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Abstract We introduce a novel method to extract a sample from a finite
population where units with desired characteristics are over-represented. The
approach is both sequential and adaptive and allows, via suitable compositions
of predictive and objective functions, to target specific subsets of the popula-
tion. We consider the problem of estimation and conjecture the validity of a
modified Horvitz-Thompson estimator capable to account for the imbalance
induced by the targeting procedure. After discussing how to apply the method
to the sampling of geographically distributed units, we investigate its potential
via simulations.

Keywords Adaptive sampling · π-ps designs · Sequential methods · Hot
deck imputation · Oversampling · Spatial sampling

1 Introduction

Efficient and reliable monitoring systems are essential components of the man-
agement of wildlife and agricultural ecosystems, as pointed out by many au-
thors (see, for example, [11] and references therein). Within this framework,
survey sampling is usually the tool of choice, and proposals on how to effi-
ciently implement surveys for environmental monitoring purposes abound in
the literature. In particular, during recent years, the topic of adaptive sam-
pling has drawn the attention of the research community and has been studied
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and applied in a variety of instances in the environmental field ([29], [22], [26],
[9]). Adaptive sampling is characterized by the fact that the procedure used to
select units depends on evidence collected during the survey itself; a notable
feature of adaptive designs is that they are typically well suited to surveying
populations where the variable of interest has a highly skewed distribution,
also in a geographical sense ([28], [27], [20]); for example, when dealing with a
dichotomous survey variable such as the presence or absence of a rare and geo-
graphically clustered characteristic, adaptive sampling strategies have proved
to be reliable in over-representing units that have the trait of interest, while
retaining the possibility of drawing valid inference [1]. Over-representation
of units responding to prescribed characteristics may be a highly desirable
feature, especially when resources are limited: in the environmental setting,
budget constraints usually limit the possible survey effort ([11]), hence em-
phasising the need for an efficient use of the available resources. Relevant
examples include expensive field studies needed to identify local maxima such
as sources of pollution, areas where soil erosion is reaching critical levels, or
where individuals of rare species are observed: the ability to obtain samples
where the sought-after characteristics are more likely to appear, is then very
important. Existing adaptive designs, such as the commonly employed Adap-
tive Cluster Sampling (ACS, [30]) and the more recent proposals of Adaptive
Geostatistical Designs (AGD, [8], [20]), are successful in providing the desired
over-representation and guarantee valid sample-based inference; however, they
suffer from important drawbacks, mainly related to their producing variable
sample sizes (ACS, see [1] for a discussion, and [5], [13], [14] for some recent pro-
posals addressing the issue), to their difficulty of implementation (AGD), and
to their inability to provide control on the magnitude of the over-representation
(both). An extensive comparison of all of these approaches, while outside the
scope of this work, could provide additional important information.
In this paper, we outline a novel design-based method for selecting sam-
ples with fixed size from finite populations that aims at achieving two main
goals: i) valid estimation of population parameters, and ii) controlled over-
representation of units that possess prescribed characteristics. Our approach
differs from the existing literature in that it constitutes a simple, fixed size and
non-parametric alternative to current design- (e.g., ACS) and model-based
(e.g., AGD) methods, and offers greater flexibility in terms of defining and
controlling the objectives and magnitude of the over-representation than other
available options. Despite the (desirable) conceptual simplicity of our method,
resort to numerical methods is necessary when it comes to the estimation task,
due to the dual sequential and adaptive nature of the approach: for this rea-
son, some discussion is devoted to the development of a suitable algorithm that
allows the estimation of the design’s inclusion probabilities, in the spirit of [10].

The paper is structured as follows: in Section 2 we describe our proposal and
outline the algorithm for its implementation. Section 3 contains details on
choices for the design setup and on how to inform and control the feature
of oversampling of units with prescribed characteristics; the potential of the
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method for applications to spatial sampling problems is also discussed. In Sec-
tion 4 we address the problem of estimation. In Section 5 we present empirical
evidence supporting the potential of our proposal, also in a spatial setting,
and conclude the paper with some final remarks in Section 6.

2 The design

Consider a finite population U of size N , and let the units in U be indexed
by k = 1, ..., N ; denote by yk and xk the values associated to the k-th unit
of, respectively, a non-negative survey variable Y and a positive variable X
positively correlated with Y , usually labelled as the auxiliary information. Let
Y be real, and X possibly vector-valued. X is known for all subjects, while
Y is unknown. The object of interest is a population parameter θ that can be
expressed as a function of the distribution of Y , such as the population total
or mean; besides the estimation task, the targeting of specific subsets of the
population is also of interest. Let n = n1 + n2 be a prescribed fixed sample
size. Our proposal is a two-step sampling design in which a sample s1 of size n1
is initially collected via Simple Random Sampling (SRS) from U ; the sample
evidence is then used to define the new variable

Ỹk = Is1(k)Yk + [1− Is1(k)] Ŷk, k ∈ U (1)

where IA(k) is the indicator function that takes on value 1 if k is in set A,

0 otherwise, and Ŷk is an estimator of the survey variable value for out-of-
sample units as a function of yk, k ∈ s1 and xk, k ∈ U . At the second step, an
additional set s2 of size n2 is collected from U \ s1 by means of a fixed-size

π-ps design using Ỹ as auxiliary variable. The final sample is s = s1 ∪ s2, of
size n. Without loss of generality, in this paper we consider the Pareto design
(see, for example, [25]) for the second step extraction.
We stress that this approach does not constitute an example of two-stage sam-
pling, since the sampling units are all at the same ‘level’ (there is no distinction
between primary and secondary sampling units, such as in cluster sampling),
nor of two-phase or double-sampling, since there is no subsampling and the
survey variable is assumed to be available for all units in s.

Denote with π1 and π̂2 the vectors of inclusion probabilities for the units
available for sampling at each of the two steps; in our setting, the elements of
π1 are πk;1 = n1/N,∀k ∈ U , while the elements of π̂2 are π̂k;2, k ∈ U \ s1, and

are a function of Ỹ .
The algorithm can be summarized as follows:

Algorithm 1

1. Draw s1 of size n1 from U using SRS
2. Construct Ỹ based on s1
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3. Compute π̂2 based on Ỹ
4. Draw s2 of size n2 with probabilities π̂2 from U \ s1 using Pareto.

The final sample is then s = s1 ∪ s2, with size n1 + n2 = n.

Note that the probability function of this design is, in general, not trivial,
as it encompasses two steps of randomization: the selection of s1, and of s2
conditionally on s1. In general terms, it should be possible to express it using
chain rules in the form p(s) = p(s1)p(s2|s1), but the specific formula will of
course be dependent on the design choices, and may not be easy to describe
analytically.

3 Prediction and targeting

To implement the proposed method, choices about how to perform the predic-
tion task and how to use the predicted values to inform the second sampling
step must be made; clearly, these decisions will influence both the ability of the
design to deliver the desired over-representation and its level of complexity.
In principle, any predictive machinery could be used to obtain the values ŷk,
from classical statistical modelling to state-of-the-art machine learning meth-
ods. In this paper, we consider a non-parametric approach common in the
missing data literature, namely the distance Hot Deck imputation (HD, see
[2] for a recent review); moreover, we discuss the possibility of employing the
Inverse Distance Weighting interpolator (IDW, see [6], [12]), by interpreting
the prediction task as a spatial mapping problem.

3.1 The HD approach

The prediction is handled as a missing data imputation problem, where no
specific assumptions on how Y and X are related is made, other than accept-
ing that units close in the X space should possess similar Y values, which is
consistent with the reasons why one would choose to use a π-ps design. More-
over, imputation by distance HD is simple to implement, computationally light
and possesses desirable consistency properties [21]. Following the notation in-
troduced in Section 2, ŷk will denote the survey variable value prediction for
out-of-sample units, obtained via HD imputation. Specifically,

ŷk = yj , k ∈ U \ s1, j ∈ s1 (2)

where

j = argminj∈s1∆(xj , xk), k ∈ U \ s1 (3)

and ∆ is a suitable dissimilarity function. Although in this paper we consider
only auxiliary information that is measured on a numerical scale (hence, for
example, we would use the city block or the euclidean distance), in principle
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any kind of variable could be used, under a suitable choice of ∆.

The predictions ŷk obtained via HD imputation are mapped into a set of inclu-
sion probabilities π̂2 via a transformation that achieves the goal of targeting
units with specific values of the dependent variable by assigning larger proba-
bilities to such units. For the sakes of illustration, consider the target units to
be those whose Y values belong to some set T . A simple example of targeting
function is

ϕ(ŷk; c) = ŷk
[
IT (ŷk) · c+ [1− IT (ŷk)] · c−1

]
(4)

where c > 0 is an arbitrary boosting factor. The inclusion probabilities for the
second step are then defined as

π̂k;2 = n2
ϕ(ŷk; c)∑

i∈U\s1 ϕ(ŷi; c)
, k ∈ U \ s1, (5)

so that
∑

k∈U\s1 π̂k;2 = n2. If c = 1 in Equation 4, the inclusion probabilities
are computed in a way that is exactly proportional to the estimated Y values,
regardless of the choice of the set T . Alternatively, choosing c > 1 allows
to boost the probability for units estimated to have values of Y in T , while
penalizing those estimated to have values outside of T ; the converse happens
if c ∈ (0, 1). Simple examples of T include: the set of values exceeding a fixed
treshold t, T = {y ∈ R+ : y > t}, the set of values within a certain interval
(t1, t2), T = {y ∈ R+ : y ∈ (t1, t2)}, and sets defined by unions of disjoint
intervals, such as T = {y ∈ R+ : y < t1 ∪ y > t2)}. The performance of the
proposed HD approach will be investigated, via simulation, in Section 5.

3.2 The spatial approach and the IDW interpolator

In many settings, the spatial component of the phenomenon under study is
of primary importance, as is the case for environmental studies: our proposal
naturally extends to the spatial sampling framework, by considering the geo-
graphical coordinates of the sampling units as part of the auxiliary information
available. In fact, it is possible to implement our sampling strategy by relying
on the sampling units locations alone as auxiliary information, as we show in
Section 5.2.

The problem of obtaining good ŷk predictions is akin to the problem of con-
structing a good map of a spatial population based on a probabilistic sample.
The task of constructing a map using an estimator that has good properties
in a design-based framework has been recently addressed in [12]: the authors
derive conditions under which the IDW interpolator possesses design-based
asymptotic unbiasedness and consistency for the estimation of the yk values
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for the whole population. The IDW interpolator of the density fk of the survey
variable for unit k is defined as

f̂k = Is1(k)fk + [1− Is1(k)]
∑
i∈U

wikfi (6)

where the wiks are suitable weights attached to the density of unit i to esti-
mate the density of unit k. As stressed in [12], we note that usually, in practice,
the area of the spatial units is known, hence drawing inference on fk is equiv-
alent to drawing inference on yk itself. The conditions under which the IDW
interpolator provides the asymptotic unbiasedness and consistency essentially
require the underlying sampling design to provide a certain degree of spatial
balance; this is the case for some designs commonly employed in environmen-
tal studies, such as SRS and stratified sampling with proportional allocation.
Since we consider SRS as a sampling procedure for the first step, we reckon
that it would suffice to use the IDW interpolator with a suitable choice of
weights in order to obtain ‘good’ predictions of the Ŷks. The predictions are,
in turn, used to compute the inclusion probabilities for the second sampling
step as discussed in Section 3.1: ideally, the possibility of obtaining a good
approximation of the Y via the predictive tool should provide us with an aux-
iliary variable able to improve the targeting.

We wish to stress that the presented approach may be implemented by using
general variables in arbitrary spaces, not only geographical systems for physical
regions: our method can be used to target subset of the population by exploring
a possibly highly multidimensional covariates space with no further adaptation
than the definition of a dissimilarity measure that is suitable to the nature of
those covariates. In Section 5.2 we present an application to a scenario inspired
by a real data problem, to highlight the spatial capabilities of our approach.

4 Estimation

In the following, we will focus on θ = N−1
∑

k∈U yk, the population mean, as
the parameter of interest. Consider its Horvitz-Thompson (HT) estimator

θ̂HT = N−1
∑
k∈s

yk
πk

(7)

where πk > 0 denotes the first-order inclusion probabilities for unit k, i.e.,
πk = P (k ∈ s). Unfortunately, in spite of the conceptual simplicity and ease
of implementation of the design, the inclusion probabilities of any order are
impossible to compute, since they depend on the unknown values y1, ..., yN .
When the inclusion probabilities depend only on known characteristics, such
as the auxiliary variable X, available for all the units in U , they can be con-
sistently estimated via Monte Carlo as shown in [10], which in turn leads to a
modified HT estimator that is asymptotically equivalent to the original one.
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In the same spirit, we suggest a resampling procedure that we conjecture ca-
pable of achieving analogous results under our design. The procedure can be
described as follows:

(i) obtain a ‘best possible’ approximation Ỹ of the survey variable Y based
on the final sample s for all units in U

(ii) apply the sampling procedure used to obtain s to collect a new sample

from U , using Ỹ in lieu of Y as the true population values, and store it
(iii) iterate point (ii) a certain number, say B, of times.

An estimate of any-order inclusion probability is given by the proportion of
inclusions in the B samples of the relevant units.
A thorough investigation of how to perform the task of obtaining the ‘best
possible’ representation of Y is beyond the scope if this paper, and it will not
be discussed here; for simplicity, we again consider nonparametric imputation
via distance HD as a convenient way to build Ỹ . We are aware, however, that
this step is fundamental in determining the validity of the modified estimator,
and hence provide extensive empirical evidence to support our choice of using
hot-deck imputation.

Let Ỹk be defined as in Equation (1), with Ŷk obtained via HD imputation
based on s and X (known exactly for all population units). The following
algorithm formalizes the resampling strategy.

Algorithm 2

For b = 1, ..., B:

1. select a sample s1b of size n1 using SRS from U
2. build a HD prediction Ỹ ∗1b based on Ỹk, k ∈ s∗1b
3. compute π̂∗2b using the same combination of targeting function and

boosting factor as in the original design
4. draw a Pareto sample s∗2b of size n2 with probabilities π̂2b from U \s∗1b
5. store s∗b = s∗1b ∪ s∗2b .

Figure 1 depicts the generic b-th run of algorithm. The first-order inclusion
probabilities can then be estimated using

π̂k =
Zk + 1

B + 1
(8)

where Zk =
∑B

b=1 Is∗b (k) is the number of times unit k enters the B samples.

The estimator returns strictly positive values and constitutes our approxima-
tion of the true πk values; we conjecture that the goodnes of such approx-
imation improves as B → ∞, provided that Ỹk, k ∈ U is a good enough
representation of the original population Y . Once the estimates π̂k have been
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Ỹ ∗1b

π-ps

targeting

&&

s∗b

s∗1b

prediction

88

s∗2b

s∗1b∪s
∗
2b

88

Fig. 1 Resampling procedure

obtained via resampling, a natural modification of the classic HT estimator is
then

θ̂B = N−1
∑
k∈s

yk
π̂k

(9)

Our sampling scheme guarantees strictly positive second-order inclusion prob-
abilities πkj ,∀k 6= j ∈ U , that can be estimated in analogy with Equation 8
via

π̂kj =
Zkj + 1

B + 1
(10)

where Zkj =
∑B

b=1 Is∗b (k, j) is the number of times units k and j jointly enter
the B samples. Again, we conjecture that such approach leads to reasonable
approximations of the true unknowable πkjs to be, in turn, used to obtain an

estimate of the variance of θ̂B via a modified estimator of the variance of the
HT estimator θ̂, as in [10]. We note, however, that satisfactorily estimating the
πkjs requires a very large number of runs B, thus increasing sensibly the com-

putational effort, together with assuming that Ỹ provides indeed an adequate
representation of Y . A possible way to overcome this added computational
burden could be to investigate approximations of second order inclusion prob-
abilities by means of estimated first-order ones, in the spirit of [17]; this will
be subject to further research.

5 Empirical evidence

This section contains the results of Monte Carlo simulations aimed at inves-
tigating the properties and potential of our proposal. We present empirical
evidence concerning:

– the recovery of the true πks via the proposed Algorithm 2
– the sampling distribution of the modified HT estimator
– the targeting feature and its impact on over-representation

These aspects are investigated under two scenarios: i) a simulated dataset
in which a univariate auxiliary variable X, highly correlated with the survey
variable Y , is used; and ii) a spatial setting, where X is bivariate and represents
geographical coordinates of the sampling units over a region. All computations
have been carried out in R 3.4.2 [24]; the following packages have been used:
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copula [31], gstat [15], HotDeckImputation [19], sp [23], and spatstat [3].
The code for the simulations is available upon request from the authors.

5.1 Univariate auxiliary variable

Consider an artificial population of N = 1000 units where the survey and the
auxiliary variables Y and X are jointly generated via a Gaussian copula with
parameter ρ = 0.75 and margins, respectively, LogNormal and Gamma. The
marginal parameters are (µ-log = 1.5, σ-log = 0.5) for the LogNormal and
(shape = 15, scale = 0.2) for the Gamma.
We simulated the extraction of 20000 samples of size n = 100 from the popu-
lation under three designs:

– simple random sampling without replacement (SRS)
– Pareto sampling, with X as the auxiliary variable (PAR)
– the new method introduced here (HD)

where for our proposal we considered a targeting set defined by the values y
exceeding the median value y0.5, i.e., T = {y ∈ R+ : y > y0.5}. We investigated
three levels of boosting factor in (4), namely c ∈ {2, 4, 15} and denote with
HD1, HD2 and HD3, respectively, the corresponding outcomes. Moreover, the
sampling effort is split equally between the two steps, i.e., n1 = n2 = 50.
Lastly, B = 2000 runs of resampling have been employed in Algorithm 2.

Figure 2 contains the results of the simulation study. The artificial population,
for which the joint (X,Y ) distribution is shown in the top-left panel, has been
generated using positive margins, which is often the case when dealing with
real world physical measurements such as those common in the environmental
surveys (concentration of a pollutant, abundance of a species, deadwood vol-
ume, etc). Clock-wise, the second panel shows the Monte Carlo distributions of
the HT estimators under SRS and Pareto designs, together with the modified
HT estimators that we have proposed for our design; the percentage relative
bias with respect to the true mean of Y (represented by the dashed horizontal
line) are reported below each boxplot. The HT estimator is unbiased by con-
struction, while our modified version appears to be only approximately so; our
conjecture that the magnitude of the bias can be somewhat controlled with
a large enough number of resampling runs B seems to be confirmed in the
present scenario: the bias appears to be decreasing with B (results not shown
here), although we suspect that a better approximation could be obtained by
accounting in a more precise way for the specific value of the boosting factor
when computing the estimates. For what concerns the variability of the mod-
ified HT estimator, further simulative results (not shown) seem to indicate a
non trivial relationship with c which appears, however, to be negligible in this
example. Interestingly, the variance seems comparable to that of the simple
π-ps approach. The third panel shows the ability of Algorithm 2 to recover
the true inclusion probabilities for each unit: for each c ∈ {2, 4, 15}, and for
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each Monte Carlo run, B = 2000 resampling runs have been used to obtain
the π̂ks. Since a closed form expression for the first-order inclusion probabili-
ties is not available, we have run a separate Monte Carlo simulation with the
same sets of parameters to select 200000 samples with our method and we
have counted the relative frequency for each unit in the samples. These values
have been taken as the true inclusion probabilities πk for comparison purposes:
the plot shows the Monte Carlo percentage relative bias (π̂k − πk)/πk · 100%
for HD1-3. The Monte Carlo distributions of the biases seem to be centered
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Fig. 2 Simulated population results. Clockwise from top-left panel: scatterplot of simulated
population values – Monte Carlo distribution of the HT estimators of the mean under SRS
and PAR, and the modified HT under HD1-3 (percentage relative bias shown under each
boxplot) – kernel density estimates of percentage relative bias in estimating the true πks
under HD1-3 – Monte Carlo proportion of units per 10% Y -quantiles intervals for SRS and
HD1-3, with respect to PAR.

around zero, although we observe an increase in skewness and variability with
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c, likely due to the stronger imbalancing induced by the larger boosting factor.
The fourth panel explores the oversampling feature by contrasting the Monte
Carlo proportion of units in the final sample that fall within 10% intervals
of the distribution of Y under SRS and HD1-3 to the same quantity under
PAR; specifically, the values corresponding to i = 1, ..., 10 on the abscissa are
the number of units in the intervals (y(i−1)/10, yi/10), where yp denotes the
p-th percentile of Y , divided by the corresponding number of units obtained
under Pareto sampling. Note that the Pareto design possesses a natural over-
representation feature of its own: units with larger X values are expected to
possess larger Y values, because of the strong positive correlation existing be-
tween X and Y , and since under classic PAR the πks are exactly proportional
to the xk values, we can expect, on average, to undersample units with a low
yk, and oversample units with a large yk. It appears clear from the plot that
SRS tends to oversample (respectively, undersample) units with low (high) Y
values with respect to PAR, given the complete absence of targeting - the in-
clusion probabilities are all equal. On the other hand, HD1-3 manage to always
deliver more units with Y values beyond y0.5 (the arbitrary targeting thresh-
old for this scenario), up to 15% more on the right tail when c = 15, than
PAR does. Values below the threshold are under-represented by HD1-3 in the
final sample as compared to PAR, with approximately the same magnitude as
the over-representation. Finally, the magnitude of the imbalance seems to be
proportional to c: this provides us with a way to control the amount of desired
over- and under-representation, given our simple targeting function.

5.2 Spatial example

The map in Figure 3 depicts the topsoil lead concentration in mg/kg (ppm)
in a flood plain of the river Meuse in the Netherlands. The population for
this scenario is composed by N=3103 40m× 40m quadrats for which the lead
concentration levels (variable Y ) have been computed via IDW interpolation
of 155 soil samples data, as described in [4], p. 216 (the original dataset was
introduced in the literature in [7]). Existing literature on the dataset describes
the process governing the distribution of heavy metals as being driven by pol-
luted sediments carried by the river, and deposited close to the bank in areas
of low elevation; the spatial distribution of lead concentration can be seen to
be present a markedly clustered pattern. For the present example we make
use, as auxiliary information, of the geographical location of the centroids of
the quadrats only, described in terms of Easting X1 and Northing X2 (in me-
tres) in Rijksdriehoek map coordinates (the coordinate system in use at the
national level in the Netherlands). We choose to ignore the existing data on
elevation to investigate the potential of our proposal in a situation where no
other information than the locations of the population units is available.

In this simulation, we extracted 10000 samples of size 250 with the new method
(n1 = n2 = 125) for different values of c, and stored the Monte Carlo distribu-
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tion the modified HT estimator for the mean level (137.8221 mg/kg) of lead
concentration in the region and the corresponding oversampling evidence; the
latter aspect will be presented and discussed via maps of the Monte Carlo
estimates of the quadrats inclusion probabilities.

10
0

20
0

30
0

40
0

50
0

60
0

Fig. 3 Spatial example: interpolated lead concentration from the Meuse dataset

The targeted units, as in the previous example, are those with Y values in
the set T = {y ∈ R+ : y > y0.5}; we include results from SRS as benchmark.
Figure 4 contains the results concerning estimation: B = 1000 resampling runs
have been used to to obtain the estimates π̂k of the inclusion probabilities for
each Monte Carlo run (equivalently, for each of the 10000 samples extracted)
and each value of c via Algorithm 2. The estimates have been, in turn, used
to obtain the modified HT estimates of the mean. The percentage relative
bias with respect to the true mean of Y (represented by the dashed horizontal
line) are reported below each boxplot. Also in this case, the modified HT
estimators exhibit some bias, albeit small; possibly, this is an indication that
the reconstruction of the population using a distance-based method, such as
distance HD, has been a good choice in this spatial setting, allowing for an
adequate recovery of the spatial relationship between X and Y .
Figure 5 reports the maps of the Monte Carlo proportion of inclusions of each
quadrat in the final sample s, for SRS and HD1-3. For purely aesthetic reasons,
a mild spatial smoothing with Gaussian kernel has been applied to the Monte
Carlo empirical values. SRS provides the expected benchmark of uniform se-
lection of units over the region, the negligible departures being imputable to



Sequentially adaptive targeting 13

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Estimators

11
0

12
0

13
0

14
0

15
0

16
0

SRS HD1 HD2 HD3

−0.05 −0.95 −0.47 −0.22

Fig. 4 Spatial example results: Monte Carlo distributions of the estimator of the mean
under SRS and of the modified HT estimators of the mean under HD, for c ∈ {2, 7, 15}
(HD1-3), percentage relative bias shown under each boxplot; the total number of runs is
10000 and B = 1000

Monte Carlo error alone. The oversampling induced by HD1-3 is immediately
evident and appears to become more marked as c increases; if compared with
the original population map in Figure 3, these depictions indicate that the new
method is indeed targeting, on average, areas where the lead concentration is
larger.

6 Conclusions

Adaptive sampling methods have gained popularity in the environmental set-
ting in recent years and have been applied to a variety of situations where
the over-representation of units responding to prescribed characteristics in a
sample is of interest. In this paper we proposed a novel fixed-size design-based
probabilistic approach to sampling that aids the task of targeting specific sub-
sets of a finite population in a controlled way; specifically, we introduced a
two-steps sampling design that makes use of the information obtained at the
first step to inform the sampling effort in the second, via predictive techniques.
Our method offers ease of implementation and great flexibility in the choice of
its building blocks: indeed, the structure of the design is very general and sam-
pling procedures other than those we used (SRS at the first step and Pareto
sampling at the second step) can be employed. Similarly, there is flexibility on



14 Federico Andreis, Marco Bonetti

0.
04

0.
06

0.
08

0.
1

0.
12

SRS

0.
04

0.
06

0.
08

0.
1

0.
12

HD1

0.
04

0.
06

0.
08

0.
1

0.
12

HD2

0.
04

0.
06

0.
08

0.
1

0.
12

HD3

Fig. 5 Spatial example results: quadrat-specific Monte Carlo inclusion probabilities for SRS
and HD, c ∈ {2, 4, 15} (HD1-3), darker areas are more frequently selected in the final sample;
the total number of runs is 10000.

how: i) the predicted survey variable Ŷ is constructed, and ii) the predicted
values are transformed into inclusion probabilities for the second step. More-
over, the method is suited to envisage more than two steps: it is immediate to
extend the algorithm beyond two sampling occasions, which may be helpful
in improving the targeting. Clearly, all these choices will influence the perfor-
mances of the method, to an extent that is still under study.
We addressed the problem of estimating a parameter, the population mean,
and proposed a numerical procedure to overcome the impossibility of obtain-
ing the true inclusion probabilities under the new design. We conjectured that,
in front of an adequate reconstruction of the original population based on the
sample evidence, the resampling approach we discussed should provide a good
approximation of the πks to, in turn, used with a modified version of the HT
estimator. We also showed that the extension of the new design to spatial ap-
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plications is straightforward; indeed, the only adaptation required is to include
the geographical coordinates of the sampling units in the auxiliary informa-
tion. Moreover, we discussed how some recent results on consistent map recon-
struction based on probabilistic samples may help improve the predictive part,
needed to inform the second step sampling. The flexibility of the method also
allows for more complex targeting functions than the one considered here: for
example, the researcher may be interested in targeting units whose surround-
ings present larger-than-average variability with respect to the survey vari-
able; this would only require to adjust the targeting function accordingly. The
simulation results indicate that our proposal is successful in delivering over-
representation of units responding to prescribed characteristics, if compared
with SRS and classic π-ps sampling designs, such as Pareto. The complete con-
trol on final sample size and on the the magnitude of the over-representation
are desirable features that are currently not provided by competing adaptive
designs such as ACS and AGD; further research is needed, however, to di-
rectly compare the new method with these competing approaches. Finally, an
aspect that has received much attention in the survey literature recently is
that of spatial balance; we reckon that by suitably combining design choices
and targeting functions, features of spatial balance with respect to general
(not only geographical) auxiliary information, in the sense described in, for
example, [16], can be achieved while still retaining oversampling (although
some trade-off is clearly expected).
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