
This is an Accepted Manuscript of an article published by Taylor & Francis Group in Applied 

Economics on 7 Nov 2018, available online: 

http://www.tandfonline.com/10.1080/00036846.2018.1540848.  

 

 

 

Rational Functions: An Alternative Approach to Asset Pricing 

Nilanjana Chakraborty a, Mohammed M Elgammal b,c, David McMillan d    

 

 

 

Abstract 
This paper shows that asset prices are linear polynomials of various underlying explanatory factors 

and asset returns being ratios of these polynomials, are rational functions that do not add linearly 

when averaging. Hence, average returns should be modeled based on stock prices. However, 

continuous returns may be treated as approximately linear across time and modeled directly. Our 

new Rational Function (RF) models, empirically outperform the traditional asset pricing models 

like the Capital Asset Pricing Model (CAPM) and the Fama-French three and five-factor models 

for both average and continuous returns. Moreover, the RF theory also provides a model to 

estimate the asset volumes. The average change in asset volumes together with average returns 

provide the estimates for average change in market values of assets. Thus, the RF model approach 

can be used to select assets that provide either highest returns for profit maximization or highest 

change in market values for wealth maximization for given levels of risk. 
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1. Introduction 

Existing asset pricing models are based on a linear relation between expected returns of 

financial assets and relevant explanatory factors. This includes both theoretically derived models, 

such as the Capital Asset Pricing Model (CAPM: Sharpe, 1964; Lintner, 1965) and Arbitrage 

Pricing Theory (Ross, 1976) as well as more recent empirically motivated models beginning with 

the Fama and French (1993) three factor model and continuing with other factor based models 

(see, for example, Aharoni et al, 2013; Novy-Marx, 2013; Fama and French, 2015). However, 

these asset pricing models often fail to provide an accurate description of expected returns when 

compared to actual values. Indeed, the development of the empirical asset pricing literature arose 

from the inability of CAPM to explain the cross-sectional differences between the stock returns 

(starting with the value-growth anomaly of Basu, 1977 and the size anomaly of Banz, 1981). This 

paper seeks to contribute to the literature by focusing on the basic definition of asset returns and 

the price-quantity framework that defines any free market. We argue that since an asset return is a 

quotient of two consecutive asset prices that are themselves polynomials of various factors, the 

return is a rational function and hence does not add linearly within a portfolio. This motivates one 

to consider an alternative expected return model that improves our understanding of asset price 

movements.   

Our work adds to the capital asset pricing literature by explaining the discrepancies between 

the estimations of existing asset pricing models and actual average return values by questioning a 

basic assumption that lies behind these models. We question whether stock returns add linearly 

across portfolios or across time and whether they are linearly related to index returns. We address 

this through a theoretical re-examination of the stock market behavior by considering first an 

individual security and then the market portfolio. We attempt to explain asset pricing through the 

Rational Function (RF) model, which asserts that returns do not add linearly when averaging. This 

means that we should not model returns directly using linear regression techniques but rather 

model prices and then compute average returns from the estimated prices.  

Our RF model further suggests that we should consider other variables in addition to the market 

index return such as the preceding asset price, asset volume, time trend etc. to model asset prices. 

Our findings show that the RF model not only outperforms the traditional linear models like the 

CAPM and the Fama and French 3 and 5 Factor models but follows the actual average returns so 

closely that it seems that it has finally solved the CAPM enigma. Thus, the CAPM anomalies were 
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mainly arising due to averaging errors. Further, apart from the averaging concept, the RF theory 

also relies on the theoretical link between price and quantity (called trading volume in the stock 

market) – the two fundamental forces of any free market. This logic is very much in the spirit of 

earlier endeavors to base asset pricing fundamentals on price-volume relationships (Lo and Wang, 

2000, 2006; Wang, 2002). Accordingly, the RF theory leads to a model for estimating asset 

volumes as well. We have compared the performance of our RF model for volumes with that of 

the Lo and Wang 2 Factor (LW2F) model and again, the RF model estimates for average change 

in volumes are found to be more accurate. These findings bring very important implications for 

the investment managers and the investors as the RF model introduces a powerful technique to 

study financial assets that can help in making better investment decisions.  

The remainder of the paper is organized as follows. Section 2 reviews the popular asset pricing 

models for estimating returns and volumes, while Section 3 introduces the RF model by 

establishing its theoretical base and attributes. Section 4 conducts an empirical analysis to compare 

the performance of the above mentioned models against that of the RF model. Section 5 highlights 

the practical implications of the RF model while Section 6 concludes the paper. 

 

2. Literature Review 

According to the Sharpe-Lintner CAPM equation, the relation between the expected return of 

asset i, denoted as E(Ri), and the market risk premium βi,m is linear and given by: 

E(Ri) = Rf + βi,m [E(Rm) – Rf ]                                                                                                               (1) 

Asset i represents either an individual stock or a portfolio, while Rf and E(Rm) denote the risk-

free rate of return and the expected market return, respectively. However, several empirical studies 

have consistently found that the CAPM average returns are lower than the actual average returns 

for lower risk assets, whereas they are higher than the actual average returns for higher risk assets 

(see for example, Jensen, 1968; Blume 1970; Fama and French, 1993, 1996, 2004). This led to the 

articulation of the prominent Joint Hypothesis Problem by Fama (1970), which attributed the 

discrepancies between the actual and the CAPM average returns to a flawed asset pricing model 

and/or market inefficiencies.1  

                                                           
1 A related issue is concerned the view that CAPM is an ex ante concept, whereas tests of CAPM are conducted 

ex post. Roll (1977) concludes that the CAPM tests are invalid because they use inefficient benchmark portfolios. 
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Fama and French (1993) provided empirical evidence that a single factor encapsulating risk 

does not adequately explain cross-sectional differences in stock returns. This finding motivated a 

substantial research agenda on asset pricing that ran alongside a debate regarding the fundamental 

relation between risk and return (Baker and Haugen, 2012). Fama and French (1993, 1996, 2004) 

introduced a three-factor model (FF3F) that included a size and value premium to explain 

variations in stock returns. These two additional factors were included due to their supportive 

empirical evidence, even though their underlying theoretical rationales remain unclear. 

Nevertheless, a considerable the amount of subsequent research has been devoted to investigating 

explanations for these factors (recent examples include Erdos et al., 2011; Dempsey, 2013; 

Elgammal and McMillan, 2014; Elgammal et al., 2016; Bao et al., 2017).  

Various empirical studies examining cross-sectional variations in stock returns have reported 

patterns unexplained by CAPM, commonly referred to as anomalies. Based on these anomalies, 

various investment styles have been developed. These investment styles are based on size (Banz 

1981; Fama and French, 1993), value/growth (Basu, 1977; Fama and French, 1992, 1993), 

momentum and reversals (Jegadeesh and Titman 1993; O’ Keeffe and Gallagher, 2017), liquidity 

(Haugen and Baker, 1996; Datar, Naik, and Radcliffe, 1998), profitability and investment (Fama 

and French, 2015). However, these models lack a robust economic explanation for their precise 

nature. Recently, Fama and French (2015) introduced a five-factor model (FF5F) that adds 

profitability and investment factors to their FF3F model. This model in turn builds on the work of 

Hou et al. (2015) and Novy-Marx (2013). However, Fama and French (2015) concede that, 

although, the five-factor model (FF5F) may outperform the three-factor model (FF3F), neither of 

these models provide a complete description of the expected returns. Indeed, Fama and French 

(2015) admit that their and other models have difficulty explaining the behavior of small stocks. 

Given the above gap, this paper introduces a Rational Function (RF) model which argues that 

asset returns do not add linearly in a portfolio because returns are rational functions (i.e., ratios) of 

asset prices which themselves are polynomials of various relevant variables. These relevant 

variables include asset volumes, preceding asset price, time trends and other market factors in 

addition to the market return. For identifying the relevant variables, the RF theory draws from the 

price-volume framework in a free market environment which then logically mirrors the price 

                                                           
Both researchers and practitioners have an innate belief that ex ante risk matters and an ex ante risk premium exists, 

even if, ex post, such a belief is not empirically validated (Roll and Ross, 1994; Diacogiannis and Feldman, 2011).  
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model into a volume model as well.  The RF model for volumes addresses another gap in literature 

that being the lack of attention in modelling volumes as compared to modelling returns. A few 

others (Lo and Wang, 2000, 2006; Wang, 2002) have  also linked both price and volume to 

economic fundamentals for asset pricing.  Lo and Wang (2000) have introduced a two factor 

(LW2F) model that estimates asset volumes by the volumes of two portfolios, one being the market 

portfolio and the other being the hedging portfolio.  The former is an equal-weighted index while 

the latter is a share-weighted index. Though Lo and Wang (2000) have estimated asset returns also 

using their two-portfolio model, they found its performance could not beat the FF3F model. Hence, 

we consider the LW2F for comparing the performance of the RF volume model only and did not 

include it for comparison with the RF returns models.   Thus, this paper ends by comparing the RF 

returns models with the CAPM, the FF3F and the FF5F models (which remain the dominant 

models used in the literature by academics as well as practitioners) and by comparing the RF 

volume model with the LW2F model. 

 

3. Rational Function Model (RF): Theoretical Development 

We begin by revisiting the basics of price determination for a publicly traded asset, viz., the 

demand and supply framework as propounded by Lo and Wang (2000), Wang (2002) etc. 

Following the laws of increasing marginal cost for the supply curve and decreasing marginal utility 

for the demand curve (jointly, the laws of diminishing returns), we have an exponential supply 

curve and a logarithmic demand curve. Here, a fixed quantity of issued stocks limits the supply 

while the demand for stocks is limited by the amount of money available for investment in the 

economy. These principles were first stated by Cournot (1838) and further developed by Marshall 

(1890). Mathematically, we express the exponential supply curve of stock ‘i’ on day ‘t’ as follows: 

ps,t = as + bs [exp (vs,t )]                                           (2)  

where, ps,t is the stock price that corresponds to the stock trading volume vs,t, as is the minimum 

price at which the supply curve starts and bs is the linear regression coefficient.  

The law of decreasing marginal utility is shaped by the ‘willingness’ and the ‘ability’ of 

investors to buy stocks.  According to this law, the elasticity of demand is best expressed by a 

decreasing logarithmic demand curve where the decrease in utility (or price-willingness) for 

increasing quantity is sharp at first and hereafter gradually flattens out with further increase in 

quantity or volume. This has been captured in Equation (3) where the logarithmic demand curve 
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for stock i on day t is given as follows:  

pd,t = ad - bd [ln (vd,t )]                                                            (3) 

where, pd,t is the price that corresponds to volume vd,t, ad is the minimum price at which the 

demand curve starts and bd is the linear regression coefficient. Investors allocate their limited 

wealth to obtain the greatest satisfaction or utility (See, Samuelson and Nordhaus , 2001).  At the 

point of market equilibrium, Equations (2) and (3) intersect each other, and we have: 

ps,t = pd,t = pi,t ; and vs,t = vd,t = vi,t                                                  (4) 

Taking an average of Equations (2) and (3) at the point of equilibrium and substituting equation 

(4) leads us to Equation (5): 

pi,t = (as+ ad) / 2 + (bs /2)[exp (vi,t )] – (bd /2)[ln (vi,t )]                                                             (5) 

Equation (5) can be further generalized by representing the constants and the slope coefficients by 

single terms, as follows: 

pi,t = ai + bi1 [exp (vi,t )] – bi2 [ln (vi,t )]                                                                           (6) 

Here, ai is a constant, while bi1 and bi2 are the coefficients of the exponential and logarithmic 

values of the stock volume. This equation, thus, expresses the basic relation between the 

equilibrium price and the equilibrium volume of a stock ‘i’. Next, we consider the situation where 

numerous stocks are traded simultaneously, which collectively influence the demand and supply 

of any given stock through various common economic, business or technological factors. In such 

a case, the prices and volumes of multiple stocks may be correlated. Therefore, we expand our 

analysis by including a market portfolio m, the price of which on day ‘t’ is given by: 

pm,t =   ∑j=1
w qj pj,t                                                    (7) 

where, j = 1 to w, including i, thus representing all stocks contained in combination m, while qj 

denotes the corresponding weight of the stock j in combination m. Thus, 

∑j=1
w qj = 1                                                         (8)  

From Equation (7) we can see that pm,t is a linear aggregate of pi,t and other stock prices on day 

‘t’. However, the price of some stocks may be correlated with that of stock i and so pi,t would vary 

in response to a change in the price of any one of these stocks. By representing the relationships 

between pi,t and those of other stocks (whether linear, non-linear or uncorrelated) into linear 

functions that describe them most closely and then adding these resulting simultaneous equations, 

we get a linear relationship between pi,t and pm,t. Considering that both pi,t and pi,t-1 are correlated 

with pm,t and pm,t-1 on days ‘t’ and ‘t-1’ respectively, their ratio or the ‘rate of change of price’ of 

https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwilmN-7qNTTAhWHRI8KHRmsAIsQFggiMAA&url=http%3A%2F%2Fwww.mhhe.com%2Feconomics%2Fsamuelson17%2Fstudents%2Fsumm3.mhtml&usg=AFQjCNGbHkipwoXkscD5sberSR-n7HHfWQ&sig2=MnQDu4-pJDpuGKFa0Rin7w
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stock ‘i’ (i.e. pi,t/pi,t-1) would also be correlated with the ‘rate of change of price’ of the market 

combination m (i.e. pm,t/pm,t-1).2 This linear relationship between pi,t/pi,t-1 and pm,t/pm,t-1 can be 

expressed in a generalized form as follows:  

(pi,t/pi,t-1) = qi + ri (pm,t/pm,t-1)                                       (9) 

Here, qi is the constant and ri is the slope. Although equation (9) looks like a generalized form 

of the CAPM, its objective is different, in the sense that it aims to estimate asset prices and not 

returns. Our work can be related to earlier research, which linked capital asset pricing models to 

the change in the prices. Hagerman and Kim (1976) develop a capital asset-pricing model that 

relates risk and return under conditions of changing price levels. Similarly, Long (1974) has shown 

a connection between commodity prices and equilibrium stock prices.  

Taking the price equivalent for pi,t and adding the term [qi pi,t-1 + ri {(pm,t/pm,t-1) pi,t-1}] obtained 

from equation (9) with equation (6) and generalizing, we get: 

pi,t  = ki + si1 {(pm,t/pm,t-1) pi,t-1}+ )] + si2pi,t-1 + si3 exp (vi,t ) – si4 ln (vi,t )                      (10) 

Equation (10) outlines the relation between the price of an individual stock ‘i’, the prices of 

the market combination ‘m’, the preceding price of the stock ‘i’ and the volume of stock ‘i’ under 

economic equilibrium in the market.  

Besides the asset volume and market return, an asset price may be affected by other market 

factors, such as firm size, book to market ratios etc. (Fama and French, 1993, 1996, 2004, 2015) 

as well as time and seasonal trends (Gallant et al., 1992; Chen et al., 2001; Pisedtasalasai and 

Gunasekarage, 2007). The presence of the time trends in asset pricing can be explained by the 

seasonality of sales or the regularity of certain anticipated events, such as earnings or dividend 

announcements. Accordingly, a time trend component can be expressed by the log function of the 

chronological order of the observation within the data sample (Pisedtasalasai and Gunasekarage, 

2007). Incorporating other market factors and the time trend in Equation (10), we get the following 

resulting equation defining the stock price pi,t: 

                                                           
2 Let us consider a hypothetical market where there are only three stocks trading – stocks 1, 2 and 3. Then, if 

their daily prices are denoted by the variables p1,t, p2,t and p3,t , respectively, and if p1,t is correlated with p2,t and 

uncorrelated with p3,t, we may write: p2,t
 =  k′ + b′ (p1,t)…(i); p3,t

 =  k″  + 0 (p1,t) …(ii); and finally p1,t
 =  0 + (p1,t) 

…(iii). Assuming the market combination ‘m’ to be a simple average of the three stock prices and averaging the 

Equations (i), (ii) and (iii), we get: (p1,t+p2,t+p3,t
 )/3 = pm,t

 = (k′+k″)/3 + {(1+b′)/3}(p1,t) …(iv), where pm,t is the price 

of the market combination ‘m’. The Equation (iv) indicates a linear relationship between pm,t and p1,t which may be 

generalized as pi,t = ci + di pm,t…(v). This logic also holds for day‘t-1’ when pi,t-1 = ci + di pm,t-1…(vi). From equations 

(v) and (vi), we may deduce that the ratios (pi,t/pi,t-1) and (pm,t/pm,t-1) are also correlated which can be expressed as 

(pi,t/pi,t-1) = qi + ri (pm,t/pm,t-1)…(vii). 
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       pi,t = αi + βi1{(pm,t/pm,t-1)pi,t-1} + βi2pi,t-1 + βi3exp(vi,t) + βi4ln(vi,t) + βi5ln(tt) + βi6 MFi,t               (11) 

Here, MFi,t represents other market factors and ln(tt) is the time-trend component. Equation 

(11) reflects a conceptual framework for estimating the price of stock ‘i’ using firm, market and 

time parameters. From the Equation (11), we can clearly infer that the stock return Ri,t is not a 

linear polynomial function of the return of the market combination Rm,t but rather a quotient of two 

polynomials. This follows simply from the definition of return which requires it to be a ratio of the 

change in the price on day ‘t’ to the price on day ‘t-1’. Thus, we have:  

              [{αi + βi1{(pm,t/pm,t-1)pi,t-1} + βi2pi,t-1 + βi3exp(vi,t) + βi4ln(vi,t) + βi5ln(tt) + βi6 MFi,t} –  

               αi + βi1{(pm,t-1/pm,t-2)pi,t-2} + βi2pi,t-2 + βi3exp(vi,t-1) + βi4ln(vi,t-1) + βi5ln(tt-1) + βi6 MFi,t-1}]   

Ri,t         = ___________________________________________________________________________________________________________                 (12) 

            [αi + βi1{(pm,t-1/pm,t-2)pi,t-2} + βi2pi,t-2 + βi3exp(vi,t-1) + βi4ln(vi,t-1) + βi5ln(tt-1) + βi6 MFi,t-1] 

Equation (12) shows that the relationship between stock return Ri,t and market return Rm,t is not 

linear, as suggested by the CAPM, but non-linear because Ri,t is a rational function of two 

consecutive readings of the index return, the preceding asset price, asset volume, time trend and 

other relevant market factors.  

Further, like Equation (11), it can be shown that the asset volume vi,t is given by: 

vi,t = γi + δi1{(vm,t/vm,t-1)vi,t-1} + δi2vi,t-1 +  δi3exp(pi,t) + δi4ln(pi,t) + δi5ln(tt)  + δi6 MFi,t                                           (13) 

Here vm,t is the volume of market combination m on day ‘t’ and like pm,t is a weighted 

aggregate of the volumes of all the stocks trading in the market. This shows that both price and 

volume of an asset can be estimated using the RF theory.  

Klassen and McLaughlin (1996) used cumulative abnormal returns (CARs) obtained 

during an event period and the number of shares issued by firms multiplied by its preceding share 

price to arrive at the ‘market value’ of various environmental events like award and crisis 

announcements. We have built on this concept by replacing CARs by average returns and the 

preceding firm value (i.e. number of issued shares multiplied by preceding share price) by average 

change in volumes, to estimate average change in market value of an asset during a time period. 

From this, it can be deduced that investors who just wish to maximize profits should focus on 

maximizing return Ri,t  but investors who wish to maximize wealth and not just profits (like 

corporates) should aim at maximizing the change in market value of their portfolio. The change in 

market value MVi,t is given by the arithmetic product of the change in price (i.e. return) and change 

in volume and is given as follows: 
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          MV
i,t
 = [(1+R

i,t 
) (1+V

i,t 
)]                                       (14) 

Here, for empirical application of Equations (12) and (14), we take R
i,t 

= ln (p
i,t
/p

i,t-1
) and V

i,t 
= 

ln (v
i,t
/v

i,t-1
). However, we must clarify here that Equations (11) and (13) are conceptual models that 

need to be refined through empirical validation. In this study, we have considered the variables 

identified in Equations (11) and (13) and examined their behavior in an empirical context, thus 

deriving the final RF models from both theoretical rationales and empirical evidence. In 

developing the final empirical RF model for returns, we distinguish between two types of asset 

returns – average asset returns and continuous asset returns. This is because average asset returns 

exhibit greater non-linearity due to the effect of averaging over multiple time intervals and hence 

these two types of asset returns need to be modeled differently. The next section presents the 

empirically adjusted RF models for both average and continuous returns and tests their 

performance in comparison with the existing models like the CAPM, the FF3F and the FF5F. It 

also presents the empirically adjusted RF model for average change in volumes and compares it 

with the LW2F. We have not considered continuous change in volumes for single time intervals 

because volumes are much more volatile than returns and studying them on a continual basis would 

be of little practical value. 

 

4. Empirical Models and Methodology  

We test the validity of the RF Models against the Capital Asset Pricing Model (CAPM), the 

Fama-French 3 Factor model (FF3F) and the Fama French 5 Factor model (FF5F). Our tests utilize 

twenty-one monthly and daily samples from three international markets (USA, Australia and India) 

from May 2003 to April 2013. This ten-year time frame provides us with sufficient data for the 

study, noting, in particular, the unavailability of reliable data on trading volumes for periods much 

earlier than this, especially for the Indian market. 

4.1 Empirical Models 

The CAPM regression equation is: 

Ri,t  = Rf,t  + βi,m (Rm,t – Rf,t) +  eit                                                                                                             (15) 

while, the FF3F model regression equation is: 

Ri,t = Rf,t  + βi,m (Rm,t – Rf,t ) + βi,s SMBt + βi,h HMLt +  eit                                                                    (16a) 

The FF5F model, which we consider only for the US market, is: 

Ri,t = Rf,t  + βi,m(Rm,t–Rf,t) + βi,s SMBt + βi,h HMLt + βi,rRMWt + βi,cCMAt + eit                               (16b)  
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Here, the expected return of asset ‘i’ on day ‘t’ is denoted by Ri,t, while Rf,t and Rm,t denote the 

risk-free rate of return and the expected market return on day ‘t’ respectively. SMBt (for Small 

minus Big) is the difference between the returns of the diversified portfolios of small and big size 

stocks. HMLt (High minus Low) is the difference between the returns of the diversified portfolios 

of high and low BE/ME (ratio of book equity to market equity) stocks. RMWt (Robust minus 

Weak) is the difference between the returns of the diversified portfolios of robust and weak 

profitability. CMAt (Conservative minus Aggressive) is the difference between the returns of the 

diversified portfolios of low and high investment firms while eit is a zero-mean residual term. The 

data for SMBt, HMLt, RMWt and CMAt are obtained from Kenneth French’s data library.3  

As already mentioned, we examine the asset returns in two different formats – average returns 

and continuous returns. Our preliminary empirical tests indicate that non-linearity due to the 

rational function nature is quite pronounced in average returns, whether they are averaged across 

portfolios or across time. Citing other empirical studies, Fama and Macbeth (1973) have reported 

evidence of stochastic nonlinearities in average returns from period to period. Similarly, Fama and 

French (2004) have reported evidence that the relationship between average return and market beta 

was somewhat non-linear. However, since continuous returns are computed as time series of daily 

or monthly returns based on single time intervals they do not exhibit the non-linear attributes of 

rational functions. As a result, the continuous returns behave ‘approximately’ linearly across time. 

This argument is consistent with the evidence in the literature that continuous returns can be 

estimated using linear models (please see, Brown and Warner, 1985; Chen and Epstein, 2002). 

Hence, continuous returns have been modeled directly and not indirectly from prices as we do with 

average returns (see, Reinganum, 1982; Pandey et al., 1998).    

To examine the average returns, the conceptual RFM Equation (11) is refined empirically to 

simplify it without a loss of information. As discussed above, the RFM average return does not 

add linearly across time but it is calculated as a ratio of two consecutive average prices obtained 

for intervals (t to t+n-1) and (t+1 to t+n), respectively. Our preliminary estimation of the asset 

prices show that the preceding asset price and the index return can explain asset prices by 

themselves (with the coefficient of determination, R2 above 93.5%). Thus, our final empirical 

                                                           
3 We thank Kenneth French for making the data available at: 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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models for estimating asset prices are as given below:4 

 RF1a: pi,t = αi + βi[{(pm,t/ pm,t-1)pi,t-1}] +  eit
                                     (17a) 

 RF1b: pi,t =  βi[{(pm,t/ pm,t-1) pi,t-1}] +  eit
                                           (17b) 

The intercept αi is included in Equation (17a) while it is assumed to be zero for equation (17b). 

In Equation (17a), the intercept αi, which is a risk-free component of asset prices, is included for 

the sake of consistency with the CAPM, FF3F and FF5F models. However, we include a zero-

intercept version of the model, as this would be the lowest price that an asset could trade at. The 

zero-intercept model is also consistent with the empirical values of the average risk-free rate of 

return Rf,t that have been negligible or zero in the literature (e.g., Mehra & Prescott, 1985). 

According to the RF theory, the risk factor identified for the average returns is the arithmetic 

product of the market return and the preceding asset price [{(pm,t/ pm,t-1)pi,t-1}] as shown in 

Equations (17 a & b). The RF theory thus states that there is no direct linear relationship between 

the average returns and the risk factor, since the average returns are rational functions. However, 

the assets can be separately sorted based on the risk factors as identified by the CAPM, the FF3F 

or the FF5F model (or any other model for that matter) and the average returns of the portfolios 

thus formed could then be estimated using the RF models RF1a and RF1b.   

After estimating average returns, we have also estimated average change in asset volumes (Vi,t) 

as discussed earlier in equation (14). For this, just like average returns, we have computed average 

change in asset volumes for both LW2F and the RF volume model as a ratio of two consecutive 

average volumes obtained for intervals (t to t+n-1) and (t+1 to t+n) respectively.  The empirical 

model for estimating the asset volumes is a logical variation of Equation (17b), where we have 

substituted the price variables with the volume variables as shown below:    

RF1c: vi,t =  δi[{(vm,t/ vm,t-1) vi,t-1}] +  eit
                                            (17c) 

Here, we have considered only the zero intercept model for estimating asset volumes, because 

there is no economic compulsion for a positive risk-free level of trading volume for an asset and 

in reality the asset volumes do dip to zero levels during various trading cycles.  

Next, we have compared the RF1c model with the LW2F model. From Lo and Wang (2000) 

we have taken the LW2F regression Equation as: 

vi,t = δi,1 vm’,t + δi,1 vh,t  +  eit                                                                                                    (18) 

                                                           
4 All results for the preliminary estimation of the asset prices and specification tests between different versions of the 

model are available upon request. 
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Here, vm’,t and vh,t are the volumes of the equally-weighted and share-weighted indices 

respectively. The volume of the equally-weighted portfolio vm’,t is a simple average of the 

constituent stock volumes of the index on day ‘t’. For vh,t, Lo and Wang (2000) had computed the 

share-weight as the ratio of outstanding shares of a stock to the total number of outstanding shares 

of all stocks in the index. They then multiplied the share-weights with the stock volume and 

summed up all these share-weighted volumes to arrive at the volume of the hedging portfolio vh,t 

on day ‘t’. However, as these share weights remain constant for extended time-periods as the 

number of outstanding shares are constant over considerable time-periods, they tend to become 

meaningless for daily data being studied for small time windows like we have considered here in 

this study. Hence, instead of using number of outstanding shares, we have computed the share-

weights as ratios of traded volume of a stock to the total traded volume of all the stocks in the 

index.  Further, Lo and Wang (2000) had imposed the constraints that [δi,1 + δi,2  = 1] and [Σ δi,1 = 

J for i= 1 to J] but they had tested the unconstrained version of the model as well and found its 

results comparable to the constrained version. Hence, we have considered the unconstrained 

version of the LW2F model here for greater versatility.  

The continuous returns behave approximately linearly across time as they are computed from 

data based on single time intervals and hence do not require averaging. Thus continuous returns 

can be modeled directly from the relevant firm specific and market specific factors. Our empirical 

results, detailed below, indeed show that the linear models (CAPM, FF3F and FF5F) are found to 

provide reasonable estimates (e.g., above 70% correlation with the actual values) for the 

continuous returns, although the FF3F and FF5F estimates are marginally more accurate than the 

CAPM estimates. However, the accuracy of the FF3F and FF5F models for continuous asset 

returns can be further improved by including three additional factors based on the RF theory, 

namely, the change in market volume, the time factor and the preceding asset return. In keeping 

with Equation (11) we replace the term MFi,t (for other market factors) with SMBt, HMLt, RMWt 

and CMAt, enabling us to combine the Fama-French models with the RF theory to give the 

following equations for continuous asset returns: 

RF2a: Ri,t-Rf,t=βi,m(Rm,t–Rf,t)+βi,sSMBt+βi,hHMLt+βi,v(Vm,t)+βi,o(tt)
2+βi,l(Ri,t-1)+eit                                       (19a) 

RF2b:Ri,t-Rf,t = βi,m(Rm,t–Rf,t)+βi,sSMBt +βi,hHMLt +βi,rRMWt +βi,cCMAt +βi,v(Vm,t)+βi,o(tt)
2+βi,l(Ri,t-1)+eit  (19b) 

Equations (19a) and (19b) are modified versions of the FF3F and FF5F respectively by 

including the additional variables relevant to the RF theory as noted above. Here, Vm,t = ln(vm,t/vm,t-
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1) and we have used it instead of change in asset volume Vi,t because the latter is dependent on the 

former as shown in Equation (13). The time factor used for modeling continuous returns is based 

on the works of Pisedtasalasai and Gunasekarage (2007) and Chen et al. (2001), who show that 

the time series of trading volumes exhibit quadratic time trends. The continuous returns being 

single-interval time series like the trading volume data and being connected to the volumes through 

supply-demand framework, quadratic variations of time ranks have been used in estimating these 

continuous returns as well, which find support through our empirical results. 

Thus, we study asset returns in two different formats as can be seen from Equations (17a and 

17b) for RF1 models used for estimating average returns and Equations (19a and 19b) for RF2 

models used for estimating continuous returns. We also study average change in asset volumes 

using Equation (17c). Further, we compute and report two different kinds of actual average returns, 

denoted actual1 and actual2, for the sake of comparing the performances of the various models. 

Here, actual1 average returns are computed from the ratio of average prices while actual2 average 

returns are computed by averaging the time series of continuous returns.5,6 The actual average 

change in asset volume have been computed like the actual1 average returns.  

4.2 Methodology  

To test the RF models against the extant models, various sample portfolios have been obtained 

for three different markets – USA, Australia and India. These markets has been selected to 

represent financial markets in different developing stages. Our data set different has different time 

windows to demonstrate the empirical validity of the RF theory. The details of these samples are 

provided in Table 1. Of the 18 USA samples, the first 11 samples (S1 to S11) are constructed out 

of the constituent stocks of three indices of various sizes. These include Dow Jones Industrial 

                                                           
5 For computing the RFM average returns, the time series of the estimated prices in the RF1a and RF1b models are 

averaged from intervals t to t+n-1 and from t+1 to t+n respectively, and then divided to obtain their ratios. Thus, the 

actual1 average returns, the RF1a average returns and the RF1b average returns are computed from the ratios of average 

portfolio prices. However, the actual2 average returns and the average returns estimated by the CAPM, FF3F and FF5F 

models are computed by following the standard practice by directly averaging the time series of the continuous returns 

for each portfolio, from t+1 to t+n intervals. The study of average returns is useful for plotting the multiple period 

risk-return profile of each asset. The actual average change in asset volume have been computed like the actual1 

average returns. 
6 Different time series of n day-to-day or month-to-month continuous returns over a period of t+1 to t+n are computed 

for different asset portfolios. This format examines the time series of continuous asset returns across increasing time 

as computed from the same time series of actual portfolio prices that are used for the average returns format. The 

continuous returns are studied for both actual as well as estimated values as per the CAPM, the FF3F, the FF5F and 

the RFM Equations. This format is useful in describing the single period contemporaneous asset returns across 

increasing risk and time. 
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Average (30 stocks) as on April 30, 2013; 395 stocks constituting the Barron’s 400 (B400) index 

as on August 01, 2013; and 500 stocks constituting the S&P 500 index as on August 01, 2013. The 

monthly samples have been obtained for a ten-year period from May 2003 to April 2013, while 

the daily samples are from December 12, 2012 to April 30, 2013. Further, we have considered 

another seven samples of the USA stocks, S12 to S18 representing Fama and French portfolios of 

monthly data constructed by sorting on different financial parameters for the above ten years 

period. This diversity in portfolio design has been used to demonstrate the robustness of the RF 

Model to various selection parameters. As both small and large sample analyses of stocks are 

needed to test out any new asset-pricing model, this paper has considered both. 

INSERT TABLE 1 

Two more portfolios were constructed from 100-pooled components of the S&P ASX 50 and 

S&P ASX Mid-cap 50 indices. The Australian samples have been used to study their daily returns 

for 95 and 120 day time-windows contained within April 12, 2013 to September 30, 2013. Finally, 

one more sample of 30 stocks constituting the Bombay Stock Exchange (BSE) Sensex as on 

January 1, 2005 has been collected from the Indian capital market, with monthly returns from 

January 2002 to November 2009. The samples selected for this study, thus, represent a diversified 

view of the US, Australian and Indian markets over various time windows and the findings may 

be taken to be free from any selection bias.7 

The FF5F model has been tested only for the US market due to data unavailability for the 

RMWt and the CMAt factors for Australia and India. Kenneth French’s data library reports that the 

daily values of Rf,t were negligible for Australia over our sample period and thus the Rf,t values are 

taken to be zero for studying the Australian samples S19 and S20. The Australian FF3F factors 

SMBt and HMLt were obtained by computing the difference in portfolio returns formed by sorting 

the 100 companies based on market capitalization and the BE/ME ratio, over the two quarters 

during April 2013 to September 2013.  

The average change in asset volumes have been studied only for samples S1 to S11 and S19 to 

S21 where we could collect the volume data for the various stocks being considered. We could not 

                                                           
7 The data for the samples S1 to S11 (USA) and S19 and S20 (Australia) were collected from Norgate Investor Services 

databases.  The Australian Size and BE/ME data were provided by the Australian Financial Review. The data for the 

samples S12 to S18 (USA), and the Fama-French factors for USA and India were collected from Kenneth R. French’s 

data library. The Indian stock market data were collected from the Prowess Database provided by the Centre for 

Monitoring Indian Economy (CMIE). 
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do the volume analysis for the Fama-French portfolios S12 to S18 as their volume data are not 

available. 

For the samples S1 to S11 (USA) and S19 to S21 (Australia and India), the stocks in each of 

these samples were sorted according to risk. The risk factor has been assessed in two ways, first, 

using the returns variance (for samples S1 to S8 and S19 to S21) and second, idiosyncratic 

volatility (for samples S9 to S11). More specifically, the returns variance has been measured by 

the variance of the stock returns through a rolling period of the last 12 observations. Similarly, 

idiosyncratic volatility has been measured by the variance of the residual eit through a rolling time 

frame of the last 12 observations, where the residual eit is obtained from the difference in actual 

stock returns and the expected return from the market model:  

Ri,t = βi,m Rm,t + eit                                                                                                                 (20) 

Furthermore, the stocks for the samples S1 to S11 and S19 to S21 were grouped into five sub-

portfolios P1 to P5, according to risk. Each sub-portfolio contains 6 stocks for the DJIA, 79 stocks 

for the B400, 100 stocks for the S&P500, 20 stocks for the Australian samples and 6 stocks for the 

BSE Sensex. P1 consists of the lowest risk stocks while P5 contains the highest risk stocks. We 

also examine the full sample portfolio (P-full) consisting of all stocks. After sorting, actual stock 

prices were reconstructed from actual stock returns using a common base number (e.g., 100) to 

avoid any sudden or abrupt changes in prices after each sorting.  

The seven samples S12 to S18 are the Fama-French samples of all actively traded US stocks. 

Sample S12 consists of all actively traded US stocks sorted into five industry-based sub-portfolios: 

consumer, manufacturing, hi-technology, health and others as P1 to P5 respectively. We have 

studied the value-weighted returns of these five sub-portfolios as well as the aggregate of these 

sub-portfolios, P-full. The value-weighted returns are converted to time series of prices from a 

base price of 100. Samples S13 to S18 consist of six sub-portfolios, P1 to P6, of value-weighted 

returns sorted on the basis of two-variables. First, the stocks have been sorted into two size 

portfolios and then each split further into three portfolios based on another financial parameter like 

investment, long term reversal (based on prior 13-60 returns), momentum (based on prior 2-12 

returns), operating profit, short term reversal (based on prior 1-1 returns) and value. The breakpoint 

for the size variable is the median NYSE market equity, whereas the breakpoints for the other 

variables are the 30th and the 70th NYSE percentiles.  As before, we converted the time series of 

value-weighted returns to time series of prices from a base of 100 for further analysis.  
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The above samples were analyzed using the CAPM, FF3F, FF5F (for the US samples only), 

RF1 (17a & 17b) and RF2 (18a & 18b) models for both average and continuous returns. To obtain 

homogenous estimates from the RF1a model across the sub-portfolios, P1 to P5, the intercept αi is 

computed for the full sample (P-full) and used for estimating the prices for P1 to P5, for the 

samples S1 to S12 and S19 to S21. For the samples S13 to S18 (where we do not consider the 

aggregate portfolio), the intercept αi is the arithmetic average of the intercepts of all the six sub-

portfolios. In this way, we have a common intercept value for all the sub-portfolios in a given 

sample so that we can compare their performance. The empirical accuracy of estimated results 

from the CAPM, FF3F, FF5F and the RF models have been compared with each other based on 

their correlations with the actual returns as well as  their sum of squared errors (SSE).8 We have 

also carried out the volume analyses for the fourteen samples S1 to S11 and S19 to S21 using RF1 

(17c) and LW2F models and compared their results.  

4.3 Empirical Results and Discussion  

Tables 2a, 2b and 2c report the slopes estimated by RF1a, RF1b and RF1c models for the different 

samples. As can be seen, the values of βi for the RF1a and RF1b models are stable. In fact, for the 

RF1 models, the values of βi are all positive and are all very close to 1.00. This is maybe because 

empirically, the change in the asset price pi,t is nearly equal to the change in market price pm,t. 
9 All 

the βi coefficients have very high t-values for both RF1a and RF1b models in Tables 2a & 2b. This 

implies that the arithmetic product of market return and the preceding asset price is the most 

important factor in estimating the asset prices or average asset returns. Another noteworthy finding 

from Table 2a is that the t-statistics of the intercepts αi for the RF1a model are all insignificant and 

the intercepts themselves have quite small values (roughly within a range of -0.9% to +1.9% of the 

average asset prices). This supports the view that the zero intercept RF1b model is both accurate and 

sufficient in determining the estimates of asset prices. This is consistent with other empirical 

evidence, whereby the risk-free rate of return Rf,t  has been found to be negligible or zero ( see, 

                                                           
8 Obviously, our analysis has generated a large number of results that cannot be reasonably reported here. Thus, we 

report only the important results [i.e. the regression results of Equations (17a), (17b), (17c) and (19b); the results of 

correlation analysis and the SSE values for average returns and average change in volumes; results of correlation 

analysis for continuous returns; and finally the improvements in accuracy of estimation of continuous returns due to 

Equation (18b)]. Other results are available upon request. 
9 We also estimate the CAPM and the FF3F for all samples and the FF5F for the US data. However, we do not report 

the results for the space limitation. All results are available upon request.  The estimated values of CAPM’s βi,m 

increase with risk for portfolios sorted by risk, however; the values of βi,m for other portfolios do not follow any 

systematic pattern. The values of βi,m, estimated by FF3F, FF5F, RF2a and RF2b models are generally increasing across 

risk-sorted portfolios. 
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Fama and French, 2015). Moreover, we believe that a common intercept αi could give erroneous 

results for long time series data since it would be large compared to the initial prices and small 

compared to the later prices.  

INSERT TABLES 2a, 2b AND 2c  

From Table 2c we can see the results of regressing RF1c Equation (17c) for estimating asset 

volumes where the values of δi coefficients are all positive but increase or decrease randomly 

across the sub-portfolios that have been formed according to increasing risk as well as other 

financial parameters. Unlike the price slopes which are all nearly equal to 1, the volume slopes lie 

between a range of 0.45 to 1.27. However, like the price slopes, the volume slopes also have high 

t-statistics indicating that {(vm,t/ vm,t-1) vi,t-1} is the most important as well as a sufficient factor in 

estimating asset volumes.  

The results of regressing the RF2b equation (19b) are reported in Table 3. The regression results 

indicate that the βi,m values are generally significant and  increasing with risk (lying in a range of 

0.5 to 1.5) which show that the market return is very important in explaining continuous asset 

returns . Again, while the t-statistics for βi,m maybe the largest, it was noted that the t-statistics of 

the RF factors: change in index volume (βi,v), time trend (βi,o) and preceding asset return (βi,l) are 

not dissimilar to those of the FF3F and FF5F factors. This indicates that the RF factors are also 

important contributors in the assessment of continuous returns. 

INSERT TABLE 3  

Next, we compare estimated average returns from different models with the actual average 

returns to test the accuracy of each model. As mentioned earlier, two types of actual average returns 

have been computed: actual1 and actual2, where the former are computed, from the ratios of two 

consecutive average prices, while the latter have been computed by directly averaging the time 

series of continuous returns. Therefore, the RF1a and RF1b average returns are computed like 

actual1 average returns while the CAPM, FF3F and FF5F average returns have been computed like 

actual2 average returns. We may mention here that the actual1 average returns are more accurate 

measurements of the empirical average returns. This is because the asset returns are non-linear 

rational functions (i.e., ratios) of asset prices. This may be illustrated by the fact that [(b/a) + (c/b) 

≠ [(b+c)/(a+b)], where a, b and c are the prices of an asset for three consecutive time intervals. 

Hence, direct averages like actual2 average returns that follow the left hand side of the above 

equation are not correct measures of the ratios of average prices that are shown on the right hand 
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side of the above equation. This non-linear rational function characteristic of the asset returns 

becomes more prominent, the more they are averaged out across portfolios or across time. 

However, we have considered both actual1 and actual2 types of average returns for the sake of 

comparison among the results. 

Thus, we have obtained both actual and estimated average returns for the sub-portfolios P1 to 

P5 and P-full (i.e., P6 for samples S13 to S18).10. Tables 4a and 4b show that the estimates of RF1 

models for average returns consistently have the highest correlations with the actual average 

returns, whether actual1 or actual2, with all above 90%.  The correlations for the CAPM and FF3F 

models are not only much smaller than those for the RF1 models, but are quite unpredictable taking 

different signs in different samples. The correlations of the FF5F estimates are higher those of than 

both the CAPM and the FF3F estimates but are still consistently lower than those of the RF1 

estimates. Moreover, the correlations of the FF5F model with actual average returns are negative 

for samples S1, S2 and S12 and only 3.23% with actual1 and 7.16% with actual2 for the sample 

S8. The highest correlation of FF5F estimates with actual1 average returns is 93.81% (93.58% with 

actual2) for S16, whereas all the correlations of the RF1 models with actual average returns are 

above 90% and consistently higher than those of FF5F.  Moreover, the RF1 models have the lowest 

Sum of Squared Errors (SSE) between the actual and the estimated average returns. This 

demonstrates that the average returns estimated by the RF1 models are the most accurate. 

INSERT TABLES 4a AND 4b  

Figure 1 plots the actual1 average returns and their estimates from the CAPM, FF3F, FF5F and 

RF1b model.11 These plots highlight the greater accuracy of the RFM and the non-linear behavior 

of actual returns across the market beta. In fact, the negative correlation with actual values that can 

be observed for the CAPM, FF3F and FF5F models arises as these models impose a linear relation. 

Thus, even though the CAPM, the FF3F and the FF5F models might have identified the important 

and relevant factors influencing the asset returns, they are unable to capture the complete empirical 

reality for average asset returns. These results show that the average asset returns are basically 

non-linear in nature across market risk and other financial attributes. Thus, it follows that though 

the index price might be the most important variable in computing asset returns, by itself it cannot 

                                                           
10 The values of the actual1 average returns and the CAPM betas are available upon request. 
11 The plots of RF1a are very like those of RF1b, but we plot the latter, as this version is simpler and more accurate, 

especially for long time-span data. However all results are available upon request. 
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provide the important improvements brought in by the non-linearity of the rational function 

treatment and other factors used in the RF theory.    

INSERT Figure 1 

These findings support the arguments against the CAPM (see, for example, Blume and Friend 

1973; Fama and MacBeth, 1973; Stambaugh, 1982; Fama and French, 1992; Fama and French, 

2004; Dempsey, 2013). Further, our results also find lacunae in the empirical models like FF3F 

and FF5F in estimating average returns. One of the reasons for the difference in findings between 

our work and previous studies may be due to different sampling strategies. Previous studies often 

consider much longer samples and over these longer periods the gradual long term increase in the 

market returns is found to be reflected similarly and linearly in the large portfolios. However, this 

fails to encapsulate the dynamics of market behavior or to reflect the practical situation where 

investors may hold smaller portfolios and over smaller holding periods. It is in this context that 

our findings are particularly pertinent.  

A further key implication of the RF1 models arises from the nature of our results, which show 

that although the sorting factors do not affect the accuracy of the RF1 models they might influence 

the level of average returns. We find that although risk, as measured by either return variance or 

idiosyncratic volatility, does not influence average returns in any specific way, it is reasonable to 

believe that other market factors like size, investment, reversals, momentum, operating profits etc. 

might influence the magnitude of average returns. However, since the CAPM, FF3F and FF5F 

models do not provide accurate estimates of average returns, the RF1 model can be used instead 

once the stocks have been sorted based on the relevant financial factors.  

 As already mentioned, we have studied not only asset returns but also asset volumes. We have 

reported the correlations and the Sum of Squared Errors (SSE) between the actual and the 

estimated average change in volumes in Table 4c. It can be seen that the correlations for RF1c are 

all positive and quite high with all the values being above 90% except for sample S21, where the 

correlation is 85.5% for the Indian market. The t-statistics of all these correlations are also very 

high indicating that these correlations are significant and hence the estimates of the average change 

in volumes by the RF1c model are reasonably accurate. The correlations of the RF1c are higher than 

those of the LW2F for ten samples and slightly lower for four samples. However, it can be seen 

that the correlations of the LW2F are not consistent and takes on both negative and positive values, 

indicating that sometimes the LW2F estimates can be misleading. Looking at the SSE values, it 
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can be seen that all the SSE values of the RF1c model are lower than those for the LW2F model 

(being improvements in the range of 65.9% to 99.7%) indicating that the RF1c estimates are more 

accurate.  

INSERT TABLE 4c 

We now consider the continuous returns, which behave approximately linearly across time and 

hence have been modeled directly through linear regression relationships as shown in equations 

(19a) and (19b). Table 5 reports that the correlations between the actual continuous returns and the 

RF2a estimates are marginally, but consistently, higher than those of the CAPM and the FF3F 

estimates. Similarly, the correlations between the actual continuous returns and the RF2b estimates 

are marginally, but consistently, higher than those of the FF5F estimates. Thus, the results in 

Tables 5 show that the RF2b estimates are the most accurate for continuous returns.  

INSERT TABLE 5 

Similar conclusions are provided by the average Sum of Squared Errors (SSE) between the 

actual and the estimated continuous returns reported in Table 6 which shows that the RF2b model 

outperforms the CAPM, FF3F and the FF5F models in estimating continuous returns. In detail, the 

RF2b model is better than the FF5F model within a range of 3.88% to 8.86% while it outperforms 

the CAPM estimates by 13.64% to 89.42%. The two bottom rows of Table 6 show paired t-tests 

for no improvement in the average SSE for the continuous returns estimated by different models. 

The p-values of the paired t-tests show that the null hypothesis for RF2b model average estimates 

of continuous returns over the CAPM and the FF5F average estimates of continuous returns can 

be rejected safely at p-values of 8.4E-05% and 3.0E-09% respectively indicating that the RF2b 

model estimates for continuous returns are the most accurate. 

INSERT TABLE 6 

 

5. Practical Implications 

One of the main contributions of this paper is that it has developed separate models for 

estimating average and continuous returns. The findings of this study indicate that the behavior of 

actual average returns across increasing level of risk (both returns variance and idiosyncratic 

volatility) is non-linear. Further, for portfolios sorted on financial factors like industry, size, 

investment, profitability, momentum, reversals etc. risk, as measured by the market-beta, does not 

increase uniformly across the sub-portfolios. This can be seen clearly in Figure 1, from the plots 
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of the actual1 average returns. It can also be seen that unlike the CAPM, FF3F and FF5F estimates, 

the RF1b average returns consistently follow the actual1 average returns. This is because of the non-

linear nature and the multiplicity of factors used in estimating asset prices by the RF1 models. The 

CAPM and the FF3F models are linear and thus are unable to capture the curvilinear behavior of 

the actual average returns. The FF5F model generates better estimates of average returns than the 

CAPM and the FF3F models but is still less accurate than the RF1 models.  

Tables 4a) and 4b) report that the CAPM, FF3F and FF5F models sometimes generate 

estimates that have negative correlations with both actual1 and actual2 average returns. This can 

sometimes lead to misleading inferences. On the other hand, the RF1 models generate estimates 

that consistently have correlations of above 90% with the actual average returns. This clearly 

shows that the RF1 models are more accurate tools that can be used to evaluate investments over 

multiple time-periods and can help in making choices that are more efficient in terms of returns 

and risks. Another key implication from our work is that sorting factors, such as size, value and 

momentum, might be used to build portfolios that can generate higher average returns however, 

the analysis of such portfolios, and the generation of estimated returns should be conducted 

through the RF approach, which provides greater accuracy. This combination of approaches allows 

us to accurately identify and select portfolios that have higher mean-variance efficiency for 

average asset returns. Furthermore, the RF2b model for continuous returns can help investors in 

making better single time-period assessments of their investments through more accurate 

monitoring of the changing asset returns on a contemporaneous basis. 

The RF theory also provides a reasonably accurate model to estimate average change in asset 

volume Vi,t, as can be seen from Table 4c, where the RF1c estimates are found to be more accurate 

than the LW2F estimates. The average change in asset volume Vi,t, together with average return 

Ri,t indicate the average change in market value MVi,t of an asset. Since change in asset volume Vi,t 

shows the change in liquidity of an asset thereby indicating the ease of realizing the return for that 

asset, it is an important factor. The MVi,t of an asset being an arithmetic product of return and 

change in volume, flows from both Ri,t and Vi,t. Hence, investors who want to maximize wealth 

instead of just profits, should choose assets that give maximum mean MVi,t for minimum variances 

in Ri,t and Vi,t for a given time period.  
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6.  Summary and Conclusions  

A significant part of the existing literature emphasizes that the estimates of the market premium 

as obtained from the CAPM do not match actual values. While much of the subsequent research 

has sought to remedy this through additional factors, no model has yet been able to provide a 

sufficiently accurate description of the data nor the theoretical reasons underlying the above 

anomaly. In this paper, we argue that this discrepancy arises from the assumption that asset returns 

add linearly when averaging within a portfolio or across time. Returning to the basics involved in 

estimating asset prices, we present an alternative model for estimating average returns based upon 

the concept of Rational Functions (i.e., an asset return is a ratio of polynomials). In addition, we 

distinguish between the modeling requirements of average returns and continuous returns. For 

estimating continuous returns, we identify three factors – change in index volume, time and the 

preceding asset return that can be used in combination with an existing factor model (e.g., FF5F) 

to improve its performance. We also provide a model to estimate average change in volume which 

together with average return provides estimate for average change in market value of an asset. 

Further, we empirically test the Rational Function (RF) model for both average and continuous 

returns and compare them with the CAPM, FF3F and FF5F models using twenty-one samples 

based on both monthly and daily data from three markets: USA, Australia and India. 

 Our empirical results show that the RF models provide the most accurate descriptions of actual 

returns compared to all the established asset pricing models. This is because the RF models are 

able to capture the non-linear dynamics within the behavior of average returns and introduce 

additional relevant factors for estimating continuous returns. The charts of the average returns 

indicate that the risk-return-efficient investments should be carefully selected from such charts as 

average returns plot nonlinear across risk and sometimes the lower risk assets offer higher returns. 

Stocks can be sorted on various relevant financial parameters like size, profitability etc. and then 

the average returns for the portfolios should be estimated by the RF model. The RF estimates of 

the average change in volumes are also more accurate than the estimates of an extant asset volume 

model. These results prove the empirical authenticity of the RF theory and affirm that price and 

volume are two complementary forces of the market. Thus, the market value of an asset flows 

through both of these factors and for maximizing the former, both the latter variables are important.  

Our contribution is not limited to introducing and testing the RF models but also to 

differentiating between the behaviors of the average and continuous returns and modelling them 
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separately. However, we recognize that further empirical testing is required to substantiate the RF 

theory. Hence, it would be interesting to consider this approach with more comprehensive 

empirical datasets from different markets. It is also possible that additional factors that influence 

the asset price will be unearthed, together with their underlying theoretical rationales. This in turn 

would allow the RF models to be further refined and improved. However, even now, the RF theory 

and the preliminary empirical evidence provided here indicate that the RF models are of both 

academic interest as well as of practical value to the investment community.   
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Table 1: Portfolios Description  
 

S. 

No.  
Portfolios Market Data from to 

Type of 

Returns 

Number of 

time intervals 
Sorting Factor(s) 

Market 

Proxy 
Names 

1 30 components of DJIA as on April 30, 2013 USA 30-May-03 30-Apr-13 Monthly 120 Returns Variance DJIA S1 

2 30 components of DJIA as on April 30, 2013 USA 30-May-03 30-Apr-13 Monthly 120 Returns Variance S&P 500 S2 

3 30 components of DJIA as on April 30, 2013 USA 30-Jun-05 30-Apr-13 Monthly 95 Returns Variance DJIA S3 

4 30 components of DJIA as on April 30, 2013 USA 30-Jun-05 30-Apr-13 Monthly 95 Returns Variance S&P 500 S4 

5 30 components of DJIA as on April 30, 2013 USA 12-Dec-12 30-Apr-13 Daily 95 Returns Variance DJIA S5 

6 30 components of DJIA as on April 30, 2013 USA 12-Dec-12 30-Apr-13 Daily 95 Returns Variance S&P 500 S6 

7 396 components of B400 as on August 1, 2013 USA 12-Dec-12 30-Apr-13 Daily 95 Returns Variance S&P 500 S7 

8 500 components of S&P 500 as on August 1, 2013 USA 12-Dec-12 30-Apr-13 Daily 95 Returns Variance S&P 500 S8 

9 30 components of DJIA as on April 30, 2013 USA 30-May-03 30-Apr-13 Monthly 120 Idiosyncratic Volatility S&P 500 S9 

10 396 components of B400 as on August 1, 2013 USA 12-Dec-12 30-Apr-13 Daily 95 Idiosyncratic Volatility S&P 500 S10 

11 500 components of S&P 500 as on August 1, 2013 USA 12-Dec-12 30-Apr-13 Daily 95 Idiosyncratic Volatility S&P 500 S11 

12 Fama-French 5 Portfolios of All USA stocks USA 30-May-03 30-Apr-13 Monthly 120 Industry S&P 500 S12 

13 Fama-French 6 Portfolios of All USA stocks USA 30-May-03 30-Apr-13 Monthly 120 Size & Investment S&P 500 S13 

14 Fama-French 6 Portfolios of All USA stocks USA 30-May-03 30-Apr-13 Monthly 120 Size & Long term reversals S&P 500 S14 

15 Fama-French 6 Portfolios of All USA stocks USA 30-May-03 30-Apr-13 Monthly 120 Size and Momentum S&P 500 S15 

16 Fama-French 6 Portfolios of All USA stocks USA 30-May-03 30-Apr-13 Monthly 120 Size and Operating profits S&P 500 S16 

17 Fama-French 6 Portfolios of All USA stocks USA 30-May-03 30-Apr-13 Monthly 120 Size & Short term reversals S&P 500 S17 

18 Fama-French 6 Portfolios of All USA stocks USA 30-May-03 30-Apr-13 Monthly 120 Size and BE/ME ratio S&P 500 S18 

19 
100 components of S&P ASX 50 and S&P ASX 

Mid-Cap 50 as on May 15, 2013 
Australia 20-May-13 30-Sep-13 Daily 95 Returns Variance 

ASX All 

Ordinaries 
S19 

20 
100 components of S&P ASX 50 and S&P ASX 

Mid-Cap 50 as on May 15, 2013 
Australia 12-Apr-13 30-Sep-13 Daily 120 Returns Variance 

ASX All 

Ordinaries 
S20 

21 
30 components of BSE Sensex as on January 1, 

2005 
India 31-Jan-02 30-Nov-09 Monthly 95 Returns Variance BSE Sensex S21 
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Table 2a: Slope coefficients and t-stats of the RFM Equation (17a - with intercept):   

RF1a:   pi,t =  αi + βi[{(pm,t/ pm,t-1) pi,t-1}] + eit
 

 

Sample 
Portfolios 

Slope coefficients across P1 to P-full Sample 
Portfolios 

Slope coefficients across P1 to P-full 

Sub portfolios αi βi Sub portfolios αi βi 

S1 

P1   1.00  (49.902) 

S10 

P1  0.99  (135.59) 
P2   1.00  (110.85) P2  0.98  (89.093) 
P3   0.99  (101.55) P3  0.98  (75.988) 
P4   0.97  (62.040) P4  0.96  (58.225) 
P5   0.98  (61.915) P5  0.96  (44.426) 

P-full 0.35  (0.46) 0.99  (170.84) P-full 1.92  (1.60) 0.98  (81.112) 

S2 

P1   0.99  (39.986) 

S11 

P1  1.00  (144.28) 
P2   0.99  (97.915) P2  1.00  (149.26) 
P3   0.99  (97.491) P3  0.99  (145.45) 
P4   0.98  (65.704) P4  0.98  (82.446) 
P5   0.99  (65.846) P5  0.96  (50.963) 

P-full 0.11  (0.14) 0.99  (153.73) P-full 0.46  (0.66) 0.99  (145.11) 

S3 

P1  1.00  (45.441) 

S12 

P1  1.00  (151.91) 
P2  1.00  (97.870) P2  0.99  (102.36) 
P3  0.99  (93.150) P3  0.99  (121.94) 
P4  0.98  (59.949) P4  1.00  (72.912) 
P5  0.99  (51.117) P5  0.99  (113.85) 

P-full -0.45  (-0.69) 1.00  (176.79) P-full 0.03  (0.11) 1.00  (431.53) 

S4 

P1  0.99  (35.812) 

S13 

P1  0.99  (84.023) 
P2  0.99  (85.160) P2  0.99  (97.351) 
P3  0.99  (90.832) P3 0.79  (0.51) 0.98  (67.908) 
P4  0.98  (62.910) P4  1.00  (176.53) 
P5  1.00  (53.596) P5  1.00  (300.28) 

P-full -0.29  (-0.35) 1.00  (139.63) P-full  0.99  (176.97) 

S5 

P1  0.99  (81.714) 

S14 

P1  0.98  (58.832) 
P2  1.01  (77.688) P2  0.99  (102.56) 
P3  0.98  (99.304) P3 1.32  (0.78) 0.99  (93.675) 
P4  1.01  (81.851) P4  0.99  (70.892) 
P5  0.97  (45.708) P5  1.00  (236.99) 

P-full -0.14  (-0.30) 1.00  (221.37) P-full  0.99  (106.76) 

S6 

P1  0.98  (61.889) 

S15 

P1  0.97  (74.616) 
P2  1.00  (86.040) P2  0.99  (105.38) 
P3  0.97  (93.221) P3 1.81  (1.04) 1.00  (74.499) 
P4  1.00  (83.234) P4  0.97  (66.420) 
P5  0.97  (47.608) P5  0.99  (263.86) 

P-full 0.28  (0.44) 0.99  (161.76) P-full  1.00  (102.37) 

S7 

P1  0.99  (119.27) 

S16 

P1  0.98  (65.503) 
P2  0.98  (97.872) P2  0.99  (101.19) 
P3  0.97  (69.931) P3 0.83  (0.71) 0.99  (92.163) 
P4  0.97  (59.854) P4  1.00  (118.36) 
P5  0.96  (42.219) P5  1.00  (276.27) 

P-full 1.92  (1.58) 0.98  (80.612) P-full  0.99  (252.70) 

S8 

P1  1.00  (128.44) 

S17 

P1  0.98  (66.220) 
P2  0.99  (152.71) P2  0.99  (92.274) 
P3  0.99  (106.11) P3  0.98  (72.263) 
P4  0.98  (83.984) P4 1.29  (0.71) 0.99  (88.608) 
P5  0.97  (50.929) P5  1.00  (245.88) 

P-full 0.46  (0.66) 0.99  (145.04) P-full  0.99  (116.70) 

S9 

P1  0.96  (55.165) 

S18 

P1  0.99  (74.678) 
P2  1.00  (123.48) P2  0.98  (91.969) 
P3  0.96  (62.214) P3  0.98  (74.880) 
P4  0.99  (80.148) P4 0.87  (0.70) 0.99  (209.34) 
P5  0.97  (52.576) P5  0.99  (196.31) 

P-full 0.20  (0.23) 0.99  (149.50) P-full  1.01  (92.183) 
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Table 2a contd.: Slope coefficients and t-stats of the RFM Equation (17a - with intercept):   

RF1a:   pi,t =  αi + βi [{(pm,t/ pm,t-1) pi,t-1}] + eit
 

 

Sample 

Portfolios 

Slope coefficients across P1 to P-full 

Sub portfolios αi βi 

S19 

P1  0.98  (50.475) 

P2  0.99  (113.25) 

P3  1.00  (66.014) 

P4  1.00  (107.45) 

P5  1.00  (60.653) 

P-full -1.06  (-1.31) 1.00  (142.21) 

S20 

P1  1.01  (67.880) 

P2  0.99  (108.21) 

P3  1.00  (81.172) 

P4  0.99  (91.064) 

P5  0.99  (59.589) 

P-full -1.05  (-1.22) 1.00  (135.29) 

S21 

P1  0.96  (79.087) 

P2  0.99  (94.814) 

P3  1.00  (115.54) 

P4  1.00  (85.058) 

P5  0.99  (69.505) 

P-full 0.09  (0.21) 0.99  (227.75) 
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Table 2b: Slope coefficients and t-stats of the RFM Equation (17b - without intercept):   

RF1b:  pi,t =  βi [{(pm,t/ pm,t-1) pi,t-1}] + eit 
 

Sample 

Portfolios 

Slope coefficients across 

P1 to P-full Sample 

Portfolios 

Slope coefficients across 

P1 to P-full Sample 

Portfolios 

Slope coefficients across P1 

to P-full Sample 

Portfolios 

Slope coefficients across P1 

to P-full Sample 

Portfolios 

Slope coefficients across 

P1 to P-full 

Sub 

portfolios 
βi  

Sub 

portfolios 
βi  

Sub 

portfolios 
βi  

Sub 

portfolios 
βi  

Sub 

portfolios 
βi  

S1 

P1 1.00  (471.85) 

S6 

P1 0.99  (1654.1) 

S11 

P1 1.00  (5012.7) 

S16 

P1 1.00  (382.21) 

S21 

P1 0.98  (213.95) 

P2 1.00  (538.63) P2 1.00  (2586.9) P2 1.00  (5289.7) P2 1.00  (492.61) P2 0.99  (262.05) 

P3 1.00  (605.99) P3 1.00  (2773.9) P3 1.00  (4573.9) P3 1.00  (420.93) P3 1.00  (278.81) 

P4 0.99  (391.94) P4 1.00  (2306.4) P4 1.00  (3075.3) P4 1.00  (717.52) P4 0.99  (248.63) 

P5 0.99  (287.34) P5 1.00  (1573.8) P5 0.99  (2320.0) P5 1.00  (1639.3) P5 0.99  (167.51) 

P-full 0.99  (1238.0) P-full 1.00  (4918.6) P-full 1.00  (5365.0) P-full 1.00  (1339.5) P-full 0.99  (612.95) 

S2 

P1 1.00  (381.42) 

S7 

P1 0.99  (4468.4) 

S12 

P1 1.00  (680.51) 

S17 

P1 1.00  (318.36) 

P2 1.00  (474.89) P2 1.00  (3246.3) P2 1.00  (479.14) P2 1.00  (464.61) 

P3 1.00  (582.88) P3 1.00  (2850.2) P3 1.00  (598.82) P3 1.00  (426.21) 

P4 0.99  (416.24) P4 1.00  (2092.7) P4 1.00  (402.58) P4 0.99  (424.75) 

P5 0.99  (303.81) P5 1.00  (1605.3) P5 0.99  (530.94) P5 1.00  (1326.5) 

P-full 0.99  (1121.8) P-full 1.00  (2995.6) P-full 1.00  (2532.6) P-full 1.00  (654.61) 

S3 

P1 0.99  (396.20) 

S8 

P1 1.00  (3932.7) 

S13 

P1 1.00  (369.70) 

S18 

P1 1.00  (421.14) 

P2 1.00  (467.18) P2 1.00  (5533.1) P2 1.00  (481.73) P2 1.00  (456.74) 

P3 1.00  (533.59) P3 1.00  (4015.8) P3 1.00  (424.10) P3 1.00  (375.93) 

P4 0.99  (328.83) P4 1.00  (3073.3) P4 1.00  (1058.1) P4 1.00  (1138.8) 

P5 0.99  (228.41) P5 0.99  (2063.0) P5 1.00  (1768.1) P5 1.00  (1152.5) 

P-full 0.99  (1164.5) P-full 1.00  (5353.9) P-full 1.00  (1083.3) P-full 1.00  (538.96) 

S4 

P1 0.99  (315.91) 

S9 

P1 0.99  (476.39) 

S14 

P1 1.00  (308.03) 

S19 

P1 0.99  (2549.3) 

P2 1.00  (405.38) P2 1.00  (560.68) P2 1.00  (477.37) P2 1.00  (3271.4) 

P3 1.00  (520.12) P3 0.99  (502.39) P3 1.00  (450.33) P3 0.99  (2547.1) 

P4 0.99  (344.51) P4 0.99  (401.12) P4 1.00  (496.31) P4 1.00  (2147.1) 

P5 0.99  (239.13) P5 0.99  (288.13) P5 1.00  (1439.6) P5 0.99  (1129.9) 

P-full 1.00  (919.87) P-full 0.99  (1069.1) P-full 1.00  (615.43) P-full 0.99  (3994.0) 

S5 

P1 0.99  (2178.2) 

S10 

P1 0.99  (5081.4) 

S15 

P1 1.00  (290.60) 

S20 

P1 1.00  (2996.2) 

P2 1.00  (2329.3) P2 0.99  (3312.8) P2 1.00  (493.12) P2 1.00  (3388.7) 

P3 1.00  (2958.7) P3 1.00  (2536.8) P3 1.00  (391.74) P3 0.99  (2801.2) 

P4 1.00  (2280.6) P4 0.99  (2140.7) P4 0.99  (352.85) P4 1.00  (1972.0) 

P5 0.99  (1518.1) P5 1.00  (1701.1) P5 1.00  (1326.8) P5 1.00  (1155.0) 

P-full 1.00  (6797.1) P-full 1.00  (3011.5) P-full 1.00  (580.35) P-full 1.00  (3972.8) 



 

 

31 

 

 

Table 2c: Slope coefficients and t-stats of the RFM Equation (17c – volume estimation):   

RF1c:  vi,t  =  δi  [{(vm,t/ vm,t-1) vi,t-1}] + eit 
 

Sample 

Portfolios 

Slope coefficients 

across P1 to P-full Sample 

Portfolios 

Slope coefficients 

across P1 to P-full Sample 

Portfolios 

Slope coefficients across 

P1 to P-full 

Sub 

portfolios 
δi 

Sub 

portfolios 
δi   

Sub 

portfolios 
δi   

S1 

P1 1.11  (42.54) 

S6 

P1 1.03  (56.93) 

S11 

P1 1.02  (31.70) 

P2 0.86  (20.81) P2 1.02  (48.11) P2 1.22  (45.12) 

P3 1.27  (69.49) P3 0.97  (49.80) P3 0.89  (57.38) 

P4 0.96  (42.12) P4 0.96  (55.16) P4 0.89  (54.59) 

P5 0.88  (28.43) P5 0.92  (51.70) P5 0.90  (59.24) 

P-full 1.15  (55.20) P-full 0.96  (73.89) P-full 0.91  (71.38) 

S2 

P1 1.13  (43.84) 

S7 

P1 1.13  (47.02) 

S19 

P1 1.00  (20.36) 

P2 0.90  (22.75) P2 1.07  (35.13) P2 0.80  (13.45) 

P3 1.27  (72.35) P3 1.19  (36.63) P3 0.72  (10.31) 

P4 1.00  (52.11) P4 1.11  (22.35) P4 0.84  (18.32) 

P5 0.89  (25.30) P5 0.88  (99.53) P5 0.88  (18.92) 

P-full 1.16  (66.36) P-full 0.90  (77.65) P-full 1.00  (20.36) 

S3 

P1 0.99  (30.46) 

S8 

P1 1.19  (42.46) 

S20 

P1 0.77  (21.82) 

P2 0.87  (18.62) P2 1.03  (15.72) P2 0.99  (23.69) 

P3 1.24  (51.65) P3 1.00  (81.88) P3 0.86  (15.51) 

P4 0.92  (37.90) P4 0.93  (45.24) P4 0.92  (30.57) 

P5 0.83  (25.16) P5 0.91  (70.27) P5 0.96  (29.22) 

P-full 1.00  (29.57) P-full 0.92  (52.99) P-full 0.77  (21.82) 

S4 

P1 1.05  (45.33) 

S9 

P1 1.05  (43.86) 

S21 

P1 1.27  (9.77) 

P2 0.90  (20.43) P2 0.92  (38.56) P2 0.45  (6.05) 

P3 1.25  (59.40) P3 0.92  (43.62) P3 0.73  (15.00) 

P4 0.97  (49.49) P4 0.97  (29.33) P4 0.66  (10.45) 

P5 0.91  (34.30) P5 0.76  (23.37) P5 0.53  (33.72) 

P-full 1.03  (34.71) P-full 0.95  (44.26) P-full 0.83  (8.94) 

S5 

P1 1.02  (49.55) 

S10 

P1 1.18  (82.83) 

P2 1.04  (46.18) P2 1.05  (65.96) 

P3 0.96  (44.20) P3 1.03  (62.53) 

P4 0.96  (47.72) P4 0.92  (61.92) 
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  P5 0.93  (53.14) P5 0.93  (42.65) 

P-full 0.96  (66.35) P-full 0.93  (43.56) 
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Table 3: Slope coefficients and their t-stats for the Combined RFM Equation (18b): 

RF2b : Ri,t - Rf,t = βi,m (Rm,t – Rf,t ) + βi,s SMBt + βi,h HMLt + βi,r RMWt + βi,c CMAt + βi,v[ln(vm,t/vm,t-1)] + βi,o(tt)
2 + βi,l(Ri,t-1) +eit 

Sample 

Portfolios 

Slope coefficients across P1 to P-full 

Sub 

portfolios 
βi,m  βi,s  βi,h βi,r βi,c βi,v βi,o βi,l 

S1 

P1 0.82  (13.88) -0.19  (-2.19) -0.09  (-1.01) 0.28  (1.919) 0.15  (1.007) -0.010  (-2.04) -4.23  (-0.11) 0.02  (0.331) 

P2 0.77  (13.82) 0.03  (0.352) -0.06 (-0.74) 0.17  (1.285) 0.18  (1.215) -0.005  (-1.26) 7.86  (2.193) -0.03  (-0.51) 

P3 0.99  (17.52) 0.07  (0.866) 0.11  (1.216) -0.2  (-1.78) -0.08  (-0.54) 0.0054  (1.136) 0.00  (0.931) 0.05  (1.140) 

P4 1.14  (14.12) 0.16  (1.338) -0.01  (-0.05) -0.38  (-1.89) -0.37  (-1.71) -0.009  (-1.31) 1.58  (0.312) 0.0001  (0.003) 

P5 1.42  (14.18) 0.46  (2.995) 0.56  (3.525) -0.25  (-1.03) -0.28  (-1.04) -0.002  (-0.26) -1.33  (-2.12) -0.001  (-0.03) 

P-full 1.02  (43.50) 0.10  (2.881) 0.08  (2.114) -0.11  (-2.02) -0.04  (-0.68) -0.003  (-1.97) 3.35  (0.226) -0.001  (-0.09) 

S2 

P1 0.77  (11.68) -0.30  (-2.99) -0.05  (-0.49) 0.37  (2.219) 0.29  (1.654) -0.011  (-1.81) -6.06  (-0.14) 0.0012  (0.021) 

P2 0.78  (13.65) -0.08  (-1.02) -0.04  (-0.45) 0.34  (2.341) 0.33  (2.193) -0.005  (-0.96) 7.55  (2.092) -0.071  (-1.32) 

P3 0.98  (16.75) -0.07  (-0.81) 0.12  (1.319) -0.04  (-0.28) 0.13  (0.853) 0.0067  (1.218) 2.35  (0.637) 0.019  (0.480) 

P4 1.18  (14.39) -0.04  (-0.34) 0.01  (0.084) -0.14  (-0.66) -0.06  (-0.29) -0.000  (-0.04) -5.10  (-9.98) -0.06  (-1.21) 

P5 1.44  (14.30) 0.21  (1.358) 0.56  (3.513) 0.06  (0.248) 0.11  (0.406) 0.0090  (0.949) -1.58  (-2.49) -0.02  (-0.48) 

P-full 1.03  (36.05) -0.06  (-1.44) 0.09  (2.250) 0.089  (1.218) 0.20  (2.600) 0.0004  (0.180) -7.76  (-0.43) -0.04  (-1.99) 

S3 

P1 0.80  (12.92) -0.24  (-2.34) -0.07  (-0.73) 0.31  (1.894) 0.16  (0.947) -0.014  (-2.48) 1.49  (0.206) 0.01  (0.108) 

P2 0.77  (13.00) 0.08  (0.769) -0.10 (-0.98) 0.18  (1.196) 0.25  (1.482) -0.006  (-1.18) 1.62  (2.313) -0.04  (-0.64) 

P3 1.01  (16.54) 0.09  (0.921) 0.07  (0.712) -0.24  (-1.49) -0.02  (-0.12) 0.0056  (0.980) 4.79  (0.673) 0.04  (0.929) 

P4 1.19  (13.37) 0.012  (0.086) -0.02  (-0.15) -0.44  (-1.90) -0.20  (-0.81) -0.010  (-1.24) -1.31  (-0.12) -0.01  (-0.14) 

P5 1.42  (14.34) 0.622  (3.752) 0.96  (5.382) -0.06  (-0.26) -0.88  (-3.13) 0.0084  (0.927) -1.87 (-1.64) 3.42  (0.000) 

P-full 1.02  (46.13) 0.083  (2.249) 0.14  (3.622) -0.06  (-1.10) -0.08  (-1.37) -0.003  (-1.48) 1.28  (0.499) -0.01  (-0.49) 

S4 

P1 0.7541  (10.80) -0.37  (-3.08) 0.003  (0.023) 0.41  (2.152) 0.26  (1.257) -0.013  (-1.97) 1.29  (0.157) -0.01  (-0.09) 

P2 0.77  (12.63) -0.06  (-0.63) -0.04  (-0.44) 0.35  (2.144) 0.37  (2.110) -0.003  (-0.59) 1.55  (2.150) -0.07  (-1.19) 

P3 0.98  (16.09) -0.08  (-0.84) 0.12  (1.134) -0.01  (-0.10) 0.16  (0.890) 0.0044  (0.726) 3.02  (0.415) 0.017  (0.388) 

P4 1.22  (14.00) -0.23  (-1.59) 0.04  (0.284) -0.16  (-0.69) 0.05  (0.208) 0.0005  (0.068) -4.57  (-0.45) -0.06  (-1.28) 

P5 1.38  (13.33) 0.36  (1.989) 1.03  (5.504) 0.23  (0.823) -0.58  (-1.91) 0.0150  (1.473) -2.20  (-1.81) -0.02  (-0.38) 

P-full 1.01  (33.10) -0.11  (-2.06) 0.21  (3.884) 0.15  (1.824) 0.10  (1.129) 0.0010  (0.349) -4.42  (-0.12) -0.04  (-1.92) 

S5 

P1 0.884  (11.73) -0.09  (-0.78) -0.46  (-2.67) 0.02  (0.078) 0.49  (2.293) 0.0028  (1.345) -1.52  (-1.17) -0.18  (-2.86) 

P2 0.982  (12.19) 0.008  (0.069) 0.27  (1.512) -0.07  (-0.25) -0.10  (-0.45) -0.001  (-0.67) 1.47  (1.052) 0.03  (0.431) 

P3 1.01  (15.84) -0.03  (-0.32) -0.09  (-0.64) -0.12  (-0.55) 0.36  (1.989) -0.001  (-0.72) 3.53  (0.318) 0.08  (1.550) 

P4 1.02  (13.69) 0.173  (1.466) 0.08  (0.473) -0.37  (-1.43) -0.67  (-3.13) -0.002  (-1.05) 2.65  (2.028) -0.07  (-1.39) 

P5 0.99  (9.009) 0.025  (0.144) 0.94  (3.757) -0.18  (-0.47) -0.94  (-3.00) 0.0023  (0.788) 1.117  (0.586) -0.12  (-1.82) 

P-full 0.98  (39.19) 0.008  (0.222) 0.14  (2.576) -0.15  (-1.73) -0.18  (-2.61) -5.174  (-0.07) 8.201  (1.880) -0.04  (-1.76) 

S6 

P1 0.73  (9.194) -0.16  (-1.16) -0.56  (-2.79) 0.06  (0.215) 0.74  (2.872) 0.0036  (1.218) -1.43  (-0.95) -0.16  (-2.18) 

P2 0.94  (14.51) -0.15  (-1.33) 0.17  (1.047) 0.21  (0.840) 0.29  (1.389) -0.000  (-0.31) 1.06  (0.854) 0.05  (0.989) 

P3 0.95  (18.35) -0.18  (-2.00) -0.22  (-1.67) 0.13  (0.653) 0.75  (4.514) 0.0017  (0.884) 3.95  (0.039) 0.09  (2.128) 

P4 0.89  (11.91) 0.04  (0.347) -0.015  (-0.08) -0.25  (-0.85) -0.35  (-1.45) -0.003  (-1.25) 2.48  (1.730) -0.02  (-0.42) 

P5 0.87  (8.327) -0.09  (-0.49) 0.84  (3.227) -0.02  (-0.05) -0.61  (-1.83) 0.0011  (0.303) 1.02  (0.514) -0.10  (-1.50) 
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P-full 0.88  (30.65) -0.11  (-2.37) 0.04  (0.573) 0.02  (0.212) 0.15  (1.645) 0.0002  (0.277) 6.08  (1.106) -0.00  (-0.12) 
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Table 3 (contd.): Slope coefficients and their t-stats for the Combined RFM Equation (18b): 

RF2b : Ri,t - Rf,t = βi,m (Rm,t – Rf,t ) + βi,s SMBt + βi,h HMLt + βi,r RMWt + βi,c CMAt + βi,v[ln(vm,t/vm,t-1)] + βi,o(tt)
2 + βi,l(Ri,t-1) +eit 

Sample 

Portfolios 

Slope coefficients across P1 to P-full 

Sub 

portfolios 
βi,m  βi,s  βi,h βi,r βi,c βi,v βi,o βi,l 

S7 

P1 0.89  (29.54) 0.26  (5.022) -0.36  (-4.85) -0.16  (-1.39) 0.27  (2.852) 0.0007  (0.687) -4.22  (-0.74) 0.0131  (0.516) 

P2 0.98  (25.19) 0.57  (8.412) -0.35 (-3.66) -0.12(-0.82) 0.17  (1.398) -0.001  (-0.79) 3.47  (0.472) 0.0397  (1.426) 

P3 0.96  (23.35) 0.68  (9.517) -0.40 (-3.94) -0.44 (-2.76) 0.01  (0.108) -0.000  (-0.37) 1.78  (0.230) -0.005  (-0.19) 

P4 1.03  (21.24) 0.91  (10.75) -0.29 (-2.46) -0.39(-2.12) -0.15  (-0.96) -0.004  (-2.32) -2.04  (-0.22) 0.0280  (0.957) 

P5 1.06  (16.20) 1.20  (10.59) -0.24  (-1.51) -0.25  (-0.84) 0.28  (1.370) -0.006  (-2.81) 8.81 (0.715) -0.021  (-0.61) 

P-full 0.98  (31.76) 0.72  (13.46) -0.33  (-4.32) -0.26  (-2.21) 0.12  (1.240) -0.002  (-2.13) 1.45  (0.249) 0.0139  (0.665) 

S8 

P1 0.85  (26.21) 0.03  (0.693) -0.17  (-2.19) 0.01  (0.147) 0.49  (4.737) 0.0013  (1.112) 1.33  (2.152) -0.011  (-0.37) 

P2 0.96  (32.85) 0.16  (3.253) -0.10  (-1.43) 0.12  (1.131) 0.35  (3.793) 3.25  (0.029) -7.40  (-0.13) 0.0164  (0.694) 

P3 1.05  (27.92) 0.26  (3.984) -0.03  (-0.35) -0.11  (-0.76) 0.04  (0.360) -0.000  (-0.03) 1.60  (0.225) 0.0192  (0.737) 

P4 1.1 (30.83) 0.3 (5.315) 0.146  (1.580) -0.07  (-0.48) -0.15  (-0.96) -0.002  (-1.48) -4.14  (-0.59) 0.0254  (1.099) 

P5 1.05  (20.40) 0.5  (6.506) 0.616  (4.755) 0.08  (0.402) -0.39  (-2.36) -0.006  (-3.17) -5.67  (-0.05) -0.017  (-0.56) 

P-full 1.01  (43.27) 0.27  (6.848) 0.087  (1.497) 0.01 (0.095) 0.08  (1.038) -0.001  (-1.57) 1.85  (0.419) 0.0069  (0.408) 

S9 

P1 0.94  (15.58) -0.11  (-1.26) -0.03  (-0.39) 0.43  (2.764) 0.21  (1.239) -0.000  (-0.15) -4.27  (-1.12) -0.095  (-2.01) 

P2 0.95  (19.05) -0.21 (-2.79) 0.02  (0.353) 0.34  (2.692) 0.32  (2.336) -0.003  (-0.71) 5.58  (1.748) -0.021  (-0.52) 

P3 0.86  (13.92) -0.06(-0.69) 0.06  (0.719) 0.11  (0.746) 0.25  (1.463) -0.003  (-0.55) -3.59  (-0.92) -0.017  (-0.35) 

P4 1.02  (12.17) -0.12 (-0.96) -0.0  (-0.08) -0.25  (-1.20) 0.27  (1.177) -0.011  (-1.48) 8.48  (0.164) -0.019  (-0.37) 

P5 1.41  (12.54) 0.07  (0.422) 0.49  (2.811) -0.01  (-0.05) -0.06  (-0.21) 0.03  (2.462) -1.65  (-0.23) -0.021  (-0.43) 

P-full 1.05  (34.16) -0.08  (-1.83) 0.07  (1.668) 0.09  (1.200) 0.22  (2.607) 0.0025  (0.868) -3.53  (-0.18) -0.045  (-2.03) 

S10 

P1 0.92  (33.36) 0.25  (5.241) -0.34  (-5.01) -0.20  (-1.89) 0.25  (2.895) -0.000  (-0.11) -2.09  (-0.40) 0.0058  (0.261) 

P2 0.97  (26.06) 0.56  (8.764) -0.37 (-4.00) -0.26 (-1.83) 0.14  (1.252) -0.000  (-0.65) 4.30  (0.061) 0.0089  (0.336) 

P3 0.98  (21.75) 0.77  (9.840) -0.34 (-3.00) -0.30  (-1.73) 0.00  (0.040) 0.0003  (0.207) 1.32  (1.547) 0.0039  (0.132) 

P4 1.01  (19.50) 0.85  (9.451) -0.22  (-1.73) -0.27  (-1.35) -0.15  (-0.90) -0.005  (-2.83) -1.29  (-1.33) 0.0326  (1.011) 

P5 1.04  (16.59) 1.17  (10.72) -0.35  (-2.23) -0.23  (-0.95) 0.37  (1.858) -0.006  (-2.68) 9.35  (0.792) -0.011  (-0.33) 

P-full 0.9 (31.85) 0.72  (13.41) -0.32  (-4.23) -0.25  (-2.11) 0.13  (1.294) -0.002  (-2.20) 1.37  (0.236) 0.0147  (0.701) 

S11 

P1 0.91  (30.31) 0.06  (1.312) -0.13  (-1.74) 0.01  (0.081) 0.37  (3.934) 0.0004  (0.412) 7.22  (1.272) -0.000  (-0.01) 

P2 0.98  (31.37) 0.15  (2.901) -0.08  (-1.06) 0.016  (0.137) 0.28  (2.800) 0.0003  (0.325) 1.64  (0.277) 0.0017  (0.073) 

P3 1.04  (31.50) 0.21  (3.744) 0.02  (0.274) -0.05  (-0.35) 0.06  (0.581) -0.000  (-0.27) 6.19  (0.986) 0.0233  (0.995) 

P4 1.12  (32.40) 0.44  (7.368) 0.07  (0.827) -0.08  (-0.62) 0.02  (0.242) -0.001  (-1.24) -3.81  (-0.58) 0.0110  (0.508) 

P5 1.00  (18.85) 0.51 (5.568) 0.54  (4.087) 0.13  (0.635) -0.36  (-2.15) -0.005  (-2.87) -1.04  (-0.10) -0.021  (-0.65) 

P-full 1.01  (43.19) 0.28  (6.834) 0.08  (1.412) 0.01  (0.051) 0.08 (1.040) -0.001  (-1.59) 1.97  (0.446) 0.0065  (0.386) 

S12 

P1 0.82  (21.99) 0.28  (4.962) -0.14  (-2.41) 0.27  (2.820) 0.26  (2.533) 0.0025  (0.713) 6.77  (2.809) 0.0034  (0.106) 

P2 1.00  (14.27) 0.10  (0.952) 0.033  (0.304) 0.12  (0.667) -0.43  (-2.24) -0.000  (-0.03) 3.61  (0.813) 0.0337  (0.738) 

P3 1.06  (24.79) 0.38  (5.813) -0.50  (-7.61) -0.12  (-1.17) -0.07  (-0.60) -0.006  (-1.58) 2.81  (1.052) 0.0101  (0.372) 

P4 0.66  (9.246) -0.12  (-1.14) -0.14  (-1.29) -0.32  (-1.76) 0.15  (0.759) -0.000  (-0.05) 1.23  (2.675) -0.057  (-0.91) 

P5 1.15  (23.69) 0.031  (0.418) 0.55  (7.206) -0.17  (-1.35) 0.05  (0.366) 0.0071  (1.556) -2.49  (-0.81) -0.047  (-1.73) 
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P-full 0.94  (88.96) 0.13  (7.992) -0.07  (-4.36) -0.03  (-1.30) 0.001  (0.035) 7.89  (0.078) 4.37  (6.511) 0.0005  (0.065) 

Table 3 (contd.): Slope coefficients and their t-stats for the Combined RFM Equation (18b): 

RF2b : Ri,t - Rf,t = βi,m (Rm,t – Rf,t ) + βi,s SMBt + βi,h HMLt + βi,r RMWt + βi,c CMAt + βi,v[ln(vm,t/vm,t-1)] + βi,o(tt)
2 + βi,l(Ri,t-1) + eit 

Sample 

Portfolios 

Slope coefficients across P1 to P-full 

Sub 

portfolios 
βi,m  βi,s  βi,h βi,r βi,c βi,v βi,o βi,l 

S13 

P1 1.05  (53.81) 1.11  (36.16) 0.04  (1.450) -0.22  (-4.45) 0.40  (7.467) 0.0044  (2.348) 1.57  (1.260) 0.0134  (1.350) 

P2 0.91  (48.89) 0.96  (32.89) 0.13  (4.491) -0.01  (-0.32) 0.05  (1.078) -0.001  (-1.04) 3.87  (3.248) -0.024  (-2.18) 

P3 1.00  (54.52) 1.03  (35.96) -0.06  (-1.95) -0.25  (-5.42) -0.49  (-9.69) -0.000  (-0.28) 9.77  (0.839) 0.0179  (1.807) 

P4 0.94  (47.94) 0.06  (2.029) -0.11  (-3.40) -0.04  (-0.91) 0.55  (10.36) -0.004  (-2.35) 2.42  (1.934) 0.0154  (1.005) 

P5 0.96  (49.95) -0.004  (-0.15) -0.03  (-1.02) -0.01  (-0.39) 0.10  (2.001) 0.0020  (1.126) 3.45  (2.831) -0.021  (-1.39) 

P6 1.00  (43.99) 0.13  (3.801) -0.01  (-0.21) -0.02  (-0.42) -0.52  (-8.45) 0.0004  (0.188) 3.41  (2.370) 0.0187  (1.169) 

S14 

P1 1.13  (32.08) 1.21  (22.07) 0.17  (3.150) -0.33  (-3.63) 0.22  (2.314) 0.0034  (1.028) -2.15  (-0.09) 0.0001  (0.009) 

P2 0.92  (32.73) 0.94  (21.39) 0.12  (2.875) -0.05  (-0.69) 0.03  (0.403) 0.0015  (0.589) 4.54  (2.538) -0.042  (-2.55) 

P3 1.0 (29.22) 0.97  (17.10) -0.006  (-0.11) -0.00 (-0.03) -0.49  (-4.99) -0.000  (-0.19) 4.19  (1.823) 0.0489  (2.528) 

P4 1.04  (20.44) 0.17  (2.156) 0.16  (2.020) -0.38  (-2.95) 0.50  (3.621) 0.0056  (1.168) 2.70  (0.084) -0.105  (-3.34) 

P5 0.92  (46.94) 0.02  (0.835) 0.16  (5.292) 0.02  (0.446) -0.01  (-0.22) 0.0008  (0.444) 4.68  (3.762) -0.022  (-1.49) 

P6 0.9 (22.67) 0.07  (1.032) -0.26  (-3.84) 0.008  (0.078) -0.47  (-3.96) -0.002  (-0.62) 3.16  (1.143) 0.0537  (1.721) 

S15 

P1 1.18  (13.78) 1.09  (8.195) 0.31  (2.283) -0.47  (-2.14) -0.37  (-1.59) 0.0019  (0.239) 2.2 (0.423) 0.0856  (2.449) 

P2 0.96  (36.51) 0.94  (22.84) 0.12  (2.809) -0.08  (-1.22) -0.16  (-2.22) -0.000  (-0.31) 3.94  (2.348) 0.0170  (1.136) 

P3 0.99  (20.41) 1.0 (13.99) -0.16  (-2.08) -0.11  (-0.91) -0.06  (-0.48) -0.002  (-0.55) 3.56  (1.154) -0.005  (-0.20) 

P4 1.2 (13.90) -0.0  (-0.43) 0.38  (2.610) -0.45  (-1.87) -0.50  (-1.96) 0.0231  (2.667) 2.27  (0.388) -0.000  (-0.01) 

P5 0.95  (35.06) 0.07  (1.693) 0.055  (1.298) 0.07  (1.062) 0.05  (0.798) -0.000  (-0.18) 5.1 (2.971) -0.020  (-1.00) 

P6 0.94  (16.50) 0.31  (3.576) -0.25  (-2.76) 0.05  (0.372) -0.09  (-0.60) -0.006  (-1.24) 1.93  (0.538) 0.0497  (1.258) 

S16 

P1 1.0 (61.70) 1.07  (42.27) -0.12  (-4.83) -0.63  (-15.0) -0.02  (-0.36) -0.001  (-1.11) 1.2 (1.267) 0.0048  (0.579) 

P2 0.93  (47.41) 0.96  (31.17) 0.16  (5.123) 0.07  (1.392) -0.07  (-1.21) 0.0007  (0.403) 3.11  (2.481) -0.007  (-0.67) 

P3 1.01  (45.20) 1.11  (31.73) 0.11  (3.213) 0.32  (5.495) -0.16  (-2.56) 0.0011  (0.516) 2.21  (1.546) 0.0305  (2.448) 

P4 0.9 (36.36) 0.09  (2.381) 0.07  (1.688) -0.82  (-11.9) -0.15  (-2.04) 0.0036  (1.437) 3.2 (1.936) 0.0267  (1.591) 

P5 1.03  (54.36) 0.04  (1.384) 0.08  (2.848) -0.01  (-0.24) -0.06  (-1.21) -0.001  (-1.03) 2.75  (2.299) 0.0124  (0.926) 

P6 0.94  (59.62) 0.05  (2.263) -0.16  (-6.40) 0.25  (6.258) 0.02  (0.415) 0.0005  (0.383) 3.72  (3.723) -0.020  (-1.52) 

S17 

P1 1.2 (24.88) 1.11  (14.61) 0.003  (0.041) -0.48  (-3.82) -0.23  (-1.72) 0.0080  (1.719) 2.1 (0.680) 0.0233  (1.084) 

P2 0.99  (42.60) 0.96  (26.44) 0.12  (3.432) -0.12  (-2.04) -0.24  (-3.77) -0.000  (-0.23) 3.69  (2.507) 0.0068  (0.534) 

P3 0.94  (21.82) 0.9 (14.33) 0.02  (0.222) -0.16  (-1.47) -0.09  (-0.78) -0.005  (-1.40) 6.70  (0.245) 0.0520  (2.162) 

P4 1.2 (17.72) 0.13  (1.178) 0.10  (0.915) -0.33  (-1.84) -0.33  (-1.70) 0.0089  (1.334) -3.08  (-0.69) -0.003  (-0.08) 

P5 0.95  (37.59) 0.11  (2.928) -0.04  (-1.11) 0.07  (1.196) -0.02  (-0.28) 0.0014  (0.589) 4.91  (3.052) -0.023  (-1.18) 

P6 0.92  (17.33) 0.07  (0.875) -0.02  (-0.19) 0.008  (0.059) -0.16  (-1.13) -0.004  (-0.98) 5.65  (1.665) 0.0489  (1.257) 

S18 

P1 0.99  (53.56) 1.08  (37.56) -0.35  (-12.4) -0.36  (-7.61) -0.21  (-4.25) -0.001  (-0.62) 2.89  (2.481) 0.0136  (1.356) 

P2 0.9 (54.67) 1.0 (38.07) 0.08  (3.004) -0.05  (-1.21) -0.05  (-1.26) -0.000  (-0.06) 2.33  (2.139) -0.001  (-0.11) 

P3 1.01  (53.86) 0.99  (33.69) 0.54  (18.30) 0.02  (0.351) 0.13  (2.693) 0.0017  (0.999) 1.08  (0.906) -0.004  (-0.51) 

P4 0.95  (53.86) 0.06  (2.198) -0.34  (-12.4) 0.07  (0.833) 0.02  (0.584) 0.0006  (0.377) 4.20  (3.747) -0.003  (-0.23) 
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P5 1.03  (39.04) 0.02  (0.514) 0.17  (4.188) 0.03  (0.418) -0.01  (-0.14) 0.0006  (0.267) 1.13  (0.681) 0.0003  (0.021) 

P6 0.96  (37.35) 0.13  (3.401) 0.79  (19.44) -0.30  (-4.50) -0.35  (-5.03) -0.001  (-0.55) 4.17  (2.552) 0.0176  (1.154) 



 

 

38 

 

Table 4a: Correlations and Sum of Squared Errors (SSE) between Actual1 Average Returns (calculated as ratios of average prices) and Estimated 

Average Returns across P1 to P-full: 

  

Sample 

Portfolios 

CAPM FF3F FF5F RF1a RF1b 

Correlation t-stats SSE Correlation t-stats SSE Correlation t-stats SSE Correlation t-stats SSE Correlation t-stats SSE 

S1 -81.74% -2.46 1.01E-04 -81.68% -2.45 1.27E-04 -55.51% -1.16 9.22E-05 99.58% 18.77 1.25E-06 99.57% 18.72 1.22E-06 

S2 -79.49% -2.27 9.59E-05 -81.55% -2.44 1.19E-04 -60.03% -1.30 9.53E-05 99.58% 18.95 1.21E-06 99.58% 18.94 1.19E-06 

S3 -79.36% -2.26 1.20E-04 -68.78% -1.64 1.15E-04 77.48% 2.12 5.40E-05 99.36% 15.25 1.20E-06 99.36% 15.24 1.23E-06 

S4 -77.19% -2.10 1.08E-04 -60.82% -1.33 1.05E-04 83.23% 2.60 5.14E-05 99.36% 15.27 1.22E-06 99.36% 15.26 1.24E-06 

S5 46.82% 0.92 2.31E-07 44.88% 0.87 2.24E-07 72.15% 1.80 1.61E-07 98.91% 11.65 1.45E-08 98.92% 11.67 1.38E-08 

S6 52.44% 1.07 9.67E-07 50.13% 1.00 7.77E-07 72.49% 1.82 4.96E-07 98.90% 11.60 9.18E-09 98.90% 11.57 8.93E-09 

S7 33.23% 0.61 2.19E-07 30.46% 0.55 1.78E-07 49.76% 0.99 7.41E-08 93.80% 4.69 1.08E-08 93.73% 4.66 7.84E-09 

S8 -75.70% -2.01 5.35E-07 -65.33% -1.49 3.37E-07 3.23% 0.06 9.99E-08 91.13% 3.83 1.89E-08 91.11% 3.83 1.86E-08 

S9 -46.40% -0.91 4.16E-05 -43.23% -0.83 4.84E-05 58.83% 1.26 2.60E-05 99.50% 17.27 5.26E-07 99.50% 17.26 5.19E-07 

S10 7.28% 0.13 2.95E-07 -0.01% -0.00 2.92E-07 37.54% 0.70 1.70E-07 96.00% 5.94 1.70E-08 95.95% 5.90 1.32E-08 

S11 -31.71% -0.58 3.36E-07 -5.48% -0.09 2.01E-07 63.98% 1.44 7.88E-08 94.81% 5.16 1.49E-08 94.79% 5.16 1.45E-08 

S12 -76.81% -2.08 8.86E-05 -81.77% -2.46 9.39E-05 -17.56% -0.31 8.37E-05 99.69% 21.82 2.50E-07 99.69% 21.82 2.49E-07 

S13 34.61% 0.74 5.29E-05 54.86% 1.14 2.91E-05 86.78% 3.03 2.97E-05 99.33% 14.88 2.36E-07 99.33% 17.20 3.16E-07 

S14 23.42% 0.48 5.46E-05 39.60% 0.75 3.11E-05 65.04% 1.48 3.50E-05 99.00% 12.15 2.90E-07 99.01% 14.14 4.36E-07 

S15 -22.79% -0.47 6.01E-05 19.88% 0.35 3.52E-05 89.06% 3.39 3.94E-05 99.76% 24.94 1.41E-07 99.77% 29.43 2.94E-07 

S16 -15.68% -0.32 5.78E-05 27.98% 0.50 3.45E-05 93.81% 4.69 2.90E-05 99.61% 19.52 2.88E-07 99.61% 22.65 3.77E-07 

S17 -36.48% -0.78 5.33E-05 0.40% 0.01 3.95E-05 65.85% 1.52 3.54E-05 99.59% 19.18 2.99E-07 99.61% 22.66 3.76E-07 

S18 35.51% 0.76 4.71E-05 55.35% 1.15 2.18E-05 74.98% 1.96 2.61E-05 99.03% 12.34 2.60E-07 99.05% 14.41 3.45E-07 

S19 27.37% 0.49 7.37E-07 28.12% 0.51 8.28E-07    99.32% 14.77 9.89E-09 99.33% 14.88 1.13E-08 

S20 65.35% 1.50 2.18E-07 75.89% 2.02 2.73E-07    96.31% 6.20 2.86E-08 96.29% 6.18 2.98E-08 

S21 39.22% 0.74 9.64E-05 17.13% 0.30 1.12E-04    99.90% 39.54 7.50E-07 99.90% 39.54 7.46E-07 
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Table 4b: Correlations and Sum of Squared Errors (SSE) between Actual2 Average Returns (calculated as averages of time series of continuous 

returns) and Estimated Average Returns across P1 to P-full: 

  

Sample 

Portfolios 

CAPM FF3F FF5F RF1a RF1b 

Correlation t-stats SSE Correlation t-stats SSE Correlation t-stats SSE Correlation t-stats SSE Correlation t-stats SSE 

S1 -81.86% -2.47 8.66E-05 -82.50% -2.53 1.13E-04 -57.90% -1.23 7.92E-05 99.22% 13.78 1.62E-06 99.22% 13.76 1.66E-06 

S2 -79.65% -2.28 8.08E-05 -82.52% -2.53 1.03E-04 -62.44% -1.38 8.33E-05 99.23% 13.92 1.23E-06 99.23% 13.91 1.24E-06 

S3 -79.85% -2.30 1.02E-04 -69.26% -1.66 9.71E-05 77.72% 2.14 4.09E-05 99.23% 13.86 2.29E-06 99.23% 13.86 2.19E-06 

S4 -77.69% -2.14 8.70E-05 -61.39% -1.35 8.34E-05 83.47% 2.62 3.85E-05 99.23% 13.87 2.22E-06 99.23% 13.87 2.16E-06 

S5 43.02% 0.83 2.48E-07 41.67% 0.79 2.37E-07 75.61% 2.00 1.64E-07 99.40% 15.78 7.33E-09 99.41% 15.81 7.05E-09 

S6 48.78% 0.97 1.05E-06 47.15% 0.93 8.45E-07 75.42% 1.99 5.33E-07 99.40% 15.71 8.72E-09 99.39% 15.66 7.70E-09 

S7 34.54% 0.64 1.85E-07 32.29% 0.59 2.33E-07 48.46% 0.96 1.07E-07 93.96% 4.76 2.35E-08 93.90% 4.73 1.21E-08 

S8 -73.59% -1.88 5.12E-07 -62.69% -1.39 3.39E-07 7.16% 0.12 1.00E-07 90.74% 3.74 2.07E-08 90.72% 3.73 1.91E-08 

S9 -53.91% -1.11 3.38E-05 -49.62% -0.99 4.08E-05 56.43% 1.18 2.12E-05 99.03% 12.36 1.27E-06 99.03% 12.37 1.29E-06 

S10 8.35% 0.15 2.59E-07 1.32% 0.02 3.43E-07 35.92% 0.67 2.00E-07 96.02% 5.96 2.89E-08 95.97% 5.91 1.68E-08 

S11 -28.20% -0.51 3.21E-07 -1.78% -0.03 2.11E-07 65.80% 1.51 8.48E-08 95.42% 5.52 1.76E-08 95.40% 5.51 1.58E-08 

S12 -61.01% -1.33 6.68E-05 -70.00% -1.70 7.19E-05 -10.29% -0.18 6.30E-05 98.12% 8.81 2.66E-06 98.12% 8.81 2.67E-06 

S13 43.03% 0.95 3.55E-05 62.87% 1.40 1.72E-05 89.39% 3.45 1.78E-05 98.73% 10.77 2.97E-06 98.74% 12.46 3.29E-06 

S14 17.83% 0.36 4.07E-05 31.04% 0.57 2.33E-05 55.67% 1.16 2.55E-05 97.49% 7.58 2.44E-06 97.50% 8.77 2.94E-06 

S15 -27.06% -0.56 4.45E-05 16.07% 0.28 2.57E-05 88.51% 3.29 2.62E-05 99.00% 12.18 2.31E-06 99.07% 14.59 2.96E-06 

S16 -12.61% -0.25 4.63E-05 30.93% 0.56 2.67E-05 93.58% 4.60 2.01E-05 99.66% 20.98 1.83E-06 99.67% 24.40 2.11E-06 

S17 -34.59% -0.74 3.97E-05 3.23% 0.06 3.01E-05 68.76% 1.64 2.38E-05 99.62% 19.69 2.03E-06 99.63% 23.34 2.43E-06 

S18 43.75% 0.97 3.68E-05 63.49% 1.42 1.48E-05 80.35% 2.34 1.80E-05 96.63% 6.50 1.81E-06 96.68% 7.57 2.07E-06 

S19 25.07% 0.45 7.72E-07 25.78% 0.46 8.72E-07    99.04% 12.41 1.33E-08 99.05% 12.49 1.39E-08 

S20 64.65% 1.47 1.97E-07 76.18% 2.04 2.48E-07    96.50% 6.37 2.27E-08 96.48% 6.36 2.37E-08 

S21 42.11% 0.80 8.41E-05 40.19% 0.76 3.52E-05    96.97% 6.88 4.66E-05 96.97% 6.88 4.62E-05 
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Table 4c: Correlations and Sum of Squared Errors (SSE) between Actual Average Change in Volumes (calculated as ratios of average volumes) 

and Estimated Average Change in Volumes across P1 to P-full: 

  

 

Names 
LW2F RF1c Percentage improvement 

in SSE between RF1c and 

LW2F Correlation t-stats SSE Correlation t-stats SSE 

                

S1 75.43% 1.99 5.25E-02 99.12% 12.94 7.12E-04 98.64% 

S2 75.43% 1.99 5.25E-02 99.13% 13.05 6.79E-04 98.71% 

S3 -28.30% -0.51 2.78E-02 99.50% 17.27 4.74E-04 98.29% 

S4 -28.30% -0.51 2.78E-02 99.45% 16.52 3.35E-04 98.79% 

S5 99.26% 14.12 7.87E-03 98.87% 11.42 2.39E-04 96.96% 

S6 99.24% 14.01 7.87E-03 98.48% 9.82 5.15E-04 93.45% 

S7 97.66% 7.86 4.49E-02 94.49% 5.00 6.72E-03 85.03% 

S8 96.39% 6.27 1.00E-01 98.29% 9.24 1.64E-02 83.57% 

S9 47.75% 0.94 7.24E-03 90.88% 3.77 1.65E-03 77.18% 

S10 97.98% 8.48 3.60E-02 99.99% 120.27 1.19E-04 99.67% 

S11 97.71% 7.96 3.74E-02 94.78% 5.15 5.25E-03 85.95% 

S19 -76.73% -2.07 2.19E-02 99.79% 26.54 7.49E-05 99.66% 

S20 -76.68% -2.07 1.84E-02 91.06% 3.82 2.90E-03 84.23% 

S21 28.70% 0.52 3.90E-01 85.49% 2.85 1.33E-01 65.91% 
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Table 5: Correlations between the Actual and the Estimated Continuous Returns: 

  
 

Sample Models 
Correlations of Estimated Returns with Actual Returns 

P1 P2 P3 P4 P5 
P-full or 

P6 

S1 

CAPM 83.77% 86.53% 92.09% 89.16% 89.04% 98.49% 

FF3F 85.39% 86.58% 92.44% 89.50% 91.93% 98.73% 

FF5F 86.26% 87.21% 92.72% 90.07% 92.04% 98.76% 

RF2a 86.04% 87.21% 92.78% 89.65% 91.82% 98.76% 

RF2b 86.76% 87.59% 93.03% 90.25% 91.95% 98.80% 

S2 

CAPM 77.60% 84.72% 92.12% 89.99% 89.33% 97.67% 

FF3F 80.42% 85.14% 92.44% 90.00% 91.61% 97.90% 

FF5F 82.29% 86.91% 92.51% 90.06% 91.57% 98.06% 

RF2a 81.53% 86.23% 92.62% 90.17% 91.62% 98.00% 

RF2b 82.85% 87.41% 92.68% 90.23% 91.64% 98.13% 

S3 

CAPM 84.86% 88.35% 93.32% 90.88% 89.32% 98.83% 

FF3F 86.51% 88.36% 93.63% 90.90% 93.36% 99.11% 

FF5F 87.67% 89.04% 93.88% 91.34% 94.25% 99.13% 

RF2a 87.84% 89.08% 93.88% 91.06% 93.62% 99.13% 

RF2b 88.70% 89.60% 94.09% 91.55% 94.38% 99.16% 

S4 

CAPM 79.08% 86.66% 93.41% 91.28% 89.16% 97.68% 

FF3F 82.05% 86.86% 93.76% 91.52% 92.74% 98.19% 

FF5F 84.23% 88.49% 93.81% 91.56% 93.32% 98.30% 

RF2a 83.67% 87.62% 93.79% 91.73% 93.24% 98.28% 

RF2b 85.11% 88.95% 93.87% 91.79% 93.63% 98.38% 

S5 

CAPM 77.83% 85.85% 88.97% 87.02% 76.86% 97.84% 

FF3F 80.28% 86.42% 89.07% 87.46% 80.74% 98.09% 

FF5F 81.23% 86.46% 89.89% 88.85% 82.68% 98.25% 

RF2a 83.19% 86.79% 89.41% 88.40% 81.45% 98.20% 

RF2b 84.28% 86.82% 90.38% 89.79% 83.58% 98.37% 

S6 

CAPM 69.39% 89.32% 88.98% 86.65% 77.87% 97.16% 

FF3F 73.02% 89.62% 89.68% 86.68% 80.59% 97.38% 

FF5F 75.33% 89.93% 91.73% 87.04% 81.46% 97.44% 

RF2a 75.89% 89.81% 89.80% 87.24% 81.08% 97.33% 

RF2b 78.48% 90.13% 92.17% 87.64% 82.09% 97.41% 

S7 

CAPM 95.98% 93.78% 92.97% 90.77% 86.32% 93.81% 

FF3F 97.02% 96.83% 96.67% 96.28% 94.16% 97.99% 

FF5F 97.46% 96.94% 97.01% 96.50% 94.50% 98.21% 

RF2a 97.09% 96.86% 96.67% 96.57% 94.99% 98.10% 

RF2b 97.52% 97.00% 97.01% 96.80% 95.33% 98.32% 

S8 

CAPM 95.33% 97.10% 96.74% 96.72% 91.55% 97.92% 

FF3F 95.36% 97.39% 97.35% 97.85% 95.67% 98.83% 

FF5F 96.40% 97.79% 97.38% 97.87% 95.93% 98.85% 

RF2a 95.43% 97.39% 97.37% 97.92% 96.36% 98.87% 

RF2b 96.56% 97.80% 97.40% 97.95% 96.65% 98.89% 

S9 

CAPM 87.24% 90.70% 88.32% 87.14% 86.47% 97.41% 

FF3F 87.66% 91.73% 88.61% 87.23% 87.90% 97.60% 

FF5F 88.41% 92.75% 88.88% 87.77% 87.98% 97.77% 

RF2a 88.29% 91.99% 88.85% 87.77% 88.73% 97.71% 

RF2b 89.19% 92.78% 89.12% 88.14% 88.73% 97.86% 

S10 

CAPM 96.83% 94.34% 91.85% 90.03% 86.53% 93.85% 

FF3F 97.69% 97.15% 96.44% 95.38% 94.20% 98.00% 

FF5F 98.09% 97.37% 96.57% 95.55% 94.69% 98.21% 

RF2a 97.70% 97.14% 96.42% 96.11% 94.85% 98.11% 

RF2b 98.10% 97.37% 96.57% 96.26% 95.35% 98.33% 
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Table 5 Contd.: Correlations between the Actual and the Estimated Continuous Returns: 

Sample Models 
Correlations of Estimated Returns with Actual Returns 

P1 P2 P3 P4 P5 
P-full or 

P6 

S11 

CAPM 96.86% 97.25% 97.32% 96.58% 91.25% 97.92% 

FF3F 96.89% 97.48% 97.82% 98.19% 94.86% 98.83% 

FF5F 97.44% 97.73% 97.83% 98.20% 95.15% 98.85% 

RF2a 96.91% 97.48% 97.83% 98.22% 95.63% 98.87% 

RF2b 97.49% 97.74% 97.85% 98.22% 95.94% 98.89% 

S12 

CAPM 93.52% 89.80% 93.39% 78.37% 94.26% 99.48% 

FF3F 94.56% 89.85% 96.75% 79.13% 96.66% 99.72% 

FF5F 95.22% 90.44% 96.80% 80.27% 96.68% 99.73% 

RF2a 94.85% 89.78% 96.77% 80.14% 96.76% 99.72% 

RF2b 95.40% 90.31% 96.83% 81.08% 96.81% 99.73% 

S13 

CAPM 91.65% 92.34% 92.67% 97.46% 99.02% 97.76% 

FF3F 99.13% 99.41% 99.02% 97.53% 99.02% 98.02% 

FF5F 99.54% 99.43% 99.56% 99.00% 99.08% 98.89% 

RF2a 99.18% 99.46% 99.11% 97.88% 99.01% 98.12% 

RF2b 99.58% 99.47% 99.57% 99.04% 99.06% 98.90% 

S14 

CAPM 90.97% 91.86% 92.69% 93.15% 98.63% 93.27% 

FF3F 98.62% 98.71% 97.77% 94.19% 98.94% 94.92% 

FF5F 98.87% 98.72% 98.21% 95.29% 98.94% 95.68% 

RF2a 98.63% 98.79% 97.93% 94.62% 98.99% 95.05% 

RF2b 98.88% 98.80% 98.35% 95.80% 98.99% 95.71% 

S15 

CAPM 88.13% 92.93% 89.97% 88.96% 98.03% 91.44% 

FF3F 93.52% 98.96% 96.86% 89.39% 98.12% 92.81% 

FF5F 94.05% 99.01% 96.88% 90.34% 98.15% 92.81% 

RF2a 94.07% 98.97% 96.87% 90.47% 98.13% 92.90% 

RF2b 94.43% 99.02% 96.90% 91.04% 98.16% 92.93% 

S16 

CAPM 92.14% 92.53% 91.54% 96.54% 99.17% 98.65% 

FF3F 99.00% 99.42% 99.02% 96.90% 99.24% 99.07% 

FF5F 99.70% 99.43% 99.27% 98.79% 99.24% 99.30% 

RF2a 99.01% 99.40% 99.04% 97.11% 99.24% 99.00% 

RF2b 99.70% 99.42% 99.32% 98.84% 99.25% 99.27% 

S17 

CAPM 91.78% 93.27% 91.13% 93.20% 98.27% 92.96% 

FF3F 97.44% 99.19% 97.22% 93.42% 98.41% 93.00% 

FF5F 97.86% 99.30% 97.29% 93.89% 98.40% 93.03% 

RF2a 97.67% 99.19% 97.37% 93.69% 98.36% 93.17% 

RF2b 97.98% 99.31% 97.44% 94.01% 98.37% 93.26% 

S18 

CAPM 91.33% 92.34% 91.02% 97.39% 98.22% 94.00% 

FF3F 99.23% 99.60% 99.56% 99.19% 98.55% 98.61% 

FF5F 99.54% 99.61% 99.59% 99.18% 98.55% 98.99% 

RF2a 99.26% 99.58% 99.57% 99.14% 98.55% 98.64% 

RF2b 99.56% 99.59% 99.60% 99.14% 98.55% 99.02% 

S19 

CAPM 90.73% 94.09% 92.13% 92.20% 86.15% 96.90% 

FF3F 91.66% 94.16% 92.49% 93.09% 87.47% 97.60% 

RF2a 91.89% 94.56% 92.77% 93.16% 88.04% 97.78% 

S20 

CAPM 90.79% 93.27% 91.12% 88.93% 81.71% 95.93% 

FF3F 91.34% 93.31% 92.62% 92.50% 84.14% 97.36% 

RF2a 91.37% 93.37% 92.80% 92.59% 84.30% 97.42% 

S21 

CAPM 87.10% 91.21% 93.49% 93.08% 91.94% 98.82% 

FF3F 87.10% 91.91% 93.91% 93.18% 93.05% 98.93% 

RF2a 87.37% 92.13% 94.12% 93.52% 93.30% 99.00% 
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Table 6: Average SSEs between the Actual and the Estimated Continuous Returns across Risk-Time Format 

 

Portfolios CAPM FF3F FF5F RF2a RF2b 

(SSECAPM -

SSEFF5F)/ 

SSECAPM 

(SSECAPM -

SSERF2b)/ 

SSECAPM 

(SSEFF5F -

SSERF2b)/

SSEFF5F 

S1 5.66E-02 5.00E-02 4.77E-02 4.74E-02 4.58E-02 15.76% 19.03% 3.88% 

S2 5.87E-02 5.30E-02 5.11E-02 5.01E-02 4.88E-02 12.94% 16.73% 4.36% 

S3 4.88E-02 3.99E-02 3.61E-02 3.70E-02 3.43E-02 26.19% 29.68% 4.73% 

S4 5.18E-02 4.30E-02 3.97E-02 3.98E-02 3.78E-02 23.38% 27.02% 4.75% 

S5 1.23E-03 1.12E-03 1.05E-03 1.06E-03 9.78E-04 15.04% 20.61% 6.56% 

S6 1.26E-03 1.17E-03 1.10E-03 1.12E-03 1.04E-03 13.25% 17.68% 5.10% 

S7 1.01E-03 4.59E-04 4.24E-04 4.24E-04 3.89E-04 57.94% 61.46% 8.35% 

S8 4.69E-04 3.13E-04 2.86E-04 2.88E-04 2.62E-04 39.04% 44.12% 8.32% 

S9 6.08E-02 5.71E-02 5.49E-02 5.41E-02 5.25E-02 9.63% 13.64% 4.43% 

S10 9.98E-04 4.62E-04 4.28E-04 4.24E-04 3.90E-04 57.18% 60.95% 8.81% 

S11 4.24E-04 2.85E-04 2.67E-04 2.65E-04 2.47E-04 37.00% 41.73% 7.51% 

S12 3.71E-02 3.01E-02 2.86E-02 2.85E-02 2.72E-02 22.93% 26.73% 4.94% 

S13 3.55E-02 7.58E-03 4.46E-03 6.79E-03 4.06E-03 87.43% 88.54% 8.86% 

S14 4.93E-02 1.82E-02 1.55E-02 1.71E-02 1.43E-02 68.51% 71.01% 7.93% 

S15 7.46E-02 4.51E-02 4.23E-02 4.17E-02 3.99E-02 43.22% 46.52% 5.81% 

S16 3.61E-02 8.24E-03 4.68E-03 7.67E-03 4.28E-03 87.05% 88.16% 8.61% 

S17 5.23E-02 2.59E-02 2.41E-02 2.43E-02 2.29E-02 53.97% 56.12% 4.69% 

S18 4.36E-02 5.74E-03 4.89E-03 5.52E-03 4.61E-03 88.80% 89.42% 5.62% 

S19 1.46E-03 1.34E-03  1.29E-03     

S20 2.37E-03 1.99E-03  1.97E-03     

S21 1.18E-01 9.80E-02  9.45E-02     

 Paired t-test H0: 

(SSECAPM –

SSEFF5F)/ 

SSECAPM ≤ 

0 

 

H0: 

(SSECAPM –

SSERF2b)/ 

SSECAPM ≤ 

0 

H0: 

(SSEFF5F –

SSERF2b)/ 

SSEFF5F ≤ 

0 

 t-statistic 6.35 7.13 14.39 

 p-value 3.6E-06 8.4E-07 3.0E-11 

  



 

 

45 

 

 

 

Figure 1: Charts of the Actual1 Average Returns and the Estimated Average Returns across Increasing Risk 

according to CAPM, FF3F, FF5F and RF1b Equation (17b): 
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Figure 2: Increasing Risk according to CAPM, FF3F, FF5F and RF1b Equation (27b): 

Following Figure 1: Charts of the Actual1 Average Returns and the Estimated Average Returns across 

Increasing Risk according to CAPM, FF3F, FF5F and RF1b Equation (17b): 
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Following Figure 1: Charts of the Actual1 Average Returns and the Estimated Average Returns across 

increasing Risk according to CAPM, FF3F, FF5F and RF1b Equation (17b): 
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