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Abstract 

Aims: The aims of the current study were to characterise the outer membrane proteins (OMPs) of 

Francisella noatunensis subsp. orientalis (Fno) STIR-GUS-F2f7, and identify proteins recognised by 

sera from tilapia, Oreochromis niloticus, (L) that survived experimental challenge with Fno. 

Methods and Results: The composition of the OMPs of a virulent strain of Fno (STIR-GUS- F2f7), 

isolated from diseased red Nile tilapia in UK, was examined. The sarcosine-insoluble OMP fraction 

was screened with tilapia hyper-immune sera by western blot analysis following separation of the 

proteins by 1D SDS-PAGE. Liquid chromatography-electrospray ionisation-tandem mass 
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spectrometry (LC-ESI-MS/MS) was used to identify the various proteins present in the OMP profile. 

Two hundred and thirty-nine proteins were identified, of which 44 were found in the immunogenic 

band recognised by the tilapia hyperimmune serum. In silico analysis was performed to predict the 

function and location of the OMPs identified by MS.  

Conclusions: Using a powerful proteomic-based approach in conjugation with western 

immunoblotting, proteins comprising the outer membrane fraction of Fno STIR-GUS-F2f7 were 

identified, catalogued and screened for immune recognition by tilapia sera.  

Significance and Impact of the study: The current study is the first report on the characterisation of 

Fno OMPs. The findings here provide preliminary data on bacterial surface proteins that exist in 

direct contact with the host’s immune defences during infection and offer an insight into the 

pathogenesis of Fno. 

 

Keywords:  Francisella noatunensis subsp. orientalis; Outer membrane proteins; SDS PAGE; 

Hyperimmune sera; LC-ESI-MS/MS. 

 

Introduction 

Francisella noatunensis subsp. orientalis (Fno) is the causative agent of piscine francisellosis in a wide 

range of warm water fish species (Colquhoun and Dudu, 2011). Recently, Fno has emerged as a 

major threat to tilapia aquaculture where chronic infection by this organism has been reported in 

different geographical regions (Soto et al., 2009a; Qiang et al., 2015; Ortega et al., 2016), with high 

morbidity and associated mortalities of up to 95% (Birkbeck et al., 2011; Rodrigues et al., 2017). To 

date, there is no commercially available vaccine or prophylaxis for Fno infection on fish farms. 

The outer membrane proteins (OMPs) are specific highly conserved components of Gram-

negative bacterial cells that include those associated with bacterial pathogenicity (Seltman and 

Holst, 2002), nutrient uptake (e.g. iron), antimicrobial peptide resistance and other proteins required 

for in vivo survival in the host environment (Koebnik et al., 2000). Their location on the surface of 

the bacteria facilitate interaction with the host immune system and thus antibodies raised against 

these proteins are likely to result in neutralising activity against target microorganisms (Lin et al., 

2002). The OMPs of a variety of fish-pathogenic bacteria have previously been characterised, 

including those of Flavobacterium columnare (Liu et al., 2008; Luo et al., 2016), Streptococcus iniae 

(Cheng et al., 2010), Edwardisella tarda (Kumar et al., 2009; Sun et al., 2011), Edwarsiella ictaluri 

(Dumpala et al., 2009), Aeromonas hydrophila (Wang et al., 2013), Aeromonas salmonicida (Ebank et 

al., 2005), Vibrio harveyi (Yu et al., 2013) and Vibrio alginolyticus (Qian et al., 2008). A more 

comprehensive characterisation of this vital group of proteins facilitated development of a new 

generation of diagnostic and prophylactic tools for various bacterial diseases of economic 

importance to farmed and ornamental fish species (Maji et al., 2006; Maiti et al., 2011; Thangaviji et 

al., 2012; Yu et al., 2013; Divya et al., 2015).  

Immuno-proteomics is a powerful approach used to highlight and identify immuno-reactive 

components of the bacterial outer membrane proteome where innately hydrophobic membrane 

associated proteins are solubilised and separated in the presence of an anionic detergent during 1-

dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D-SDS PAGE). This initial 

separation step is followed by western immunoblotting using immune sera to highlight reactive 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

areas within the protein profile, downstream mass spectrometry and database mining to identify 

individual proteins within immuno-reactive complexes (Boyce et al., 2006).  

Previous studies have identified some potential Fno-pathogenicity determinants including 

those genes responsible for intracellular localisation, survival and replication using genomics and 

proteomic approaches (Sridhar et al., 2012; Soto et al., 2013; Lagos et al., 2017), however the 

functions of the conserved proteins representing these genes are not fully-understood. Given the 

increasing economic impact of francisellosis on commercial tilapia farming, there is a growing need 

to better understand the mechanisms by which Fno causes disease and develop sustainable 

solutions to control infection in farmed fish. To this end, the OMP profile of Fno (STIR-GUS-F2f7) was 

catalogued and proteins recognised by pooled hyper-immune sera collected from infected tilapia 

were identified using the approach outlined above.  

Materials and methods 

Bacterial isolate, culture media and growth conditions 

Fno STIR-GUS-F2f7, a highly virulent strain that was isolated in 2012 from a moribund red Nile 

tilapia, Oreochromis niloticus (L.) farmed in England (Ramirez-Paredes et al., 2017a) was used in this 

study. The strain had been previously identified by conventional biochemical tests and conventional 

PCR (Ramirez-Paredes et al., 2017a) and its annotated whole genome sequence was published 

(Ramirez-paredes et al., 2017b). Cultivation of the bacterium was performed on Cysteine Heart Agar 

containing 2% bovine haemoglobin (CHAH) (DIFCO, USA) following incubation at 28 C for 72 h. For 

liquid cultures, aliquots of Modified Mueller Hinton broth (MMHB) containing 2% Isovitalex and 0.1% 

glucose (DIFCO, BD, USA) were inoculated with a single bacterial colony from CHAH plates and 

incubated at 28 C for 18 h with shaking at 150 rpm. 

Extraction of OMPs 

OMPs were obtained by the method of Gauthier et al. (2003), with slight modifications. Briefly, Fno 

cells in 20 ml of liquid culture were harvested by centrifugation at 5,000 g for 15 min at 4 C; 

supernatant was discarded, and the cell pellet was washed three times with 10 ml of chilled 50 

mmol l-1 Tris HCl (pH 7.0) at 3,000 g for 10 min. The wash buffer was discarded, and the pellet re-

suspended in 1 ml of 50 mmol l-1 Tris HCl (pH 7.0) containing 20% (w/v) sucrose, 10 mmol l-1 Na-

EDTA, 10 g ml-1 lysozyme (Sigma-Aldrich UK) and 10 l of protease inhibitor cocktail (Sigma-Aldrich, 

UK). The cell suspension was then transferred to 1.5 ml micro-centrifuge tubes (Eppendorf, 

Germany) containing 0.1 ml Zirconium silica beads (Thistle scientific, UK), and cells were disrupted in 

a FastPrep homogeniser B101011 (MP Biomedicals, USA) for 6×30 sec, with cooling on ice for 5 min 

between each cycle. The lysate was then transferred to a fresh 1.5 ml micro-centrifuge tube and cell 

debris were removed by centrifugation at 16,000 g for 2 min at 4 C. The insoluble material 

containing the membrane proteins was obtained by ultracentrifugation at 100,000 g for 40 min at 4 

C, the supernatant was discarded, and the pellet washed by addition of 1 ml of 10 mmol l-1 Tris HCl 

(pH 7.0), without re-suspension, and incubation on ice for 1 min prior to discarding the supernatant 

once more. The cell pellet was then re-suspended in 1 ml of 10 mmol l-1 Tris HCl (pH 7.0) containing 

0.5% (w/v) N-lauryl-sarcosine and centrifuged at 100,000 g for 40 min at 4 C. The supernatant was 

discarded, and the cell pellet was washed in 1 ml of 10 mmol l-1 Tris HCl (pH 7.0), as previously 

described, before the supernatant was discarded, and pellets were air dried at room temperature 

(RT) (~22 oC) for 30 sec. Finally, the pellet was re-suspended in 1 ml of 10 mmol l-1 Tris HCl (pH 7.0) 

containing 0.5% (w/v) N-lauroylsarcosine and 0.1% (w/v) Sodium dodecyl sulfate (SDS) on a variable 
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speed vortex mixer (Cole-parmer, UK) for 30 sec. The concentration of OMPs was determined by 

BCA assay (Pierce BCA protein assay Kit; Thermo, USA) according to the manufacturer’s instructions, 

and adjusted to 50 µg µl-1 using Milli-Q water (Thermo, UK). Aliquots of 20 µl were prepared and 

stored at -80 C until used.  

Fish challenge and serum samples 

Healthy Nile tilapia, Oreochromis niloticus, (14±2 g) were obtained from a commercial fish farm in 

East of Thailand. Fish were divided into two groups of duplicate static 15 L tanks with 10 fish each. 

Group one was intraperitoneally injected (i.p.) with 0.1 ml of 1x106 cfu ml-1 (LD60) of Fno (STIR-GUS-

F2f7) while the second group received i.p. injection of PBS as control. The bacterial inoculum was 

prepared using MMHB containing 2% Isovitalex and 0.1% glucose as previously described (Soto et 

al., 2009a) and the challenge dose was selected based on a previous experiment by Ramirez-Paredes 

(2015). Fish were maintained at 232 °C for 21 days and dead fish were autopsied to determine the 

cause of death. The presence of Fno in the tissues was determined by bacterial culture in CHAH 

supplemented with Polymixin B 100 U ml-1 as previously described (Soto et al., 2009a). Blood was 

collected from survivor and control tilapia 21 days post challenge (dpc) and the serum IgM level was 

measured using an indirect enzyme-linked immunosorbent assay (ELISA). In Brief, 96-well ELISA 

plates (Immulone4 HBX-USA) were coated with 100 µl of 1% w/v poly-lysine in carbonate-

bicarbonate buffer (Sigma-Aldrich, UK) and incubated at room temperature (RT) (~22C) for 1 h. The 

plates were then washed three times by low salt wash buffer (LSWB: 0.02 mol l-1 Trizma base, 0.38 

mol l-1 NaCl, 0.05% v/v Tween 20, pH 7.2). 100 µl of Fno in PBS at OD600 0.4 (~1x109 cfu ml-1) was 

added to each well and plates were incubated at 4 C overnight. The plates were washed three times 

with LSWB and bacteria were fixed by adding 100 µl/well of 0.05% v/v glutaraldehyde (Sigma-

Aldrich, UK) in LSWB and incubated for 20 min at RT. Plates were washed as before with LSWB. 

Endogenous peroxidase activity was prevented by adding 100 µl/well of 1:10 of 30% stock solution 

of hydrogen peroxide (Sigma-Aldrich, UK) and plates were incubated for 1 h at RT. Washing was 

done three times as before and non-specific antibody binding was blocked by adding 250 µl/well of 

5% w/v dried skimmed milk (Marvel, Premier Foods Group Ltd, UK) in distilled water (DW) for 3 h at 

RT. After washing the plates three times with LSWB, 100 µl/well of serum from challenged and 

control fish 21 dpc at 1:500 in LSWB with 1% bovine serum albumin (BSA) (Fisher scientific, UK) were 

then incubated overnight at 4C. Fno positive and negative sera were included on each plate as 

assay controls. After incubation, the plates were washed 5 times with high salt wash buffer (HSWB: 

0.02 mol l-1 Trizma base, 0.5 mol l-1 NaCl, 0.01% v/v Tween 20, pH 7.4) with a 5 min soak on the last 

wash to ensure removal of unbound antibodies. 100 µL/well of anti-tilapia IgM monoclonal 

antibodies (Mab) at a dilution of 1:75 in PBS (Fo4, Aquatic Diagnostic Ltd, UK) were added and the 

plates were incubated at RT for 1 h. Washing was repeated using HSWB as before and 100 µL/well of 

goat anti-mouse IgG-HRP MAb (Sigma, UK) at a dilution of 1:3000 in  LSWB with 1% BSA were added 

and the plates were then incubated for 1 h at RT. Washing was done once with HSWB and the colour 

was developed with tetramethyl-benzidine (TMB) (Amresco, MA, USA) for 5 min at RT and the 

reaction was stopped by adding 50 µL/well of 2 mol l-1 H2SO4 (Sigma, UK). The absorbance was 

measured at OD450 using a micro-plate reader (Biotek Synergy HT, USA) and serum samples with high 

specific anti-Fno IgM levels 21 dpc were selected for performing immunoblotting. All procedures 

utilizing fish were carried out in accordance with the UK Animal (Scientific Procedures) Act 1986 

and the University of Stirling Animal Welfare and Ethical Review Body (AWERB) regulations.  
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1D SDS-PAGE 

A 100 µg sample of the OMPs was resolved on a 12% NuPAGETM Novex® Bis-Tris Gel (NuPAGE ™, 

Invitrogen, USA) in a NuPAGETM MES SDS Running Buffer (20x) (Thermo Fisher scientific, UK) at 200 V 

(constant voltage) for 45 min, according to the manufacture’s protocol. After electrophoresis, the 

separated proteins were stained with SimplyBlue Safe Stain (Invitrogen, USA) following the 

manufacturer’s instructions and the gel scanned using an Epson expression 1680 artist scanner 

(Epson, USA). The image obtained was evaluated using Irfanview software 

(http://www.irfanview.com). Two technical replicates of SDS-PAGE were performed to ensure 

reproducibility. 

Western blot analyses 

Following electrophoresis as described above, the separated OMPs were transferred to a 

nitrocellulose membrane (Invitrogen, USA) at 30 V for 45 min using 1x NuPAGETM Transfer buffer 

(ThermoFisher Scientific, UK), following the manufacture’s protocol for two replicate gels. Following 

transfer, the membranes were washed for 5 min in TBS (50 mmol l-1 Tris, 150 mmol l-1 NaCl, pH 7.4) 

and blocked overnight at 4 C in TBS with 5% (w/v) dried skimmed milk (Marvel, Premier Foods 

Group Ltd, UK). After washing 3 times with TBST (50 mmol l-1 Tris, 150 mmol l-1 NaCl, 0.1% Tween-20, 

pH 7.5) for 10 min on each wash, the membranes were incubated for 3 h at RT (~22 oC) with 

continuous agitation with 5 ml of pooled infected (n=5) and control (n=5) fish sera at a dilution of 

1:50 in TBS with 1% (w/v) BSA (Sigma-Aldrich, UK), respectively. Washing was repeated as described 

before, then 5 ml of 1:50 mouse anti-tilapia IgM Mab (Fo4, Aquatic Diagnostic Ltd, UK) in TBS was 

added to each membrane and incubated with continuous shaking at RT for 1 h. Following washing, 5 

ml of Goat anti-mouse HRP MAb (Sigma, UK) at a dilution of 1:200 in TBS was added to each 

membrane with incubation for 1 h at 22 oC. The membranes were then washed 3 times with TBST 

and once with TBS for 5 min, before the reaction was developed by adding 5 ml of ImmPACT DAB 

peroxidase substrate (Vector laboratories Ltd, USA) to each membrane for 2 min. The reaction was 

stopped by addition of 5 ml of distilled water. Membranes were left to dry then scanned using an 

Epson expression 1680 artist scanner (Epson, USA). Two technical replicate immunoblots were 

prepared to ensure reproducibility. 

In-gel digestion and LC-ESI-MS/MS                                                                                        

Gel lanes containing OMPs were excised and sliced horizontally from top to bottom to yield a series 

of equal slices of 2.5 mm depth. Each of the resulting gel slices was then subjected to standard in-gel 

destaining, reduction, alkylation and trypsinolysis procedures (Shevchenko et al., 1996). LC-ESI-

MS/MS was performed as described by Watson et al. (2014), with instrument parameters based on 

those used previously by Batycka et al. (2006). 

Data analysis and Database Mining 

Deconvoluted MS/MS data in Mascot generic format (mgf) was imported into ProteinScape™ V3.1 

(Bruker Daltonics, USA) for downstream database mining of the available annotated cognate 

chromosomal and plasmid Fno protein database derived from genomic sequences available at the 

National Centre for Biotechnology Information (NCBI, Genbank), (http://www.ncbi.nlm.nih.gov) 

(Table 1) and the NCBInr Fno sub-database, utilising the Mascot™ V2.5.1 (Matrix Science, London, 

UK) search algorithm (Perkins et al., 1999). The protein contents of individual gel slices and the 

entire gel lane were established using the “Protein Search” and “Protein Compilation features of the 

ProteinScape™ software”, respectively, and the separate compilation of the proteins contained in 

the gel slices of each of gel replicates was formed using the “Protein Extractor” feature of the 

software. Data was searched specifying Trypsin and Trypsin/P. Spectra used for protein 
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identifications were re-searched against the entire NCBInr database to ensure accurate peptide 

assignments. Mascot search parameters were set in accordance with published guidelines (Taylor 

and Goodlett, 2005). Fixed (carbamidomethyl “C”) and variable (oxidation “M” and deamidation 

“N,Q”) modifications were selected along with peptide (MS) and secondary fragmentation (MS/MS) 

tolerance values of 0.5 Da, whilst allowing for a single 13C isotope. Molecular weight search scores 

(MOWSE) attained for individual protein identifications were inspected manually and considered 

significant only if two or more peptides were matched for each protein, and each matched peptide 

contained an unbroken “b” or “y” ion series represented by a minimum of four contiguous amino 

acid residues.  

Bioinformatics analyses  

The PSORTb algorithm (http://www.psort.org) was used to predict the subcellular location of 

identified proteins. The putative functional classification of the identified proteins was obtained by 

comparison of predicted proteins against clusters of orthologous groups of proteins (COGs) database 

using the EggNOG v4.5 server (http://eggnog.embl.de). Lipoproteins were identified using the LipoP 

1.0 server (http://www.cbs.dtu.dk/services/LipoP-1.0/) and the presence of signal peptides 

sequence was searched using SignalP 2.0 server (http://www.cbc.dtu/services/Signal/). 

Results 

1D PAGE and immunoblotting 

Following electrophoretic separation of Fno STIR-GUS-F2f7 OMPs (Figure 1A), immunoblotting was 

performed using either convalescent immune sera from Fno-infected tilapia or control tilapia sera. 

An abundant protein band was observed between 17 and 28 kDa on the stained gel, and similarly, 

the pooled immune sera reacted with an equivalent sized band on the Western blot (Figure 1B). No 

immuno-reactivity was detected in this region by the control fish sera (Figure 1C). 

Protein identification by LC-MS/MS  

Mass spectrometric analysis facilitated the confident identification of a total of 239 proteins in the 

OMP fraction (Table S1), including 44 proteins in the immunogenic band (17-28 kDa) (Table S2) 

highlighted by the immune tilapia serum pool. The top 20 protein IDs of the OMP fraction are listed 

in Table 2 and the immunogenic OMP proteins in Table 3. The full protein lists can be found in 

supporting information (Table S1 and S2). 

Prediction of function, subcellular localisation and lipoproteins of the identified proteins  

EggNOG v4.5, PSORTb® v.2.0, LipoP v.1.0, SignalP v.2.0 servers were used to predict the function, 

sub-cellular location and lipoprotein nature of the 239 proteins identified in the OMP preparation. 

Proteins associated with translation, ribosomal structure and biogenesis were the most abundant 

(42%), followed by those involved in energy production and conversion (31%), and those associated 

with cell wall biogenesis and post-transitional modification (20%). The potential subcellular 

localisation of about 82.8% of the Fno OMPs was identified, with the cytoplasmic proteins 

representing the majority of proteins (62%). These were followed by cytoplasmic membrane 

proteins (8.8%), outer membrane proteins (5.8%), periplasmic proteins (2.5%) and extracellular 

proteins (0.8%). The lipoproteins in the Fno OMPs represented 16.7%. In silico analysis of the top 20 

OMP fraction protein IDs are listed in Table 4. A full summary of bioinformatics analysis of the 

identified proteins is shown in Figure 2 and Tables S3 in supporting information.  
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Discussion 

Outer membrane proteins play an important role in the pathobiology of various bacteria by 

facilitating their adaptation to a wide range of different environments. Due to their prominence at 

the host-pathogen interface, the OMPs represent antigens with the potential to induce protective 

humoral and cellular immune response in the host capable of inactivating the bacteria (Lin et al., 

2002; Mukhopadhaya et al., 2006). Despite their potential importance, to date, no studies have been 

conducted on membrane proteins of Fno. We therefore analysed the 1D SDS-PAGE profile of OMPs 

extracted from the bacterium in combination with immunoblotting and LC-ESI-MS/MS to identify 

and catalogue the proteins present in this outer membrane enriched fraction of Fno STIR-GUS-F2f7.  

In the current study, a total of 239 confidently identified Fno OMPs were highlighted (Table 

S1). Interestingly, many of these were observed to share similarities with proteins found in the Fno-

derived outer membrane vesicles (OMVs) described by Lagos et al. (2017), where 52 % of the OMV 

proteins identified were predicted to be cytoplasmic, while the outer membrane and extracellular 

proteins were 5% and 1%, respectively, compared to 5.8% and 0.8% in this study, respectively. 

The presence of cytoplasmic, periplasmic or inner membrane proteins in the current Fno-

OMP preparation can be attributed to the fact that most of the bacterial outer membranes are 

involved in the transportation of substances between the intracellular or extracellular membranes. 

This may allow contact between the OMPs and other membrane proteins or the periplasmic 

proteins as an essential component of the membrane associated-enzyme complex (Vipond et al., 

2006). Identification of different classes of non-outer membrane proteins in OMP preparations have 

been previously reported (Liu et al., 2008; Kumar et al., 2009; Watson et al., 2014). The reason for 

this is unknown, but as shown for other bacteria, Fno may express non-classically associated outer 

membrane “moonlighting” proteins on its surface, which are known to have more than one function 

both within the cytoplasm and extracellularly, and which have been reported to be associated with 

bacterial virulence (Henderson and Martin, 2011). Definitive assignment of OMPs to specific 

subcellular locations within Gram-negative bacteria remains unclear. This may be due to the OMPs 

spanning the three layers of bacterial cell membrane as -barrel trans-membrane proteins 

associated with the transportation of ions and other micro-molecules (Wimely, 2003; Pavkova et al., 

2005). Alternatively, post-transitional modification may enable the OMPs to associate with other 

proteins including lipoproteins and glycoproteins (Santoni et al., 2000). This may explain the high 

percentage of non-OMPs in the extracted Fno-OMPs preparation. Further studies are needed to 

confirm the identity and biological functions of these non-OMPs. 

Functional analysis of the proteins identified using EggNOG v. 4.5 revealed that most of the 

abundant proteins were involved in vital biological functions including energy production, cell 

wall/cell membrane formation, post-transitional modification, and metabolism of various cellular 

components (including protein, carbohydrate and lipid metabolism), transcription and transport 

activities. This highlights the diversity of biological functions associated with OMPs and may reflect 

the importance of the OMPs in the pathobiology of Fno. It has already been reported that proteins 

responsible for translation/transcription, catalytic activity, and transporting activity are the most 

abundant proteins found in Fno-derived OMVs (Lagos et al., 2017).  

The presence of lipoproteins in the current Fno-OMPs was predicted using LipoP server v0.2 

of which 24 were predicted to be cleaved by signal peptidase I and 16 by signal peptidase II. In 

addition to their role in the acquisition of nutrients, it has been suggested that lipoproteins have the 

ability to switch-on the host’s immune response by interacting with Toll-like receptor 2 (Nguyen and 

Götz, 2016). Moreover, 31 ribosomal proteins, mainly 30s and 50s, were detected in the OMPs of 
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Fno. Their presence has also been reported in OMP preparations of other bacteria such as F. 

tularensis (Janovska et al., 2007a), F. columnare (Liu et al., 2008) and Pasturella multocida (Boyce et 

al., 2006). Herskovits et al. (2002) reported the importance of ribosomal proteins in the biogenesis 

and translocation of integral membrane proteins.  

In our study, PdpD, IglA, IglB and IglC, outer membrane-A family protein (FopA), 

peptidoglycan associated lipoprotein (PAL), GroEl and ClpB displayed high scores in comparison to 

the other proteins identified in the Fno-OMPs. Interestingly, all of these proteins have already been 

detected in various protein preparations, including OMPs and OMVs, from different Francisella spp., 

including Fno (Lagos et al., 2017), F. noatunensis subsp. noatunensis (Fnn) (Pierson et al., 2011) and 

Francisella tularensis (Ft) (Melillo et al., 2006; Huntley et al., 2007; Hickey et al., 2011). Homologues 

of some of the Fno OMPs identified in this study have previously been described as immunogenic in 

the F. tularensis live vaccine strain (LVS), as demonstrated by western blotting using sera from 

tularemic patients (Janovska et al., 2007).  

The PdpA, PdpB, PdpD, IglA, IglB and IglC proteins represent the core elements of the 

Francisella pathogenicity island (FPI), which itself constitutes the major determinant associated with 

bacterial virulence and intracellular replication within host macrophages (Nano and Schmerk, 2007; 

Bröms et al., 2010). PdpA suppresses cell signalling by macrophages including growth factors, 

cytokines and adhesion ligands, thus suppressing the macrophage’s ability to recruit and stimulate 

other immune cells (Nano et al., 2004). Ludu et al. (2008) reported that PdpD protein is localised to 

the outer membrane of Francisella novicida and is involved in the extracellular virulence of this 

pathogen by affecting the localisation of other FPI proteins including IglA, IglB, IglC and T6SS. IglA 

and IglB are two cytoplasmic proteins that constitute an essential part of the type VI secretion 

system in F. novicida and both are required for intra-macrophage growth through stimulating 

secretion of effector molecules, that affect host cell processes (Barker et al., 2009). It has also been 

demonstrated that IglA is required for virulence and supporting the growth of the bacterium inside 

macrophages (De Bruin et et al., 2007).  

The IglC protein, which was associated with the immunoreactive band (17-28 kDa) in our Fno 

OMP, is one of the important proteins that is upregulated during intracellular growth of Francisella 

spp. in macrophages (Golovliov et al., 1997, 2003). Earlier studies reported that IglC protein, with its 

regulator MglA, assist the ability of F. tularensis to modulate biogenesis of the phagosome, 

preventing the formation of the phagolysosome, and thus facilitating escape of the bacteria into the 

cytoplasm of the host cell following replication (Clemens et al., 2004; Santic et al., 2005). 

Furthermore, IglC has been reported to play a role in inducing the production of inflammatory 

cytokines (Telepnev et al., 2003) and subsequent induction of cell apoptosis (Lai et al., 2004). 

Mutations of this protein alter bacterial virulence and impair intracellular growth in human derived 

macrophages (Santic et al., 2005) as well as tilapia macrophages (Soto et al., 2009b, 2011).  

The Francisella outer membrane-A family protein (FopA) identified within the immunogenic 

band of Fno OMPs is the predominant outer membrane protein which is highly expressed on the cell 

surface and has been found to be highly immunogenic in F. tularensis (Fulop et al., 1996; Huntley et 

al., 2007). Readily accessible to different antibodies, it provided good protection when tested as a 

candidate subunit vaccine antigen against human tularemia in mice exposed to lethal intradermal 

and intranasal F. tularensis SchuS4 challenge (Hickey et al., 2011). The GroEL chaperone protein, is a 

heat shock protein that has been found to be up-regulated in mice vaccinated with  mutant LVS 

(Bakshi et al., 2008) and in association with other heat shock proteins like DnaK and GroES, is 
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thought to affect the long-lasting recall of CD4 and CD8 T cells by stimulating specific anti-

tularemic antibodies (Havlasova et al., 2002; Lee et al., 2006).  

PALs detected in OMPs of Fno in the current study, are ubiquitous proteins, found in many 

pathogenic Gram-negative bacteria including Escherichia coli (Hellman et al., 2002), Vibrio cholerae 

(Heilpern and Waldor, 2000) and F. novicida (McCaig et al., 2013). The PALs are thought to perform 

virulence-related functions and assist in survival of pathogenic bacteria by modulating the host’s 

immune response and initiating the release of pro-inflammatory cytokines (Buwitt-Beckmann et al., 

2006; Oscarsson et al., 2008; Godlewska et al., 2009).  

A previous genomic study performed by Sridhar et al., (2012) revealed major differences 

between human pathogenic F. tularensis and fish pathogenic Fno genomes, especially in their 

pathogenicity island (FPI) where Ft possess two copies of FPI, but Fno contains only one copy. More 

importantly, the number of protein coding genes are lower in Fno (n=1595) than Ft (n=1664) where 

pdpC, encoding one of the FPI proteins, was one of the most important genes missing in Fno and it 

was reported to be crucial for growing of Francisella spp. in mammalian cells (Hazlett and Cirillo, 

2009). Interestingly, our proteomic approach is in agreement with the later findings, where the PdpC 

protein was not detected. This highlights the value and importance of proteomic approaches in 

complementing genomic studies for establishing valid and definitive information about the microbial 

phenotype, especially in selection of candidates for therapeutic or diagnostic applications.  

When the OMP profile of Fno STIR-GUS-F2f7 was examined by immunoblotting using hyper-

immune sera from convalescent tilapia, an immunoreactive region was observed between 17-28 

kDa, while no immunoreactivity was seen with the control sera. Similar patterns were obtained by 

Shrøder et al. (2009), who screened Fnn with serum from Atlantic cod (Gadus morhua, L.) 

immunised with either a monovalent Fnn vaccine or a multivalent vaccine containing Fnn and Vibrio 

anguillarum, then challenged with either Fnn alone or Fnn and V. anguillarum. These authors also 

reported an immunogenic band between 20-25 kDa after probing the Fnn whole cell protein extract 

with a polyclonal rabbit serum raised against Francisella spp. In a separate study by Kay et al. (2006), 

polyclonal antisera raised against Fno recognised an immuno-dominant band of approximately 20 

kDa in the large lipo-oligosaccharide fraction (LOS) of the proteinase-K treated whole cell protein 

lysate. The presence of the immunoreactive band (~17-28 kDa) in the OMP fraction in our study may 

support the results obtained in previous studies.  More importantly, establishing the proteins 

present in the Fno outer membrane proteome may enable a greater understanding of which 

proteins are involved in stimulating the fish’s immune system in response to Fno infection.    

To our knowledge, this is the first report describing the characterisation and identification of 

proteins comprising the OMP fraction of Fno. Interestingly, most of these proteins were previously 

reported to be immunogenic in F. tularensis (Havlasova et al., 2002; Lee et al., 2006). When taken 

together, these results give more insight into our understanding of the pathogenicity of Fno and 

highlight the potential of OMPs in future diagnostic and control strategies for the management of 

Fno infection in farmed tilapia.  

It is worth mentioning that, some of the pathogenicity-related proteins that showed high 

score in the current Fno-OMP preparation, such as PdpD and FopA were not recognised by the sera 

from challenged tilapia. However, they were previously described as immunogenic antigens in F. 

tularensis using sera from tularemic patients (Hickey et al., 2011; Huntly et al., 2007; Janovska et al., 

2007). This anomaly may be attributed to the limited resolution offered by 1D-SDS-PAGE and its 

inability to separate complex mixtures of proteins that co-migrate as a single band. To this end, the 

use of higher resolution 2-D gel electrophoresis together with immunoblotting and downstream 
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mass spectrometry may facilitate a more precise characterisation of the protein complement of the 

Fno OMP fraction.  In summary, the data presented here offers a first insight into OMPs of Fno, 

which help build our understanding of how this organism is able to cause disease.   
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Tables 

Table 1. Genomes used in this study 

 

Bacteria ID Source Gene bank 

accession no. 

Genome status Reference 

Fno STIR-

GUS-F2f7 

Tilapia (UK) LTD00000000.1 Complete Ramirez-

paredes et 

al.,2017b. 

FNO01 Tilapia (Brazil) CP012153.2 Complete Figueiredo et 

al., 2016. 

FNO12 Tilapia (Brazil) CP011921 Complete Gonçalves et 

al., 2016 

FNO24 Tilapia (Brazil) CP011922 Complete Gonçalves et 

al., 2016 

FNO190 Tilapia (Brazil) CP011923 Complete Gonçalves et 

al., 2016 

Fno Toba-04 Tilapia 

(Indonesia) 

NC_017909 Complete Sridhar et al., 

2012. 
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Table.2 List of top 20 proteins identified in the outer membrane proteome of Francisella 

noatunensis subsp. orientalis, isolate Fno STIR-GUS-F2f7  

No.  
NCBI accession 
no.  Protein ID 

MW 
[kDa]  pI 

Mascot 
Score 

No. of 
peptides 
matched 

Sequence 
coverage 
(%) 

1 gi|300193845| PdpD  139.9 6.2 4477.2  72 61.4 

2 gi|386872131| Chaperone ClpB  96.0 5.4 2588.9  49 57.7 

3 gi|169589436| PdpD  139.6 6.1 2478.8  39 32.1 

4 gi|300193842| IglC  22.1 5.3 2388.4  14 84.2 

5 gi|386871181| Chaperonin GroEL  57.1 4.9 1857.1  33 63.7 

6 gi|103012949| 
Ribosomal L29e protein 
family  126.8 8.9 1839.5 42 46.6 

7 gi|386871126| Elongation factor  43.3 5.0 1585.1  36 75.6 

8 gi|386872079| 

Bifunctional proline 
dehydrogenase/pyrroline-
5-carboxylate  149.5 7.8 1539.6 33 34.6 

9 gi|300193843| IglB  57.5 4.7 1526.5  30 59.9 

10 gi|386870689| 30S ribosomal protein S1  61.5 5.2 1389.2  26 58.1 

11 gi|386870694| Cell division protein FtsZ  39.3 4.6 1354.0  24 85.4 

12 gi|386871696| 
Outer membrane 
associated protein  41.3 5.2 1307.4  22 42.8 

13 gi|386871889| 
Chorismate binding family 
protein  120.0 5.6 1243.3  26 31.3 

14 gi|386870866| OmpA family protein  47.2 6.0 1090.3  10  32.1 

15 gi|860224409| 
Non-ribosomal peptide 
synthetase  249.4 5.2 1046.5  27 18.2 

16 gi|386871950| Ribonuclease E  101.4 8.3 1036.3  19 27.4 

17 gi|300193844| IglA  20.4 8.6 1010.3  12 47.2 

18 gi|386871082| 
Alpha-ketoglutarate 
decarboxylase 105.5 6.1 1009.2  21  27.9 

19 gi|386870797| Heat shock protein 90  72.2 5.3 992.4  21 36.9 

20 gi|386871083| 

2-oxoglutarate 
dehydrogenase complex, 
E2 component  52.5 5.0 991.1  18 45.6 

MW: molecular mass; pI: isoelectric point 
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Table.3 List of the top 20 proteins identified in the immunogenic band (17-28 kDa) of the outer 

membrane proteome of Francisella noatunensis subsp. orientalis, Fno STIR-GUS-F2f7 

No.  

NCBI accession 
no.  

Protein ID 
MW 
[kDa]  pI 

Mascot 
Score 

No. of 
peptides 
matched 

Seque
nce 
covera
ge (%) 

1 gi|300193842| IglC  22.1 5.3 2388.4  14 84.2 
2 gi|504527828| IglA  20.4 8.6 754.5  12 74.2 

3 gi|504527329| 

OmpA family 
peptidoglycan-
associated lipoprotein  23.4 4.8 753.9  9 64.9 

4 gi|504527815| 
beta-ketoacyl-ACP 
reductase  26.3 9.6 601.2  10 55.9 

5 gi|504527529| 

succinate 
dehydrogenase iron-
sulfur subunit  26.5 8.8 540.4  11 54.9 

6 gi|504527238| 
50S ribosomal protein 
L5  20.0 9.7 526.4 11 61.5 

7 gi|504527915| 
AhpC/TSA family 
peroxiredoxin  21.8 5.0 470.0  7 57.8 

8 gi|504528404| enoyl-ACP reductase  27.7 5.5 449  11 55.4 

9 gi|386871251| 
Hypothetical protein 
OOM-0776 22.5 9.8 388.6  9 41.3 

10 gi|504527834| hypothetical protein  24.3 5.6 376.8  5 33.5 

11 gi|504527577| 
50S ribosomal protein 
L1  24.5 9.5 374.1  9 39.4 

12 gi|504527226| 
50S ribosomal protein 
L3 22.1 9.5 359.4  6 40.5 

13 gi|504527216| 
30S ribosomal protein 
S2  26.5 8.8 333.7  5 21.3 

14 gi|855345305| 

Transcription 
termination/antitermin
ation protein nusG  20.0 6.8 333.1 7 41.2 

15 gi|855345177| Hypothetical protein  27.9 9.4 330.4  6 27.2 

16 gi|504527578| 
50S ribosomal protein 
L10  18.7 9.1 274.5  8 45.3 

17 gi|504527053| chorismate mutase  20.3 9.2 267.1  5 40.6 

18 gi|504527683| 
DNA-binding response 
regulator  25.5 6.2 261.9  5 32.9 

19 gi|504527248| 
30S ribosomal protein 
S4  23.2 10.4 245.0 4 24.8 

20 gi|504527363| LemA-like protein  21.9 6.0 235.4  6 37.2 

MW: molecular mass; pI: isoelectric point 
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Table 4. Bioinformatic analysis of the top 20 proteins identified in the outer membrane enriched 

fraction of Francisella noatunensis subsp. orientalis, Fno STIR-GUS-F2f7 

No Protein ID. PSORTba COGsb  LipoPc SignalPd 

1 PdpD  
Outer 
membrane 

S N N 

2 Chaperone ClpB  Cytoplasmic O N N 

3 PdpD  
Outer 
membrane 

S N N 

4 IglC * Unknown S N N 

5 Chaperonin GroEL  Cytoplasmic O N N 

6 Ribosomal L29e protein family  
Outer 
membrane 

S N N 

7 
OmpA family peptidoglycan-associated 
lipoprotein *  

Outer 
membrane 

M Y Y (SpII) 

8 Bifunctional proline dehydrogenase  Cytoplasmic C N N 

9 IglB  Cytoplasmic S N N 

10 30S ribosomal protein S1  Cytoplasmic J N N 

11 Cell division protein FtsZ  Cytoplasmic D N N 

12 Outer membrane associated protein  
Outer 
membrane 

M Y Y (SpI) 

13 PdpA  

Unknown/mul
tiple 
localization 

S N N 

14 OmpA family protein  
Outer 
membrane 

M Y Y (SpII) 

15 PdpB  
Outer 
membrane 

M N N 

16 Ribonuclease E  Cytoplasmic E N N 

17 IglA * Cytoplasmic S N N 

18 Alpha-ketoglutarate decarboxylase  Cytoplasmic G N N 

19 Heat shock protein 90  Cytoplasmic O N N 

20 
2-oxoglutarate dehydrogenase complex, E2 
component.  

Cytoplasmic C N N 
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a 
Subcellular localization as predicted by PSORTb v. 2.0 (http://psort.org/).  

b 
Functional classification of the tentative proteins as predicted by EggNOG v. 4.5 server 

(http://eggnog.embl.de). The COGs functional categories are: C: energy production and conversion; D: Cell 

cycle control, cell division and chromosome partitioning; E: amino acid transport and metabolism; F:  

Nucleotide transport and metabolism; G: carbohydrate transport and metabolism; H: Coenzyme transport and 

metabolism; I: lipid transport and metabolism; J: Translation, ribosomal structure and biogenesis; K: 

Transcription; L: replication, recombination and repair; M: cell wall/membrane biogenesis; O: Post-

translational modification, protein turnover, and chaperones; P: Inorganic ion transport and metabolism; Q: 

Secondary metabolites biosynthesis, transport, and catabolism; S: Unknown function (includes Category R with 

general function and category N not in known COGs); T: Signal transduction mechanisms; U: Intracellular 

trafficking, secretion, and vesicular transport; V: Defence mechanisms. 
c 
Lipoproteins prediction by LipoP v. 1.0 (http://www.cbs.dtu.dk/services/Lipo/) , Y: Yes, N: No. 

d 
Signal peptide sequence prediction by SignalP v. 2.0 (http://cbs,dtu.dk/services/Signal P/), Y: Yes, N: No, 

SpI: Signal peptides cleave by signal peptidase I, SpII: Signal peptides cleaved by signal peptidase II.
 
 

* 
Immuno-reactive proteins (In bold). 
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