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Abstract 1 

Introduction: As an outbreak of fever of unknown origin usually starts with 2 

nonspecific symptoms and a case definition is only slowly developed and 3 

adapted, therefore, identifying the causative agent is crucial to ensure suitable 4 

treatment and/or control measures. Polymerase Chain Reaction (PCR) as a gold 5 

standard of the molecular diagnostics depends on the previous knowledge of the 6 

pathogen genome sequences. Next generation Sequencing is an alternative method, 7 

which can be applied to identify the pathogen responsible for the outbreak through 8 

sequencing all nucleic acids present in a sample extract. Sequencing data obtained 9 

can potentially identify new agents or new variants of known agents. 10 

Aim: In this pilot study, we explored a sequencing protocol relying on multiple 11 

displacement isothermal amplification and nanopore sequencing in order to allow the 12 

identification of the causative agent in a sample. To develop the procedure for use in 13 

a suitcase laboratory, a mock sample consisting of supernatant from a Zika virus 14 

tissue culture was used. 15 

Results: The whole procedure took around eight hours including sample preparation 16 

and data analysis using BLAST search. In total, 63,678 sequence files covering 17 

around 10,000 bases were extracted. BLAST search revealed the presence of Zika 18 

virus, which was close to an isolate from Senegal.  19 

Conclusion: In conclusion, the protocol has potential for point of need sequencing to 20 

identify RNA viruses. The whole procedure was operated in a suitcase laboratory 21 

powered by solar power batteries. However, the procedure is cooling chain 22 

dependent and the cost per sequencing run is still very high. In addition, sequencing 23 

and data analysis pipelines for optimized and rapid subtraction of background 24 

information and assembly of relevant virus information are required.  25 



Introduction 26 

Identifying the causative agent implicated in an outbreak is crucial for selecting the 27 

suitable treatment and/or control measures (1). For example, around 25 pathogens 28 

can cause influenza like symptoms in the acute phase and up to 20 pathogens have 29 

to be considered for diarrhoea.  30 

For direct detection of pathogens, polymerase chain reaction (PCR) is a widely used 31 

and well-established test for molecular diagnostics. Since specificity of PCR 32 

oligonucleotides depends on known sequences of specific target genes, false 33 

negative PCR result might be obtained due to a mismatching sequence of a novel 34 

variant of a known pathogen or because of a new emerging infectious agent. An 35 

alternative promising technology is next generation Sequencing (NGS), which can be 36 

applied to identify the pathogen responsible for the outbreak through sequencing of 37 

all nucleic acids in a sample allowing generic detection not limited by specific 38 

oligonucleotide design. Additionally, NGS data sets on detected infectious agents 39 

can be use for phylogenetic and molecular epidemiological analysis to provide 40 

insights on strain and origin of the agent. This information can be crucial for 41 

organization and distribution of resources during the outbreak control (2, 3). 42 

There are many NGS technologies available such as sequencing by synthesis, using 43 

HiSeq and MySeq devices (Illumina, USA). These devices have a high data output, 44 

an error rate below 2% and the possibility to sequence several samples in parallel 45 

(4). Nevertheless, there is a high logistic demand through weight, size and costs of 46 

the equipment. Furthermore, cumbersome and long sample and library preparation 47 

protocols are necessary in order to generate results (4, 5). In contrast, nanopore 48 

sequencing technology (Oxford Nanopore Technology, UK) uses a pore-protein 49 

embedded in a membrane to identify individual nucleotide by the unique change in 50 



electrical conductivity as a DNA molecule passes through the nanopore protein. 51 

Recently, Oxford Nanopore Technology developed a pocket sized (10.5 + 3.5 + 2.5 52 

cm) sequencing device (MinION) which has the potential to be applied in the field or 53 

rural areas. A flow cell containing the required nanopores is inserted into the MinION 54 

in order to operate the sequencing run. The MinION device operates at a constant 55 

sequencing temperature (34°C) and translates the measured changes in current to a 56 

real-time nucleotide sequence via USB connection to a laptop (5-8). 57 

Here we describe the establishment of a protocol for rapid identification of RNA 58 

viruses combining. random isothermal amplification and nanopore sequencing using 59 

Zika virus (ZIKV) as model virus. The protocol was performed in a mobile suitcase 60 

laboratory (figure 1) in order to allow implementation in outbreak situation (9).  61 

 62 

Materials and Methods 63 

Sample origin 64 

ZIKV strains were provided by WHO collaborating Center at the Institute Pasteur of 65 

Dakar in Senegal. The monkey strain MR766 and the human strain HD78788 were 66 

isolated in 1947 (in Uganda) and 1991 (in Senegal) in Africa, respectively, during 67 

surveillance. Viral stocks were prepared by inoculating viral strains into Aedes 68 

pseudoscutellaris clone 61 (AP61) monolayer. Cells were grown in cell culture flasks 69 

(25 cm2) until they reached a confluence of approximately 80%. The medium was 70 

discarded, and 150 µl virus solution was added to the cells. The flasks were gently 71 

agitated every 15 min during incubation to enhance viral infection. After 1 h, 5 ml of 72 

Leibovitz 15 (L-15) growth medium (GibcoBRL, Grand Island, NY, USA) 73 

supplemented with 5% heat-inactivated fetal bovine serum (FBS) (GibcoBRL, Grand 74 



Island, NY, USA), 10% Tryptose Phosphate 1% glutamine, 1% penicillin-75 

streptomycin, 0.05% amphotericin B [Fungizone] (Sigma, Gmbh, Germany) was 76 

added and the infected cells were incubated at 28°C without CO2 until a cytopathic 77 

effect was observable.. Viral infection was confirmed by an indirect 78 

immunofluorescence assay (IFA) using specific hyper-immune mouse ascitic fluid, as 79 

described previously (Digoutte et al., 1992).  80 

Sample preparation 81 

Zika virus (ZIKV) RNA was extracted from cell culture supernatant using the QIAamp 82 

Viral RNA Mini Kit (QIAGEN Hilden, Germany) following the manufacturer`s 83 

instructions. The RNA quantity was measured by NanoDrop ND-1000 spectrometer 84 

(Thermo Scientific, Waltham, MA, USA). For elimination of genomic DNA and reverse 85 

transcription, the QuantiTect Reverse Transcription Kit (QIAGEN Hilden, Germany) 86 

was employed using a prolonged incubation time (25 min) for the reverse 87 

transcription step. Second strand cDNA Synthesis was performed with the NEBNext 88 

mRNA Second Strand Synthesis Module (New England Biolabs, Ipswich, MA, USA). 89 

The double-stranded cDNA (ds-cDNA) was purified with the 1.8X Agencourt AMPure 90 

XP Beads Kit (Beckman Coulter, Brea, CA, USA), eluted in 55 µl nuclease-free water 91 

and quantified (NanoDrop ND-1000). To fragment and increase the amount of DNA, 92 

random amplification was done using the REPLI-g UltraFast Mini Kit (QIAGEN 93 

Hilden, Germany), Briefly, 1 µl of ds-cDNA, containing at least 10 ng, was incubated 94 

with 1 µl denaturation buffer at room temperature. To terminate the denaturation, 2 µl 95 

neutralization buffer was added after 3 min. The denatured ds-cDNA was mixed with 96 

16 µl of the master mix containing 15 µl REPLI-g UltraFast reaction buffer and 1 µl 97 

REPLI-g UltraFast DNA polymerase and incubated at 30°C for 90 min. The reaction 98 

mix was heated to 65°C for 3 min to inactivate the reaction enzymes. Then, the DNA 99 

https://en.wikipedia.org/wiki/Ipswich,_Massachusetts
https://en.wikipedia.org/wiki/Massachusetts


was purified with the 1.8X Agencourt AMPure XP Beads Kit, eluted in 30 µl nuclease 100 

free water and quantified (NanoDrop ND-1000).  101 

Library preparation and sequencing 102 

For library preparation, the protocol for amplicon sequencing, SQK-NSK007, was 103 

used as recommended by Oxford Nanopore Technology. Briefly, 45 µl containing at 104 

least 1µg ds-cDNA were used for end-repairing and dA-tailing using the NEBNext 105 

Ultra II end-repair / dA-tailing module. The end-prepped DNA was purified with the 106 

1.8X Agencourt AMPure XP Beads Kit and eluted in 31 µl nuclease free water. DNA 107 

recovery aim was at least 700 ng/µl. Adapter ligation and tethering was carried out 108 

with the NEB Blunt/TA Ligase Master Mix. The DNA was purified using the 109 

Dynabeads® MyOne™ Streptavidin C1 Kit (Thermo Fisher Scientific, Waltham, MA, 110 

USA) and solved in 25 µl of Oxford Nanopores` Elution Buffer. Six microliter of the 111 

adapted and tethered DNA was mixed with 31.5 µl nuclease free water and 37.5 µl of 112 

Oxford Nanopores` Running Buffer FM1 and then loaded into the flow cells in the 113 

MinION device. 114 

Data processing 115 

The MinION device generates data in fast5 format. These reads were processed with 116 

the METRICHORE AGENT (Oxford Nanopore Technology, Oxford, UK). Afterwards, 117 

the files were transformed to fastq format with PORETOOLS (10). Duplicate reads 118 

were deleted and the remaining sequences were loaded in BLAST search using 119 

GENEIOUS 9.1.6 (Biomatters Ltd., Auckland, New Zealand). Contigs were aligned to 120 

Zika strain KF383115 via Map to Reference option in GENEIOUS. 121 

 122 

Results  123 



The described procedure took around eight hours as shown in table 1. In total, 63678 124 

sequences were extracted and transformed to fastq format. After uploading the 125 

sequences to BLAST, ZIKV sequences were identified in approximately 4% of the 126 

reads. The complete original ZIKV sequence (GenBank accession number: 127 

KF383115) was recovered with 2454 reads with an average read length of XXX 128 

(Max.: 585, Min.: 36, Std. Dev.: 122.6) (figure 2 and 3). The average coverage was x 129 

fold the minimum coverage was x-fold. Pairwise identity in BLAST analysis was 130 

67.4%. 131 

Additionally a total of 411 correct ZIKV reads were found in the FAST5 fail sequence 132 

file. If included in the assembly they matched correctly to the respective ZIKV 133 

sequence (figure 3). 134 

 135 

Table 1: Sequencing Workflow 136 

Procedure Reagents/Software Time 
(min) 

RNA extraction QIAamp Viral RNA Mini Kit 30 

DNA digestion and reverse 
transcription 

QuantiTect Reverse Transcription Kit 35  

second strand cDNA synthesis NEBNext mRNA Second Strand 
Synthesis Module 

90  

random isothermal amplification REPLI-g UltraFast Mini Kit 120  

library preparation Nanopore sequencing kits: SQK-
NSK007 

70  

sequencing MinION device and R9 flow cell 20  

data analysis and BLAST search PORETOOLS and Geneious 9.1.6 120  

Total  485 

 137 

  138 



Discussion 139 

Identifying the causative agent of an outbreak using sequencing instead of molecular 140 

techniques like PCR could have a high impact on selecting and implementing the 141 

right patient management and control measures.  142 

The most widespread sequencing device is the MiSeq, as Illumina`s smallest device, 143 

which has still a size of 68.6 + 52.3 + 56.5 cm and a weight of approximately 57 kg. 144 

Moreover, it has a higher data output (15 Giga bases) in comparison to the MinION 145 

(10 Giga bases). Nevertheless, read length by MiSeq is limited to around 300 bp and 146 

a maximum of 22-25 million reads can be produced in a run time between 4h and 147 

56h (11, 12). In contrast, the MinION has through its nanopore technology no limit in 148 

read length and number. Moreover, reads are generated in 20-120 min and data are 149 

easily accessible on laptop or PC.  150 

We have discovered that 1/5 of the correct ZIKV reads was placed into the “fail” file. 151 

The METRICHORE AGENT classifies the reads into pass and fail reads by neuronal 152 

network computing assessing definite conductivity readout events at the pore exit for 153 

5-6 mers. This complicated sequence definition needs quality scoring to decide on 154 

the statistical trustworthiness of the sequencing result. Fails are defined through the 155 

following approach. Initially base calling (1D base calling) of template and 156 

complement reads is performed separately. If the resulting sequence length ratio is 157 

between 0.5-2.0, all sequences are stacked together for base 2D base calling. If 158 

resultant 2D sequences are assessed with a Q-score > 9 they are sorted into a 159 

FAST5 fail sequence file (13).  160 

Short Illumina device reads have a 0.1% non-random error rate, which means an 161 

error at one site can still dominate the base calling process. The MinION reads have 162 

a 10% error rate but sites are distributed at random throughout the sequence which 163 



is compensated for by base calling and which therefore do not dominate at one site 164 

reducing the overall error rate in comparison to Illumina reads (14). Our results 165 

suggest that the analysis algorithm and the Q-score need to be optimised for viral 166 

RNA sequences. At this current development stage therefore a recommended 167 

assembly approach would be first to use all pass reads to identify the infectious 168 

agent. To improve the result, the fail reads can be included in a 2nd step.  169 

In general however the passed sequence assembly result already produce a robust 170 

result with a average coverage of 40. 171 

The MinION was successfully used  in the Ebola virus outbreak in Guinea (7) and 172 

during the Zika virus outbreak in Brazil (15). In both cases, specific PCR fragment 173 

sequencing strategies were used. RT-PCR assays were applied to reverse transcribe 174 

RNA and create multiple fragments to increase the sequencing efficacy (7, 16). This 175 

strategy limits sequencing output to targeted agents, which is ideal for molecular 176 

epidemiological analysis. The use of PCR leads to logistic issues due to heavy 177 

devices and requirement of a cold chain for the reagents. In Brazil, this was solved 178 

by transporting the whole laboratory in a caravan. The generic sequencing approach 179 

described here is intended for diagnostic identification of unknown infectious agents. 180 

It uses only random isothermal steps throughout the procedure and PCR cycling is 181 

not required which avoids the use of a thermal cycler.   182 

We have already shown that isothermal amplification can be easily implemented in a 183 

mobile suitcase laboratory (9, 17, 18) and we successfully adapted this concept for 184 

the workflow needed for library preparation for the MinION sequencing procedure 185 

(figure 1). The suitcase, contains all materials and reagents needed for sequencing in 186 

one box of 56.0 + 45.5 + 26.5 cm in size and less than 23 kg in weight.  187 



All steps of data collection and analysis except the BLAST search were performed 188 

offline using MINKNOW and METRICHORE AGENT as well as GENEIOUS. This is a 189 

major improvement since during the Ebola outbreak base calling for MinION datasets 190 

was only possible through cloud computing which needed internet capacity often not 191 

available locally (7). The simple structure and clear layout of these analysis 192 

programmes makes it easy for users without bioinformatic background to obtain 193 

basic information about origin and phylogeny of the sequenced target. Therefore, a 194 

bioinformatician is not necessarily needed for analysis of the datasets obtained. To 195 

perform BLAST offline a database of infectious agent sequences only located on the 196 

laptop needs to be assembled. It could be replenished with new entries to GenBank 197 

whenever online. 198 

Currently, the following challenges have to be solved. In our hands, the sequencing 199 

reagents can be kept at 25°C for one day without any changes in their efficacy 200 

(confirmed by Oxford Nanopore Technologies, UK). However for long-term storage a 201 

-20°C freezer is still required. Moreover, the price per sequencing run is very high 202 

(around $1500), as one flow cell costs between $500 and $900 depending on the 203 

amount of ordered flow cells. In addition, the shelf life of the flow cells is around 8 204 

weeks at 4°C. One of the biggest drawbacks is that the manufacturer is progressively 205 

changing the reagents and flow cells so that it is difficult to match biochemistry to 206 

flow cells. 207 

The goal of this pilot study was to establish a protocol for pathogen identification 208 

during an outbreak field investigation. In principle this seems possible in a suitcase 209 

laboratory setup. The next steps will be to assemble an offline solution to compare 210 

identified sequences with preloaded database and to identify cold chain independent 211 

reagents. 212 

http://www.dict.cc/englisch-deutsch/bioinformatician.html
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