
On symbolic verification of Bitcoin’s SCRIPT language

Rick Klomp and Andrea Bracciali ?

Computing Science and Mathematics, University of Stirling, UK
{name.surname}@stir.ac.uk

Abstract. Validation of Bitcoin transactions rely upon the successful execution
of scripts written in a simple and effective, non-Turing-complete by design lan-
guage, simply called SCRIPT. This makes the validation of closed scripts, i.e.
those associated to actual transactions and bearing full information, straightfor-
ward. Here we address the problem of validating open scripts, i.e. we address the
validation of redeeming scripts against the whole set of possible inputs, i.e. under
which general conditions can Bitcoins be redeemed? Even if likely not one of the
most complex languages and demanding verification problems, we advocate the
merit of formal verification for the Bitcoin validation framework. We propose a
symbolic verification theory for of open SCRIPT, a verifier tool-kit, and illustrate
examples of use on Bitcoin transactions. Contributions include 1) a formalisa-
tion of (a fragment of) the language; 2) a novel symbolic approach to SCRIPT

verification, suitable, e.g. for the verification of newly defined and non-standard
payment schemas; and 3) building blocks for a larger verification theory for the
developing area of Bitcoin smart contracts. The verification of smart contracts,
i.e. agreements built as transaction-based protocols, is currently a difficult to for-
malise and computationally demanding problem.

1 Introduction

The Bitcoin framework [15] enable monetary transactions of a virtual currency amongst
untrusted individuals. The construction relies on a novel interpretation of distributed
consensus for the validation of a decentralised ledger recording the Bitcoin transac-
tions. Interestingly, the validation of transactions in terms of their correctness, e.g. no
double spending and proper ownership of the virtual coins, is demanded to the suc-
cessful execution of cryptography-fenced scripts associated to transactions. Replicated
execution of scripts is supported by a network of peers, whose consensus guarantees
the validity of transactions.

Striving for correctness, robustness and efficiency in such an unconventional and
constrained execution model, the scripting language SCRIPThas been designed accord-
ing to minimality principles, e.g. it is not Turing complete, has no recursion, cycles or
procedure calls, has an execution cost proportional to the length of the code, and “dan-
gerous” operations like MUL are not allowed. However, even if most transactions ex-
ploit standard payment schemes based on simple scripts believed to be robust, free and

? This research has been partially supported by The DataLab, UK, and partially informed by
collaborations within COST Action IC1406 cHiPSet research network. Authors would like to
thank Flavio Pizzorno for interesting feedback on the work.

This is a post-peer-review, pre-copyedit version of a chapter published in Data Privacy Management,
Cryptocurrencies and Blockchain Technology. DPM 2018, CBT 2018. Lecture Notes in Computer Science, 11025.
The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-00305-0_3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/199408511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-00305-0_3

more complex payment schemas are allowed, new standard schema can be introduced,
and, interestingly, a whole area of protocols and smart contracts based on transactions
are being developed [6, 14].

Despite the apparent simplicity of SCRIPT in itself, such a scenario calls for for-
mal verification of critical scripts validating financial transactions, which in the case of
Bitcoin alone have a market cap of about 100B USD (2018 - about half the GDP of a
country like Greece).

The general validation schema is composed by two scripts, an input script in charge
of providing data and credential to authorise the transaction, and an output script, whose
structure basically defines the validation scheme and is in charge of checking that the
data provided do actually enable the transaction.

We address the problem of the satisfiability of ”open” output scripts, i.e. under
which general conditions an input script exists capable of providing the right informa-
tion to let the output script successfully terminate and the transition be validated?

Although the simulation and execution of closed scripts present no problems and
many tools and simulators are available, we observe that verification frameworks for
satisfiability of open scripts are not so widespread and we believe that there are oppor-
tunities for further research in the area.

We introduce a symbolic verification framework which simulate the execution of an
output script accumulating minimal constraints, akin to a lazy evaluation approach, for
its successful termination. For each successful symbolic simulation, these constraints,
if satisfiable, specify one (or more) possible input script that can provide enough infor-
mation to redeem the transaction.

The contributions of this paper are:
(1) a (yet to be completed, but including major constructs) formal description of the

SCRIPT language, which has been mostly presented informally and by code releases.
We have focussed on salient features for the correctness of validation, often digging in
the code for clarity;

(2) the novel, to the best of our knowledge, symbolic framework allowing us to
derive a correct and (ongoing research) complete specification of all the possible, and
possibly unintended, ways to redeem transactions. Beyond the simplicity by construc-
tion of SCRIPT, complex ”non-standard” payment schema can and have been provided,
worth being clearly analysed. Besides, new payment schemas can be defined and ac-
cepted as standard by the community, for instance to overcome existing limitations,
similarly to P2PkH improving over the P2Pk schema. In such cases, a clear understand-
ing of the implications of the schema in use and the novel ones is desirable;

(3) valid transactions are being used to define more articulated protocols in the
context of smart contracts over the Bitcoin blockchain, e.g. self-enforcing agreements
in the form of executable code [16]. We envisage the framework here presented as a
building block of a larger verification framework aimed at the extra level of complexity
introduced by smart contracts, whose verification is currently a difficult to formalise
and computationally demanding open research problem. It is worth reminding how this
area is prone to “simple”, and supposedly well-understood, security failures, which
easily lead to consistent financial loss, e.g. the recent overflow-based case of the Parity
wallet [13].

In this paper we introduce the symbolic verification framework, SCRIPT ANAL-
YSER, an open source application supporting the presented symbolic verification, and
discuss two examples of non-standard transactions appeared in the Bitcoin blockchain,
which are slightly more complex than a typical standard payment schema, and, we
believe, illustrate how the proposed symbolic verification can support a better under-
standing of the solidity of Bitcoin’s validation machinery.

For the sake of space, while we strived for a comprehensive presentation, a fully
formal presentation is demanded to a forthcoming extended paper.

2 Bitcoin’s blockchain and transactions

A quick review of the most relevant aspects of the design of Bitcoin are recapped here.
The interested reader is referred to the SOK paper [10] for details.

The Bitcoin blockchain consists of a data structure implementing a distributed ledger.
This can be understood, informally speaking, as an append only, and therefore im-
mutable, list of blocks of data maintained by a peer-2-peer network. The blockchain
is freely accessible and anyone can be a node (Bitcoin is a permission-less blockchain).
Each node stores an identical copy of the ledger. Main innovation is that the ledger is
decentralised, i.e. the responsibility for certifying the correctness of the ledger is shared
amongst all the nodes, no one being in charge, and guaranteed by a cryptographically-
supported distributed consensus, currently the proof-of-work. The whole network guar-
antees correctness, and at least half of the computational power in the network is needed
in order to alter the ledger.

The ledger records payments amongst accounts, i.e. addresses, based on PKI: the
address can be derived from the public key and the private key is used to prove owner-
ship of the address and the crypto-money therein.

Transactions move Bitcoins from one address to another. Each transaction has po-
tentially multiple inputs, i.e. it draws Bitcoins from multiple addresses, and delivers
the drawn Bitcoins over potentially multiple outputs, i.e. pays multiple recipient ad-
dresses. Once moved into an address, Bitcoins are redeemable by a suitable subsequent
transaction. Each input of a subsequent redeeming transaction needs to provide suitable
credential in order to ”spend” Bitcoins. This is done by an input script, or SigScript,
whose execution provides credentials, which are then validated by the output script as-
sociated to the output of the previous transaction. The format of the output script is, in
principle, free, although a few standard output scripts are commonly used. The success-
ful execution of the input and then output script makes the transaction valid and it can
be recoded on the ledger.

Bitcoin architecture uses hash functions, i.e. a mapping from an unbounded domain
to a fixed domain, which is straightforward to compute but practically impossible to
invert. An hash if often used to prove properties or validate a piece of information.
Also digital signature are used, based on public key cryptography. A signature, used
to validly sign a message, proves that the signer authorized this message. Alteration of
the message invalidates the signature. Generating a valid signature is straightforward,
when owing the private key, generally infeasible otherwise. Verifying the validity of the
combination of signature, public key and message is straightforward.

3 Related work

Delmonino et-al [12], and Bartoletti and Pompianu [7], empirically analyse common
patterns in designs of smart contracts. The authors show that some of the design pat-
terns, though they are commonly applied, are actually undesired practices due to high
odds of bug introducement. Increased risk of faults in (smart) contracts decreases their
trustworthiness, as any fault possibly enables unexpected side effects (e.g. enabling a
malicious party to claim, i.e. steal, honestly invested currency). As such, these results
highlight the importance of improving smart contract design and verification practices.

Delgado-Segura et-al [11] present a tool (STATUS) for analysing Bitcoin’s set of
unspent transaction outputs (or UTXO). They present results from running this tool on
the UTXO at block 491,868 of Bitcoin’s blockchain (appended at October 26th, 2017).
The UTXO was introduced to improve efficiency of validating new transactions. STA-
TUS’s main purpose is to analyse efficiency of the UTXO implementation approach,
whereas our work aims to enable verification of certain properties of output SCRIPTs.

Andrychowicz et-al [6] introduce some interesting smart contracts and show through
application of formal models that they are applicable in Bitcoin’s ledger. In [5] they
extend on this with a framework that captures the possible interaction sequences that
may occur following a smart contract. Specifically, their approach enables automatic
security verification by manually modeling the smart contract using timed automata.
We propose a method which possibly enables automatically deriving a model, e.g. ex-
pressed in timed automatas, from only the output SCRIPTs of transactions. A generated
model may then be further analysed, e.g. automatically following the approach in [6].

Lande and Zunino [14] propose a formal model to express smart contracts. They
then use this formal model to survey and compare the smart contracts currently em-
ployed via Bitcoin’s ledger. Furthermore, they propose designing bitcoin SCRIPTs using
a high level language DSL that can guarantee security. We on the other hand attempt
to derive security properties directly from the SCRIPT. Ultimately our goals, to increase
quality of smart contracts, are similar however.

Bartoletti and Zunino [8] present BitML, a first high level DSL for designing smart
contracts that are applicable through Bitcoin’s ledger. The symbolic expressions that
form an instance of BitML are easier to analyse than a Bitcoin’s SCRIPT instance. Fur-
thermore, they show that these BitML instances can be compiled to Bitcoin SCRIPTs.

Bhargavan et-al [9] propose verifying smart contracts written in Solidity (Ethereum’s
[17] primary smart contract language), by first either compiling Solidity code to F*, or
decompiling EVM (Ethereum’s virtual machine) bytecode to F*. It is then possible to
verify whether the F* smart contract variant meets certain criteria by embedding these
criteria into F*’s type and effect system.

4 SCRIPT - a fragment of

The validation of Bitcoin transactions reverts to the successful execution of two pro-
grams: an input script associated to the redeeming transaction, and an output script as-
sociated to a corresponding unspent output offered by an earlier transaction. Although
the two scripts can be, and in some cases have been, freely defined, the intended be-
haviour is that the former provides credentials proving the ownership of the unspent

S ::= cmd;S | �

cmd ::= OP FALSE | OP TRUE | OP n constants

IF S | IFE S ◦ S | VERIFY | OP RETURN | flow control

DUP | PUSH d | POP | stack ops

ADD | SUB | SIZE | aritmetic ops

EQ | LT | LTE | GT | GTE | AND | OR | boolean ops

CHKSIG | CHKMSIG| HASH256 | HASH160 | crypto ops

d ::= bs | Bool | int | key

Fig. 1. The syntax of SCRIPT.

coins, and the latter verifies them. The successful execution of the sequential composi-
tion of the two scripts validates the redeeming transaction, that can hence be accepted
as valid and included in a block.

The script programming language consists of a stack-based programming language,
called SCRIPT. It is not Turing-complete by design. It does not allow for cycles and has
a restricted set of instructions. Furthermore, complexity of SCRIPT is also limited by
transaction fees that are typically proportional to the space occupied by a transaction in a
block, and hence to the length of its scripts. Successful execution reverts to termination,
leaving the stack in a true state.

We provide here an informal description of the semantics of the language. Full
details on the language can be found, e.g., in [1] by directly inspecting the source code
of the Bitcoin Core client, or in [3] about the semantics of the SCRIPT instruction set,
according to the core client’s implementation.

The fragment of SCRIPT considered in this paper is described next, starting from
the syntax in Figure 4. A program S in SCRIPT is either a sequence of stack opera-
tions (cmd) or the terminated program �. Trailing and prefixed � are generally omitted
or absorbed, respectively. Commands manipulate dynamically typed data on the stack,
with automated type coercion. According to the execution model, operations are se-
quentially executed and may alter the stack by popping/pushing data. Operations may
fail on missing data and mismatching or non-coercible types, causing a runtime error,
immediately stopping the execution in a failed state. For instance, OP RETURN fails
by default, while ADD fails when the top of the stack does not contain two integers.
The script succeeds if all the operations are successfully executed, i.e. they do not fail,
and the (top of the) stack is true.

Commands are represented by mnemonic codes in Figure 4, while SCRIPT actually
uses numeric opcodes. Our presentation of the semantics also introduces some simpli-
fying abstractions.

Constants operations push data on the stack, e.g. OP TRUE or OP n which push
the values True and n, and never fail.

Flow control includes a branching command IF S, representing the conditional ex-
ecution of the program S if the top stack value is true (it is popped when checked).
SCRIPT would actually write it as the sequence IF; S; ENDIF. Analogously for the if-
then-else construct IFE. Branching constructs may fail on empty stack when testing the
condition, or, in our representation, because one of the commands in S fails. VERIFY
pops the stack and then fails if the popped top of the stack was not true. OP RETURN
fails and, as a side effect, allows a limited amount of data to be recorded in the transac-
tion, and hence permanently stored in the blockchain.

Stack operators work as expected. DUP and POP fail on empty stack. PUSH adds
data on the stack.

SCRIPT operates on a stack with a 520-byte word. A byte stream bs is a sequence of
bytes such that |bs| ∈ [0, 520] (| | is the length in bytes of a type), with ε the empty bs
- which, e.g., can be successfully popped from the stack. bsi (bs[i,j]) represents a byte
stream of length i (length in [i, j]), e.g. the result of a fixed-dimension hash operation.

A boolean (Bool) is a sequence of bytes with |Bool| ∈ [0, 520] and 0, −0 and
ε representing False.1 An integer (int) is a 32-bit signed integer with |int| ∈ [0, 4].
> is the most generic type (|>| ∈ [0, 520]). A key (key) is a sequence of bytes such
that |key| ∈ [9, 73]. A public key pk can only be such that |pk| = 65 or |pk| = 33
(compressed). Some operations may have further requirements on keys, which will be
modelled in the corresponding semantic rules. 2 3 The type hierarchy is represented by
(the transitive closure of) the following diagram, with solid lines for being subtype of
and dotted ones representing allowed coercions under the constraint that byte length are
respected, e.g. b ∈ Bool can be successfully used as an integer only if |b| ≤ 4. >, bs
and Bool are actually equivalent, while int and key disjoint. We introduced separate
type entities for readability, and this hierarchy might be useful for more strictly typed
variants of SCRIPT.

>

bs

>>

�� $$

≡ Bool

bb

ss
��

int

VV 33

∅ key

VVcc

1 Although there are multiple values equal to false and multiple values equal to true, the
Bitcoin Core client always instantiates these as [] and [0x01] respectively. Our symbolic verifier
assumes the same representations.

2 It is important to remark here that some type definitions, and other features, may depend on
how the Bitcoin client is initialised. For instance, checking the dimension of a key depends
on an initialisation parameter. We assume in this paper that the checking is done. We defer
the verification against different possible initialisations to future work, noting that it must be
addressed as different settings can affect correctness in different ways.

3 Some operations may be more restrictive on the length of accepted keys, as well as their
format. We will model this in the specific rules defining such operations, as appropriate. See
Section 5.2.

A type B can be automatically coerced to a type A (ABB):

|Bool| ≤ 4
B2i

int . Bool

|>| ≤ 4
T2i

int .>
|bs| ≤ 4

bs2i
int . bs

|bs| ∈ {33, 67}
bs2k

key . bs

Arithmetical operators ADD and SUB pop two int from the stack and push the
result r. It is worth noting that over/underflow may cause |r| = 5, which may cause
a subsequent type error, and the choice of some constants may be implementation-
dependent, e.g. 0 can be ε, 04, 03, −04, Arithmetical operators fail on lack of data
or type error, e.g. an incoercible bs10.

Boolean operators work similarly, as expected, and fail on lack of data on the stack
(any data can be interpreted as a boolean). VERIFY pops a boolean value from the stack,
and verifies that it is equal to true. If this constraint is not met evaluation of the SCRIPT
fails. Furthermore, the operation fails on lack of data. It is worth remarking here that
some operators amongst those that push a boolean result on the stack have a VERIFY
variant, the so-called verify operators, such as EQ VERIFY, CHECK SIG VERIFY.
These variants are semantically equivalent to appending VERIFY after the original op-
erator. For example, EQ VERIFY is semantically equivalent to EQ;VERIFY.

Cryptographic operators check signatures, multi-signatures and push computed
hash values on the stack. CHECK SIG pops a sig key sk and a pub key pk from the
stack, and checks if sk is a valid signature of pk combined with the hash of (part of)
the transaction’s data. It pushes the result of this check, i.e. true or false, to the stack.
The non-VERIFY variant fails on lack of data and on type error. Note that performing
CHECKSIG without a VERIFY does not enforce prior operations (including those de-
fined by the input SCRIPT) to reach a matching signature check. This is only enforced
when the result of CHECKSIG is constrained to true by a subsequent VERIFY oper-
ation. CHECK MULTISIG checks the validity of a list of signatures against a list of
public keys. First, an integer nsk is popped, defining the number of provided signa-
tures. Then nsk signatures (sks) are popped. Similarly, an integer npk determining the
number of provided public keys and npk public keys (pks) are popped. As a result,
CHECK MULTISIG pushes true on the stack if each signature is valid for a public key
combined with the hash of (part of) the transaction, i.e. ∀sk ∈ sks.∃pk ∈ pks such that
CHECK SIG on (sk, pk) is true4. Otherwise, false is pushed on the stack. The non-
VERIFY variant fails on lack of data and on type error. HASH operators pop a value
from the stack and push the hash of this value on the stack. Hashes fail on lack of data.

Locktime operators add time constraints to redeeming Bitcoins. We mention them
here for the sake of a more complete overview of SCRIPT but do not address them in
this work.

Example 1. The SCRIPT program

DUP;POP;POP;DUP

requires a top element in the stack, duplicates it, then pops the two copies, and then
requires the presence of a second element initially on the stack and duplicates it.

4 With the added note that matching public keys must be provided in the same order as the
signatures they match with. Additionally, each provided public key can at most be matched
with one signature.

Example 2. As an example of an unredeemable output SCRIPT, consider the program

PUSH 0xFB15AC2030FB; ADD

ADD will require two int values, one of which must be pushed to the stack by the input
script. Regardless of what stack is left by the input SCRIPT, ADD will always fail on
type error as the first value it pops (originating from the PUSH operation) is of type bs6,
which cannot be coerced to int.

5 Symbolic evaluation of SCRIPT programs

Given the SCRIPT code of an output script, its execution is simulated from an empty
stack. Required data on the initial stack for a successful computation is defined via a
lazy approach returning the weakest constraints on data for successful termination.

5.1 The execution stack model

A symbolic stack SK is an infinite (in both directions) list of indexed typed data, with
indexes in [−∞,∞] that uniquely identify a position and a datum in the stack:

[. . . di+1, di, di−1 . . .]

di = (xi, t), with xi a variable used to accumulate constraints on the expected data in
the i− th position, and t a type.

Two extra indexes associated to SK delimit the segment of significant data in SK:
the head index h identifies the current top of the stack, and the floor index f denotes
the first available position where data can be provided by the input script, that is the
first position below the current bottom of the significant segment in SK. Initially, each
di is undefined (and irrelevant) and h = 0 and f = 0, i.e. the top element is 0 and
the first position where the input script could have added data is also 0. Such ”inital”
state is called the empty stack and denoted as SKε. Note that f can only decrease. Each
command may further specify requirements on data by accumulating constraints on the
associated variable. At the end of the computation, data of interest will be represented
by the constraint store associated to the variables in [f + 1, 0], i.e. the data required to
be provided by the input script for successful termination of the output script, if any.
Symbolic expressions exp in the stack consist of constants d, variables xi, operations
op ∈ {+,−, <,≤,=,≥, >,∧,∨}:

exp ::= exp op exp | xi | d | hash exp | sig exp exp | multisig [exp] [exp] | size exp

Example 3. Considering informally the computation of the output script from Exam-
ple 1, Table 1(left) shows the effect of command execution on SK. Dotted lines repre-
sent initial pointers.

Table 1. An example of symbolic stack (left) and the input types (ty1, ty2) and result type (tyr)
for some SCRIPT operators (right).

DUP;POP;POP;DUP [. . . d−1, (x0,>), (x0,>), . . .]
f
PP @@

h
bb PP

POP;POP;DUP [. . . d−1, d0, d1, . . .]

f, h
PP

DUP [. . . (x−1,>), (x−1,>), d1 . . .]

f
]]

h
]]

OP ty1op ty2op tyrop

ADD SUB Int Int bs[0..5]
LT LTE
GT GTE

Int Int Bool

SIZE > - Int
EQ > > Bool
AND OR Bool Bool Bool
HASH256 > - bs32

5.2 Symbolic simulation of SCRIPT computations

The possible symbolic executions of an output script S are defined by a symbolic transi-
tion system, whose states represent the computation still to be executed and the current
state of the associated symbolic state. Commands operate on typed data, type errors
cause a runtime error, which stops the execution in a failed state, modelled here as
standard as a non-terminal state (not �) with no outgoing transitions. Table 1(right)
reports examples of typed operations.

Definition 1. A symbolic state for a SCRIPT program S is a tuple (S, SK, h, f), with
SK a symbolic stack and h and f its head and floor indexes.

Definition 2. A symbolic transition system for a SCRIPT program S is a relationship
between symbolic states, and a constraint store Γ , written as

Γ ` (S1, SK1, h1, f1)→ (S2, SK2, h2, f2)

and read as Γ justifies the transition from (S1, SK1, h1, f1) to (S2, SK2, h2, f2).
Γ is a constraint store over the variables xf2+1, . . . , x−1, x0.
→ is the transition relation amongst states.
Both Γ and→ are defined by the structural operation semantics rules in Figure 2, 3 and 4.

Γ may contain constraints like {(xi, int), xi ≤ 100}: xi is an integer variable whose
value must be less than 100. We use juxtaposition of constraint stores for their union.
For the sake of space we do not enter in the details of the definition of the constraint
language and solver, as they are standard techniques over the domain of interest.

Γ ` (S1, SK1, h1, f1) → (S2, SK2, h2, f2) reads as the program S with the stack
(SK1, h1, f1) can do a computation step, transform the stack into (SK2, h2, f2), and
become the program S2, under the conditions in Γ . The intended use of transactions
is to define Γ through the semantic rules for a computation step of a given S1 and
(SK1, h1, f1).

The union of the Γ s along a computation made of several steps defines the minimal
requirements on the initial stack to make that computation happen. Such a union for
a successful execution trace defines one (or more) of the possible outputs of the input
script that makes the transition redeemable. It is important to remark that one condition
for success is that the top of the stack holds true. In order to validate such condition we

1. add a VERIFY operation at the end of the output script under consideration, which
will cause the constraint eh = True to be added to Γ - see Figure 3, and

2. resolve successful termination as Γ satisfiability (and script’s termination).

Definition 3. Let SKε be the empty stack. A successful trace for a program S is a finite
sequence

Γ0 ` (S, SKε, 0, 0)→ (S1, A1) . . . Γn ` (Sn−1, An−1)→ (�, SKn, hn, fn)

such that Γ0 . . . Γn−1 is satisfiable.

Γ satisfiability means that there exists an assignment γ such that Γγ, i.e. the grounding
of Γ through γ, is consistent. Interestingly, γ defines xf+1, . . . , x0, the stack variables
that have been identified by Γ and need to be to instantiated by the input script.

Theorem 1 (Soundness). Let

Γ0 ` (S, SKε, 0, 0)→ (S1, A1) . . . Γn ` (Sn−1, An−1)→ (�, SKn, hn, fn)

be a successful trace for the script S, i.e. Γ0 . . . Γn−1 is satisfiable.
Then there exist a script I and an assignment γ such that Γγ is consistent, and the

execution of I from the empty stack provides the stack Xγ = [xf+1, . . . , x0] and the
actual execution of I;S is successful from the empty stack.

Proof. Sketch! (this proof relies on semantics rule described in the following). We
prove the stronger result: if

Γ0 ` (S,SK,h, f)→ (S1, SK1, h1, f1) . . . Γn ` (Sn−1, An−1)→ (�, SKn, hn, fn)

is a successful trace then exists I such that I;S is successful starting from a ground
instance of SK, according to Γ . By induction on the trace length n:

Case n = 1. S consists of the added VERIFY operation (S was initially empty),
the only constraint is that I is able to provide a xh = True value on the stack, which
define I = OP TRUE, and trivially I;S is successful.

Case n ⇒ n + 1. For each single semantic rule r that can be applied to S, let us
consider the step

Γ0 ` (S, SK, h, f)→ (S′, SK ′, h′, f ′)

By construction a successful trace for S′ of length n−1 exists (it goes to � and Γ1 . . . Γn
is satisfiable if Γ is), and by induction I ′ exists such that I ′;S′ is successful. Depending
on the rule r applied, it is possible to show that I exists, such that I;S is successful.

Case r = d− push. We take SK ′ as the stack after the execution of PUSH d from
(SK, h, f). By induction, since a successful trace exists for (S′, SK ′, f ′, h′) of length
n − 1, then I ′ exists such that I ′;S′ is successful from (S′, SK ′, f ′, h′), with SK ′

equals to SK with on top the pushed datum d, and f’=f and h’=h+1.
It follows that I ′;PUSH d;S′ is successful from (SK0, h, f), indeed we will have

a suitable ground instance of SK (given that Γ is satisfiable) after the concrete compu-
tation of I ′, the execution of PUSH d will yield (a ground instance of) SK ′ from which
we know that S′ is successful.

Other cases can be solved analogously. �

h = f
s pop

{(Xf ,>)} ` (SK, h, f)
pop7−−−−−→

(Xf ,>)
(SK, h− 1, f − 1)

h > f
pop

∅ ` (SK, h, f)
pop7−−−−→

SK[h]
(SK, h− 1, f)

push
∅ ` (SK, h, f)

push7−−−→
(e,t)

(SK[(eh+1, t)], h+ 1, f)

(a) Stack semantics rules

d is a t Γ ` A push7−−−→
(d,t)

B

d-push
Γ ` (PUSHDATA d,A)→ (�, B)

Γ ` A push7−−−−→
(i,BS1)

B

op n5

Γ ` (OP i, A)→ (�, B)

Γ1 ` A
pop7−−−→
(e,t)

B Γ2 ` B
push7−−−→
(e,t)

C Γ3 ` C
push7−−−→
(e,t)

D

dup
Γ1Γ2Γ3 ` (DUP, A)→ (�, D)

(b) Constants and stack ops

Γ1 ` A
pop7−−−−→

(e1,t1)
B Γ2 ` B

pop7−−−−→
(e2,t2)

C

ty1op . t1

ty2op . t2 Γ3 ` C
push7−−−−−−−−−−−−→

(e1 opAB e2,tyr
op)

D

2-ops
Γ1Γ2Γ3 ` (opAB , A)→ (�, D)

(c) Arithmetic & Boolean ops

Fig. 2. Semantic rules I

Rules in Figure 2a model auxiliary operations (
pop7−−→
Xf

) transforming a symbolic stacks,

hereafter ranged over by A,B,C, These operations are used by many of the other
semantics rules and may define constraints for the constraint store. Worth noting the
rule s pop: data is expected (to have been provided by the input script) but the stack
is empty: a new symbolic variable xf is allocated in the first available position on the
stack, i.e. f , and added to Γ with >, i.e. no requirements, as type.

Rules for constants and stack ops are straightforwardly, examples are in Figure 5.2.
Arithmetic and boolean ops follow a common scheme: data are popped from the

stack and, if types are correct, the result is pushed on the stack. Figure 2c shows the
scheme for binary operations, most of which are defined in Table 1.

Flow control is described in Figure 3. Rule seq is the core of a small-step semantics:
a sequence of commands is unfolded one at the time. itet checks the value popped from
the stack: if it is, or can be assumed to be a Bool according to type coercion rules,
then ITE reduces to its if branch under the (minimal) assumptions that the type is a

5 With n ∈ [1..16]

Γ ` (cmd, SK1, h1, f1)→ (�, SK2, h2, f2)
seq

Γ ` (cmd;S, SK1, h1, f1)→ (S, SK2, h2, f2)

Γ ` A pop7−−−→
(e,t)

B Bool . t

itet
Γ{t is Bool}{e = True} ` (IFE St ◦ Sf ;S, A)→ (St;S, B)

Γ ` A pop7−−−→
(e,t)

B Bool . t

itef
Γ{t is Bool}{e = False} ` (IFE St ◦ Sf ;S, A)→ (Sf ;S, B)

Γ ` A pop7−−−→
(e,t)

B Bool . t

ver
Γ{t is Bool}{e = True} ` (VERIFY, A)→ (�, B)

Fig. 3. Semantic rules II

Γ1 ` A
pop7−−−→
(e,t)

B Γ2 ` B
push7−−−−−−−−→

(hash(e),BS32)
C

h256
Γ1Γ2 ` (HASH256, A)→ (�, C)

Γ1 ` A
pop7−−→
dpk

B Γ2 ` B
pop7−−→
dsk

C Γ3 ` C
push7−−−−−−−−−−−→

(Sig dsk dpk,Bool)
D

chksig
Γ1Γ2Γ3 ` (CHKSIG, A)→ (�, D)

Γ1 ` A
pop7−−→
npk

B

Γ2 ` B
pops npk7−−−−−−→

pks
C

Γ3 ` C
pop7−−→
nsk

D

Γ4 ` D
pops nsk7−−−−−−→

sks
E

Γ5 ` E
pop7−−→ F

Γ6 ` F
push7−−−−−−−−−−−−−−→

(MultiSig sks pks,Bool)
G

chkmsig
Γ1Γ2Γ3Γ4Γ5Γ6 ` (CHKMSIG, A)→ (�, F)

Fig. 4. Semantic rules III

Bool and the value is True. Note that, as a general rule, a type error prevents that
application of the rule, not allowing termination and therefore a successful trace. itef
follows straightforwardly, as well as the omitted rules for IF, and the (only) one for
VERIFY - not Bool or false prevent termination.

The crypto ops are in Figure 4. h256 (and the omitted h160) describes the hash-
ing of the top value in the stack. Similarly, chksig pops a signature and a public key
and pushes a symbolic expression of validating the (signature, public key, transaction
message) pair. Analogously, chkmsig pops a number nsk, pops nsk signatures, pops
a number npk, pops npk public keys, pops 1 irrelevant value6 and pushes a symbolic
expression of validating the multiple signatures with multiple public keys to the stack.

5.3 Implementation

The presented symbolic verification framework has informed the implementation of
SCRIPT ANALYSER, an open source application implemented in Haskell, available at
https://git.science.uu.nl/r.klomp/BitcoinAnalysis.

Given an output script S, the current version of the tool returns all the existing
satisfiable Γ for each successful computation of S. Such Γ s are specifications of (all
the possible) input scripts I which can be used to redeem the associated transaction.
SCRIPT ANALYSER works by an exhaustive traversal of the space of successful traces,
as soon as an error or inconsistency in Γ is detected, the trace is abandoned.

Satisfiability of Γ is done by application of well-known Finite Domain Constraint
Solvers. The current version of the tool uses the solver embedded in swi-prolog [4].
Other solvers, e.g. GNU Prolog [2], will be experimented with.

An extensive experimentation over the non-standard transactions appeared in the
blockchain is being carried out.

6 Two non-standard transactions

We present the analysis of two relatively complex output scripts from the blockchain.
These scripts have been chosen as complex enough examples to make non-trivial the
precise understanding of their intended meaning and the full conditions for redeemabil-
ity. As such, any introduced bugs during development of SCRIPT programs like these
would arguably be difficult to notice without formal verification.

1 OP_DUP;
2 OP_SIZE;
3 OP_PUSH (int: 64);
4 OP_PUSH (int: 67);
5 OP_WITHIN;
6 OP_SWAP;
7 OP_SHA256;
8 OP_PUSH <bs length: 32>;
9 OP_EQUAL;

10 OP_BOOLAND;
11 OP_IF;
12 OP_DROP;
13 OP_ELSE;
14 OP_PUSH <bs length: 65>;
15 OP_CHECKSIGVERIFY;
16 OP_ENDIF;
17 OP_PUSH <bs length: 65>;
18 OP_CHECKSIG

(a) Example A

1 OP_IF;
2 OP_2;
3 OP_PUSH <bs length: 65>;
4 OP_PUSH <bs length: 33>;
5 OP_2;
6 OP_CHECKMULTISIGVERIFY;
7 OP_ELSE;
8 OP_2;
9 OP_PUSH <bs length: 65>;

10 % bs differs from bs at line 3
11 OP_PUSH <bs length: 33>;
12 % bs differs from bs at line 4
13 OP_2;
14 OP_CHECKMULTISIGVERIFY;
15 OP_ENDIF

(b) Example B

Fig. 5. Two output SCRIPT examples.

6 This is conforming to the Bitcoin Core client, which contains a bug resulting in this additional
stack entry to be popped from the stack.

Figure 5a shows the output SCRIPT of a transaction7 that was inserted into the
Blockchain’s 269,760th block. Following the symbolic rules, there are two different
Γ s derivable:

Γ0 := Sig X−1 bsline: 17 ∧
(

Hash X0 == bsline: 8 ∧
Size X0 < 67 ∧
Size X0 >= 64

) ∧
...omitted type constraints...

Γ1 := Sig X−1 bsline: 17 ∧
Sig X0 bsline: 14 ∧
¬(

Hash X0 == bsline: 8 ∧
Size X0 < 67 ∧
Size X0 >= 64

) ∧
...omitted type constraints...

The former (Γ0) implies that the true-branch of the OP IF instruction is taken, and
the latter (Γ1) implies that the false-branch is taken. For both Γ s the input script must
instantiate variables {X0,X−1} andX−1 must be a valid signature. If the transaction is
redeemed following Γ0’s constraints, X0 must be a valid hash input such that the result
is equal to some constant byte string and its type is constrained by the Size constraints
to: {64,65,66}. Whereas, if the transaction is redeemed following Γ1’s constraints, X0

must be a valid signature.
Figure 5b shows the output SCRIPT of a transaction8 that was inserted into the

Blockchain’s 290,456th block. Again, since both branches of the OP IF instruction pro-
duce valid constraint sets, the tool finds two solutions for Γ :

Γ0 :=X−4 = true ∧
MultiSig [X−2, X−1][bsline: 3, bsline: 4] ∧
X0 = true ∧
(X−3,>) ∧
...omitted type constraints...

Γ1 :=X−4 = true ∧
MultiSig [X−2, X−1][bsline: 9, bsline: 11] ∧
X0 = false ∧
(X−3,>) ∧
...omitted type constraints...

For both Γ0 and Γ1 variables X−4, .., X0 must be instantiated by the input SCRIPT. De-
pending on the value of X0, the true-branch is taken (Γ0, when X0 = true) or the
false-branch is taken (Γ1, when X0 = false). X−1 and X−2 must be valid signatures
for both Γ s. However, note that the public keys they must match with are different
depending on which Γ is solved by the input SCRIPT. This shows that there exist two
identity pairs that may redeem the transaction.X−3 is in both Γ s popped from the stack
due to the bug in MultiSig, and must only be present but is not further constrained. Ad-
ditionally, in both Γ s, X−4 must be some value equal to true. It can be argued that the
inclusion of this constraint on variable X−4 is a minor bug of this output SCRIPT that
is caused by the VERIFY variant of MultiSig that is applied as the final operation (fol-
lowing both the true-, as well as the false-branch). Though the trained eye should have

7 With ID: 75bb6417afc7500a6389201a67bfc2428a1241170a214bbf6833a389191036fe
8 With ID: cd2dacbd05389580cb569985b3a8b1db67ea6cc84371223590e241a5026d0a8a

no trouble spotting this bug in the code, it is clear that the constraints generated by our
prototype tool better highlight the bug’s presence.

7 Conclusions

We introduced a symbolic analysis of open SCRIPTs. An open SCRIPT is an incom-
plete program, i.e. the output scripts in Bitcoin’s transactions. These can be closed by
prepending a set of instructions, i.e. the input scripts in Bitcoin’s transactions. Through
application of the symbolic evaluation rules, the constraints expressed by an output
script, which are the ones that must be met by the input script, can be derived automat-
ically, and be further analysed, either manually or (partially) automatically. We have
shown that these constraints can, for example, show the non existence of a redeem-
ing input script, e.g. due to type error(s) in the output script, or contradiction(s) in the
constraints imposed by the output script. Results have been presented of analyses on
two relatively complex non-standard output scripts. Such results have been obtained
automatically by means of an open source application that we developed. Such results,
beyond confirming that the two output scripts are redeemable, clarify by means of the
generated constraints the required encrypted knowledge.

Currently, the evaluation rules and the prototype tool cover a relevant portion of
SCRIPT’s language. Interesting research for future work involves extending both, e.g.
starting by the inclusion of locktime operations. On a longer term, we are planning
to extend the symbolic evaluation to the analysis of smart contracts that are defined
with multiple linked transactions in conjunction with off-chain communication, à la
cryptographic protocol analysis.

Bibliography

[1] Github - bitcoin/bitcoin: Bitcoin core integration/staging tree. https://
github.com/bitcoin/bitcoin/. Accessed: 12-06-2018.

[2] The gnu prolog web site. http://gprolog.org/. Accessed: 18-06-2018.
[3] Script - bitcoin wiki. https://en.bitcoin.it/wiki/Script.
[4] Swi-prolog. http://www.swi-prolog.org/. Accessed: 18-06-2018.
[5] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Łukasz

Mazurek. Modeling bitcoin contracts by timed automata. In Int.al Conference
on Formal Modeling and Analysis of Timed Systems, pages 7–22. Springer, 2014.

[6] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz
Mazurek. Secure multiparty computations on bitcoin. In Security and Privacy
(SP), 2014 IEEE Symposium on, pages 443–458. IEEE, 2014.

[7] Massimo Bartoletti and Livio Pompianu. An empirical analysis of smart con-
tracts: platforms, applications, and design patterns. In International Conference
on Financial Cryptography and Data Security, pages 494–509. Springer, 2017.

[8] Massimo Bartoletti and Roberto Zunino. Bitml: a calculus for bitcoin smart con-
tracts. Technical report, Cryptology ePrint Archive, Report 2018/122, 2018.

[9] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, et al. Formal verification of smart contracts:
Short paper. In Proceedings of the 2016 ACM Workshop on Programming Lan-
guages and Analysis for Security, pages 91–96. ACM, 2016.

[10] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A
Kroll, and Edward W Felten. Sok: Research perspectives and challenges for bit-
coin and cryptocurrencies. In Security and Privacy (SP), 2015 IEEE Symposium
on, pages 104–121. IEEE, 2015.

[11] Sergi Delgado-Segura, Cristina Pérez-Sola, Guillermo Navarro-Arribas, and Jordi
Herrera-Joancomartı. Analysis of the bitcoin utxo set. In The 5th Workshop on
Bitcoin and Blockchain Research, 2018.

[12] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.
Step by step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab. In International Conference on Financial Cryptography and
Data Security, pages 79–94. Springer, 2016.

[13] David Gerard. Smart contracts, stupid humans: new major
ethereum erc-20 token bugs batchoverflow and proxyoverflow.
https://davidgerard.co.uk/blockchain/2018/04/26/
smart-contracts-stupid-humans-new-major-erc-20-token
-bugs-batchoverflow-and-proxyoverflow/, 2018.

[14] Stefano Lande and Roberto Zunino. Sok: Unraveling bitcoin smart contracts. In
Principles of Security and Trust: 7th International Conference, POST 2018, Held
as Part of ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
volume 10804, page 217. Springer, 2018.

[15] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Bitcoin project
white paper, 2009.

[16] Nick Szabo. Formalizing and securing relationships on public networks. First
Monday, 2(9), 1997.

[17] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151:1–32, 2014.

