FLuID can be described as a combination
of parameterized simple schema elements using parameter-
ized complex schema elements. Simple schema elements can
check the equivalence of two instances without considering
neighboring instances. Since instances partition the data
graph (Def. 2) and schema elements partition instances, for
each triple in the data graph one operation for each simple
schema element is needed.

Schema Elements. We denote with c the number of sim-
ple schema elements given by the concrete SLI definition
using FLuID. Thus, without parameterizations, we have lin-
ear space and time complexity in the order of O(c · n), with
c simple schema elements in the definition and n triples in
the data graph. Please note, the undirected schema ele-
ments are an exception, since considering incoming proper-
ties produces an overlap of triples. The incoming property
of instance [i1]I ∈ G is the outgoing property of another
instance [i2]I ∈ G. Thus, for undirected schema elements,
we may have to consider each triple twice.

Label Parameterization. The label parameterization
reduces the number of considered objects and properties for
each simple schema element by restricting the properties
p to be in the set Pr (Def. 5). Considering all excluded
properties P \ Pr and that each property can occur more
than one time in the dataset, we can define a constant
l ≥ |P \ Pr|, which denotes the number of occurrences
of excluded properties in the dataset. Thus, the space
complexity is still linear, but we can find a lower upper
bound O(c · (n− l)). The time complexity is unchanged.

Instance Parameterization. The instance parameteriza-
tion aggregates instances and thus does not impact the over-
all size of the index. Aggregating instances to unions can be
done in constant time like triples are aggregated to instances
in constant time using hash maps. Thus, the time complex-
ity remains unchanged.

Inference Parameterization. The inferencing parameter-
ization requires additional space to store all inferred types
and properties. According to our definition of schema graph
construction (Sect. 4.2.2), types and properties are only
added to the schema graph, if there exists a triple in the
dataset using a property in PRDFS . We can assume that we
have a limited number of such schema triple s << n in the
schema graph compared to the data graph size n. Further-
more, the complexity depends on the number of additional
triples g ≤ s that can actually be inferred for each triple in
the data graph. For example, we have two triples (s1, p1,

o1) ∈ G and (s2, p2, o2) ∈ G with p1 in the schema graph
and p2 not in the schema graph. Then, only for property
p1, for example, all super-properties can be fetched by fol-
lowing the subPropertyOf relations, e. g., {p3, p4}. Thus, we
have an upper bound for space complexity using the infer-
ence parameterization in the order of O(c ·(n− l) ·g). Please
note, with a linear dependency g = f(n), we would end up
with a quadratic complexity. In the worst case, we extract a
fully connected (complete) schema graph. That means, for
each indexed triple, all s possible triples in the schema graph
are inferred. Furthermore, the worst case requires all triples
in the data graph to use properties from PRDFS . This is
unrealistic for real-world datasets.

In our experiment described in the subsequent section,
we use two datasets. From processing these datasets, we
know that the smaller dataset has 2.0% RDFS properties
and the larger dataset has 0.6% RDFS properties. This
leads to a factor of g < 1.001. Thus, it appears safe to
assume that there is no linear dependency of g and n and
that the complexity is not quadratic.

The schema graph can be implemented using hash maps,
which guarantees constant time for lookup and addition
operations. Inferencing operations are linear in the number
of inferrable types and properties. Thus, we have the same
time complexity as for the space complexity. Furthermore,
all triples s in the schema graph should be excluded from the
index using the label parameterization, which would increase
the number of excluded triples l.

Chaining Parameterization. The chaining parameteriza-
tion defines the instance’s neighborhood up to a maximum
path length of k. Thus for each instance, we need to store
up ck instantiated simple schema elements. The definition
of complex schema elements allows avoiding the computa-
tion of ck simple schema elements for each instance. For
each instance, c simple schema elements need to be com-
puted. When considering the instance’s neighborhood up to
a maximum path length of k, the c computed simple schema
elements for each instance can be reused.

Overall Complexity. The space complexity of the index
is in the order of O(ck · (n − l) · g) and the overall time
complexity is in the order of O(c · k · n · g) with c simple
schema elements defined in the SLI, the chaining parameter
k, l excluded properties in the data graph using the label
parameterization, and g inferrable triples using the infer-
ence parameterization as constant factors independent of n.
Thus, indices defined with FLuID can be computed in linear
time and space with respect to the number of triples n.

6. EVALUATION AND PROTOTYPE

6.1 Empirical Evaluation
We empirically evaluate the RDFS schema graph SGRDFS

of two crawled datasets to support our claims regarding the
parameters s and g in our complexity analysis from Sect. 5.
We compare the number of statements s in SGRDFS to the
number of triples n in the dataset G. Second, we count how
many additional statements can be inferred using SGRDFS .
To his end, we compare the number of all additional proper-
ties and types that could be inferred to the number of triples
in the dataset n to average the parameter g.

Datasets. We use two crawled datasets of the Web of Data
with different characteristics. The TimBL-11M dataset con-
tains about 11 Million triples [13]. The crawl was conducted
with a breadth-first search starting from the FOAF profile
of Tim Berners-Lee. Regular snapshots from the Web of
Data are provided by the Dynamic Linked Data Observa-
tory (DyLDO) [12]. We use their first snapshot containing
about 127 Million triples crawled from about 95, 000 seed
URIs. This crawl was done with a breadth-first search but
limited to a crawling depth of two [12].

Empirical Evaluation Results. The schema graph has a
size of about 2.0% of the TimBL-11M dataset and 0.6% of
the DyLDO-127M dataset. In the TimBL-11M dataset on
average 1.7 additional properties and 4.8 additional types
were inferred. For the DyLDO-127M dataset, on average
2.1 additional properties and 13.5 additional types were
inferred. Furthermore, for only about 15% of the triples
in both datasets, the inferencing operation was necessary.
For the remaining triples, there was no corresponding entry
in the schema graph. Rather than having for each triple all
possible triples inferred, as in the worst case suggests, we
measured that on average it is only about 0.008. Thus, the
factor g for the space and time complexity can be estimated
as a small constant factor g < 1.001.

6.2 Towards a FLuID Prototype
We use FLuID to index the distributed graph data of the

Web of Data. LODatio+ (http://lodatio.informatik.
uni-kiel.de/) is a search engine to find relevant data
sources given a structural query. However, the index LODa-
tio+ currently uses is tailored for one specific application
need. As depicted in Fig. 3, we are implementing FLuID in
a generic processing pipeline and are updating LODatio+ to
understand any defined index following the FLuID model.
LODatio+ is already an extension of LODatio [10], but per-
forming generic queries on any FLuID-index is ongoing work.

Figure 3: Approach to a generic computation pipeline for
FLuID and a generic query engine LODatio++.

7. CONCLUSION
We have presented the novel, parameterized schema-level

index model FLuID which is sufficient to express the func-
tionalities of existing SLIs and beyond. We showed that the
time and space complexity of any SLI developed with FLuID
scales linear with respect to the number of triples indexed.
Implementing FLuID in a single computation- and query-
framework as well as qualitatively comparing existing and
new approaches is ongoing work.

8. ACKNOWLEDGMENTS
This research was co-financed by the EU H2020 project

MOVING (http://www.moving-project.eu/) under con-
tract no 693092.

9. REFERENCES
[1] F. Benedetti, S. Bergamaschi, and L. Po. Online index

extraction from linked open data sources. In LD4IE, 2014.

[2] F. Benedetti, S. Bergamaschi, and L. Po. Exposing the
underlying schema of LOD sources. In Joint
IEEE/WIC/ACM WI and IAT, 2015.

[3] K. Christodoulou, N. W. Paton, and A. A. A. Fernandes.
Structure inference for Linked Data sources using
clustering. In Joint EDBT/ICDT, 2013.

[4] M. Ciglan, K. Nørv̊ag, and L. Hluchý. The SemSets model
for ad-hoc semantic list search. In WWW, 2012.

[5] G. De Giacomo and M. Lenzerini. TBox and ABox
reasoning in expressive description logics. In AAAI
Technical Reports, 1996.

[6] L. Ding, J. Shinavier, Z. Shangguan, and D. L.
McGuinness. SameAs networks and beyond: Analyzing
deployment status and implications of owl:sameAs in
Linked Data. In ISWC, 2010.

[7] R. Q. Dividino, A. Scherp, G. Gröner, and T. Grotton.
Change-a-lod: Does the schema on the linked data cloud
change or not? In COLD, volume 1034 of CEUR Workshop
Proceedings. CEUR-WS.org, 2013.

[8] European Mathematical Society. Equivalence relation.
http://www.encyclopediaofmath.org/index.php?title=
Equivalence_relation&oldid=35990, 2014.

[9] R. Goldman and J. Widom. DataGuides: Enabling query
formulation and optimization in semistructured databases.
In VLDB, 1997.

[10] T. Gottron, A. Scherp, B. Krayer, and A. Peters. LODatio:
using a schema-level index to support users infinding
relevant sources of linked data. In K-CAP, 2013.

[11] K. Hose, R. Schenkel, M. Theobald, and G. Weikum.
Database Foundations for Scalable RDF Processing, pages
202–249. Springer Berlin Heidelberg, 2011.

[12] T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne, and
A. Hogan. Observing linked data dynamics. In ESWC,
volume 7882, 2013.

[13] M. Konrath, T. Gottron, S. Staab, and A. Scherp.
SchemEX - efficient construction of a data catalogue by
stream-based indexing of Linked Data. J. Web Sem.,
16:52–58, 2012.

[14] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and
J. Widom. Lore: a database management system for
semistructured data. SIGMOD Record, 26(3):54–66, 1997.

[15] S. Nestorov, J. D. Ullman, J. L. Wiener, and S. S.
Chawathe. Representative Objects: Concise representations
of semistructured, hierarchial data. In ICDE, 1997.

[16] T. Neumann and G. Moerkotte. Characteristic sets:
Accurate cardinality estimation for RDF queries with
multiple joins. In ICDE, 2011.

[17] S. Sakr and G. Al-Naymat. Graph indexing and querying:
a review. Int. Journal of Web Information Systems,
6(2):101–120, 2010.

[18] D. Sangiorgi. On the origins of bisimulation and
coinduction. ACM Trans. Program. Lang. Syst.,
31(4):15:1–15:41, 2009.

[19] J. Schaible, T. Gottron, and A. Scherp. TermPicker:
Enabling the reuse of vocabulary terms by exploiting data
from the Linked Open Data cloud. In ESWC, 2016.

[20] B. Spahiu, R. Porrini, M. Palmonari, A. Rula, and
A. Maurino. ABSTAT: ontology-driven Linked Data
summaries with pattern minimalization. In ESWC Satellite
Events, Revised Selected Papers, 2016.

[21] T. Tran, P. Haase, and R. Studer. Semantic search — using
graph-structured semantic models for supporting the search
process. In Int. Conf. on Conceptual Structures, pages
48–65. Springer, 2009.

[22] T. Tran, G. Ladwig, and S. Rudolph. Managing structured
and semi-structured RDF data using structure indexes.
IEEE TKDE, 25(9):2076–2089, 2013.

