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Highlights: 

“As part of the submission process, authors are required to provide 3 or 4 highlights, each one 

sentence long. Beyond stating key discoveries, these highlights must explicitly establish why the work 

is novel and why it has an application to aquaculture. It is not sufficient to state that the species is one 

that is farmed.” 

 

 Lipid utilisation, including, fillet fatty acid composition and fatty acid metabolism, remained 

virtually unchanged despite an altered dietary protein : lipid ratio, this information is scarce 

for market-sized Atlantic salmon. 

 

 A reduction in protein : lipid ratio resulted in lower nitrogenous waste output emanating from 

undigested protein, a highly relevant finding  given the enhanced scrutiny on farms to limit 

environmental degradation. 

 

 An assessment of the cost of dietary formulation and subsequent fish production clearly 

showed differences in growth parameters equate to considerable economic differences – an 

analysis of this kind is seldom provided in published literature.   



Abstract  

A common strategy for aquafeed manufacturers has been the utilisation of relatively large amounts 

of terrestrial oil sources to produce diets with a high energy content. The provision of high fat diets 

promotes the utilisation of energy from lipid, thus increasing the amount of dietary protein used for 

tissue synthesis. However, in recent years the cost of dietary lipid has risen, at the same time, 

farming operations are under increasing pressure to limit environmental degradation associated 

with nitrogenous waste effluent. Currently there is limited information available regarding the 

environmental and cost effects of an altered dietary protein : lipid ratio in diets for large Atlantic 

salmon reared in saltwater, presenting a potential impediment to nutritional based solutions. 

Accordingly the present study compared two iso-energetic diets with varied protein : lipid ratios by 

an assessment of growth, fatty acid utilisation, nutritional quality, nitrogenous waste output and bio-

economic considerations. The trial, conducted over the final 150 days of an on-farm grow-out period 

found minimal differences in growth, fatty acid utilisation and fillet quality. A decreased dietary 

protein : lipid ratio showed a more efficient protein utilisation both in terms of digestibility and 

assimilation into fish and, therefore, nitrogenous waste output was reduced. However, due to small 

differences in feed utilisation, the cost of fish production was higher.     
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Statement of relevance 

Atlantic salmon aquaculture is subject to growing scrutiny to limit the potential for environmental 

degradation whilst efficiently utilising increasingly expensive dietary lipids. To assess the efficacy of a 

decreased dietary protein : lipid ratio in aquafeed for market-sized Atlantic salmon, the current trial 

evaluated commercially relevant production parameters including growth, fillet quality (including, 

fatty acid composition and taste attributes), nitrogenous waste output as well as a preliminary 

calculation of the cost of fish production. Despite minimal effects on growth and fillet quality, a 



reduction in the dietary protein : lipid ratio was shown to decrease the amount of undigested 

nitrogen and increase the amount of nitrogen assimilated into fish. However, an increased cost of 

fish production was incurred. This study provides relevant information for future nutritional-based 

solutions which aim to enhance the environmental and economic sustainability of the Atlantic 

salmon aquaculture industry.    



1. Introduction 

The central objective for aquafeed manufacturers is to achieve least-cost formulations able to 

maintain optimal fish performance. This can be realised via optimising the utilisation efficiency of 

dietary nutrients whilst simultaneously reducing the inclusion of increasingly expensive marine-

derived ingredients. The resultant dietary formulations inevitably involve a series of ‘trade-offs’ 

between the cost of added macronutrients, adequate provision of nutrients for both anabolism 

(growth and tissue synthesis) and catabolism (metabolic energy), nutritional and organoleptic quality 

of the final product and limiting the negative impacts on the surrounding aquatic environment 

(Bendiksen et al. 2011; Bureau 2004; Tocher 2015; Turchini et al. 2010).   

 

A common strategy for aquafeed manufacturers has been the utilisation of relatively large 

concentrations of terrestrial oil sources to produce diets with a high energy content. Traditionally 

referred to as ‘protein sparing’ (Einen & Roem 1997; Francis & Turchini 2017; Karalazos et al. 2011b; 

Kaushik & de Oliva Teles 1985), the provision of high fat diets promotes the utilisation of energy from 

lipid, thus increasing the amount of dietary protein available for tissue synthesis. The protein sparing 

concept has been particularly popular in salmonid aquaculture, given the innate ability of this species 

to efficiently use large amounts of dietary lipids as an energy source. Thus, coupled with the 

historically lower price of dietary lipid in comparison to protein sources, high energy formulations are 

widely favoured in Atlantic salmon aquafeed (Bendiksen et al. 2011; Einen & Roem 1997; Pratoomyot 

et al. 2010; Turchini et al. 2010). However, various lipid sources are now as, if not more, expensive 

than protein sources, in particular those rich in omega-3 long-chain polyunsaturated fatty acids (n-3 

LC PUFA) such as fish oil. This is a function of stagnant supply of marine derived oils and increasing 

demand from aquaculture, agriculture and nutraceutical sectors (Francis & Turchini 2017; Tacon & 

Metian 2008; Turchini et al. 2010; Turchini 2013). At the same time, the well-documented health 

benefits of n-3 LC PUFA consumption have influenced consumer expectation of farmed fish to provide 



a dependable source of edible n-3 LC PUFA (Christenson et al. 2017; Tur et al. 2012; Turchini et al. 

2011). The Atlantic salmon aquaculture industry sits at the centre of this paradox given their 

reputation as reliable source of edible n-3 LC PUFA whilst itself consuming a relatively high proportion 

of globally available fish oil. Given the increased value placed on dietary sources of n-3 LC PUFA, 

attempts have been made to retro-engineer the protein sparing concept, in order to conserve n-3 LC 

PUFA from catabolism in Atlantic salmon via the provision of high protein diets (Francis & Turchini 

2017). It is known that dietary n-3 LC PUFA, including 20:5n-3 and 22:6n-3 are readily β-oxidised for 

metabolic energy when in excess of physiological requirements. Hence, it has been hypothesised that 

in contrast to the protein sparing concept, an increase in the protein : lipid ratio would increase the 

utilisation of dietary protein for catabolic processes and thus favour the retention of dietary fatty 

acids, in particular, n-3 LC PUFA. However, to date results have been inconclusive and further 

investigation has been suggested (Francis & Turchini 2017). Despite this, an increase in the dietary 

protein : lipid ratio has been shown to improve the food conversion ratio and thermal growth 

coefficient in farm reared Atlantic salmon (Weihe et al. 2018). 

 

Importantly, however, any variation of the dietary protein : lipid ratio in aquafeed would not only 

affect the growth and nutritional quality of Atlantic salmon, but a sub-optimal digestible protein : 

digestible lipid ratio would decrease nitrogen retention efficiency. This would stimulate the catabolism 

of protein for energy, resulting in an increase of dissolved nitrogenous waste, predominantly, 

ammonia (Crab et al. 2007; Hardy & Gatlin 2002; Karalazos et al. 2011a; Kaushik & Cowey 1991). Poor 

dietary protein retention causes an increased output of undigested nitrogen entering the surrounding 

aquatic environment, eliciting potentially deleterious effects on water quality, including 

eutrophication, particularly in close proximity to the farming operation (Amirkolaie 2011; Crab et al. 

2007; Rabalais 2002; Wu 1995). Meanwhile, aquaculture operations are subject to enhanced scrutiny 

to limit nitrogenous waste effluent, and as a result, effective nutritional strategies are being sought 



(Australian Government  2015; Cho & Bureau 2001; Crab et al. 2007; Hardy & Gatlin 2002). Various 

approaches have been implemented by aquaculture operations to address this, including; reducing 

uneaten feed and tailoring the digestible protein : digestible lipid ratio to limit the amount of protein 

which is undigested or catabolised for metabolic energy (Bureau 2004; Cho et al. 1994; Cho & Bureau 

1997; Crab et al. 2007). Specifically, a decrease in the dietary protein : lipid ratio has been shown to 

significantly reduce nitrogenous waste output in intensive aquaculture systems due to an increase in 

nitrogen retention efficiency (Crab et al. 2007; Einen & Roem 1997; Hardy & Gatlin 2002; Kaushik & 

Médale 1994; Kaushik 1998). 

 

Despite the clear importance of this topic, published information quantifying the effect of an altered 

dietary protein : lipid ratio in grow-out diets for Atlantic salmon on fish nutritional quality, fatty acid 

metabolism and protein utilisation, remains sparse, especially in relation to the farming conditions of 

the southern hemisphere. Furthermore, the extent of possible n-3 LC PUFA sparing remains unclear. 

Thus, the adoption of modified dietary formulations which limit the negative environmental impact of 

Atlantic salmon aquaculture may be impeded by a lack of available research data. Therefore, this study 

aimed to compare two commercial-like, iso-energetic diets, both containing the same raw materials 

and dietary oil blend (80% poultry by-product oil and 20% fish oil), but with varied protein : lipid ratios; 

45:33 and 35:36, respectively. These diets were tested on-farm, in a real-word/commercial 

environment over a five month grow-out period, involving an assessment of industry relevant 

production performance indicators, such as: nutrient digestibility, fillet fatty composition and 

utilisation, taste evaluation and an evaluation of undigested protein output. Furthermore, the 

potential disparity between feed related production costs between the two diets was assessed 

through a preliminary bio-economic analysis. 

   

2. Materials and methods 



2.1. Location, animals, experimental design and sampling. 

The current trial was conducted from May 24 to October 20, 2015 (150 days) in a commercial salmon 

farm in Hideaway bay, Dover, Tasmania (Huon Tasmania, Hideaway bay site; 43°15′ 52.2″S 

147°04′37.7″E). Immediately preceding the allocation of fish for the trial, an initial sample of 6 fish 

was randomly selected from the trial cohort, euthanized in excess anaesthetic (AQUI-S, 0.5 ml L-1) and 

stored at −20 °C until subsequent analysis. Five hundred and forty Atlantic salmon (average initial 

weight ~2250g) were assigned one of six floating sea pens (5m x 5m x 5m, 270 fish per pen) (n = 2, N 

= 6). Feeding of the two experimental diets to trial pens was achieved by using a Sterner feeder fitted 

with a 40 L hopper and spinning feed spreading mechanism that dispersed feed over ~80% of the cage 

surface. Fish were fed twice per day to satiation by an automated AQ1 feed system, with the first 

feeding programmed for 15 minutes before sunrise and the second feeding 15 minutes after sunset. 

A 0.5 m diameter, 0.5 m deep cone was positioned at a depth of 4 m to channel uneaten feed past an 

infrared sensor which detected uneaten pellets and automatically turned the feeder off. All feeding 

sessions were overseen by an observer to ensure the operation of all automated systems were correct 

and consistent. Feed consumption, mortalities and environmental parameters were monitored 

throughout the trial and remained within acceptable limits, including water temperature (mean ± SD: 

11.21 ± 0.86 oC) and dissolved oxygen (mean ± SD: 7.85 ± 0.43 mg L-1). In the final week of feeding, 10 

fish were selected for faecal collection by hand stripping and samples were used for an estimation of 

digestibility. At the completion of the feeding trial, all fish were anaesthetised and weighed and 21 

fish from each treatment (seven fish per pen) were randomly selected and separated into 3 groups: 

the first group (nine fish) were used for the chemical analysis of whole body, the second group (six 

fish) were used for the chemical analysis of fillet and the third group (six fish) were used for sensory 

analysis by means of a panel taste test. These separated fish were immediately placed in an ice slurry, 

following this, the fish used for chemical analysis were frozen to −20 °C and stored until subsequent 

analysis. Fish allocated to panel taste testing were taken from the slurry to be processed by Huon 

Aquaculture Company, Tasmania (as described below).  



 

2.2. Diets 

Diets were manufactured by a commercial feed producer using closed formula Atlantic salmon 

aquafeed formulations (Ridley Aquafeed, Australia). Two separate batches of 9 mm pellets differing 

in their protein : lipid ratio were extruded and vacuum coated with lipid, using identical raw materials 

varying only in their respective inclusion levels. The dietary lipid source used was identical for the two 

diets, consisting of a blend of 20% fish oil and 80% poultry by-product oil. The 40:33 treatment was 

formulated with 40% protein and 33% lipid, while the 35:36 treatment was formulated with 35% 

protein and 36% lipid. Both diets were formulated to be iso-energetic. 

 

2.3. Growth performance, chemical analysis and fatty acid analysis  

Standard formulae were used to assess growth, feed utilisation and biometric data, all reported 

previously in detail (Francis et al. 2014). These included initial and final average weight, total feed 

consumption, total and % gain in weight, specific growth rate (SGR), feed conversion ratio (FCR), feed 

ration % (relative to body mass), dress-out percentage (DP %), fillet yield percentage (FY %), 

hepatosomatic index (HSI %), viscera-somatic index (VSI %), condition factor (K), net protein utilisation 

(NPU %), protein growth ratio (PGR) and fat deposition rate (FDR). The chemical composition of the 

experimental diets, faeces and fish samples were determined via proximate composition analysis 

according to standard methods (Norambuena et al. 2013). Briefly, moisture was determined by drying 

samples in an oven at 80 °C to a constant weight. Ash was determined by incinerating samples in a 

muffle furnace (S.E.M. SA Pty. Ltd., Australia) at 550 °C for 18 h. Protein (Kjeldahl nitrogen: N × 6.25) 

content was determined using an automated Kjeltech 2300 (Foss Tecator, Geneva, Switzerland). Lipid 

was determined by dichloromethane: methanol extraction (2:1) technique of Folch et. al. (1957), 

additionally, dichloromethane was used to replace chloroform for safety reasons. Following lipid 



extraction, fatty acids were esterified into methyl esters using an acid-catalysed methylation method 

and then analysed by gas chromatography. Briefly, a known aliquot of C23:0 was added to each sample 

as an internal standard (Sigma-Aldrich, Inc., St. Louis, MO, USA). Fatty acid methyl esters were isolated 

and identified using an Agilent Technologies GC 7890A (Agilent Technologies, Santa Clara, California, 

USA) equipped with a BPX70 capillary column (120 m, 0.25 mm internal diameter, 0.25 μm film 

thickness; SGE Analytical Science, Ringwood, Victoria, Australia), a flame ionisation detector (FID), an 

Agilent Technologies 7693 autosampler injector, and a split injection system (split ratio 50:1). Fatty 

acids were identified relative to known external standards, and resulting peaks were corrected by the 

theoretical relative FID response factors and for methyl transformation, and then quantified relative 

to the internal standard. 

 

2.4. Nutrient digestibility and fatty acid metabolism calculations  

Evaluation of digestibility was determined following methods in Atkinson (1984), the only difference 

being ash was used instead of acid insoluble ash. The calculation of apparent in vivo fatty acid 

metabolism was performed using the whole-body fatty acid balance method, as initially proposed and 

described by Turchini et al., (2007) with further development (Turchini et al. 2008; Turchini & Francis 

2009). 

 

2.5. Consumer acceptance testing 

Six fish from each treatment (two per cage) were further subdivided in three sub-groups and 

underwent standard commercial procedures of processing for three different preparations: hot 

smoked, cold smoked and fresh fillet. 

Methods for consumer acceptance testing were based on methods previously described in Emery et 

al., (2016). A total of 35 regular salmon consumers (20 female, 15 male; age 37 ± 5) were recruited 



from locations adjacent to the Deakin University, Melbourne campus, Australia. All participants 

completed a validated version of the Food Frequency Questionnaire (FFQ) developed by Cancer 

Council Victoria (Hodge et al. 2000), including a specific salmon questionnaire which determined that 

they consumed salmon or salmon products at least once every two weeks. This study was conducted 

according to the institutional review board regulations of Deakin University (DUREC 2013-156). The 

experimental protocol was also registered under the Australian New Zealand Clinical Trials Registry 

(ACTRN12613000701729). All participants gave written informed consent and were paid to 

participate. Participants attended a single lab session which included training for using the hedonic 

Labelled Magnitude Scale (hedonic LMS) (Lim 2011) (Figure S1) and completion of a like / dislike 

questionnaire prior to rating their liking of different salmon products using the hedonic LMS). 

Procedures were conducted in partitioned sensory booths in the Centre for Advanced Sensory Science 

using Compusense Cloud Software as part of the Compusense Academic Consortium (Compusense 

Inc., Ontario, Canada). The hot smoked and cold smoked salmon were prepared as previously noted 

and served to assessors after removal from their packages without any further treatment, the raw 

salmon was thawed at room temperature each morning prior to assessment. Each participant was 

first given approximately 15 g of each sample to rate their liking using the hedonic LMS. After a one 

minute break, participants were then given the same samples again, but were asked to rate the 

intensity of fishy, salty and oily attributes using a Just About Right scale. In this case a positive value 

indicated a sample was too high in the attribute and a negative score indicated a sample was lacking 

the attribute. Thereby, for the influential attributes, a score close to zero indicated the sample was 

‘just about right’. These attributes were chosen after bench-top testing determined they may 

influence liking. Further, participants were given the opportunity to comment on each sample if they 

chose, or if there were additional factors that had influenced their liking. 

 

2.6. Bio-economic assessment  



Differences in production costs due to the varied protein : lipid ratio present in Atlantic salmon diets 

in this study were estimated following a series of bioeconomic calculations, as previously presented 

in Turchini et al. (2013b). The costs used for the calculations were based on costs in the Australian 

market over a 12 month period (July 2016 to July 2017) and expressed as $US. The average cost of raw 

materials, excluding oils, as well as the cost of fish oil and PbO was obtained from a commodities 

website and a commercial feed production company (Ridley Aquafeed Ltd). The prices used for the 

calculations were as follows: fish oil: $3200; PbO: $1060 (all prices expressed as $US ton-1). With this 

information, estimates of the feed formulation cost were possible, expressed as $US kg-1 for raw 

materials only. Subsequently, zootechnical (FCR) and biometrical parameters (FY %) were used to 

estimate the cost for raw materials used in the feed for the production of the following: (i) 1 kg feed; 

(ii) 1 kg of fish and (iii) 1kg of edible fillet. Additionally, these costs were also expressed as percentage 

difference between the two experimental diets. The calculations were based only on costs associated 

with raw materials used in the diets and ignores other potential differences in cost, such as handling 

of oils at the feed plant and all costs associated with possible differences in grow-out time. 

Accordingly, this analysis should be considered purely indicative, and as such, statistical analysis has 

not been implemented on the resultant data. 

 

2.7. Protein utilisation, assimilation and nitrogenous waste output 

The amount of feed and protein required to produce one ton of fish, as well as the amount of 

undigested nitrogenous waste subsequently produced was calculated for the two dietary treatments. 

Calculations were based on parameters already described, including; FCR, dietary protein content and 

ADC % of protein in the diet. Additionally, undigested protein was converted to undigested nitrogen 

by a conversion factor of 6.25. Hence, it was possible to calculate the amount of: i) feed required ii) 

protein required, iii) digested protein and iv) undigested nitrogen for each of the two dietary 

treatments (in terms of kg ton-1 of fish produced). It should be noted that the present study makes no 



attempt to quantify the total amount of nitrogenous waste produced by the fish which includes 

nitrogen excretion from the gills in the form of ammonia and additional nitrogen loss from the surface 

of the fish (eg scale loss). 

Nitrogen assimilation, in terms of % assimilation, g fish-1 per fish and kg ton-1 of fish was calculated 

using a mass balance approach, whereby, initial and final weights of fish, feed intake, nitrogen content 

of diets and initial and final nitrogen content of whole-body fish were used to calculate the percentage 

of nitrogen assimilated into fish fed the dietary treatments. From this it was possible to calculate the 

amount of nitrogen assimilated in terms of both g fish-1 and kg ton-1 of fish. 

 

2.8. Statistical analysis 

All data, were reported as mean ± standard error; (n = 2, N = 6). After confirmation of normality and 

homogeneity of variance, data was subjected to an independent samples T-test. Significance was 

accepted at P < 0.05, and P-values were reported as; * P < 0.05, ** P < 0.01 and *** P < 0.001. All 

statistical analyses were performed using IBM SPSS Statistics v24.0 (SPSS Inc., Chicago, IL, USA). 

 

3. Results 

3.1. Treatment diets 

Total energy content was similar between the two treatment diets (~25.5 KJ g-1). (Table 1). Major fatty 

acid classes including; SFA, MUFA, PUFA, n-3 PUFA and n-6 PUFA were comparable between diets. n-

3 LC PUFA levels (mg g-1 diet) were similar (10.9 and 11.1 mg g-1 diet for 40:33 and 35:36, respectively). 

Additionally, the n-6:n-3 ratio was 2:1 in both diets owing to high dietary 18:2n-6 and relatively low 

18:3n-3. 

 



3.2. Growth, feed utilisation parameter and biometrical data 

Each diet was readily accepted by fish and mortality rates were low and unrelated to treatment. Fish 

in both treatments more than doubled in size (2250g - 5100g), gaining over 2800g (Table 2). Overall, 

growth, feed utilisation and biometrical parameters were similar and there were no statistically 

significant differences between treatments. However, FCR was slightly lower in the 40:33 treatment 

(1.26) compared to the 35:36 treatment (1.38). Additionally, net protein utilisation (NPU %) was 

slightly higher in 35:36 compared to 40:33 (32.42 and 37.12 %, respectively), although differences 

were not significant (P > 0.05). 

 

3.3. Apparent nutrient and fatty acid digestibility 

Nutrient and fatty acid digestibility values (ADC %) were high across treatments (Table 3), and although 

not significantly different (P > 0.05), apparent protein digestibility was higher in 35:36 (80.1 and 75.5% 

for 35:36 and 40:33, respectively). Individual fatty acid apparent digestibility results were similar 

between treatments (P > 0.05), however, there was a general trend of lower digestibility of SFA 

compared to unsaturated fatty acids. 

 

3.4. Tissue proximate and fatty acid composition 

Fillet proximate composition (g 100g-1 fillet) (Table 4) was similar between treatments with no 

significant differences were recorded (P > 0.05). Fillet fatty acid composition, both in terms of µmol g-

1 tissue (Table 4) and g 100g-1 of edible fillet (Table 5) reflected the make-up of dietary lipid profile (P 

> 0.05), including, n-3 LC PUFA levels, which were identical between treatments (21.2 µmol g-1 fillet 

tissue). Fillet n-6:n-3 ratios (in terms of g 100g-1 of edible fillet) were lower than the dietary ratios, 

ranging from 1.7 to 1.8 in 40:33 and 35:36, respectively. 

 



3.6. Apparent in vivo fatty acid metabolism 

Overall, total apparent in vivo fatty acid β-oxidation (expressed as nmol of fatty acid β-oxidation per 

gram of fish per day; nmol g-1 day-1) (Table 6) was similar between treatments (P > 0.05). There were 

few differences between treatments in terms of individual fatty acid β-oxidation, with both 

treatments heavily utilising 18:1n-9 for catabolism. Higher β-oxidation of 22:6n-3 was recorded in the 

40:33 treatment, (in terms of both nmol g-1 day-1 and % of total intake) however, differences were not 

significant (P > 0.05) (35.9 and 29.0 % of intake β-oxidised in 40:33 and 35:36, respectively). Apparent 

in vivo enzymatic activity, desaturation, elongation or chain shortening, (expressed as nmol of fatty 

acid per gram of fish per day; nmol g-1 day-1) (Table 7) was low and similar between treatments, with 

the exception of the ∆-6 desaturation of 18:3n-3, which was higher in 35:36 compared to 40:33 (20.0 

and 9.6 nmol g-1 day-1, respectively) (P < 0.05). Despite some recorded ∆-6 desaturation of 24:5n-3, no 

de novo production of 22:6n-3 was recorded in either of the treatments. 

 

3.6. Consumer preferences 

There were no differences in liking score between the dietary treatments across all three preparation 

methods; cold-smoked, hot-smoked and raw (Table 8) (P > 0.05). However, the 35:36 treatment 

scored slightly higher than 40:33 for the cold smoked fillet (18.7 ± 0.5 and 14.6 ± 2.2, respectively), 

conversely, the 40:33 treatment scored slightly higher for the hot smoked fillet than 35:36 (22.6 ± 1.3 

and 18.5 ± 5.4, respectively). No differences were recorded between treatments for any influential 

attributes (fishiness, saltiness and oiliness) (P > 0.05). Moreover, both fishiness and oiliness both 

recorded scores close to zero on the ‘Just About Right’ scale. For both dietary treatments, the raw fish 

lacked saltiness as indicated by scores of -20.3 ± 3.7 and -18.3 ± 1.3 for 40:33 and 35:36, respectively.  

 

3.7. Bioeconomic assessment of fish production 



Results of estimated feed-related production costs for a) feed, b) whole fish and c) fillet are presented 

in Figure 1 and expressed as i) $US ton-1 and ii) % difference in cost between treatments. Costs of feed 

production for the two experimental treatment diets were similar and differed by < 1 cent kg-1 (Figure 

1ai). However, cost of fish production showed 40:33 to be more cost effective than 35:36 (2.05 and 

2.23 $US kg-1 of fish, respectively) (Figure 1bi). Subsequently, 40:33 remained the more cost effective 

diet in terms of $US kg-1 of fillet (Figure 1ci). When expressed as % difference in cost, feed formulation 

costs differed by < 1 %, whilst the cost of fish and fillet production was 8.9 and 8.6 % cheaper in 40:33, 

respectively (Figure 1bii and Figure 1cii). 

 

3.8. Feed, protein usage and nitrogenous waste output from feed 

The amount of a) feed, b) protein, c) digested protein and c) undigested nitrogen (kg ton-1 of fish 

produced) are presented in Figure 2. The amount of feed required to produce one ton of fish differed 

slightly between treatments, although not significantly (P > 0.05) (Figure 2a). The amount of protein 

required to produce one ton of fish was similar between treatments (~500 kg ton-1 fish) (Figure 2b). 

Additionally, there was no difference in the amount of digested protein between treatments (P > 0.05) 

(Figure 2c). Nitrogenous waste from undigested protein was significantly different between 

treatments (20.0 and 15.8 kg ton-1 fish) for the 40:33 and 35:36 diets, respectively (P = 0.009). Nitrogen 

assimilation, was higher in the 35:36 treatment (in terms of % assimilated, g fish-1 and kg ton-1 fish), 

however, results were not significantly different (P > 0.05).  

 

4. Discussion 

This study has clearly demonstrated that a variation in the dietary protein : lipid ratio has no significant 

effect on growth performance, fatty acid metabolism or final product quality. However, a reduction in 

the dietary protein : lipid ratio reduced the amount of undigested protein resulting in a reduction in 



nitrogenous waste. However, the bio-economical analysis revealed that due to small, yet important, 

differences in growth parameters, an increased cost of fish production was incurred. 

Previous research has led to the widespread implementation of nutritional strategies aiming to spare 

protein for growth (Karalazos et al. 2011a; Weihe et al. 2018), minimise nitrogenous waste (Bendiksen 

et al. 2011; Bureau 2004) and efficiently incorporate health promoting fatty acids into the fillet tissue 

(Francis & Turchini 2017). Previous research suggests an increased dietary protein : lipid ratio may 

affect the n-3 LC PUFA sparing capacity and the growth performance of Atlantic salmon  (Francis & 

Turchini 2017; Weihe et al. 2018). On the other hand, reductions in nitrogenous waste outputs are 

achievable through a decreased dietary protein : lipid ratio. However, to date there remains a paucity 

of published information specifically relating to market sized Atlantic salmon reared in seawater. The 

results discussed herein aim to provide added commercial relevance to existing available information.    

 

The current feeding trial lasted 150 days and fish grew in-line with commercial expectations, where 

they more than doubled in size to a final weight in excess of 5000 g. Despite a disparity in FCR between 

the two treatments, no statistical differences in growth or biometrical parameters were observed. 

Considering the deposition of protein is responsible for the majority of weight gain in fish (Sveier et 

al. 2000), the numerically higher net protein utilisation % in the 35:36 treatment may have 

compensated for the slight reduction in food conversion efficiency. Although not pronounced in the 

present study, previous research has supported an increase in protein utilisation efficiency in Atlantic 

salmon fed diets with a reduced protein : lipid ratio (Einen & Roem 1997; Francis & Turchini 2017; 

Hardy & Gatlin 2002; Karalazos et al. 2011a). Ultimately, these findings support previous work that 

suggest growth is not negatively affected when the protein : lipid ratio is reduced in diets for Atlantic 

salmon (Azevedo et al. 2004; Bendiksen et al. 2003a; Einen & Roem 1997; Karalazos et al. 2011b; 

Solberg 2004).  

 



A reduction in the dietary protein : lipid ratio, concomitant with a high dietary lipid concentration 

(39%) has previously been found to increase lipid content and result in obesity in large Atlantic salmon 

(Refstie et al. 2001). However, in the present study, fillet proximate composition was highly 

comparable between treatments, suggesting that, under near optimal growing conditions (Handeland 

et al. 2008; Kullgren et al. 2013) an alteration in the dietary protein : lipid ratio within the limits tested 

in the current experiment has little effect on fillet composition. Consistent with extensive research, 

fatty acid composition of the fillet mirrored dietary fatty acid inclusion (Bell et al. 2001a; Bell et al. 

2004; Emery et al. 2014; Emery et al. 2016; Turchini et al. 2009; Turchini et al. 2013a). Accordingly, 

high levels of MUFA, namely 18:1n-9, were present in the fillet tissue owing to the high dietary 

inclusion of poultry by-product oil. In addition to high fillet levels, in vivo fatty acid β-oxidation results 

demonstrated that 18:1n-9 was heavily β-oxidised in both treatments, consistent with previous 

literature demonstrating the suitability of 18:1n-9 as a good source of metabolic energy (Bell et al. 

2003; Torstensen et al. 2000; Turchini et al. 2009). 

 

The protein sparing effect has been well described in numerous fish species and supports the use of 

high energy diets in aquafeed to conserve protein for growth, whilst utilising lipid for metabolic energy 

(Einen & Roem 1997; Hemre & Sandnes 1999; Karalazos et al. 2011b; Kaushik & de Oliva Teles 1985). 

However, market volatility and escalating scarcity of dietary lipids rich in n-3 LC PUFA (i.e. fish oil), has 

led to efforts to conserve valuable n-3 LC PUFA via manipulation of the dietary protein : lipid ratio. 

Specifically, it was hypothesised that a higher protein : lipid ratio could preserve n-3 LC PUFA from 

catabolism and resultantly increase retention (Francis & Turchini 2017). Consistent with previous 

research, the digestibility of polyunsaturated fatty acids, including 20:5n-3 and 22:6n-3 was high in 

both treatments (Turchini et al. 2009). Additionally, similar and relatively low, concentrations of 22:6n-

3 were β-oxidised and almost identical amounts were present in the edible fillet. This suggests, in 

accordance with prior research in juvenile salmon, that the alteration in dietary protein : lipid ratio in 



the current study has little effect on the deposition of nutritionally valuable n-3 LC PUFA, provided 

dietary supply is surplus to physiological requirement (Francis & Turchini 2017). A greater alteration 

of the dietary protein : lipid ratio may have enhanced the potential of the n-3 LC PUFA sparing effect 

and is, therefore, a warranted pathway for future research.  

 

Sub-optimal dietary formulations elicit measurable metabolic effects, potentially resulting in 

deleterious outcomes for the health and nutritional quality of farmed fish (Sargent et al. 1999).  An 

analysis of in vivo fatty acid bioconversion, as recorded by the whole-body fatty acid balance 

method, was used in the current study to elucidate metabolic responses to diets with altered protein 

: lipid ratios. Atlantic salmon have a recorded capacity for endogenous n-3 and n-6 PUFA synthesis, 

furthermore, the actual extent of de novo production is heavily modulated by dietary fatty acid 

provision (Bell et al. 2001b; Giri et al. 2016; Martinez-Rubio et al. 2013; Tocher 2003; Turchini & 

Francis 2009). With respect to the present study, ∆-6 desaturation of 18:3n-3 and 18:2n-6 was 

recorded in both treatments as was the endogenous production of 20:3n-6 and 20:4n-3. Despite a 

higher dietary provision of 18:2n-6 relative to 18:3n-3, greater levels of bioconversion were recorded 

for n-3 PUFA in comparison to n-6 PUFA, supporting previous research showing that ∆-6 

desaturation of 18:3n-3 is not limited by presence of 18:2n-6 (Emery et al. 2013; Vagner & Santigosa 

2011). Despite the observed n-3 and n-6 PUFA synthesis, no endogenous production of either 20:4n-

6 or 20:5n-3 was recorded. It appears, therefore, that ∆-5 desaturase activity may have been 

supressed by a negative feedback mechanism owing to the dietary provision of 22:6n-3, as 

previously shown in Atlantic salmon (Jordal et al. 2005; Tocher et al. 2003; Zheng et al. 2005). 

Additionally, evidence suggests that the synthesis of 20:4n-6 is correlated with immune responses at 

sub-optimal water temperatures (Norambuena et al. 2015). Therefore, the near optimal water 

temperature experienced during the current trial (Handeland et al. 2008; Stehfest et al. 2017) were 

not expected to elicit endogenous 20:4n-6 synthesis in response to temperature stress. Ultimately, 



the dietary provision of fish oil in both treatments appears to have been sufficient to satiate 

physiological requirements under the current experimental conditions. Furthermore, the differences 

in in vivo bioconversion resulting from an alteration to the dietary protein : lipid ratio had little effect 

on the final fatty acid composition of the fillet.  

 

As well as fillet nutritional quality, taste is a major determinant of seafood consumption (Christenson 

et al. 2017). Previous research suggests taste and sensorial attributes of Atlantic salmon products are 

influenced by the dietary lipid level and fatty acid composition of aquafeed (Waagbø et al. 1993). The 

present study, therefore, investigated whether an alteration to the dietary protein : lipid ratio incurred 

any effect on overall liking or sensorial attributes when the fillet was prepared as three commercially 

available products, namely, hot smoked, cold smoked and raw. Dietary lipid level is a significant 

predictor of taste preference in both smoked and raw salmonid products (Einen & Skrede 1998; 

Johansson et al. 2000). Despite a higher dietary lipid level in the 35:36 treatment (albeit a marginal 

increase), there were no significant differences in either preference (like or dislike) or sensorial 

attributes, including: fishiness, saltiness or oiliness. Hence, it appears that the overall liking and 

sensory attributes of salmon products are unaffected by an alteration of the protein : lipid ratio in 

diets for Atlantic salmon.  

 

From an economic perspective, market forces inevitably influence dietary formulations in aquafeed, 

however, analysis of costs are seldom considered in published literature (Turchini et al. 2013b). The 

present study includes a preliminary assessment of feed and fish production costs associated with the 

ingredients used in the treatment diets. As stated, this analysis should be considered indicative only 

as it omits associated costs such as transport and handling of raw dietary ingredients. As expected, 

the cost of ingredients used in the treatment diets were very similar and could be considered 

negligible for the present study. However, due to the lower FCR in the 40:33 treatment, the cost of 



fish production was appreciably lower. Due to similar FY % in both treatments, differences in cost of 

fillet production still reflect the aforementioned differences in FCR. The present bioeconomic analysis 

highlights the potential for considerable economic repercussions, despite no statistical difference in 

FCR between the treatments. Thorarensen (2015) describes the difficultly a large number of fish 

growth studies have in detecting a statistical significance in growth parameters due to experimental 

design constraints. In light of this, enhanced scrutiny of even small differences in growth parameters 

is suggested to better understand practically significant effect sizes which may relate to large 

differences in on-farm production costs for commonly farmed aquaculture species. Regardless of 

statistical interpretation, aquaculture operations are heavily reliant on the cost-effectiveness of 

aquafeed (Liu et al. 2016; Turchini et al. 2013b). Therefore, results from the present study indicate 

that, in a commercial sense, alterations to dietary formulations such as a reduction in the dietary 

protein : lipid ratio should unequivocally apply cost-benefit analyses based on pre-production 

research. 

 

Environmental degradation, resultant from nitrogenous waste output from aquaculture operations, 

has stimulated the development of feed related mitigation measures (Bureau 2004; Cho & Bureau 

1997; Crab et al. 2007; Hardy & Gatlin 2002; Kaushik & Cowey 1991). It is well established, that when 

protein, or more specifically, amino acids, are catabolised for metabolic energy rather than utilised for 

tissue synthesis, nitrogen is excreted via the gills, primarily, in the form of ammonia (Crab et al. 2007; 

Hardy & Gatlin 2002; Kaushik & Cowey 1991). Decreasing the digestible protein : digestible energy 

ratio of the aquafeed allows for the utilisation of dietary lipids for the majority of metabolic energy 

requirements, and as a result, sparing protein for growth (Francis & Turchini 2017; Grisdale-Helland 

et al. 2008; Karalazos et al. 2011a; Kaushik & Cowey 1991). Similarly, high protein digestibility is crucial 

in limiting excess nitrogen effluent. Nitrogen is the primary factor responsible for the eutrophication 

of temperate coastal marine environments (Howarth & Marino 2006), leading to, among other 



outcomes, toxic phytoplankton blooms, reduced water clarity, elevated pH and the depletion of 

dissolved oxygen in the water column, as reviewed by Smith (1999). Both protein and lipid digestibility 

are purported to be largely unaffected by variations in the dietary protein : lipid ratio and remain 

highly digestible, providing they are kept within practical limits (Bendiksen et al. 2003b; Einen & Roem 

1997; Francis & Turchini 2017; Solberg 2004). However, in the present study a 5 % higher protein 

digestibility was recorded in the 35:36 treatment. This resulted in significant differences in terms of 

undigested nitrogenous waste effluent. Despite an improved FCR in the 40:33 treatment, the 

reduction in dietary protein digestibility resulted in similar total amounts of digested protein between 

treatments (in terms of kg ton-1 fish produced). Thus, given the higher level of dietary protein in the 

40:33 diet, the amount of undigested protein, was significantly higher (in terms of kg ton-1 fish 

produced). However, it should be noted that the results presented in this study focus on the amount 

of nitrogenous waste entering the aquatic environment from undigested protein only. In fact, a 

precise, reliable method to quantify nitrogenous waste as a result of catabolised protein is not 

available (Bureau 2004; Houlihan et al. 1993). In consideration of this, a parallel approach was 

implemented to assess the differences in nitrogen assimilation between treatments through simple 

mass balance calculations. Although not significantly different, results were complimentary to the 

analysis of undigested protein, in that, the 35:36 treatment recorded higher nitrogen assimilation 

compared to the 40:33 treatment. To the best of the authors’ knowledge, published literature 

examining the effect of varying the protein : lipid ratio of iso-energetic diets fed to seawater reared 

Atlantic salmon on the digestibility of protein and subsequent nitrogenous waste, has been confined 

to juvenile fish (Dessen et al. 2017). Given the reduced digestible protein : digestible energy ratio in 

the 35:36 diet, the aforementioned results were expected. Importantly, however, there was minimal 

effect on lipid utilisation between the treatments, as evidenced by comparable: i) fillet fatty acid 

composition, ii) fatty acid β-oxidation iii) taste quality of the final fillet product and, iv) growth and 

biometrical parameters.  

 



5. Conclusion 

The present study suggests that a reduction in the protein : lipid ratio in aquafeed formulations for 

market-sized Atlantic salmon elicits minimal effects on lipid and fatty acid utilisation and ultimately 

found no reduction in fillet nutritional quality including levels of n-3 LC PUFA. Additionally, taste 

quality was not compromised. Importantly, a significant reduction in undigested nitrogenous waste 

was observed when the dietary protein : lipid ratio was decreased.  However, whereas overall 

performance was unaffected, there was a slight increase in FCR, which was reflected in the 

bioeconomic analysis by an increased cost of fish and fillet production.  Therefore, the current study 

shows that the cost of fish production and the ability to decrease the potential for environmental 

degradation are in antagonism.  
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Table 1     

Proximate fatty acid composition (mg g-1 diet) of experimental diets 

  Dietsa   

  40:33 35:36 

Proximate composition (mg g-1)     
Moisture  28.9 43.6 
Protein 403.9 357.0 
Lipid 330.5 367.7 
Protein : lipid ratio 1.2 1.0 
NFE 164.6 162.7 
Ash 72.2 69.0 
Energy (KJ g-1) 25.4 25.7 

Total FA (mg g-1 diet)b 253.1 267.7 

SFAc 78.7 81.8 
14:0 4.1 4.3 
16:0 54.1 56.1 
18:0 18.7 19.6 

Other SFAd 1.8 1.9 

MUFAe 123.8 132.1 
16:1n-7 12.2 12.5 
18:1n-9 95.9 103.4 
18:1n-7 6.2 6.5 
20:1n-9 4.2 4.4 

Other MUFAf 5.3 5.3 

Total trans FAg 1.2 1.2 

PUFAh 49.2 52.4 
18:2n-6 29.9 32.5 
20:2n-6 0.4 0.5 
20:4n-6 0.9 1.0 

Other n-6 PUFAi 1.8 1.4 

n-6 PUFAj 33.0 35.4 

n-6 LC PUFAn 2.9 2.6 
18:3n-3 4.8 5.6 
18:4n-3 0.2 0.2 
20:4n-3 0.0 0.0 
20:5n-3 3.9 3.8 
22:5n-3 0.9 0.9 
22:6n-3 5.4 5.6 

Other n-3 PUFAl 1.0 0.7 

n-3 PUFAk 15.9 16.7 

n-3 LC PUFAo 10.9 11.1 

LC PUFAm 13.8 13.7 
n-6:n-3 ratiop 2.1 2.1 

a Diets: 40:33 = poultry by-product oil and fish oil diet consisting of 40% protein and 
35% lipid, added oil consists of 20% fish oil, 80% poultry by-product oil; 35:36 = 
poultry by-product oil and fish oil diet consisting of 35% protein and 35% lipid, 
added oil consists of 20% fish oil, 80% poultry by-product oil 



b Total FA = total fatty acids mg g-1 of diet. 
c SFA = saturated fatty acids. 
d Other SFA = sum of 12:0, 15:0, 17:0, 20:0, 22:0 & 24:0. 
e MUFA = monounsaturated fatty acids. 
f Other MUFA = sum of 14:1n-5, 15:1n-5, 17:1n-7, 20:1n-13, 20:1n-11, 22:1n-11, 
22:1n-9 & 24:1n-9. 
g Total trans FA = sum of 18:1n-9t, 18:1n-7t & 18:2n-6t. 
h PUFA = polyunsaturated fatty acids. 
i Other n-6 PUFA = sum of 18:3n-6, 20:2n-6, 20:3n-6, 22:2n-6, 22:4n-6 and 22:5n-6. 
j n-6 PUFA = omega-6 polyunsaturated fatty acids. 
k n-3 PUFA = omega-3 polyunsaturated fatty acids. 
l Other n-3 PUFA = sum of 20:3n-3, 24:5n-3 and 24:6n-3. 
m LC-PUFA = long chain (>20C) polyunsaturated fatty acids. 
n n-6 LC PUFA = omega-6 long chain polyunsaturated fatty acids. 
o n-3 LC PUFA = omega-3 long chain polyunsaturated fatty acids. 
p n-6/n-3 ratio = ratio between n-6 PUFA and n-3 PUFA. 

 

 

 

 

  

  



Table 2     

Growth, feed efficiency and biometry of Atlantic salmon fed the two 
experimental diets for 150 days. 

  Dietsa       

  40:33 35:36 P-value 

Initial wt (g) 2219 ± 7 2290 ± 21     

Final wt (g) 5053 ± 33 5096 ± 83 ns 0.995 

Gain (g) 2834 ± 28 2806 ± 63 ns 0.913 

Gain (%) 127.7 ± 1.1 122.5 ± 1.7 ns 0.991 

Feed rationb 0.65 ± 0.02 0.69 ± 0.02 ns 0.244 

FCRc 1.26 ± 0.04 1.38 ± 0.05 ns 0.130 

SGRd 0.53 ± 0.00 0.54 ± 0.01 ns 0.187 

Ke 1.82 ± 0.10 1.79 ± 0.05 ns 0.799 

DP (%)f 90.41 ± 0.52 90.84 ± 0.9 ns 0.700 

FY (%)g 60.47 ± 0.73 60.66 ± 0.57 ns 0.849 

HSI (%)h 1.02 ± 0.01 1.09 ± 0.10 ns 0.538 

VSI (%)i 9.26 ± 0.45 9.77 ± 0.21 ns 0.360 

NPU (%)j 32.42 ± 1.05 37.12 ± 2.07 ns 0.113 

PGRk 0.48 ± 0.01 0.51 ± 0.02 ns 0.259 

FDRl 0.70 ± 0.04 0.72 ± 0.02 ns 0.730 

Data are expressed as mean ± S.E.M., n = 2, N = 6. P < 0.05; an independent T-
test: ns = not significant (P > 0.05); * = P < 0.05; ** = P < 0.01; *** = P < 0.001. 
a See Table 1 for experimental diet abbreviations. 
b Feed ration (% BW day-1) 
c FCR = food conversion ratio. 
d SGR = specific growth rate. 
e K = condition factor 
f DP (%) = dress-out percentage. 
g FY (%) = fillet yield percentage. 
h HSI (%) = hepatosomatic index. 
i VSI (%) = viscerosomatic index. 
j NPU (%) = net protein utilisation 
k PGR = protein growth rate 
l FDR = fat deposition rate 

 

 

 

 

  

  



Table 3         

Nutrient and fatty acids digestibility (apparent digestibility coefficient - ADC %) 
of the two experimental diets in Atlantic salmon 

  Dietsa       

  40:33 35:36 P-value 

Nutrientsb         

DMb 66.3 ± 3.9 67.1 ± 2.1 ns 0.860 

Protein 75.5 ± 3.1 80.1 ± 1.8 ns 0.260 

Lipid 88.8 ± 3.3 90.7 ± 1.2 ns 0.604 

Total fatty acidsd 89.4 ± 4.2 90.2 ± 1.6 ns 0.840 

NFEb 78.3 ± 2.3 83.2 ± 1.2 ns 0.134 

Energyc 76.8 ± 3.8 79.5 ± 1.9 ns 0.556 

          

Fatty acids         

12:0 91.8 ± 3.1 92.5 ± 1.1 ns 0.791 

14:0 87.6 ± 4.1 89.2 ± 1.6 ns 0.665 

16:0 79.8 ± 5.0 81.1 ± 1.7 ns 0.783 

18:0 65.8 ± 8.0 64.8 ± 1.8 ns 0.888 

16:1n-7 96.4 ± 2.9 97.1 ± 1.2 ns 0.795 

18:1n-9 94.7 ± 3.9 95.5 ± 1.7 ns 0.818 

18:1n-7 93.9 ± 3.8 94.9 ± 1.7 ns 0.801 

20:1n-9 92.9 ± 4.4 93.7 ± 1.9 ns 0.846 

18:2n-6 96.1 ± 3.2 96.5 ± 1.6 ns 0.891 

20:2n-6 93.0 ± 3.1 92.5 ± 2.4 ns 0.897 

20:4n-6 95.7 ± 2.6 96.7 ± 1.3 ns 0.690 

18:3n-3 96.7 ± 2.8 97.3 ± 1.3 ns 0.836 

20:5n-3 97.6 ± 2.0 97.6 ± 1.2 ns 0.986 

22:5n-3 96.1 ± 3.1 96.3 ± 1.6 ns 0.951 

22:6n-3 96.3 ± 2.6 96.1 ± 1.5 ns 0.927 

Data are expressed as mean ± S.E.M., n = 2, N = 6. P < 0.05; an independent T-
test: ns = not significant (P > 0.05); * = P < 0.05; ** = P < 0.01; *** = P < 0.001. 
a See Table 1 for experimental diet abbreviations. 
b Nutrients: DM, dry matter; NFA, nitrogen-free extract. 
c Calculated on the basis of 23.6, 39.5 and 17.2 kJ g-1 of protein, fat and 
carbohydrate, respectively. 

d Total FA = total fatty acids.       
e Fatty acid not detected in feed.       
f Value of 100 = fatty acid not detected in faeces.     

 

  



Table 4         

Proximate (mg g-1 of tissue) and fatty acid composition (µmol g-1 tissue) of fillets of 
Atlantic salmon fed the three experimental diets for 150 days 

  Dietsa       

  40:33 35:36 P-value 

Proximate composition (mg g-1 of tissue)       

Moisture 644.5 ± 6.2 635.8 ± 9.3 ns 0.480 

Protein  219.7 ± 5.2 219.8 ± 3.3 ns 0.991 

Lipid  132.2 ± 5.9 134.1 ± 6.9 ns 0.845 

Ash 9.9 ± 0.2 9.7 ± 0.2 ns 0.614 

          

Fatty acids (µmol g-1 of tissue)         

Total FAb 394.5 ± 18.4 396.0 ± 33.1 ns 0.971 

SFAc 102.2 ± 5.8 101.1 ± 9.2 ns 0.926 

14:0 8.2 ± 0.4 7.8 ± 0.7 ns 0.639 

16:0 71.5 ± 4.4 71.2 ± 6.6 ns 0.974 

18:0 19.0 ± 0.9 18.7 ± 1.6 ns 0.904 

Other SFAd 3.5 ± 0.1 3.4 ± 0.3 ns 0.654 

MUFA 204.3 ± 9.2 206 ± 16.9 ns 0.936 

16:1n-7 19.1 ± 0.9 19.4 ± 1.7 ns 0.901 

18:1n-9 158.6 ± 7.6 160.3 ± 12.9 ns 0.913 

18:1n-7 11.7 ± 0.7 11.8 ± 1.0 ns 0.930 

20:1n-9 8.9 ± 0.0 8.5 ± 0.8 ns 0.680 

Other MUFAe 6.0 ± 0.2 5.9 ± 0.6 ns 0.838 

Total trans FA 1.7 ± 0.1 1.7 ± 0.2 ns 0.959 

PUFA 86.1 ± 3.4 87 ± 6.8 ns 0.910 

18:2n-6 46.7 ± 2.5 48.5 ± 3.9 ns 0.713 

20:2n-6 3.3 ± 0.2 3.3 ± 0.3 ns 0.932 

20:4n-6 1.6 ± 0.1 1.6 ± 0.1 ns 0.976 

Other n-6 PUFAf 4.1 ± 0.2 4.1 ± 0.4 ns 0.978 

n-6 PUFA 55.6 ± 2.8 57.5 ± 4.7 ns 0.756 

n-6 LC PUFA 7.8 ± 0.3 7.8 ± 0.7 ns 0.928 

18:3n-3 7.8 ± 0.7 7.0 ± 0.5 ns 0.405 

18:4n-3 0.3 ± 0.0 0.3 ± 0.0 ns 0.209 

20:4n-3 1.5 ± 0.2 1.7 ± 0.2 ns 0.522 

20:5n-3 4.5 ± 0.1 4.4 ± 0.4 ns 0.767 

22:5n-3 2.0 ± 0.1 2.1 ± 0.2 ns 0.867 

22:6n-3 12.0 ± 0.7 12.1 ± 0.7 ns 0.979 

Other n-3 PUFAg 2.9 ± 0.1 3.0 ± 0.2 ns 0.837 

n-3 PUFA 29.3 ± 0.7 28.4 ± 2.1 ns 0.717 

n-3 LC PUFA 21.2 ± 1.1 21.2 ± 1.5 ns 0.997 

LC PUFA 29.0 ± 1.3 29.0 ± 2.2 ns 0.981 

n-6:n-3 ratio 1.9 ± 0.1 2.0 ± 0.0 ns 0.184 

Data are expressed as mean ± S.E.M., n = 2, N = 6. P < 0.05; an independent T-test: 
ns = not significant (P > 0.05); * = P < 0.05; ** = P < 0.01; *** = P < 0.001. 



a See Table 1 for experimental diet abbreviations. 
b Total FA = total fatty acids µg g-1 of tissue 
c See table 1 for fatty acid classes and abbreviations. 
d Other SFA = sum of 12:0, 15:0, 17:0, 20:0, 21:0, 22:0 & 24:0. 
e Other MUFA = sum of 14:1n-5, 15:1n-5, 17:1n-7, 20:1n-11, 22:1n-11 & 24:1n-9. 
f Other n-6 PUFA = sum of 18:3n-6, 20:3n-6, 22:2n-6, 22:4n-6, 22:5n-6. 
g Other n-3 PUFA = sum of 22:3n-3, 24:5n3 & 24:6n-3. 

 

 

 

 

  

  



Table 5        

Fillet fatty acid composition (as mg 100 g-1 of edible fillet) of Atlantic salmon fillet fed the two 
experimental diets for 150 days 

  Dietsa       

mg 100 g-1 of fillet 40:33 35:36 P-value 

20:5n-3 136.1 ± 3.7 131.7 ± 13.5 ns 0.767 

22:5n-3 66.9 ± 3.0 68.1 ± 6.3 ns 0.867 

22:6n-3 395.1 ± 22.5 396.0 ± 23.8 ns 0.979 

SFAb 2658.8 ± 151.2 2631.0 ± 239.4 ns 0.926 

MUFA 5762.5 ± 256.1 5806.6 ± 476.7 ns 0.939 

PUFA 2521.6 ± 100.8 2547.6 ± 199.2 ns 0.913 

LC-PUFA 925.8 ± 43.2 924.0 ± 68.5 ns 0.983 

trans 47.2 ± 2.1 47.5 ± 4.4 ns 0.958 

n-6 PUFA 1561.8 ± 77.4 1612.0 ± 131.1 ns 0.758 

n-6 LC PUFA 244.2 ± 9.7 241.9 ± 21.1 ns 0.925 

n-3 PUFA 907.1 ± 24.1 883.4 ± 64.1 ns 0.747 

n-3 LC PUFA 681.6 ± 34.2 682.1 ± 48.8 ns 0.994 

n-6:n-3 ratio 1.7 ± 0.1 1.8 ± 0.0 ns 0.176 

Data are expressed as mean ± S.E.M., n = 2, N = 6. P < 0.05; an independent T-test: ns = not 
significant (P > 0.05); * = P < 0.05; ** = P < 0.01; *** = P < 0.001. 
a See Table 1 for experimental diet abbreviations. 
b See table 1 for fatty acid classes and abbreviations. 

 

 

 

 

 

  

  



Table 6 

The apparent in vivo fatty acid β-oxidation (nmol g-1 day-1 and % of total intake in brackets and 
italics) in Atlantic salmon fed the two experimental diets for 150 days. 

  Dietsa       
  40:33 35:36 P-value 

12:0 3.3 ± 0.8 (56.1) 4.2 ± 0.2 (69.0) ns 0.310 

14:0 57.8 ± 10.8 (44.2) 65.7 ± 5.2 (47.3) ns 0.546 

16:0 501.1 ± 83.6 (33.0) 536.0 ± 44.1 (33.0) ns 0.731 

18:0 82.7 ± 22.1 (17.5) 87.8 ± 10.7 (17.2) ns 0.846 

22:0 6.0 ± 0.6 (0.6) 5.7 ± 0.5 (0.0) ns 0.676 

SFAb,c 650.9 ± 117.8 699.4 ± 60.5 ns 0.733 

14:1n-5 9.1 ± 0.7 (65.6) 9.7 ± 0.4 (66.5) ns 0.509 

16:1n-7 180.3 ± 26.2 (52.2) 159.7 ± 12.0 (43.8) ns 0.515 

18:1n-7 62.0 ± 15.1 (39.2) 60.9 ± 7.2 (35.4) ns 0.949 

18:1n-9 1145.9 ± 198.0 (46.8) 1215 ± 86.6 (44.7) ns 0.765 

20:1n-9 17.6 ± 11.6 (18.2) 17.9 ± 6.1 (17.0) ns 0.984 

22:1n-9 8.3 ± 2.3 (30.9) 4.8 ± 1.3 (18.1) ns 0.267 

24:1n-9 1.8 ± 0.9 (16.2) 3.0 ± 0.3 (26.5) ns 0.268 

20:1n-11 11.7 ± 2.1 (45.6) 9.7 ± 1.335.9 ns 0.486 

22:1n-11 43.6 ± 0.2 (100) 43.9 ± 0.0 (100) ns 0.277 

MUFA 1480.2 ± 256.2 1524.6 ± 115.0 ns 0.882 

18:2n-6 395.1 ± 66.0 (51.5) 347.8 ± 30.5 (40.4) ns 0.551 

22:2n-6 8.4 ± 0.1 (79.5) ─d     

20:3n-6 1.1 ± 1.1 (8.9) 0.8 ± 0.8 (5.7) ns 0.841 

20:4n-6 10.6 ± 1.7 (51.4) 11.9 ± 0.8 (48.7) ns 0.515 

22:4n-6 1.4 ± 0.3 (56.4) 0.8 ± 0.1 (29.2) ns 0.104 

22:5n-6 8.4 ± 0.3 (81.7) 8.0 ± 0.2 (76.3) ns 0.275 

n-6 PUFA 425.0 ± 69.1 369.3 ± 31.8 ns 0.505 

18:3n-3 71.8 ± 12.0 (57.9) 84.0 ± 5.4 (56.1) ns 0.406 

22:3n-3 11.8 ± 0.1 (100) 12.0 ± 0.0 (100) * 0.010 

20:5n-3 71.6 ± 5.4 (77.9) 66.5 ± 3.8 (71.0) ns 0.479 

22:5n-3 9.0 ± 3.0 (46.8) 5.0 ± 1.9 (24.2) ns 0.319 

22:6n-3 42.6 ± 13.4 (35.9) 37.0 ± 4.3 (29.0) ns 0.711 

n-3 PUFA 206.8 ± 33.6 204.5 ± 14.4 ns 0.953 

Total FA 2762.8 ± 476.3 2797.7 ± 221.4 ns 0.950 

Data are expressed as mean ± S.E.M., n = 2, N = 6. P < 0.05; an independent T-test: ns = not 
significant (P > 0.05); * = P < 0.05; ** = P < 0.01; *** = P < 0.001. 
a See Table 1 for experimental diet abbreviations. 
b See table 1 for fatty acid classes and abbreviations. 
c Fatty acids not recording any β-oxidation are not reported in this table. 
d β-oxidation not detected. 

 

  



Table 7 

The apparent in vivo fatty acid bioconversion (elongation, desaturation or chain 
shortening) (nmol g-1 day-1) in Atlantic salmon fed the two experimental diets for 150 days. 

  Dietsa     
  

  
40:33 35:36 P-value 

Fatty acid elongationb         

18:0 to 20:0 2.2 ± 0.5 1.6 ± 0.2 ns 0.397 

22:0 to 24:0 3.6 ± 0.4 4.3 ± 0.4 ns 0.300 

18:2n-6 to 20:2n-6 13.9 ± 4.6 20.0 ± 2.3 ns 0.301 

20:2n-6 to 22:2n-6 ─c 2.2 ± 0.1 ns   

18:3n-6 to 20:3n-6 0.9 ± 0.7 1.9 ± 1.0 ns 0.448 

18:3n-3 to 20:3n-3 2.2 ± 0.6 ─     

18:4n-3 to 20:4n-3 12.6 ± 1.9 17.1 ± 1.2 ns 0.117 

22:5n-3 to 24:5n-3 1.5 ± 0.8 3.0 ± 0.4 ns 0.178 

Fatty acid ∆-6 desaturation         

18:2n-6 to 18:3n-6 4.6 ± 1.7 8.6 ± 2.2 ns 0.226 

18:3n-3 to 18:4n-3 9.6 ± 1.9 20.0 ± 1.6 * 0.014 

24:5n-3 to 24:6n-3 1.5 ± 0.5 1.7 ± 0.1 ns 0.785 

Data are expressed as mean ± S.E.M., n = 2, N = 6. P < 0.05; an independent T-test: ns = not 
significant (P > 0.05); * = P < 0.05; ** = P < 0.01; *** = P < 0.001. 
a See Table 1 for experimental diet abbreviations. 

b Fatty acids not recording any bioconversion (elongation or desaturation) are not reported 
in this table. 
c Not detected 

 

 

 

 

  

  



Table 8         

Consumer preference of salmon products (raw salmon, cold smoked and hot smoked fillet) and 
major influential attributes (fishiness, saltiness and oiliness) from the two dietary treatments. 

  Dietsa       

  40:33 35:36 P-value 

Preference; Like ( + ) or Dislike ( - )b         

Raw 4.1 ± 1.2 3.5 ± 1.7 ns 0.797 

Cold smoked 14.6 ± 2.2 18.7 ± 0.5 ns 0.220 

Hot smoked 22.6 ± 1.3 18.5 ± 5.4 ns 0.535 

Influential attributesc         

Fishinessc         

Raw -0.6 ± 2.6 0.1 ± 0.3 ns 0.816 

Cold smoked 3.9 ± 0.8 3.2 ± 1.9 ns 0.759 

Hot smoked -0.7 ± 1.7 1.1 ± 0.7 ns 0.435 

Saltinessc         

Raw -20.3 ± 3.7 -18.3 ± 1.3 ns 0.670 

Cold smoked 9.8 ± 1.6 9.1 ± 0.4 ns 0.694 

Hot smoked 5.7 ± 1.5 6.3 ± 0.5 ns 0.755 

Oilinessc         

Raw -3.8 ± 1.8 -3.5 ± 0.1 ns 0.902 

Cold smoked 3.5 ± 0.3 4.4 ± 1.6 ns 0.640 

Hot smoked -0.5 ± 1.6 -1.2 ± 2 ns 0.810 

Data are expressed as mean ± S.E.M., n = 2, N = 6. P < 0.05; an independent T-test: ns = not 
significant (P > 0.05); * = P < 0.05; ** = P < 0.01; *** = P < 0.001. 
a See Table 1 for experimental diet abbreviations. 
b Salmon preferences were assessed using hedonic LMS scales. 
c Attributes consumers determined had greatest influence over preference 

 

 

 

 

 

 

  

  



 

 

 
  



 
  



  



Figure 1; Preliminary assessment of feed related production costs associated with the ingredients used to formulate two 
commercial-like diets for large Atlantic salmon, one containing 40 % protein and 33 % lipid (40:33) and the other containing 
35 % protein and 36 % lipid (35:36), including ai) Cost of feed ingredients in $US kg-1 of diet, bi) cost of fish production in 
$US kg-1 of fish based on feed ingredients and food conversion ratio for the respective diets, ci) cost of fillet production in 
$US kg-1 of fillet based on cost of diet ingredients, food conversion ratio and fillet yield for the respective diets. aii), bii) and 
cii) represent percentage differences between the two treatments for the cost of feed ingredients, fish production and 
fillet production, respectively. 
 
Figure 2; Feed, protein usage and nitrogenous waste from undigested protein; associated with two commercial-like diets 
for large Atlantic salmon, one containing 40 % protein and 33 % lipid (40:33) and the other containing 35 % protein and 36 
% lipid (35:36), including a) feed ton-1 fish produced (kg) based on FCR, b) protein used ton-1 fish produced (kg), based on 
FCR and protein content of the treatment diets, c) retained protein ton-1 of fish produced (kg), based on FCR, protein 
content of diet and ADC % of protein for the two treatment diets and d) undigested nitrogen ton-1 fish produced (kg), 
based on FCR, protein content of diet, ADC % of protein and converting undigested protein to nitrogen for the two 
treatment diets. 
 
Figure 3; Nitrogen assimilation or ‘loss’ based on mass balance calculations in large Atlantic salmon associated with two 
commercial-like diets, one containing 40 % protein and 33 % lipid (40:33) and the other containing 35 % protein and 36 % 
lipid (35:36), including a) Nitrogen assimilation / loss (%), based on initial and final fish weights, protein intake and protein 
content of the diets and whole-body of fish from respective treatments, b) Nitrogen assimilation / loss (g fish-1), based on 
total protein  intake and % assimilation and c) Nitrogen assimilation / loss (kg ton-1 fish), based on % assimilated, protein 
was converted to nitrogen by dividing by 6.25.  
 

 


