




Abstract

An individual-based, spatially explicit model o f herbaceous plants is presented 

in an attem pt to investigate some o f  the predictions m ade by the C SR  model (G rim e 

1979) and the Resource Ratio and R* hypotheses (T ilm an 1982, 1988). The m odel 

sim ulates early grow th o f herbaceous individuals and com petition between these 

individuals for light and soil nutrients (nitrogen and phosphorus), along a nutrient 

gradient. V arious m odel plant species are constructed to investigate the effect o f plant 

traits on com petition.

High allocation to root is predicted to confer a slig h t advantage in habitats w ith 

low nutrient availability, and conversely high allocation to  shoots is predicted to confer 

a com petitive advantage in habitats with high nutrient availability . A plastic response 

to the availability o f resources in the allocation of g row th  between root and shoot is 

predicted to confer a com petitive advantage in all hab ita ts, though the bias o f  the 

plasticity {e.g. consistently  greater allocation to root than shoot w ould be a root bia.sed 

allocation pattern) m ay affect this. Growth uncoupled from  resource acquisition is 

predicted to be advantageous in nutrient poor habitats, w h ile  growth coupled to resource 

acquisition is predicted to be advantageous in nutrient rich  habitats.

Above- and below -ground inter-specific com petition along nutrient gradients is 

exam ined for these .species. Below-ground com petition intensity  for a .soil re.source in 

the absence o f  light com petition is predicted to be higher fo r a highly mobile resource 

than for a relatively im m obile resource, but com petition for light is predicted to be 

greater for the more m obile resource. Competition intensity for soil nutrients is predicted 

to be maximal at low nutrient availability, and the in tensity  o f light com petition is 

predicted to be greatest in nutrient rich habitats.

The im plications for current plant com petition theories are discussed.
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Chapter I C om petition  T heories

Chapter 1

The Theories o f Grim e and Tilman

1.1 Introduction

1.1.1 C om petition  and p lant com m unities

The fac to rs determ ining the spatial and tem poral arrangem ent o f plant species 

have been ascribed  to m any different processes. One such process, w hich has generated 

considerable attention from  plant ecologists, is resource com petition. T hat plants may 

affect each o th e r’s perform ance either indirectly (e.f>. influencing the availability o f a 

com m on resource) or d irectly  (e.g. allelopathy) is not in question as m any studies have 

dem onstrated negative effec ts of neighbours (see H arper 1977, C onnell 1983, Schoener 

1983), but there  exists m uch debate as to the m agnitude o f these interactions, how they 

may influence vegetation distribution and succession, and the evolutionary role played 

by such forces. Despite the sheer volum e of work concerning plant com petition, 

ecologists have discovered few general principles and laws; one notable critic has 

suggested that the understanding o f plant com petition has hardly increased since the 

seminal work o f  C lem ents in 1929 (K eddy 1991).

1.1.2 Plant com petition  theorie.s

The prim ary  role o f  competition theories is to present a conceptual fram ew ork 

within which observations and experim ental results m ay be organized in a w ay as to be 

ecologically m eaningful. A  secondary role is prediction, which may be tested by further 

observation o r  experim ent to reveal the predictive value o f  a theory, though it is 

appreciated th a t there ten d s to be a trade-off between the generality and precision o f an 

ecological theory  (Peters 1991, Sharpe & Rykiel 1991). Prediction o f  vegetation 

dynam ics is now  the goal of many plant ecologists, hut prediction requires testable 

theories.

Direct resource com petition has been dem onstrated to be a real phenom enon 

affecting the relative perform ance o f vascular terrestrial plants (see C onnell 1983,
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Schoener 1983) and consequentially much attention has focused on the possible 

influence of com petition on the population and com m unity structure o f vegetation. 

H ow ever, attem pts to determ ine the precise role and m echanism s o f com petition (either 

by observation or experim ent) have yielded few c lear general patterns, partly due to  

differences in m ethodology, definitions and em phasis, and scientific laws linking 

com petition to habitat and com m unity organization are still missing.

G enerally speaking, com petition may influence vegetation at two extrem e tim e 

scales: at the evolutionary .scale (the significance o f  com petition as a selective force; 

e.g. evolution o f plant trait syndromes) and at the ecological scale (m echanism s o f  

com petition and population dynamics). Thus, a m ature theory o f plant com petition m ust 

operate at both o f these tim e scales. Several theories attempt to address these issues: 

both the CSR model (Grim e 1979) and the Resource Ratio hypothesis (Tilm an 1982, 

1988) make several important predictions concerning the mechanisms and properties o f  

re.source com petition, while the Habitat Tem plate m odel (Taylor et al. 1990) deals on ly  

with the evolutionary significance of competition. All o f  these theories invoke a concept 

o f com petition intensity (C l), and all but the Resource Ratio hypothesis identify habitats 

where com petition is intense and is the predom inant factor governing com m unity  

assem bly.

1.1.3 C ontext and principal aims o f thesis

The context of this thesis is limited mainly to  the mechanisms o f interspecific 

com petition at the ecological level because o f the temporal structure of the m odel 

presented (see chapter 2), therefore only the theories of Grime (CSR model; section 1.2) 

and T ilm an (Resource Ratio hypothesis and R* theory; section 1.3) are considered in 

detail. The principal aims o f  this thesis were:

(1) to review the Grime vs. Tilm an debate with the aim  of reconciliation, and to in itiate 

a synthesis o f the CSR m odel and Resource Ratio / R* hypotheses where possible and  

suggest tests which may distinguish between the m odels;
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(2) to develop a m athem atical model that sim ulates plant com petition  for resources 

which could be u sed  to investigate the hypotheses o f Grime and Tilm an.

Construction o f the  model prom pted insights into resource com petition  (e.g. the possible 

significance o f resource supply properties and plastic  allocation o f biom ass) and assisted 

greatly in placing the two theories into a com m on context.

1.2 CSR model

1.2.1 Introduction

G rim e’s C SR -strategy theory (or triangular model o f  plant strategies; G rim e 

1979) is constructed  on the assum ption that vegetation is influenced by two prim ary 

environmental processes, stresx and disturbance, and that these two processes have 

influenced the evolution  of terrestrial plants to such an extent that herbaceous vegetation 

is now differentiated  along a stress/disturbance gradient. T his d ifferentiation, according 

to Grim e (1979), is evident in distinct patterns o f  plant strategies (G rim e’s term), which 

are syndrom es o f  certain m orphological, physiological and life-history characteristics. 

Grime (1979) a lso  identifies another process, com petition, w hich em erges as a 

con.sequence o f neighbouring plants making sim ilar dem ands upon a lim ited local 

resource, and has a lso  influenced the evolution o f  vegetation m ost .strongly in habitats 

where Grim e p red ic ts  com petition to be most ‘in tense’.

1.2.2 D efinitions o f  concepts

Grime (1979) defines stress as "the external constraints w hich lim it the rate of 

dry m atter p roduction  of all or part o f the vegetation" (G rim e 1979:21) and includes all 

environm ental fac to rs  affecting habitat productivity (biom ass per-unit area) such as 

temperature, w ater, nutrient availability and light intensity. T h u s an unproductive habitat 

would be deem ed a very ‘stressful’ environm ent while a productive habitat w ould  be 

less ‘stressful’. D isturbance is defined as "m echanism s w hich  lim it the plant biom ass 

by causing its partia l or total destruction" (G rim e 1979:39) and includes grazing,

3
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senescence, fire, wind and frost.

G rim e’s concept o f competition is defined as "the tendency of neighbouring 

plants to utilize the same quantum of light, ion o f a m ineral, molecule o f water, or 

volum e of space" (Grime 1979:8). Definitions of com petition are discussed in sections

1.4.2 and 1.5.2.

The concepts o f stress and disturbance have been criticized for lack o f precision 

and the validity o f such generalized concepts has been questioned (Grubb 1985). Grime 

does not offer operational definitions with which to m easure the stress or di.sturbance 

level o f  a habitat, though as G rim e’s concept of .stress is effectively an inverse function 

of productivity, the clarity of the CSR m odel would benefit from  replacing stress with 

a concept of productivity (Grubb 1985).

1.2.3 CSR strategies

The CSR model assumes that all herbaceous species m ay be ordinated according 

to their inherent ability to compete, reproduce and tolerate stress and that there is a 

direct trade-off between these three abilities. These assum ptions lead to the prediction 

of three primary plant ‘strategies’ (called Com petitors, Ruderals and Stress-Tolerators 

by G rim e) which are syndrom es of associated physiological, morphological and 

life-history traits corresponding to the above abilities and to the three extrem e corners 

of the Stress/D isturbance/Com petition tem plate (Grim e 1974). Triangular ordination 

requires this assum ed direct trade-off as three dim ensions (ability to com pete, reproduce 

and tolerate stress) are reduced to two: the third axis is determ ined by the other two. 

W ithout this assum ed trade-off this reduction of dim ensions may distort data or result 

in inform ation loss (Loehle 1988) so any test of the assum ed trade-olf m ust measure 

each ability independently. An important point is that G rim e’s classification model uses 

a closed system with axis variables bounded at both ends by m inimum and maximum 

limits {i.e. a point lying outside of the triangle is theoretically impossible), yet G rim e’s 

tests o f  the model use open-ended continuous variables (e.g. RGR, plant height, seed 

mass) or discrete classes, e.g. life-history and life-form classes (Grim e 1979:Fig. 19). The 

CSR model also predicts that any stress will result in the sam e adaptive traits, even
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though the cause o f  stress m ay be very different {e.g. low resource availability and  high 

temperature): this prediction h as  been criticised by T ilm an (1987).

1.2.4 Com petitive ability

Grim e (1979) perceives com petitive ability as an abso lu te  m easure o f a sp ec ie s’s 

ability to compete for all resources —  this derives from th e  assumption of a positive 

correlation between an o rg an ism ’s ability  to com pete for different resources (G rim e 

1979:16) and a definition o f  com petition based on acquisition. Thus, Grim e presum es 

that species may be ranked by  their com petitive abilities and predicts the o rd e r of 

ranking will not change a long  a productivity gradient. G rim e uses intrinsic plant traits 

to construct an index of com petitive ability, though use o f certain  traits, such as RG R,„„, 

may not provide an accurate estim ation o f a plant’s overall com petitive ability p e r  se, 

but may reflect com petitive ability for light m ore than fo r soil re.sources (N ew m an 

1973). The validity of overa ll com petitive ability as a concept depends on w hether 

com petitive ability is positively  correlated for all resources a t all points along a resource 

gradient: the CSR model dem ands that this is true (see sec tion  1.4.3). N evertheless, the 

choice o f trait is likely to in fluence conclusions concerning the  importance and in tensity  

o f competition along a stress gradient based on such observations.

1.2.5 C om petition inten.sity

Grime predicts that "com petition ... declines in im portance and in tensity  in 

vegetation with increasing in tensities o f stress ... and disturbance" (Cam pbell &  G rim e 

1992:15). Changes in the intensity  o f  com petition along a productivity gradient are 

central to the CSR-strategy theory  as m any of its p red ictions and explanations require 

the intensity of com petition to  be greatest in undisturbed , productive (and therefore 

unstressed, sensu Grime) habitats. Using an operational definition based on the absolute 

reduction in plant perform ance due to com petition (C am pbell et al. 1991), C am pbell and 

Grime (1992) dem onstrated th a t com petition intensity is indeed m axim al when nutrient 

stress is minimal (nutrient availability is maximal), though  by using an alternative 

definition based on the re la tive  reduction in plant perform ance Cam pbell and G rim e
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(1992) also dem onstrated that com petition intensity does not vary significantly with 

habitat stress (see section 1.4.4). As Welden and Slanson (1986) have pointed out, 

intensity and importance o f com petition are very different ways o f  describing the effect 

o f com petition on populations, while the use of either word is m eaningless without an 

accom panying explicit operational definition (G race 1991, Peters 1991; see .sections

1.4.2 and 1.5.2). Following W elden and Slauson’s comments. Grim e and Hodgson 

(1987) predict that competition will be maximally ‘intense’ and  ‘im portant’ in habitats 

where com petitive pressure has resulted in a m onoculture.

1.2.6 A dapted plant traits

Allocation o f  acquired resources

A lthough the CSR model does not describe allocation patterns o f acquired 

resources explicitly  (cf. T ilm an’s ALLOCATE m odel), the theory does make some 

general and tacit assumptions. Based on the prem ise that plants adapted to a resource- 

rich habitat possess traits which confer a greater ability to "tap the surplus o f resources 

above and below  ground and to maximize dry m atter production" (Grime 1979:20), 

C om petitors are predicted to rapidly allocate a high proportion o f  captured resources to 

vegetative grow th, thereby increasing the plant’s capacity for resource acquisition. 

C om petitors are also predicted to allocate resources to perennial structures and storage 

o f ‘grow th’ for the following growing season (G rim e et al. 1986:7).

In contrast is the allocation ‘strategy’ of S tress-Tolerators which are predicted 

to allocate the majority o f resources to storage system s, while Ruderals are predicted, 

over a grow ing season, to initially allocate mainly to vegetative growth (in a similar 

way to C om petitors) and then mainly to reproductive structures (G rim e et al. 1986:7).

Allocation between root and shoot

A lthough it has been widely acknowledged that plants from  unproductive habitats 

tend to have greater root:shoot ratios than plants from productive habitats (Chapin 

1980), the C SR  model does not include any predictions concerning overall root:shoot 

ratio, only predictions concerning the relative plasticity betw een root and shoot
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allocation (see below).

P lasticity  o f  allocation between root a n d  shoot

A non-constant response to th e  environm ent is referred to as a  plastic response, 

one exam ple o f which is variation in  the root:shoot ratio o f  a plant species depending 

on the light and nutrient conditions experienced by the individual. Laboratory 

experim ents prom pted the general observation that species from productive habitats 

(C om petitors, sensu Grime) exhibit a  greater response, in term s o f root:shoot ratio , to 

environm ental changes in nutrient availability  than species characteristic  o f unproductive 

habitats (Stress-Tolerators) (Rorison 1987). This is consistent with the predictions o f the 

CSR model: a C om petitor’s response to  vegetation-induced ‘stress’ (resource reduction 

due to  com petition) will involve "large  and rapid changes in roo t:shoot ratio, lea f area, 

and roo t surface area", while the response  of Stress-Tolerators is characterized by less 

rapid changes in morphology which a re  "often sm all in m agnitude" (G rim e 1979:50).

Grime also asserts that the m axim izing o f  production realised by  Com petitors is 

achieved by plastic allocation w ithin  above- and below-ground structures, e.g. root 

grow th  is prom oted in areas o f re la tively  high nutrient availability: th is  m echanism  has 

been called ‘active foraging’ (Grime e t  al. 1986, 1991). C onfusingly, Grim e also refers 

to th is  as a C om petitor’s response to  stress (G rim e & Cam pbell 1991), i.e. resource 

reduction by com petition. Thus, p lan ts  from productive habitats (C om petitors) are 

predicted to have a high degree o f m orphological plasticity at the w hole plant level 

(allocation between root and shoot) a n d  at the level of the organ (allocation  w ithin root 

and shoot system s), while plants f ro m  unproductive habitats (S tress-T olerators) are 

predicted to exhibit a low degree o f  m orphological plasticity.

G row th and storage

The CSR model proposes that the  effect o f  stress as an evolu tionary  pressure has 

resulted  in differences in RGR (specifically  RGR,^^,) betw een plants o f  high and low 

stress habitats: Com petitors have h ig h e r potential growth rates than Stress-Tolerators. 

As m entioned above. Competitors a re  predicted to  direct alm ost all resources acquired
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into vegetative grow th while Stress-Tolerators are predicted to direct relatively more 

resources into storage, elTectively uncoupling growth from resource capture resulting in 

‘luxury consum ption’ (where acquisition exceeds dem and, Chapin 19X0) and reduced 

potential RGR,,,.,,, (Chapin 1980, G rim e 1979; though lor an alternative explanation see 

G am ier 1991, Poorter 1990). As the CSR model relates com petitive ability to the rate 

o f resource acquisition, a fast grow ing plant is predicted to be a superior com petitor 

com pared to a slow growing plant, all el.se being equal (e.g. initial sizes, per-unit size 

acquisition rates).

T he storage o f potential growth is predicted to be advantageous in stressful 

(unproductive) habitats by insuring the individual plant against temporal variations in 

resource availability which may otherwise prove lethal (Chapin 1980). Stored growth, 

in the form  of energy and nutrient reserves, may also facilitate high rates o f acquisition 

in special circum stances of resource supply {e.}>. rapid growth with increased resource 

availability  (resource flush); G rim e & Campbell 1991), though this highlights an 

inconsistency with the CSR classification system  as such species could be identified as 

both Stress-Tolerators (during resource ‘stress’) and Com petitors (during resource flush).

1.3 Ke.source Ratio hypothesis and K* theory

1.3.1 Introduction

Tilm an (1977, 1980) first developed the Resource Ratio hypothesis and R* theory 

o f com petition during experim ents with algal com m unities in the early 1980’s and 

shortly afterw ards developed the theory for terrestrial plants based upon graphical 

models o f  com petition and the A LLO CA TE model of plant com petition (Tilm an 1982, 

1988). T h is  has been the most im portant contribution to plant com petition theory in the 

last 15 years, and has stim ulated much discussion and experiment.

1.3.2 R esource ratio hypothesis

T ilm an’s Resource Ratio hypothesis provides a possible explanation for the 

coexistence of directly com peting species. This is in contrast to the ‘com petitive
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exclusion princip le’ in that species coexist because they have inherent differences in 

their resource requirements, specifically the ratio of resources acquired.

The theory assumes that each plant species requires a specific ratio o f the supply 

o f resources for optim um  performance (T ilm an 1982); the supply ratio  may be m ediated 

by the environm ent or by the effect o f vegetation upon the environm ental availability  

o f the resources. In association with the o th e r assum ptions of this theory (mainly that 

resource availability and vegetation b iom ass achieve an equilibrium ), Tilman (1982) 

dem onstrates that this simple m echanism  m ay permit different species to coexist at 

equilibrium , but only the same num ber o f  species as different resources and the 

consum ption vectors o f each species must be  unique. T ilm an has also  proposed that the 

same m echanism  may drive succession d u e  to changes in the relative availability o f  

different resources m ediated by resource consum ption by the vegetation present (T ilm an 

1985). Spatial factors are not explicitly considered w ithin this concept, though the 

introduction o f resource heterogeneity (in tim e or space) is predicted to increase the 

num ber o f coexisting species (see Tilm an 1982, 1985 and .section 1.3.6).

1.3.3 R* theory

For a single lim iting resource, T ilm an ’s theory predicts that the species with the 

lowest R* value will com petitively d isp lace  all o ther species as equilibrium  is 

approached. Tilm an defines R* as "the resource level at which the net rate o f population 

change for a species is zero" (Tilman 1988:20); this is al.so referred to by Tilm an (1982) 

as the zero net growth isocline o f the species. Equilibrium , in this case, occurs w hen 

resource supply equals re.source consum ption and reproduction equals mortality (i.e. no  

net change in the population size or biom ass).

Thus, among organism s com peting fo r the .same limiting resource, the species 

with the lowe.st R" value is predicted to be the superior com petitor and to eventually  

displace all other species, but only with the  assum ption that all species have identical 

colonization abilities (Tilman 1994). Indeed, evidence suggests a trade-off betw een 

colonization ability and R*, which at least in  the initial stages o f secondary succession 

contradicts the Resource Ratio hypothesis o f  succession as colonization ability seem s
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to be responsible for initial dom inance rather than com petitive ability (Tilm an & W edin 

1991 /7).
Tilman also identifies plant traits that are likely to be associated with a low R* 

value; low RGR^.,^, longevity o f  roots and leaves, high efficiency o f nutrient u.se, low 

m axim al nutrient uptake rate and high affinity o f  nutrient uptake (low I,,,,, and low K,„ 

value respectively, cf. equation 2.8 in chapter 2) and high investm ent in defen.se against 

herbivory (Tilm an 1990).

1.3.4 C om petition inten.sity (C l) along a re.source gradient

T ilm an’s theory m akes .several predictions concerning the inten.sity of 

com petition experienced by com petitors and habitat productivity, derived from a 

hypothesis linking above- and below -ground competition intensities to ‘to tal’ 

com petition intensity, where com petition for above- and below-ground resources occur 

sim ultaneously (W ilson & Tilm an 1991; see sections 1.4.4 and 1.5.2). Total Cl is 

assum ed to represent the com bined effects o f above- and below-ground com petition, and 

m ay show no quantitative change along a productivity gradient, hut "there may be an 

im portant qualitative change, with plants m ainly com peting for soil resources in 

unproductive habitats and m ainly com peting for light in more productive areas" (W ilson 

& Tilm an 1991:1051; see section 3.4). T ilm an’s ALLOCATE model also predicts that 

total Cl will be independent o f habitat productivity, though only com petition is 

considered within the model (G race 1991).

W ilson and Tilm an (1991) propose that the intensity of com petition for an 

above-ground resource (light) is greatest under conditions where there is greatest 

above-ground biom ass (i.e. w ithin a productive habitat), while com petition for a 

below -ground resource is m ore intense than for light under conditions where that 

resource is most lim iting (i.e. within an unproductive habitat).

T ilm an’s predictions, therefore, are that total com petition intensity (i.e. Cl 

experienced by the subject individual or population in unm anipulated vegetation) will 

rem ain constant along a soil resource gradient (W ilson & Tilm an 1991, 1993), while 

along the sam e gradient. Cl for the soil resource will decrease, in the absence o f light

10
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com petition, and C l for light will increase, in the absence of soil resource com petition 

(W ilson & Tilman 1991, 1993).

1.3.5 The ALLO C A TE model

The ALLOCATE model o f plant com petition  (Tilman 1988) is principally 

concerned with allocation patterns o f growth between an individual’s resource acquiring 

organs and how an individual’s com petitive ability may be affected by allocation 

characteristics. A brief description o f this model is included in section 2.1.2. Three 

important predictions of the model are that:

(1) a plant with higher alloeation to photosynthetic tissue will have a 

higher RGR,,,,, than a plant with lower allocation to photosynthetic tissue 

all else being equal.

(2) the ability of an individual to compete fo r  a resource is influenced 

by its ability to allocate biom ass to tissues conferring  a high acquisition 

rate o f that resource (e.g. allocation to cither lea f or stem  may increase 

the light intensity experienced by an individual). It follows that there will 

be a negative correlation between the com petitive ability o f  a species for 

different resources, due to allocational trade-offs.

(3) allocation patterns o f resident vegetatirm  will change along a 

productivity gradient such that root allocation will be maximal in low 

productivity habitats, stem allocation w ill be maximal in high 

productivity habitats, while leaf allocation w ill be maximal at a level o f 

interm ediate productivity.

Prediction #1 was disputed by Shipley and Peters (1990, 1991) as they found no 

significant negative correlation between RGR,,,,^ and root:shoot ratio o f 68 herbaceous 

wetland plants. However, their experiment was subsequently  criticised by Poorter and

I 1
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Lumbers (1991) who also objected to the assum ption within A LLO CA TE that all species 

have identical per-unit mass photosynthesis and respiration rates. The assum ptions of 

the A LLO CA TE m odel are discussed in section 2.1.2.

1.3.6 R esource heterogeneity in tim e and space

Further elaboration of T ilm an ’s theory incorporating resource heterogeneity 

proved necessary in an attempt to exp lain  the well recognized ‘apparent’ paradox o f the 

number o f  plant species being m uch greater than the num ber o f  different resources 

available (T ilm an 1988). Spatial factors are not explicitly considered within T ilm an’s 

resource ratio  or R* theory, though the introduction o f resource heterogeneity (in time 

o r space) is predicted to increase the num ber o f coexisting species (Tilman 1982, 1985, 

1994; T ilm an ¿k. Pacala 1993). Further consideration o f space as a resource has led 

Tilman (1994) to predict that coexistence o f com peting species requires limiting 

sim ilarity betw een allocation patterns (the only interspecific difference between T ilm an’s 

sim ulation species) and "two-way or three-w ay interspecific trade-offs among 

com petitive ability, colonization ability , and longevity" (Tilm an 1994:2; cf. CSR model), 

but "it is uncertain if there must be a trade-off between longevity and com petitive 

ability" (T ilm an 1994:1 1). It is not c lear w hether such heterogeneity could be considered 

com patible w ith the re.source and biom ass equilibrium  requirem ents o f the Resource 

Ratio and R* hypotheses, m entioned above.

1.4 C om parison o f  the theories o f  G rim e and Tilm an

1.4.1 Introduction

The m ajor difference betw een the two theories is their respective treatm ent of 

the elem ents o f  com petition. Grime attem pts to di.stinguish betw een resource acquisition 

(the m echanism  o f com petition, sensu  Grim e) and conservation o f acquired resources 

(tolerance, sensu  G rim e), while T ilm an ’s concept o f com petition includes characteristics 

o f  both acquisition and tolerance.

12
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Emphasis

G rim e’s CSR model is mainly concerned with above-ground effects and 

response, and attributes great em phasis to com petition for light. This is understandable 

given that Grim e assum es com petition to be most intense and  important in productive, 

undisturbed habitats, where the majority of com petition is likely  to be for light (W ilson 

& Tilm an 1991; see section 3.4 on the relative intensity o f  below- and above-ground 

com petition), for exam ple in the work o f Campbell and  Grime (1992) neither 

below -ground biom ass or .soil processes were quantified. T ilm an gives greater em phasis 

to below -ground proces.ses and they form an integral com ponent o f Resource Ratio 

hypothesis and R* theory: in most of T ilm an’s experim ental work below -ground 

m echanism s are consistently investigated.

Tem poral fram ework

The CSR model and the Resource Ratio hypothesis a re  contained w ithin slightly 

different temporal frameworks for competition processes. T he CSR m odel describes 

com petition over a single grow ing period for established p lan ts and while it com m ents 

on the immediate effect of vegetation on resource availability (c.g. prediction o f 

m orphological plasticity in Com petitors), the CSR model does not explicitly  describe 

resource availability as a function o f vegetation, time or com petition. R* theory predicts 

the outcom e o f com petition only when vegetation and re.source levels have achieved 

equilibrium : in a natural habitat, resource equilibrium  (w here the availability o f an 

environm ental re.source is constant through time) is likely to occur only tow ards the end 

o f succession, after many generations. Therefore, the com petitive outcom e is predicted 

by the CSR model after one or tw o growing .seasons, and a fte r many grow ing .seasons 

by the R* theory. As the R* theory requires equilibrium  conditions o f resource levels, 

T ilm an’s work applies greater em phasis to the overall reduction of resources down to 

these critical levels and the ability o f plants to tolerate such levels. Tilm an considers the 

end result o f  com petition to be largely independent of the rate of reduction. T ilm an 

does, however, em phasize that the short-term effects o f com petition m ay be entirely 

different to the longer-term  effects (see Tilman 1988:chapter 6).

13



Chapter I Com petition T h eo ries

Explicitness

G rim e has never presented theories in term s o f  explicit m athem atical m odels, 

relying instead on verbal description; the majority o f  T ilm an’s theory is presented 

graphically (R* theory) and mathem atically (A LLO C A TE model) and as such has not 

been open to the sam e m isinterpretation as G rim e’s theories. Form al m athem atics may 

not be the most convenient form of expression, but it does not suffer from the am biguity 

associated with language: the CSR model could only benefit if expressed in such a way 

(Grace 1990).

1.4.2 C om petition

G rim e has been criticized by Tilman (1987) fo r restricting com petition to only 

‘C om petitors’ (by G rim e’s definition only species occupying productive, undisturbed 

habitats) im plying that ‘Stress-Tolerators’ do not com pete at all, though G rim e in reply 

(Thompson & G rim e 1988) pointed out that this was a misinterpretation. G race (1990) 

suggested that the extrem e strategy identified as the ‘C'om petitor’ syndrom e by Grim e 

should be re-term ed ‘E xplo iter’ to avoid further confusion. Grim e elaborated further by 

proposing that "com petition ... declines in im portance and intensity in vegetation with 

increasing stress (constrain ts on production) and disturbance (destruction o f  biom ass)" 

(Campbell & G rim e 1992:15). T ilm an (1988), in contrast, proposed that com petition 

should be experienced by all individuals in all habitats. These differences in opinion as 

to where and when com petition is o f  ecological significance stem from the differences 

in definitions, discussed below.

Conceptual definitions o f  competition

D efinitions o f p lant com petition have always proved problem atic. H arper (1961) 

recom m ended suspension o f the use o f the word ‘com petition’ because o f the am biguity 

of currently available definitions and the lack o f a universally accepted (and practised) 

definition, and subsequently  introduced yet another term  to plant ecology, ‘in terference’, 

which d id  not becom e w idely accepted. Over thirty years on and the word ‘com petition’ 

is still used to describe the indirect influence o f p lan ts on each other via a com m on

14
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resource, and various definitions are still causing confusion and m isinterpretation. G race 

(1991) ob.served that semantics, especially when defining terms and concepts, had 

caused apparent contradictions between the theories o f Grime and T ilm an. This is 

exem plified most by the differences in their respective definitions o f  competition: 

T ilm an’s definition o f competition is based on the "net negative relationship  betw een 

the abundances o f com peting species that involves both resource cap tu re  and tolerance 

to low resource levels" (Grace 1990), while G rim e’s definition o f com petition  is based 

solely on capacity for acquisition of resources {cf. definition in section  1.2.2 above). 

G rim e’s theory segregates the concept of tolerance from the concept o f  com petition, 

while T ilm an’s definition of competition incorporates both. See sec tion  1.5.2 for the 

conceptual definition o f competition used within this thesis.

Operational definitions o f  competition

Operational definitions o f com petition assume that com petition  reduces the 

‘perform ance’ o f an individual or species, com pared to the perform ance achieved in the 

absence of com petition. This is not a com plete operational definition: ‘perform ance’ 

requires a definition and is usually based on final yield or growth ra te . Two sets of 

experim ents are required to determine if com petition is occurring: with and  without the 

suspected source o f com petition. The lack o f distinction between com petition  at the 

individual and species level may be important, considering that com petition  occurs 

between individuals and not between species p er se.

The differences in operational definition of com petition have b een  discussed by 

Grace (1990, 1991, 1993, 1995¿/). Grime used absolute reduction in p lan t perform ance 

by com petition as an operational definition o f the intensity of com petition  (Cam pbell 

& Grim e 1992) while Tilman used the relative reduction of plant perform ance by 

com petition (W ilson & Tilman 1991, 1993). Grace (1995a) concluded tha t the relative 

measure (CIr) is a better expression o f the intensity o f competition th an  the absolute 

measure (C la), C Ir not being subject to size related differences betw een the com peting 

individuals or species.

15
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1.4.3 M echan ism s o f com petitive success

C om petitive success w ith in  the CSR model is determined only by ability to 

acquire resources by individuals; no reference is made regarding the effec t o f reduction 

o f resources by acquisition. C om petitive ability is predicted to be positively correlated 

with ra te  o f  resource acquisition. R* theory, on the o ther hand, predicts tha t com petitive 

success will result from an ability  to acquire resources and to tolerate low resource 

levels induced by acquisition. T he tolerance aspect is especially im portant in the 

establishm ent of seedlings to m aintain the population (Goldberg 1990). No tem poral 

elem ent is included: R* is assum ed to be independent o f the rate o f acquisition. H ence, 

R ' theo ry  can only predict the eventually  superior com peting species. A lso , R* theory 

cannot predict the outcome if resource levels do not reach R* values o f  com peting 

popu lations or if equilibrium  does not occur.

Plant tra its  conferring ‘com petitive a b ility ’

B ecause o f  the differences in definition of com petition between the  two theories, 

p red ictions linking plant traits to  com petitive ability are not strictly com parable (G race 

1990, 1991). However, both theories make sim ilar predictions concerning adaptive plant 

features and high rates of resource acquisition. G rim e’s ‘superior com petito r’ possesses 

traits w h ich  confer high rates o f  resource acquisition ( ‘C om petitor’, sensu  G rim e), 

w hereas T ilm an’s ‘superior com petito r’ possesses traits which co n fer tolerance 

properties ( ‘Stress-Tolerator’, sensu  Grime).

Growth rate

H igh  grow th rate is p redicted  by both Tilman and Grime to confer high rates o f 

resource acquisition, and both predict that high acquisition rates are likely to be 

favoured above tolerance traits in productive habitats; such plant traits corre.spond to 

G rim e’s C om petitor syndrome. High growth rate is necessary for m aintenance o f high 

acquisition  rates, because o f the positive feedback loop between growth and acquisition 

(see sec tio n  3.3.4).

B o th  theories also predict species from unproductive habitats w ill have a low er
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RGR^,,, than species from productive habitats, but they ascribe slightly different reasons. 

Grim e stipulates that reduction o f RGR,,,,,,, is due to the uncoupling o f grow th from 

resource acquisition (i.e. non-allocation o f ‘grow th’ to resource acquiring tissue), while 

T ilm an’s explanation centres on resource allocation away from photosynthetic tissu e  to 

other organs of resource acquisition or support tissue. These are not contradictory  

explanations: both assume that allocation of acquired resources away from the grow th 

o f photosynthetic material will result in a lower RGR,,,.^.

A llocation between root and shoot

W hile the Resource Ratio hypothesis makes explicit predictions concern ing  

allocation and environm ent (productivity o f habitat negatively correlated with roo tishoot 

ratio o f resident species), the CSR model largely ignores allocation between ro o t and 

shoot o ther than describing m orphological plasticity (see below).

Plasticity

B oth theories incorporate plastic response o f plants into their fram ew ork , but 

again em phasizing different aspects. The CSR model predicts a high d eg ree  of 

m orphological plasticity within  organs of resource acquisition where beneficial 

(restricted to Com petitors, i.e. plants adapted to productive habitats), whereas T ilm a n ’s 

theory predicts plasticity to occur between  organs o f acquisition {i.e. root and sh o o t) and 

is expected  to be advantageous in habitats with high soil resource and light levels 

(Tilm an 1988). These concepts have been referred to as ‘active’ and ‘optim al’ foraging 

respectively (Grime e / <//. 1986, 1991 ; Iwasa & Roughgarden 1984; Tilman 1982, 1988).

Trade-offs associated with resource acquisition and utilization

Both Grime and Tilm an assum e a trade-off between a p lant’s ability to acquire 

resources and ability to ‘to lerate’ low resource availability (Grace 1991). This trade-o il 

is more apparent in G rim e’s theory as it is the m ajor Justilication lor classification  

between C om petitor and Stress- Tolerator plant syndromes. However, quantification  of
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such assum ed trade-o ffs is lacking; it w ould be interesting to see a plot o f  R ' against 

maximal uptake ra te .

Competitive ab ilities  fo r  different resources

The CSR m o d el predicts a positive correlation between com petitive abilities for 

different resources, while Resource Ratio and R* theories predict a negative correlation. 

Goldberg (1990) a rg u ed  that both statem ents could be true given the different definitions 

o f com petitive ab ility , and that size asym m etry or sym m etry o f com petition (w hich is 

expected to be d ifferen t for light and nutrient com petition) will affect the sign o f  the 

correlation. Thus, i f  com petitive ability is based only on acquisition (G rim e’s definition) 

then a positive correlation  is expected, if it is based on tolerance as w ell (T ilm an’s 

definition) then a negative correlation is expected. Neither Grim e or T ilm an present 

explicit operational definitions o f ‘com petitive ab ility ’.

Summary

The theories o f  Grime and Tilm an both assum e a trade-off betw een the ab ility  

to tolerate low resou rce  levels and have high rates o f  resource acquisition. Hence, both  

theories predict th a t individuals with traits conferring tolerance to low resource levels 

have been selected  in unproductive habitats while those w ith traits conferring h igh 

acquisition rates w ill  have been selected in productive habitats; this has support from  

observations concern ing  the nutrient uptake capacity  of species from unproductive 

habitats (Chapin 1980). The different em phasis on tolerance (Tilm an) and acquisition 

(Grime) has resu lted  in different predictions concerning the m echanism s o f  com petition 

and the ‘im portance’ and intensity of com petition in habitats o f  differing productivity. 

T ilm an’s superior com petitor (species with lowest R* value) corresponds to G rim e’s 

Stress-Tolerator syndrom e. T ilm an’s theories also identify som e traits predicted to  be 

advantageous in a productive and therefore light-lim ited habitat (i'.g. high RGRn,,,^, tall, 

high shoot a llocation  to preem pt com petition for light under productive conditions, high 

resource acquisition  rates); these traits correspond w ell to those posses.sed by G rim e’s 

Com petitor syndrom e.
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1.4.4 C om petition intensity (C l)

G rim e predicts that the intensity of com petition for a resource is maximal where 

that resource is in m axim um  abundance, and that the intensity is lowest when the 

resource is scarce (Cam pbell & G rim e 1992). Grim e assum es that within a particular 

habitat the intensity o f  com petition is inversely proportional to the relative intensities 

o f stress and disturbance present in the habitat; consequently Grim e expects com petition 

to be m ost intense for a resource in a habitat w here it is in high abundance (m inim um  

stress) and there is no di.sturbance (Cam pbell & Grime 1992).

T ilm an predicts that overall intensity o f com petition along a productivity gradient 

should rem ain constant regardless o f the abundance of the resource, but that the intensity 

o f above- and below -ground resource com petition differ in such a way as the net 

com petition intensity rem ains constant (W ilson & Tilman 1991; see section 1.3.4).

T hese seem ingly contradictory predictions have recently been shown to be 

com patible when the operational definitions o f Cl are considered (Grace 1993). 

Cam pbell and Grime (1992) used absolute reduction in perform ance caused by the 

presence o f  a com petitor as a m easure o f the intensity o f com petition (absolute 

com petition intensity, C la) for the species w hile Tilman used relative reduction in 

perform ance (relative com petition intensity, C Ir) for the individual (W ilson & Tilman 

1991, 1993).

1.5 C onceptual and O perational Definitions

1.5.1 The nece.ssity o f  rigorous definitions

The confusion arising from different definitions being used for identical terms 

has detracted from real disagreem ents between the two theories, but has dem anded that 

a more rigorous approach be taken when using definitions, in particular operational 

definitions (Grace 1991). In light o f  this, 1 present below the following definitions for 

key term s used in this thesis.
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1.5.2 Com petition

Conceptual definition

All references m ade in this thesis to com petition are concerned only w ith direct 

com petition for limiting an d  essential resources. Processes such as allelopathy, w hich 

are som etim es included in definitions o f com petition but do not m ediate an effect via 

resource availability, are not considered as com petitive processes. The conceptual 

definition of com petition w ith in  this thesis is defined as

the interception o f  a unit of resource by an individual, where in the  

absence o f that ind ividual the unit o f resource would be intercepted  

by another individual.

This is not the same as ‘sh a rin g ’ of resources (sensu  G rim e’s definition o f com petition, 

section 1.2.2).

Operational definition

The above definition o f competition is not operational as it describes com petition 

for a single individual, so com petition must be m easured at the species level, w here 

com petitive effects at the individual level m ay be sum m arized {i.e. the effect o f 

com petition on the average  individual, or on the total yield o f the species). Thus, the 

operational definition of com petition would be a reduction in species perform ance 

(based on total yield, individual number or a function o f both, o r other factors such as 

total resource acquired) due  to the additional presence o f individuals of another species: 

this is identical to the defin ition  of relative com petition intensity proposed by G race 

(1993, 1995«) and is describe in section 1.5.3 .

However, problem s arise from this definition as to how and when perform ance 

is measured, and whether a particular measure o f perform ance is suitable for different 

species. W ithin the work presented here total biom ass yield per-unit time o f  a species 

has been used as a m easure of the perform ance o f  that species, and mean plant size 

(total yield biom ass / num ber of surviving individuals) per-unit tim e has been used as
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a m easure o f the perlorm anec of individuals (see chapter 3). Eiiomass is an appropriate 

m easure of perform ance within the context o f the simulation m odel (see chapter 2) for 

plants with growth coupled to acquired resources (see section 3.3.4), as it is closely 

linked to the total lim iting resource acquired. However, for plants with growth 

uncoupled from resource acquisition (sec section 3.3.4), while total biom ass yield is 

appropriate as an expression of species perform ance, the use o f  mean plant size to 

m easure perform ance may be misleading as any effect o f internally stored resources 

(and not incorporated into biomass) on perform ance are excluded.

1.5.3 Com petition intensity

Following Grace (1993, 1995«), the relative reduction in performance is used 

throughout as a m easure o f com petition intensity, rather than the absolute reduction 

(C4a) as used by C'ampbell and Grim e (1992) . This is referred to as Clr, and is defined 

as

relative Competition Intensity (C lr) =
( 1 . 1 )

where P,,,,,,,,, is the perform ance o f the species or individual in the absence o f com petitors 

and is the perform ance o f the species or individual is the presence o f com petitors, 

follow ing an additive design for the mixture rather than a replacem ent design (see 

Snaydon 1991, 1994). This definition is consistent with the conceptual definition o f 

com petition stated above in section 1.5.2 . Thus the C'lr experienced by species X in 

com petition with species Y (i.e. the C lr exerted by species Y in com petition with 

species X) is given by

C /r lX .y ]  =
P [ X , ] ( 1.2 )

where P\X^\  is the perform ance o f species X in m onoculture (species Y absent), P|Xyy| 

is the perform ance o f species X in mixture (species Y present), and the density o f 

individuals in m ixture (XY)  is sum o f the densities o f individuals in each m onoculture
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( X  and yO, i i’- additive design (H arper 1977).

As stated above (section 1.5.2), perform ance may be expressed by a variety of 

plant characters. Both Reader ei al. (1994) and W ilson and Tilm an (1993) used RGR 

as a measure o f performance, to account for initial differences in size betw een 

individuals, though this method does m ake im plicit assum ptions about the growth o f  the 

individuals, i.e. growth assumed to be exponential and not logistic (J.B. Grace, pers. 

com m .). All com peting individuals o f the  sim ulation runs in chapter 3 have identical 

initial sizes. Final yield and mean plant size are used for all the C lr calculations m ade 

in this thesis, for the reasons given above. These tw o m easures give slightly different 

interpretations of com petition intensity: yield-based C lr m easures the Cl o f  the 

population as a whole, whereas size-base C lr estim ates the average C l experienced by 

the surviving individuals within that population.

1.5.4 Com petitive ability

Com petitive ability is a useful concept w hen considering the relative abilities of 

tw o individuals to compete for an essential resource but is plagued by the sam e 

difficulties in definition as com petition. One m ethod of gauging com petitive ability 

between species is to compare perform ance of a reference species, when each species 

is grown in com petition with the reference species under identical conditions (G audet 

& Keddy 1988). This com parative approach has been com bined with the definition o f 

com petition given in section 1.5.3 such that the com petitive ability o f a species is based 

upon the intensity o f competition exerted  by that species w hen in com petition w ith  a 

reference or standard species.

Calculation o f  com petitive ability (CA)

CA o f a subject species is determ ined by the Clr experienced by the reference 

species (species a\  see section 3.1.7) w hen in com petition with the subject species: 

however, the com petitive ability o f  the reference species may change along 

environm ental gradients, so the intra-specific C lr exerted by the reference species under 

identical environm ental condition needs to be included into the calculation o f the CA
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o f  the subject species. Therefore, the com petitive ability o f species X is given by the 

difference between the C lr experienced by species X in com petition with species a and 

the C lr experienced by species a in com petition with itself;

CA^ = -  C /r[«^J
n a j  -  P [a J  -  P{a^J

n a j

PVaA

P M

(1.3)

where P[ci^A perform ance o f species a in com petition with itself (double density

m onoculture), P[Uux\ is the perform ance o f  species a in com petition with species X and 

P[iiA is the perform ance o f species a  in m onoculture (single density m onoculture). Thus, 

if CAx=0 then species X has identical CA to the reference species, if CAx>0 species X 

has a greater CA than the reference species, and if CA^<0 then species X has a lower 

CA than the reference species under the sam e environm ental conditions {i.e. at the same 

resource availability level).
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C hapter 2

An Individual-Based P lant Competition M odel

2.1 Introduction

2.1.1 The use o f m athem atical models in ecology

The role o f models within ecology can be either descriptive, predictive o r 

investigative. The value o f a predictive m odel is based solely on its accuracy o f  

prediction; a descriptive model is usually em ployed  to summarize w hat is known about 

the system  under investigation and as such is lim ited by current know ledge, while an 

investigative model is a descriptive model up  to a point, beyond w hich the processes 

and m echanism s described by the investigative model may not be supported by 

experim ental evidence. The distinction betw een descriptive and investigative m odels is 

not always clear, but this approach to m odelling can be extremely profitable by forcing 

the m odeller to exam ine the precise nature o f  the interactions, even though little is 

known o f the underlying processes. It is th is  aspect o f m odelling that can be m ost 

important as it dem onstrates the extent o f  current knowledge and highlights the 

discrepancies.

Sharpe and Rykiel (1991) identify th ree  distinct objectives for m odelling: reality 

(the explicitness o f causal or underlying processes), generality (the robustness o f the 

model under varying situations) and precision  (the accuracy o f  m easurem ent o r 

prediction). They suggest that any model is lim ited by approach and objective, and that 

com prom ise between the three above objectives determ ines the m odel type.

A model may describe processes in a phenom enological or a m echanistic m anner 

(or a com bination o f both). There is grow ing concern within the field o f ecology that 

phenom enological models fail to simulate p rocesses to the same degree o f accuracy or 

realism exhibited by functionally explicit m echanistic models. T h is is exem plified by 

the work o f  A rm strong (1993) which dem onstrated  the advantages o f a m echanistic 

approach (pixel-based forest growth sim ulation) over the orthodox phenom enological 

approach (index-based forest growth sim ulation).
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2.1.2 Plant com petition models

The Lotka-Volterra competition ecpuitions

Based on the logistic equation, these equations are the ’building b locks’ of 

several plant com petition models; however the underlying assum ptions concerning 

com petitive interactions have been criticised (Tilman 1990). Each species is assigned 

com petition coefficients, one for each other modelled species, w hich describe the 

com petitive effect which that species has upon the appropriate com peting species, given 

certain  conditions. The coefficients are assumed to be constant through time, are specific 

only for a particular suite o f environm ental conditions, and it is assum ed that individuals 

o f bo th  species described are o f  constant size. Thus, unless the coefficients for a 

particular suite o f abiotic and biotic conditions are known explicitly from experim ental 

study, the Lotka-V olterra com petition model is ineffective. Therefore, to model 

com petition along an environm ental gradient using the Lotka-V olterra approach requires 

a com plete experim entally determ ined knowledge of the com petitive effect o f  each 

species on every other species at each point along the gradient, while to model 

com petition along two or more sim ultaneous environm ental gradients would require a 

prohibitive num ber o f experim ents.

The A iknum /Benjam in m odel o f  li^h t competition between species.

Aikman and Benjamin (1994) pre.sented a model o f light com petition between 

species, where growth rate is a function o f the total light intercepted. In this model, 

individuals are not m odelled per se, but the average individual for each species is 

de.scribed; all individuals have identical height and leaf area index, and equal .spacing 

betw een individuals is assumed. In a slightly m odified version o f  this m odel, the 

identical height assum ption is relaxed, and different species (essentially cohorts of 

individuals) may differ in foliage height, though all individuals w ithin that cohort are 

identical (Benjam in & Aikman 1995). While not strictly spatially explicit, the vertical 

(height) axis is m odelled in some detail to describe the am ount of light penetrating the 

canopy to reach the com bined crow n area o f a species. One im portant feature o f this
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model is that w ith sufficiently low biomass and average plant size, or at very  low 

densities, no light competition is predicted to occu r {i.e. open canopy structure). 

However, no com petition for space or below-ground effects are included w ith in  the 

model, and w hile the model may be used to predict y ields in m ixtures using species 

specific param eter values gleaned from monoculture experim ents (Benjam in & Aikm an 

1995), it cannot predict the outcom e o f competition in habitats o f variable productivity  

{e.g. along a nutrient gradient) without extensive supporting  experim ents.

Baldwin  ’.v m odel o f  root competition fo r  nutrients

Baldwin (1976) provided the first m echanistic model o f  individual plant 

competition. T his model is primarily concerned with nutrient m ovem ent th rough  the 

intervening soil between two individual plants. M ovem ent is dependent upon .several 

factors such as soil properties, nutrient uptake rates o f  the two plants, properties o f  the 

nutrient (diffusion and mass flow), and respective roo t mass and root characteristics. 

Included in his model are several features which have since becom e standard properties 

of individual plant growth models and are often incorporated into most physiological 

models of plant growth. Among these are the use o f  internal plant ’poo ls’ o f  free 

nitrogen and soluble carbohydrate, as well as plastic allocation  betw een root and  shoot 

based on the relative quantities of the nitrogen and carbohydrate pools. A lthough the 

system m odelled by Baldwin only included one-dim ension (vertical) for w ate r and 

nutrient flow (betw een two com peting individuals), he w as able to present a sensitivity  

analysis for various traits that could affect a plant’s com petitive ability. This paper of 

Baldwin (1976) has been overlooked in many plant com petition  studies.

T ilm an’s A LLO C A TE  m odel o f  plant population com petition

The A LLO CA TE model simulates competing populations over time: each species 

differs in the allocation pattern em ployed between ind iv iduals’ root, stem and leaf. This 

model was developed by David Tilm an to investigate how m orphology (and to  some 

extent physiology) can affect species’ fitness and com petitive ability (Tilman 1988). The 

vertical distribution o f light and the net availability o f a single soil nutrient (T ilm an does
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not explicitly identify this resource) are included; the distribution being affected by the 

total biom ass present in each vertical class or layer. The soil resource availability is 

determined by supply rate and the net uptake rate o f all individuals. E ach  species is not 

comprised o f  individuals p e r  se, but cohorts o f individuals which germ inate at the same 

time. Each cohort has various de.scriptive variables associated with it (root, leaf and 

stem biom ass per individual; number o f individuals within the cohort; height o f  all 

individuals w ith in  cohort; death rate). Species specific per-unit b iom ass characteristics 

are included for photosynthesis, soil resource uptake characteristics, and respiration 

(further differentiated into rates for root, stem and leaf).

The m ain  em phasis o f this m odel is the species specific allocation patterns of 

new biom ass (growth) between root, stem  and leaf, and the effect o f  com petition on 

growth. T ilm an ’s model dem onstrates that sufficiently different allocation patterns can 

produce species differentiation along a light/soil re.source gradient (g iven the restrictions 

o f his assum ptions). All individuals experience identical soil resource availability 

(assuming hom ogenous soil resource distribution) but taller individuals always shade 

smaller individuals; the model assumes that all leaves are form ed in a single layer at the 

maximum height of the plant (see .section 1.3 for summary o f T ilm an ’s concepts and 

theory).

27



C hap te r 2 M odel D escription

2.1.3 Individual-based versus species-based com m unity m od els

There has been relatively little work relating the com m unity  to its com ponent 

individuals compared to the substantial literature relating the com m unity to com ponent 

species (see section 1.2 above). These species-ba.sed models invariably describe the 

species as a population compo.sed entirely o f identical individuals experiencing identical 

environm ental conditions w ith little or no concession for variation (phenotypic or 

genetic) between individuals. In effect this is a phenom enological versus m echanistic 

argum ent: a model is either phenom enological or m echanistic depending on the level 

o f com plexity simulated. By ignoring the core mechanisms operating  at the individual 

level species-ba.sed m odels m ay be fundamentally flawed. T he  theories o f Grim e and 

Tilman both function mainly at the species level, and potentially  neglect processes 

operating upon individuals that could prove critical at com m unity  level. Con.solidation 

o f the individual with the species and the resulting com m unity may be vital for theory 

m aturation and developm ent.

2.1.4 M odelling com petition proces.ses and as.sociated com plications

T he predom inant problem  of developing a resource com petition  model is to 

realistically simulate com petition for the resources between indiviclmils. The conceptual 

definition o f com petition presented in section 1.5.2 is equally applicable to both nutrient 

and light com petition, and dem ands a mechani.stic approach to com petition. U sing 

coefficients to sum m arize the com petitive effect o f one species on another (the Lotka- 

Volterra equations, for exam ple) does not describe this p rocess, and by treating the 

com petitive result from a particular suite o f abiotic and biotic conditions as a potentially 

unique phenom ena, has no predictive capacity.

T he real world is extrem ely heterogenous and this is bound to have im portant 

consequences for com petitive interactions at the individual .scale as well as at the species 

scale. The only way to realistically model an individual-based com petition process is to 

model individuals and their interactions, be they direct or indirect. So rather than having 

a num ber o f operations per species describing com petition, as m ost com petition m odels 

operate, a series o f operations are performed for each o f the individuals present, and the
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performance o f the species is a consequence o f its com ponent individuals. 

Neighbourhood models developed from a need to model .sessile organism s as sessile 

organisms rather than the generali.sed organism s described by the Lotka-V olterra 

equations and variants. Czaran and Bartha (1992) classified neighbourhood m odels into 

three groups;

(a) Discrete-space models (also known as cellular automata)

These models divide the domain into discrete cells usually as a sim ple square 

grid, although a hexagonal grid may be used which elim inates the problem s associated 

with unequal distance between neighbouring cells in a regular square grid. Alm ost all 

of these models limit the size o f the cells to the size o f one individual (for an exception 

see van Tongeren & Prentice 1986) and the status of the cell (occupancy, local resource 

levels, etc .) is determined by rules of cell interaction (see Czaran & Bartha 1992 for 

review; see Colasanti & Grime 1993, Silvertown et al. 1992 for exam ples). No cell is 

in isolation and the status o f a cell depends on the status o f neighbouring cells as well 

as its own. Certain competition processes m ay be m odelled, soil nutrient com petition 

for exam ple, but not light com petition as physical overlap between individuals (physical 

intermingling or overlapping areas of resource acquisition) arc prohibited by the one 

individual per cell rule. The assum ption that only one individual may occupy a cell at 

any one time, and consequently may only acquire resources from that cell alone, also 

implies that all individuals have a maximum size and a local limit to their area o f 

resource acquisition regardless o f  the size and extension o f the individual.

(b) Distance m odels

Distance models again describe a com m unity over a dom ain using coordinates 

to represent the centre point of each individual plant but represent space as a continuous 

variable. Zones o f inlluence or areas of resource acquisition arc represented as a circles 

centred on individuals. If neighbouring circles overlap, these zones o f  resource 

acquisition also overlap, and the resources delineated by the overlapped area are shared 

by the (overlapping) individuals proportional to biomass - this is m ost applicable to light
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com petition (Bella 1971, Leps & Kindlm ann 1987). There are several w eaknesses w ithin 

the inherent assum ptions of this kind o f model. Firstly is the assum ption  that there is 

a definite edge o f the resource acquisition zone. Secondly, because sp ace  is considered 

continuously and not di.scretely, it w ould be extremely difficult to m odel a m obile 

resource (such as nitrogen) throughout the sy.stem as a continuous variab le ; it w ould be 

easier to handle spatially discrete variables. Thirdly, growth is assum ed  to be radially 

sym m etric, w hich is biologically unrealistic (recently dem onstrated by M o u  et al. 1995). 

The com petitive elem ent of the m odel, sharing o f resources within an overlap , satisfies 

the working com petition definition, but does not lend itself to  mechanistic 

expansion/detailing.

(c) Tessellation models

Individuals are positioned on a continuous plane and, like d istance m odels, 

tessellation models calculate an area around an individual that represen ts the degree of 

influence which that individual exerts upon the environm ent. H ow ever the sim ilarity 

ends there, as the areas is calculated in a very different way. The tessella tion  model uses 

an algorithm  (Dirichlet or Voronoi algorithm s are the most com m only u se d ) to construct 

a polygonal area that is not radially sym m etric around the individual’s position . The size 

and shape o f the polygon depends on the individual’s characteristics a n d  status as well 

as those o f its im m ediate neighbours. It is hard to judge the accuracy o r the value of 

tessellation models to describe the effect o f com petition, g iven  that accurate 

m easurem ent o f com petitive effects could be achieved. From a m echanistic  perspective 

tessellation models fail to address the core processes, utilizing coeffic ien ts to em ulate 

com petitive effects o f one individual upon another.

All o f these m odels have a com m on thread: reducing a three-dim ensional system  

to two-dim ensions. The justification for this has principally been ease o f  modelling and 

sim plicity o f calculation. But this justification  is not as valid as it used to  be before the 

(continuing) proliferation of rapid com puter programs as tools for sim ulation  studies. 

The three-dim ensional structure o f plants had been considered by F o rd  and Diggle
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(1981) but they too assumed radial symmetry. Recently, however, there have been a few 

attem pts to simulate plants and plant growth in "real-space"; an adm irable paper by 

Sorrensen-Cothern et al. (1993) de.scribes a m odel of three-dim ensional com petition and 

grow th  including allocation plasticity and resulting asymmetric growth. Only if plants 

are modelled as three-dim ensional forms can competition processes (in particular 

shading) and asymmetric growth, an important aspect when considering com petition, be 

m echanistically represented. Asymmetric grow th o f resource capturing organs m eans that 

resource acquisition and depletion will also be asymmetric. Hence, resources m ust be 

m odelled .spatially and tem porally and to at least the same spatial resolution as the plant 

form . If light and soil nutrients are to be m odelled then their relationship, from the 

view point of the plant, also needs to be considered. Thus, the criteria necessary for a 

m echanistic com petition model are:

(a) inclusion of individuals,

(b) three-dim ensional space to allow for mechanistic description o f com petition 

processes betw een individuals,

(c) plasticity and asym m etric growth,

(d) explicit description of resource distribution, acquisition and allocation.

T here is a balance to be struck between m echanistic detail o f a model and its general 

applicability: too much detail and the model is limited by the unwieldy num ber of 

environm ental and physiological variables that must be enlisted even though its realism 

may be accurate; too little detail and the m odel’s explanatory and descriptive pow er is 

lost. Also, there is a problem  of hierarchy: "mechanism at one level is em piricism  at 

another" (Sharpe & Rykiel 1991). In the context o f modelling resource-com petition the 

best tactic w ould seem to be to limit the mechanistic detail to the process of 

com petition; that is criteria (a) to (d) above. Beyond this level any further m echanistic 

detail would detract from the importance of these processes and the generality o f the 

m odel would be com prom ised.
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2.1.5 The aim s o f proposed model

The model described below has been developed to investigate som e o f the 

discrepancies and contlicting argum ents arising from the theories of Grime and Tilm an 

(see Chapter 1). The original intention was to model plant com petition for resou rces in 

a mechanistic m anner at the individual scale such that the resulting com m unity  would 

be determined by com petition-associated processes and not generalized species-based 

phenomena, i.e. the com m unity com position is determ ined by interactions betw een 

individuals rather than between species.

The advantage of such a model is that any species (differing in traits or s ize ) can 

be em ployed and the eventual outcom e determ ined during the course of the sim ula tion  

by m echanistic proce.s.ses ba.sed on the characteri.stics o f the re.source(s), the individual 

plant characteristics and  the interaction between resource and plant. Once constructed  

such a model could be u.sed to investigate various issues concerning com petition , 

resources, plant traits and plant ‘strategies’ (plant trait syndromes) o f resource 

utilisation.

2.2 Description o f the model

2.2.1 Introduction to the model

This model sim ulates above- and below-ground resource acquisition and growth 

of herbaceous individuals over a single growing .sea.son. As such the model is restric ted  

to simulating either annuals or first-year perennials within a gap.

In this m odel, com petition for light and a single nutrient are considered  

sim ultaneously; the .soil resources m odelled are nitrogen and phosphorus, a lth o u g h  the 

model al.so includes water uptake and distribution through the .soil in order to  model 

nutrient ma.ss flow effects. W hile the model does not describe sim ultaneous n itro g en  and 

phosphorus com petition, it could be expanded to do .so. This model de.scribes 

com ponents in an abstracted manner. For exam ple, the physical forms of the nu trien ts 

(c.g. nitrogen generally exists as either nitrate t>r am m onium ) are not included within 

the model p er se, only the ab.solute abundance of the elem ent itself. Likewi.se,
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carbohydrates produced trom photosynthesis are represented only by the mass o f carbon. 

Once resource an d  carbon are assimilated into plant material, it is the biom ass o f the 

material that is described, unless the plant material begins decom position.

The environm ent o f the model is divided into two sections, above-ground and 

below'-ground. E ach  section is spatially constructed from a three-dim ensional array of 

cells; an individual plant is represented by the occupancy o f m any such cells. Each cell 

represents 0 .000125  m ’: there are 80(K) cells per cubic metre. Above-ground cells are 

referred to as A B O V E cells, below-ground cells as SO/Lcells. Each cell is located in 

three-dim ensional space by a series o f three coordinates: LA Y ER, x and y. LAYER 

represents the he igh t (ABOVEcells) or the depth (SO/Lcells), while x and y describe the 

lateral position o f  a cell w ithin that LAYER. Each occupied cell above- and below ­

ground contains a constant amount o f plant material that cannot be exceeded. This 

constant is nam ed CELLmass and, in conjunction with initial nutrient levels and light 

levels, effectively controls the spatial resolution of the model. The biom ass o f an 

individual plant is  com prised of ROOThiomciss and SHOOThionuiss, the mass o f the 

roots and shoot system s respectively.

\  list of all variab les used in the m odel appears in Table 2.1 at the end o f this 

chanter.

2.2.2 R esource-plant overview

plant growth scheme may be represented as three discrete processes:A sim ple

(a) resource acquisition,

(h )  restjurce assim ilation,

(c ) resource allocation to growth.

Although these processes m ay be discrete they are far from independent. Assim ilation 

of resources is dependent on resource levels previously acquired. Likewise, allocation 

of new growth can  be determined by the degree o f acquisition and assimilation. Rerhaps
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the most important connection  is the potential for positive feedback between allocation 

to resource acquiring o rg an s  and resource acquisition (see Chapter 3).

Unless otherw ise stated, any further references to resource^s^ w ithin  

this chapter re fer  to the soil nutrient (may be either nitrogen or  

phosphorus), w h ile  references to carbon  refer to the carbon products 

o f  photosynthesis.

2.2.3 Sum m ary o f environm ental and plant processes

The model com prises of any number o f individual plants occupying m ulticellular 

three-dimensional space. Each individual plant begins life occupying one cell above- and 

below-ground at its appropriate  position. Occupancy o f above-ground cells enables the 

plant to photosynthesizc carbon products (C), depending on the light status o f occupied 

cells and the individual’s species, w hich accumulate in the individual’s internal carbon 

storage pool (Cpool). S im ilarly , occupied below-ground cells may acquire soil resources 

(R), depending on species and resource status of below-ground cells, which arc stored 

in an internal reservoir (Rpool). Shading or local resource depletion act to reduce the 

production o f carbon an d  acquisition of soil re.source, respectively. M aintenance of 

occupied cells is reflected  in a carbon levy (size based) on the individual’s Cpooi, if 

Cpool contains insufficient C to satisfy maintenance costs then the plant is assum ed to 

die and relinquishes its occupation o f  cells. Some or all (depending on species’ growth 

characteristics) of the p la n t’s internal C and R are then directed towards assim ilation and 

then growth; one unit m ass  of new biom ass contains a constant proportion o f  C  and R. 

Partitioning o f growth betw een root and shoot depends on the species’ allocation 

characteristics and possib ly  (with plastic allocation patterns) plant Cpool and Rpool 

status. G rowth is m anifested  as the occupancy o f currently unoccupied cells and requires 

the investment of a quan tity  of biom ass per cell. As a plant grows it occupies more 

cells; the more cells the p lan t occupies the larger the surface area for potential resource 

absorption. Spatially asym m etric grow th is possible within this model: the cell growth 

routine, described in sec tio n  2.2.13, will always prom ote new grow th into an area of
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relatively high resource level. The growth routine includes a stochastic elem ent in 

determ ining w hich  cell(s) a plant may occupy through growth. At each time iteration, 

the following occurs:

(a) R esource movement in the soil,

(b) R esource uptake by roots,

(c) Light interception and photo.synthesis o f  carbon products by shoots,

(d) P ooling of acquired soil resource and carbon into respective pools,

(e) M aintenance o f existing biomass,

(f) A ssim ilation o f R and C substrate,

(g) Partitioning o f new growth between root and shoot,

(h) Root and shoot growth,

(i) Return o f re.source (contained in dead tissues) to the soil.

Environm ental processes are (a) and (i). See Figure 2.1 for resource and carbon 

processing w ithin a plant (includes plant m echanism s b,c,d,e,f,g and h).

2.2.4 Resource m ovem ent in the .soil

Resource m ovem ent in the soil is determ ined by the m ovem ent properties o f the 

particular resource modelled (nitrogen and phosphorus are both modelled), and the 

current d istribution  of re.source throughout the soil volume (after acquisition by plants). 

The soil is constructed o f a three-dimensional array o f cells, each o f which retains a 

value o f resource (mg) contained within that cell; resource m ovem ent is determ ined 

locally {i.e. for a single cell and its immediate neighbours). M ovem ent is allowed 

between neighbouring cells (but not diagonally adjacent cells), so with a three- 

dimensional arrangem ent a single cell in the centre o f the m odelled soil will have six 

neighbouring cells: four at the same LAYER, one im m ediately above and one 

immediately below . The cells representing the edge o f m odelled space (e.g. cells at the 

soil surface) have slightly different rules governing resource m ovement: see section 

2.2.4.2. The principles o f diffusion within the m odel for a tw o-dim ensional plane are
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described first o f all (section 2 .2 .4 .1), and then the conversion to three-dim ensions is 

dem onstrated (2.2.4.3). Finally, m ass flow is introduced (2.2.4.4) and included into the 

overall movement equation (2.2.4.5).

2.2.4.1 Diffusion within a tw o-dim ensional plane

Each cell is assigned a resource value, SoilR , and it is a cell’s own SoilR  value 

and the SoilR  values o f neighbouring cells that determ ine the new SoilR  value for that 

cell after one iteration o f diffusion. D iffusion in this model is ba.sed on the principle that 

the resource within a cell is shared with appropriate portions of neighbouring ce lls’ 

resource, thus the equations below (2 .1 ,2 .2  and 2.3) arc not true diffusion equations but 

approxim ations based on the iterative averaging o f  neighbouring cell portions.

In Figure 2.2a the central ce ll, cell X, has neighbouring cells A, B, C and D. 

The amount o f resource in cell X, SoilR^, is partitioned into n parts, where n is the 

num ber of neighbouring cells (in th is  case, n = 4). Each o f the.se portions corresponds 

to a similar portion o f each neighbour. The sim plest diffusion term is given by

SoilRy = SoilRy +

SoilRy

SoilR + SoilR^ 
2nd

SoilR^ + SoilRg SoilRjf + SoilRf. SoilR^ + SoilR^
2nd 2 n d 2nd

n SoilR + SoilR^ + SoilRg + SoilR^ + SoilR ̂  
2nd

( 2 . 1)

w here SoilRy" is the new resource value for cell X after re.source m ovem ent; SoilR^, 

SoilR^^, SoilR(~ and SoilRi^ are the so il resource values for the neighbouring cells A, B, 

C and D; n is the number o f neighbours (in this case four); d  is a diffusion coefficient 

determ ining the speed of diffusion, where low values o f d  confer rapid diffusion 

between adjacent cells while high values confer slow diffusion. This is not a true 

diffusion equation, but simulates d iffusion by the iterative averaging o f neighbouring 

cell portions. Figure 2.3 shows an example o f  this procedure; in this exam ple this 

averaging is only allowed between the  central cell and im m ediate neighbouring cells.
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(a) SoilR values at time=T (b) Partitioned SoilR values

1.2

0 .4 0.6 0.8

0.4

(c) Redistributed panitioned values (d) SoilR values at time=T+l

Figure 2.3

An ex am p le  o f d iffusion  o f  SoilR  betw een  five  ad jacent cells. T h e  initial 
So tlR  values o f e ach  cell (a) are p a rtitioned  accord ing  to  the p re sen ce  o f

A djacen t cells then  "share" the ap p ro p ria te  portions 
of S o ilR  (c) and the  new values o f each c e ll a re  ca lcu la ted  (d). In  this 
ex am p le  d (d iffusion  coeffic ien t) = 1.0 .
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The flux of resource by this iterative averaging of resource between cell X and 

a neighbour, for example cell B) is therefore

DJJux^ b
SoilRg -  SoilR^  

2 n d
( 2. 2)

where Dflux^^y^ is the tlux o f resource into cell X from cell B. If D flux^n < 0 then 

resource is m oving out of cell X, if D flux^ ^̂ > 0 then resource movement is into cell X.

2.2.4.2 Border cell.s as special cases

Edfie ejfects: the case fo r  a wrap-roimd/torus spatia l system

One o f the dilem m as encountered by spatial modellers is the problem of edge 

effects, the term given when the outcom e o f spatial processes arc affected by the 

presence of a spatial boundary. These occur when a spatial environm ent is modelled as 

a closed structure, i.e. the physical edges of the m odelled space are defined and the 

volum e or surface contained within these limits is finite. For exam ple, .soil resource m ay 

diffuse throughout the modelled soil, but a special case needs to be constructed for the  

space around an edge to avoid ‘leakage’ of re.source from the system. W ith a special set 

of rules governing diffusion at the periphery o f the spatial system , the edge would act 

as a barrier, and the soil system would be analogous to soil in a pot experim ent. O ne 

possible edge effect with a pot design may be a feedback from the edge resulting in 

waves o f resource running through the soil em anating from the soil boundaries. 

A lternatively, finite volume for the plants to occupy and grow into is likely to prejudice 

the grow th o f plants occupying sites near or at the edges. The danger is that the 

dynam ics of the modelled system may reflect the influence o f the edges present ra ther 

than the dynam ics o f the subject that is actually being modelled. One way to avoid th is 

(though it does create some further problems o f its own) is to model space as though 

the far edges o f a plane are linked. Just as though they are normal neighbours. T h is  

em ulates an infinite ‘field’ of the modelled system  thus elim inating edge effects, and  

is referred to as a ‘w rap-round’ or ‘to rus’ design o f  modelled space.
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For cells on the edge of modelled space, a modified diffusion function is 

required as border cells may have less than n neighbours (Figure 2.2b) depending upon 

spatial design. One m ust be careful, if the total soil resource level is to rem ain intact 

(i.e. no leakage or creation o f soil resource). In the c a se  of the 'po t' design, border cells 

have their ‘m issing’ neighbours created with identical SoilR  values (called ‘f-host' cells) 

and the diffusion function is performed as equation 2.1 (Figure 2.2b). Because these 

ghost cells contain identical SoilR  values to the b o rd er cell there is no net m ovem ent 

of resource betw een these cells, and the true soil resource level rem ains intact. For 

"torus' designs (see above), the missing neighbours o f  a border cell are assum ed to be 

cells on the opposite side o f the soil space (Figure 2 .2c); this effectively gives a ‘w rap­

around’ .soil sy.stem and again preserves the total so il resource level.

2.2.4.3 Conversion to three-dim ensions

To convert to  three dim ensions only requires that n = 6 (four neighbours on 

same LAYER, one immediately above, one im m ediately below) and the extension of 

equation 2.1 to

SoilR^ = SoilR^  +
n SoilR  V + SoilR . + SoilR „ + S o ilR ^  + SoilR  r, + SoilR  +

2 n d

where SoilR,. and SoilR , mc the soil resource values for cells E and F, the cells 

immediately above and below cellX. The tlux term betw een cell X and each neighbour 

retains the same form ula as equation 2.2.

2.2.4.4 Ma.ss flow

Water flow

For sim plicity, the movement o f water is considered in an identical m anner to 

resource diffusion and water llux in/out o f cells is governed by an equation sim ilar to 

equation 2.2: water moves down a gradient generated by water uptake from  a cell with 

high water content to  a cell with lower water con ten t (D arcy’s Law, N ye & T inker 

1977). For sim plicitiy, gravity is assumed not to a ffec t the m ovem ent o f w ater, and this
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may have im portant consequences for nutrient distribution and consequently, up take by 

model plants (see section 5.1). The net flux o f water from cell X into a neighbouring 
cell, for exam ple cell B, is

Wflux'■Xfi
SoilW ^ -  SoilW ^ 

2 n W d
(2 .4 )

where Wflux^ y, is the flux of water into cell X from cell B, SoilW^, and SoilW ^ are  the 

am ount (mg) o f w ater present in cells B and X respectively, and Wd is a w a te r 

m ovem ent coefficient equivalent to d  in equation 2.2.

M ass flo w  m ovem ent o f  resource

M ovem ent o f resource by mass flow between adjacent cells is determined only  

by the direction o f w ater movement between the same cells; the model does not include 

a link between rate o f  water flow and mass flow o f soil nutrients. The algorithm be low  

governs the mass flow o f re.source; this is an exam ple between cell X and cell B.

K!H>S

m

if Wflux^ n > 0 then MFflux^^, = SoilR^^ /  n

if  Wflux^ i, < 0 then MFflux^^, = -S o ilR ^  /  n

if W/lux^^j^ = 0 then MFJlux^^^ = 0  (2 .5)

where MFfluxy^  ̂ is the potential flux o f resource by mass flow into cell X from ce ll B 

(mg R), if all resource present moves by mass flow.

2.2.4.S Incorporating diiTu.sion and ma.ss flow

The resource within a cell is partitioned between the proportion o f resource 

which moves via diffusion (a) and the proportion which moves via mass flow (/?) 

(Barber 1962, M arschner 1986). The values of these proportions contribute to the supp ly  

properties o f the resource, as they determine whether the majority o f movement is by 

diffusion (either within the soil solution or on the surface o f soil particles) or mass flow  

(.see Table 3.1 in chapter 3, and Appendix for values assigned for nitrogen and

[£*/i
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phosphorus sim ulations). Thus, the net movem ent o f  resource between two cells, for 

example into ce ll X from cell B, is given by

N ETflux^g = (a  X D flu x^^)  + (¿> x M F flux^g) (2.6)

Finally, the new  value tor cell X the sum  o f all fluxe.s into X, given by

^oilR'x = NETflux^^ ^NETflux^g ^NETflux^ ^^NETJlitx^^ ^NETflux^^ ^NETflux^j, (2.7)

where SoilRy{ is the new value of resource in cell X after one time unit o f diffusion and 

mass Bow; N E Tflux^ ^, NETJluxy^^^, NETf7ux^ .̂, NETJlnx^ f̂ , NETJlux^ j: and NETfluxy^ 

are the net m ovem ent fluxes from cells A, B, C, D, E and F respectively into cell X.

2.2.5 Resource uptake by plant roots

Uptake o f  resource only occurs at the root surface {ie. only in SOILcells 

occupied by healthy plants) and influx to the root is dependent upon the concentration 

of the soil im m ediately in contact with the root surface (the SoilR value of the SOILcell) 

as well as the specific plant uptake characteristics (per-unit biomass properties). The 

influx o f resource into the root has been m odelled using the M ichaelis-M enten equation 

(Barley 1970, N ovoa & Loom is 1981, M arschner 1986); no toxic effect o f very high 

availability o f so il resource are included in this model, and uptake is assumed to occur 

even at very low  resource concentrations. The sequence o f calculations for each 

occupied SO ILcell is as follows;

71 I Im ax  X SoilRy
celluptake = ROOTmasSy x -------------------- -

Km + SoilRy
(2 .8)

where SoilR^ is the SoilR  level of the relevant SOILcell, in this case cell X; celluptake 

is the uptake rate  for cell X (mg R d ‘); ROOTmass^^ is the amount o f biomass present 

in cell X (mg roo t biomass; see below); /m a x  is the m axim um  rate o f influx per-unit 

mass of root b iom ass (mg R mg ' root biom ass d '); and Km  is the concentration at 

which celluptake = lmax/2 (m g R per SOILcell).

40



C hapter 2 Model Description

¡max and Km  are assumed to be species specific and constant throughout the 

plant’s life, although evidence exists that Imcix may vary w ith plant age (Youngdahl et 

ill. 1982) and nutrient availability (Chapin 1980). If the total root biomass of the plant 

is less than CELLmciss.^ then R0O Tm ciss is set to the ROOThiomuss o f the occupying 

plant and the celluptake value is reduced proportionally; else ROOTma.ss = CELLmass. 

ROOThiomcis.s^ is the total biomass o f the root system of plant i.

The cum ulative soil resource absorbed by the root cells o f an individual plant 

in one day (mg R d ‘) is given by Ruptake^ .

2.2.5.1 W ater uptake

Daily transpiration rate is assum ed to be equal throughout the plant’s shoot 

system  and, for simplicity, independent o f  irradiance received or photosynthetic activety, 
hence

transpiration. = SHOOTbiomass. x TranspirationRATE (2.9)

where tran.spiration, is the total mass o f  water transpired by plant i in one day (mg 

water d ‘), SHOOThioma.\.s^ is the total mass o f the shoot system of plant i (mg 

biomass), and TranspirationRATE  is the daily per-unit shoot mass rate o f transpiration 

(mg water mg ' biomass d '). W ater supply is assumed to be non-lim iting to plant health 

and growth, therefore the total daily water uptake approxim ates the total water 

transpirated daily (Slatyer 1967, Habib & Lafolie 1991):

WaterUptake ̂ =
transpiration ̂

ROOTbiomass^
( 2 . 10)

where W aterilptake, is the per-unit root biomass rate o f w ater uptake by plant i in one 

day (mg water mg ' root biomass d '). This provides sufficient detail o f water uptake for 

water gradients to be generated in the .soil system for mass flow  calculation (see section
2.2.4.4).
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2.2.6 Resource pooling

Following Baldwin (1976), all resource absorbed by individual roots cells is 

pooled into an internal p lan t resource storage pool, Rpool, which acts as a reservoir 

supplying resource substrate for assimilation:

Rpool^ = R pooll + Ruptake^

where R po o l' is the R pool o f  plant i from the previous day.

( 2 . 11)

2.2.7 Shading and calculation  of light level o f  A B O V E cells

Light is assumed to  be direct beam; diffu.se beam  light is not considered in this 

model. The direction o f ligh t is vertical (azimuth angle of 0") and is constant. Each 

occupied ABOVEcell in tercepts a fraction of the light available at that position. The light 

level reaching a cell, Lighty^, is calculated from initial light level, sunLIG H T, and 

decrea.ses according to the Beer-Lam bert Law (T hornley & Johnson 1990, Sorrensen- 

Cothern et al. 1993) with interception by vertically aligned occupied ABOVEcelLs:

P = etransmittance
(-/x (2 . 12)

^Irunsm iUunce is the probability or rate o f transm ittance o f  light through an 

ABOVEcell, f  is the fraction ot leaf area projected on a plane normal to the beam 

(unitless), LADp is the L eaf Area Density (m^ m'^) o f  the occupying plant p . f  may be 

species-specific and may a lso  vary with foliage height but is assum ed to be constant 

(f=\)  for all occupied AB O V E cells  and plants in th is model. If an A B O V E cell is 

unoccupied then for that cell LAD = 0. LAD is species-specific, and assum ed to be 

constant through the canopy o f a plant.
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It follows Irom equation 2.12 that the am ount o f light reaching ABOVEcelly^ is 

determ ined by calculating the reduction in the light level caused by each occupied cell 

(above the cell) in turn:

MAXheighi

Eighty = sunLIG H T -  ^
transmittance [/] (2.13)

l=LAYERr*l

where sunLIG H T  is the level o f irradiance entering the system from above (constant; 

unitless), / denotes the cell height; M AXheight is the num ber o f vertical cell layers 

constructing ABO VEcell (integer; unitless); LAYER  is the vertical level o f cell X 

(integer, unitless); and (̂ransminancct̂ ] is the probability or rate o f transm ittance o f light 
through ABO VEcell,.

2.2.8 Photosynthesis

At each iteration, each occupied ABO VEcell intercepts light and fixes carbon by 

photo-synthesis. Light is assumed to be the only lim iting factor for photosynthesis (water, 

COj and nutrient availability are considered not to affect photosynthesis). The amount 

of light reaching an ABO VEcell is given by the variable Light (.see .section 2.2.7 above), 

and the am ount intercepted depends on the area o f leaf within that ABO VEcell, as 

determ ined by the leaf area density (LAD, cm^ leaf cm ’  ̂ space). Following Thornley and 

Johnson (1990), the relationship between irradiance and photosynthetic rate is assumed 

to be a rectangular hyperbola. The following equations occur for each ABO VEcell 

occupied by plant i; in this exam ple cell X is occupied by plant i:

LIG H Tintercepted^ = light,,^ x LAD, (2.14)

LIG H Tinterceptedy  x K b
Photosynthetic RATE y = ------------------------- ^ ‘

LIG H Tinterceptedy  + Ka,
(2.15)

PhotosynthatCy = SHOOTmasSy x PhotosytheticRATEy  (2.16)

where LIG H Tinterceptedy  is the am ount of light intercepted by the occupying plant
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tissue in cell X (unitless); PhotosyntheticRATE  is the per-unit size rate o f photosynthesis 

for cell X (mg C m g ' shoot biom ass d '); Ka^ (unitless) and A7?, (mg C mg ' shoot d ') 

are photosynthetic constants which determ ine the shape of the relationship curve for 

plant i; P h o to syn th a u \ is the absolute am ount of carbon fixed for cell X (mg C); and 

SHOOTmiiss^ is the amount o f shoot biom ass present in cell X (mg biomass).

The PhoiosytuheticR.ATE  equation (equation 2.15) describes a M ichaelis-M enten 

type relationship, determ ined by the constants, Ka and Kh, where Ka is the light level 

at which PhotosynrheticRATE=Kh/2. At extrem ely high light levels, PhotosyntheticRATE  

will approxim ate Kh.

As in section  2.2.5, if the total shoot biom ass of the plant is less than CELLmass, 

then SHOOTmciss^ is set to  the SHOOThiotmiss of the occupying plant and the 

Photosynthate am ount is reduced proportionally; else SHOOTmciss-^ = CELLmass. 

SHOOThiomass, is the total biom ass o f the shoot system of plant i.

The cum ulative am ount o f carbon fixed by a plant i each day is called 

CproJuction^.

2.2.9 C arb o n  poo ling

Following Baldwin (1976), there is a general plant carbon storage pool Cpool, 

acting parallel to  Rpool, which contains the carbon products o f ABO VEcell 

photosynthesis, and supplies carbon for im m ediate assimilation into biom ass (section

2.2.1 1) and for m aintenance costs o f the plant (section 2.2.10). Once Cproduction, has 

been determ ined, the following occurs;

Cpool. = Cpool. + Cproduction. 

where C pool' is the value o f Cpool from the previous day.

(2.17)

2.2.10 .M aintenance respiration

Total p lan t respiration is deconstructed into two com ponents; costs associated 

with biosynthetic prcKCsses (growth respiration; see section 2.2.11.3); and costs 

concerned with the m aintenance of tissues and replacem ent of lost biom ass (m aintenance
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respiration) (Ryle 1984, Thornley 1970, 1976). Maintenance respiration is calculated on 

a biomass basis: all biom ass belonging to an individual plant makes a  demand on that 

plant’s carbon pool: the per-unit biomass cost of maintenance is assum ed to be constant 

and equal for both roots and shoots.

MaintenanceCOST^ = maintenanceRATE{ROOTbiomass^ + SHOOTbiomass.) ^2 ] g)

M aintenanceCOST, is the absolute cost of carbon (mg C), while m aintenanceR A TE  is 

the daily per-unit biom ass carbon cost of maintenance (mg C mg ‘ b iom ass d ') and is 

assumed to be identical for all plants. This carbon cost is deducted from the plants 

carbon pool, before any carbon is assimilated that day, such that:

Cpool. = Cpool. -  MaintenanceCOST. (2.19)

If Cpool, is insufficient to support the demands made upon it, then p lan t death occurs 

(see section 2.2.14).

2.2.11 Carbon and re.source a.ssimiiation

The quantity o f carbon and resource put forward from their respective pools for 

assimilation into new biom ass can have a great effect on the overall growth 

characteristics o f the plant. Growth may either be coupled to re.source capture or 

uncoupled to resource capture (see sections 1.2.6 and 1.4.3). To sim ulate this difference, 

carbon and resource for assimilation into new biomass are submitted from  the internal 

plant pools into substrate pools, Csuhstrcite and Rsuhstrate, at rates determ ined by the 

plant’s growth syndrome. Only the contents of these two pools can be assim ilated each 

day. W ith coupled growth, fractions (or all) of the R and C pool are put forward for 

assimilation. W ith uncoupled growth, a constant absolute amount o f  R and C are put 

forward for assim ilation each day. The significance of this is that ‘luxury consum ption’ 

o f resources (see C hapin, 1980) will occur if resource supply is g rea ter than the rate of 

assimilation o f resources. Both forms are included in the model; the plant-specific 

variable CuptG roCO U  PLED  records whether plant i has coupled growth
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(CaptG roCO U PLED  = \) o r  uncoupled growth (CaptCiroCOUPLIiD=0).

2.2.11.1 Growth coupled to  resource capture

If plant i has g row th  coupled to resource capture then

Rsubstrate^ = Rpool. x gcR. (2 .20)

Rpool. = Rpool. -  Rsubstrate. ( 2 . 21 )

Csubstrate. = Cpool. x gcC^ ( 2 .22 )

Cpool. = Cpool. -  Csubstrate. (2.23)

w here gcR, is the fraction o f  Rpool^ subm itted for assim ilation into Rsuhstrate, each day 

(unitless); gcC, is the fraction  of Cpool^ subm itted for assim ilation into Csuhstrate, each 

day (unitlcss).

2.2.11.2 Growth uncoupled to re.source capture

If plant i has uncoupled grow th then the amount o f  R and C forwarded for 

assim ilation as substrate is determ ined by the amount o f  R and C available in the 

respective plant pools. RsuhRATE, is the rate o f transfer o f  resource from Rpool, to 

Rsuhstrate, (m g R d ') and CsuhRATP, is the rate of transfer o f carbon from Cpool, to 

Csuhstrate, (mg C d '). R suhR A T E  and CsuhRATIC determ ine the maximum daily grow th 

rate o f plants with uncoupled growth. If there is insufficient Rpool to maintain the 

assim ilation rate o f R suhRATE, then.

Rsubstrate^ = Rpool. (2.24)

otherw ise
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2.2.11.4 Determ ination o f excess substrate

Resource and the carbon products are assumed to  be assim ilated at a constant 

ratio (after Reynolds & Thornley 1982) given by CRratio  (mg C mg ' R). Thus, unless 

Csiibstrate = CRratio  x Rsuhstrcite there will be an quantity of unassim ilated substrate 

after assim ilation. As with the m odel of Baldwin (1976), this excess is returned to the 

relevant storage pool during the sam e time iteration to prevent waste, and the substrates 

are assim ilated according to the follow ing algorithms:

i f
( Csubstrate,

^ CRratio then  :
I, Rsubstrate^
Cassimilate^ = Rsubstrate^ x CRratio  , 
Rassimilate^ = Rsubstrate^ ,
Cpoolj = Cpool¡ + (Csubstrate^ -  Cassimilate^) .

(2.32)

i f
( Csubstrate.

> CRratio then :
\  Rsubstrate ■
Cassimilate ̂ = Csubstrate ̂ 

Csubstrate;
Rassimilate ! =

(2.33)

CRratio
Rpool^ = Rpool^ + {Rsubstrate  ̂ -  Rassimilate¡)

Finally, the assimilates are converted  into biomass:

NewBiomass- = 

or

NewBiomasS; =

Cassimilate;
Ccontent

Rassimilate;
(2.34)

Rcontent

where CRratio  is the ratio at w hich C and R are incorporated into biom ass (mg C mg ' 

R); Cassimilate^ and Rassiinilate, are the final am ounts o f carbon and resource 

respectively that are assim ilated; NewBionuiss^ is the am ount ol b iom ass constructed 

from Cassim ilate  and R assim ilate  (mg biom ass); C content is the per-unit biomass
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content o f C (mg C mg ' biomass), and Rcontent is the per-unit biomass con ten t of R 

(mg C mg ' biomass).

2.2.12 Partitioning o f new biomass between root and shoot

Once assim ilation has occurred NewBiom ass is allocated to R O O Thiom ass  and 

SHOOThiomciss by the partitioning coefficients, ROOTallocate and SHOOTcillocate. 

These coefficients are determ ined using the relative levels o f remaining resource and 

carbon in Rpool and Cpool such that

Cpool + ( CRratio  x PartR,. x Rpoolj ) -  ( PartC^ x Cpooli )
ROOTallocate, = ~ ----- — ----- ^ ^ ^ ^

( CRratio  x Rpool, ) + Cpool,

Rpool -  ( CRratio  x PartR, x Rpool, ) + ( PartC, x Cpool, )
SH O O Tallocate, =-------------------—  ---- :----------- —----- —----- --------------------- (2 36)

{C Rratio y. Rpool,) + Cpool,

where PartR^ and PartC, are constants that infiuence the pattern of allocation at different 

R and C substrate levels; ROOTallocate, and SHOOTallocate, are the fractions o f  new 

biom ass directed to root and shoot respectively such that

ROOTallocate, + SHOOTallocate, = 1.0 (2.37)

The allocation patterns that are characterized by PartR  and PartC  are a  crucial 

link betw een above- and below- ground com petition. These equations were derived  from 

the ratio o f R and C within the plant, in term s of potential biomass (hence P artR  is 

sealed to PartC  by CRratio), and PartR  and PartC  are introduced to contro l the 

response o f root/shoot allocation to the relative sizes of Rpool and Cpool. This is  similar 

to the partitioning model pre.sented by Reynolds and Thornley (1982).

This approach to root/shoot allocation is supported by evidence suggesting  that 

com m unication o f  some sort (mediated by nutrients or, more likely, horm ones) exists 

between the root and shoot systems o f a plant, such that growth may be allocated  with 

respect to the relative activity of the structures (Jackson 1993), and there is evidence 

that the allocation o f biom ass to root and shoot is determined by the internal
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unassimilated nitrogen content o f the plant, in just such a way as described by the 

equations above (M cDonald & Davies 1996).

The allocation  patterns that may be produced by this model range from constant 

allocation betw een root and shoot irrespective o f resource and light levels, to dynam ic 

allocation patterns with variable degrees o f  plasticity (see section 3.3.3). If 

PartR+PcirtC=\ .0 then allocation is constan t, while if PartR+PurtC<\ X) then the 

resulting allocation  pattern is plastic; if PartR>PartC  then the allocation pattern will be 

biased towards roots, i.e. more biomass will be  allocated to roots than shoots in general. 

Optimal plastic allocation between root and shoot only occurs if both P artC  and P artR  

are set to zero. Growth is distributed betw een root and shoot:

ROOTincrease ■ = RO O Tallocate. x NewBiomass^ (2.38)

SH O O Tincrease■ = SH O O Tallocate■ x NewBiom ass. (2.39)

where ROOTincrease, and SHOOTincrease, represent the amount of grow th available 

to root and shoot respectively (mg biomass).

2.2.13 Root an d  shoot growth

Grow th o f  both root and shoot (the  additit)nal occupancy o f  unoccupied 

SOILcells or A B O V E cells  by an individual) are treated in an identical manner. T he 

growth routine o f  this model has two stages: firstly, the diflerence betw een previous 

biomass and post-grow th biomass is calculated  and converted into the num ber of ex tra  

cells required fo r the individual to achieve the  new biom ass value (section 2.2.13.1); 

secondly, a location for each of these cells is found that satisfies som e simple rules 

(section 2.2.13.2).

2.2.13.1 C alculation  of cell number

Root an d  shoot biom ass (RO O Thiom ass  and SH O O Tbiom ass respectively) values 

arc real num bers but the occupied cells that represent the root o r shoot cannot rcHcct 

the true b iom ass value (being integer based). Thus, a function translating biomass into
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a number o f cells with equivalent mass is needed:

biomasscellnum ber =
CELLmassI

(2.40)

where cellnum ber is the num ber o f cells that are represented biom ass, and denotes a 

function rounding down a real number to an integer. W ith such a relationship converting 

real num bers to integers, there will be times when the number o f cells constituting a 

plant is less then the actual biom ass of the plant; the value of CELLnuiss determ ines the 

resolution o f  this relationship. The number o f cells to be grown is given by

C ELLgrowthnum ber = | biom ass'
CELLmass I -  f r

biomass
CELLmassI

(2.41)

where CELLgrowthnum her is the number of new cells the plant has capacity to grow; 

biomass' is the total mass o f  the organ (root or shoot) including the additional biomass 

expected from  growth; and biomass is the mass o f the organ the previous day {i.e. 

before this d ay ’s growth). Thus for root growth:/ ROOTincrease, + ROOTbiomass, \ / ROOTbiomass, \
CELLgrowthnumber^^=fi--------------- , ___________ _____________)-fr\

CELLmass CELLmass
(2.42)

while for shoot growth: 

C E L L grow thnum ber=/,| SHOOTincrease; + SHOOTbiomass, i / SHOOTbiomass.
— - HCELLmass CELLmass

(2.43)

2.2.13.2 Location o f grow th

Using an algorithm , described below, a suitable location for each cell to be 

‘grow n’ is found which satisfies all the following rules:

(1) cell must be previ<»usly unoccupied,

(2) cell must be adjacent to a ttccupied cell belonging to the same individual plant,

(3) if several im m ediately adjacent cells satisfy ( I )  and (2) then the cell with highest

resource level is the  location for grow th.
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If there are no available cells present at that depth/height the subsequent LAYER is 

considered {i.e. deeper/higher).

Identification o f  a suitable cell is achieved through a search o f cells by a 

template from the original initial cell o f an individual plant (PlantX , PlantY, LAYER=1; 

see appendix program), extending outwards from this cell until either a suitable cell is 

found or a certain num ber of template movements (TimeOut) occur, in which case the 

growth search template is promoted to the subsequent LAYER. The rules governing the 

growth of a cell by p lan t i are as follows:

( s i)  TimeOutCOUNT=i.). Set tem plate position to PlantX ,, PlantY,, LAYEiR (LAYER=1 initially). 

(s2) establish o ccupancy  status and resource (light o r SoilR) quantity  o f  each cell neighbouring 

tem plate p o sition .

(s3) if an untK’cu p ied  cell exists, identify the one with greatest resource quantity, then go to  s7. 

(s4) if no unoccupied  cell exists m ove tem plate (using random lateral direction) into neighbouring 

cell only if ce ll is (Kcupied by plant i. Tinu’O u t C O V N T = T i m c ' O i i t C O L /N T +  \.

(s5) if T i m e O u t C O U N T  <  TimeOut  then go to s2.

(s6) if T i m e O u t C O U N T  >  TimeOut  then increase tem plate LAYER by one. Go to s i .

(s7) Grow into cell.

The loops within these rules are performed until the criteria are satisfied and growth 

may occur. This is repeated for each cell to be grown, as determined above (see 

Appendix Program for further details).

2.2.13.3 Increase o f ro o t and shoot ma.ss

Once all cell g row th  has been completed, root and shoot mass are increased as

follows

ROOTbiomasS; = RO O Tbiom ass' + ROOTincrease. (2.44)

SHOOTbiomass^ = SH O O Tbiom assI + SHOOTincrease^ (2.45)

where RO O Tbiom ass' and SH O O Thiom ass' are the values o f ROOTbiomass\ and 

SHOOThiomasSi prior to  growth (i.e. from the previous day).
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2.2.14 Plant death and the return o f  resources to the environm ent

Plant death can occur at several stages o f the plant processes that are performed 

during each iteration. The significance of death in this model is the potential for the 

return o f nutrients to the soil and the prospect o f gaps below-ground and especially 

above-ground, where previously shaded ABO VEcells receive an increase in light 

following the death o f an individual. The location and quantity o f dead organic material 

in the soil is retained in SoilOrgM at, an array parallel to SoilR. Following the death of 

a plant its presence is removed from the physical space that it previously occupied: the 

relevant SO ILcells and ABO VEcells becom e unoccupied. As each SOILcell that the plant 

occupied is rem oved, the organic material that constructed the occupied SO /Lcell 

(CELLmciss) accum ulates as SoilO rgM at in the corresponding SOILcell. Shoot biomass 

accumulates at the surface of SOILcells {LAYER=\).

2.2.14.1 D ecom position

Decom position occurs each tim e iteration on all dead organic material in the soil, 

and any resource that may be released appears as an increase in SoilR  level at the same 

location (cell).

SoilRy  = SoilR^  + (decayR A TE  x Rcontent x SoilO rgM at^) (2.46)

SoilO rgM at y  = (1 -  decay RATE) x SoilO rgM at y (2.47)

where decayRATE  is the rate of decay o f the resource com ponent o f organic material 

(mg R mg ' R d ').

2.2.15 Program m ing o f  the model

The model was implemented as a PASCAL com puter program running on a 

UNIX sy.stem (see Appendix Program). Each section o f the model was written as a 

separate procedure and tested to satisfactory working order before incorporation into the 

main program ; this was in an effort to decrease the number o f ‘bugs’ and to produce 

a program based on accessible individual com ponents that can be modified easily.
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'ra l)k ‘ 2.1. A list of all variables used in the model.

<k‘S (T Ì p l i o n

A H O V E n U
h
i'uptGrtfC'Ol/f'l.Kn

CiiwimiloU’

C ElJjftii.sx

ft'tlnumhfr
c tl lu p ta k f
C content
CptHtl
C p ro J m tio n
Cfirutity
CxuhR ATE

CMihstraie

none
none
m>ne
iu)ne

nig C

number of cells 
mg biomass pt*r cell

number of cells 
mg R
mg C mg ' biomass 
mg C 
mg C d '
mg ussim. C m g ' ussim. K 
mg C d '

mg C

none
mg R mg ' R d ' 

mg R

I none
¡m ax  mg R mg ' rmil biomass d '
Ka  none
K h  mg C mg ' shruii biomass d '
Km  mg R per S O lIx  eH

LAD m* m '
lA Y E H  cell height

¡ J G I I T in le n tp te J  none

M a in te n a n ttC O S T

M am lenanct-R A T E  
M A X heinhi 
MEfJux

ft
N E I  flux

N ew lU itm aw

EariH  none
/ ‘a r tC  none
/^¡utiifw fttfuitt' mg C

l* h o tin \ih fin  H A TE  mg ( ' m g ' sIhmh biomass d *

mg C

mg C’ mg ' biomass d ' 
cell height 
mg R

none 
mg R

mg biomass

SoilK  variable, real 
spatial array 
SoHH variable, real 
plant variable. btMilean

plant viiriable. real

plant variable, integer 
constant, real

plant variable, integer 
SO U x t l l  variable, real 
constant, real 
plant variable, real 
plant variable, real 
constant, real 
plant variable, real

plant variable, real

resource variable, real 
SoiiH  variable, real

SaiiH  variable, real

plant variable, real

plant vtiriable. retd

plant variable, real

integer
plant constant, real 
constant, real 
constant, real 
plant constant, real

plant constant, real 
integer

('///plant variable.
real

plant variable, real 

constant, real
AHO VEt vU  variable, integer 
SttHH variable, real

integer
StuiH  variable, real

plant variable, real

plant constant, real 
plant constant, real
AHO VEt fH /p l.tm  vaiiable. 

real
AHO VEt ('///plant vaiiable. 

real
/av/it variable, real

proportion ol R movement by diffusion 
cells above-ground
proportion ol R movement by mass flow 
recorded whether a plant has growth coupled 

or uncoupled to R and C  acquisition 
amount of ( '  assimilated a lte r growth 

respiration
number of cells to be grown 
relates biomass to space for both AfiOVE< eiis  

and S O I ix  viis
number of cells representing biomass 
uptake rate for each occupied S O U x e ll  
C content per-unit biomass 
unassimilated C within plant 
total amount of C fixed by a plant in one day 
ratio linking R and C contents in biomass 
maximum daily rate of C submission for 

assimilation
amount of C submitted from  C poo l for 

assimilation 
diffusion coefficient
daily rate o f  decomposition o f  R present in 

organic material within S O lL t  t l ls  
llux of R by diffusion betw een two 

neighbouring SO IL xelis  
fraction of leaf urea projected on a plane 

nomial to  light beam
fraction of Kpi>4il submitted for assimilation 

(coupled growth)
fraction of H pttol submitted fo r assimilation 

(coupled growth) 
denotes individual plant 
maximum r>er-unit mass R uptake rate 
phivtosynlhetic rate coefficient 
pholosynihetic rate coefficient 
affinity of R uptake; external concentration at 

which l eU uptake  « ¡m ax/2  
Leaf Area Density
denotes the height {A B O V E c tU s)  or depth 

(SO IlA f l l s )  I'f a cell
light intercepted by the ivcupy ing  plant tissue

in an  A B O V E i t ll
total cost ot maintenance respiration ot a 

plant each day
daily per-unit mass niainiem mce cost 
number ol cell layers iti A B O V E n H  array 
Hux of R by mass tlow betw een lwi> 

neighbiniring S O U a xHs 
lUimbiT of neighNnirs of each  S O lU x il  
Overall llux of R by diffusion and mass tlow 

between two neighbouring S O I I a x Us 
anuHint of btoiiuss to be grow n by a plant 

e;ich day
allocation CivMicieiit 
allocation civtticieni 
amount ot i '  lixed during one day m an 

AH O VEt (•//
rale ot C' lixalion bv iHCupymg plant lissue in 

an A B () \  T i l  n
probalnlity ot Itaiismillance o f  light througli 

an A B O V E if l l
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T ab le  2.1 (continued )

descrip tion

R con lvn t 
rrsp ira ittr^C O S T  
r fsp t m  tion R.A TE  
RO O ToU tKU tt

R O O Thionutss  
RO O Tirn reuse

R O O Tm ass
RpiHtl
R sithR A TE

R \u h \tru te

R uptake
SH O O TalltH iile

SH O O Thtom ass
S H O O T im re a se

SH O O Tnuiss
su n U G H T

S O lU  ell 
SoilO ri;M ul

SailR
S o ilW
T ranspira tion  R A T E

m g K m g ' hiomass 
m g C
m g C m g ' C d ' 
none

m g biomass 
m g biomass

m g biomass 
m g R 
m g R d '

m g R

m g R 
none

m g biomass 
m g biomass

m g biomass 
none

ni'ne
m g biomass per SO lL c ell

m g R per S O /lu  e ll 
m g water per S O /L i e ll 
m g water mg ‘ biomass d '

m g water

none
cell width 
none

constant, real 
plant variable, real 
constant, real 
plant variable, real

plant variable, real 
plant variable, real

S O I lx  e ll variable, real 
plant variable, real 
plant variable, real

plant variable, real

plant variable, real 
plant variable, real

plant variable, real 
plant variable, real

A B O V E te ll variable, real 
constant, real

spatial array 
spatial array of real

spatial array of real 
spatial array of real 
constant, real

S o ilW  variable, real

water variable, real 
integer

R content per-imil biomass 
total costs of growth respiration 
per-unit carbon cost o f  assimilation 
fraction of N ew B ionu iss  allcKated to 

R O O Thionuiss
total mass of a plant’s riHii system 
amount of f^ew B io tm iss  alliK'ated to

R O O Thiom ass
biomass present in an (K'cupied S O Ilu  e il 
unassimilated R within plant 
maximum daily rate of R submission for 

assimilation
amount of R submitted from R ptnil for 

assimilation
total R acquired by a plant in one day 
fraction of N ew B iom tiss  alliKaied to 

SH O O T htom ass
total mass of a plant’s shcwi system 
amount of N ew B ionu iss  alUK'aled to 

SH O O Thitm iass
biomass present in an cKcupied A B O V E cvU  
amount of light input to A B O V E ie lt system 

each day
cells below-ground
the amount of (dead) organic material present 

in each SO IlA elt
the amount H present in each S O Ilx  e ll  
the amount water present in each S O l lx  e ll 
the daily per-unit shoot mass rate of 

transpiration
flux o f water between two neighbouring 

S O lU e lls
water movement coefficient 
denotes the position o f a cell along x-axis 
denotes a particular cell (either A B O V E i eU or 

S O lU  ell. depending on context) 
denotes the position of a cell along y-axis
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Chapter 3 

Sim ulation Runs

3.1 Introduction

3.1.1 (icneral description of sim ulation runs

The model described in the previous chapter was im plem ented as a PASCAL 

com puter program (presented in the Appendix). Due to the different specifications of 

the simulation runs replication num bers, spatial ditnensions, number o f individuals 

and spatial positions) several programs were used though all were derived from a 

common source, and mainly differed in parameter settings and not program structure.

The simulation runs fall into three categories: those that focus specifically on R 

supply characteristics, those concerned with plant traits, and selected plant trait 

simulation runs with no above- or no below-ground interspecific competition. These 

categories are referred to as R supply, plant trait, and split com petition, respectively.

Table 3.2 contains a full list and description of runs; runs are referred to by a 

number followed by ‘n’ or ‘p’ representing a nitrogen or phosphorus simulation. 

Different species o f plants were constructed for use in the plant trait, split competition 

and random position runs; each species has a unique set of characteristics (see Ttible 3.3 

for a list o f species and associated traits). A full list of the param eter values governing 

R supply for both nitrogen and phosphorus, and other constant values are included in 

Table 3.1.

3.1.2 Spatial parameters

I'or all the simuhition runs, the volum e sinudated is: tibove-ground: 10 x 10 cells 

horizontally (0.2.'> m^), 20 cells vertically (I m); below-ground. 10 x 10 cells 

horizontally (0.2.‘> m^), 20 cells vertically (1 m).
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Chapter 3 Simulations
T able 3.1. General param eter values used in N and P simulations.Parameter Nitrogen Phosphorus UnitsSoil parameters
a 0.21 0.98 unitless
h 0.79 0.02 unitless
d 10 I0(K) unitlessSoilR level InilialSoilR mg Nutrient per SOILcell1 1 I.OI 0.0673310 0.82 0.054679 0.65 0.043338 0.50 0.033337 0.37 0.024676 0.26 0.017335 0.17 0.01 1334 0.10 0.(X)6673 0.05 0.(K)3332 0.02 0.(X)I331 0.01 Other environmental parameters 0.(XX)67
decuyRATE 0.0 * mg R mg ' R d ‘
Wd 1.0 * unitless
simLlGHT 1.0 unitlessPlant parameters
Ka 0.5 * unitless
Kh 0.13 12 * mg C  mg ' shoot biomass d
respirationRA TE 0.25 mg C  mg ' C  d '
mciinteiuinceRA TE 0.015 * mg C  mg ' biomass d '
CELLmass 20 * mg biomass per cell
T ninspirationRA TE 10.0 * mg water
CRratio 15 225 mg C  mg ' R
Cconleiil 0.45 0.45 mg C  mg ' biomass
Rcontent 0.03 0.(Xt2 mg R tug ' biomass* denotes parameter value is identical to that assigned in nitrogen simulation
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3.1.3 Tem poral param eters

The period o f time simulated is 60 days for eaeh replication. No longer tim e 

period than this could be justified as per-unit mass m aintenance costs are assum ed to 

be independent of age and plant size and also no allocation to  reproductive tissues w ere 

included in the model. Each iterative step of the model is a single day.

3.1.4 Soil Resource param eters

Soil nutrients nitrogen and phosphorus were chosen  because both are m ajo r 

limiting resources in natural vegetation and yet have very  different movem ent and 

supply properties (M arschner 1986). As described in the  previous chapter, only  the 

processes o f mass flow and diffusion are assumed to occur. Soil nutrient levels are .set 

to InitialSoilR  (mg R per cell) at TIME=Q. No other input (to the soil or the system ) of 

either resource was assum ed to occur {i.e. no decom position: decciyRATE=0).

Though soil water and its movement are included in the model, it is not 

simulated with a high degree o f accuracy (no evaporation, rainfall, effect of grav ity , 

response o f  plant to water supply) but is included to generate gradients between cells 

for mass flow calculations. The quantity of soil resource moving by mass flow  is 

assumed to be independent o f the water gradient’s m agnitude (movement relies on  the 

direction o f  water flow), thereby avoiding explicit consideration of water.

To simulate a soil resource gradient, there are 1 1 different values assigned  to 

InitialSoilR  for both nitrogen and phosphorus. The range for nitrogen is from 0.01 mg 

N per cell (80 mg N m ‘̂  soil) to 1.01 mg N per cell (8080  mg N nV  ̂ soil), w hile for 

phosphorus the range is from 0.00067 mg P per cell (.‘i.333  mg P m'^ soil) to 0 .06733 

mg P per cell (538.667 mg P m^ soil). Note that the values for phosphorus are 15 tim es 

smaller than nitrogen: this is to scale soil phosphorus to  soil nitrogen in the sam e 

proportion as the organic P:N ratio (i.e. 1:15, derived from  CRratio\H  sim ulations]= 15 

and CRratio\P  sim ulations]=225). The values for each R level are shown in Table 3.1.
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H  = species I I

Figure 3.1
Positions of individuals in plant traits runs for (a) monoculture 
of species I , (b) monoculture of species 2. (c) mixture of species 
I and 2. and (d) the positions of species in runs 40n and 40p.

Figure 3.2Conceptual supply properties ot light (a) and soil nutrients (b). Soliil lines represent resource, dolled lines respreseni die effect ot com pelilion.
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3.1.5 Spatial arrangem ent o f individuals

The plant trait runs utilize an additive design such that either 50 individuals 

(mixture: 25 individuals o f each species) or 25 individuals (m onoculture: 25 individuals 

of one species) are used. These are arranged as in Figure 3.1(a)-(c). The use o f an 

additive design follows from the competition definition in section 1.5. T h e  positions of 

individuals in the m ulti-species runs (40n and 40p) are shown in F igure 3.1(d).

3.1.6 Replication details

It is necessary to include replications because of the stochastic elem ent o f the 

growth routine (see section 2.2.13.2 and Appendix program); these a re  referred to as 

GROWTH replicates. In the plant trait and split competition runs, there are 20 

GROWTH replicates for each R level (20 x 1 1 = 220).

3.1.7 The use o f a reference species, species a

A reference species is used against which all model species m ay  be compared 

both in terms o f perform ance and in competitive ability. This model species type is 

referred to as species a, the morphological and physiological traits o f w hich  are listed 

in Table 3.3. The properties assigned to species a are intended to be  com petitively 

neutral (e.g. root/shoot allocation is constant and unbiased, i.e. root:shoot ratio=l ) so 

that the com petitive ability o f species a should be ‘m oderate’ relative to the other model 

.species and can be used for comparative purposes. See section 3.3.2 fo r  de.scription of 

the performance o f species a along the soil resource gradients.

3.2 R .supply

3.2.1 Introduction

Though it has been known for some time that different soil nutrients exhibit 

different movement characteristics within the soil (Nye & Tinker 1977), the major 

theories attempting to describe competition for light and nutrients w ith in  an ecological 

context have so far ignored any possible effect that the supply characteristics o f a
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resource may have on the outcome o f competition for that resource (Huisman 1994, 

though see Huston & DeAngelis 1994 for consideration o f resource supply). Plants may 

affect the supply of resources to acquisition sites in both positive and  negative ways 

other than by direct resource competition (Goldberg 1990), yet few  studies have 

determined the influence of such interactions on plant perform ance relative to 

competition. Attention has shifted recently to consider supply properties o f resources in 

the context o f competition.

As mentioned previously (section 2.1.2) T ilm an’s ALLOCATE model assum es 

soil resources are spatially homogeneous (all individuals have equal access to all the 

resource available) and exhibit instantaneous transport to roots.

Conceptually, there are two processes affecting the acquisition of a unit of 

resource by an individual: supply and interception. This is helpful fo r contrasting the 

unique characteristics o f  different resources, and the possible im plications for 

competition. Conceptually, supply o f a resource refers to the rate at which a unit of 

resource moves to a specific site of resource acquisition of an individual plant. Supply 

is therefore a function o f  the environmental availability (input) and the transport 

properties (movement to acquisition site) o f the resource (see below  for special 

consideration of light); see Figure 3.2. Interception is the rate o f rem oval of a unit of 

resource by an acquisition site from the resource supplied to that acquisition site. 

Although supply and interception rates may be independent, the interception rate 

obviously cannot exceed the supply rate.

Input o f resource to the system

This is the addition o f a unit o f resource to the system ’s available re.source pool 

from external abiotic .sources (e.f>. fertilization, rainfall) or from internal biotic sources 

mineralization, loss from  plant tissues).

Movement o f  resource to the site o f  acquisition

This is the transfer o f units o f resource from the available resource pool direct 

to  a zone o f  resource acquisition per unit of time. This action depends on  the interaction
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between the resource and the media through whieh it moves. For exam ple, nitrogen 

movem ent through the soil to the root surface will depend on the form o f  nitrogen, 

specific solubility and diffusion characteristics, soil properties, and plant properties such 

as transpiration rate, uptake rate (causing diffusion gradient) and proliferation o f root 

system (distance from root surface to resource). When the movement of a resource to 

an acquisition site and subsequent interception is essentially instantaneous (f.g . direct 

input o f  nitrogen to root surface from local decomposition) this is te rm ed  direct 

interception.

T his concept o f movement o f nutrients through the soil medium, assum e no 

effect o f  mycorrhiza, which may significantly affect the pathway from souree to 

acquisition site, described above. For exam ple, phosphorus and nitrogen acquired  from 

the soil by m ycorrhiza may move through the mycorrhizal network to the roo t surface 

of a plant (Newman 1988). Resources from other neighbouring plants may also move 

through the mycorrhizal network, if a source-sink relationship develops (N ew m an 1988, 

Eissenstat 1990, Newman & Eason 1993).

Lifiht as a special case

All light arrives at the surface of the leaf by direct interception; thus there is no 

equivalent of a resource supply pool for light, only input to the system and direct 

interception. W ithin this conceptual fram ework where does light com petition occur? 

Shading o f the surface of a leaf reduces the absolute quantity of light available for direct 

interception, reducing the total energy acquired by that leaf and consequently the rate 

of photosynthesis: this is conceptually equivalent to reduction of resource quantity 

supplied to a root surface due to the presence of competing root systems. T hus, light 

com petition acts to reduce the supply o f light to photosynthetic tissue and can  only be 

accom plished by direct interception (see Figure 3.2).

Depletion zones

The extent to which a depletion zone of a soil nutrient extends from an 

acquisition site depends on the supply properties of the nutrient into the depiction  zone.
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As an exam ple, phosphorus depletion zones rarely exceed a distance o f 1 cm (usually 

only 2 o r  3 mm) from the root surface (Bhat & Nye lh74r/, 1974A) as the majority o f  

phosphorus movement is by diffusion. In contrast nitrogen, moving m ainly by m ass 

How, is expected to travel a m uch greater distance to the root surface, though if supply 

exceeds acquisition there will be an accumulation o f nitrogen at the root surface. T hus, 

for a g iven  density o f acquisition zones (cn r root surface cm ' soil volume), com petition 

for nitrogen is more likely to occur than competition for phosphorus (H arper 1977).

3.2.2 R param eters u.sed in sim ulations for N and P

Values for R supply param eters used for nitrogen and phosphorus are li.sted in 

Table 3.1 .

3.2.3 U.se of the model to contrast the supply properties o f  N and P

Sim ulations

T he simulations perform ed in this section use a m odified version o f the m odel 

used in the rest o f this chapter. In these simulations, only one individual plant is 

m odelled, and this comprises o f a ‘block’ o f occupied SO /Lcells  in the top-centre o f  

m odelled space -  no growth is permitted to occur such that the resulting distribution o f  

soil R w as an accurate reflection o f the supply properties o f the soil resource. The root 

system acquires soil R at the per-unit biomass rates of species a (see section 3.3.2) and 

the length  of simulation was 60 days. This was performed with both N and P as the soil 

resource, and at high (level 9) and low (level 3) soil R levels.

Results

T he spatial distribution o f  soil R, relative to the value of InitialSoilR (i.e. for 

each SO ILcell, relative .Soil R = SoilR  / InitialSoilR  ), is shown in Figure 3.3; the 

relative soil R values for both high and low soil P levels were identical, therefore only 

the resu lts from the low P level are included. The position o f  the root system  is m ost 

apparent in the P results (Figure 3.3c), where the absence o f Soil P from the centre part
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of LA 'i'liR s 1. 2 and 3 corrcsiioiuls exactly to the position ol the block root system. 

This absence of nutrient is where uptake at the root surlace is greater than the supply 

to the root surface via diffusion and mass flow. There is an aeeumidation around the 

root system in the N simulations (relative Soil R > 1) caused by mass How to the root. 

Conversely, in the phosphorus simulation there is only depletion o f soil P and no 

accumulation at the root surface. A small zone of depletion exists for phosphorus 

irrespective of input level, yet in the nitrogen sim ulation while depletion zones exist 

in both high and low simulations, the degree o f depletion relative to input level is 

greatest in the low input level. This suggests that at high N input levels, individuals may 

not influence each other via depletion zones as such, but via the re-distribution of N by 

mass flow anJ  depletion.

3.2.4 The effect »>f com petition on R supply to u subject individual

With various assumptions (e.f’. no positive effects t)f competition on 

performance, sensu Goldberg 1990) competition acts to reduce resource interception by 

the resource acquisition sites of a subject individual. In this respect, the ellect ot 

competition on R supply is quantitatively identical to physical impedance ot resource 

movement from source to site of acquisition (see M cConnaughay & Bazzaz 1992«, 

\992h), or a lower overall availability o f resource (with no competition). If competition 

reduces R supply then the subject individual shoidd respond as it would in a 

monoculture with an equivalent R supply level and a light level equivalent to the levels 

experienced by an individual in mixture. In this context, u plant does not actively 

com pete for resources hut merely experiences a reduction in resource availahility  

due to com petition: thus, plant re.source com petition can only he a passive  proce.ss.

It is the tem poral and spatial lag between input and supply that permits nutrient 

competition. All light competition is by direct interception. C'ompetition lor N and P is 

predicted to differ, in that the intensity of P competition should be less than the intensity 

of N com petition for a given time period at an ec|uivalent in[nit level (unit birmiass 

produced per unit mass of element). This prediction is based on the dillerent movemetit 

properties of N and P, atul the subsequent difference in size of depletion zones. Harper
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(1977:337) suggests that for phosphate ions the "extreme localization o f  depletion zones 

minimizes the chance that a rootlet o f  one plant will interfere with the availability of 

phosphate to another", though com petition for P has been shown to occur (Caldwell et 

cil. 1985, 1987; Krannitz et al. 1991). However, this difference in com petition intensity 

may only be present at low soil nutrient levels, where depletion zones are most apparent 

for nitrogen (see above). Where possib le  this prediction is tested for all simulations by 

comparing the C lr which com peting individuals and species experience, though the 

results may be confounded by the additional occurrence of light competition and the 

competitive abilities o f the com peting species. Hence, the results from intra-specific 

competition in monoculture of species a with below-ground com petition only, should 

present the most representative resu lts for comparison (see .section 3.4.3).

3.3 Plant traits

3.3.1 Introduction

A great deal o f research has investigated the physiological basis of competitive 

ability in an attempt to understand the mechanisms governing a species’ success or 

failure in certain habitats and conditions. Many o f these studies have focused on specific 

plant traits which relate directly to th e  environment of the plant such as root:shoot ratio, 

leaf area index and ratio, and specific tissue activity rates (for exam ples .see Aerts et al. 

1992, O lff et al. 1990). Prompted by the observation that species from productive 

habitats have significantly higher RGR,,,,,, values than species from unproductive 

habitats, various studies have sought to  describe physiological differences between such 

species types, focusing on growth ra te  with respect to nutrient availability (for examples 

see Boot & M ensink 1991, Kachi & Rorison 1991, Rorison et al. 1981) and the 

ecological significance of growth ra te  (van Andel & Biere 1990, Chapin 1980, Grime 

& Hunt 1975, Poorter 1990). Architectural differences between the herbaceous species 

in habitats o f differing productivity have also received widespread attention (see 

Caldwell & Richards 1986, Fitter 1987). Invariably, such studies are comparative, 

contrasting species adapted to unproductive habitats with species adapted to productive
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3.3.2 Species a  —  the reference  species

¡ntroduction

As stated in section 3.1.7, species a  is the reference species by which the 

competitive ability of all other model species may be determined. The traits assigned 

to species a are presumed to be com petitively neutral, i.e. species a is intended to be 

a non-specialist with regards to competitive ability above- and below-ground and over 

a gradient o f soil resource availability. Subsequently, the allocation pattern o f species 

a is unbiased and constant with a root:shoot ratio of 1 (Part/i=0.5 and PcirtC=0.5\ see 

section 2.2.12). Growth characteristics o f a feature a ‘moderate’ assim ilation rate with 

growth coupled to resource acquisition: f’cR=0.5  and ^'cC=0.5 (see section 2.2.11). The 

plant variables assigned to species a are listed  in Table 3.3.

Simulations

Species a is simulated in m onoculture at two densities: ‘m ono’ monoculture 

density, i.e. 25 individuals within m odelled space; and ‘m ixture’ density, i.e. 50 

individuals within modelled space (see section  3.1.5). These sim ulations are performed 

along an N and P gradient (runs In, Ip, 2n , and 2p: see Table 3.2). This enables the 

intra-specific competition intensity which a experiences to be calculated.

Results

The results from these simulations a rc  presented in Figures 3.4n and 3.4p. The 

information used from the ‘m ixture’ density  is not from all individuals of a in the 

simulation, but 25 individuals in the sam e initial positions as in the ‘m ono’ density 

monoculture; this follows an identical form at to  the species pair mixture sim ulations and 

in effect treats species a at the ‘mixture’ density  as two separate com peting populations.

Yields, m ortality and plant size

Species a achieves a yield at all points along the R gradients at .standard 

monoculture density (i.e. species a is v iable); this is important considering the role of
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Figure 3.4n. Results o f reference species a at low ( ‘m ono’) and high ( ‘m ix’) densities 
across Soil N gradient; (a) yield at low density; (b) yield at high density; (c) num ber of 
surviving individuals; (d) mean size of surviving individuals; (e) relative Com petition 
Intensity (Clr); (f) ratio of acquired resources.
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species a as a reference species. The mean yield and mean plant size o f a decreases 

with an increase in density between ‘m ono’ and ‘m ixture’ densities (the mean yield 

refers to the yield o f the population of 25 individuals; total yield o f a ll 50 individuals 

of a was about the sam e as for 25 individuals; see above).

At Soil R levels 1,2 and 3 there is no plant death; above this total mortality 

increases w ith increasing yield (i.e. reaches maximum). The spatial resolution o f the 

model limits the level o f  accuracy in determining com petition prt)cesscs: this is likely 

to affect the results most at low R levels where individuals consist o f few cells, in 

contrast to high R levels where individuals are comprised of many cells. Self-thinning 

occurs: mortality increases both along the R gradient (with increasing productivity) and 

with an increase in density. Mean plant size (i.e. mean size of surviving plants), while 

increasing with Soil R to a maximum size set by plant traits and environm ent, also 

decreases with an increase in density. All individual plant sizes are identical at the 

lowest R level (both N and P simulations), while self-thinning is apparent at the highest 

R levels: this suggests that the selected gradient range encom passes the full range of 

plant yield response to R level.

Ratio of acquired re.source.s (C:R acquired ratio)

A trade-off between ability to com pete above- and below-ground should be 

exhibited in the ratio between total C and total Soil R acquired; the total includes C and 

R incorporated into biom ass in addition to the amount o f C and R stored within Cpool 

and Rpool respectively. W here C:R acquired ratio > CRratio  (as defined in the model, 

section 2.2.1 1.4) R lim its growth; conversely, where C:R acquired ratio < CRratio, C 

limits growth. Thus, as .soil R increases, growth becom es less lim ited by R and 

increasingly limited by light.
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The effect o f com petition on total acquisition o f resources may be seen by the 

difference between the C:R ratios o f species a at low (mono) and high (mix) densities, 

scaled by CRratio:

RatioDifference =
(C :R  acquired ratio j) -  (C :R  acq u ired  ratio^^^)

CRratio
(3.1)

where C:R acquired ratio,,,,,,,,, and C:R acquired ratio,,,,, refer to th e  ratios at low  (m ono) 

and high (mix) densities, and CRratio is the ratio of C and R incorporated into biom ass 

(as defined in section 2.2.1 1.4). The results are shown on the inset plots o f  Figures 

3.4n(f) and 3.4p(f).

If com petition is predom inantly for soil R, C:R acquired ratio,,,,,,,,, < C :R  acquired  

ratio„,„, and RatioD ifference < 0; if competition is predominantly fo r  light, C:R acquired  

ratio,,,,,,,,, > C:R acquired ratio,,,,,,, and RatioDifference > 0. The results of this m ethod 

of com petition analysis are expected to differ considerably betw een species, as different 

resource utilization and m aintenance rates will affect the ratio (e .g . plastic allocation, 

section 3.3.3.2, acts to maintain a relatively constant acquisition ratio), hence this 

analysis is only perform ed for species a.

The results from this ratio analysis suggest that com petition derived from an 

increase in density shifts the ratio in a general way along the so il R gradient; at very 

low R levels, C is more lim iting than R; at intermediate R levels , R becom es m ore 

limiting than C; and at high R levels, C becomes limiting again. T here are quantitative 

differences between the RatioDifference  for N and P, though bo th  follow this general 

pattern. However, as a has constant, unbiased allocation of g row th  to root and shoot, 

regardless of environm ent, and given that the net carbon expenditure for a root cell is 

potentially greater than that o f a shoot cell (shoot cells produce C ), the C :R acquired  

ratio is likely to shift according to plant size, and environmental R :C  supply level ratio, 

therefore confounding these results.
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Competition Intensity

The relative com petition intensity that species a experiences is calculated using 

tw o measures of perform ance: by the relative reduction in yield (yield based CIr), and 

by the relative reduction in mean plant size (size based CIr). The resulting intensities 

are shown in Figures 3.4n(e) and 3.4p(e) across nitrogen and phosphorus gradients 

respectively. In general term s, competition intensity appears to be greater at higher 

nutrient supply levels than at lower levels in both ca.ses.

It must be rem em bered that this cannot be a definitive test o f theoretical 

predictions concerning overall competition intensity over environm ental gradients for 

the following reasons: this is not a natural plant com m unity and the intensity m easured 

here is the net effect o f com ponent above- and below-ground com petition intensities. 

T he relative contribution to net CIr of above- and below-ground CIr is expected to be 

sensitive to the param eter settings of the model, particularly those determ ining relative 

acquisition rates o f above- and below-ground resources.

e ffe c t o f  R supply properties on yield, p lan t size and competition

The different m ovem ent properties o f N and P are apparent in the differences 

between the yields and mean plant size at both densities, though there was only a 

significant difference at low R levels (levels 1 to 3).

3.3 .3  Allocation

Introduction

The presumption that co-existing species utilize resources in different ways has 

been long been invoked as an explanation of species differentiation along resource 

gradients (e.g. Chapin 1980, Grim e 1979, Tilm an 1982): differential allocation o f new 

biom ass between above- and below-ground plant parts, or more specifically between 

nutrient and light intercepting tissues, is one possible way in which this difference 

between species may be manifested (Tilm an 1988).

The general axiom  that species from unproductive habitats have greater
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rootishoot ratios than species from productive habitats is well established in plant 

ecology (see Chapin 1980). The reasoning behind this is that a high root:shoot ratio is 

advantageous in nutrient-poor conditions (unproductive habitats) as it confers a greater 

surface area for nutrient absorption, all else being equal respiration and ‘tolerance’ 

traits). The trade-off between rate o f nutrient acquisition and photosynthetic rate 

(allocation to root vs. allocation to leaO is presumed to cause differentiation o f  species 

abundance along a productivity gradient and forms the basis for Tilm an’s A LLO C A TE 

model (.see sections 1.3.5 and 2.1.2) as different ratios confer different com petitive 

abilities above- and below-ground (Tilm an 1988).

W hile there is evidence that species o f unproductive habitats do tend to  exhibit 

greater rootrshoot ratios (Chapin 1980, Tilm an 1988), the supposed generality  of this 

axiom is questioned by several studies (see Arts et cil. 1992; Berendse & E lberse 1990, 

Elbersc & Berendse 1993), though it appears in these cases that potentially reduced 

nutrient acquisition is com pensated for by other traits (i.e. reduced lo.ss o f  re.sources 

trom individuals, greater efficiency o f u.se, increased absorptive area per-unit mass of 

root). Thus, the.se results do not necessarily contradict the Re.source Ratio hypothesis 

(Tilman 1982) as they may be considered ‘special cases’ of the theory Huisman

1994). Many o f the recent studies investigating root:shoot ratio and species habitat type 

have included plastic allocation between root and shoot (.see section 3.3.3.2), as well as 

within root and shoot systems (Grime et al. 1986, 1989; Jackson et cil. 1990), though 

the im plications o f plasticity for com petition at the species and community level remain 

largely unknown.

3.3.3.1 Constant allocution

Introduction

Like the species modelled in T ilm an’s ALLOCATE model, species h !  through 

to h7  (see Table 3.3) pos.sess constant allocation between root and shoot, though the 

root:shoot ratio differs between these species ranging from 4 (species h ! )  to 0.11 

(species h7). These species only differ from species a in allocation pattern.
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W hile allocation between root and shoot undoubtably affects the ability o f  a 

species to acquire nutrient and light resources, a particular allocation pattern does not 

necessarily con fer the sam e acquisition ability for different soil nutrients: P uptake is 

expected to b e  closely correlated to root mass because the root must intercept to reach 

the (relatively) immobile P (see section 3.2); N uptake may be significantly influenced 

by water uptake rates which, in turn, are affected by transpiration rates and the 

rootishoot ra tio  of the individual.

Simulations

Species h i  to h 7  are all sim ulated in competition with species a (runs 3 - 9) to 

determine the  com petitive ability o f each allocation pattern across both nitrogen and 

phosphorus gradients. In addition, m onoculture sim ulations o f species h i  (high 

allocation to root) and species h6 (high allocation to shoot) and a mixture sim ulation of 

h i  with h6 a re  performed (runs 11, 12 and 10 respectively). This enables the relative 

intensity o f com petition (CIr) to be determ ined for all com peting species in runs 4, 8 

and 10. F inally  species a, h4, h5, h6  and h7  are simulated in a m ulti-species sim ulation 

across both so il N and P gradients (run m l).

Results

The C A  results o f  runs 3 - 9  are shown in Figure 3.5. M ore detailed results for 

runs 8, 10, 1 1 and 12 are shown in Figures 3.6n, 3.6p, 3.7n and 3.7p. The m ulti-species 

run m l resu lts are shown in Figure 3.22.

Viahility o f  allocation pattern

Som e allocation patterns are not viable, even under m onoculture conditions: too 

much allocation to roots produces a daily maintenance dem and that cannot be met by 

photosynthesis. For exam ple, species h i  only survives at the low est soil R supply level 

of the P grad ien t (Fig. 3.7p).
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Competitive Ability o f  species h i to b7  over R gradient

The yield based Com petitive Abilities (as defined in section 1.5.4) o f species h i  

to h7  are shown in Figure 3.5: these are the CA o f the species at the population level. 

There is little difference between species CA at very low Soil R levels (levels 1 and 2) 

though high allocation to roots (species h i  and b2) does confer a slight com petitive 

advantage (CA>0). At higher Soil R levels (levels>2), higher allocation to shoot confers 

a greater com petitive ability, where com petition is predom inantly for light (see section

3.4). The final yields o f species h i  and h6 in run 10 cannot be predicted from the 

respective com petitive abilities o f the species, as CA is based on reduction in the 

performance o f species a regardless o f the viability o f a species, though the qualitative 

outcome can. A llocation to shoot w ould seem to be much m ore com petitively 

advantageous than allocation to root. This is most likely due to the assum ptions of the 

model, mainly that plant death may occur from insufficient C, but not from insufficient 

R, hence the model system  is likely to favour plants with a high ability to com pete for 

light. In addition, light is the lim iting resource at the majority o f Soil R levels (.see 

Figures 3 .4n(0 and 3 .4p(0 , and also section 3.4).

Com parison between CA with N and P com petition. Figure 3.5(c), is not the 

same as com petitive ability for N or P as resources, as CA here also includes ability to 

compete for light, and this will affect the perform ance o f reference species a as well as 

its own performance. Thus, this cannot be a test o f the correlation betw een com petitive 

abilities for different resources (see section 1.4.3). However, the most striking difference 

between the com petitive abilities across N and P gradients, is the CA under N 

simulation of species h7  (very high shoot allocation) is much greater than the CA under 

P simulation at R level 4.

Competition intensity

h i  X h6 (run 10) :  CIr across the R gradient can only be calculated for h6  as h i  

suffer total mortality in m onoculture (and mixture) at all but one R level. At the 

population scale (yield based CIr), h6 experiences variable CIr, even perform ing better 

in mixture than in m onoculture (overyield, sensu Wilst)n 1988). At the individual scale
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(size based CIr), h6  experiences m axim al CIr at low soil R levels; the intensity 

decreases with increasing soil R. This suggests that the greatest impact o f h2  on h6 

occurs at low soil R levels where h2 exerts  greatest CA; see F igure 3.5(e) and (0-

Multi-species simulation

In runs 40n and 40p, species a, h4 , h5, h6 and h7  are sim ulated in com petition 

with each other across N and P gradients respectively. As the com petitive abilities for 

the.se species show little differentiation in relation to their allocation characters, direct 

multi-species competition is performed in  an attempt at clarification. The density o f each 

species is 10 individuals within the norm al volume of space (see .section 3.1.5); no 

monoculture runs at this density are perform ed so the CIr experienced by each species 

can not be determined. The results are presented  in Figure 3.22.

As Soil R increases, there is a qualitative change in the relative abundance o f the 

species. The mean yields of the species o v er the soil P gradient, follow  the RW R of the 

.species, i.e. as soil P increases the dom inant (i.e. greate.st biom ass) species are a, h4, h5 

and h6. Along the soil N gradient, the o rd e r of dominants is slightly different; this is 

due to the confounding effect of root:shoot ratio and consequent transpiration rate on 

N acquisition (due to the mass How properties o f N; see above).

3.3.3.2 Plastic allocation

Introduction

The inclusion to the sim ulations of a plastic allocation response to the 

environment is more realistic than assum ing  a constant allocation pattern as many 

studies investigating rootishoot ratio across a resource gradient have revealed a plastic 

response (Robinson & Rorison 1988, B erendse & Elberse 1989, 1990; Kachi & Rorison 

1989, Boot 1990, O lff et al. 1990, B oot & M ensink 1991, Aerts et al. 1992, 

Kasperbauer & Hunt 1992). This response is presumed to be ecologically advantageous 

by attempting to maintain an optimal balance between light and soil resources which 

limit growth (Reynolds & Thornley 1982, Chapin et al. 1987), and therefore reduce the
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effect of com petitive processes on these resources. Allocation plasticity also has m ajor 

implications for the Resource Ratio theory: if all plants may adjust their allocation 

pattern in response to environm ental changes induced by other plants (resource 

competition, sensu Tilm an 1988; e.g. reduced light due to shading) then the concept of 

competitive superiority resulting from  possession of the most ‘suitable’ (constant) 

allocation pattern must be questioned. Tilman suggests that allocational plasticity  may 

only be advantageous in habitats that the individual finds ‘sub-optim al’ (Tilm an 

1988:309-310).

Species

Species c l  and c2 represent moderate and high degrees o f unbiased plasticity  in 

allocation of biom ass to root and shoot (see Table 3.3). Unbiased in this context m eans 

that the allocation pattern does not ‘favour’ either root or shoot, the root w eight ratio 

(RW R) of c l  m ay vary between 0.7 and 0.3 depending on environmental conditions; 

RWR of c2 may vary between 0.9 and 0.1 .B y  com parison, species cll and tl2 feature 

‘biased’ plastic allocation: RW R of d l  may vary between 0.8 and 0.5, while the RW R 

of d2  may vary between 0.5 and 0.2. These species only differ from species a in 

allocation pattern.

Simulations

Species c l ,  c l ,  d l  and d2 are all simulated in m onoculture (runs 15, 16, 20 & 

21 respectively) and in com petition with species a (runs 13, 14, 17 and 18 respectively); 

species d l  and d2  are simulated in com petition with each other (run 19).

Results

The results for c l  (mono) and a x c l  (mix) are shown in Figures 3.8n and 3.8p. 

The results for c2  (m ono) and a x c2 (mix) are shown in Figures 3.9n and 3.9p. The 

results for d l  and d2  (m onocultures) and d l  x d2  (m ixtures) arc shown in Figures 3. lOn 

and 3.10p. The com petitive abilities o f species c l ,  c l ,  d l  and d2  are shown in Figure 

8 .
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Chapter 3 Simulations
Yields, m orta lity  and p lan t size

A plastic  allocation response does not necessarily confer a viable plant at all Soil 

R levels. F or example, an individual with an extrem ely plastic allocation respon.se will 

not survive a t low R levels if the grow th allocated to shoot is insufficient to provide the 

carbon based m aintenance costs o f the whole plant. This occurs at low soil N levels for 

species c l  an d  at several Soil N levels for species c2 in the nitrogen m onoculture runs. 

Mean plant size of c l  and c2 in m onocultures are consistently greater than for a, and 

both c l  and c2  outcom pete species a in runs 13 and 14 in both N and P sim ulations.

Root weight ratios

The roo t weight ratios (RW R) of species c l ,  c2, d l  and d2 decrease as Soil R 

level increase. As Soil R increases, the ratio o f C:R of the internal Rpool and Cpool (see 

section 2.2.12) increases, prompting the change in allocation. The effect o f com petition 

switching from  predominantly below-ground to predominantly above-ground as Soil R 

increases (see section 3.4) is manifested in the difference between the RW R from 

monoculture and mixture (competition) runs (see Figures 3.8n(e), 3.8p(e), 3.9n(e) and 

3.9p(e) ). W here  R most limits growth, RWR from mixture is greater than RW R from 

m onoculture, signifying a compensatory increase in allocation to root; where C is most 

limiting, R W R  from mixture is low er than RW R from m onoculture as the plants exhibit 

a com pensatory increase in shoot allocation. The RW R values of c2  (the mo.st plastic 

species) explain  why species h!  to h3  (RWR more than 0.5) perform so badly at alm ost 

all Soil R levels: a RW R of more than 0.5 is best suited to R levels less than 4.

Competition Intensity

The C lr  that the populations of c l  and c2 experience (yield ba.sed CIr) in 

competition w ith a generally decreases as Soil R increases, while the individuals o f c l  

and c2 (size based) experience little change in CIr along the nutrient gradients: this is 

because the plastic response that c l  and c2 possess decrease the com petitive effect that 

species a exerts. The population and the individuals o f  species a experience increasing 

competition intensity w ith increasing soil R, until shading by c l  and c2 provokes full
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mortality in mixture.

In run.s 19n and 19p (plastic, root biased alK)cation vs. plastic, shoot biased 

allocation), the population and individuals o f species d!  experience maximal com petition 

intensity. The individuals o f d2  experience greater intensity than the population o f <J2.

C onipe titive A hi liti t’.v

The com petitive abilities of species cJ, c2, d !  and d2 are shown in Figure 3.1 1, 

for the population (yield based CA) and the individual (size based CA). Unbiased p lastic 

allocation (species c l  and c2) conveys a competitive advantage, as does plastic response 

biased towards shoot (d2), in comparison with species a. However d l ,  with p lastic 

response biased to root, has a lower CA than species a except at the lowest R levels, 

but here d l  is unviable (in monoculture) where high allocation to root is predicted to 

be an advantage. Thus, although plasticity generally confers a competitive advantage 

(compared to a non-plastic response), the advantage is dependent on the bias of 

allocation. There appears to be differential ability between N and P simulations for 

individuals o f c2 to compete: c2 exhibits a greater individual CA across a P gradient 

than a N gradient. This is another example of the effect of allocation pattern on 

transpiration rate and uptake rate of N (see section 3.3.3.1). The root:shoot ra tio  

generated by extrem e plasticity is not the optimum ratio required for N uptake; a less 

extreme allocation pattern (c7) performs better, though there is no difference in CA 

across a P gradient.

liffect o f  R supply properties on yields and competition

O ther than the effect o f root/shoot allocation on CA (described above) there is 

little qualitative difference between these N and I’ simulations. Any signifieant 

difference between mixture yields for N and P simulations occurs only at low soil R 

levels (levels 1 to 4). At low R levels where below-ground competition is maximal (see 

section 3.4) individuals experience generally greater CIr (size based) in the N 

simulations than in the P simulations, supporting the prediction made in section 3.2 .
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3.3.4 Coupled vs. uncoupled growth

Introduction

Growth characteristics are predicted to have profound implications for the 

competitive ability o f a species (see sections 1.2.6 and 1.4.3) and the outcom e o f 

competition (Firbank & W atkinson 1990). It is not clear w hether the growth rate o f  a 

species has been selected per se, or an inevitable consequence o f  selection acting on 

components o f grow th (e.g. resource use efficiency or factors reducing loss rates; .see 

Gamier 1991, Poorter 1990). Two contra.sting types o f growth have been suggested for 

species adapted to productive habitats and unproductive habitats, the difference being 

the way in which the plant relates growth rate with resource acquisition rate: growth 

may either be coupled or uncoupled to resource acquisition (G rim e 1988, Koide 1991).

Growth that is coupled to resource acquisition (i.e. grow th rate is dependent on 

acquisition rate) is predicted to be o f com petitive advantage in habitats with abundant 

re.sources where survival stems from the rapid acquisition o f resources. The positive 

feedback generated between resource acquisition and growth by such a growth regime 

serves to m axim ize resource acquisition rate.

Growth that is uncoupled to re.source acquisition (i.e. grow th rate is independent 

of acquisition rate), also termed ‘luxury consum ption’ (Chapin 1980), enables internal 

‘.storage’ of acquired resources, thereby ensuring survival in conditions where such 

resources are essential and supply is periodic (Chapin 1980, G rim e 1988).

Specie.s

Species e has fully coupled growth (^cR = \.0 , ,i,'cC=1.0; see Table 3.3), i.e. all 

resources acquired each day are submitted for assim ilation into biom ass (no storage as 

such, though .see section 2.2.1 1 ). Species /  has growth uncoupled from resource 

acquisition with a maximum growth rate of 1 mg biom ass d ' (see Table 3.3). Both 

species only differ from species a in growth characteristics.
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Simulations

Species e and / ate simulated in mixture (run 24), in monoculture (runs 25 and 

26 respectively), and in mixture with species a (runs 22 and 23 respectively). This 

allows the calculation of C lr which e and / experience in mixture, and the CA o f both 

e and / .

Results

The results for this section are shown in Figures 3.12n and 3.12p.

Yield, m ortality and plant size

In m onoculture / produces a greater mean yield than e at all Soil R levels in both 

N and P sim ulations; all individuals o f /su rv iv e  in m onoculture at all Soil R levels in 

both the N and P simulations, where as e suffers slightly greater mortality than species 

a in m onoculture (Fig. 3.12n(a,c) and 3.12p(a,c) ). This difference in mortality is 

because /  does not commit all acquired resources to grow th but maintains a large 

internal ‘store’ o f resources, which help buffer individuals against temporary re.source 

supply reduction. This will be most beneficial to individuals experiencing shading by 

taller com peting individuals and consequent reduction in C fixation; a large Cpool 

enables the individual to accommodate maintenance costs and survive. Thus /  

experiences no self-thinning, while e does. However, the distribution of yields achieved 

by e and /  are variable and at some R levels there was considerable overlap of yields 

between the species.

In com petition (mixture e x J\ run 24) there is a ‘sw itch’ in competitive outcome; 

/p ro d u c e s  a greater mean yield at low Soil R levels, while e produces a greater mean 

yield at higher Soil R levels under both N and P com petition simulations (Fig. 3.12n(b) 

and 3 .12p(b) ).

Competition Intensity

At the population level, C lr that the two species experience in mixture 

corresponds well to the com petitive outcome across the soil R gradient. The Clr that e
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experiences peaks at R level 4 (w h e re / is  dominant) and decreases at higher R levels, 

w h ile /experiences increasing C lr

The individuals of both species experience different C lr than the populations: e 

experiences minimal C lr at R levels > 4, while /  experiences a general increase with 

increasing soil R level (this occurs for both N and P gradients). At this same scale, 

competition is more intense for nitrogen than phosphorus at low soil R levels, for both 

e and /; this supports the prediction made in section 3.2 .

Compel it i ve Ahil i ty

The competitive abilities of e and /  also correspond well to the outcome ol 

competition; the population o f / ( y ie ld  based CA) has the greater CA at low R levels, 

while at higher R levels the population o f c has the greater CA. Thus, the ‘sw itch’ from  

/ to e can be predicted from yield based CA.

The CA of the individuals of e was less than then CA o) individuals ot /  at all 

R levels, except at R levels 1 to 3 (Fig. 3.12n(f) and 3.12p(f) ). This suggests that 

uncoupled growth confers a com petitive advantage only at low soil resource availability, 

at higher levels of R input coupled growth is of greater advantage.

Effect oj R supply properties an yield and competition

There is a significant difference between the yields achieved by each species in 

mixture only at low R levels, and at these levels the individuals ol both species 

experience greater C lr in the N simulation than the P simulation.

3.3.5 C om bined T ra its

Introduction

While the aim of the above sections is to investigate single plant traits and 

competitive outcome, this section attempts to bring together allocation and growth traits 

into more realistic plant species representative of plants adapted to unproductive and 

productive habitats. Note that the species constructed here only possess diflerences in

SO



Chapter 3 Simulations

allocation and growth ‘regim es’.

Species

Species j? is presumed to be repre.sentative o f species adapted to unproductive 

habitats and the assigned traits attempt to reflect this (see Table 3.3). Species has a 

constant allocation pattern biased to roots (PcirtR—0.('>, PartC=OA) — Tilman (1988) 

predicts that high investment in root mass is advantageous in an unproductive habitat, 

while the CSR model predicts no or low plasticity in allocation o f plants adapted to 

unproductive habitats (see sections 1.2.6 and 1.4.3). posses.ses uncoupled growth, as 

this too is predicted to be an adapted plant trait in unproductive habitats (.see section

3.3.4): thus f> has a maximum growth rate of 1 mg biomass d ' as for species /  (see 

Table 3.3). Species f> is not strictly comparable with the S tress-Tolerator syndrome of 

the CSR model, as the only ‘tolerance’ trait it possesses is the accum ulation o f a 

resource reserve when acquisition is greater than assimilation rate.

Species h is presumed to be representative ol' species adapted to productive 

habitats (see Table 3.3). Both Grime and Tilman predict that species adapted to such 

habitats will exhibit a low root:shoot ratio and the CSR model predicts a high degree 

of plasticity in allocation of biomass between root and shoot (see sections 1.2.6, 1.4.3 

and 3.3.3). Consequently, the allocation pattern o f /( is plastic and biased to shoot as for 

species (J2 (PartR=0.2, PartC=0.5). Species fi has been assigned coupled growth as for 

species e (^'cR=1.0, xcC=l.(); see Table 3.3) -  this trait is also predicted to be of 

advantage in a productive environment (see .section 3.3.4).

Simulations

The simulations arc; species a in mixture with (run 27) and with h (run 28); 

e and / i n  mixture (run 29) and both species as monocultures (e mono: run 30; /  mono: 

run 31). This allows the calculation of C Ir that f; and li experience in mixture, and also 

the calculation of the CA of both ff and h.

Results
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The results for this section are shown in Figures 3.13n and 3.13p.

Yield, m ortality and plant size

Both species are viable in monocultures: h  experiences greater mortality in 

monoculture than g reflecting the effect of resource storage on self-thinning (see species 

/ perform ance in section 3.3.4), though h achieves a greater average m onoculture yield 

than g  at soil N levels 3 and soil P levels > 4. In com petition, no individuals o f g 

survive in any o f  the replications at any R level > 3 for both N and P sim ulations where 

li is the outright superior competitor. However, at R level 3 species g achieves a greater 

average yield than li in both N and P simulations.

Competition Intensity

The C Ir o f the two populations matches the com petition outcome: g  experiences 

maximal com petition intensity (CIr=1.0) for all R levels greater than 3, while h 

experiences less intense competition. Individuals o f  .g experience m axim al CIr, while 

individuals o f h experience decreasing CIr as soil R increa.ses, after peaking at R level 

4. Com petition in the N simulation is more intense than in the P sim ulation at low soil 

R levels.

Competitive A bility

At soil R levels > 3, the competitive abilities o f and li are very different: this 

is reflected in the yield outcome in competition. Thus, although the CA o f  each species 

could be used to predict the competitive outcome in qualitative terms, no  quantitative 

prediction could  be made.

Effect o f  R supply  properties on yield and competition

For both species there is a significant difference between yields in mixture only 

at low R levels (levels 1 to 3). At these low R levels, individuals o f  both species 

experience m ore intense competition in the N sim ulation than the P sim ulation, though 

at higher R levels individuals of li generally experience greater CIr in the P sim ulation
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than the N simulation.

3.3.6 Di.scussion

Yields

Final yield appears to be extrem ely variable at most soil R levels for most 

com petition simulations (the notable exception being species f  in monoculture; see 

section 3.3.4 for explanation). The only stochastic elem ent of these sim ulations is w ithin 

the grow th o f individuals into unoccupied cells (Cell Growth Routine: see section 2.2.13 

and A ppendix Program). In some cases, even though the species have implicit 

differences, final yields from different replications at the same soil R level do not 

necessarily reflect the mean yield relationship. One o f the fundamental assum ptions o f 

this m odel is that plants compete sim ultaneously for space and re.sources: this is a 

consequence of space being divided into discrete units (cells) which only one individual 

may occupy at any one time. It is this discrete differentiation o f space and the chance 

occupancy o f it that inevitably gives ri.se to spatial heterogeneity of individuals and 

resource distribution, and consequently the variable yields. Such heterogeneity 

(generated by stochasticity) may then play a crucial part in prom oting the coexistence 

of species that otherwise, at least according to classic com petition theory (e.g. 

Com petitive Exclusion Principle), would tend toward monoculture.

M ortality

As the only cause o f mortality in this model is insufficient unassim ilated carbon 

for m aintenance respiration, it is not surprising that unviable species are exclusively 

those w hich invest high allocation to root at the expense of increased carbon fixation 

through shoot allocation. All species (except species f )  show evidence of self-thinning 

in m onoculture. This was not explicitly described in the model but arises from the 

discrete occupancy of above-ground space and subsequent light competition. The 

relaxation o f the assumption that no decom positional processes act on dead tissue and 

allow resources to become available for acquisition by surviving individuals
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(JecayRATE=0), is likely to intluence the nature o f com petition and spatial dynam ics 

of the soil resources, though this is not tested here.

The effect o f  R supply properties on competition

The contrasting properties of N and P (discus.sed in section 3.2) generally only 

have a significant effect on competitive outcome (yields o f competing species) at low 

soil R levels (levels 1,2 and 3): such low levels coincide with maximum intensity of 

below-ground com petition (see section 3.4). Individuals generally experience greater CIr 

in the N simulation than the P simulation at low R levels, thus lending support to  the 

prediction made in section 3.2 (though see section 3.4 and simulations w ith no 

inter-specific above-ground competition). This does not imply that com petition for 

nitrogen is more intense than for phosphorus in natural system s, as the input levels and 

per-unit mass uptake rates of N and P were scaled according to CRratio  (see section

3.1.4 and Table 3.3), and this precise balance between N and F’ is extremely unlikely 

to occur in a real field system. However, this does illustrate the need to treat resources 

by their properties, as competition for each resource may be unique in character. Most 

of the studies of com petition intensity, utilizing an experimental manipulation o f  the 

availability of a resource to create a productivity gradient, have only considered 

different additional levels of nitrogen (Wilson & filman 1991, 1993, 1995) or com bined 

nutrients (Reader 1990, Aerts et al. 1991, DiTommaso Aarssen 1991, Turkiiigton et 

al. 1993; see also Cioldberg 1990); no studies have so far contrasted com petition 

intensity over experim ental gradients (with naturally occurring ranges) of different 

resources in turn U.e. factorial), though Belcher et ot. ( 1995) used soil depth to create 

a productivity gradient.

Competition Intensity

i>ne surprising result is that C lr < 0 occurs quite often, and while this may be 

indicative of the use of mean yields in the calculation of Clr, negative C'lr is only 

experienced by species m mixiure with inferior com iiclilors (as determined by ( 'A ). A 

probable explanation is that mier-specific competition dc|ircsses the growth, anil

K4



Chapter 3 Simulations

therefore the intensity o f intra-specific competition o f the subject species, for the 

duration of the simulations. Thus the yield of a species in additive mixture may be 

greater than in m onoculture.

The relationship o f CIr and soil R is sensitive to the species and the competitive 

situation. W here species are competitively superior to competing species, such as h in 

competition w ith at high R levels (section 3.3.5), the ‘superior’ species tends to 

experience low er intensities o f competition than their competitors. The C Ir results 

presented here cannot be u.sed to refute T ilm an’s hypothesis that CIr remains constant 

across a productivity gradient (although productivity has not been u.sed it can be seen 

that yield per-unit area increa.ses in a curvilinear fashion with increasing soil R) as the 

relationship betw een light and nutrient competition intensity within the model is 

probably different to that found in nature. As the CIr an individual experiences is a 

result o f sim ultaneous above- and below-ground competition, this relationship is crucial 

in determ ining C Ir across a soil resource gradient (see section 3.4).

The difference between the intensity of com petition which populations 

experience, as m easured by the relative reduction in total yield, and that which 

individuals experience, as measured by the relative reduction in mean plant size, 

highlights the need for theories to distinguish between individual and .species scales: no 

studies have yet m easured CIr at both individual and population scales. The predictions 

made in section 3.2 concerning competition for N and P are supported by the C Ir which 

individuals experience in N and P simulations, but this is not the case at the scale o f the 

population. T here is no clear relationship between CIr as experienced by individuals and 

populations: this presents a possible problem in linking the population to its component 

individuals.

Plant Traits and  Competitive Ability

C om petitive ability as defined in this thesis (section 1.5.4) is based on the 

reduction of a reference species’ performance, in terms o f yield o f the population and 

mean plant size. The resulting CA of the model species tends not to discriminate clearly 

between species, i.e. the CA arc generally grouped into ‘good’ and ‘bad’ competitors.
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though thi.s may be due to the distribution o f CA aecording to the calculation in section

1.5.4 (i.e. 0.0 < CA < 1.0). The use of a model ‘phytometcr’ (senstt Gaudet & Keddy 

1988) in these simulations is not a very good ‘tool’ with which to  measure CA, though 

this is probably because species r/ possesses a root;shr)ot ratio lor riptim um  performance 

between Soil R levels 3 and 4 (see RWR of c2 across Soil \< gradient in section

3.3.3.2). However, the use o f such principles in the field has been  successful (Gaudet 

& Keddy 1988), though the application of a phytometer is very m u ch  restricted by the 

performance o f the phytometer across an environmental gradient.

Competitive ability depends upon the traits possessed b y  a species and the 

availability o f nutrients, i.e. there is variation in CA lor all sp ec ies  along the Soil R 

gradient and is not a fixed ability as the CSR model suggests (Grime 1979). From 

Figure 3.5, it can be seen that high allocation to root confers a s lig h t advantage at low 

Soil R levels (where Soil R is most limiting), and high allocation to  shoot confers high 

CA at higher Soil R levels (where light is most limiting). U ncoupled growth is 

advantageous at low Soil R levels, while fully coupled growth appears to be slightly 

disadvantageous, at the population scale, while the traits assigned  to species g and h 

confer very different C A ’s. As with Clr, the C'A of individuals and populations may 

differ considerably along the Soil R gradients.

3.4 Competition above- and below-ground

3.4.1 Introduction

In a classic experiment Donald (1958) separated the ab o v e- and below-ground 

components o f competition, and demonstrated an interaction betw een  root and shoot 

competition. This work has been extremely influential, and a host o f similar experim ents 

followed (see W ilson 1988 for review).

Snaydon has studied root and shoot competition between species mixtures using 

partitions to impede above- and below-ground inter-specific interactions between 

neighbouring individuals while intra-specific interactions are preserved  (Snaydon 1979, 

Remison & Snaydon 1980, M artin & Snaydon 1982, Snaydon & Howe 1986, Tofinga
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et a l  1993), though the design of these experiments also removes com petition for space, 

and does not examine whether the spatial restriction caused by the partitions inhibits the 

perform ance o f individuals, c.g. a difference in performance of a single individual grow n 

in isolation (or in monoculture) caused by the presence partitions above- and/or below ­

ground.

Most recently, the application of a mechanistic approach to com petition has 

resulted in .several experim ents exam ining root and shoot com petition at two different 

productivity levels (Aerts et al. 1991, Wilson & Tilman 1991, 1993, 1995) or along a 

soil depth gradient (Belcher ct al. 1995). However, methodological problem s exist with 

the separation o f  shoot and root system s, due to the physical im possibility o f .separating 

above- or below-ground com petition without interfering with the supply and  acquisition 

of the resource by com peting individuals.

For example, light com petition may be removed between a subject individual and 

its neighbours by the tying back o f the neighbours’ shoots (W ilson & Tilm an 1991), but 

there  is the possibility that the action of tying back could reduce light interception by 

the neighbours, and therefore reduce their growth and potentially reduce the 

below -ground effect of the neighbours, which is precisely the factor under investigation 

in such an experiment. W ilson & Tilm an (1991) attempted to validate their experim ent 

against just such an event by com paring soil nutrient and light available to the subject 

individuals: if soil nutrient levels w ere not significantly different from ‘fu ll’ com petition 

treatm ent and light levels were not significantly different from ‘no com petition’ 

treatm ent, then there is assumed to be no significant effect on neighbours growth by the 

action  of tying back (W ilson & Tilm an 1991: 1052). The approaches used by these 

recent experim ents to separate out above- and below-ground com petition rem ove all 

in ter- and intra-specific com petition for a resource and, therefore, are unable to perm it 

an additive design by which the effect of inter-specific com petition (not intra- plus 

inter-specific) may be measured.

The necessary criteria for the separation o f light and soil resource com petition 

m ay be defined, following on from the conceptual definition o f com petition presented 

in section 1.5.2 . For the removal o f  light competition, light supply to an individual
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must equal that supplied to the individual in the absence of inter-specific light and soil 

resource com petition (i.e. equivalent to that in monoculture), while sim ultaneously the 

soil resource available to the same individual must equal that supplied to the  individual 

in the presence o f  full intra- and inter-specific light and soil resource com petition  {i.e. 

equivalent to that in mixture). The reverse applies for removal o f soil resource 

competition. N otice that it is the supply element o f resource acquisition that is u.sed here 

(see section 3.2.1); the actual quantity o f resource acquired depends also on  the size of 

the resource acquiring organ which, in turn, depends on the acquisition o f other 

resources, the ‘opposite’ (above- or below-ground) resource being o f  particular 

importance. Thus, it is not possible to separate entirely the effect o f  above-and 

below-ground competition.

W ith the criteria detailed above, it is virtually impossible to conduct such an 

experiment on real plant populations, especially preserving intra-specific com petition 

while rem oving inter-specific com petition between populations, though th is may be 

achieved at the individual scale in the absence o f all intra-specilic com petition  (e.g. 

Wilson & Tilm an 1995, Belcher et al. 1995). This, however, is where a  simulation 

model of plant com petition can be extrem ely useful, as it is a relatively sim ple task to 

reorganize the rules governing the occupancy o f space and resource d istribution  such 

that the criteria above may be met. Hence, the model described in ch ap te r 2 was 

modified (see appendix) such that four ‘treatm ents’ are possible for tw o  com peting 

species populations:

m onoculture intra-specific competition above- and below -ground only

above only intra- and inter-specific competition above ground, 

intra-specific competition below-ground

below only intra-specific competition above ground,

intra- and inter-specific competition below -ground

«S





Figure 3.14 Schematic diagram showing the basis of CIr calculations for above- and 
below-ground competition. Dashed lines represent separation of competing tissues o f  
species X and Y, by any method (see text). Arrowed lines represent com parisons in C Ir 
calculations; the method u.sed by W ilson & Tilm an (1991) to calculate the intensity o f  
light competition is represented by the dotted arrowed line.
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3.4.2 Sim ulations

Modification to m o d el space and resources

Inorder to satisfy the criteria stated in section 3.4.1, several changes to the 

principal PA SC A L program were necessary concerning the occupancy o f space and 

resource availability  o f two species in mixture.

The follow ing example is for the simulation o f no inter-specific root com petition 

between two species. No changes to the program are made to the occupancy o f  space 

and access to light above-ground by the two species. However, the roots o f each species 

inhabit separate volum es below-ground, while the shoots of each species occupy the 

same volume above-ground. Each species-specific space below -ground contains the same 

initial distribution and quantity of soil R, and all other operations within each space 

(occupancy, uptake, soil R and water m ovem ent, and growth) are perform ed as normal. 

Thus, while both species experience above-ground conditions in a sim ilar fashion to full 

competition, each species experiences below-ground m onoculture conditions (i.e. neither 

species may directly  intercept units o f soil R from the other). H ow ever, because of the 

interdependence o f  root and shoot functions implicit in the grow th and partitioning 

elements o f the m odel, below-ground grow th and uptake may still be influenced by the 

other species via inter-specific above-ground competition.

Inter-specific light competition is removed in a similar m anner: the roots of the 

two populations inhabit the same volum e o f soil, but the shoots o f the populations 

inhabit two separate volumes, therefore only intra-specific light com petition may occur.
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Calculation o f  CIr fo r  above- and below-ground competition

The few experiments to have measured competition intensity experienced above- 

and below-ground separately (Belcher et al. 1995, Wilson & Tilman 1991, 1993, 1995) 

have all followed the format of Wilson and Tilman (1993), where three competition 

‘treatments’ are performed on individuals: (1) no neighbours (mono), (2) neighbours 

roots (NR) and (3) neighbours roots and shoots (NRS), followed by the calculations:

CIr
P -  Pmono NR

be tow-ground competition
(3.2)

CIr
P  -  P

above-ground competition (3.3)

CIr
P -  Pmono NRS

full competition
(3.4)

where Pf^n and are the performance of  the subject individual with no

neighbours present, only neighbours roots present, and both neighbours roots and shoots 

present, respectively (a neighbour may be of any species). This approach removes both 

inter- and intra-specific competition, and assumes that the effect of full competition is 

the sum of above- and below-ground competition, such that:

NS (3.5)
NR

where the left-hand term is the CIr of  above-ground competition derived from the 

method of calculating CIr below-ground (equation 3.2; see Fig. 3.14), is the 

performance of the subject individual with only neighbour shoots present and neighbour 

roots ab.sent. It follows that

NRS (3.6)
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Although feasible and reasonable there is no experimental evidence yet to 

support this assumption. Consequently, the calculation of above-ground competition 

intensity employed by W ilson and Tilman (1991, 1993, 1995) and Belcher et al. (1995) 

is not strictly comparable with the measurement of  below-ground competition intensity, 

as the presence/absence o f  light competition occurs with root competition present, while 

the presence/absence o f  root competition occurs with shoot competition absent (see Fig. 

3.14). This assumption is tested in section 3.4.3.1. The approach taken by these studies 

reflects the difficulty o f  removing below-ground competition while maintaining 

above-ground competition. This was achieved by Acrts et al. (1991) though all 

treatments had equal rooting volume, therefore the presence of  competing roots followed 

a replacement design, rather than the additive design required for Clr calculation (see 

section 1.5).

As described above, the model was altered to systematically remove above- and 

below-ground competition. The calculations for C lr  above- and below-ground used in 

the following sections are:

C lr,
P -  Pmono NR (3.7)

C/r„
P -  Pmono NS (3.8)
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Calculation o f above- and helow-^round competitive ability

Above- and below-ground competitive ability are calculated according to the 

methodology presented in section 1.5.4 (i.e. the reduction in performance of  reference 

species a in mixture relative to the performance of a in ‘mono’ and ‘mixture’ density 

monoculture), thus only the species which arc simulated in above- or below-ground 

competition treatments with a could have such CA calculated. The calculations are as 

follows:

(3.9)

where is the competitive ability above-ground of species X, the

performance of one of the populations of  a in ‘mixture’ density monoculture with no 

inter-specific below-ground competition between the two populations (run 32A), / ’[«ux.v.v] 

is the performance of a in mixture with species X  with no inter-specific below-ground 

competition, and P [aJ  is the performance o f «  in ‘mono’ density monoculture (run 1);

C A ^ , \ X \  = P^^aa,NR\ aXytRi (3.10)

where CA^,.i„JX] is the competitive ability below-ground of species X, a,«] is the 

performance of the sub-population of a in ‘mixture’ density monoculture with no 

inter-specific above-ground competition between the two sub-populations (run 32B), 

*he performance of a in mixture with species X  with no inter-specific 

above-ground competition.

Selected runs
The runs selected from the trait runs arc a x a (a at ‘mixture’ density; runs 32A, 

32B), a X b6 (runs 33A, 33B), a x c2 (runs 34A, 34B), e x / ( r u n s  35A, 35B) and g x 

h (runs 36A, 36B).

All species pairs are simulated in factorial manner with above-ground 

competition only, below-ground competitittn, and N and P gradient treatments. Yields
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from monoculture and mixture runs, as presented in section 3.3, are used in the 

calculation of  CIr and for comparative purposes.

For runs 32A and 32B, the simulations treat species a as two independent 

populations oi 25 individuals of a such that in the no above-Zbelow-ground competition 

treatments, there is no above- or below-ground competition between  these two 

populations but competition remains within the population, in a similar manner to runs 

2n and 2p (section 3.3.2). For the other runs in this .section, inter-specific competition 

is removed by the method detailed above.

3.4.3 Results o f split competition treatm ents

3.4.3.1 a y. a  the reference species in low and high density m onoculture

The results for a at ‘mixture’ density with only above-ground (runs 32An and 

32Ap) and only below-ground (runs 32Bn and 32Bp) competition are shown in Figures 

3.15n and 3.15p. As for run 2 {a x u\ ‘mixture’ density), the results shown are for a 

population of 25 individuals of a in competition with the remaining 25 individuals o f  

a, i.e. additive design.

Yields and mortality

The removal of above-ground eompetition produces a greater mean yield than 

that attained by the removal of below-ground competition at R levels >  3 for both N and 

P indicating that above-ground competition has a greater effect on yield than 

below-ground competition, for R levels > 3 (see also Clr results below). Above-ground 

competition also induces a greater level of mortality than below-ground competition 

(Figures 3.15n(b) and 3.l5p(b)), as may be expected given that mortality in this model 

results only from C deficiency.

Competition Intensity above- and below-f>roand

Clr of above- and below-ground competition are calculated following the 

definitions shown in equations 3.7 and 3.8, and are shown in Figures 3.15n(c,d) and
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3.15p(c,d); both total yield and mean size are used in the calculations. The CIr o f  

above-ground competition is also calculated following Wifson and Tilman (1991) as in 

equation 3.3, using both total yield and mean plant size as measures of performance. CIr 

results are shown in Figures 3.15n(e) and (f), and 3.15p(e) and (f).

Across a soil N gradient, below-ground CIr decreases at the individual and 

population scale, while above-ground CIr increases with increasing soil N. The resulting 

‘switch’ from below-ground to above-ground competition at the individual scale (Figure 

3.15n(e) ) supports the hypothesis of Wilson and Tilman (1991). There is no clear 

‘switch’ across the equivalent soil P gradient (runs 32Ap and 32Bp); the intensity o f  

above- and below-ground competition for individuals at low P levels are identical, and 

as soil P increases below-ground competition decreases in intensity while above-ground 

competition remains at the same intensity. It is suspected that such a switch similar to 

that found in the N simulation may occur over the P gradient, but at lower soil P levels. 

Hence, additional runs o f  above-and below-ground competition treatments are performed 

at P levels 10 ' times the normal P values. The CIr results for these additional runs arc 

shown in Figure 3.21, from which it can be seen that no ‘switch’ occurs at any P level: 

Clrh,.,,,  ̂ and CIr.,t„„ .̂ are identical until soil P values o f  around 0.005 mg P per SO ILcell, 

where below-ground competition bect)ines less intense than above-ground competition. 

As soil P values approach zero, Clr.,h,„, and Clr^ .̂,„  ̂ also approach zero.

The marked dillerence ol the relationship of above- and below-ground 

competition between N and P simulations can only be a result of the different supply 

properties ol N and P. The dillerence in apparent inter-specific above-ground 

competition (determined from the above-ground only treatment) at low N and P levels 

is actually a rellection ol dillerences in below-ground intra-specific competition, for the 

lollowing reasons. Above-ground biomass is affected by nutrient supply properties, as 

yield and mean plant size are greater at low N levels than at equivalent P levels. This 

should result in a greater chance ol shading (and therefore greater per-unit biomass 

above-ground competition intensity) in the N simulation, whereas Clr,,h,,vi. = 0 at low N 

levels, indicating that at such levels ol biomass there is insufficient growth (occupancy 

ol AH O Vhcells) lor shading to occur. Thus, as shading is removed at low N and P
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levels, the only possible interaction is below-ground intra-specific competition. 

Inter-specific below-ground competition (in isolation of above-ground competition) is 

more inten.se at low P levels than at the equivalent N levels (see section 3.4.8), therefore 

it seems plausible that intra-specific competition for P is more intense than for N: hence 

the higher intensity of competition ‘above-ground’. This apparently contradicts the 

prediction concerning the intensity of competition for N and P made in section 3.2.1; 

this is resolved in .section 3.4.8.

Effect o f  R supply  properties on competition.

Competition for P, as determined by the below-ground only treatments, is 

generally more intense than for N. The supply properties of the nutrient also appear to 

affect measured competition above-ground, via intra-specific below-ground competition 

(see above, and section 3.4.8).

Ahove-^round C Ir as calculated according to equations 3.3 and 3.3.

The values derived from the two methods o f  calculating Clr above-ground are 

approximately equal, but not identical, so strictly the assumption of Wilson and Tilman 

(1991; equations 3.5 and 3.6) is not supported here (Fig. 3.15n(f) and 3.15p(f) ). 

However, in the N simulations their method gives a good approximation (Pearson’s 

correlation values of  0.934 and 0.993 for yield and size based C lr respectively), but not 

for the P simulations (Pearson’s correlation values o f  0.640 and -0.313 for yield and size 

based Clr re.spectively), where their method is least accurate at low soil P values.

3.4.3.2 a X b6 : moderate shoot allocation x high shoot allocation

The results of runs 33A and 33B arc shown in Figures 3 .l6n  and 3.16p. Species 

h6 has high constant allocation to shoots (see section 3.3.3.1), while species a has 

moderate shoot allocation in comparison.
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Yiclit.s

With above-ground competition only, a only survives in competition with h6 at 

low soil R levels where a achieves a greater mean yield than h6 (l-igures 3 .l6n(a) and 

3.16p(a)). W'ith below-ground competition only, a is able to survive at all soil R levels, 

and achieves a greater mean yield than h6 at several R levels. This indicates that h6 is 

the superior above-ground competitor while a is the superior below-ground competitor 

for N, except at N level 5 where the allocation pattern of />6 presumably facilitates a 

greater N uptake rate (see section 3.3.3.1 and below). There is no clear below-ground 

superior competitor for F*.

Conipelitive cihUity oj h(i above- and below-f^roiuui

The yield based and size based C A of bb above- and below-ground are sfiown 

in Figure 3.18(a) and (b). Increased allocafion to shoot (relative to species a) generally 

confers a competitive advantage above-ground at fiigher R levels lor both the individual 

and the population. There is a slight advantage to tlie particular allocation pattern o\ b(> 

below'-ground at soil .N levels 3 and 4, due to increased transpiration and water uptake 

rate, and subsequent increased nitrogen interception.

Competition intensity above- and below-^roand

Individuals of u experience decreasing (Tr,„.,„^ with increasing soil R levels; at 

low R levels this ( Irh,.,,,,,, is greater lor F than N. Al the scale of the (ropulation, a 

experiences decreasing i lr,,̂ .|,„̂  with increasing soil R, though al F level 4, tt experiences 

negative competition intensity, as occurred in monoculture (section (.4.3.1). Indiviiluals 

of bb experience decreasing i T r , w i t h  increasing soil R, lor both N and F 

simulati(»ns. There is no clear trend of C T r , o f  the |)opulalion of bb.

I he population of sfiecies bf> ex[)eriences negative ( Ti for above ground 

compelilion: this is most likely due to the suiijiressive elfc-cl of inler-specilic 

cotiipelilion on irilra-specilic competition (see section (.(..S) hidividuals of bb 

experience increasing ( lr,,„, ,̂. with increasing soil N, though they experience decreasing 

 ̂ '^tfh incretisiiig soil F, I he [lofiulation and individuals of species a  experience
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an increase in with increasing soil R, until CIr,,, ,̂^̂ .= 1.0 where a does ncil survive

in competition with h6. Both the population and individuals ol h6 experience less 

intense than a', this lends support to the conclusion that h6 is the superior

above-ground competitor.

ICffcct o f  R supply properties on competition

Individuals of both a and h6  experience greater intensity ol' inter-specific below­

ground competition for P than for N.

3.4.3.3 a -X. c2 non-plu.stic ullocation x plastic allocation

The results of runs 34A and 34B are shown in l igures 3 . l7 n  and 3.l7p. Species 

c2 has unbiased plastic allocation (see section 3.3.3.2), while species a has constant, 

unbiased allocation between root and shoot.

Yields

With above-ground competition only, u produces a greater yield than c2 at low 

N and P levels; at greater N and P levels <2 outcompetes a completely {i.e. yield of a 

= 0). With below-ground competition only, the yield of u is greater than that o f  c2 fol­

low N and P levels, but at greater N and P levels the yield of c2 is greater than that of 

a. Thus, full mortality of  a only occurs with light competition, whereas the full 

mortality of c2 at low R levels is a reflection of the inviability of the highly plastic 

allocation pattern of c2 at these levels (see <2 monoculture yields and mortality in 

F-igures 3.9n(a) and 3.9p(a) ).

Competitive ability o f c2 ahove-and helow-f>round

The above- and below-ground CA of t 2 are shown in F-igure 3.IX(c) and (d). A 

species with plastic allocation response would be expected to experience less intense 

competition than a species with fixed, unbiased allocation in a similar situation (section

3.3.3.2); i.e. CA[c2|>(). At the population scale, plastic allocation confers a competitive 

advantage below-ground at relatively low R levels (N level 3 and F’ level 4), and an
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Figure 3.17p. Results of above- ami below-ground competition between species a 
(constant allocation) and species c2 (highly plastic allocation) acro.ss Soil P gradient: (a) 
yields with no below-ground competition; (b) yields with no above-ground competition; 
(c) yield based CIr for a\ (d) yield based CIr for c2; (e) size ba.sed Clr for a\ (f) size 
based CIr for c2.
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F ig u re  3.18. Above- and below-ground Competitive Abilities of species h6, (a) and (b). 
and species c2. (c) and (d), across Soil R gradient (both N and P).
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advantage ahove-ground at higlier R levels, though plastieity appears to be  a 

disadvantage ahove-ground at low R levels (N level 3 and P level 4). However, th is  is 

probably an •artifact' of the model's assumptions: plastic allocation in this model does 

not •account' for the extra requirement of  C for respiratory costs, only for inclusion into 

biomass (see the partitioning equations in section 2.2.12). At the individual scale, 

plasticity confers a competitive advantage below-ground at lower soil R levels, and 

above-ground at higher R levels, where Clr,^^. > Clr^̂ .i,, ,̂, but does not confer  a 

significant disadvantage at any R level.

Competition Intensity above- and helow-f’roitnd

Species a generally experiences greater competition intensity than c2: this is a 

reflection of  the competitive advantage conferred by plastic allocation. Clrh,.,,,  ̂decreases 

with increasing soil R for u and c2 at the individual scale, and a at the population .scale. 

With above-ground inter-specific competition only, individuals of u experience maximal 

Clr,^„j at soil N levels > 3 and soil P levels > 4, while individuals of c2 experience 

relatively constant Clr^̂ ovc across both N and P gradients. There is evidence o f  a 

qualitative change in competition from predominantly below-ground to predominantly 

above-ground (Wilson & Tilman 1991) in the CIr that individuals of a and c2 

experience with increasing soil N (Fig. 3.17n(e) and (f) ). There is no 'switch' as such 

with increasing soil P: at low soil P levels the intensity of inter-spccific below-ground 

competition is equal to the intensity of  above-ground inter-specific competition (Fig. 

3.17p(e) and (f) ); while at higher soil P levels is much greater than (see

section 3.4.8).

effect o f  R supply properties on competition

The intensity of below-ground competition experienced by a and c2 is g reater 

across the P gradient than the N gradient.
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3.4.3.4 e X f  : c o u p led  >«r(»wth x uncoupled growth

The results for runs 33A and 35B are shown in I-igures 3.1911 and 3.19p. Species 

e has fully coupled growth, while /  has uncoupled growth (sec section 3.3.4).

Yields

With above-ground competition only (no inter-specific below-ground 

competition), there is a ‘switch’ in dominance as soil N and soil 1’ increase; e has a 

greater yield than /  at low soil R, while /  produces a greater yield than e at higher R 

levels (Fig. 3.19n(a) and 3.19p(a) ). This switch is qualitatively similar to that produced 

by full competition (runs 24n and 24p; see Fig. 3.12n and 3.12p). When above-ground 

inter-specific competition is removed (below-ground only treatment), no such switch in 

dominance occurs. This suggests that the shift in dominance between e and /  along the 

soil R gradient is prompted by competition for light and not by nutrient competition (sec 

below).

Competition In tensity  above- and helow-f’roand

At the popidation scale, there is a qualitative change in the C lr  experienced by 

e and f .  CIrh,.|„̂  ̂ is greater than CIr,,h<,ve soil N, and this is reversed at higher N

levels; at low P levels the intensities o f  above- and below-ground competition are 

identical, but at h igher P levels Clr,,̂ ,,,̂ ,. is greater than Clr^ î..  ̂ .

Individuals o f  species e experience a similar ‘switch’ with increasing soil N and 

‘divergence’ with increasing soil P. However, individuals of sp e c ie s /  only experience 

significant competition at low soil R levels, where CIi|, .̂|„„ > Clr., ,̂, .̂ in the N simulation 

but CIrh .̂|„^^= CIr,,h„vc in the P simulation.

effect o f  R supply properties on competition

Both the individuals and populations of c and / experience more intense below­

ground competition in the P simulation than the N simulation, at low R levels.

1(K)
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Figure 3.20p. Re.sult.s ot above- and  below-ground competition between .specie.s ff (high 
root allocation, uncoupled growth) and h (high shoot allocation, coupled growth) acro.ss 
Soil P gradient: (a) yields with no below-ground competition; (b) yields with no above­
ground competition; (c) yield ba.sed CIr for g; (d) yield ba.sed CIr for h: (e) size based 
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(a) (b)

(c)

Soil P (mq P p«f SOiLc**) Soil P Imq P {>»f SOILcoH)

Figure  3.21. Results of above- and below-ground competition for reference species (t 
across additional low Soil P gradient (see section 3.4.3.1): (a) yields: (b) mean size of 
surviving individuals; (c) yield based CIr; (d) size ba.sed CIr.
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3 .4 .3 .5  g  'X. h  uncou p led  g ro w th , h igh  ro o t allocation  x co u p le d  g ro w th , h igh  sh o o t a lloca tio n

The results of runs 36A and 36B are shown in Figures 3.20n and 3.20p. Species 

g has uncoupled growth and high allocation to roots, while species h has fully coupled 

growth and high allocation to shoots.

Yields
In the absence of inter-specific below-ground competition (above-ground only 

treatment) .species h outcompetes g at N levels>3 and P levels>4 (yield of g=0; Fig. 

3.19n(a) and 3.19p(a) ), suggesting that h is a superior above-ground competitor to g. 

With inter-specific above-ground competition removed (below-ground only treatment) 

g is not outcompeted and produces a greater yield than h at low R levels (Fig. 3.19n(b) 

and 3.19p(b)) where below-ground competition is most intense (see section 3.4.3.1 and 

below), therefore g is a superior below-ground competitor to h.

Competition Intensity above- and helow-groand

The population and individuals of g experience a ‘switch’ from predominantly 

below-ground to predominantly above-ground competition as soil N increases; at low 

soil P levels g experiences identical intensities of above- and below-ground competition, 

but at higher P levels above-ground competition intensity is greater than below-ground. 

The population of g experiences extremely negative below-ground Clr at several points, 

presumably due to the suppressive effect of inter-specilic below-ground on growth and 

subsequent reduction of intra-specific above-ground competition.

The population and individuals of It experience minimal above-ground and 

decreasing below-ground competition with increasing soil N, but experience decreasing 

above- and below-ground competition with increasing soil P (Fig. 3.2()n(f) and 3.20p(f)). 

There is no clear ‘switch’ from below-ground to above-ground competition with 

increasing soil N; the intensity of above- and below-ground competition are identical 

at low soil P levels.
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Effect o f  R supply properties on competition

Species and  /; experience greater CIrĥ .|„̂ ,̂ across the P gradient than across the 

N gradient.

3.4.8 Discu.ssion

Calculation o f  above-f>rouml competition intensity (Clr ,̂ ,̂̂ )̂

As stated in section 3.4.2, the method of Wilson and Tilman (1991) to calculate 

above-ground competition intensity and employed in several studies, is not strictly 

comparable to the equivalent below-ground intensity. This is demonstrated in Figures 

3.15n and 3.15p, and  shows that the assumption of the calculation (equations 3.5 and 

3.6) is false.

Competition b e lo w -ro u n d  as affected by resource su/)/)ly properties

The CIrt„.|„̂  ̂ results are not wholly representative of  below-ground competition 

as only inter-specific competition was removed, and intra-specific competition may still 

have affected yield and mortality; this is especially important when comparing with the 

results of studies which have separated above- and below-ground competition by 

removing both intra- and inter-specific competition. Within these simulations, 

competition below-ground is generally most intense at the lower end of the nutrient 

gradient, and it is here that competition for phosplK)rus is more intense than for 

nitrogen, at the population and individual .scale: this is the opposite o f  the prediction 

made in section 3.2.4. However, this is not necessarily a contradiction for the following 

reason.

Competition for physical space, a necessary process of the model, is likely to 

have a greater effect on an individual’s performance for phosphorus than for nitrogen, 

due to the modelled difference in mobility of N and P, i.e. at the spatial resolution o f  

the model, roots acquire phosphorus mainly by direct interception whereas the bulk o f  

acquired nitrogen m ay move through several SOILcells prior to interception (see section

3.2.3 and Fig. 3.3). At such low nutrient levels the root system of each individual only
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occupies a few SO/Lcells. With the supply differences of N and P described above, the 

presence of other root systems is more likely to affect the acquisition o f  P than N, as 

N is readily replaced from deeper soil layers by mass How, whereas the immobility of 

P means that replacement of P is as likely to come from horizontal neighbouring 

SOILcells as from vertical SO ILcelh\ this is manifested in the greater yield achieved 

with N in the below-ground only simulation than with P as the soil resource. Thus, 

where neighbouring root systems occupy adjacent cells, Clrh,.|„̂ „ is greater for P than for 

N, even though a greater yield is produced with N, and the overall (full competition) 

CIr with N (run 2n) is greater than that with P (run 2p; see section 3.3.2).

This greater CIr .̂|„^  ̂ for P also affects CIr̂ j,<ivc ‘above-ground competition

only’ simulations: as only inter-specific below-ground competition is removed in these 

simulations, intra-specific competition for nutrients is still present and would have been 

more intense for P than for N, resulting in a greater apparent Clr., ,̂ ,̂,. in the P 

simulations.

Competition above- am! helow-^rouncl

Competition at the individual scale across the N gradient always switches from 

predominantly below-ground to predominantly above-ground with increasing input of 

N, whereas across the P gradient competition above- and below-ground is of equal 

intensity at low P input and always ‘diverges’ with increasing f’ input, such that 

above-ground competition becomes more intense and below-ground competition 

becomes less intense at high input levels. This suggests that intra-specific competition 

for N and P affects inter-specific competition for light to differing extents (see above), 

fhus, the supply properties of a resource can affect measured relationships with other 

resources across an environmental gradient.

At the individual scale, the position of the switch from competition below-ground 

to above-ground along the nutrient gradient is affected by the traits possessed by the 

species and the competing species. In the nitrogen simulations, while species a in 

competition with a experiences the switch between N levels 4 anti 5, l>6 in competition 

with a experiences the switch between N levels 6 and 7. As hb has a greater allocation
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to shoots than a the relationship between and for h6  is repositioned up

the nitrogen gradient. Likewise, species a in competition with h6 experiences the switch 

between levels 3 and 4. Species c2 (highly plastic but unbiased) experiences the switch 

between N levels 4 and 5, the same point as species a did in monoculture, though the 

intensities o f  above- and below-ground competition that c2 experiences in competition 

with a are much lower than those that a experiences in competition with a. Species e 

and /  both experience this switch at similar N levels. Species h in competition with }> 

experiences very little competition above-ground in the N simulation (due to the 

relatively high plastic allocation to shoot, in comparison with and experiences a 

switch in competition from below- to above-ground between N levels 4 and 5; 

experiences this switch much more dramatically between N levels 3 and 4.

It is harder to obtain a clear picture of above- and below-ground competition 

across the phosphorus gradient because of the apparently greater intra-specific 

competition intensity for Soil P, discussed above.

In conclusion, a species will experience a switch in competition from below- to 

above-ground at different nutrient levels, depending on the CA above- and below-ground 

of the species (conferred by traits) and the CA above- and below-ground of competing 

species. High allocation to root appears to confer high CA below-ground where soil 

resources are most limiting; whereas high allocation to shoot appears to confer high CA 

above-ground where light is m ost limiting.
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Chapter 4 

Model Validation

4.1 Sensitivity Analysis o f Selected Parameters

A sensitivity analysis is performed to compare the effects of different parameters 

on model performance. The sensitivity of  the model output to the values a.ssigned to 

various parameters is tested. The parameters Im ax  (equation 2.8), K h  (equation 2.15), 

inuintenanceRATE  (equation 2.18) and PartR  (equations 2.35 and 2.36) are chosen as all 

affect nutrient and carbon acquisition and utilisation, and are therefore important 

determinants of the conclusion of Chapter 3. CELLma.ss determines the relationship 

between biomass and volume of space, and therefore determines the spatial resolution of 

the model: this parameter is also subject to a sensitivity analysis.

Sensitivity tests

The.se tests are designed to examine the sensitivity of the model output (yield) to 

variation in parameter values, therefore enabling the robustness of the model to parameter 

value to be evaluated.

All tests are conducted on a monoculture o f  50 individuals, arranged spatially as 

for the ’mixture’ density simulations of chapter 3, where all parameter values other than 

the one under examination are identical to those used tor species a (see Tables 3.1 and 

3.3). Therefore the yields attained from the sensitivity simulations may be compared 

directly to those attained in runs 2n and 2p (see Table 3.2).

Sensitivity analysis is performed at soil R levels 3, 4, 8 and 11, and for both 

nitrogen and phosphorus simulations. These soil R levels are chosen as they encompass the 

full range of competitive response, from predominately below-ground competition (level 

3) to predominately above-ground competition (levels greater than 4); see section 3.4.

Twenty different parameter values are generated from a random number generator 

(Minitab statistical program), normally distributed around the usual parameter value with 

a standard deviation of ± 10%. The model is run separately with each o f  these parameter 

values. As the yield output of the model is variable, due to the stochastic
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element within the cell growth routines (see sections 2.2.13.2 and Appendix program), 10 

replications (equivalent to GROWTHrcplicaiions', section 3.1.6) are performed for each 

parameter and soil R setting, and the mean value used in the sensitivity calculations 

described above. Whilst it is a simple process to substitute the normal values of Z/m/.v, Kh, 

maintenance RATE  and CELLniass for the randomly generated values, allocation pattern is 

linked to both PartR  and RartC  (equations 2.35 and 236), with the proviso that FariR + 

FartC  < 1.0 (see section 2.2.12), thus for the simulations where FariR  is varied, constant 

allocation pattern is assumed, and F artC  = 1 - FartR.

Sensitivity of the yield to parameter variation may be measured by S(YielJ, p) 

(Thornley & Johnson 1990).

S( Yield, p )  = P
Yield X b{p)

(4.1)

such that

b(.Yield) - Yield -  Yield (4.2)

and

b ( p )  = p  -  p ' (4.3)

where Yield is the yield attained by the population of  a in run 2n or 2p (depending on a 

nitrogen or phosphorus simulation) and Yield' is the yield attained by the population with 

changed parameter value, p  is the normal parameter value and p ' is the changed value of 

that parameter. S(Yield, />) is the relative change in yield divided by the relative change in 

parameter value. Thus if a change of +10% of the parameter value results in a +10% 

change of yield, S(Yield, />) = 1.0. This allows direct comparison of sensitivity between 

different parameters. This method is referred to as the .V-test.
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An alternative method of measuring the sensitivity to a parameter value is by 

calculating the coefficient of variance (CV) of the mean yields (in terms of 

GROWTH replications) around the normal mean yield (K) from run 2n or 2p:

C V E jy'-yf
( n - l )

(4.4)

where Y' is the mean yield for each parameter setting and n is the number of different 

parameter values. The greater the value of CV, the greater the sensitivity of  the yield to the 

value of the subject parameter. This method is referred to at the CV-test and the results for 

this test are shown in Table 4.1.

G iven that the competition model contains a stochastic element in the growth 

routine and that replications (GROW THreplications) are necessary to account for the 

variation this generates, the CV-test is perhaps a more appropriate .sensitivity test for this 

model than the 5-test. Even though replications are performed, small variation in yield is 

expected, due to the stochastic growth element. The variation caused by this may well be 

greater than that caused by very small parameter value changes. If so, the value o f S(Yielci, 

p) would be very large where 5( p ) is very small, simply due to the stochastic nature of 

the model, thus confounding the estimation of 5( Yielii, p  ) and producing a erroneous 

result. However, both the S- and CV-tests are included, for comparison.

4.1.1 The ab.solute response of yield to parameter change

The plots of yield against relative change in Imax (Fig. 4.1a and 4.1c) show little 

general change in yield for the selected soil R level, except for Soil P level 4 (Fig. 4.1c). 

An increase in Imax value does not appear to increase yield, as would be expected given 

the importance that Ima.x has for acquisition of st)il resource. The same plots for Kh (Fig. 

4.2a and 4.2c) show that at higher Soil R levels (8 and 11, where competition is 

predominantly above-ground) yield is increased as the value o f  Kh increases, as would be 

expected. Yield is less affected by variation in Kh at lower R levels where the acquisition 

of carbon is non-limiting for plant growth (Fig. 4.2a and 4.2c). When the value of 

maintenanceRATE  is changed, yield is relatively unaffected at lower R levels (N level 3,
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Fig. 4.2a Response of Yield to change in parameter value: Kb , Nitrogen. 
Dashed line marks normal paran^eter value.
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Fig. 4.2b Sensitivity of Yield to change in parameter value; Kb, Nitrogen. 
Dashed line marks normal parameter value.
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Fig. 4.5c Effect of CfLL/nase value on Yield: Phosphorus. 
Dashed line marks normal parameter value.
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Fig. 4.5d Sensitivity of Yield to change in parameter value: C E LLm ass . Phosphorus. 
Dashed line marks normal parameter value.
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Fig 4.3a; P level 3 and 4, Fig. 4.3c) but at higher levels yield decrea.ses as 

mainteminceRATE  increases, as expected.

The response of yield to change in PartR  (where allocation pattern is constant) is 

dependent on the soil R level at which the simulation is run (Fig. 4.4a and 4.4c). At soil 

R level 3, yield increa.ses as PartR  increases, as would be expected, given the greater 

acquisition of limiting soil R by a greater investment in root at this level (see section 

3.3.3.1); Fig. 4.4a and 4.4c. At this soil R level, the respiratory cost o f  high root 

investment is reflected in a decrease in yield as PartR  values > -0 .55  in the nitrogen 

simulation (Fig. 4.4a). At higher soil R levels, yield decreases as PartR  (and investment 

in root) increase.

Yield appears to increase slightly as CELLmass increases for soil R levels 4, 8 and 

11; however, for soil R level 3 yield varies greatly with changes in CELLmass (Fig. 4.5a 

and 4.5c).

4.1.2 .S'-tests

The results for the .S’-tests are shown in Figures 4.1b,d (¡max), 4.2b,d {Kh), 4.3b,d 

(maintenanceRATE), 4.4b,d {PartR) and 4.5b,d {CELLmass).

The 5'-tests for the five tested parameters all suggest that the model is most sensitive 

to very small changes in parameter value. However, this is mo.st likely due to the stochastic 

output of the model, as described above, rather than the incredible sensitivity to parameter 

values the results suggest, as sensitivity is markedly reduced {i.e. .V(Yield, parameter) 

approaches zero ) as the relative change in parameter value is increased: for example, 

■S(Yield, ¡max) is within the range ().() to 1.0 when 5{/max)//max>().2 (Fig. 4.1b and 4. Id), 

where the stochastic effect would be least. This leads to the conclusion that the .S’-tests are 

not a reliable method of determining sensitivity to parameter values for this model.
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4.1.3 CV-tests

The results for the CV-tests are shown in Table 4.1. These indicate that at soil R 

level 3, yield is most sensitive to CELLmass and least sensitive to im iintem inceRATE  and 

¡max, while at higher soil R levels (levels 8 and 1 1), yield is most sensitive to 

inaintenanceRATE  and Kh, and least sensitive to ¡max and  CELLmass. This is more 

intuitively correct than the 6'-test results, considering the effect on absolute yields (section 

4.1.1).

Table 4.1 Coefficient of variances (equation 4.4) for each parameter, at each Soil R level.

Soil N Soil N Soil N Soil N Soil P Soil l> Soil P Soil P

level level level level level level level level
3 4 8 " 3 4 8 11

/max 0.031 1 S 0.02772 0.03735 0.03226 0 .0 2 2 0 3 0.10536 0.02004 0.0207

K/) 0.10770 0. ISX70 0.17031 0.1 8608 ().()()()()4 0.12206 0.18807 0.1770

maintenanceKA T E 0.0306S 0.1078X 0.18668 0.18815 0.00001 0.10556 0.10148 0.1027

l\trtR 0.131 35 0.1 3062 0.12661 0.1 1285 0 .1 0 4 3 8 0.21 145 0.1 1006 0.1252

C E L L m u s s 0.17540 0.07803 0.10088 0.08484 0 .6 3 0 8 0 0.17004 0.08000 0.0845

4.1.4 Sensitivity o f the model to parameter values

The apparent sensitivity ol the model to parameter values is largely dependent upon 

the sensitivity test. The conventional S-test is inappropriate for  testing this model, except 

with very large (more than ± 0.1) relative changes in parameter value where the model 

appears to be most sensitive to changes in Kh and m aintcnanceRATE, parameters both 

governing carbon acquisition and utilisation rates. The use o f  the CV-test al.so show s that 

the values of Kh and maintenanceRATE  arc relatively impt>rtant, especially at high soil R 

levels, though this is not surprising considering that plant death (an important event, 

considering the large effect this has on yield) is ultimately controlled by these two 

parameters. This sensitivity therefore is a reflection of the assumption that plant death 

occurs the instant an individual has insufficient carbon for maintenance costs. The model
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would benefit from a relaxation of this assumption, such that negative growth may occur; 

this would also affect the self-thinning relationships and size hierarchy development of 

modelled monocultures (see section 4.2), and perhaps generate more realistic relationships 

(t'.g. greater number of surviving individuals of small size). Also, the link between 

occupancy of space and plant material, primarily CELLnutss, is most important at low soil 

R levels, where it effectively determines the growth rate of plants, i.e. the amount of 

resources required to generate more biomass and so initiate and sustain the positive 

feedback loop between growth and resource acquisition. Given that the sensitivity tests 

used a parameter variation of ± 10%, the model yield appears to be relatively insensitive 

to changes in PartR  (determining allocation to root), compared to the higher C V  values 

produced by the other parameters tested here.

4.2 Examination o f model population results

Yield and p lant size

The greatest total biomass yields from the simulations are in the region of 6(),0(){) 

rng per 0.25 m^ i.e. 240 g m‘-. The study by Bonser & Reader (1995) reports the biomass 

of old fields of  herbaceous annuals where the mean above-ground biomass ranges from 64 

(± 26) to 776 (± 184) g m ^ The maximum shoot biomass within the simulation here is 

about 120 g m r  Estimated initial biomass of transplants in Wilson & Tilm an’s (1995) 

above- and below-ground experiments were 30 to 40 mg per individual; all model 

individuals begin with mass of 40 mg, 20 mg equally distributed above- and below-ground.

Yield and mean survivor size, for a in low density monoculture and the sub­

population o f «  in high density monoculture at soil N level 1 1, through time are shown in 

Fig. 4.6a, and the relative growth rate (RGR) o f  the average individual from these 

simulations is shown in Fig. 4.6b. It can be seen that, at both densities, yield increases to 

a peak and quickly falls: this corresponds to the beginning of self-thinning and the death 

of individuals through insufficient carbon reserves for maintenance respiration (see section 

2.2.14). Hence the reduction in yield, as biomass is removed via plant death. Subsequent 

to this, yield is relatively constant through time. Mean survivor size shows a smoother 

progression (Fig. 4.6a). The RGR of the mean individuals of the two populations (Fig.
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Fig. 4.6a Mean yield and surviving individual size through time for species a in low  and high density
monoculture, at soil N level 11.

T i m «  (days)

Fig. 4.6b Relative growth rate oi the average individual in low and high density monoculture of 
species a, at Soil N level 11
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4.6b) shows a typical RGR curve (Hunt & Lloyd 1987), the two curves departing where 

individuals are sufficiently large for competition (presumably mainly for light at this R 

level) to  occur.

Variation in Yield

Variation in yield is an inevitable outcome of the stochastic element of the growth 

routine, and the reason why replications for each soil R level are performed. It is 

interesting to note that the random process by which each individual occupies space above 

and below-ground can lead to such variation in final yield; for example, in Fig. 3.4n(b), 

at soil N  level 1 1 there is an approximate 7.6 fold difference in yield attained by a (though 

it must be remembered that this is only part of the population within that simulation; there 

is only a 1.3 fold difference in yield when the whole monoculture population o f  a is 

considered).

Self-thinning

Further validation o f  the model may be attained by considering .self-thinning 

relationships of monocultures: for this purpose self-thinning within only the monocultures 

ol species a are examined as this is the only model species that has monoculture 

simulations performed at more than one initial density. However, analysis is hampered due 

to the restricted densities attained and used.

Figures 4.7a-d shows the relationship at day 60 between log,.(plant size) and 

log^.(survivors) for the nitrogen (all values in Fig. 4.7a, mean values in Fig. 4.7c) and 

phosphorus simulations (all values in Fig. 4.7b, mean values in Fig. 4.7d). These plots are 

not strictly demonstrations o f  self-thinning, as the results from all the .soil R levels are 

included, and all values were taken at day 60. However, they demonstrate how the 

relationship between mean plant size and number of survivors changes with increased 

nutrient availability. At low soil R levels, growth and competitive interaction is insufficient 

to generate any thinning; this is the vertical part of  the curves in Fig. 4.7c and 4.7d shown 

in the plots. As soil R availability increases, there is little further increase in overall yield 

(above soil R level 4), and the relationship between log^.(mean plant size) and 

log^.(survivors) is approximates to a slope of -1.
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F ig . 4.7e. Self-thinning trajectories from sim ulations of m onocultures of species a , at the 
highest soil N level. Values used are the m eans for 20 replicates.
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F ig . 4.7f. Self-thinning trajectories from simulations of m onocultures of species a . at the 
highest soil N level, com paring the effect of individual arrangement.
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Figure 4.7e shows the self-thinning trajectories through time for monocultures of 

species a at three different initial densities (25, 50 and 100 individuals per 0.25 m^), at the 

highest .soil nitrogen level (1.01 mg N per SO /U ell);  mean values calculated from 20 

growth replicates are used. It can be seen that all three simulations converge on a similar 

line which has a slope of about -1, where maximum yield is attained; this phenomena has 

been reported for several thinning studies (Lonsdale & Watkinson 1982, Watkinson 1984, 

Westoby 1984), though the generality of it has been questioned (Weller 1987, Lonsdale 

1990). However, the approach of the simulation’s trajectories to where they converge is 

characterised by a rapid increase in mortality with little change in mean plant size 

corresponding to the onset o f  competition induced mortality; here self-thinning would be 

expected to conform to the reported -3/2 power law (Westoby 1984, Weller 1987, Lonsdale 

1990). Therefore, the performance of  the model monocultures for this period of 

establishment differs considerably from the published self-thinning studies.

It was suspected that this difference may be due, in part, to the regular distribution 

ot individuals within the modelled area: hence, a further simulation was conducted using 

10 different .sets of random initial positions for individuals, at a density of 25 individuals 

per 0.25 m^: the mean values for both mean plant size and density were calculated, and the 

thinning trajectory using these values is shown in Fig. 4.71. Both simulations converge onto 

a line with a slope of about -1; random initial positions decrea.ses the magnitude of the 

rapid mortality increase in the regular position simulations, but it is still present. Thus, the 

model is not corroborated by  published work in terms of self-thinning before maximum 

yield (for that environment) is attained. However, the fact that all density trajectories 

eventually converge indicates that the model simulates self-thinning in a qualitative 

manner. The difference in quantitative terms {i.e. thinning slope is not steep enough) is 

probably due to the manner in which the occupancy of space and death are modelled as 

dictated by programming limitations, discussed further in section 5.1 and below.

The geometry of plant growth within the model, following the death of  a neighbour, 

tends to be predominately lateral, i.e. plants tend to grow laterally into the spaces vacated 

by dead neighbours before allocating biomass in the vertically plane, due to the cell growth 

rules m section 2.2.13.2. The geometry of plant growth is expected to affect .self-thinning 

relationships (Westoby 1984, Lonsdale 1990) and the geometry of the model plants is
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suspected to contribute to the discrepancies between the model’s and recorded thinning 
relationships.

Morris and Myerscough (1991) presented evidence that self-thinning relationships 

(in terms of yield and density) for Ocimuni hasHicuni are affected by nutrient availability, 

such that the intercept o f  the thinning increases with nutrient availability; similar effects 

ol nutrient supply have been reported in Fa^opynun csculentum  (cited in Morris & 

Myerscough 1991). The results of the model do not conform to this view; instead, it 

appears that self-thinning is slowed down and follows the same pattern at lower nutrient 

levels and at higher levels (not shown explicitly, but compare Figs. 4.7c and 4.7e). This 

phenomena has also been reported in studies by White and Harper (1970) and Bazzaz and 

Harper (1974), though it is debatable whether suitable data points were .selected in these 
studies (Weller 1987).

Size hierarchies

The size distribution of surviving individuals of the high density (50 individuals) 

monoculture of  species a in the nitrogen simulation (run 2n) at the end of the simulation 

(60 days) are shown in Fig. 4.8. Tlie skewness of the distribution across the soil N gradient 

is as lollows: there is a skewness value o f  0.878 at soil N level 3, 0.014 at .soil N level 4, 

0.528 at soil N level 8, and 0.348 at srril N level II. The inequality o f  sizes may be 

measured by the coefficient of variance of the survivors sizes, and the values for these 

simulations are: 0.042, 0.067, 0.125 , and 0.1 10 at soil N levels 3, 4, 8 and 1 1 respectively.

It can be seen that the distribution is uneven in that there are fewer large individuals 

in comparison to the number of smaller individuals (i e. skew > 0) at the higher soil N 

levels especially. It is expected that the skewness and size inequality of monoculture 

populations increase with increasing productivity (Weiner 1985, Hutchings 1986, Weiner 

Si Thomas 1986). This is not evident from the skewness results (the highest value is at soil 

N level 3), yet the coefficient of size variance does increase with increasing nutrient 

availability, which has been shown to occur in natural populations (Weiner 1985). The size 

inequality of survivors increases with an increase of density at all the above soil N levels, 

l-or the monoculture with 1(K) initial individuals the coefficient o f  variances are: 0.064, 

0.089, 0.204 and 0.191 at soil N level 3, 4, 8, and II respectively. This has been
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Fig. 4.8 Size hierarchy orsurviving individuals \ n a \ a  nitrogen sim ulation. 
Values on x-axis refer to centre o f  size class.
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demonstrated to occur in experimental populations (Weiner & Thomas 1986). 

Unfortunately, the size distribution of individuals was not recorded for the monoculture 

split above- and below-ground competition simulations of runs 32A and 32B for 

comparison with the study of Weiner ( 1986) on the size distribution with partitioned above- 

und below-ground competition in vine populations.

One notable feature of the size distributions shown in Fig. 4.8 is the absence of 

very small individuals and the weak skewness o f  the size distribution at the highest nutrient 

levels, where the distribution would be expected to be distinctly skewed (Weiner & 

Thomas 1986): for comparison see Fig. 4.9 taken from Weiner (1985). This lack of small 

sizes may be due in part to the absence of any variation in initial plant size. Perhaps the 

best explanation for the relative symmetry of  the model sizes at high nutrient levels, is due 

to assumptions concerning plant growth: no negative growth (due to competition) is 

included within the model and that plant death results in the instantaneous removal of 

biomass. As the individuals in a very dense, productive simulation compete not only for 

light and nutrients but also for space, and due to the manner in which the cell growth 

algorithm operates (see above), individuals tend to die before being over-topped by larger 

neighbours. Hence, while the model’s results demonstrate that the distribution of sizes 

conform qualitatively to published work, the extent of size hierarchy development suggests 

that light competition is less asymmetric within the model than in nature. This presents an 

obvious opportunity for the development of  the model.

4.3 Validation o f .some aspects of the sim ulation results

In this section, the results from the simulations of Chapter 3 are compared against 

related published studies. Not all the results from simulations may be validated in this 

manner, as the model does not simulate explicitly any of the documented studies. Thus, it 

is probably more constructive to determine if the model results corroborate qualitatively 

with field and experimental results, and numerical values fall within the range encountered 

in nature, than to compare in a purely quantitative manner. The two aspects of the model 

results used for external comparison are root:shoot ratios and competition intensity across 

a soil nutrient gradient.
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4.3.1 Com parison of model root:shoot ratios with published ratios

The sensitivity analysis of section 4.1 suggests that, generally, yield is not as 

sensitive to rootrshoot ratio (at least where allocation is constant) as to the other tested 

parameters, though this is obviously dependent on the nutrient level. However, differences 

in allocation pattern have been demonstrated to produce markedly different results in the 

model (e.fi. simulation m l ,  section 3.3.3.1). Therefore, it is worthwhile comparing the 

root:shoot ratios of the model species with published studies.

Viable allocation patterns

Although only a few of all possible allocation patterns from various values of PartR  

and PartC  (which determine the allocation of growth to root or shoot and the degree of 

plasticity in allocation) were used in simulations, it is possible to make some 

generalisations concerning viability o f  species. Although not shown explicitly in Chapter 

3, species with constant root:shoot ratio > ~ 2.33 (RWR > ~ 0.7) appear to be unviable at the 

simulated soil nutrient levels. Of the 68 herbaceous wetland species examined by Shipley 

and Peters (1990), the highest root:shoot ratio found was 2.23, though all the other species 

exhibited ratios between 0.1 (RWR = 0.091) and 0.6 (RWR = 0.375). It is unfortunate that 

Shipley and Peters do not record the nutrient status of the habitats in which the species are 

normally resident. The maximum root:shoot ratio r>f old-lield species reported by Wilson 

& Tilman (1995) is about 2.4, and that was for Poa pratensis  subjected to only below­

ground competition and severe above-ground ‘disturbance’. Some of the species in this 

study exhibited greater plasticity of root:shoot ratio (in the absence/presence of neighbours) 

than others. However, in another study Tilman and Wedin (1991«) found much higher 

ratios, values ranging from about 6 to 8 in Scltizacliyriam  and Anclropofion species at very 

k)w soil nitrogen availability, though it must be remembered that the simulation models 

represent general herbaceous species, and there is evidence that these old-field perennials 

have significantly different physiological adaptations to the other species in the studies 

which displayed much lower ratios (generally about 0.1 to 2).
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Plastic allocation

The results o f  monoculture simulations of species cJ and c2 (runs 15 and 16; 

section 3.3.3.2) which exhibit unbiased plastic allocation patterns may be used to examine 

the realism o f  plastic response of some model species. The range of  root:shoot ratios shown 

by c2 (the most plastic species) was from 2.33, at the lowest soil resource level, to 0.25, 

at high soil resource levels; this is narrower than the range the species is capable of, and 

therefore probably represents the most extreme allocations that are viable within the 

modelled system. This approximate 10-fold difference is just within the range (1.5 to 12- 

fold) cited by Chapin (19X0), with an equivalent 100-fold difference in nutrient availability. 

The study o f  eight old-field species by Wilson and Tilnian (1995) showed approximately 

1 to 2.3-fold decreases of rootishoot ratios with an increase of nutrient supply; this is a 

smaller range than model species c2 exhibits, but these species are likely to have 

adaptations other than rootishoot ratio to the very low nitrogen availability characteristic 

of their habitat.

Ratios related to the environment

It is widely assumed that species adapted to nutrient poor habitats exhibit greater 

rootishoot ratios than species adapted to nutrient rich habitats (Chapin 1980, Tilman 1988). 

While the model presented within this thesis can conform to this axiom (see, for example, 

simulation run ml within section 3.3.3.1), a prediction has not been made concerning 

specific rootishoot ratios and nutrient availability, as physiological differences (c.g., per- 

unit mass nutrient acquisition rates) are identical for all model species, and other 

potentially important factors, such as the inlluence of  mycorrhiza, are not included within 

the model. It is clear from several studies that allocation of biomass to resource acquisition 

organs alone does not necessarily confer an equivalent ability to aci.|uire (and conserve) 

those resources (Berendse & Elberse 1990, OUT c/ al. 1991, Elberse <& Berendse 1993).

4.3.2 Com petition intensity in model simulations in com parison with published studies

The main prediction the model makes concerning competition shifting from below­

ground to above-ground as soil nutrient availability increases remains untested in the great 

majority o f  natural annual and first-year perennial systems. F-ew studies have addressed the
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issue of  competition intensity (CIr) across a nutrient gradient with full {i.e. no partitioning 

of above and below-ground structures) competition (see section 5.3.2), only the work of 

Snaydon and Howe (1986) and most notably the experiments o f  Wilson and Tilman (1991, 

1993, 1995) have investigated competition between roots and  shoots with changes in 

nutrient availability, though Belcher et al. (1995) performed similar experiments on a soil 

depth gradient. Hence, it is not possible, because of the limited investigations and 

communities studied, to make categorical statements on the intensity of above- and below­

ground competition across a nutrient gradient. However, all o f  these studies found that 

above- and below-ground competition differed in intensity and depended on nutrient 

availability, and that, generally, below-ground competition decrea.ses and above-ground 

competition increases in intensity with increasing availability of  nutrients. For example. 

Figure 4.10 shows the Clr (e.stimated from biomass measurements) for the three species 

in the study by Wilson and Tilman (1991:Fig. 3). Further research is required to examine 

the extent to which this phenomena occurs, but the model’sprcdiction conforms to the 

limited results available.

4.4 Di.scu.s.sion o f the m odel vulidution

Haefner (1996) states that the criteria for determining a model’s quality depends 

upon the objectives of the model. The term ‘validity’ is incomplete without reference to 

a purpose: one must state valid with respect to what purpose. It is, therefore, difficult to 

determine if a model is ‘va l id ’, given that this is a subjective notion depending on the 

purpose the user has in mind. For example, Haefner suggests that "generality, simplicity, 

increasing understanding, and qualitative correctness of model behaviour are concepts that 

are more relevant to purely theoretical .studies" (Haefner 1996:1 52). These comments seem 

most relevant to the model presented within this thesis.

While the model is not particularly elegant or simple (though is competition 

between individuals simple? Presumably not from the vast amount of literature devoted to 

the subject), it docs qualitatively display several features of competing annual and first-year 

perennial populations: self-thinning, competition density effects, size hierarchy 

development, increasing variation of surviving sizes with increases in density and nutrient 

availability, and the changes in relative competition shifting from  below- to above-ground.
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This suggests that the model is at least plausible in terms of modelling competition for 

nutrient and light. As di.scussed above in .section 4.2, the model appears to understate the 

severity of  light competition on population structure due to the manner in which individuals 

grow and occupy space and the subsequent characteristics of light interception by 

competing individuals. The model differs quantitatively  from the published results o f  such 

features, perhaps as a direct consequence of this, though given the generality o f  the 

model’s specification (i.e. the establishment of annual or first year perennial herbs in 

relation to the mechanism of light and nutrient competition between them, over a broad 

range of environmental productivity and densities) this result is not surprising.

It would be most useful to simulate a well researched particular community, if 

sufficient data (e.g. mechanistic resource acquisition, and allocation of  those resources 

between tissues and within space) were available for parameter estimation. The absence of 

such data makes quantitative validation of the model difficult. Thus, it is more profitable 

to consider the model in terms of the qualitative similarity to known monoculture 

phenomena, described above, and the pattern of competition across a soil resource gradient. 

As the model does exhibit all of these phenomena, and as it has proved a genuinely useful 

tool for thinking about competition and placing the theories of Grime and Tilman within 

a common framework, it must, therefore, be considered valid with reference to the criteria 

stated above.
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Chapter 5 

Discussion

5.1 Discussion of the model

In light of the sensitivity of selected parameter values and validation o f  the 

model in Chapter 4, it is worth discussing the limitations imposed on model design by 

the programming of the model, and potential improvements which could be made to the 

model, to perhaps improve the realism o f  the nK)del, though this may be  at the expense 

of generality (Sharpe & Rykiel 1991).

5.1.1 Limitation on m«tdelling competition processes by program m ing

Discrete occupancy of cells within the model was necessary as information on 

plant position was stored using array type variables (see Kemp 1987) in the 

implemented program (see Appendix Program): each cell was assigned an occupancy 

status of a single integer. The use of pr>inters (see Kemp 1987) instead would permit 

n number of plants to ‘occupy’ each cell. This would allow the overlapping occupancy 

of space, and corresponds to it greater degree of ‘inter-mingling’ o f  root and shoot 

systems, thereby removing competition for space, and is expected to affect resource 

competition between neighbouring individuals. Structuring the occupancy of space by 

individuals in this way would probably reduce the variation in yield generated by the 

present model and affect the sell-thinning relatii)nships. However, the disadvantages of 

using pointers are greater complexity of programming (making programming errors 

harder to trace), much longer running time of simulations, and increased memory usage.

5.1.2 Po.s.sible exten.sion.s to tbe model

Duration of the model is 60 days, and perhaps is not long enough to sufficiently 

allow competitive processes to reach ‘equilibrium’ (sensu Tilman 1988), though to 

satisfy equilibrium conditions the reproduction and regeneration o f  individuals are 

required to be incorporated into the model. The temporal scale of the nu)del could be 

extended for long term (decades) simulation studies though huge computing power
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would be required (an example of the current model’s computing time: 5 to 6 hours per 

simulation run at high priority on Hewlett Packard Model 712/60 machine). If 

regeneration were added to the model, then population and community dynamics, as 

well as  long-term soil R dynamics could be simulated, and the influence o f  competition 

over extended periods of time (several generations) could be investigated. Also, 

‘to lerance’ traits could be included within the model, though there exists a dearth o f  

physiological data on such mechanisms; this would require the inclusion of ‘loss’ {sensu 

Tilman 1988) incorporating senescence: however, this presents problems relating 

sene.scence to the three-dimensional structure of the individual plants (/.e. which cells 

become unoccupied due to senescence?).

W ater is treated within the model in a very rudimentary manner. No effect o f  

gravity is imposed upon the distribution of water, and this would affect the distribution 

of nitrogen in the soil and the productivity of the vegetation for a given initial amount 

of nitrogen, depending on the level of leaching occurring (Cameron & Haynes 1986).

The aim of the model was to simulate the early growth o f  herbaceous individuals 

and the ir  interaction with environmental resources above- and below-ground: while the 

model succeeds in doing this, some aspects of the model (notably the relationship 

between space and biomass) would benefit from the relaxation of some assumptions, 

which were mainly necessary to programming considerations. The model is certainly 

open to  further development, and could be used to explore many aspects relevant to 

plant interactions and community structure (e.g. environmental heterogeneity, 

mycorrhizal networks). This model includes many features not considered in previous 

plant competition models, principally the explicit de.scription o f  the spatial distribution 

of individuals and resources above- and below-ground and their interaction, as well as 

incorporating plant traits (such as plastic allocation, not considered in Tilman’s 

A LLO C A TE model).

5.2 M ethodology o f  competition studies

A s intimated by Keddy (1989), the development of an understanding of plant 

competition has been constrained to some extent by the design of experiments and the
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choice o f  subjects. For example, several studies designed to test competition theories 

have only measured above-ground biomass to determine competitive elTects experienced 

by the subject species or individual (for examples see ( ’ampbell & (irime 1992, i^eader 

ct ill. 1994, Turkington ct ul. 1993). This assumes a constant distribution ol' biomass, 

irrespective of the intensity and response to below-ground competition. These results 

derived from above-ground biomass may be spurious as the studies have ignored the 

possibility of plastic response of allocation to environment (and competition), although 

Wilson &L Tilman (1991,1993,1995) have shown that qualitative results of competition 

studies were not affected by this. Fxperimental pair-wise competitirrn studies are 

unlikely to enable the prediction of the c)utcome ol nudti-species interactions, unless a 

common reference measurement is made enabling the comparison of competitive ability, 

c.g. using a reference species like species a in chapter 3 to determine CA, or absolute 

measurements of  the elTect of a species on the envirotiment such as R’ (Tilman I9K2).

The consideration of coiiipetition processes across abiotic and biotic gradients 

has greatly enhanced the framework aiul context of competition studies, and such 

gradients are extremely valuable tools with which to investigate general patterns of 

vegetation (Keddy 1989, 1990). However, several recent studies (e.g. Reader et al. 1994, 

Belcher ci al. 1995, Wilson & I'ilman 1995) have used biotic productivity gradients in 

an attempt to ‘summarise’ the environmental conditions limiting plant growth, regardless 

of the physical elements (resources) pertaining to that level of productivity. Thus, very 

different environmental conditions (and processes) couki produce iilentical productivity 

levels o f  the same vegetation; it would be impossible to determine this from productivity 

alone. If productivity is maximal at an intermediate level of a resource, ft)r example low 

water availability limits growth yet high water availability (Hooding) also limits growth, 

the use o f  a productivity grailient would confound any distinct competitive effects 

occurring at low productivity levels (see Austin & .Smith 1989). Fuither problems arise 

when CIr is plotted against productivity: as C'lr is derived from the amount of biomass 

present these two variables may be auto-correlated (J.B. Grace, perv. comm.', see F^eters 

1990). Hence, while productivity may be a useful concept where comparisons {)f 

competition are to be made between different habitats and ecosystems with different
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resource abundances, natural direct abiotic gradients (i.c. resource gradients xensu Austin 

1990) should be measured wherever possible. In addition, where a study involves 

experimental manipulation of nutrient availability {e.f’. Reader 1990, Wilson & Tilman 

1993, 1995), the inclusion of  more than two nutrient levels would facilitate a better 

understanding o f  the competitive proces.scs occurring aloiift a gradient.

Measurement of competition intensity has been addressed by Grace (1993, 

1995«) and in the relativised form (CIr) has permitted the separation of  the response of 

a species to competition from its response to environment, yet there is no clear picture 

of how CIr experienced by competing species depends on the species themselves and 

their traits, density, habitat (as opposed to productivity), resources, scale o f  measurement 

(individual/population, spatial and temporal); this also applies for competitive ability. 

The CIr results presented within chapter 3 suggest that competition intensity experienced 

is dependent upon the traits pi)ssessed by both the subject species and competitors, and 

this has been shown in field and experimental studies with competing species (see 

DiTommaso & Aarssen 1991, C'ampbell & Grime 1992, Turkington et al. 1993, Wilson 

& Tilman 1991,1995). Similarly, CA is dependent on traits, resource supply and scale 

(individual/population), and may very well depend on the choice of reference species 

(Belcher et al. 1995), though this was not tested.

5.3 Plant com petition along a gradient o f nutrient availability

5.3.1 A llocation o f bioma.ss

General allocation between root and .\hoot

The simulation results predict that allocation between organs o f  resource 

acquisition affect the ability of individuals to acquire those resources and this is 

rellected in the CIr experienced by competing individuals. For example, compari.son of 

size-based CIr experienced by species b6 (low root:shoot) at low soil R values is less 

intense in competition with species a (medium root;shoot) than with species l?2 (high 

root:shoot), whereas the opposite occurs at higher soil R values (see section 3.3.3.1 and
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Fig. 3.7). Thus, the model predicts that a greater allocation to structures responsible for 

the acquisition of the most limiting resource (for that habitat) confers a competitive 

advantage by increasing the CA of that species, and increasing the intensity of 

competition experienced by competitors. This suggests that in natural vegetation where 

high levels of resource acquisition is more ‘important’ than tolerance to low re.sources 

(where soil resources are abundant and productivity is high), allocation to an organ 

responsible for resource acquisition should be positively correlated with competitive 

ability for that resource.

Gaudet and Keddy (1988) investigated the competitive ability (based on 

competitive performance in mixture with a reference species) of 44 herbaceous plants 

and concluded that total plant biomass was the best indicator of competitive ability, 

explaining 63% of the variation in competitive ability. This experiment was conducted 

at only one nutrient level representative of the highly productive environment where the 

species occur naturally, and where light is likely to be the most limiting resource. 

Therefore, it is hardly surprising that total biomass was the principal indicator of CA, 

given the size-asymmetric nature of  competition for light (see Weiner 1990). It would 

be interesting to .see whether this level of explanation would be achieved if the same 

experiment were conducted at a lower nutrient level (i.e. lower productivity), where 

nutrients would be more limiting than light. However, Goldberg (1987) found that the 

competitive effect a species exerted upon competitors was best explained by differences 

in size or abundance, at a lower productivity level than that studied by Gaudet and 

Keddy (1988). Aerts el al. (1991) investigated the cause of differential competitive 

ability below-ground among three perennial plants (where competition was shown to be 

predominantly below-ground) and found that below-ground competitive ability was 

associated with a root system efficient at acquiring below-ground resources (high 

allocation to roots and an extensive rooting volume system). Studies by Elbersc and 

Berendse (1993) and Olff c/ al. (1991) showed that in some instances plants adapted to 

relatively nutrient-poor habitats allocate less dry matter to roots than plants adapted to 

nutrient-rich habitats. While this appears to refute the assertion made above, the study 

o f  Elbersc and Berendse (1993) showed that the lower allocation to roots was
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compensated for by a higher specific root length and this was also suggested by Olff 

et al. (1991). Allocation pattern should therefore only be interpreted as one of several 

possible adaptive features that confer a high resource acquisition rate (see Berendse & 

Elberse 1990; Table 3).

If tolerance traits are assumed to be an important adaptive feature at low 

resource availability and if a trade-off is assumed between allocation o f  resource to 

organs of acquisition and allocation to physiological ‘tolerance’ mechanisms, there is 

unlikely to be a simple relationship between adaptive allocation pattern and resource 

availability. The inclusion of ‘loss’ of acquired resources {sensu Tilman 1988) into this 

hypothetical framework would also affect the predicted relationship between adapted 

allocation pattern and resource availability, especially if per-unit mass loss rates changed 

along a resource availability gradient. So instead of searching for allocation patterns 

correlated with productivity and light:nutrient gradients, and because the abundance of 

a species is the product of its ability to acquire and conserve resources, research should 

consider leatures that maximi/.e the acquisition of resources for individuals where those 

resources are most Umitin}’ (see Chapin et al. 1987).

The si^nifieanee of phistieity in biomass allocation

The results o f  the simulations indicate that plastic allocation of biomass between 

root and shoot ct)nfers a competitive advantage in terms of resource acquisition and 

maximum yield, though only where competition is predominantly for light at medium 

to high nutrient availability. The Clr experienced by individuals of species c2 with very 

plastic response is almost constant along the nutrient gradients (see .section 3.3.3.2 and 

Fig. 3.9n and 3.9p) which demonstrates that plasticity reduces the impact o f  competition. 

However, there is no cost associated with plasticity within the model, and this cost will 

limit the extensiveness of plasticity in natural systems (Tilman 1988), though it is 

unknown to what extent. Tilman & Cowan (1989) found that the response of root and 

shoot growth to environmental conditions was greater between species than within 

species: no one species had extreme plasticity in allocation between root and shoot. This 

suggests that plastic allocation is subject to selection in much the same way as constant
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allocation, as perceived by Tilman (1988), such that species differentiation along a 

nutrient:light gradient may still occur if all competing species exhibit limited plastic 

response. Limits to this response are necessary for differentiation otherwise a single 

species, with unlimited response, would be able to generate the optimum root:shoot ratio 

for all possible environmental conditions, i.c. a ‘super-species’, sensu Tilman (1988).

5.3.2 Intensity of com petition along a nutrient gradient

CIr experienced hy populations and individuals

The relationship between CIr and an environmental resource gradient is subject 

to the resource supply characteristics and the competing species response to and effect 

on that resource. CIr may well be affected by other mechanisms (e.g. resource loss, and 

damage or removal of resource acquiring ti.ssue), and the introduction of ‘tolerance’ 

traits to the assumptions o f  this model may significantly affect the CIr experienced by 

vegetation at low resource levels.

The CIr experienced by both individuals and populations of  the simulations (as 

determined by using either total yield or mean plant size) are not the same. This has 

crucial implications for competition studies and theories, as both must make a clear 

distinction between inter-individual competition and inter-specific competition, a point 

echoed by Goldberg (1994). Nearly all of the studies that have used CIr, or a related 

method to calculate the intensity of competition, have measured the performance of 

individuals (see Table 5.1). As yet, no studies of natural plant populations have 

compared competition intensity experienced by individuals and populations or species 

across environmental gradients.

As related in Chapter 1, there has been much debate regarding the relationship 

of  intensity of competition across a gradient of productivity; this has arisen again 

recently with the results of Bonser and Reader (1995) which suggests that CIr increases 

most when productivity increases from low to medium levels, but remains relatively 

constant as productivity increases from medium to high levels, comparable to the ‘full
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'Fable 5.1. Studies which have measured the intensity of competition using CIr or 
related method. /  indicates CIr is based on individual performance, P indicates CIr 
is based on performance of the population. Values in brackets refer to number of 
nutrient levels.Study
R ead er 1990
l^iTomina.s() & A otsscmi 1991 
W ilso n  & Tilm un 1991 
C am p b e ll &  G rim e 1992 
T u rk in g lo n  i*/i//. 199.1 
W ilso n  & T ilm an  199.^ 
H ciXik 'f e t  a i  1994 
B e lch er c/ a l . 1995 
B o n se r ik  R eader 1995 
W ilson  T iln ian  1995

Performunce indicator (•radient
/*.' roselle  n u m b e r  per-unil area  nulrien i level (2)
/  m ean plant s i/.c  nutrien t level (1 )
/  a b o v e -g ro u n d  g row th  rate o f  tra n sp la n ts  nutrien t level (.1)
/* a b o v e -g ro u n d  b iom ass nutrien t level (5)
/* percent c o v e r  (above-g round  b io m a ss)  nutrient lev e l (5)
/  ab o v e -g ro u n d  grow th  rale o f  tra n sp la n ts  nutrient level (2). soil N. ligh t p ene tra tion  
/  a b o v e -g rtiu n d  g row th  rate o f  tra n sp la n ts  p roductiv ity  
/  a b o v e -g ro u n d  b iom ass o f  tra n sp la n ts  stul depth , p rin luc tiv ity
/  ab o v e -g ro u n d  b iom ass o f  tra n sp la n ts  pro iluctiv ity
/  to tal g ro w th  ra te  o f  transp lan ts nutrien t level (2 ). ne ighbour p rin luc tiv ity

competition’ CIr results of species a in monoculture (Fig. 3.4n(e) and 3.4p(e); section

3.3.2). This seems to add credence to both schools ol thought regarding competition 

intensity across productivity levels: Cl may both increase (Grime 1979, Keddy 1990) 

and remain constant (Newman 1973, Tilnian 198K) with increasing productivity, 

depending on the range of productivity measured; Belcher ct al. (1995) have also 

suggested just such a relationship. However, the range of productivity used by Bonser 

and Reader (1995) is within the range that other studies have reported (see Belcher et 

til. 1995), and further tests are required to ensure that this is not a spurious result 

stemming from auto-correlation problems associated with plotting CIr against total 

productivity (see above).

Competititm above- anti heltiw-f’roanti

The results from the split competition treatments (section 3.4) all show that at 

low nutrient levels, competition between individuals is more intense for nutrients than 

for light; this has been tested in only a few selected natural habitats (with relatively low 

productivity), and it was found that competition below-ground is more intense than 

competition above-ground (Belcher et al. 1995, Wilson & Tilman 1991, 1993, 1995). 

As a generalised model, as nutrient ability increases, competition intensity for the 

nutrient increases to a peak and then diminishes while the intensity of light competition
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increases asymptotically. This is very similar to the model proposed by Belcher et al. 

(1995:Figure 7). Snaydon and Howe (1986) found that below-ground competition 

between populations of established ryegrass and invading grass seedlings decrea.sed in 

intensity with increa.sed supply of the limiting nutrient, but did not detect any 

appreciable increase in above-ground competition with the increase in nutrient supply, 

though this was only performed at very low ryegrass densities, where shoot competition 

may be expected to be low.

The switch in competition from below- to above-ground with increasing nutrient 

availability is determined by the relative above- and below-ground competitive effect 

exerted by each species on other .species pre.sent. For example, the Clr and the ‘switch’ 

experienced by the individuals of two species with different allocation above- and 

below-ground (.species a x  h6: section 3.4.3.2) is very much species dependent; the 

species with greater allocation above-ground has a greater CA above-ground and the 

‘switch’ is experienced at a higher nutrient level relative to that experienced by the other 

species. Unbiased plasticity (e.^. species c2) had no effect on the position of the switch 

along the nutrient gradients, although the Clr experienced above- and below-ground by 

the species with plastic response was greatly reduced by plasticity (.see section 3 .4 .3 .3 ).

This switch in competition generally occurs at relatively low nutrient levels 

according to the simulation results. Higher nutrient levels almost exclusively led to 

complete dominance by one species (though most of the simulations involved only two 

species). This is found in many natural systems where the addition o f  fertilizer has 

decreased species diversity (DiTomma.so & Aarssen 1989), and is represented in 

Grime’s (1979) ‘hump-back’ model of species diversity; the size-asymmetric nature of 

light competition (Weiner 1990) is cited as an explanation (Huston & DeAngelis 1994, 

Belcher et al. 1995). A greater number of species survived at low nutrient levels (for 

example, .see Fig. 3.5(e) and 3.5(f) ), though species diversity might conceivably have 

reached a maximum at intermediate nutrient levels if death of modelled plants occurred 

from insufficient nutrient acquisition, in addition to insufficient light interception (see 

Huston & DeAngelis 1994).

Given that the presence of vegetation and consequent resource acquisition alters
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the annual availability of nutrients (either increase or decrease), then competition will 

shift between above- and below-ground depending on the current nutrientdight ratio. As 

has been shown by the simulations, above- and below-ground competition (at least for 

annuals and first-year perennial) will select for different traits and species; thus, 

vegetation change may be a consequence o f  a shift in competition between above- and 

below-ground, though this may be caused by many factors other than resource 

competition (c.^r herbivory). This is also the prediction of the Resource Ratio hypothesis 

of succession, in that the vegetation present and the resources available are 

interdependent and succession is driven by their interaction (Tilman 1985).

Competition in relation to the supply projfertie.s o f  resource

The results of the simulations contrasting nutrient supply properties (see chapter 

3) suggest that the mobility ol the nutrient does have an effect on competition: in the 

full competition simulations where competition was predominantly below-ground, Clr 

experienced was always greater in the N (relatively mobile) simulations than in the P 

(relatively immobile) simulations, though in the ‘below-ground only’ competition 

simulations the reverse was true as a result of supply properties and the spatial 

positioning and packing of root systems (see .section 3.4.8). This emphasizes the point 

made above that Clr experienced is dependent on circumstance (i.e. species present and 

the density and spatial arrangement of individuals) as well as the properties of  the 

resource(s). The three-dimensional aspect o f  nutrient movement and competition is 

responsible for the decrease of Clr with increasing nutrient availability, where 

availability is greater than that which confers maximal Clr for nutrients, even though 

increases in nutrient availability confer larger, more expansive root systems. The 

unidirectional nature of light results in C lr  for light increasing with the size of 

competing individuals. These properties and  their consequences are also reported from 

a model by Huston and DeAngelis (1994), which also treats nutrient distribution and 

below-ground competition in an explicit manner at the scale of the individual (Huston 

& DeAngelis 1994, Grace 1995/?), though their model does not treat spatial light 

distribution explicitly (Grace 1995/?). Thus, both the availability and supply prr)perties
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o f  a resource determine the competition intensity for that resource experienced by 

competing populations and individuals, though other factors species traits, density 

o f  individuals) may also intluence the intensity of competition (see above). This serves 

as a caution against assuming all resources may be treated identically in plant 

competition models (e.f’. the Resource-Ratio and R” models).

However, the current model ignores the possible transfer of resources (carbon, 

nitrogen and phosphorus) between individual plants via netwc)rks of mycorrhizal 

mycelium (Newman 1988), and the increased acquisition of nutrients associated with 

mycorrhizal infection of the roots (Allen & Allen 1990). Grime e/ cil. (1987) have 

demonstrated the significance of mycorrhizal infection for the suppression o f  the 

dominant species in an artificial plant community, probably the result of  carbon transfer 

from the dominant species to the subordinate species. The transfer of  resources between 

competing individuals has important implications for competition: any transfer of 

resource from a high concentration to a lower concentration would be expected to 

decrease the CIr experienced by the subordinate species for that resource. However, the 

rate of transfer through the mycelium network may not be fast enough to have a 

significant effect on competition; this has been shown to be true tor the transfer of 

phosphorus between competing tillers of Loliuin perenne (Newman & Eason 1993). 

Mycorrhizal transfer of acquired resource down concentration gradients could  be 

incorporated within the model, assuming that a uniform mycelium network exists within 

the soil. The values of Cpool and Rpool would therefore depend on acquisition, storage 

and assimilation (as before), and the flux (via mycorrhizal network) to or from 

neighbouring plants, according to the relative sizes of the plant resource pools and  the 

distance between individuals or their root systems. Evidence for such relocation of 

resources is limited at present, and it is unclear how widespread this may be in naturally 

occurring communities.

Further implications fo r  theories and ecology

The results of the simulations show that while most of the model species can 

survive in monoculture at all nutrient levels, species are displaced along the nutrient
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grudicnt according to competitive ability: this supports the ‘competitive hierarchy m odel’ 
of  Keddy (1989).

The results imply that a central assertion o f  Grime’s CSR model, that 

competition is primarily lor light and occurs predominantly in productive habitats, is not 

true: while maximal competition intensity for light generally coincided with maximum 

production, competition between individuals below-ground could be just as intense at 

much lower productivity (section 3.4). The assumption o f  the CSR model concerning 

coupled and uncoupled growth is supported to some extent by the simulations of species 

e (coupled) and /  (uncoupled), in that /a ch iev ed  a greater yield than e at low nutrient 

availability (high ‘stress’, sensu Grime 1979); see sections 3.3.4 and 3.4.3.4. Also, the 

variation in CA of species along the nutrient gradient does not support the assumption 

of CSR model that competitive ability of a species is a fixed characteristic irrespective 

of environment. While the CSR model has stimulated much discussion and re.search, 

several of the assumptions upon which it is based have been shown to be incorrect, and 

there are self-contradictions within the conceptual framework (see C’hapter 1). The non- 

mechanistic structure of the C SR model has rendered it non-opcrational and while it 

succeeds in describing herbaceous types in terms of certain physiological attributes, it 

omits several important proven aspects t)f competition: notably asymmetry of 

competition (sensu  Weiner 1990) and an appreciation of above- and below-ground 

competition.

While supporting Tilman’s Resource Ratio theory (the model shares some 

fundamental assumptions with the Resource Ratio theory) in terms of allocation of 

biomass to plant compartments, the model and simulation results cannot test the long­

term predictions of the Resource Ratio and R theories, as their biomass and population 

equilibrium requirements cannot be met due to the short time period of the model. 

However, the assertion of Wilson & Tilman (1991, 1993, 1995) concerning the nature 

of above- and below-ground competition is supported by this work (see above). In 

contrast to the C S R  model, the Resource Ratio and R theories have been made 

unambiguous by Tilman, and the mechanistic approach has yielded testable (i.e. 

operational) predictions.
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5.4 Future research directions

The obvious extensions possible to the model have been detailed in section 5.1. 

However, models are only as good as the data available, and further work is needed to 

determine the role of plant competition in community ecology. Methodological tools, 

like CIr and productivity gradients, need to be assessed, while the problem of spatial, 

temporal and ecological (individual/population/community) .scale requires consideration 
and investigation.

The split competition treatments employed by Wilson and Tilman (1991, 1993, 

1995) and Belcher et a/. (1995) are an important contribution to understanding 

competition above- and below-ground processes: more competition studies should 

employ this approach as above- and below-ground competition processes appear to be 

very diflerent and interdependent. The hypothesis of Huston and DeAngelis (1994) 

concerning coexistence along a nutrient gradient also requires testing in a natural 

system: neighbour removal and monitoring of individuals and populations may shed 

light on the displacement o f  species along a natural environmental (non-biotic) resource 

gradient. Further work is required to test if competition (as measured by CIr) is indeed 

dillerent lor individuals and populations.

What is really needed is a test of various community organization theories, to 

deteimine the role (il any) ol competition (both above- iiiid below-ground), herbivory 

and mycorrhizae in the development and structuring o f  communities. Such a study 

would, ideally, include several different habitats and different species. While the 

separation of above- and below-ground competition has been achieved successfully for 

individuals (e.f'. Wilson & lilman 1991), there is no satisfactory method to remove 

above- or below-ground lor plant populations in the field or under controlled conditions.

Goldberg’s null community model (Goldberg 1994) is an appropriate method to 

determine the role of  competition in structuring communities: rather than assuming that 

only one species will exist, the null hypt)thesis is that all species will co-exist. Artificial, 

experimental habitats are uselul, but proper tests of competition theories must be 

perlormed on naturally occurring communities in natural habitats. Likewise, knowledge 

ol pair-wise interactions along environmental gradients will not enable construction of
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community models, where the effect of each species on all other species tends to be 

assumed or ignored. There is nothing in the results from pair-wise competition of 

•species h i  to b7  with a  (section 3.3.3.1) that sugge.sts the outcome of the multi-species 

simulation (m l;  section 3.3.3.1, Fig. 3.22).

5.5 Conclusions

Ambiguity in the definition of terms and conditions within the plant competition 

theories of Grime (CSR model) and Tilman (Resource Ratio and R* hypothe.ses) has 

generated much debate and apparent contradiction: these are resolvable when a common 

context and rigorous definition are introduced. Plant resource competition is a passive 

process: plants respond to changes in environmental resources mediated by competitors, 

not the presence of competitors per se. Competition may either be determined by 

acquisition of resources and/or tolerance of low resource levels, and it is important that 

this distinction be recognised in competition studies, as both will affect the measurable 

intensity of competition.

The model presented here attempts to relate competition between individual 

plants to the environment, in terms of resource availability, distribution in space, and 

the acquisition and allocation ofthc.se resource by the individuals. The generality o f  the 

model prevents it from being quantitatively validated against published studies of  plant 

competition, but the model does qualitatively display several important phenomena 

reported from plant competition studies. The model has been used to explore some of 

the predictions made by the theories of Grime and Tilman, and this process has 

generated further hypotheses.

Competition appears to act differently on populations and individuals: this al.so 

is an important consideration for studies. The intensity of resource competition (CIr) 

between individual annuals or lirst-year perennials depends on the supply properties of 

the resource (e.g. size-symmetry and mobility), the abundance o f  the resource, the 

relationship of that resource to other potentially limiting resources, the allocation and 

growth patterns of the plants, and the density of individuals. The competitive ability 

(CA defined in section 1.5.4) of an individual is dependent on the environment
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(absolute and relative resource abundance), and the traits possessed. Even so, this does 

not necessarily imply that a universal pattern ol CIr across resource gradients does not 

exist, but variation between species and ecosystems may be significant.

Allocation of biomass to resource acquiring organs is predicted by the model to 

increase CA and resource acquisition: the potential for positive feedback between 

acquisition and allocation is the cause of competitive exclusion, but is predicted to be 

greater for light than for nutrients because of the difference in size-symmetry. Plastic 

allocation facilitates greater competitive ability (resource acquisition) at nutrient (and 

productivity) levels where competition is predominantly for light. Tolerance traits and 

per-unit mass effects on acquisition are predicted to affect this relationship. Growth 

uncoupled from resource acquisition is predicted to be advantageous in nutrient poor 

habitats, while growth coupled to resource acquisition is predicted to be advantageous 
in nutrient rich habitats.

Below-ground competition intensity for a soil resource, in the absence of light 

competition, is predicted to be higher for a highly mobile resource than for a relatively 

immobile resource, and competition intensity in the presence of light competition is also 

predicted to be greater tor the more mobile rest)urce (this assumes that mycorrhiza are 

not present). Competition for light is predicted to be most intense in habitats with high 

nutrient levels, while competition for nutrients is expected to be most intense at low to 

medium levels ol nutrient availability; thus, plant adapted to a low nutrient (low 

productivity) environment should possess a high CA below-ground, while plants adapted 

to a high nutrient (high productivity) environment should possess a high CA above­
ground.
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Appendix - Pitrameter V alues i

Parameter Values

Range o f In itia lSo ilR  values

The range of InitialSoilR  for nitrogen is 0.01 to 1.01 mg N per SOILcell 

(equivalent to 0.00577 to 0.57714 mM NO, ), while for phosphorus the range 0.00067 to 

0.06733 mg P per SOILcell (0.00017 to 0.0173X mM H,POV). i.e. 1/15 of the nitrogen 

values. Fitter and Hay (19X7) report .soil .solution P concentrations of maximum 0.09 mM 

H2PO4. minimum 0.00 mM H.PO^, and mean of 0 .02 mM H^PO^: the cho.sen values are 

within this range.

Proportion of nutrient movement by diffusion (a) and mass flow (A); equation 2.6

The contribution of mass flow to nutrient movement for nitrogen is reported to be 

1007c (sugarbeat and spring barley. Mar.schner 19X6). 407c (spring wheat. Mar.schner 19X6) 

and 797c (corn. Barber 19X4). For phosphorus. Barber (19X4) reports that 57- moves 

through mass flow, while Mar.schner (19X6) estimates that 2 to 37c moves by ma.ss flow. 

The following values are assigned to a and Ir. tor nitrogen. a=0.2\. h—0.19', tor phosphorus. 

rt=0.9X. h=(U)2 .

Diffusion coefficient, d; equation 2.2

Diffusion coefficient, d. values of 10 and 1000 for nitrogen and phosphorus 

respectively were cho.sen to represent the ditterence in mobility ot the two nutrients (i.e. 

1 0 0  fold difference in diffusion rate).

C ELLm ass

CELLm ass may be estimated from 

CELLmass = Shoot Biomass
80 X ShootH eight

where ShootBioniass is the density of shoot material (g m^) and ShootH eight is the height 

of the shoot material (cm). However, this assumes that the whole ot volume ot space 

(ShootHeight x 1 m^) is uniformly occupied by sht)i)t material, unrealistic in mixture plots.



Appendix - Piirametcr V alues ii

A better estimation of CELLmass may be attained when this value is multiplied by the 

actual proportion of shoot material present within the area of space:

CELLmass = Shoot Biomass *
80 X ShootHeight x Total Biomass

where TotalB iom aw  is the tt)tal amount of shoot biomass present of all species (g in '). 

This assumes that biomass present is distributed uniformily throughout the space occupied 

by each species. CELLmass can be determined in this fashion for each i)f the grass species 

de.scribed by Tilman and Wedin (1991), and an overall mean calculated across all nitrogen 

levels and .species: 20.1 mg bioma.ss per cell (i.e. mg bioma.ss 0.()()()2.‘i m ’). Thus a value 

of 2 0  mg bioma.ss per cell is a.ssigned to both abi)ve and below ground ti.ssues: therefore 

a square metre of .sln)ot material with height 50 cm and uniform bit)mass distributii)n would 

have a density of 80 g m *.

¡m ax  an d  Km; equa tion  2.8

/m ax  and Km  values for nitrogen are derived fri)m the nitrate absoiption curves for 

20 day old annual grass species in Huffaker & Rains (1978), given in the tables below.

Species Estimated nitrate V,„.„ 
(pmoles NO, g ‘ hr ' )

Nitrogen /m ax  value 
(mg N mg ' d ‘ )

Bromus mollis (L.) 2.5 0.00084

Avena fa tu a  (L.) 2 0.000672

Loliion m nltiflonm i (Lam.) 9 0.003024

Species Nitrate Km (mM)
Nitrogen Km  value 

(mg N per cell )

Bramus mollis (L.) 0.015 0.02625

Avena fatua  (L.) 0 . 0 2 0.035

Lxfiium multiflorum  (Lam.) 0.03
0.0525
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Calculation of nitrogen Im ax  is given by

{Nitrogen) Imax = x 10  ̂x 14 x 24

where is the estimated value from the absorption cui ves within Iluffaker and Rains 

(lyVX). It is assumed that nutrient uptake occurs 24 hours each day. C'alculation of nitrogen 

Km  is given by

(Nitrogen) Km -  A’ x 1000 x 10 x 14 x 0.000125

where S  is the Km (mM) value given by Huffaker and Rains (I07S), and the size ot a 

single .SOILcell is 0.000125 m '. Values of 0.001 and 0.04 were chosen for the standard 

nitrogen values of ¡max and Km respectively. Rhosphorus values ot ¡max and Km  are .set 

at 1/15 the nitrogen values to avoid confounding the effect of supply pri)peities on 

competition.

Ka and Kb, equutioii 2.15; LA I), ct|iiatioii 2.12

Larcher (lOSO) repoils ranges of maximum CO, uptake rates per unit mass of dry 

leaf for heliophytes ( 0.03 - 0.06 g C'O^ g ' dry weight hr ' or 0 .1 3 12 - 0 .2 6 1 S g C' g ‘ d '), 

sciophytes ( 0 .0 1 - 0.03 g C'Oj g ' dry weight hr ' or 0.0436 - O. I 3 12 g ( '  g ‘ d ‘) and wild 

gras.ses and .sedges ( O.OOS - 0.035 g C'Oj g ‘ dry weight h r '  or 0.0340 - 0.1527 g C g ' 

d '); the value of A7; was cho.sen as 0.1312. Ka was assigned a value ot0 . 5 .  in the absence 

of experimental evidence. LAI) is a measure of the traction ot light an occupied 

SH O O Tcell will absorb. This is etfectively the same as the light extinction coefficient, k. 

in the Bouguer-Lambert law of light penetration through a canopy; Tremmel and Ba/.z.az. 

(1903) report some values ot k for the forbs Ahntiinn iheopliraMi. Datura stram onium  and 

Polygonum ¡tensylvaniciim  (mean values throughout canopy of 0.4, 0.41 ;md 0.55 

respectively) and the grass Setaria faherii (mean value throughout canopy of 0.31).

respiration K A T E  uiul m aintenance R A T E , eqiiutioiis 2,30 uiid  2.18

.Studies on white clover gave values of 0.25 and 0.015 g C  g '  d '  tor 

respirationRATE  and maintenam cRAI'E  respectively (McCree 1070). Other studies have 

calculated growth and maintenance component rates of respiratiiui: .soyabean has calculated
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values between 0.04 - 0.065 g C g ' d ' for respirationRATE  and 0.01 - 0.035 g C g '  d ' 

for maintenanceRATE  (Bunce & Ziska 1996); a study by Bunee (1987) on the maintenance 

respiration of various herbaceous species (Amaranthiis hybriJus, Chenopodiiim album. 

Glycine max) gives mean values of 0.0173 at high light inten.sity ( 1 0 0 0  pmol m^ s ' photon 

flux density) and 0.025 at lower light inten.sity (500 pmol m^ .s ' photon flux density), 

though all are fast growing species. While the maintenanceRATE  value of 0.015 may be 

low compared with the.se .species, it is not unrea.sonable.

transpirationRATE ', equation 2.9

The value of  10 mg water m g '  bioma.ss d ' is an estimate a.ssigned to 

transpirationRATE, though the actual value is inelevant to the results generated by the 

model, as transpirationRATE  is the same for all shoot bioma.ss regardless of light inten.sity 

and species, and only relative gradients of water distribution (and not the ab.solute values) 

thrt)ughout the soil are required for the calculation nutrient movement by mass flow 

(.section 2.2.4).

R conten t and C content; equations 2.34 and 2.46

Reynolds and Thornley (1982) suggest values of 0.03 and 0.45 for Rcontent 

(nitrogen) and C content respectively, following experiments t>n tomato plants; Rcontent for 

phosphorus was derived as 1/15 the value tor nitrogen, i.e. 0.002. The.se values .seem 

reast)nable given the average concentrations of N and P within 3 neutral gra.ssland 

herbaceous species (Centaurea jacea , V ida se/)ium, Urtica tiioica) are 0.023 and 0.002 mg 

nutrient mg ' dry leaf ti.ssue (Fitter & Hay 1987). Thornley & Johnson (1990) report a 

value ot 0.002 g P g - 1 dry bioma.ss for Zea mays (maize).
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program N IT R O G E N ( input, r L A N T d a t a J iC X m n d ^ H C X m n d J ’ROHrnd, output, I’ LA N T res,G R A D res,SP E C IE Sres,D E T A ILS,Rres,ROOTres,SoilRres,relSoilRros,Lightros,SHCXiTre.s, tim eA,tim eB,tim eC );constI*** G E N E R A L  constants ***|R E P L IC A T IO N S  = 20 ; jnumbor of replications!T IM E E N D  = 60 ; IdaysjPLA N T n u m ber = 50 ; |number of individual plants)SPECIESnum bor = 2 ; |number of different species)SH O O T C E L L m a ss = 20.0 ; |nig biomass cell-1)R O O T C E L L m ass = 20.0 ; |mg biomass cell-1){horizontal area m odelled...)M A X x  = 10 ;M A X y  = 10 ;!*** P L A N T  constants »»*)I photosynthesis )Ka = 0.5 ;Kb = 0.(K)82 ;I respiration )G R O W T H respirationR A T E  = 0.25 ; | m g Carbon mg-1 CarbonProduced day-1 ) SH O O T m ainten anceR A T E  = 0.015 ; | m g Carbon mg-1 DRYw eight day-1 ) RCXlTm aintenanceRATE = SH CXlTm aintenanceR ATE ;I assim ilation ratio between C  and R )CRratio = 15 ; |g C  g-1 R)Ccontent = 0.45 ; {fraction of biomass that is C)Rcontent = Ccontent / CRratio ;{loss)RIossRATE = 0 ; {g R g birrmass per day){ initial plant values )InitialRpool = 0.0 ; {mg Resrrurce)InitialCpool = 0.0 ; {mg Carbon )InitialAssim ilates = 0.0 ; { mg O rganic Material ){*’ * SO IL  constants ***){ depth )M A X d ep th  = 20 ;{ water )TotallnitialW ater = lOOtXHK) ; {mg water per m-3)InitialW ater = TotallnitialW ater / H0(K) ; {mg water cell-I){ return o f O rgan ic!’ to SoilR )InitialUecom p = 0.0 ; {mg unavailable SoilR  cell-1) decayR A T E  = 0.0 ; { fraction of O rgan ic!’ released day-1 ){ SoilR m ovem ent ) a = 0.2 ; { Diffusion ) b = 0.8 ; { Mass Flow. N B a + b = 1.0 ) d = 10 ; { N diffusion coeff. )
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n = 6 ; { N eighbour number; int. 1 W D  = 1 ; { Water diffusion coeff. )N t = 1 ; I Iteration number WatcrrN |I**» A B O V E -G R O U N D  constants ***]{ h eigh t )M A X h e ig h t = 20 ;I light intensity )S u n L IG H T  = 1.0 ; |unitless)D A Y le n g th  = 16 ; (hours of light){ transpiration )TranspirationRATE = 10.0 ; | m g Water mg-1 shoot biomass day-1 )I»»» grap h ical output constants (see P IC T U R E  proc's) ***)ST R IP length = 5 ;S P A C E s iz e  = 2 ;(*&»&»&*&*&*&*&*&»&»&*&*&*&*&*&*&»&*&*&»&»&*&*&*&*&*&»&»&*&»&*&»&•&»&»&»&»&»&»&} typeS o ilce llR E A L  = array) 0..(M AXdepth-l-l), 0 ..(M A X x + l) , 0 ..(M A X y + l)  ] of real ;S O IL ce llIN T  = array) 0..(M AXdepth-i-l), 0 ..(M AXx-i-l), 0..(M AXy-t-l) ] o f integer ; A B O V E G R O U N D c e llIN T  = array) 0..(M AXheight-i-l), 0 ..(M AXx-i-l), 0 ..(M A X y + l)  ] of integer ; A B O V E G R O U N D ce lIR E A L =  array) 0 ..(M A X h eigh t+ l), 0..(M AXx-t-l), 0..(M AXy-i-l) ] of real ; each P L A N T real = array) l..P L A N T n u m b er ] of real ; ea ch P L A N T in t = array) l..P L A N T n u m b er ] of integer ;
(*&»&»&*&*&*&*&*&*&»&*&*&*&»&*&*&»&*&*&»&»&»&»&»&*&*&»&»&*&»&»&»&*&*&»&»&»&*&*&!

P L A N T d a ta , R O O T rn d, SH O O T rn d , PROBrnd, P L A N T res, G R A D res, SPECIESres, D E T A IL S , Rres, R O O T res, SoilRres, relSoilRres, Lightres, SH O O T re s, tim eA, timeB, tim eC : text ;SoilR , SoilW ater, SoilO rgM at : SoilcellR E A L ;Light : A B O V E G R O U N D ce llR E A L  ;R O O T ce ll : SO ILcellIN T  ;S H O O T c e ll : A B O V E G R O U N D ce llIN T  ;d e a d P L A N T , PlantX, PlantY, RO OTtim eout, S H O O T tim e o u t,C a p tG ro C O U P L E D , Height, D epth, R O O T cellnum ber,SH O O T cellnum ber, Species : eachPLA N T int ; gcP, g c C , PsubRA TE, C subR A T E , PartP, PartC, ROOTincrease, SH O O Tincrease, RO O Tbiom ass,SH O O T b iom ass, Ruptake, Cproduction, Rpool, Cpi>ol, Assim ilates, RO O Tdensity, Rootim ax, R ootK m , L A D , W aterUptake, TotalR, T otalC, p rop R O O T , p ro p SH O O T , p ro p B IO M A SS, PR E V IO U Sb iom ass : eachPLAN Treal ;InitialResource : real ;repl, P , T IM E , ST O P , LA Y E R , x, y , plant, alive, PlantTooDeep, PlantTooHigh : integer ;
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I P R O C E D U R E S )I***** G eneral T O O L  procedures »♦ »»»}
procedure calcROOTcellnum ber( plant : integer ; var number : integer ) ;
C E L L ty p e , L A Y E R , x, y : integer ;begin jcalcROOTcellnum ber)
I»»» ggj number to zero ***] num ber := 0 ;1**'̂  search through R O O T cell and count the num ber of cells occupied by 'plant' using 'num ber' **“ for L A Y E R  := 1 to Depth[plant] do begin (LAYER) for X := 1 to M A X x  do begin |x)for y := 1 to M A X y  do begin {y|C E L L ty p e := R O O T cell[LA Y E R ,x ,y) ; if C E L L typ e = plant then beginnum ber := number + 1 end end lyl end |x) end (LAYER)end ; (calcROOTcellnum ber)

(&»&*& *& *& *& “&»&*&»&»&*&*&*&*&*&»&*&*&♦&*&*&»&*&*&»&*&»&»&*&*&*&*&»&*&*&*&*&*)
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procedure calcSl ICX^Tcellnumberi plant : integer ; var number : integer ) ;
CE LLtype, L A Y E R , x, y : integer ;begin IcalcSHCX^Tcellnumber)I*’ * set number to zero ***| number := 0 ;I*’ * search through SHCX^Tcell and count the num ber of cells occupied by 'plant' using 'number' '***| for LA Y E R  := 1 to Height|plant| do begin ILAYERI for X := 1 to M A X x  do begin |xlfor y := 1 to M A X y  do begin lylC ELLtype := SH O O T cell[L A Y E R ,x ,y] ;if CE LLtyp e =  plant thenbeginnumber := num ber + 1 end end ly) end |x| end ILAYERIend ; jcalcSHO O Tcellnum ber)
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procedure PlantDeath( plant : integer ;var RO OTbiom ass, SH O O Tbiom ass : eachPLAN Treal ;var RO O Tcell : SO ILcellIN T  ; var SH O O T ce ll : A B O V E G R O U N D ce llIN Tvar SoilO rgM at : SoilcellREA L ) ;I*** PlantDeath procedure performs the following:(1) Em pties all SH O O T cells previously occupied by plant anddirects this organic matter to the surface layer of SoilO rgM at - ie. leaf + stem collapse and d ecay on floor.(2) Em pties all RO OTcells previously occupied by plant anddirects the organic matter to the corresponding SoilO rgM at cell - ie. roots decay in situ. ***[varO rganicM atter : real ;L A Y E R , X ,  y : integer ;begin IPlantDeathlw riteln('Plant Death -- plant no.=',plant:3,' TIME=',T1ME:4) j»*» Rem ove all S H O O T  material belonging to plant for L A Y E R  := 1 to M A X h eigh t do begin ILA Y ER ) for X := 1 to M A X x  do begin |x)for y := 1 to M A X y  do begin ly)if SH O O T cell|L A Y E R ,x ,y]= p lan t then beginI»»» clear cell of plant ***]SH O O T ce ll[L A Y E R ,x ,y| := 0 ; j»*» determine OrganicM atter ***| if SH O O T biom ass(plan t]<SH O O T C E LLm ass then O rganicM atter := SHOOTbiom ass[plant] elseO rganicM atter := SH O O T C E L L m ass ;I*** add matter to SoilO rgM at at soil surface ” *) So ilO rgM a t[l,x ,y ] := SoilO rgM at[l,x ,y] + OrganicM atter end end lyl end (x)end ; |LA Y E R |
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{’ ** remove all R O O T  material belonging to plant ***) for L A Y E R  := 1 to M A X d e p th  do begin {LAYER) for X  := 1 to M A X x  d o  begin |x)for y := 1 to M A X y  d o  begin {y|if R O O T cell[LA Y E R ,x,y]=plant then begin{»»» clear cell of plant ***)R O O T cell[L A Y E R ,x ,y] := 0 ;j»»» determine O rganicM atter ***) if ROOTTiiom ass[plant]<ROOTCELLm ass then OrganicM atter := ROOTbiom ass[plant] elseOrganicM atter := R O O T C E L L m ass ;1*** add matter to SoilO rgM at at that position *’ *) So ilO rgM a t[L A Y E R ,x ,y l := SoilO rgM at[LA Y E R ,x,y] + OrganicM atter end end lyl end |x|end ; |LA YER |!»•» Reset Biomass and resource pools *’ *)ROOTbiom ass[plant] := 0 ;SH OOTbiom ass[plant] ;= 0 ;Rpool[plant) ;= 0 ;Cpool[plant] := 0end ; |PlantDeath|
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j » * » » »  Specific D E D IC A T E D  procedures *»»*»)
procedure PLAN Tsetup( var dead P LA N T , PlantX, PlantY, R O O T tim eou t, SH O O Ttim eout, C a p tG ro C O U P L E D , Species : each P L A N T in t ; var RO OTdensity, Rootim ax, RootKm , L A D , Assimilates, PREVIOUSbiom ass : eachPLAN Treal ; var RO O Tcell : SO IL cellIN T  ; var SH O O T cell : A B O V E G R O U N D c e llIN T  ) ;vartempP, tem pC ; real ; plant : integer ;begin IPLAN Tsetup)reset( P L A N T d ata ) ;for plant := 1 to P LA N T n u m b er dobegin Iplantj{»*» Read in plimt details from PLA N T data file '***)readln( P L A N T d a ta , Species[plant], ROOTbiom ass[plant|, SH O O T biom ass|plant],deadPLAN T |plan t], PlantX(plant], PlantY[plant], ROOTtim eout[plant], ROOTdensity(plant],RootIm ax[plant], RootKm [plant], SH O OTtim eout[plant], L A D [p lan t], tempP, tem pC, C a p tG ro C O U P L E D Ip la n t], PartP[plant], PartC[plant] ) ;

{*** O ccupy intial R O O T / SH O O T ce lls  “ *)ROOTcell[ 1, PlantX[plant], PlantY[plant] ] := plant ;SH O O T cell[ 1, PlantX[plant], PlantY[plant] ] := plant ;I*** Initialize som e P L A N T  variables ***\Ithese two are excluded to allow biomass < CELLm ass...){ROOTT>iom ass[plant];=ROOTCELLm ass; SH O O T b iom ass[p lan t]:= SH O O T C E LLm ass ;1 Rpoollplant] := InitialRpool ;Cpool[plant] := InitialCpool ;Assim ilates[plant] := InitialAssim ilates ;ROOTincrease[plant] := 0 ;SH OOTincrease[plant] := 0 ;TotalR[plant] := 0 ;TotalClplant] := 0 ;PREVIOUSbiom ass[plant] := ROOTT>iomass[plant] + SH O O T biom ass[plan t] ; if C ap tG ro C O U P L E D [p lan t]= 0  then begin {uncoupled growth)PsubRATE[plant] := tem pP ;C subRA T EIplant] := tem pC end elsebegin {coupled growth) gcPIplant] := tem pP ; gcC{plant] := tem pC end ;
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{*** Check if plant alive ***| if deadPLA N T (plan t]=l then beginI*»» Plant Death!PlantDeathf plant, RO OTbiom ass, SH O O T biom ass, R O O T cell, SH O O T ce ll, SoilO rgM at ) endend (plant) end ; IPLANTsetup)
procedure SO ILsetupf var SoilR, SoilW ater, SoilOrgM at : SoilcellR E A L ) ; varL A Y E R , X, y : integer ;begin ISOILsetuplfor L A Y E R  ;= 1 to M A Xdepth do begin i LAYER) for X := 1 to M A X x  do begin |x)for y ;= 1 to M A X y  do begin iy)SoilR [LA YE R ,x,y] := InitialResource ;SoilW ater[LAYER,x,y] := InitialW ater ;SoilO rgM at[L A Y E R ,x ,y l := InitialDecom p end ly) end lx) end {LAYER)end ; jSOlLsetup)
{* S i*  S i*  Si * S i*  S t*  S i*  & * & :* & * & *  S i* & *  S i* & * & ]



Appcnilix Program Program page 9

procedure ROOTcellsetup( var RCXT)Tcell : SO ILcellIN T  ; var Depth : each P LA N T in t ) ;
L A V E R , X, y , plant : integer ; begin IRCXDTcellsetuplI*** set A L L  cells (including boundary cells) to -1 *’ *) for L A Y E R  := 0 to (M AXdepth+1) do begin IL A Y E R l for X := 0 to (M AXx+1) do begin |x)for y := 0 to (M AXy+1) do begin lylRCX)Tcell[LAYER,x,y] := -1 end ly) end |xlend ; |LA Y E R |I**’  set all central cells to 0 ***̂ 1 fo r L A Y E R  := 1 to M A X dep th  do begin ILAYER) for X := 1 to M A X x  do begin |x|for y := 1 to M A X y  do begin lylR O O T cell[LA Y E R ,x ,yl := 0 end lyl end |x)end ; ILAYER)
I»»* Depth[plant] to 1 ***|for plant := 1 to PLAN Tnum ber do Uepth[plant) := 1 ;1*'̂ * set PlantTooDeep to 0 (No plants have reached M axim um  rooting depth, M A X d ep th  + 1) ***| PlantTooDeep := 0 ;end ; IRCKDTcellsetup)

(*&*&*&•&*&*&*&•&’&*&*&*&*&*&*&’&*&*&’&»&»&*&*&’"&*&*&*&*&*&*&»&*&*&*&»&*&*&*c&*&)
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procedure SH O OTcellsetup{ var Light ; A B O V E G R O U N D ce llR E A L  ; var S H O O T ce ll : A B O V E G R O U N D ce llIN T  ; var H eight : eachPLAN Tint ) ;
L A Y E R , X, y, plant : integer ; begin ISH O OTcellsetup){*** set A L L  cells (including boundary cells) to -1 for L A Y E R  := 0 to (M AXheight+1) do begin {LAYER) for X := 0 to (M AXx+1) do begin {x|for y := 0 to (M AXy+1) do begin {ylSH O O T ce ll[L A Y E R ,x ,y] := -1 end iy) end |x|end ; {LA YER}{*** set all central cells to 0 ’ **) for L A Y E R  ;= 1 to M A X heigh t do begin {LA YER) for X := 1 to M A X x  do begin {x)for y := 1 to M A X y  do begin {y)SH O O T ce ll[L A Y E R ,x ,y] := 0 ;{*’ * set all shoot cells to full light level *'̂ ’ )L igh t{L A Y E R ,x ,y] := SU N light end {y) end {x)end ; {LA YER)

{*** set Height[plant] to 1 ’ **)for plant := 1 to PLA N T nu m ber do Height[plant] := 1 ;{*** set PlantTooH igh to 0. N o plants h av e  reached M axim um  shoot height,M A X h e ig h t + 1. If they do Plan tT ooH igh switches to 1. ***\Plan tT ooH igh := 0 ;end ; {SH O OTcellsetup)
{*&*&*Si:*&:*&*&*&*&c*&:*&*&*&'*&i*&*&i*&c*&*Si.*&:*&:*Si*ii*Si:*&*Si*&*&:*lk*&:*&*&:*&:*Szi*Si*Sii*&:*&i*&*&]
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procedure Conditions ;
plant : integer ; begin ¡Conditions)rew rite(DETAILS) ;w riteln(DETAILS/Nitrogen Time Simulation run ') ; w riteln(D ETA lLS/ Tim eEnd = ',T1M EEND:4,' days') ; w riteln(D ETA lLS/ Replications = ',R E P L IC A T IO N S) ; w riteln(DETAILS/ PlantNo = ',PLANTnum ber:4) ;w riteln(DETAILS/ R O O T C E LLm ass = ',RO O T CELLm ass:4:3/ m g biomass cell-1') ; w riteln(D ETA lLS,' SHCXDTCELLm ass = ',SH O O T C E LLm ass;4:3/ m g biomass cell-1') ; w riteln(D ETA lLS/ Resource = ',lnitialResource:5;7/ m g N  CELL-1') ; w riteln(D ET A lLS,' ',a:l:3 ,' diffusion - ',b:l:3/ mass flow ') ; w riteln(D ETA lLS,' diff.coeff.=',d:5 ) ;w ritelnfD ET AILS,' RO O Tcell -> z:',M A Xdepth:3,' x :',M A X x:3 ,' y :',M A Xy:3) ; w riteln(D E T A lLS/SH O O T cell -> z:',M AXheight:3) ;w ritelnfD E T A lLS/ decayRATE= ',decayRATE: 1:5/ g  Inorganic N  released g-1 O rganic N  day-1') ;w riteln(D ETA lLS/ InitialDecom p = ',lnitialDecom p:3:5/ m g Organic Matter cell-1 ') ;w ritelnfD ET A lLS/ Sunlight = ',SunLIGH T:3:3/ (unitless) ') ;w riteln(D ET A ILS/SH O O T cell -> z:',M A Xheight:3/ x :',M A X x:3 ,' y :',M A Xy:3) ;w riteln(D ET A lLS,' ### P L A N T  details ###') ;w riteln(D ETA lLS,' *** Health & Position *♦ *') ■w riteln(D ETA lLS/ plant dead coordinates') ;for plemt := 1 to PLA N T nu m ber dow riteln(D ETA lLS/ ',plant:2/ ',deadP L A N T [p lan t]:l/  x:', PlantX[plant]:2, ' y:',PlantY[plant]:2 ) ; w riteln(DETAILS/ Absorption Rates **’* ') ; w riteln fD E T A lLS/ plant ILAD Imax K m  LA D ') ; for plant := 1 to PLA N T nu m ber dow riteln(DETAILS/ ',plant:2/ ',ROOTdensity[plant]:4:3/ ',ROOTlm ax[plant]:3:3/ ', ROOTKm [plant]:3:3,' ',LAD[plant]:4:3) ; w riteln(DETAILS/ *** Grow th Rates *** ') ;w riteln(D ETA lLS/ plant PsubRATE C subR A T E  C a p tG ro C O U P L E D  ') ;for plant := 1 to PLA N T nu m ber dobeginw rite(D ETAlLS/ ',plant:2/ ',PsubRATE[plant]:4:3/ ', CsubRATE(plant]:4:3, ' ') ; if Cap tG roC O U P LE D [p lan t]= 0  then w riteln(D ETA lLS/ N o ') elsew riteln(D ETA lLS/ Yes') end ;w riteln(DETA lLS/ *** Allocation ***') ; w riteln(D ETA lLS/ plant PartP PartC') ;for plant := 1 to PLA N T nu m ber do w ritelnfD ET A lLS/ ',plant:2,' ',PartP(plantl:4:3,' ',PartC[plant]:4:3) w riteln(D ETA lLS,' *** Architecture *** ') ; w riteln fD E T A lLS,' plant RO OTtim eout SH O O T tim eout ') ; for plant := 1 to PLA N T nu m ber dow riteln(D ETA lLS/ ',plant:2,' ',ROOTtim eout[plant]:3,' ', SH OOTtim eout[plant]:3 ) ; end ; ¡Conditions)
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procedure calcW aterUptake( var RO OTcellnum bor, SH O O Tcellnum ber : eachPLA N T int ;var WaterUptake : each P L A N T rea l ) ;procedure to determine the number of R O O T / S H O O T ce lls  occupied by each plant. V alu es stored in RCXDTcellnumber & SH O O T celln u m b er.From these, transpiration rate for each plant can be found *’ *)vartranspiration : real ; plant : integer ;begin IcalcW aterUptakelfor plant := 1 to PLA N T nu m ber do begin (plant)if deadP LA N T [plan t] = 0 then begin {plant alive)calcRO O Tcellnum berf pleint, ROOTcellnum ber[plant] ) ; calcSH O O T celln um berf plant, SH O OTcellnum ber[plant) ) ; transpiration := transpirationRATE * SH O O Tbiom ass[plant] ;W aterUptake[plant] := transpiration/ROOTbiom ass[plant] ; end {plant alive) end {plant)end ; {calcWaterUptake)
{*&*&*&»&*&*&*&»&*&*&’&*&*&*&»&*&*&»&*&*&*&*&*&*&»&»&*&»&»&»&*&»&*&*&*&’&*&*&*&)procedure calcM assFlow ( L A Y E R ,x ,y ,n L A Y E R ,n x ,n y  : integer; SoilW aterFlux : real ; N utrientCO PY : So ilce llR E A L  ; var M assFlow Flux : real ) ;begin {calcMassFlow)if SoilW aterFlux > 0 thenM assFlow Flux := ( b *N u trien tC O P Y [n LA Y E R ,n x,n y] )/{n*d) ; if SoilW aterFlux < 0 thenM assFlow Flux := ( -l*b ’ N u trien tC O P Y [L A Y E R ,x ,y] )/(n*d) ; if SoilW aterFlux = 0 then M assFlow Flux := 0 ;end ; {calcMassFlow)
{»&*&»&*&*&*&*&•&»&»&■"&»&»&*&»&*&»&*&»&»&»&»&»&*&»&»&»&*&»&»&»&»&*&*&*&*&*&*&*&)
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procedure SoilRmovement( var Nutrient, SoilWater : SoilcellR E A L ) ;
SoilW aterC O PY , N u trien tC O P Y  : SoilcellREAL ;T O T A L N u trien t, new T O TA LN utrient, D flu x A , D fluxB, D flu x C , D flu x D , D fluxE , D flu xF , W flu xA , W fluxB, W flu xC , W flu xD , W flu xE , W fluxF, M assFlow FluxA, M assFlow FluxB, M assFlow FluxC, M assFlow FluxD , M assFlow FluxE, M assFlow FluxF, N E T flu x A , N E T flu xB , N E T flu xC , N E T flu xD , N E T flu xE , N E T fluxF : real ;LA YER,x,y ,xx,yy,iteration : integer ;begin ISoilRmovement)for iteration := 1 to N t do begin (iteration){**» M ake C O P Y 'S  of Nutrient and SoilW ater sheets ***)N u trien tC O P Y  := Nutrient ;SoilW aterC O PY  := SoilW ater ; for L A Y E R  := 1 to M A X d ep th  do begin (LAYER) for X := 1 to M A X x  do begin (x)for y := 1 to M A X y  do begin (y)

(**̂ * setup B O R D E R  cells the same as neighbour cells ***)(*’'* N B. corners are excluded because they have N O  neighbours **’ )(»»» ¿g gj edge of space either wrap-round or equal the 'spare' cell as neighbour ***)if L A Y E R  = 1 then N u trien tC O P Y [L A Y E R -l,x ,y ] := N u trien tC O P Y (L A Y E R ,x ,y] ;if L A Y E R  = M A X depth then N utrientCOPY[LAYER-(-l,x,y] := N u trien tC O P Y [L A Y E R ,x ,y ] ;if X = 1 then N u trien tC O P Y [L A Y E R ,x -l,y ] := N u trie n tC O P Y [L A Y E R ,M A X x ,y ] ;if X = M A X x  then N u trien tC O P Y [L A Y E R ,x + l,y ] := N u trie n tC O P Y [L A Y E R ,l,y ] ;if y = 1 then N u trie n tC O P Y [L A Y E R ,x ,y -l J := N u trie n tC O P Y [L A Y E R ,x ,M A X y ] ;if y = M A X y  then N u trie n tC O P Y [L A Y E R ,x ,y + l] := N u trie n tC O P Y [L A Y E R ,x ,l] ;(*** D o the same for Water *’ *)if L A Y E R  = 1 then So ilW aterC O P Y [L A Y E R -l,x ,y] := SoilW aterC O PY (LA Y E R ,x,y) ;if L A Y E R  = M A X depth then So ilW aterC O P Y [L A Y E R + l,x ,y] := SoilW aterC O PY [L A Y E R ,x ,y) ;if X = 1 then So ilW aterC O P Y [L A Y E R ,x-l,y] := So ilW aterC O P Y [L A Y E R ,M A X x ,y ] ;if X = M A X x  then So ilW aterC O P Y [L A Y E R ,x+ l,y] := So ilW aterC O P Y (L A Y E R ,l,y ] ;if y = 1 then So ilW aterC O P Y [L A Y E R ,x ,y-l) := So ilW aterC O P Y [L A Y E R ,x ,M A X y ) ;if y = M A X y  then So ilW aterC O P Y (L A Y E R ,x ,y+ l J := S o ilW a te rC O P Y lL A Y E R ,x ,l] ;
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I*** Calculate flux o f SoilR and Water by diffusion ***|D flu x A  := a»( (N utrientCO PY[ L A Y E R ,x ,y + l ]-N utrien tCO PY[ L A Y E R ,x ,y  ]) / ( 2*n*d ) ) ; D fluxB  ;= a*( (N utrientCO PY[ L A Y E R ,x + l,y  ]-N utrien tCO PY[ L A Y E R ,x ,y  ]) / ( 2*n*d ) ) ; D flu x C  ;= a»( (N utrientCO PY[ L A Y E R ,x ,y -l ]-N utrien tCO PY[ L A Y E R ,x ,y  ]) / ( 2»n»d ) ) ; D flu x D  := a»( (N utrientCO PY[ L A Y E R ,x -l,y  ]-N utrien tCO PY[ L A Y E R ,x ,y  ]) / ( 2»n*d ) ) ; D fluxE  := a»( (N utrientCO PY[ L A Y E R + l,x ,y  ]-N utrientCO PY( L A Y E R ,x ,y  ]) / ( 2*n»d ) ) ; D flu xF := a*( (N utrientCOPY[ L A Y E R -l,x ,y  ]-N utrien tCO PY[ L A Y E R ,x ,y  ]) / ( 2»n*d ) ) ; W flu xA  := ( SoilW aterCO PY[ L A Y E R ,x ,y + l I ‘  SoilW aterCO PY [ L A Y E R ,x ,y  ] ) / ( 2*n*WD) ; W fluxB := ( SoilW aterCO PY [ L A Y E R ,x + l,y  ] - SoilW aterCO PY [ L A Y E R ,x ,y  ] ) / ( 2»n*WD) ; W flu xC  := ( SoilW aterCO PY[ L A Y E R ,x ,y -l ] - SoilW aterCO PY [ L A Y E R ,x ,y  ] ) / ( 2*n*WD) ; W flu xD  := ( SoilW aterCO PY ( L A Y E R ,x -l,y  ] - SoilW aterCO PY [ L A Y E R ,x ,y  ] ) / ( 2*n’ W D) ; W flu xE := ( SoilW aterCO PY l L A Y E R + l,x ,y  ] - SoilW aterCO PY [ L A Y E R ,x ,y  ] ) / ( 2'"n*WD) ; W fluxF := ( SoilW aterC O PY l L A Y E R -l,x ,y  ] - So ilW aterC O PY l L A Y E R ,x ,y  ] ) / ( 2*n*WD) ; {*** Calculate flux o f SoilR  by mass flow ***)calcM assFlow (LA Y E R ,x ,y , L A Y E R ,x ,(y + l), W flu xA ,N u trien tC O P Y ,M assFlo w F lu x A ) ; calcM assFlow (LA Y E R ,x ,y , L A Y E R ,(x+ l) ,y , W flu xB ,N utrientC O P Y ,M assFlow FluxB ) ; calcM assFlow (LA Y E R ,x ,y , L A Y E R ,x ,(y -l) , W flu xC ,N u trien tC O P Y ,M assF lo w F lu xC ) ; calcM assFlow (LA Y E R ,x ,y , L A Y E R ,(x-l),y , W flu xD ,N u trio n tC O P Y ,M assFlo w F lu xD ) ; calcM assFlow (LA Y E R ,x ,y , (L A Y E R + l),x ,y , W flu xE ,N u trien tC O P Y ,M assFlow Flu xE ) ; calcM assFlow (LA Y E R ,x ,y , (L A Y E R -l),x ,y , W flu xF ,N utrien tC O P Y ,M assFlow Flu xF) ;1*** Calculate net m ovem ent of SoilR by diffusion and m ass flow N E T flu x A  := D flu x A  + M assFlow FluxA ;N E T flu xB  := D fluxB  + MassFlow FluxB ;N E T flu x C  := D flu x C  + M assFlow FluxC ;N E T flu x D  := D flu x D  + M assFlow FluxD ;N E T flu xE  := D fluxE  + M assFlow FluxE ;N E T flu xF  ;= D flu xF + M assFlow FluxF ;1*** Determ ine the new values for the cell ***|SoilW aterl L A Y E R ,x ,y  1 := SoilW aterCO PYl L A Y E R ,x ,y  1 + W fluxE + W flu xF  ;Nutrienti L A Y E R ,x ,y  ] := N utrientCO PYl LA Y E R ,x ,y  ] + N E T flu x D  + N E T flu xE  + N ETfluxF
W flu xA  + W fluxB + W flu x C  + W flu xDN etflu xA  + N E T fluxB  + N E T flu x C  +

end lyl end 1x1 end ILAYER) end literation)end ; |SoilRm ovem ent|
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procedure Uptake( var SoilR , SoilW ater : SoilcellR E A L ; var Ruptake : eachPLAN T real )
TotalSoilR, P, RO O Tm ass,relativcR ATE, celluptake : real ;C E L L typ e , L A Y E R , x, y : integer ;begin |Uptake|TotalSoilR := 0 ;for L A Y E R  := 1 to M A X dep th  do begin (LAYER) for X := 1 to M A X x  do begin ix|for y := 1 to M A X y  do begin lylC E LLtyp e := R O O T cell[LA Y E R ,x,y] ;TotalSoilR := TotalSoilR + SoilR [LA YER ,x,y] ;I*** check if cell is occupied ’̂ *’ 1 if CE LLtyp e > 0 then begin jrootcell occupied)I*** check if plant is alive ***) if  deadP LA N T [C E LLtype] = 0 then begin [uptake)if RCX3Tbiom ass[CELLtype] < R O O T C E L L m ass then P** R O O T m ass is the proportion of the cell occupied by the root ’ **) begin p ’ * Root smaller than full cell **'̂ )RO O T m ass := ROOTbiom ass(CELLtype) end elsebegin {*** Root is at least one cell in size **’̂ )R O O Tm ass := R O O T C E LLm ass end ;P “  SoilR  U P T A K E  *»*)P := SoilR [LA Y E R ,x ,y] ;relativeRATE := (Rootlm ax(CELLtype)‘ P)/(RootKm [CELLtype]+P) ; celluptake := RO OTm ass * RO OTdensity[CELLtype) * relativeRATE ; [check if uptake if > available...and linearize if so) if celluptake>P then celluptake:=P ;[*** Rem ove celluptake from soil ***\SoilR [LA YE R ,x,y] := P - celluptake ;[*** A dd  uptaken P to Ruptake pool “ **)RuptakefCELLtype] := RuptakefCELLtype) + celluptake;
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{*»* W A T E R  U P T A K Eif SoilW ater[LA YER,x,y] <= W aterUptake(CELLtype] then begin {*** take up all of cell's water ***)SoilW ater[LA YER,x,y] := 0 ; end elsebegin I*** only take up part of cell's water ***[SoilW ater[LA YER,x,y] := SoilW ater[LA Y E R ,x,y]'W ‘*̂ ‘ ’̂'U ptake[CELLtype] endend {uptake} end Irootcell occupied} end ly} end {x}end ; {LAYER}writeln( Rres, TIM E:3,' ',TotalSoilR/ ((M AXdepth*M AXx*M AXy*InitialResource)-TotalSoilR) ) ; end ; {Uptake}procedure shade( var Light : A B O V E G R O U N D ce llR E A L  ) ;{determines Light value for each A boveG round cell based on shading from  above -- the Ligh t value is the am ount of light R E A C H IN G  a cell (N O T  passing through)}constf = 1 ; d = 0.01 {m} ; {the height of a single cell} varL A Y E R , X, y, C E LLtyp e : integer ; Ptransmittance : real ; begin {shade}for L A Y E R  := (M AXheight-1) dow nto 0 do begin {LAYER} for X := 1 to M A X x  do begin {x}for y := 1 to M A X y  do begin {y}C E L L ty p e := SH O O T ce ll[(L A Y E R + l),x ,y ] ; if C E L L ty p e > 0 thenPtransm ittance := exp( -l*f*L A D [C E L L typ e] ) elsePtransmittance := 1 ;L igh t(L A Y E R ,x ,y] := L igh t[(L A Y E R + l),x ,y] * Ptransmittance end {y} end {x} end {LAYER}end ; {shade}
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[& * & '& * & * & * & :* & :* & * S i* & * S z*  & :*& *& *& *& *& *& :*& *& :*& :*& *& !:*& *& :*& :*& *& [*& :*& :*& *& *& *& *& *& *& *& :*)procedure Photosynthesis( var Cproduction : eachPLANTreal ) ;
SH O O T m ass, LIGHTintercepted, PhotosyntheticRATE, Photosynthate : real ;LA Y E R , X, y, CE LLtyp e : integer ;begin IPhotosynthesis)I*’ * for every cell ***] for L A Y E R  := 1 to M A X heigh t do begin {L A Y E R  ) for X := 1 to M A X x  do begin {x|for y := 1 to M A X y  do begin ly){check if cell occupied...)CE LLtyp e := SH O O T cell[LA Y E R ,x ,y] ; if C E LLtyp e > 0 then begin {cell is occupied by plant){*** check if plant is alive **̂ *) if deadPLA N T (CELLtype) = 0 then begin {plant alive)if SH O O T b iom ass[C E L L typ el<SH O O T C E LL m ass then begin {*** Shoot is smaller than full cell "**)SH O O T m ass := SH O OTbiom ass[CELLtype] ; end elsebegin {**’  Shoot is at least one full cell in size ***)SH O O T m ass := SH O O T C E L L m ass end ;{determine the amount of light intercepted by cell)LIGHTintercepted := L ight)LAY ER,x,y] * LA D [CELLtype] ;{determine the per-unit mass hourly rate of photo.synthesis)PhotosyntheticRATE ;= ( LIGHTintercepted * Kb ) / ( LIGH Tintercepted -t- Ka ) ; {determine the absolute amount of photosynthate produced)Photosynthate := SH O O T m ass » D A Ylen gth * PhotosyntheticRATE ; {mg C){add cell's photosynthate contribution to cum m ulative total o f today's production) CproductionfCELLtype) := CproductionfCELLtype] + Photosynthateend {plant alive) end {cell is occupied by plant)end ly) end {x) end {LAYER)end ; {Photosynthesis)
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procedure ResourcePooling( var d ead P LA N T  : eachPLAN Tint ;var Cproduction, Ruptake, Cp ool, Rpool : eachP LA N T real ) ;I*** Cproduction (from Photosynthesis) and Ruptake are added to the C  and N  pools in place.If Cproduction is -ve (after Respiration), then this deficit is subtracted from  C p o o l. If C p o o l < 0 then PlantDeath occurs.varp lant : integer ;begin IResourcePooling)for plant := 1 to P L A N T num ber do begin Iplant)i f  deadPLA N T [plan t]=0 then begin Iplant alive)TotalR[plant] := TotalR[plant] + Ruptake[plant] ;TotalC[plant] := TotalC[plant] + Cproduction[plant) ;Cpoolfplant] := Cpool|plantJ + Cproduction[plant] ;Cproductioniplant] := 0 ;Rpool[plantJ := Rpool[plant] + Ruptake[plant| ;Ruptake[plant] := 0 ; if Cpool[plant]<0 then begin
{*** Plant Death! **’ ) deadPLA N T Iplan t] := 1 ;PlantDeath( plant, R O O Tbiom ass, SHCXDTbiomass, RO OTcell, SH O O T cell, S o ilO rg M a t ) ; writeln(' Plant has a C  deficit too great for Cpool: Cpool<0 ') end enden d  Iplant)end ; IResourcePooling)
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procedure AssimiIation( var d e ad P L A N T  : eachPLA N T int ;var Rpool, Cpool, Assim ilates : eachPLAN Treal )This procedure deals with the assimilation of C  and N  directed to growth from  Cpool and R p o o l, into fresh biomass. G row th respiratory costs are included in this procedure and take the form  of efficiency of conversion of raw carbon into fresh biomass.C a p tG ro C O U P L E D  determines whether Resource Capture is linked to G row th. If Cap tG roC O U P LE D [p lan t|=0  then it is N O T  linked, and N sub and Csub are used as rates of N  and C  put foreward for assim ilation. If C ap tG ro C O U P L E D [p lan t]= l then it IS linked, and N su b  and Csub are used as proportions of N pool and Cpool (respectively) to foreward N  and C  for assimilation. ’̂ **1
Rsubstrate, Csubstrate, respiratoryCOST, temp : real ; plant : integer ;begin {Assimilation){FLAG)for plant ;= 1 to PLANTnum ber do begin {plant}if deadPLA N T[plant]=0 then begin {plant alive){»»»Determine growth type, and construct subtrate pools accordingly if C aptG roCO U PLE D (plant]=0 thenbegin{” » G R O W T H  U N C O U P L E D  T O  R E S O U R C E  C A P T U R E  *»*){»»» (Create substrate pools **’ ) if Rpool[plant) < PsubRATE(plant] then begin {less than required)Rsubstrate := Rpoolfplant) ;Rpool[plant] := 0 ; end elsebegin {adequate R)Rsubstrate := PsubRATE(plant] ;Rpool[plant) := Rpool[plant] - PsubILATEfplantJ ; end ; {adequate R)if Cpool[plant] < CsubRATElplant] then begin {less C  available thiin required) w riteln(' plant',plant:2,' has < adequate C ' ) ;Csubstrate := Cpoolfplant) ;Cpool[plant) ;= 0 ; end {less C  available than required) elsebegin {adequate C)Csubstrate := CsubRATElplant] ;
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Cpool[plant] := Cpool[plant] - CsubR A T E [plant] ; end (adequate C| end else begin
{*** G R O W T H  C O U P L E D  T O  R E S O U R C E  C A P T U R E  ‘ »*1 Rsubstrate := gcP[plant]*Rpool[plant] ;Rpool[plant] := (l-gcP[plant])*Rpool[plant] ;Csubstrate := gcC[plant]*Cpool[plant] ;CpooI[plant] := (l-gcC[plant])*Cpool[plant] end ;{*’** Grow th Respiration: determine respiratory cost of growth, and deduct this from Csubstrate respiratoryCO ST := Csubstrate * G RO W T H respirationR A T E  ;Csubstrate := Csubstrate - respiratoryCOST ;shift the C  deficit to C p o o l ***) if Csubstrate<0 then Cpool[plant]:=Cpool[plant]+Csubstrate ;

I»*» puj C :R  determination & return of excess R  or Csub to pool ***) if (Csubstrate/Rsubstrate) > CRratio then begin |XS Carbon) temp := Rsubstrate * CRratio  ;Cpool[plant] := CpoolfpLint] + (Csubstrate-tem p) ;Csubstrate :=  temp end |XS Carbon) elsebegin |XS Resource) temp := Csubstrate / CRratio  ;Rpool[plant] := Rpool[plant] + (Rsubstrate-temp) ;Rsubstrate := temp end ; (XS Resource){*** Assim ilation ***)Assim ilates[plant] := Assimilates[plant] + Csubstrate * { 1/Ccontent ) ;(** O R  **** = Assim ilates[plant] + I^ubstrate * ( 1/Rcontent ) ***)end (plant alive) end ; (plant)
end ; (Assimilation)
(&»&*&*&*&*&»&»&*&*&»&»&»&*&»&»&»&*&*&*&»&*&*&*&*&*&*&»&*&»&*&*&•&»&»&»&»&*&•)
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procedure M aintenance( KOOTcellnum ber, SH OOTcellnum ber : eachP LA N T in t ;var Assimilates : eachPLANTreal ; var d e a d P L A N T  : each P L A N T in t ) ;I*** Procedure to calculate the Respiration Maintenance cost for each whole plant based on a constant cost per cell occupied, N O T  per unit biomass as this w ould  bring further discrepances in to the model between R E A L  bionitiss and IN T E G E R  biomass (based on cells). N  U ptake and Photosynthesis are calculated on a cellwise basis and so is respiration.I*** M aintenanceCost (the maintenance cost for the whole plant) is subtracted from the A ssim ilates pool. TTius, the plant m ay cease to grow , but can still live. ***[varR O O T m ainten anceC O ST , SH O O Tm aintenanceCO ST, MaintenanceCost : real ; totalCELLnum ber,plant : integer ;begin {M aintenance!for plant := 1 to P LA N T n u m b er do begin Iplantjif d eadP LA N T [plan t]=0 then begin {plant alive}totalCELLnum ber := ROOTcellnum ber[plant] + SH OOTcellnum berfplant] ; if RO OTbiom ass[plant] < RO O T C E LLm ass then R O O T m ainten anceC O ST  := ROOTbiom ass[plant]’ ROOTm aintenanceRATE elseR O O T m ainten anceC O ST  ;= ROOTcellnum ber[plant] * R O O T C E L L m ass * ROOTm aintenancelCATE; if SH O O Tbiom ass[plant] < SH O O T C E L L m ass then SH O O T m ain ten an ceC O ST  := SHOOTbiom ass[plant] » SH O O Tm aintenanceRA TE elseSH O O T m ain ten an ceC O ST  := SHOOTcellnum ber[plantj » SH O O T C E L L m a ss » SH O O T m ain ten an ceR A T E  ;M aintenanceCost ;= ROOTm aintenanceCOST + SH O O T m ainten anceCO ST  ; {mg C |Cpoollplant] := Cpoolfplant] - MaintenanceCost ;{»** Cheek if p la n t has insufficient C  for M aint. “ *| if Cpool[plant] <  0 then begin {*** Plan t Death! **’ }writeln(' p lant= ',p lan t,' has not enough C  for Maint.') ; d ead P LA N T lp lan t] := 1 ;PlantDeath( p la n t, ROOTbiom ass, SH O O Tbiom ass, RO OTcell, SH O O T ce ll, SoilO rgM at ) end ;{*** N ow  to con vert for R maint costs)Rpooliplant] := Rpool[plant] - ( (RlossRATE » ROOTcellnum ber(plantj^ROOTCELLm ass)+ (RlossliA T E * SH O OTcellnum ber[plant]*SH OO TCELLm ass) ) ;{*** Check if p la n t has insufficient R to survive ***) if Rpool[plant] < 0 then begin {plant death)writeln(' p lant= ',p lan t,' has not enough R for Maint. ',T1ME) ; deadPLA N T fplant] := 1 ; PlantDeath( p la n t, ROOTbiom ass, SH O O Tbiom ass, ROOTcell, SH O O T ce ll, SoilO rgM at ) end ;end {plant alive) end {plant) end ; {Maintenance)
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procedure Partition( Assim ilates : eachPLAN Treal ; var d e a d P L A N T  : eachPLAN T int ; var RCXDTincrease, SH O OTincrease : eachPLAN T real ) ;Partition procedure determines the allcxration of A ssim ilates between RCXDT and S H O O T . Assim ilates going towards growth.NB. ROOTallocate and SH O O T allocate (the proportions of Assim ilates directed towards root and shoot respectively) are calculated from relative R pool and Cpool levels AFTER the N + C  subtrate pools have been created
RO OTallocate, SH O O Tallocate : real ; plant, p : integer ;begin IPartitionjfor plant := 1 to PLAN Tnum ber do begin (plant){»»» if plant alive ’ **)if deadPLA N T fplant] = 0 then begin (plant alive)(*»* A L L O C A T IO N  ***] if (Cpool[plant]+Rpool[plant]) > 0 then begin (Both C  & N  available)RO OTallocate := ( Cpool[plant] + (CRratio*PartP[plant]*Rpool[plant]) -(PartC[plant]*Cpool[plant]) ) / ( (CRratio*Rpool[plant])+Cpool[plant] ) ; SH O O T allocate := ( (CRratio*Rpool[plant]) - (CRratio‘̂ PartP[plant)*Rpool[plant]) + (PartC[plant]*Cpool[plant]) ) / ( (CRratio*Rpool[plant])+Cpool[plant| ) end (Both C  & N  available) elsebegin (No C  or N  therefore allocate to shoot)(*** allocate equally ***)ROOTallocate := 0.0 ;SH O O T allocate ;= 1.0 end ;(“ » Check A L L O C A T IO N  values **•) if RO OTallocate < 0 then begin (*** Plant Death! ***) deadPLA N T fplant] := 1 ;PlantDeath( plant, RCXiTbiom ass, SH O OTbiom ass, R C X iT cell, SH O O T cell, SoilO rgM at ) end ; (*** Plant Death! ***) if SHOOTallcx:ate < 0 then begin (*“  Plant Death! “ *) deadPLAN T(plant) := 1 ;PlantDeath( plant, RCXDTbioma.ss, SH O OTbiom ass, RCKOTcell, SH O O T cell, SoilO rgM at ) end ; (*** Plant Death! “ •)
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1»*» again if p lant is alive ***|if deadPLAN T[plant] = 0 then begin (plant still alive}(*’ * RCXfT and S H O O T  growth ***]ROOTincreaselplant] := ROOTallocate * Assimilatesfplant] ;SHOOTincrease[plant] ;= SH O OTallocate * Assimilatesiplant] ;Assimilates[plant] := 0 end (plant still alive) end (plant alive) end (plant)end ; (Partition)
(&»&*&*&*&»&»&*&*&»&*&»&»&*&’&*&*&*&*&*&*&*&»&»&*&»&»&*&*&»&»&»&»&»&*&»&*&»&*)procedure determ inevacantROOTcellf L A Y E R , x, y, plant : integer ;var new CELLx, new CELLy : integer ) ;
eachX, eachY, bestx, besty, cellx, celly, C E LLtyp e, V A C A N T n u m b er : integer ; highestR : real ;begin (determinevacantROOTcell)V A C A N T n u m b e r := 0 ; highestR := 0 ; for eachX := -1 to 1 do begin (eachX) for eachY := -1 to 1 do begin (eachY) cellx := (x+eachX) ; celly := (y+eachY) ; if cellx < 1 then cellx := M A X x  ; if cellx > M A X x  then cellx  := 1 ; if celly < 1 then celly := M A X y  ; if celly > M A X y  then ce lly  := 1 ;C E LLtyp e := RO OTcell[LAY ER,cellx ,celly] ; if CE LLtyp e = 0 then begin (cell unoccupied)V A C A N T n u m b er := V A C A N T n u m b e r + 1 ; if SoilR [LA YER ,cellx,celly] > highestR then begin ('best' cell so far...) highestR := SoilR[LAYER,cellx,celly] ; bestx := cellx ; besty := celly end endend (eachY) end ; (eachX)if V A C A N T n u m b er > 0 then begin (unoccupied neighbours exist)
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new C E L L x := bestx ; n ew C E L L y := besty endend ; {determ inevacantROOTcelll
procedure ROOTcellgrow th( plant : integer ; var PlantTooDeep : integer ;var RO OTcell : SO ILcellIN T  ;var C E L L grow th N U M B E R , Depth : each P L A N T in t ) ;varO U T C O M E , each L A Y E R , L A Y E R , x, y, growth, tim eoutC O U N T , m d x , rndy, N E X T x , N E X T y , n ew C E L L x , new CELLy : integer ;
begin |ROOTcellgrow th|

j * * »  determine w hich position to start the grow th Template at ***) L A Y E R  := 1 ; X := PlantX[plant] ; y := PlantY[plant] ; growth ;= 0 ; tim eo u tC O U N T  := 0 ;repeat
j * » *  Read in Rnd data from file '* * ' ' )  if eof(ROO Trnd) = TRUE then beginreset(ROOTrnd) ;w ritelnf' W arning: resetting ROOTrnd file ') end ;readln(ROOTrnd,rndx,rndy) ;{’ ** C heck if N EXT(x/y) cell is outside array envelope ***)I**’  and if so then wrap-round... ***1 N E X T x := x-t-rndx ; N EXTy := y+rndy ; if N E X T x  < 1 then N EXTx := M A X x  ; if N E X T x  > M A X x  then N EXT x := 1 ; if N E X T y  < 1 then N EXT y := M A X y  ; if N E X T y  > M A X y  then N E XT y := 1 ;if R O O T cellILA Y E R ,N E X T x,N E X T y] = 0 then begin {cell unoccupied and availablel {»»» determine how many cells surrounding x,y are unoccupied/vacant and, based on probability from respective SoilR values, choose one to grow  into ***̂ 1determ inevacantROOTcellf L A Y E R , x, y , plant, n ew CELLx, n e w C E L L y  ) ; P*» grow into this cell ’ “ |RO OTcelU  L A Y E R , n ew CELLx, n ew C E L L y  ] := plant ; grow th := 1end {cell unoccupied and available)
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else if R O O T cell[L A Y E R ,N E X T x,N E X T y] = plant then begin {cell belongs to ow nplantl1*̂ ** m ove template to that cell. This follow s the root out ***|
X := N E X T x ; y := N E X T yend {cell belongs to ow nplant) elsebegin {cell belongs to otherplantj I*** reset x and y back to p lant centre ***)I these have been taken out so routine searches around rather than resetting back at plant origin )|x := PlantX[plant] ;| ly := PlantYfplant] | end ; {cell belongs to otherplant)tim eo u tC O U N T  := tim e o u tC O U N T  + 1 ; if tim eoutC O U N T  > ROOTtim eoutfplant] then begin {plant growth limits reached at present level){*** shift growth search position down to next layer ’ **)L A Y E R  := LA Y E R  + 1 ;{check if modelled space is exceeded...) if L A Y E R  > M A Xdepth then beginwritelnf ' W arning: M a xR O O T  depth reached by plant plant:3,' at T IM E=',TIM E:3 , ' repl=',repl:2, ' soilR=',lnitialResource) ; PlantTooDeep := 1 ; growth := 1 ;L A Y E R  := M A Xdepth end ;{check if this is a N EW  layer for the plant...)if L A Y E R  > Depthiplant] then Depth[plant] := Depth(plant] + 1 ;{*** reset x and y to centre o f plant ***)

X := PlantX(plant) ; y := PlantYfplant] ; tim eoutC O U N T  := 0end ; {plant growth limits reached at present level)u n til growth = 1 ;{now  account for this growth...)CELLgrow th N U M B E R fp lan t] := CE LLgrow thN U M B E R Iplant] - 1 en d  ; {ROOTcellgrowth)
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procedure ROOTgrow th( ROOTincrease : eachPLAN Treal ; var PhintTooDeep : integer ; var RCXDTbiomass : eachPLAN Treal ; var R O O T ce ll : SO ILcellIN T  ; var Depth : eachPLAN Tint ) ;C E L L gro w th N U M B E R  : eachPLAN Tint ;T O T A L cellN U M B E R , plant, L A Y E R , x, y , CE LLtype, CELLdifference : integer ; begin |RCX)Tgrowth|(determine the whole number of cells to growth for each plant and in total)T O T A L cellN U M B E R  := 0 ;for plant := 1 to PLAN Tnum ber dobegin {plant)if deadPLA N T[plant] = 0 then begin {plant is alive)CE LLgrow thN U M B E R fplan t] :=round(((ROOTincrease[plant]+ROOTbiom ass[plant])/ROOTCELLm ass) - 0.5) - round((ROOTbiom ass(plant]/ROOTCELLm ass) - 0.5 ) ;{*** Increase RO OTbiom ass by the grow th implied by RO OTincrease ’̂ ’ *) ROOTT)iomass[plant] := ROOTbiom ass[plant] + ROOTincreasefplant] ; end elseCELLgrow thN U M B ER (plant) := 0 ;T O T A L cellN U M B E R  := T O T A L cellN U M B E R  + C E L Lgrow th N U M B E R ) plant] end ; {plant){*»» go thru' plants in turn and grow 1 cell and repeat, until all grow th com pleted ***̂ ) plant := 1 ;repeat{check if plant has any cells left to grow ...) if CELLgrow thN U M BER [plant)>0 then begin {...and if so, call routine for 1 cell growth)ROOTcellgrow th(plant, PlantTooDeep, RO O Tcell, C E L L gro w th N U M B E R , D epth) ; {account for growth from T O T A LcellN U M B ER )T O T A L cellN U M B E R  := T O T A L cellN U M B E R  - 1 end ;{increment plant and reset if neccessary)plant := plant + 1 ; if plant > PLAN Tnum ber then plant := 1 ;{check if plants have outgrown m odelled space...) if PlantTooDeep=l then{...and if so, exit from repeat..until loop NOW !)T O T A LcellN U M B E R :=0  ;until T O T A L cellN U M B E R  = 0 ;end ; {ROOTgrow th)
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procedure determinevacantSHCX5Tcell( L A Y E R , X , y ,  plant : integer ;var n ew CELLx, new CE LLy : integer ) ;
eachX, eachY, besty, bestx, cellx, celly , C ELLtype, V A C A N T n u m b er : integer ; h igh estL IG H T  : real ;begin Ideterm inevacantSHOOTcelllV A C A N T n u m b e r := 0 ; h igh estL IG H T  := 0 ; for eachX := -1 to 1 do begin {eachX) for eachY := -1 to 1 do begin jeachY) cellx := X + eachX ; celly  := y + eachY ; if cellx < 1 then cellx := M A X x  ; if cellx > M A X x  then cellx := 1 ; if celly  < 1 then celly := M A X y  ; if celly  > M A X y  then celly := 1 ;C E L L ty p e  := SH O O T cell[LA Y E R ,cellx ,celly] ; if C E L L ty p e  = 0 then begin (cell unoccupied)V A C A N T n u m b e r := V A C A N T n u m b e r + 1 ; if Light[LAYER,cellx,celly] > h ig h e stL IG H T  then begin {'best' cell so far...) h igh estL IG H T  := L igh t[LAY ER,cellx ,celly] ; bestx := cellx ; besty := celly end endend jeachY) end ; jeachX)if V A C A N T n u m b e r > 0 then begin (unoccupied neighbours exist) n e w C E L L x  := bestx ; n e w C E L L y  := besty endend ; (determ inevacantSHOOTcell)

{&*&*&*&»&*&»&»&*&*&*&»&*&*&*&*&*&’&*&*&*&»&*&*&*&»&*&»&*&♦&»&*&*&»&*&*&»&*&*)
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procedure SHCX3Tcellgrowth( plant : integer ; var PlantTooHigh : integer ;var SH O O T cell : A B O V E G K O U N D c e llIN T  ;var C E L L gro w th N U M B E R , Height : each P L A N T in t ) ;vare ach L A Y E R , O U T C O M E , L A Y E R , x, y , growth, tim eo u tC O U N T , rndx, rndy, N E X T x , N E X T y , n ew C E L L x, n ew C E L L y : integer ;begin ISH OOTcellgrow th}I*** determ ine which position to start growth Template at ***)L A Y E R  := 1 ; X := PlantX[plantl ; y := PlantY[plant] ; grow th := 0 ; tim eo u tC O U N T  := 0 ;repeatI*** Read in Rnd data from file ***) if eof(SH O O Trnd) = T R U E  then beginreset(SHOOTrnd) ;w ritelnf' W arning: SH O O T rn d  reset ') end ;readln(SH O O Trnd,rndx,rndy) ;I*** Check if N E XT ? cell is outside array envelope ***|N E X T x  := x+rndx ; N E X T y  := y+rndy ; if N E X T x < 1 then N E X T x  ;= M A X x  ; if N E X T x > M A X x  then N E XT x := 1 ; if N E X T y  < 1 then N E X T y  := M A X y  ; if N E X T y  > M A X y  then N E XT y := 1 ;if S H O O T ce ll|L A Y E R ,N E X T x ,N E X T y | = 0 then begin {cell unoccupied and available){»** determine how m any cells surrounding x,y are unoccupied/vacant and, based on respectiv'e L IG IH  level values, choose best one to grow  into ***)determ inevacantSH O OTcellf L A Y E R , x, y, plant, new CE LLx, n ew C E L L y ) ; I*»* grow into this cell ***)SH O O T cell) L A Y E R , new C E L L x, n ew C E LLy ) := plant ; growth := 1end (cell unoccupied and available)else if SH O O T ce lllL A Y E R ,N E X T x ,N E X T y l = plant then begin {cell belongs to ownplant){move template to that cell. This follows the root out?)
X :=  N EXTx ; y := N EXTy end
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elsebegin (cell belongs to otherplant)(»»» reset x and y back to plant centre ***((these have been taken out so routine search around rather than resetting back at plant origin | 
( X :=  PlantX[plant] ; |( y :=  PlantY[plant] j end ;tim e o u tC O U N T  := tim eoutCO U N T  + 1 ; if t im e o u tC O U N T  > SHOOTtim eout[plant] then begin (plant growth limits reached at present level|(shift grow th search to next layer up)L A Y E R  := LA Y E R  + 1 ;(check if modelled space is exceeded...) if L A Y E R  > M A Xheight then beginw rite(' Warning!!! PlantTooHigh reached by plant plant:3/ at T1ME=',T1ME:3 ) ; Plan tT ooH igh := 1 ; g ro w th  := 1 ;L A Y E R  := M AXheight end ;(check if this is a N EW  layer for the plant...)if L A Y E R  > Heightlplant] then Heightfplant] := Height[plant] + 1 ;(**» reset x and y to centre of plant *’'*)X := PlantX[plant] ; y := PlantYfplant] ; t im e o u tC O U N T  ;= 0end ; (plant growth limits reached at present level) until grow th = 1 ;(now account for this growth...)CELLgrow thN U M B E R (plant) := C E LLgrow thN U M B E R fplan t] - 1 end ; (SH O OTcellgrow th)
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procedure SHCX3Tgrowth( SH O O T increase : eachPLANTreal ; var PlantTooHigh : integer ; var SH O O T b iom ass : eachl’ LANTreal ; var SH O O T cell : A B O V E G R O U N D ce llIN T  ; var H eight : eachPLAN Tint ) ;
C E L L g ro w th N U M B E R  : eachP LA N T in t ;T O T A L ce llN U M B E R , phint, L A Y E R , x, y , C E L L typ e, CELLdifference : integer ; begin ISH OOTgrow th)Idetermine the whole num ber of cells to grow th for each plant and in total)T O T A L ce llN U M B E R  := 0 ;for plant := 1 to PLA N T n u m b er dobegin (plant)if deadPLA N T[plant] = 0 then begin (plant is alive)CE LLgrow th N U M B E R [p lan t] : =round( ((SH O OTincrease[plant]+SH OO Tbiom ass[plant])/SH OO TCELLm ass) - 0.5) - round( (SH O O T biom ass(plant|/SH O O T C E LLm ass) - 0.5 ) ;(“ * Increase SH O O T b iom ass by the growth implied by SH O OTincrease ***) SH O OTbiom ass[plant] := SH OOTbiom ass(plant) + SHOOTincrea.se)plant] ; end elseCE LLgrow thN U M B E R (p lan t) := 0 ;T O T A L ce llN U M B E R  := T O T A L ce llN U M B E R  + CELLgrow thN U M BER[plant] end ; (plant)(go thruough plants in turn and grow 1 cell and repeat, until all growth completed) plant := 1 ;repeat(check if plant has any cells left to grow ...) if C E LLgrow thN U M B E R (plant]>0 then begin (...and if so, call routine for 1 cell growth)SH O O T cellgrow thfp lan t, PlantTooHigh, SH O O T cell, C E LLgrow th N U M B E R , Lfeight) ; (account for grow th from T O T A L cellN U M B E R )T O T A L ce llN U M B E R  := T O T A L ce llN U M B E R  - 1 end ;(increment plant and reset if neccessary)plant := pLrnt + 1 ; if plant > P LA N T n u m b er then plant := 1 ;(check if plants have outgrown m odelled space...)if PlantTooH igh=l then (...and if so, exit frt>m repeat..until loop NOW ) T O T A L ce llN U M B E R  := 0 ;until T O T A L ce llN U M B E R  = 0 ; end ; (SHCXJTgrowth)
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procedure Decom pose( var SoilOrgM at, SoilR : SoilcellR E A L  ) ;{»** Decom pose porcedure takes each SOILcell in turn and if there is organic m aterial present, transfers Resource from  SoilO rgM at to SoilR. »»*)varL A Y E R , X ,  y : integer ;begin (Decompose)for L A Y E R  ;= 1 to M A X d ep th  do begin (LAYER) for X  := 1 to M A X x  do begin (x)for y := 1 to M A X y  do begin (y)SoilR [LA Y E R ,x,y] := SoilR[LAYER,x,y] + ( d ecayR A T E  * SoilO rgM at[LA Y E R ,x,y] * Rcontent ) ; So ilO rgM at[L A Y E R ,x ,y] ;= (1-decayRATE) * SoilO rgM at) L A Y E R ,x ,y J end (y) end )x) end (LAYER)end ; (Decompose)
procedure w ritePLANTdetails( var P R E V IO U Sbiom ass : eachPLAN Treal ; d e a d P L A N T  : eachPLAN Tint ; RO O Tbiom ass, SHOOTTjiom ass : eachPLAN Treal ) ;
SPPbiom ass, SPProotm ass, SPPtotalR, SPPtotalC, SP P R pool,SPPCpool : array[L.SPECIESnum ber] of real ;D EA D num ber : array[l..SPECIESnum ber] of integer ; s , plant : integer ;begin(set SPPbiom ass to zero)for s := 1 to SPECIESnum ber dobeginSPPbiomass[s] := 0 ;SPProotmass[s] := 0 ;DEADnum ber[s] := 0 ;SPPRpool(s) := 0 ;SPPCpool[s] := 0 end ;
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(go thru' plants and cum m ulate SPPbiom ass & also find D E A D n um ber | for plant := 1 to PLA N T nu m ber do beginSPPbiom ass[Species[plant]] := SPPbiomass[Species[plant]] + ROOTbiom ass[plant] + SH O OTbiom ass[plant] ;SPProotmass[Species[plant]] := SPProotmass[Species[plant)] + ROOTbiom ass[plant] ;DEADnum ber[Species[plant]] := DEAOnum ber[Species[plant]] + deadPLAN T[plant] ;|N B. this works because if plant is dead, then d ead P LA N T = l else deadPLA N T=0|SPPRpool[Species[plant]] ;= SPPRpool[Species[plant]] + Rpool[plant] ;SPPCpool[Species[plant]] := SPPCpool[Species[plant]] + Cpool[plant] end ;w ritefPLA N Tres, InitialResource:3:5,' ',TIM E:4/ ',repl:2/ ') ; for s := 1 to SPECIESnum ber do begin is}SPPtotalR[s]SPPtotalC[s]SPPRpool[s]SPPCpooUs]
:= ( SPPbiomass[s] * Rcontent ) + SPPRpool[s] ;:= ( SPPbiomass[s] * Ccontent ) + SPPCpool[s] ;:= SPPRpool[s] / SPPbiomass[s] ;:= SPPCpool[s] / SPPbiomass[s] ;w ritefPLA N Tres, SPPbiomass[s]:6:7/ SPProotmass(s]:6:7,' DEADnum ber[s]:2 / SPPRpool[s]:6:7/ SPPCpool[s];6:7/ SPPtotalR[s]:6:7/ SPPtotalC[s]:6:7/ ' ) end ; |s)w riteln(PLAN Tres/ ') end ; {w ritePLANTdetails)

procedure w riteGR A D details ;
SPPbiom ass, SPProotm ass, SPPtotalR, SPPtotalC, SPPRpool, SPPCpool : array[l..SPECIESnum ber] of real ; D E A D n u m b er : array[l..SPECIESnum ber] of integer ; s, plant : integer ;begin Iw riteGRADdetails){set SPPbiom ass to zero] for s := 1 to SPECIESnum ber do beginSPPbiomass[s] := 0 ;SPProotmass[s] := 0 ;D EADnum ber[s] := 0 ;SPPRpool[s] ;= 0 ;SPPCpool[s] := 0 end ;
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Igo through plants and cum m uhtte SPPbiomass & also find D E A D n u m b er ) for plant := 1 to PLAN Tnum ber d o  beginSPPbiomass[Species[plant]] := SPPbiomass[Species[plant)| + RO OTbiom ass[plant]+ SH OOTbiom asslplant] ;SPProotmass[Species[plant]l := SPProotmass[Species[plant]] + RO OThiom ass[plant] ; DEADnum ber[Species[plant]] := DEADnumber[Species[plant]] + deadP LA N T [plan t] ; (NB. this works because if plant is dead, then dead P LA N T =l else deadPLA N T =0) SPPRpool[Species[plant]] := SPPRpool[Species[plant)] + Rpool[plant] ; SPPCpool[Species|plantJ] := SPPCpool[Species[plant]] + Cpool[plant] end ;write(SPECIESres, lnitialResource:3:5,' ',TIM E;4,' ',repl:2,' ') ; for s := 1 to SPECIESnum ber do begin Is)SPPtotalR[s] := ( SPPbiomass[s] * Rcontent ) + SPPRpoolls) ;SPPtotalC[s] := ( SPPbiomass[s] * Ccontent ) + SPPCpoolls] ;w ritefSPECIESres, SPPbiomass[sJ:6:7,' SPProotmass[s]:6:7,' D EA Dnum ber[s]:2SPPRpool[s];6:7,' SPPCpool[s]:6:7,' SPPtotalR[s]:6:7,' SPPtotalC[s]:6:7,' ' ) end ; js)writeln(SPEClESres,' ') end ; IwriteGRADdetails)
procedure ResourcePictures ; varrelativeSoilR ; real ;STRIPnum ber, strip, d o tl, dot2, L A Y E R , x, y : integer ; begin jResourcePictures)rewrite(SoilRres) ; rewrite(relSoilRres) ; rewrite(Lightres) ;STRIPnum ber := round(M AXdepth/STRlPlength) ; for strip := 1 to STRIPnumber d o  begin Istrip)for L A Y E R  ;= (l+((strip-l)*STRIPlength)) to (strip»STRIPlength) d o  begin I LAYER) for X  := 1 to M A X x  do begin lx)for y := 1 to M A X y  do begin ly)relativeSoilR := SoilRlLAYER,x,y)/InitialResource ;writeln(relSoilRres, x + ((L A Y E R -(l +((strip-l )‘ STRIPlength)))»(MAXx+SPACEsi/.e)), y+((strip-l)*(M A Xy+SPA CEsize)),' ', relativeSoilR: 1:6 ) ; writelnfSrrilRres, x+ ((LA YER -(l+((strip-l)‘ STRlPlength)))*(M AXx+SPACEsize)), y+((strip-l)*(M AXy+SPACEsize)),' ', SoilR|LAYER,x,y):3:6 ) ;
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writeln(Lightres, x+((LAYER-(l+((strip-l)*STRIPlength)))’ (M AXx+SPA CEsize)), y+((strip-l)»(M AXy+SPACEsize))/ L igh t[(LA Y E R -l),x ,y]:l:8  ) ; end {yl end (x) end (LAYER) end (strip)end ; (ResourcePictures)
procedure PlantPictures ; varrelativeSoilR : real ;STRIPnum ber, strip, d o tl, dot2, L A Y E R , x, y : integer ;begin (ResourcePictures)rewrite(ROOTres) ; rewrite(SHCX)Tres) ;STRIPnum ber := round(M AXdepth/STRIPlength) ; for strip := 1 to STRIPnum ber do begin (strip)for L A Y E R  := (l+((strip-l)*STRlPlength)) to (strip*STRlPlength) do begin (LAYER) for X := 1 to M A X x  do begin (x)for y := 1 to M A X y  do begin (y)if R O O T cell[L A Y E R ,x ,y]>0  then begind o tl:= R O O T cell[L A Y E R ,x ,y ] ; dot2:=Species[dotl ] end else begin d otl:= 0  ; dot2:=0 end ;w ritelnfRO OTres, x+((LA YER-(l+((strip-l)‘ STRlPlength)))*(M AXx+SPACEsize)), y+((strip-l)*(M A Xy+SPA CEsize)), d o tl, dot2 )end (y) end (x) end (LAYER) end ; (strip)STRIPnum ber := round(M AXheight/STRIPlength) ;
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for strip := 1 to STRIPnumber do begin Istrip)for L A Y E R  := (l+((strip-l)*STRIPlength)) to (strip*STRIPlength) do begin I LAYER) for X := 1 to M A X x  do begin |x|for y := 1 to M A X y  do begin ly)if SH CX)Tcell[LAYER,x,y]>0 then begindotl:=SH CX3Tcell[LAYER,x,y] ; dot2:=Species[dotl ] end else begin d otl:=0  ; dot2:=0 end ;w riteln(SHOOTres, x+((LAYER-(l+((strip-l)»STRIPlength)))»(M AXx+SPACEsize)), y+((strip-l)*(M A Xy+SPA CEsize)), d o tl, dot2 )end lyl end |x) end (LAYER) end Istrip)end ; (PlantPictures)
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I M A IN  P R O G R A M  )
b egin  1*** M A IN  P R O G R A M
r » *  S e tu p  Files »»’ | reset(PROBrnd) ;{*** open ROOTrnd and S H O O T rn d  files ***) reset(ROOTrnd) ; reset(SHOOTrnd) ;rew rite(PLANTres) ; rew rite(GRADres) ; rewrite(SPECIESres) ; rewrite(Rres) ; rewrite(timeA) ; rewrite(timeB) ; rewrite(timeC) ;for P := 10 downto 0 do b e g in  |P[InitialResource := 0.01 + ((P’̂ P)/100) ;w riteln(' ### Initial Resource -  ',InitialResource;3:6 ) ;fo r  repl := 1 to R E P L IC A T IO N S  do b e g in  I repl)writeln(' replication no. ',repl:2) ;1**’̂  Initialization Routines ***1 RO OTcellsetupf R O O T cell, Depth ) ;SH O O T cellsetupf Light, SH O O T ce ll, Height ) ;PLAN Tsetup( d ead P LA N T , PlantX, PlantY, R O O T tim cou t, SH O O T tim eout, C a p tG ro C O U P L E D , species,ROOTdensity, Rootlm ax, RootKm , L A D , Assim ilates, PREV IO U Sbiom ass, RO OTcell, SH O O T cell ) ;SO ILsetupf SoilR, SoilW ater, SoilO rgM at ) ; {*». Write Conditions - >  D E T A IL S  file ***) Conditions ;
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Start simulation ST O P  := 0 ; TIM E := 1 ; repeatwriteln(' Time = ',TIME:4) ;1*»* S O IL  PR O C E SSE S '*’ *)caIcWaterUptake( ROOTcellnum ber, SH O O T cellnum ber, WaterUptake ) ; Decompose( SoilO rgM at, SoilR ) ;SoilRmovement( SoilR , SoilWater ) ;1*»* C A L C U L A T E  L IG H T  ***\ shade( L ig h t ) ;(Graphic output of resource distributions)ResourcePictures ;I»** R E S O U R C E  C A P T U R E  Uptake( SoilR, SoilW ater, Ruptake ) ;Photosynthesis( Cproduction ) ;1»** P L A N T  P R O C E SS IN G  O F R E S O U R C E S  »” )ResourcePoolingf dead P LA N T , Cp rod u ction , Ruptake, Cpool, Rpool ) ; Maintenancef ROOTcellnum ber, SH O O T cellnum ber, Assimilates, d eadP LA N T  ) ; Assim ilationf dead P LA N T , Rpool, C p o o l, Assimilates ) ;Partition( Assim ilates, d eadPLA N T ,ROOTincrease, SH OOTincrease ) ;I**» P L A N T  G R O W T HROOTgrow th( ROOTincrease, PlantTooL)eep,ROOTbiom ass, RO OTcell, Depth ) ; SH O O T grow th f SHOOTincrease,PlantTooHigh,SHCXDTT>iom ass,SHOOTcell,Height )I*»* O U T P U T  of P A R A M E T E R S **»){Leave this in if you want pictures every day...) jPlantPictures ;)TIM E := TIM E + 1 ; if T IM E>T1M EEN D  then ST O P :=l ;
{*** End sim ulation replication if end of space has been reached by growth ***) if PlantTooDeep=l then ST O P := l ; if P lan tT ooH igh = l then ST O P :=l ;{*** End sim ulation replication if all plants are dead **’ | alive := 0 ;for plant:= 1 to PLAN Tnum ber do if deadPLAN T[plant]=0 then alive:=l ; if alive=0 then STOP: = l  ;until S T O P = l ;w riteGR A D details ; PlantPictures ; end irepl)end ; IP)w ritelnf' The End. ') end. {“ » M A IN  P R O G R A M  »*•)


