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Introduction
Big Data, characterized by large volumes, high processing speed, and wide variety of 
datasets [1–3], have been shown to be very valuable in health care research, with Health 
Informatics being the field in which big data analytics have been extensively applied [4]. 
A popular way of addressing the challenge of Big Data is the analysis of online search 
traffic data [5, 6], mainly with data from Google Trends [7]. Over the past decade, this 
field of research, i.e., analyzing online search traffic data, has been widely used and is 
growing in popularity for assessing various topics, though it has mostly focused on the 
fields of Health and Medicine [8].

Many studies on the subject have empirically shown that Google Trends’ data are 
related to public health data. Topics that have been explored up to this point include the 
analysis, assessment, and prediction of epidemics and outbreaks, as, for example, Ebola 
[9, 10], Measles [11], the Bed-Bug epidemic [12], and Tuberculosis [13]. A much studied 
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topic is that of influenza like illness (the flu), which is a seasonal disease and has shown 
well performing results in the past [14–17].

Recently, more topics on relating Google data with official health data have been vis-
ited, as in the case of suicide rates, where it has been show that Google queries can be 
used to monitor the risk of suicide [18, 19]. On a different direction, there has been 
shown that correlations exist between Google Trends data and prescription drugs issu-
ing [20, 21] and revenues [22]. Apart from prescription drugs, focus has been given to 
illegal drugs as well, with notable examples including the tracking of dabbing in the US 
[23], Krokodil in Russia [24], and Methamphetamines in Central Europe [25].

According to Infodemiology [26], data available on the Internet can be used to inform 
public health and policy by monitoring the public’s behavior towards diseases, selecting 
the relevant available information, as well as monitoring how the public reacts to health 
marketing campaigns. Though it is widely supported and evident that official health data 
and online search traffic data are correlated, the most important step towards health 
assessment using Google Trends is that of finding methods of predicting and nowcasting 
diseases’ occurrence and outbreaks, as well as forecasting seasonal diseases’ prevalence.

Though seasonality has been assessed in various cases, such as, for information on 
tobacco and lung cancer [27], the restless legs syndrome [28], and in sleep-disordered 
breathing [29], studies developing methods towards the direction of forecasting and 
nowcasting exhibit significantly lower numbers. Despite that, recent research has exhib-
ited promising results in the forecasting of various diseases and outbreaks, as, for exam-
ple, Tuberculosis [13], influenza like illness [17], pertussis [30], suicide risk [18], and 
dementia [31].

As Infodemiology data can be retrieved in real time and thus allow the nowcasting of 
human behavior based on Internet data, the detection, monitoring, and prediction of 
epidemics and outbreaks can be much assisted by the analysis of Google queries. A topic 
that is of high significance and interest is that of AIDS (Acquired Immune Deficiency 
Syndrome) and HIV (Human Immunodeficiency Virus). HIV is a virus that is mainly 
transmitted via sexual intercourse and needle/syringe use [32]. The treatment for HIV 
consists of the antiretroviral therapy, which controls the HIV virus. If the HIV remains 
without treatment, it affects the immune system, which worsens as time passes. The 
HIV infection consists of 3 stages: (1) acute HIV infection, (2) clinical latency, and (3) 
AIDS; the latter being the most severe stage of the HIV infection [33], which leads to an 
increased number of ‘opportunistic infections’ [32].

People would more easily search for information online than consult a doctor in gen-
eral. In the case of AIDS, as it is a sensitive subject, the anonymity provided by the Inter-
net allows people to search for information online. Thus the monitoring of Internet data 
is essential in the overall assessment of AIDS prevalence in regions where Internet pen-
etration is high, as in the case of the United States. Novel methods of assessment are 
needed, as data on ‘AIDS Prevalence’, ‘AIDS Diagnoses’, and ‘AIDS Deaths’ provided by 
the Centers for Disease Control and Prevention (CDC) are not available in real time, as 
gathering, analyzing and making these data available is a long process that takes over a 
year.

AIDS is categorized as an epidemic [34], and as such it needs constant assessment. 
The aim of this paper is to analyze the online interest in AIDS related terms and estimate 
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forecasting models for AIDS prevalence in the US using data from Google Trends. The 
rest of this paper is structured as follows: the “Research methodology” section consists of 
the procedure of the data collection and methodology followed to analyze and forecast 
AIDS prevalence, in  the “Results” section the results of the analysis are presented,  the 
“Discussion” section consists of the discussion of the analysis, while the “Conclusions” 
section consists of the overall conclusions and future research suggestions.

Research methodology
Data

Data from Google Trends are downloaded online in ‘.csv’ format and are normalized 
over the selected time-frame as follows: “Search results are proportionate to the time and 
location of a query: Each data point is divided by the total searches of the geography and 
time range it represents, to compare relative popularity. Otherwise places with the most 
search volume would always be ranked highest. The resulting numbers are then scaled 
on a range of 0–100 based on a topic’s proportion to all searches on all topics. Differ-
ent regions that show the same number of searches for a term will not always have the 
same total search volumes.” [35]. Google Trends is not case-sensitive, though takes into 
account spelling errors and accents. In this study, this effect is minimized, as the exam-
ined term, i.e. AIDS, is universal, not translated, and difficult to misspell. Note that data 
may slightly vary when retrieved at different time points.

Methods

The choice of terms is crucial for the robustness of the results when using online data 
[36]. In Google Trends, the four options below are available when retrieving data for 
the examined disease. The term’s online interest can be retrieved in the ‘Search Term’ 
form, i.e. include all queries that had the respective term, thereafter referred to as ‘AIDS 
(Search Term)’. In addition, Google Trends groups related queries under other search 
terms as well, which in this case are ‘AIDS (Illness)’. Finally, Google Trends also gives the 
option of including terms related to the topics of ‘Management of AIDS/HIV (Topic)’, 
and ‘Diagnosis of HIV/AIDS (Topic)’.

Analysis stages

At first, an overall assessment of all four available terms and topics’ variations in online 
interest is provided, so as to identify the option that would increase the validity of fur-
ther analysis on the subject. The next step towards examining the possibility of fore-
casting AIDS prevalence and incidence, is to identify any existing correlations between 
Google data on related terms and topics and official health data for AIDS. In this study, 
data on ’AIDS Prevalence’ (2004–2015) are retrieved by the CDC website [37]. Depend-
ing on the significance of the calculated Pearson correlations, the possibility of fore-
casting AIDS prevalence in the US will be assessed. Finally, forecasting models of AIDS 
prevalence based on Google Trends’ data for the US as well as for each 50 States plus DC 
are estimated.
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Results
At first, an overall assessment of the online interest towards AIDS in the US is per-
formed, followed by the exploring of the correlations between AIDS prevalence and 
Google Trends data in the US and each US State individually. Finally, forecasting models 
for AIDS prevalence in the US are estimated, at both national and State level, so as to 
elaborate on the usefulness of the tool in health assessment in the US.

AIDS online interest in the US

Figure 1 consists of the changes in the online interest in ‘AIDS (Search Terms)’ and ‘AIDS 
(Illness)’ from January 2004 to December 2015, while Fig. 2 depicts the monthly normal-
ized online interest in the ‘Google Trends’ topics of ‘Diagnosis of HIV/AIDS’ and ‘Man-
agement of HIV/AIDS’ from January 2004 to December 2015.

The top related queries for ‘AIDS (Search Term)’ include ‘aids hiv’ (100), ‘hearing aids’ 
(99), ‘hiv’ (97), ‘aids symptoms’ (33), ‘aids and hiv’ (25), ‘aids day’ (24), ‘africa aids’ (22), 
‘aids cure’ (16), ‘aids test’ (11), ‘aids statistics’ (11), and ‘aids virus’ (10). For ‘AIDS (Ill-
ness)’, the top related queries include ‘aids’ (100), ‘hiv’ (26), ‘aids hiv’ (14), ‘hiv/aids’ (6), 
‘aids symptoms’ (5), ‘africa’ (4), ‘aids day’ (4), ‘hiv symptoms’ (3), ‘aids cure’ (2), ‘hiv infec-
tion’ (2), ‘hiv transmission’ (2), and ‘aids statistics’ (2).

For the topic of ‘Diagnosis of HIV/AIDS’, the top related queries include ‘hiv’ (100), 
‘hiv test’ (53), ‘hiv testing’ (50), ‘free hiv testing’ (13), ‘test for hiv’ (11), ‘hiv symptoms’ 
(9), ‘hiv home test’ (7), ‘aids’ (6), ‘hiv aids’ (6), ‘hiv rapid test’ (4), ‘free hiv test’ (4), ‘hiv 
positive’ (4), ‘hiv test results’ (4), ‘positive hiv test’ (3), ‘rapid hiv testing’ (3), ‘hiv test kit’ 
(3), and ‘oraquick hiv test’ (2). For the topic ‘Management of HIV/AIDS’, the top related 
queries include ‘antiretroviral’ (100), ‘hiv’ (86), ‘aids’ (59), ‘antiretroviral therapy’ (58), 
‘aids drugs’ (38), ‘antiretrovirals’ (28), ‘hiv treatment’ (23), ‘antiretroviral treatment’ (22), 

Fig. 1 Monthly Normalized Google Trends’ Data for ‘AIDS (Search Term)’ and ‘AIDS (Illness)’ from January 2004 
to December 2015
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‘hiv aids’ (20), ‘antiretroviral drugs’ (16), ‘hiv management’ (12), ‘highly active antiretro-
viral therapy’ (7), and ‘hiv medications’ (4).

Figure 3 consists of the heat maps of the online interest by US State from January 2004 
to December 2015 for ‘AIDS (Search Term)’, ‘AIDS (Illness)’, ‘Diagnosis of HIV/AIDS 
(Topic)’, and ‘Management of HIV/AIDS (Topic)’.

It is evident that the terms related to AIDS exhibit high and constant interest from 
2004 to 2015. The topics of ‘Diagnosis of HIV/AIDS (Topic)’ and ‘Management of HIV/
AIDS (Topic)’ cover a narrow range of AIDS related terms and will thus not be included 
in further analysis.

AIDS prevalence vs. Google Trends

In order to examine the possibility of forecasting AIDS prevalence in the US, the rela-
tionships between online search traffic data from Google and official health data on 
AIDS prevalence are at first examined, by calculating the respective correlations at both 
national and State level. Depending on the significance of the correlations, the possibil-
ity of forecasting AIDS prevalence in the US will be examined. For the analysis of AIDS 
related queries, both Google Trends categories, i.e. ‘AIDS (Search Term)’ and ‘AIDS (Ill-
ness)’, are analyzed. Data for the categories ‘AIDS Deaths’, ‘AIDS Diagnoses’, and ‘AIDS 
Prevalence’ are available for 12 years, i.e. from January 2004 to December 2015.

Statistically significant correlations are observed between ‘AIDS Prevalence’ with both 
‘AIDS (Search Term)’ (r = − 0.9508, p < 0.01) and with ‘AIDS (Illness)’ (r = − 0.9615, 
p < 0.01) in the US. For ‘AIDS (Search Term)’, statistically significant correlations are 
observed with ‘AIDS Diagnoses’ (r = 0.8743, p < 0.01), and with ‘AIDS Deaths’ (r = 0.9343, 
p < 0.01). Significant correlations are also identified for ‘AIDS Diagnoses’ with ‘AIDS 
(Illness)’ (r = 0.8945, p < 0.01), and for ‘AIDS Deaths’ with ‘AIDS (Illness)’ (r = 0.9423, 

Fig. 2 Monthly normalized Google Trends’ Data for ‘Diagnosis of HIV/AIDS (Topic)’ and ‘Management of HIV/
AIDS (Topic)’ from January 2004 to December 2015
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p < 0.01). Therefore, we proceed to the next step of identifying correlations between 
online and health data in each US State.

Table 1 consists of the Pearson correlation coefficients (r) between ‘AIDS Prevalence’ 
and (a) ‘AIDS (Search Term)’ and (b) ‘AIDS (Illness)’ from January 2004 to December 
2015, while Table  2 consists of the Pearson correlation coefficients (r) between ‘AIDS 
Diagnoses’ and a) ‘AIDS (Search Term)’ and b) ‘AIDS (Illness)’ from January 2004 to 
December 2015. Table  3 consists of the Pearson correlation coefficients (r) between 
‘AIDS Deaths’, and a) ‘AIDS (Search Term)’ and b) ‘AIDS (Illness)’ from January 2004 to 
December 2015.

For ‘AIDS Prevalence’, all correlations are statistically significant. Therefore it is evident 
that the online behavior towards AIDS follows that of ‘AIDS Prevalence’. Thus the States 
that exhibit statistically significant correlations are further selected for the forecasting of 
AIDS in the US.

For ‘AIDS Diagnoses’, the States with significance of correlation of p < 0.01 in both 
examined terms are Arkansas, California, Connecticut, Delaware, DC, Florida, Illinois, 
Indiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Nevada, 
New Hampshire, New Jersey, New York, Oklahoma, Oregon, Pennsylvania, Rhode 
Island, South Carolina, Washington, and West Virginia. For ‘AIDS Deaths’, the respective 
States are Arizona, California, Connecticut, Delaware, DC, Florida, Georgia, Illinois, 
Louisiana, Maryland, Massachusetts, Michigan, Mississippi, Missouri, New Jersey, New 
York, Pennsylvania, Tennessee, Texas, Utah, and Washington.

Fig. 3 Online Interest by State for ‘AIDS (Search Term)’, ‘AIDS (Illness)’, ‘Diagnosis of HIV/AIDS (Topic)’, and 
‘Management of HIV/AIDS (Topic)’ from January 2004 to December 2015
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Forecasting AIDS prevalence in USA

As ‘AIDS Prevalence’ data are highly correlated with both ‘AIDS (Search Term)’ and with 
‘AIDS (Illness)’ in all 50 States (plus DC), the next step is to examine the relationships 

Table 1 Pearson correlation coefficients between  ‘AIDS Prevalence’ and  ‘AIDS (Search 
Term)’ and ‘AIDS (Illness)’ from January 2004 to December 2015

All correlations reported in this table are statistically significant with p < 0.01

AIDS (search 
term)

AIDS (illness) AIDS (search 
term)

AIDS (illness) AIDS (search 
term)

AIDS (illness)

AL − 0.8731 − 0.9099 KY − 0.9521 − 0.9302 ND − 0.7700 − 0.8425

AK − 0.8568 − 0.9003 LA − 0.8049 − 0.8713 OH − 0.9231 − 0.9311

AZ − 0.8319 − 0.8386 ME − 0.8993 − 0.9376 OK − 0.8958 − 0.9137

AR − 0.9096 − 0.9223 MD − 0.9554 − 0.9519 OR − 0.9316 − 0.9040

CA − 0.9716 − 0.9710 MA − 0.9577 − 0.9550 PA − 0.9713 − 0.9909

CO − 0.9289 − 0.9570 MI − 0.9894 − 0.9936 RI − 0.9830 − 0.9572

CT − 0.8418 − 0.8244 MN − 0.9335 − 0.9460 SC − 0.8690 − 0.9142

DE − 0.9022 − 0.8641 MS − 0.8308 − 0.8752 SD − 0.8308 − 0.8227

DC − 0.9174 − 0.9164 MO − 0.9627 − 0.9651 TN − 0.9034 − 0.9340

FL − 0.9463 − 0.9444 MT − 0.8317 − 0.8975 TX − 0.9135 − 0.9174

GA − 0.8951 − 0.8851 NE − 0.9429 − 0.8986 UT − 0.8004 − 0.8384

HI − 0.8978 − 0.8976 NV − 0.8408 − 0.9104 VT − 0.8266 − 0.8376

ID − 0.8227 − 0.8233 NH − 0.9074 − 0.9626 VA − 0.8710 − 0.9375

IL − 0.9689 − 0.9714 NJ − 0.9794 − 0.9804 WA − 0.9575 − 0.9530

IN − 0.9290 − 0.9265 NM − 0.8858 − 0.8354 WV − 0.7816 − 0.8241

IA − 0.9550 − 0.9519 NY − 0.9890 − 0.9926 WI − 0.9298 − 0.9313

KS − 0.9396 − 0.9191 NC − 0.9308 − 0.9402 WY − 0.9393 − 0.8585

Table 2 Pearson correlation coefficients between  ‘AIDS Diagnoses’ and  (a) AIDS (Search 
Term)’ and (b) ‘AIDS (Illness)’ from January 2004 to December 2015

* p < 0.1, ** p < 0.05, *** p < 0.01

AIDS (search 
term)

AIDS (illness) AIDS (search 
term)

AIDS (illness) AIDS (search 
term)

AIDS (illness)

AL 0.3785 0.3723 KY 0.4961 0.4486 ND − 0.3019 − 0.4416

AK 0.6703** 0.6781** LA 0.5913** 0.6127** OH 0.6162** 0.6225**

AZ 0.5407* 0.5409 ME 0.7369*** 0.7805*** OK 0.8091*** 0.8007***

AR 0.7417*** 0.7218*** MD 0.9548*** 0.9485*** OR 0.8570*** 0.7947***

CA 0.7892*** 0.8752*** MA 0.9188*** 0.9088*** PA 0.7548*** 0.7885***

CO 0.7025** 0.7475*** MI 0.8174*** 0.8500*** RI 0.9306*** 0.9414***

CT 0.9073*** 0.9342*** MN 0.8772*** 0.8971*** SC 0.8078*** 0.8680***

DE 0.8683*** 0.8952*** MS 0.4497 0.3353 SD 0.197 0.0973

DC 0.8876*** 0.8767*** MO 0.7687*** 0.7644*** TN 0.6986** 0.7114***

FL 0.9141*** 0.9203*** MT 0.4793 0.5216* TX 0.6832** 0.6678**

GA 0.6711** 0.6613** NE 0.6527** 0.6290** UT 0.0594 0.1989

HI 0.6668** 0.6412** NV 0.7547*** 0.7992*** VT 0.3291 0.2394

ID 0.037 0.0295 NH 0.8076*** 0.7846*** VA 0.4242 0.5301*

IL 0.8934*** 0.8830*** NJ 0.8755*** 0.8797*** WA 0.8275*** 0.8204***

IN 0.8090*** 0.7757*** NM 0.5913** 0.5266* WV 0.7553*** 0.8062***

IA 0.2429 0.184 NY 0.9462*** 0.9479*** WI 0.6826** 0.7132***

KS 0.6121** 0.5699* NC 0.3724 0.402 WY − 0.1721 − 0.2062
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between Google data and AIDS data and estimate the forecasting models. The relation-
ship is logarithmic and of the form y = αln(x) + β , where y (y-axis-dependent variable) 
denotes the ‘AIDS Prevalence’, x (x-axis-independent variable) denotes the respective 
Google Trends’ data, namely ‘AIDS (Search Term)’ and ‘AIDS (Illness)’, and α and β are 
constants. To elaborate on the robustness of the estimated models, the R2 is selected, as 
it is the statistical measure by which the variable variation is explained. R2 takes values 
between 0 and 1 (i.e. 0% to 100%), and the higher the percentage, the better the fit.

Table  4 consists of the coefficients for the estimated logarithmic models for ‘AIDS 
Prevalence’ for both the examined Google Trends’ terms, i.e. ‘AIDS (Search Term)’ and 
‘AIDS (Illness)’, while Figs. 4, 5, 6 and 7 depict the respective relationships in the US and 
in each individual State.    

In the US, the estimated models for ‘AIDS Prevalence’ based on the two examined 
terms have an R2 of 0.9695 and 0.9844, which shows that the relationship between AIDS 
prevalence and Google Trends data is well described using the estimated equations and 
that AIDS prevalence can be predicted based on online search traffic data from Google. 
Furthermore, most States’ models exhibit high R2 in at least one Google Trends’ cat-
egory, which is indicative of the significance of the estimated forecasting models of AIDS 
prevalence in the US States.

Though in several States the R2 is higher for the respective linear or polynomial fore-
casting model, the relationship is overall logarithmic as clearly shown in the case of the 
US. Therefore, all estimated models for all categories and all individual States are calcu-
lated based on a logarithmic relationship independent of the value of R2, as this will be 
more evident when more years’ data are available.

Table 3 Pearson correlation coefficients between ‘AIDS Deaths’ and (a) AIDS (Search Term)’ 
and (b) ‘AIDS (Illness)’ from January 2004 to December 2015

* p < 0.1, ** p < 0.05, *** p < 0.01

AIDS (search 
term)

AIDS (illness) AIDS (search 
term)

AIDS (illness) AIDS (search 
term)

AIDS (illness)

AL 0.6079** 0.7163*** KY 0.4357 0.3921 ND 0.1693 0.2203

AK 0.2352 0.0614 LA 0.7166*** 0.7977*** OH 0.6211** 0.6414**

AZ 0.9078*** 0.8694*** ME 0.3963 0.3518 OK − 0.0216 − 0.0309

AR 0.3168 0.3696 MD 0.9157*** 0.9153*** OR 0.429 0.4976*

CA 0.9748*** 0.9272*** MA 0.9528*** 0.9503*** PA 0.8666*** 0.8707***

CO 0.6677** 0.6843** MI 0.7982*** 0.8343*** RI 0.6301** 0.6834**

CT 0.9486*** 0.9502*** MN 0.1207 0.1212 SC 0.6050** 0.7163***

DE 0.7248*** 0.8979*** MS 0.7318*** 0.7766*** SD 0.2726 0.2971

DC 0.8975*** 0.8842*** MO 0.8488*** 0.8431*** TN 0.8685*** 0.9143***

FL 0.8923*** 0.9059*** MT 0.0672 0.2129 TX 0.8428*** 0.8314***

GA 0.7522*** 0.7388*** NE − 0.0976 − 0.1354 UT 0.8202*** 0.8492***

HI 0.48 0.5338* NV 0.4519 0.4493 VT 0.2404 0.4347

ID − 0.0062 − 0.1231 NH 0.1343 0.2082 VA 0.6974** 0.7303***

IL 0.8944*** 0.8869*** NJ 0.9643*** 0.9694*** WA 0.7672*** 0.7778***

IN 0.3926 0.3771 NM − 0.2418 − 0.1415 WV 0.3769 0.4425

IA − 0.3386 − 0.3144 NY 0.9536*** 0.9545*** WI 0.3208 0.3706

KS 0.0073 0.0024 NC 0.4551 0.4577 WY 0.3951 0.3269
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Table 4 Regression coefficients and  R2 for  the  estimated forecasting models for  ‘AIDS 
Prevalence’

AIDS (search term) AIDS (illness)

α β R2 α β R2

USA − 100,000 881,002 0.9695 − 100,000 830,816 0.9844

Alabama − 2483 12,707 0.8661 − 2370 11,734 0.9207

Alaska − 90.42 625.04 0.7216 − 78.32 586.9 0.8248

Arizona − 3851 17,270 0.8075 − 3334 15,114 0.8137

Arkansas − 667 3962.2 0.8775 − 573.6 3870.6 0.9132

California − 11,677 99,283 0.9684 − 10,780 96,113 0.9239

Colorado − 1619 9209.8 0.7248 − 1508 8592.7 0.7922

Connecticut − 370 7634 0.6253 − 278 7301 0.5456

Delaware − 406 3222 0.8132 − 320 2901 0.813

DC − 1313 12,424 0.7864 − 1212 12,059 0.7763

Florida − 17,848 105,055 0.955 − 14,942 97,677 0.9571

Georgia − 13,963 63,863 0.893 − 12,276 5852 0.8835

Hawaii − 456.2 2903.5 0.8666 − 442 2802.8 0.8842

Idaho − 292.3 1311.6 0.7561 − 209.2 1057 0.7494

Illinois − 4563 29,922 0.9783 − 4151 29,124 0.9865

Indiana − 1899 10,401 0.9330 − 1545 9239.8 0.9463

Iowa − 622.2 3106.6 0.9292 − 548.7 2671.5 0.9462

Kansas − 516.1 2834 0.9193 − 442.2 2589.8 0.9246

Kentucky − 1604 8141.1 0.9557 − 1173 6561.5 0.9468

Louisiana − 3661 20,818 0.7518 − 2882 17,158 0.8707

Maine − 343 1787.7 0.8870 − 257.4 1419.5 0.9540

Maryland − 4325 28,920 0.9663 − 3755 26,973 0.9788

Massachusetts − 2369 17,052 0.9828 − 2102 16,120 0.9848

Michigan − 2349 14,054 0.9853 − 2010 13,066 0.9752

Minnesota − 1453 7419.2 0.9426 − 1286 6450.5 0.9704

Mississippi − 2446 12,186 0.7234 − 2259 12,064 0.8157

Missouri − 1824 10,892 0.9658 − 1565 10,104 0.9723

Montana − 140.4 687.7 0.7816 − 125.7 596.03 0.8817

Nebraska − 438.2 2148.4 0.9400 − 367.3 1954.6 0.9042

Nevada − 2109 10,090 0.7889 − 2151 10,041 0.8836

New Hampshire − 156.7 995.89 0.9123 − 157.5 1003.1 0.9437

New Jersey − 2052 24,339 0.9535 − 1771 23,254 0.9361

New Mexico − 770.7 3825.1 0.8517 − 632.1 3155.7 0.7478

New York − 8477 97,596 0.9246 − 7652 94,878 0.9283

North Carolina − 6723 31,000 0.9409 − 5705 26,921 0.9588

North Dakota − 74.1 312.72 0.7160 − 75.35 302.53 0.7879

Ohio − 4158 20,794 0.9309 − 3499 18,605 0.957

Oklahoma − 1158 6162.9 0.8817 − 923.4 5001.5 0.9097

Oregon − 1354 6969.1 0.9189 − 1247 6570.4 0.9129

Pennsylvania − 4376 30,222 0.9891 − 3825 28,372 0.9914

Rhode Island − 224 1942 0.9389 − 177 1824 0.8333

South Carolina − 3917 20,557 0.7879 − 3277 18,920 0.8652

South Dakota − 94.71 460 0.7941 − 72.61 361.2 0.7471

Tennessee − 3760 19,372 0.8981 − 3136 17,266 0.949

Texas − 17,403 88,900 0.9182 − 16,260 85,188 0.9207

Utah − 314.3 2121.8 0.7112 − 285.2 1983.4 0.8525

Vermont − 107 583.73 0.7082 − 91.13 545.91 0.8386
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Table 4 (continued)

AIDS (search term) AIDS (illness)

α β R2 α β R2

Virginia − 2376 15,862 0.8017 − 2530 16,430 0.9206

Washington − 1696 11,095 0.9594 − 1464 10,179 0.9652

West Virginia − 327.7 1857.3 0.6888 − 339.3 1727.3 0.7492

Wisconsin − 1207 5836.5 0.9428 − 956.5 5201.9 0.9594

Wyoming − 58.9 316.91 0.9289 − 49.8 253.69 0.8337

Fig. 4 ‘AIDS Prevalence’ vs. Google Trends ‘AIDS (Search Term)’ and ‘AIDS (Illness)’ from January 2004 to 
December 2015 (USA; Alabama–Idaho)
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The categories ‘AIDS Diagnoses’ and ‘AIDS Deaths’, though significant correlations 
with Google data are identified, are not included in further analysis, as the results are 
not significant for all States, though  the respective analyses on said categories can be 
found in Appendix 1 and Appendix 2.

Fig. 5 ‘AIDS Prevalence’ vs. Google Trends ‘AIDS (Search Term)’ and ‘AIDS (Illness)’ from January 2004 to 
December 2015 (Illinois–Montana)
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Discussion
The AIDS epidemic is a serious health issue and needs immediate and constant atten-
tion. In the Internet age, new methods for the monitoring and assessment of AIDS are 
required, so as to decrease the numbers of AIDS prevalence and deaths around the 
globe, and especially in developing countries. In this study, we provide a novel approach 

Fig. 6 ‘AIDS Prevalence’ vs. Google Trends ‘AIDS (Search Term)’ and ‘AIDS (Illness)’ from January 2004 to 
December 2015 (Nebraska–South Carolina)
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of monitoring online search traffic data retrieved from Google Trends in order to 
develop forecasting models for AIDS prevalence in the US.

Both examined Google terms, i.e. ‘AIDS (Search Term)’ and ‘AIDS (Illness)’, exhibited 
significant correlations with official data on ‘AIDS Prevalence’, ‘AIDS Diagnoses’, and 
‘AIDS Deaths’, especially in the States where the AIDS rates are higher. Despite previ-
ous concerns on the reliability of Google Trends data [38], our results support research 
over the last decade showing that empirical relationships widely exist between Google 
Trends’ data and public health data records [5, 6, 9, 11, 20–22, 26, 39–42]. Therefore, the 
forecasting of AIDS prevalence is possible, as the estimated models for several States are 
robust despite the limitation of data being available for only 12 years. For ‘HIV (Search 
Term)’ and ‘HIV (Illness)’, though search volumes are high throughout the examined 
period, the correlations with official HIV data were not as statistically significant as in 
the case of AIDS, and were identified in fewer US States, which is an interesting topic to 
be examined in future research on the subject.

Table 5 consists of the coefficients and the R2 for the estimated forecasting logarithmic 
forecasting models of the form y = αln(x) + β for States that exhibit high significance 
in all three categories, i.e. ‘AIDS Prevalence’, ‘AIDS Diagnoses’, and ‘AIDS Deaths’.

Fig. 7 ‘AIDS Prevalence’ vs. Google Trends ‘AIDS (Search Term)’ and ‘AIDS (Illness)’ from January 2004 to 
December 2015 (South Dakota–Wyoming)
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This study has some limitations. The estimated forecasting models are based on only 
12  years’ data, thus the robustness of the models will increase when more years or 
smaller interval data are made officially available. In addition, we do not argue that each 
hit on the AIDS related keywords corresponds to an AIDS case and vise versa, as hits 
can also be attributed to general or academic interest, or increased interest due to an 
event, incident, or public figure that announces something related to the disease. Over-
all, the online interest towards AIDS increases according to the rates of AIDS prevalence 
(Appendix 3), thus it is expected for the forecasting models to be robust in the States for 
which the rates—and the online interest—are increased. Therefore, when more data are 
available, the significance will most probably increase.

Overall, this study highlights the importance of the analysis of online queries in order 
to better and more timely assess various issues in the US Health Care System. The esti-
mated forecasting models on AIDS prevalence have very good performance, indicating 
that Google data can be of value in dealing with this sensitive subject, as we can this 
way have access to data that would not easily or at all been accessed with conventional 
methods.

Table 5 Estimated Logarithmic forecasting models for USA and selected states

AIDS AIDS (search term) AIDS (illness)

α β R2 α β R2

USA Prevalence − 100,000 881,002 0.9695 − 100,000 830,816 0.9844

Diagnoses 16,068 − 20,481 0.8548 14,525 − 15,399 0.8982

Deaths 5859 − 2738 0.9452 5186 − 553.58 0.9524

California Prevalence − 11,677 99,283 0.9684 − 10,780 96,113 0.9239

Diagnoses 1670.7 − 1852 0.7151 1733.9 − 1962.9 0.8622

Deaths 559.95 − 168.21 0.942 481.76 87.41 0.7806

Florida Prevalence − 17,848 105,055 0.955 − 14,942 97,677 0.9571

Diagnoses 2822.4 − 5025 0.8862 2396.1 − 3962 0.9133

Deaths 970.62 − 961.25 0.8457 828.81 − 610.55 0.8816

Illinois Prevalence − 4563 29,922 0.9783 − 4151 29,124 0.9865

Diagnoses 587.39 − 713.99 0.8688 530.2 − 598.58 0.8625

Deaths 207.83 − 107.81 0.8635 187.74 − 67.41 0.8586

Maryland Prevalence − 4325 28,920 0.9663 − 3755 26,973 0.9788

Diagnoses 764.14 − 1357.2 0.9226 658.98 − 999.93 0.9223

Deaths 323.92 − 410.32 0.8647 281.24 − 264.71 0.8762

Massachusetts Prevalence − 2369 17,052 0.9828 − 2102 16,120 0.9848

Diagnoses 363.09 − 566.12 0.9204 319.15 − 414.72 0.9053

Deaths 92.75 − 19.36 0.8951 81.7 18.84 0.8841

New Jersey Prevalence − 2052 24,339 0.9535 − 1771 23,254 0.9361

Diagnoses 633.68 − 928.47 0.8535 555.61 − 618.92 0.8651

Deaths 377.47 − 468.44 0.9657 328.49 − 276.84 0.9642

New York Prevalence − 8477 97,596 0.9246 − 7652 94,878 0.9283

Diagnoses 3085.9 − 6020.5 0.9607 2794.8 − 5058.3 0.9709

Deaths 978.44 − 877.45 0.9683 885.23 − 569.63 0.9765
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Conclusions
This study aimed at introducing a novel approach in forecasting AIDS prevalence in the 
US using data from Google Trends on related terms. The results, exhibiting significant 
correlations between Google Trends’ data and official health data on AIDS (2004–2015) 
and high significance of the estimated forecasting models in several US States, support 
previous work on the subject suggesting that Google Trends’ data have been shown to 
be empirically related to health data and that they can assist with the analysis, monitor-
ing, and forecasting of several health topics. This study, however, also addresses a more 
important issue; that of anonymity. A Google Trends important advantage is that it uses 
the revealed and not the stated data [37] in general, but in the case of AIDS the latter is 
even more important. As HIV and AIDS testing, diagnosis, and treatment is a sensitive 
subject, people may less easily go to the hospital or consult a doctor, health official, espe-
cially before testing and diagnosis.

Therefore, the monitoring of the interest towards States with increased rates of AIDS 
prevalence is essential, so that health officials can a) make relative information available 
on the Internet at time point e.g. with advertisements, b) take preventive measures, e.g. 
organizing event etc., and c) prepare the Health Care System accordingly, e.g. organize 
free testing outside of the hospitals. AIDS and HIV are terms that are not translated, not 
easily misspelled, and do not include accents or special characters. Thus, future research 
can include the application of this method in other countries and regions, as well as tak-
ing into consideration data retrieved by other online sources.
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Appendix 1
AIDS diagnoses vs. Google Trends

Figure  8 depicts the scatterplots between ‘AIDS Diagnoses’ and both the exam-
ined Google terms, i.e. ‘AIDS (Search Term)’ and ‘AIDS (Illness)’, in the US and in the 
25 States for which significant correlations with p < 0.01 were observed between AIDS 
and Google data. The States are Arkansas, California, Connecticut, Delaware, DC, Flor-
ida, Illinois, Indiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, 
Nevada, New Hampshire, New Jersey, New York, Oklahoma, Oregon, Pennsylvania, 
Rhode Island, South Carolina, Washington, and West Virginia.

Table  6 consists of the coefficients for the estimated logarithmic models for ‘AIDS 
Diagnoses’ for both the examined terms, namely ‘AIDS (Search Term)’ and ‘AIDS (Ill-
ness)’. As in ‘AIDS Prevalence’, the relationship between Google Trends and health data is 
logarithmic and of the form y = αln(x) + β.

For ‘AIDS Diagnoses’, the estimated forecasting models for ‘AIDS (Search Term)’ and 
‘AIDS (Illness)’ in the US have an R2 of 0.8548 and 0.8982, respectively. It is therefore 
evident that the forecasting model for ‘AIDS Diagnoses’ in the US performs well, though 

Fig. 8 ‘AIDS Diagnoses’ vs. Google Trends ‘AIDS (Search Term)’ and ‘AIDS (Illness)’ from January 2004 to 
December 2015



Page 17 of 21Mavragani and Ochoa  J Big Data  (2018) 5:17 

not as well as in the ‘AIDS Prevalence’ category, which could be attributed to the more 
narrow –compared to AIDS prevalence—field that said category covers, which is also 
supported by the correlations in Table 2, which show that the ‘AIDS Diagnoses’ are not 
as significantly and in less States correlated with Google Trends’ data.

Appendix 2
AIDS Deaths vs. Google Trends

Figure 9 depicts the relationship between ‘AIDS Deaths’ and both the examined Google 
terms, i.e. ‘AIDS (Search Term)’ and ‘AIDS (Illness)’, in the US and in the 21 States for 
which significant correlations with p < 0.01 between AIDS data and Google Trends’ data 
were observed. These States are Arizona, California, Connecticut, Delaware, DC, Flor-
ida, Georgia, Illinois, Louisiana, Maryland, Massachusetts, Michigan, Mississippi, Mis-
souri, New Jersey, New York, Pennsylvania, Tennessee, Texas, Utah, and Washington.

Table  7 consists of the coefficients for the estimated logarithmic models for ‘AIDS 
Deaths’ for both the examined Google Trends’ terms, i.e. ‘AIDS (Search Term)’ and 
‘AIDS (Illness)’ for the aforementioned States.

Table 6 Coefficients α and  β, and  R2 for  the  estimated forecasting models for  ‘AIDS 
Diagnoses’

AIDS (search term) AIDS (illness)

α β R2 α β R2

USA 16,068 − 20,481 0.8548 14,525 − 15,399 0.8982

Arkansas 66.22 − 29.35 0.5501 54.641 − 13.149 0.5269

California 1670.70 − 1852 0.7151 1733.90 − 1962.90 0.8622

Connecticut 235.88 − 412.74 0.8485 195.81 − 251.63 0.9036

Delaware 81.88 − 171.42 0.7702 68.34 − 119.06 0.8612

DC 490.36 − 1245.00 0.8745 451.06 − 1103.10 0.8577

Florida 2822.40 − 5025.00 0.8862 2396.10 − 3962.00 0.9133

Illinois 587.39 − 713.99 0.8688 530.20 − 598.58 0.8625

Indiana 112.76 − 33.04 0.7622 88.92 44.56 0.7261

Maine 23.68 − 46.86 0.6465 18.11 − 22.50 0.7223

Maryland 764.14 − 1357.20 0.9226 658.98 − 999.93 0.9223

Massachusetts 363.09 − 566.12 0.9204 319.15 − 414.72 0.9053

Michigan 272.70 − 304.44 0.7383 241.81 − 215.23 0.7847

Minnesota 69.68 − 18.47 0.7487 62.60 25.53 0.7937

Missouri 177.82 − 186.27 0.6939 152.91 − 110.45 0.7018

Nevada 84.23 − 23.00 0.5873 84.29 − 16.08 0.6334

New Hampshire 23.28 − 33.43 0.7263 21.90 − 30.47 0.6578

New Jersey 633.68 − 928.47 0.8535 555.61 − 618.92 0.8651

New York 3085.90 − 6020.50 0.9607 2794.80 − 5058.30 0.9709

Oklahoma 72.37 − 57.96 0.6557 56.03 19.55 0.6372

Oregon 101.12 − 96.98 0.8577 88.18 − 53.71 0.7636

Pennsylvania 655.13 − 927.11 0.6999 587.89 − 694.56 0.7392

Rhode Island 65.89 − 119.03 0.8694 55.05 − 92.83 0.8557

South Carolina 371.79 − 642.02 0.7354 318.21 − 511.42 0.8456

Washington 192.94 − 267.10 0.8056 167.26 − 165.03 0.8176

West Virginia 24.03 − 15.52 0.5608 25.54 − 7.69 0.6431
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Thus, as in the case of ‘AIDS Diagnoses’, when the AIDS data category is narrow, the 
forecasting results are robust in less States. Despite this, the forecasting models for the 
‘AIDS Prevalence’ category exhibit significant results. Therefore, as more years’ data 
become available, the forecasting of AIDS Diagnoses and Deaths will be possible in more 
States.

Appendix 3
Forecasting model significance vs. AIDS rates in the US

Figure 10a maps the following five groups of significance of modeling by State: the first 
level—denoted by NC-consists of the States for which the correlations between health 
and Google data were not significant in all pairs of categories and thus not included for 
further analysis. The second group—denoted by C(0)-consists of the States for which 
significant correlations were identified in all categories, but the forecasting models had 
an R2 lower than 0.85 in all AIDS data categories. The third, forth, and fifth groups—
denoted by C(1), C(2), and C(3), respectively- consist of the States for which significant 
correlations were identified in all categories, and the forecasting models’ R2 was above 
0.85 in one (1), two (2), and three (3) AIDS data categories, respectively.

Fig. 9 ‘AIDS Deaths’ vs. Google Trends ‘AIDS (Search Term)’ and ‘AIDS (Illness)’ from January 2004 to December 
2015
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In order to elaborate on why some States exhibit low correlations and not significant 
forecasting models and why some others show very high correlations in addition to very 
significant forecasting models, we calculate the average of the AIDS prevalence yearly 
Rates for all US States excluding DC from 2004 to 2015 and divide them into 5 classes 
of equal intervals. Figure 10b maps said 5 classes of AIDS prevalence Rates’ in each US 
State. As is evident, a correspondence exists between the 1st class of AIDS prevalence 
rates, i.e. the group with the States that do not exhibit significant correlations between 
Google data in AIDS related terms with official data on AIDS prevalence, Diagnoses, 
and Deaths. In particular, the 1st class, i.e. with average yearly rates on AIDS prevalence 
from 2004 to 2015 of 16.81 to 99.10, consists of 29 out of the 51 States, namely Oregon, 

Table 7 Coefficients α and β, and R2 for the estimated forecasting models for ‘AIDS Deaths’

AIDS (search term) AIDS (illness)

α β R2 α β R2

USA 5859 − 2738 0.9452 5186 − 553.58 0.9524

Arizona 82.79 − 5778 0.8031 68.27 − 1.97 0.7339

California 559.95 − 168.21 0.9420 481.76 87.41 0.7806

Connecticut 117.33 − 141.80 0.9481 94.35 − 53.21 0.9474

Delaware 33.22 − 38.50 0.5379 31.87 − 31.08 0.7946

DC 176.46 − 357.37 0.8566 161.04 − 301.91 0.8267

Florida 970.62 − 961.25 0.8457 828.81 − 610.55 0.8816

Georgia 209.60 99.15 0.6421 182.93 183.64 0.6259

Illinois 207.83 − 107.81 0.8635 187.74 − 67.41 0.8586

Louisiana 189.47 − 213.67 0.6370 148.89 − 23.65 0.7357

Maryland 323.92 − 410.32 0.8647 281.24 − 264.71 0.8762

Massachusetts 92.75 − 19.36 0.8951 81.70 18.84 0.8841

Michigan 91.73 − 10.15 0.6962 82.42 16.64 0.7596

Mississippi 96.25 − 153.79 0.5226 88.01 − 145.31 0.5765

Missouri 73.36 − 45.40 0.7740 62.78 − 13.22 0.7753

New Jersey 377.47 − 468.44 0.9657 328.49 − 276.84 0.9642

New York 978.44 − 877.45 0.9683 885.23 − 569.63 0.9765

Pennsylvania 224.11 − 85.79 0.8285 195.35 10.60 0.8257

Tennessee 164.41 − 237.24 0.8190 139.23 − 152.07 0.8921

Texas 378.75 48.21 0.8020 347.21 149.30 0.7741

Utah 23.82 − 37.38 0.6919 20.70 − 24.59 0.7611

Washington 44.27 13.46 0.6295 38.75 35.80 0.6516

Fig. 10 US states categorized by (a) correlations-estimated models’ significance and (b) AIDS rates
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New Mexico, Arkansas, Indiana, Michigan, Ohio, Kentucky, Minnesota, Kansas, Utah, 
Alaska, Nebraska, West Virginia, Maine, New Hampshire, Wisconsin, Vermont, Iowa, 
Idaho, Montana, Wyoming, South Dakota, and North Dakota. Of those, only two exhibit 
significant correlations between public health and Google data, namely Michigan and 
Ohio. It is thus evident that the online interest towards AIDS increases according to the 
rates of AIDS prevalence, thus it is expected for the forecasting models to be robust in 
the States for which the rates are increased.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 14 March 2018   Accepted: 8 May 2018

References
 1. Hilbert M, Lopez P. The World’s technological capacity to store, communicate, and compute information. Science. 

2011;332:60–5.
 2. Chen CLP, Zhang CY. Data-intensive applications, challenges, techniques and technologies: a survey on big data. 

Inform Sci. 2014;275:314–47.
 3. Al Nuaimi E, Al Neyadi H, Mohamed N, Al-Jaroodi J. Applications of big data to smart cities. J Int Serv App. 2015;6:25.
 4. Matthew Herland M, Khoshgoftaar TM, Wald R. A review of data mining using big data in health informatics. J Big 

Data. 2014;1:2.
 5. Preis T, Moat HS, Stanley HE, Bishop SR. Quantifying the advantage of looking forward. Sci Rep. 2012;2:350.
 6. Preis T, Moat HS, Stanley HE. Quantifying trading behavior in financial markets using Google Trends. Sci Rep. 

2013;3:1684.
 7. Google Trends. https ://trend s.googl e.com/trend s/explo re. Accessed 7 Feb 2018.
 8. Nuti SV, Wayda B, Ranasinghei I, Wang S, Dreyer RP, Chen SI, Murugiah K. The use of Google Trends in health care 

research: a systematic review. PLoS ONE. 2014;9:e109583.
 9. Alicino C, Bragazzi NL, Faccio V, Amicizia D, Panatto D, Gasparini R, Icardi G, Orsi A. Assessing Ebola-related web 

search behaviour: insights and implications from an analytical study of Google Trends-based query volumes. Infect 
Dis Poverty. 2015;4(1):54.

 10. Hossain L, Kam D, Kong F, Wigand RT, Bossomaier T. Social media in Ebola outbreak. Epidemiol Infect. 
2016;144:2136–43.

 11. Mavragani A, Ochoa G. The internet and the anti-vaccine movement: tracking the 2017 EU measles outbreak. Big 
Data Cogn Comput. 2018;2(1):2.

 12. Sentana-Lledo D, Barbu CM, Ngo MN, Wu Y, Sethuraman K, Levy MZ. Seasons, searches, and intentions: what the 
internet can tell us about the bed bug (Hemiptera: Cimicidae) epidemic. J Med Entomol. 2016;53(1):116–21.

 13. Zhou X, Ye J, Feng Y. Tuberculosis surveillance by analyzing Google Trends. IEEE Trans Biomed Eng. 2011;58:2247–54.
 14. Kang M, Zhong H, He J, Rutherford S, Yang F. Using Google Trends for influenza surveillance in South China. PLoS 

ONE. 2013;8(1):e55205.
 15. Davidson MW, Haim DA, Radin JM. Using networks to combine big data and traditional surveillance to improve 

influenza predictions. Sci Rep. 2015;5:8154.
 16. Cho S, Sohn CH, Jo MW, Shin SY, Lee JH, Ryoo SM, Kim WY, Seo DW. Correlation between national influenza surveil-

lance data and Google Trends in South Korea. PLoS ONE. 2013;8:e81422.
 17. Domnich A, Panatto D, Signori A, Lai PL, Gasparini R, Amicizia D. Age-related differences in the accuracy of web 

query-based predictions of influenza-like illness. PLoS ONE. 2015;10:0127754.
 18. Solano P, Ustulin M, Pizzorno E, Vichi M, Pompili M, Serafini G, Amore M. A Google-based approach for monitoring 

suicide risk. Psychiatry Res. 2016;246:581–6.
 19. Arora VS, Stuckler D, McKee M. Tracking search engine queries for suicide in the United Kingdom, 2004–2013. Public 

Health. 2016;137:147–53.
 20. Mavragani A, Sypsa K, Sampri A, Tsagarakis KP. Quantifying the UK online interest in substances of the EU watch list 

for water monitoring: diclofenac, estradiol, and the macrolide antibiotics. Water. 2016;8:542.
 21. Gahr M, Uzelac Z, Zeiss R, Connemann BJ, Lang D, Schönfeldt-Lecuona C. Linking annual prescription volume of 

antidepressants to corresponding web search query data: a possible proxy for medical prescription behavior? J Clin 
Psychopharmacol. 2015;235:681–5.

 22. Schuster NM, Rogers MA, McMahon LF Jr. Using search engine query data to track pharmaceutical utilization: a 
study of statins. Am J Manag Care. 2010;16:e215–9.

 23. Zhang Z, Zheng X, Zeng DD, Leischow SJ. Tracking dabbing using search query surveillance: a case study in the 
United States. J Med Internet Res. 2016;18(9):e252.

 24. Zheluk A, Quinn C, Meylakhs P. Internet search and Krokodil in the Russian Federation: an infoveillance study. J Med 
Internet Res. 2014;16(9):e212.

https://trends.google.com/trends/explore


Page 21 of 21Mavragani and Ochoa  J Big Data  (2018) 5:17 

 25. Gamma A, Schleifer R, Weinmann W, Buadze A, Liebren M. Could Google Trends be used to predict metham-
phetamine-related crime? An analysis of search volume data in Switzerland, Germany, and Austria. PLoS ONE. 
2016;11(11):e0166566.

 26. Eysenbach G. Infodemiology and Infoveillance: framework for an emerging set of public health informatics methods 
to analyze search, communication and publication behavior on the internet. J Med Internet Res. 2009;11(1):e11.

 27. Zhang Z, Zheng X, Zeng DD, Leischow SJ. Information seeking regarding tobacco and lung cancer: effects of sea-
sonality. PLoS ONE. 2015;10(3):e0117938.

 28. Ingram DG, Plante DT. Seasonal trends in restless legs symptomatology: evidence from internet search query data. 
Sleep Med. 2013;14(12):1364–8.

 29. Ingram DG, Matthews CK, Plante DT. Seasonal trends in sleep-disordered breathing: evidence from Internet search 
engine query data. Sleep Breath. 2015;19(1):79–84.

 30. Pollett S, Wood N, Boscardin WJ, Bengtsson H, Schwarcz S, Harriman K, Winter K, Rutherford G. Validating the use of 
Google Trends to enhance pertussis surveillance in California. PLoS Curr. 2015;19:7.

 31. Wang HW, Chen DR, Yu HW, Chen YM. Forecasting the incidence of dementia and dementia-related outpatient visits 
with Google Trends: evidence from Taiwan. J Med Internet Res. 2015;17(11):e264.

 32. Centers for Disease Control and Prevention: HIV/AIDS. https ://www.cdc.gov/hiv/basic s.html/. Accessed 7 Feb 2018.
 33. What are HIV and AIDS? https ://www.hiv.gov/hiv-basic s/overv iew/about -hiv-and-aids/what-are-hiv-and-aids. 

Accessed 7 Feb 2018.
 34. UNAIDS. Fact sheet—latest statistics on the status of the AIDS epidemic. http://www.unaid s.org/en/resou rces/fact-

sheet . Accessed 7 Feb 2018.
 35. Google. Trends help. how trends data is adjusted. https ://suppo rt.googl e.com/trend s/answe r/43655 33?hl=en. 

Accessed 7 Feb 2018.
 36. Scharkow M, Vogelgesang J. Measuring the public agenda using search engine queries. Int J Public Opin Res. 

2011;23:104–13.
 37. Atlas Plus. Centers for disease control and prevention. https ://gis.cdc.gov/grasp /nchhs tpatl as/main.html. Accessed 

7 Feb 2018.
 38. Cervellin Gianfranco, Comelli Ivan, Lippi Giuseppe. Is Google Trends a reliable tool for digital epidemiology? Insights 

from different clinical settings. J Epidemiol Global Health. 2017;7:185–9.
 39. Mavragani A, Sampri A, Sypsa K, Tsagarakis KP. Integrating ‘Smart Health’ in the US Health Care System: asthma 

Monitoring in the Google Era. JMIR Public Health Surveill. 2018;4(1):e24.
 40. Jun SP, Park DH. Consumer information search behavior and purchasing decisions: empirical evidence from Korea. 

Technol Forecast Soc Change. 2016;31:97–111.
 41. Jun SP, Park DH, Yeom J. The possibility of using search traffic information to explore consumer product attitudes 

and forecast consumer preference. Technol Forecast Soc Change. 2014;86:237–53.
 42. Mavragani A, Tsagarakis KP. YES or NO: predicting the 2015 Greferendum results using Google Trends. Technol Fore-

cast Soc. 2016;109:1–5.

https://www.cdc.gov/hiv/basics.html/
https://www.hiv.gov/hiv-basics/overview/about-hiv-and-aids/what-are-hiv-and-aids
http://www.unaids.org/en/resources/fact-sheet
http://www.unaids.org/en/resources/fact-sheet
https://support.google.com/trends/answer/4365533?hl=en
https://gis.cdc.gov/grasp/nchhstpatlas/main.html

	Forecasting AIDS prevalence in the United States using online search traffic data
	Abstract 
	Introduction
	Research methodology
	Data
	Methods
	Analysis stages

	Results
	AIDS online interest in the US
	AIDS prevalence vs. Google Trends
	Forecasting AIDS prevalence in USA

	Discussion
	Conclusions
	Authors’ contributions
	References




