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Summary abstract 

Phenology	is	increasingly	recognized	as	an	important	indicator	to	measure	the	

impacts	of	global	environmental	change.	Changes	to	the	phenology	of	tropical	

ecosystems	are	likely	to	have	wide-reaching	impacts	on	species,	human	society	and	

even	feedback	onto	climate.	However,	tropical	phenology	data	are	often	unavailable	

and	analyses	have	been	constrained	by	dependence	on	geographically	limited,	non-

circular	indicators	and	lack	of	power	in	statistical	analyses.	This	thesis	addresses	

these	challenges	by	making	available	and	analysing	for	the	first	time	a	32-year	long	

record	of	monthly	focal-crown	observations	(>1000	individuals	of	>80	species)	from	

western	equatorial	Africa	(Lopé	National	Park,	Gabon).		

In	Chapter	2,	I	developed	a	novel	application	of	Fourier	analysis	to	objectively	and	

quantitatively	describe	flowering	phenology	at	Lopé	(856	trees	of	70	species).	I	tested	

the	power	of	this	approach	under	different	scenarios	of	data	noise	(regularity	of	the	

cycle	and	detectability	of	phenological	events)	and	data	length	using	both	simulations	

and	field	data.	Most	individual	trees	monitored	at	Lopé	flower	at	regular	intervals	

(59%)	and	most	species	have	dominant	annual	flowering	modes	(88%).	I	showed	

that	at	least	six	years	of	data	are	necessary	to	confidently	detect	flowering	cycles	

using	this	method.	

In	Chapter	3,	I	considered	how	both	existing,	and	emerging,	tropical	phenology	

monitoring	programs	could	be	made	most	effective	for	change	analyses	by	

investigating	major	sources	of	noise	in	data	collection.	Using	Fourier	analyses	of	focal	

crown	observations	from	Lopé	(827	trees	of	61	species)	I	showed	that	regular	annual	

cycles	are	more	common	among	reproductive	than	vegetative	phenophases.	Using	

expert	knowledge	and	Generalized	Linear	Mixed	Modelling	I	showed	that	

experienced	field	observers	can	provide	important	information	on	major	sources	of	

noise	in	data	collection	and	that	observation	length,	phenophase	visibility	and	

phenophase	duration	are	all	important	positive	predictors	of	cycle	detectability.	

In	Chapter	4,	I	assessed	how	local	weather	has	changed	in	western	equatorial	Africa	

using	Wavelet	analysis	and	Generalised	Linear	Mixed	Models	of	the	long-term	

weather	record	from	Lopé	(34	years	of	rainfall	and	temperature	observations).	Lopé	

is	characterised	by	a	cool,	cloudy,	long	dry	season	that	contrasts	with	two	bright	rainy	
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seasons.	Lopé	has	warmed	at	a	rate	of	0.23°C	per	decade	(minimum	daily	

temperature)	and	dried	at	a	rate	of	-52mm	per	decade	(total	annual	precipitation)	

since	1984.	Interannual	variation	in	rainfall	and	temperature	is	significantly	

influenced	by	global	weather	patterns	such	as	the	El	Niño	Southern	Oscillation	and	

the	Atlantic	Cold	Tongue.	

Given	this	context	of	change,	in	Chapter	5	I	selected	focal-crown	observations	from	a	

representative	subset	of	canopy	tree	species	at	Lopé	(108	trees	of	8	species	

representative	of	63%	of	total	canopy	volume)	to	assess	seasonal	and	interannual	

variation	in	leaf	phenology.	I	found	that	the	tree	community	is	evergreen	with	

dominant	species	exchanging	leaves	incrementally	and	that	new	leaf	development	is	

suppressed	during	the	long	dry	season.	Using	Generalised	Linear	Mixed	Models	I	

demonstrated	that	moisture,	light	and	leaf	herbivory	are	all	important	positive	

predictors	of	new	leaf	production	at	seasonal	scales.	The	community-wide	probability	

of	leaf	flush	at	Lopé	has	declined	since	1986	and	is	most	strongly	predicted	by	the	

rise	in	atmospheric	CO2.		

Finally,	in	Chapter	6	I	applied	the	knowledge	accumulated	in	the	previous	chapters	to	

assess	the	impacts	of	fluctuating	resource	availability	on	commercialisation	of	Moabi	

Oil,	a	traditional	non-timber	forest	product	in	west	central	Africa.	I	combined	over	15	

years’	scientific	monitoring	of	the	phenology	of	Baillonella	toxisperma	at	Lopé	

National	Park	with	interviews	of	indigenous	knowledge	of	Moabi	oil	producers	in	

rural	Gabon,	to	describe	the	factors	that	influence	Moabi	harvest	success	and	explore	

its	impacts	on	the	rest	of	the	Moabi	oil	value	chain.	Because	of	the	temporal	and	

regional	variability	of	wild	Moabi	fruit	availability	I	recommended	a	multi-species	

approach	to	NTFP	commercialisation	in	the	Gabonese	NP	buffer	zones.	

In	summary,	I	have	shown	that	regularly	cycling	phenology	is	common	in	tropical	

tree	communities	although	a	wide	range	of	strategies	is	evident.	The	evidence	from	

Lopé	supports	the	idea	that	western	equatorial	Africa	experiences	a	strongly	seasonal	

environment	with	a	uniquely	light	deficient	long	dry	season	and	that	this	seasonality	

in	environmental	conditions	directly	impacts	the	phenology	of	the	plant	community.	

The	potential	stresses	on	the	plant	community	associated	with	the	long-term	

warming	and	drying	trends	at	Lopé	appear	to	be	compensated	by	CO2	fertilisation	
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and	the	characteristic	light	deficiency	of	the	region	which	improve	water	use	

efficiency.		

This	thesis	answers	numerous	calls	for	more	quantitative	assessment	of	tropical	

phenology	data	by	making	available	evidence	from	a	previously	unpublished	long-

term	dataset.	This	thesis	also	serves	to	link	the	cycles	of	tropical	forest	productivity	

and	reproduction	to	global	socio-ecological	issues	such	as	forest	regeneration,	climate	

mediation	and	resource	availability	for	threatened	animal	species	and	human	forest-

users.		
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Chapter 1 

General	Introduction	

1.1 Phenology, tropical forests and global 

environmental change 

Phenology	is	the	study	of	cyclical	living	processes	and	questions	related	to	

why	organisms	respond	the	way	they	do	(adaptation),	when	(timing)	and	

how	often	(periodicity)	lie	at	the	heart	of	ecology	(Newstrom	et	al.	1994).	

Recurrent	biological	events	(often	referred	to	as	phenophases)	occur	across	

many	temporal	and	spatial	scales	and	for	plants,	range	from	daily	

fluctuations	in	photosynthetic	activity	(e.g.	Koch	et	al.	1994)	to	seasonal	and	

even	multi-annual	cycles	of	woody	growth,	leaf	turnover	and	reproduction	

(e.g.	Alfaro-Sánchez	et	al.	2017).	Temperate	plants	are	broadly	synchronized	

around	an	annual	cycle	with	growth	limited	during	the	winter	season	(Hanes	

et	al.	2013).	However	there	are	fewer	restrictions	on	tropical	plant	growth	

and	many	more	ecological	niches	to	fill	meaning	that	tropical	phenological	

cycles	are	much	more	diverse	with	less	synchrony	between	individuals	and	

species	and	cycles	other	than	12-months	long	(van	Schaik	et	al.	1993).		

Phenology	as	an	Essential	Biodiversity	Variable	

Phenology	is	increasingly	recognised	as	a	major	global	change	indicator	and	

has	been	proposed	as	an	Essential	Biodiversity	Variable	required	to	study,	
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report	and	manage	biodiversity	change	(Pereira	et	al.	2013).	In	the	4th	report	

of	the	Intergovernmental	Panel	on	Climate	Change	(IPCC),	Rosenzweig	et	al.	

(2007)	described	phenology	as	“the	simplest	process	in	which	to	track	

changes	in	the	ecology	of	species	in	response	to	climate	change”.	There	is	

indeed	abundant	evidence	that	global	warming	has	led	to	progressively	

advancing	spring	events	in	temperate	regions	which	can	be	tracked	using	a	

suite	of	Spring	Indicators	(e.g.	date	of	leaf	out,	flowering	etc.;	Walther	et	al.	

2002;	Parmesan	&	Yohe	2003;	Rosenzweig	et	al.	2007).	However	tracking	

changes	in	tropical	phenology	is	not	as	straightforward.	The	tropics	lag	far	

behind	temperate	regions	in	terms	of	data	availability	and	understanding	of	

the	mechanistic	links	between	climate	and	phenology	(Abernethy	et	al.	

2018).	Even	where	tropical	phenology	data	are	available,	the	measured	

responses	of	tropical	plants	are	so	complicated	that	it	is	difficult	to	condense	

the	information	into	coherent,	replicable	indicators	of	directional	change	

(equivalent	to	the	temperate	Spring	Indicators),	such	as	could	be	included	in	

ecosystem	and	biome-wide	modelling	approaches.	Thus	tropical	phenology	is	

largely	missing	from	global	meta-analyses	of	the	impacts	of	climate	change	

on	natural	systems	(Feeley	et	al.	2017;	although	see	section	1.3	for	a	review	

of	recent	publications	using	long-term	tropical	phenology).		

Phenology	is	a	key	adaptive	trait	determining	individual	growth	and	survival	

(Cleland	et	al.	2007)	as	well	as	species	distributions	(Chuine	2010).	It	

determines	the	regeneration	of	species	and	the	composition	of	future	tropical	

forest	plant	communities.	Both	vegetative	and	reproductive	phenology	

influence	the	availability	of	resources	to	animal	and	human	users	of	the	

forest	(Butt	et	al.	2015;	Morellato	et	al.	2016).	Hughes	(2000)	mapped	out	

potential	pathways	via	which	atmospheric	and	climate	changes	are	likely	to	

impact	natural	systems	(adapted	in	Figure	1.1).	They	show	that	climate	

changes	(increased	temperatures,	changes	to	precipitation	and	changes	to	

frequency	and	severity	of	events)	will	either	lead	to	in	situ	adaptation,	

extinction	or	changes	to	physiology,	phenology	and	species	distributions.	In	

this	framework,	CO2	enrichment	was	postulated	to	directly	impact	

physiology	only	(e.g.	changes	to	photosynthesis,	respiration	and	plant	

growth),	however	there	are	a	small	number	of	studies	showing	CO2	impacts	
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on	plant	phenology,	such	as	delayed	autumnal	senescence	(Tricker	et	al.	

2004;	Taylor	et	al.	2008)	and	increased	duration	of	tropical	flowering	(Pau	et	

al.	2017).	Climate	change,	CO2	enrichment	and	nitrogen	deposition	have	also	

contributed	to	extensive	greening	(increased	leaf	area	index,	LAI)	of	the	

world’s	land	areas	(including	the	tropics;	Zhu	et	al.	2016).	We	have	included	

this	link	between	CO2	and	phenology	in	Figure	1.1.	Together,	these	changes	

to	physiology,	phenology	and	species	distributions	will	impact	species	

interactions	in	the	community,	causing	further	distribution	shifts	and	in	

some	cases	extinctions,	and	finally	species	compositional	change	(Hughes	

2000).		

	
Figure	1.1.	Pathways	of	climate	change	impacts	on	plant	communities.		
Adapted	from	Hughes	2000.	

Phenology	as	a	climate	mediator	

Recent	Earth	System	Models	(ESMs)	show	large	uncertainty	over	tropical	

land	areas	due	to	disagreement	on	the	impacts	of	climate	and	atmospheric	

composition	on	primary	productivity	(Mitchard	2018).	This	uncertainty	
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alongside	absence	of	data	is	problematic	because	the	phenological	responses	

of	tropical	ecosystems	are	a	key	piece	of	the	global	change	jigsaw.	Tropical	

forests	contain	~25%	of	land	carbon,	account	for	~33%	net	primary	

productivity	(NPP;	Bonan	2008)	and	are	both	source	and	sink	of	CO2	

emissions.	Land	use	change	(mostly	tropical	deforestation)	is	responsible	for	

20%	of	CO2	emissions	since	1960	while	tropical	forest	growth	is	responsible	

for	between	a	quarter	to	a	third	of	all	CO2	emissions	taken	up	by	the	Earth	

system	(Mitchard	2018).	Leafy	tropical	canopies	also	reduce	air	temperature	

because	evaporative	cooling	offsets	the	heating	effect	of	sunlight	absorbed	

due	to	low	canopy	albedo	(Bonan	2008).		

The	future	of	tropical	forests	will	play	a	pivotal	role	in	global	climate	

mediation	with	current	debate	over	whether	tropical	forests	will	continue	to	

act	as	a	carbon	sink	under	changing	climate	and	land-use	scenarios	(Mitchard	

2018).	Seasonal,	interannual	and	long-term	changes	to	leaf	phenology	

determine	the	leaf	area	and	demography	of	leaves	in	the	canopy	and	thus	

directly	influence	structural	and	physiological	processes	such	as	NPP,	carbon	

flux	and	local	microclimatic	conditions.		

Intersection	between	phenology,	tropical	ecology	and	global	environmental	

change	

In	summary,	it	is	clear	that	better	knowledge	is	needed	of	the	environmental	

and	biotic	drivers	of	tropical	phenology	on	seasonal	and	interannual	scales	to	

inform	climate	change	projections,	to	predict	the	future	species	make-up	of	

tropical	forests	and	to	understand	resource	availability	for	forest-dependent	

people	and	animals.	However,	while	we	know	that	phenology	and	tropical	

forest	ecosystems	both	influence	and	respond	to	global	environmental	

change	(GEC),	the	former	relationship	(phenology-GEC;	Figure	1.2)	is	based	

almost	solely	on	temperate	data	and	mechanisms	(e.g.	widespread	evidence	

of	advancing	spring	events)	while	the	latter	(tropical	forests-GEC;	Figure	1.2)	

is	dominated	by	climate	impacts	on	forest	growth,	mortality	and	long-term	

species	turnover.	There	is	a	growing	tropical	phenology	databank	(both	short	

and	long-term)	that	is	being	used	to	describe	and	understand	seasonal	
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responses	of	tropical	vegetation	(phenology-tropical	forests).	However	the	

three-way	intersection	between	tropical	forest	ecology,	phenology	and	GEC	is	

largely	missing	and	has	only	been	addressed	by	a	very	small	number	of	

scientific	studies	despite	its	global	importance	(Figure	1.2).	

	

Figure	1.2.	The	intersection	of	global	environmental	change,	tropical	
forests	and	phenology.	

In	the	following	sections	we	review	the	mechanisms	that	determine	plant	

phenology	and	then	give	an	overview	of	recent	publications	on	long-term	

phenology	throughout	the	tropics.	Finally	we	describe	the	motivation	for	this	

thesis	including	the	political	and	environmental	context	of	our	long-term	

research	site	in	Gabon	and	pathways	to	impact	for	the	work	presented.	

1.2 Introduction to plant phenology 

Phenological	events	vary	in	their	timing,	frequency,	duration,	synchronicity	

and	the	scale	at	which	they	occur,	from	individual	plant	components	(such	as	

inflorescences	and	branches)	to	individuals,	populations,	species,	guilds	and	

communities	(Figure	1.3;	van	Schaik	et	al.	1993).		
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Figure	1.3:	Plant	phenology	occurs	at	varying	spatial	scales	from	branches	
and	individual	plants	to	populations	and	communities.		

The	scale	of	phenological	observations	determines	the	questions	that	can	be	

investigated.	Plant	physiology	and	phytochemistry	require	information	at	the	

component	or	individual-level	(e.g.	Zhang	et	al.	2017)	while	population-level	

data	opens	up	opportunities	for	assessment	of	phenotypic	variation	and	the	

mechanisms	and	adaptive	significance	of	synchrony	between	individuals	(e.g.	

Wich	&	Schaik	2000).	At	the	species	and	guild	level,	questions	arise	regarding	

faunal	interactions	with	plants,	such	as	the	availability	of	flowers	and	fruits	

for	nectarivores	and	frugivores	(e.g.	Tutin	et	al.	1997).	Guild	patterns	may	

demonstrate	a	continual	multispecies	sequence	or	sustain	nonflowering	/	

fruiting	intervals,	the	nature	of	which	will	influence	plant	processes	such	as	

cross-pollination	and	competition	for	pollination	and	fruit	dispersal	

(Newstrom	et	al.	1994).	At	the	community	level,	research	has	thus	far	

focussed	on	the	phenological	profile	–	or	dominant	pattern	of	phenology	-	of	

major	forest	ecosystems.	For	example,	southeast	Asia’s	dipterocarp-

dominated	tropical	forests	are	characterised	by	supra-annual	synchronised	

masting	events	at	the	community	level,	where	as	sub-annual	and	annual	

flowering	patterns	are	more	common	in	Amazonian	and	African	forests	

(Sakai	2001;	Adamescu	et	al.	2018).	
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Classic	reviews	of	tropical	phenology	have	emphasised	a	distinction	between	

proximate	cues	and	ultimate	selective	agents	(van	Schaik	et	al.	1993;	Wright	

1996),	and	between	abiotic	and	biotic	causes	of	phenological	events	(Sakai	

2001).	Whilst	these	distinctions	are	important,	their	binary	nature	falls	short	

of	the	complex	ecological	situation.	Figure	1.4	represents	current	knowledge	

of	the	chains	of	causality	between	exogenous	variables	of	interest	in	the	

climate	and	environment	through	to	those	factors	which	the	plant	can	sense	

and	interact	with	mechanistically	and	thus	are	likely	to	directly	determine	

plant	phenological	activity.	

	

Figure	1.4.	Chain	of	causality	between	climate	and	other	external	factors	
and	the	mechanistic	factors	that	directly	impact	plant	phenology.	

Mechanistic	factors	that	interact	with	plant	phenology	directly	can	either	be	

abiotic	(e.g.	photo-period,	irradiation,	atmospheric	pressure,	temperature,	

moisture	and	mineral	nutrients)	or	biotic	(e.g.	competition,	predation	and	

dispersal;	Sakai	2001)	and	represent	physiological	demands	and	genetic	

limitations	on	plant	growth	and	reproduction	(Menzel	2002;	Figure	1.4).	The	

mechanistic	relationship	between	these	factors	and	the	phenology	of	plants	
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is	often	unknown	and	must	be	addressed	at	a	cellular	level	(e.g.	carbohydrate	

reserves	postulated	as	the	physiological	mechanism	linking	solar	radiation	

and	flowering;	Wright	&	Calderón	2018).	

Environmental	variables	and	processes	interact	to	determine	the	availability	

of	the	biotic	and	abiotic	factors	upon	which	a	plant	relies	(Menzel	2002).	In	

Figure	1.4,	we	show	that	these	factors	are	dependent	on	site-specifics	such	as	

aspect,	altitude	and	habitat	as	well	as	local	weather	conditions	(precipitation,	

temperature,	humidity	etc.).	Local	weather	is	itself	determined	by	a	

combination	of	cyclic	climatic	variables	such	as	seasonality	and	multi-annual	

teleconnections	(e.g.	the	El	Niño	Southern	Oscillation,	ENSO)	but	also	by	

long-term	climate	variation	(e.g.	anthropogenic	climate	change)	as	well	as	

site-level	characteristics.		

While	annual	climatic	variability	is	more	limited	in	the	tropics	than	the	

temperate	regions,	predictable	seasonal	patterns	do	exist	(van	Schaik	et	al.	

1993).	Much	of	the	seasonality	in	the	tropics	is	due	to	the	movements	of	the	

inter-tropical	convergence	zone	(ITCZ),	a	band	of	clouds	and	high	

precipitation	encircling	the	equator	formed	by	the	convergence	of	the	trade	

winds.	The	ITCZ	moves	north	in	the	northern	summer	and	south	in	the	

northern	winter	and	rainfall	is	most	intense	when	the	sun	passes	the	equator	

(March	and	September)	forming	two	dry	seasons	and	two	wet	seasons	

annually	at	the	equator	(Wright	1996;	National	Weather	Service	2018).	

Periodic	supra-annual	climate	cycles	such	as	ENSO		-	where	sea	surface	

temperatures	(El	Niño)	and	air	pressure	(Southern	Oscillation)	fluctuate	

periodically	across	the	Pacific	Ocean	every	two	to	seven	years	–	impact	

weather	conditions	across	the	tropics	(National	Climate	Data	Centre	2014).	

In	the	neotropics,	moisture	availability	is	usually	lowest	in	the	dry	seasons	

where	it	is	exacerbated	by	high	transpiration	demand	from	increased	

irradiance.	The	extent	of	moisture	shortfall	in	this	season	is	instrumental	in	

determining	the	tropical	vegetation	type	(Wright	1996)	with	drought	

intensity	associated	with	increased	deciduousness,	shorter	trees,	simplified	

canopy	structure	and	decreased	leaf-area	index	(van	Schaik	et	al.	1993).	
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Photosynthetically	active	radiation	is	usually	limited	in	the	forest	

understorey	and	so	seasonal	variation	in	irradiance	due	to	changes	in	cloud	

cover,	day	length	and	solar	elevation,	are	likely	candidates	for	selection	on	

phenological	activity	(Wright	1996).	Newly	mature	leaves	are	the	most	

efficient	at	photosynthesis	and	it	is	most	energetically	efficient	to	grow	

reproductive	organs	when	assimilate	production	is	high,	rather	than	to	store	

them	(van	Schaik	et	al.	1993),	thus	many	forests	(especially	in	neotropics)	

show	flowering	and	fruiting	peaks	towards	the	end	of	the	dry	season	when	

irradiance	and	thus	photosynthetic	activity		peak	(Wright	&	van	Schaik	1994;	

Sakai	2001).	

The	availability	of	mineral	nutrients	has	also	been	considered	as	a	possible	

determinant	of	phenological	activity	as	it	varies	seasonally.	At	Barro	

Colorado	Island	(BCI)	in	Panama,	magnesium	and	calcium	availability	

increase	throughout	the	wet	season	as	leaf	litter	decays	while	elsewhere	

rapid	changes	in	moisture	availability	are	associated	with	shorter-term	

pulses	of	nitrogen	and	phosphate	due	to	decomposition	of	microbes	in	the	

soil	(Wright	1996).	However	Wright	(1996)	warns	that	many	tropical	plants	

are	able	to	effectively	store	nutrients	and	so	the	impact	of	seasonal	

fluctuations	might	be	minimal.	

While,	increasingly,	the	aim	for	many	phenology	studies	is	to	monitor	the	

impacts	of	climate	change	on	living	systems,	it	is	important	to	consider	the	

complexity	of	the	interactions	between	climate	and	plant	phenology	(as	

shown	in	Figure	1.4).	For	example	a	positive	correlation	was	found	between	

ENSO	and	ripe	fruit	availability	at	Kibale	NP,	Uganda,	however	the	

relationship	is	indirect	and	infers	changes	at	a	number	of	mechanistic	levels	

(e.g.	local	weather,	abiotic	and	biotic	variables),	many	of	which	are	not	well	

understood	and	difficult	to	interpret	(Chapman	et	al.	2018).	

1.3 Review of recent publications on tropical 

phenology 

In	general	tropical	plant	phenology	lags	far	behind	temperate	phenology	in	

terms	of	the	data	available,	establishment	of	research	networks	and	the	
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number	of	published	analyses	(Mendoza	et	al.	2017;	Abernethy	et	al.	2018).	

However	in	the	last	five	years	there	have	been	a	number	of	new	analyses	of	

long-term	ground-based	tropical	plant	phenology	published	in	the	scientific	

literature.	In	this	section	we	briefly	review	this	recent	literature	to	give	an	

indication	of	the	current	state	of	the	tropical	phenology	field.	

Alongside	the	work	presented	in	this	thesis,	Barro	Colarado	Island	(BCI)	in	

Pamana	hosts	an	equally	long	continuous	reproductive	and	vegetative	

phenology	monitoring	study	in	the	neotropics.	For	over	three	decades	(1986	

to	the	present),	researchers	at	BCI	have	used	litter	traps	to	collect	evidence	of	

plant	phenophases	from	the	forest	community.	The	work	has	been	published	

at	regular	intervals	throughout	this	period	and	has	made	a	substantial	

contribution	to	our	understanding	of	tropical	forest	dynamics	(e.g.	Wright	&	

Calderon	1995;	Pau	et	al.	2013).	The	most	recent	analyses	from	this	

neotropical	moist	forest	show	that	flowering	activity	is	better	predicted	by	

irradiance	than	rainfall	(Wright	&	Calderón	2018)	and	has	increased	across	

tropical	forest	growth	forms	since	1986,	related	primarily	to	rising	

atmospheric	CO2	(Pau	et	al.	2017).	At	the	same	site,	another	recent	analysis	

has	shown	that	elevated	leaf	and	seed	fall	is	associated	with	the	dry,	bright	

conditions	of	El	Niño	years,	mirroring	the	community	response	to	the	annual	

dry	season	(Detto	et	al.	2018).	

Other	recent	analyses	from	the	Neotropics	originate	from	Luquillo	in	Puerto	

Rico	and	Nourages	Research	Station	in	Guiana.	Luquillo	(1992-2007)	is	a	wet	

tropical	forest	and	seasonal	analyses	showed	an	increase	in	flowering	with	

temperature	increases	on	seasonal	and	interannual	scales.	While	phenology	

observations	at	Nourages	ceased	in	2011,	the	full	10	years	of	phenology	data	

(2001-2001)	had	not	previously	been	analysed	and	Mendoza	et	al.	(2018)	

demonstrated	a	community-wide	annual	peak	in	fruiting	at	the	site	

coinciding	with	the	peak	of	the	rainy	season.		

Other	sites	of	significant	long-term	interest	include	Kibale,	NP,	Uganda,	

where	phenology	monitoring	has	taken	place	discontinuously	since	1970	

(Chapman	et	al.	2005).	A	new	analysis	of	a	15-year	record	(1998-2013)	from	

Kibale	showed	no	long-term	trends	in	fruiting	but	that	inter-annual	variation	
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in	fruit	production	is	associated	with	the	El	Niño	Southern	Oscillation	(ENSO)	

and	solar	radiation	(Chapman	et	al.	2018).	In	a	contrasting	set	of	recent	

analyses	of	African	forest	phenology,	upward	trends	in	fruiting	have	been	

reported	for	Bwindi	Impenetrable	NP,	Uganda	(1998-2010;	Polansky	&	

Boesch	2013)	and	Tai	NP,	Cote	d’Ivoire	(2005-2012;	Polansky	&	Robbins	

2013),	while	a	decline	in	flowering	and	fruiting	was	detected	from	a	

discontinuous	dataset	from	Budongo	Forest	Reserve,	Uganda	(1993-2017;	

Babweteera	et	al.	2018).	However	the	trend	in	the	latter	study	occurred	

mostly	in	the	early	1990s	with	relative	stasis	since.	An	11-year	record	of	

epiphytic	orchids	from	Yaoundé	Living	Collection,	Cameroon,	supplemented	

by	in	situ	observations,	demonstrated	a	predominately	annual	flowering	

mode	associated	with	photoperiod	and	precipitation	as	climatic	triggers	

(Texier	et	al.	2018).	A	newly	available	large	dataset	originating	in	the	1940s	

from	Luki	Reserve,	Democratic	Republic	of	Congo	described	a	dominant	

annual	rhythm	to	leaf	and	reproductive	tropical	tree	phenology	strongly	

associated	with	rainfall	(1947-1958;	Couralet	et	al.	2013).	

Asian	tropical	phenology	is	characterised	by	mast	flowering	events	where	

many	species	reproduce	simultaneously	on	irregular,	multi-year	cycles.	13	

years	of	flowering	records	from	litter	traps	at	Pasoh	Forest	Reserve,	Malaysia	

(2001-2014;	Chen	et	al.	2017)	showed	that	drought	and	cool	temperatures	

interact	to	predict	general	flowering	events	for	five	species	of	the	

Dipterocarp	genus	Shorea	that	are	indicative	of	community-wide	general	

flowering.	A	similar	association	between	flowering	and	drought	(linked	to	

the	transition	between	ENSO	phases)	was	found	in	an	earlier	study	of	

Dipterocarp	general	flowering	at	Lambir	Hills	National	Park,	Borneo	(1993-

2003;	Sakai	et	al.	2006).	

The	last	two	years	have	seen	the	first	continent-wide	analyses	and	reviews	of	

tropical	phenology	published.	A	review	of	African	plant	phenology	literature	

(tropical	and	other)	uncovered	130	publications	with	75%	published	

between	2000	and	2015	and	70%	relying	on	remote	sensing	rather	than	

ground-based	data.	Adole	et	al.	(2016)	found	only	five	ground-based	

phenology	studies	from	central	Africa	(the	focus	of	this	thesis).	A	major	
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development	since	then	has	been	the	publication	of	a	pan-African	analysis	of	

ground-based	reproductive	phenology	at	12	tropical	sites	throughout	west,	

central	and	east	Africa	(sampling	length	=	6-29	years;	Adamescu	et	al.	2018).	

This	study	represents	the	first	time	that	the	phenological	data	from	a	number	

of	the	participating	sites	has	been	analysed	and	demonstrates	both	the	

diversity	of	phenological	activity	in	tropical	forest	ecosystems	(>50%	

individuals	with	no	detectable	regular	cycle)	and	the	dominance	of	annual	

flowering	and	fruiting	patterns	among	regularly	cyclic	species,	confirming	

previously	published	site-specific	findings	(Chapman	et	al.	2005;	Polansky	&	

Boesch	2013;	Chapter	2	/	Bush	et	al.	2017).	A	review	of	reproductive	

phenology	literature	for	the	Neotropics	(sites	=	218	sites;	median	sampling	

length	=	18	months;	Mendoza	et	al.	2017)	revealed	the	low	density	of	

phenological	research	in	the	region	(~1	dataset	per	78000km2)	and	the	

paucity	of	long-term	data	(only	ten	sites	with	>10	years	data).	The	authors	

found	that	rainfall	was	the	most	common	driver	included	in	explanatory	

analyses	of	fruiting	activity	with	fruiting	peaks	most	often	reported	during	

the	rainy	seasons	in	both	rainforests	and	cerrado	woodlands.	

Finally	there	has	also	been	much	recent	development	in	the	use	of	alternative	

data	sources	to	study	tropical	phenology	including	living	collections	at	

botanic	gardens	(Texier	et	al.	2018),	herbaria	data	(Zalamea	et	al.	2011;	

Davis	et	al.	2015),	tree-ring	analysis	(Battipaglia	et	al.	2015;	Alfaro-Sánchez	

et	al.	2017),	phenocams	(Lopes	2016;	Alberton	et	al.	2017)	and	remote	

sensing	techniques	(Gond	et	al.	2013;	Wu	et	al.	2018)	.	

1.4 Introduction to the conservation 

agenda in Gabon and the Lopé long-term 

phenology study  

1.4.1 Gabon and the National Park network 

Gabon	is	an	equatorial	country	on	the	Atlantic	coast	of	central	Africa	

bordering	Equatorial	Guinea	and	Cameroon	to	the	North	and	the	Republic	of	

Congo	to	the	east	and	south.	The	second	largest	river	in	the	Congo-Ogooué	
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basin	-	the	river	Ogooué	-	runs	through	the	heart	of	the	country.	Gabon	is	

heavily	forested	(>85%	land	area	in	2010;	Blaser	et	al.	2011)	with	more	

forest	per	capita	than	any	other	African	country	(Parcs	Gabon	2018)	and	the	

largest	area	of	African	humid	forest	after	the	Democratic	Republic	of	Congo	

(Mayaux	et	al.	2013).	The	annual	rate	of	deforestation	for	central	Africa	from	

2000-2010	was	0.11%,	between	three	and	ten	times	lower	than	that	for	west	

Africa	and	Madagascar	respectively	(Mayaux	et	al.	2013).	

The	human	population	in	Gabon	numbered	just	over	two	million	in	2017	but	

due	to	rapid	urbanisation	only	13%	of	the	population	(~260,000	people)	

remain	in	rural	areas	(UNdata	2018).	GDP	per	capita	in	Gabon	is	~	7900	US	

dollars	(UNdata	2018)	and	the	country	is	classified	as	an	upper	middle-

income	country	according	to	the	World	Bank	(World	Bank	2018).	Most	of	

Gabon’s	wealth	is	derived	from	oil	and	is	distributed	unequally	with	a	third	of	

the	population	living	under	the	national	poverty	line	(3.4%	under	the	

international	$1.90	a	day	poverty	line;	World	Bank	2018).	Agricultural	

development	is	minimal	(just	3.8%	of	gross	value	added,	GVA)	and	most	

employment	is	in	the	services	industry	(UNdata	2018).	Unemployment,	

especially	in	rural	areas,	is	high	(countrywide	unemployment	in	2017	=	18%;	

UNdata	2018).		

In	2002,	the	President	of	the	Gabonese	Republic	designated	more	than	10%	

Gabon’s	land	area	within	a	National	Park	(NP)	network.	In	2007,	upon	legal	

adoption	of	the	Law	on	National	Parks	(003/2007),	the	National	Agency	of	

National	Parks	(ANPN)	was	formed.	ANPN	is	a	public	institution	with	

administrative	and	financial	autonomy	and	is	tasked	to	implement	the	

government’s	NP	policy	to:	

• Protect	natural	areas	and	landscapes	of	national	and	international	

significance	for	scientific,	educational,	spiritual,	recreational	or	tourist	

purposes;	

• Perpetuate,	in	as	natural	a	state	as	possible,	representative	examples	

of	physiographic	regions,	biological	communities,	genetic	resources	

and	species,	while	ensuring	stability	and	ecological	diversity;	
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• Limit	the	number	of	visitors,	so	that	the	area	remains	in	a	natural	or	

near-natural	state;	

• Eliminate	and,	subsequently,	prevent	any	form	of	exploitation	or	

occupation	incompatible	with	the	objectives	of	the	conservation	

status.	

• Guarantee	respect	for	the	ecological,	geomorphological,	sacred	or	

aesthetic	elements	justifying	this	status;	

• Take	into	account	the	needs	of	local	populations,	and	to	make	these	

parks	an	important	axis	of	the	fight	against	poverty	(Parcs	Gabon	

2018).		

ANPN	has	legal	policing	powers	and	its	activities	include	management	and	

enforcement	of	NP	policy	and	conservation	of	landscapes	and	species	

(enacted	via	the	Direction	Technique;	Figure	1.5).	The	ANPN	Secretariat	

Executif	provides	technical	and	strategic	support	to	the	Gabonese	

government	(including	The	National	Advisory	Board	on	Climate	Change	and	

the	Ministry	for	Water	and	Forests)	within	various	multilateral	biodiversity	

and	climate	change	conventions	and	partnerships	(e.g.	the	Convention	on	

Biological	Diversity,	CDB	and	the	United	Nations	Framework	Convention	on	

Climate	Change,	UNFCCC;	Figure	1.5).	In	accordance	with	the	government’s	

national	fight	against	poverty	and	in	line	with	Gabon’s	Strategic	Plan	(Plan	

Stratégique	Gabon	Emergent),	ANPN	engages	in	various	integrated	

conservation	and	development	initiatives	–	such	as	ecotourism	and	

alternative	livelihoods	-	as	a	means	of	stimulating	economic	development	in	

the	NP	buffer	zones	(Parcs	Gabon	2018;	Figure	1.5).	Such	activities	are	

commonly	pursued	as	conservation	outreach	tools	with	the	aims	of	

encouraging	buy-in	from	local	populations	and	compensating	for	real	and	

perceived	losses	of	access	to	natural	resources	(Naughton-Treves	et	al.	2005;	

Struhsaker	et	al.	2005)	although	there	is	increasing	evidence	that	their	

effectiveness	may	be	limited	with	few	win-win	scenarios	(Wunder	2001;	

Adams	et	al.	2004).	The	Gabonese	NP	system	also	hosts	a	wide	range	of	

scientific	research	(coordinated	through	the	ANPN	Cellule	Scientifique),	

including	its	own	core	research	programs	(Figure	1.5).		
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Figure	1.5.	ANPN	in	context.	
The	role	of	the	National	Agency	of	National	Parks	(ANPN)	in	supporting	the	
Gabonese	government	within	multilateral	conventions	and	partnerships,	
integrated	conservation	and	development	initiatives	and	scientific	research.	

1.4.2 SEGC and the Lopé long-term phenology study 

Of	particular	note	in	ANPN’s	research	portfolio	is	the	field	station	at	Lopé	NP	

(the	Station	d’Études	des	Gorilles	et	des	Chimpanzées,	SEGC)	where	scientific	

research	on	human	health	as	well	as	the	ecology,	environment	and	climate	of	

the	Lopé	landscape	has	taken	place	since	the	early	1980s.	In	1983	Caroline	

Tutin	and	Michael	Fernandez,	then	associated	with	the	University	of	Stirling’s	

Psychology	and	later	Biological	and	Environmental	Sciences	departments,	

established	SEGC	as	a	research	station.	Tutin	and	Fernandez	settled	on	the	

then	Lopé-Okanda	Wildlife	Reserve	as	the	prime	site	for	long-term	research	

of	the	ecology	of	the	sympatric	populations	of	chimpanzee	and	gorillas	

following	a	nation-wide	census	of	the	two	species,	commissioned	by	the	

International	Centre	for	Medical	Research	in	Franceville	(CIRMF;	Tutin	&	

Fernandez	1987).	CIRMF	ran	the	field	station	from	1984	to	2013	after	which	

ANPN	took	over	responsibility	with	the	University	of	Stirling	continuing	as	

scientific	partner.	Since	its	initiation,	SEGC’s	research	program	has	become	

internationally	renowned	and	has	diversified	into	many	aspects	of	large	

mammal	ecology	(including	elephants,	mandrills,	buffalo	etc.)	as	well	as	the	
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dynamics	of	tropical	forest	floral	and	faunal	communities,	the	role	of	tropical	

forests	in	the	global	carbon	cycle	and	the	emergence	and	transmission	of	

zoonotic	diseases.	Research	originating	at	SEGC	has	shaped	conservation	

policy	and	practice	(e.g.	through	the	design	of	Gabon’s	NP	system	as	well	as	

large	mammal	census	techniques	throughout	central	Africa),	directly	

supported	management	of	the	Lopé	NP	and	contributed	to	regional	and	

international	science	initiatives	and	local	conservation	training	and	capacity	

building.	

One	of	the	most	valuable	research	assets	of	ANPN’s	investment	at	Lopé	is	an	

ongoing	study	of	individual-level	plant	phenology	(leaf,	flower	and	fruits;	

currently	32	years	long	from	1986-present).	Originated	to	study	resource	

availability	for	chimpanzees	and	gorillas,	the	Lopé	phenology	study	has	

contributed	to	a	number	of	publications	(Tutin	et	al.	1991a,b,	1997;	Tutin	&	

Fernandez	1993;	Tutin	1998;	Tutin	&	White	1998;	Voysey	et	al.	1999)	and	

prior	theses	(Voysey	1995;	Momont	2007;	White	2007).	After	just	eight	years	

of	data	collection	(1984-1991)	Tutin	and	Fernandez	(1993)	identified	at	least	

eight	species	which	flower	after	the	dry	season	and	are	dependent	on	a	

critical	low	temperature	(<=19°c),	demonstrated	by	the	anomalous	flowering	

of	these	species	when	this	temperature	occurred	aseasonally	in	January.	The	

first	two	years	of	phenology	data	(1984-1986)	were	removed	from	

subsequent	analyses	because	of	the	reduced	sample	size	(only	five	

individuals	per	species)	and	other	inconsistencies	related	to	establishing	a	

new	method.	Five	years	after	the	publication	on	critical	minimum	

temperature,	Tutin	and	White	(1998)	presented	a	review	of	primates,	

phenology	and	frugivory.	Using	nine	years	of	Lopé	phenology	observations	

(1986-1995)	they	described	the	dominance	of	annual	flowering	modes	

among	the	studied	species	and	community-wide	flowering	peaks	in	March-

April	and	September-November.	While	many	species	(mean	number	of	

species	>20)	were	observed	to	carry	unripe	fruit	through	the	dry	season	

(June-September),	most	fruit	ripened	between	September	and	March	(>15	

species)	with	the	quantity	of	fruit	showing	a	similar	pattern.	Thus	Tutin	and	

White	concluded	that	the	long	dry	season	(June-September)	posed	a	stark	

challenge	for	the	fruit-dependent	animals	of	the	forest.	
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From	1999	to	2017	there	was	a	hiatus	in	publication	using	this	dataset.	Now	

at	32	years	long,	it	is	one	of	the	longest	continuous	phenology-monitoring	

programs	known	in	the	tropics	(matched	only	by	one	other	site,	BCI	in	

Panama).	While	similar	work	has	been	undertaken	at	Kibale,	NP,	

unfortunately	there	have	been	gaps	in	recording	due	to	political	instability.	

Such	continuous,	long-term	phenology	data	is	extremely	rare	in	the	tropics	

and	holds	unique	value	to	understand	the	dynamics	of	tropical	forest	

ecosystems.	Seven	of	11	species	that	make	up	the	top	75%	of	community-

wide	crown	volume	at	the	site	are	included	in	the	phenology	species	sample	

(Chapter	5)	meaning	that	it	can	be	used	to	monitor	the	community-wide	

impacts	of	global	environmental	change	and	the	role	of	tropical	forests	in	

global	climatic	and	atmospheric	processes.	Plant	phenology	also	underpins	

the	availability	of	resources	for	animals	and	people	(Butt	et	al.	2015;	

Morellato	et	al.	2016;	Abernethy	et	al.	2018).	Of	the	80+	plant	species	

monitored	at	Lopé	NP	since	1984,	seven	are	recognised	as	important	

indigenous	fruit	trees	because	they	provide	non-timber	forest	products	

(NTFPs)	traditionally	used	by	Gabonese	people	for	cooking,	medicine	and	

cultural	activities	(Iponga	et	al.	2018).	The	Lopé	dataset	has	relevance	not	

just	for	resource	availability	for	chimpanzees	and	gorillas	as	originally	

planned,	but	also	for	understanding	resource	availability	for	other	species	

including	humans	and	the	study	of	forest-wide	responses	to	seasonal	and	

long-term	climate	variability.	

This	thesis	was	jointly	funded	by	ANPN	and	the	University	of	Stirling	as	an	

Impact	Collaborative	Studentship	to	analyse	the	newly	available	32-year	long	

Lopé	phenology	dataset	and	explore	the	potential	for	this	resource	to	

contribute	to	ANPNs	aims	and	activities	(park	management,	research	and	

integrated	conservation	and	development)	as	well	as	government	policy	and	

relevant	multilateral	conventions	and	partnerships	such	as	the	UNFCCC	and	

the	CDB	(Figure	1.5).	The	main	aims	of	this	thesis	are	to:	1.	Describe	the	

cyclical	behaviour	of	vegetative	and	reproductive	phenophases	for	a	diverse	

community	of	tropical	trees	in	western	equatorial	Africa;	2.	Improve	field	and	

statistical	methods	to	enable	evaluation	of	long-term	changes	in	the	tropical	

forest	plant	community;	3.	Evaluate	long-term	changes	in	the	weather	and	
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phenology	of	an	African	tropical	forest	and	4.	Consider	the	impacts	of	

phenological	regularity	and	long-term	change	on	the	resources	available	for	

human	users	of	the	forest.	Throughout	this	thesis	I	trace	the	realised	and	

potential	impact	pathways	for	the	work	presented.		

1.5 Introduction to the thesis chapters 

Chapter	2:	Fourier	analysis	to	detect	phenological	cycles	using	long-term	

tropical	field	data	and	simulations	

⇒ A	version	of	this	chapter	has	been	published	as:	Bush,	E.R.,	Abernethy,	

K.A.,	Jeffery,	K.,	Tutin,	C.,	White,	L.,	Dimoto,	E.,	Dikangadissi,	J.T.,	Jump,	

A.S.	&	Bunnefeld,	N.	(2017).	Fourier	analysis	to	detect	phenological	

cycles	using	tropical	field	data	and	simulations.	Methods	in	Ecology	

and	Evolution,	8,	530–540.	

Due	to	the	complexity	of	tropical	phenological	cycles	and	their	explicit	

circularity	(no	winter	season)	we	are	missing	a	standardised	set	of	

quantitative	indicators	to	describe	and	compare	tropical	phenological	

activity.	In	chapter	2	I	present	and	demonstrate	a	novel	application	of	

Fourier	methods	to	objectively	and	quantitatively	describe	long-term	

individual-level	plant	phenology	data	even	when	data	may	be	noisy.	I	use	the	

approach	to	test	the	hypothesis	that	flowering	occurs	on	a	regular,	

synchronised	cycle	within	species	using	focal	crown	observations	from	Lopé	

and	simulated	data.	Finally	I	use	simulated	data	to	test	the	hypotheses	that	

cycle	regularity,	ease	of	observation	and	sample	size	(data	length)	positively	

affect	cycle	detectability	using	Fourier	analysis.	

	

Chapter	3:	Towards	effective	monitoring	of	tropical	phenology:	

maximizing	returns	and	reducing	uncertainty	in	long-term	studies	

⇒ A	version	of	this	chapter	has	been	published	as:	Bush,	E.R.,	Bunnefeld,	

N.,	Dimoto,	E.,	Dikangadissi,	J.T.,	Jeffery,	K.,	Tutin,	C.,	White,	L.	and	

Abernethy,	K.A.,	2018.	Towards	effective	monitoring	of	tropical	
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phenology:	maximizing	returns	and	reducing	uncertainty	in	long‐term	

studies.	Biotropica,	50(3),	pp.455-464.	

Despite	relatively	long	data	observation	and	a	large	sample	of	individuals	and	

species	at	Lopé	we	still	face	challenges	of	noisy	data.	In	chapter	3	I	tease	

apart	the	uncertainties	associated	with	both	the	biological	processes	and	

observation	biases	in	long-term	phenology	studies.	I	use	the	Lopé	long-term	

focal	crown	observations	to	test	the	hypotheses	that	process	and	observation	

uncertainty	negatively	impact	cycle	detectability	using	Fourier	methods	and	

compare	the	relative	importance	of	each,	making	recommendations	for	the	

future	of	our	study	and	other	study	sites.	

	

Chapter	4:	Seasonal,	inter-annual	and	long-term	weather	variability	in	

western	equatorial	Africa	

Given	the	context	of	global	environmental	change	and	growing	evidence	that	

plant	productivity	and	reproductive	cycles	are	influenced	by	climate	and	

local	weather	conditions,	in	Chapter	4	I	analyse	the	long-term	Lopé	weather	

record	for	the	first	time.	Using	Fourier	and	Wavelet	methods	as	well	as	

Generalised	Linear	Mixed	Models	I	investigate	the	hypotheses	that	seasonal,	

inter-annual	and	long-term	weather	variability	at	the	site	is	predictably	

associated	with	the	ITCZ,	major	oceanic	oscillations	and	long-term	climate	

change.	

	

Chapter	5:	CO2	drives	long-term	reduction	in	tropical	canopy	leaf	

turnover	

Phenology	is	an	Essential	Biodiversity	Variable	vital	to	our	understanding	of	

the	ecological	impacts	of	global	climatic	and	atmospheric	processes.	Yet	

knowledge	of	how	seasonal,	interannual	and	long-term	weather	variation	

impacts	tropical	leaf	turnover	is	lacking.	In	Chapter	5	I	describe	the	seasonal	

patterns	of	leaf	turnover	at	Lopé	NP	for	a	representative	sample	of	species	

using	Fourier	analyses	and	Generalised	Linear	Mixed	Models.	I	then	test	the	

hypotheses	that	light,	moisture,	temperature,	CO2	and	leaf	herbivory	are	
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likely	drivers	of	monthly	and	interannual	variation	in	canopy	leaf	production	

and	compare	their	relative	importance.	

	

Chapter	6:	Is	Moabi	a	reliable	source	of	enterprise	for	the	future?	

Finally,	using	the	knowledge	accumulated	from	the	previous	chapters	I	apply	

our	data	and	methods	to	a	practical	problem	facing	my	Impact	partner,	

ANPN.	In	Chapter	6	I	investigate	the	impacts	that	raw	resource	availability	

may	have	on	successful	commercialisation	of	the	non-timber	forest	product	

Moabi	Oil	in	the	buffer	zones	of	Gabon’s	NPs.	I	combine	over	15	years’	

scientific	monitoring	of	the	phenology	of	Baillonella	toxisperma	at	Lopé	

National	Park	with	indigenous	knowledge	of	Moabi	Oil	producers	in	rural	

Gabon,	to	describe	the	factors	that	influence	Moabi	harvest	success	and	its	

impacts	on	the	rest	of	the	Moabi	oil	value	chain.	
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Chapter 2 

Fourier	analysis	to	detect	phenological	

cycles	using	long-term	tropical	field	data	

and	simulations	

A version of this chapter has been published as:  

Bush, E.R., Abernethy, K.A., Jeffery, K., Tutin, C., White, L., Dimoto, E., 

Dikangadissi, J.T., Jump, A.S. & Bunnefeld, N. (2017). Fourier analysis to 

detect phenological cycles using tropical field data and simulations. 

Methods in Ecology and Evolution, 8, 530–540. 

 

EB, KA, AJ and NB conceived the research idea and designed the study. 

KA, KJ, CT, LW, ED, JTD and EB collected and archived the data and EB 

performed analyses with advice from KA, AJ and NB. All authors 

contributed critically to the drafts, and the published version formatted for 

the thesis is presented here.  
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2.1 Abstract 

Changes	in	phenology	are	an	inevitable	result	of	climate	change,	and	will	

have	wide-reaching	impacts	on	species,	ecosystems,	human	society	and	even	

feedback	onto	climate.	Accurate	understanding	of	phenology	is	important	to	

adapt	to	and	mitigate	such	changes.	However,	analysis	of	phenology	globally	

has	been	constrained	by	lack	of	data,	dependence	on	geographically	limited,	

non-circular	indicators	and	lack	of	power	in	statistical	analyses.	To	address	

these	challenges,	especially	for	the	study	of	tropical	phenology,	we	developed	

a	flexible	and	robust	analytical	approach	-	using	Fourier	analysis	with	

confidence	intervals	-	to	objectively	and	quantitatively	describe	long-term	

observational	phenology	data	even	when	data	may	be	noisy.	We	then	tested	

the	power	of	this	approach	to	detect	regular	cycles	under	different	scenarios	

of	data	noise	and	length	using	both	simulated	and	field	data.	We	use	Fourier	

analysis	to	quantify	flowering	phenology	from	newly	available	data	for	856	

individual	plants	of	70	species	observed	monthly	since	1986	at	Lopé	National	

Park,	Gabon.	After	applying	a	confidence	test,	we	find	that	59%	of	the	

individuals	have	regular	flowering	cycles,	and	88%	species	flower	annually.	

We	find	time	series	length	to	be	a	significant	predictor	of	the	likelihood	of	

confidently	detecting	a	regular	cycle	from	the	data.	Using	simulated	data	we	

find	that	cycle	regularity	has	a	greater	impact	on	detecting	phenology	than	

event	detectability.	Power	analysis	of	the	Lopé	field	data	shows	that	at	least	

six	years	of	data	are	needed	for	confident	detection	of	the	least	noisy	species,	

but	this	varies	and	is	often	greater	than	20	years	for	the	most	noisy	species.	

There	are	now	a	number	of	large	phenology	datasets	from	the	tropics,	from	

which	insights	into	current	regional	and	global	changes	may	be	gained,	if	

flexible	and	quantitative	analytical	approaches	are	used.	However	consistent	

long-term	data	collection	is	costly	and	requires	much	effort.	We	provide	

support	for	the	importance	of	such	research	and	give	suggestions	as	to	how	

to	avoid	erroneous	interpretation	of	shorter	length	datasets	and	maximize	

returns	from	long-term	observational	studies.	
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2.2 Introduction 

Phenology	concerns	the	timing	of	recurring	life-cycle	events	-	such	as	leaf	

growth,	flowering	and	fruiting	in	plants	-	and	has	long	fascinated	ecologists	

and	evolutionary	scientists.	Questions	range	from	understanding	the	

complex	environmental	cues	and	internal	mechanisms	that	initiate	

phenology	events	(phenophases)	to	the	adaptive	significance	of	their	timing	

and	duration	and	responses	to	environmental	change.	Phenology	has	wide-

reaching	influence	within	ecosystems	and	determines	the	nature	of	many	

inter-specific	interactions	(Butt	et	al.	2015).	Changes	in	global	climate	will	

inevitably	have	long-term	impacts	on	phenology	(Parmesan	2006)	with	

knock-on	effects	for	ecosystems	and	people	(Van	Vliet	2010).	It	is	also	clear	

that	there	will	be	feedbacks	between	changing	phenology	and	climate,	but	

they	are	poorly	characterised	by	current	climate	models	(Pachauri	et	al.	

2014).	

2.2.1 Tropical phenology overlooked in reviews of 

change 

Major	reviews	of	phenological	change	to	date	have	lent	heavily	on	evidence	

from	temperate,	especially	Northern	hemisphere,	regions	(Parmesan	2006;	

Cleland	et	al.	2007;	Chambers	et	al.	2013).	In	these	regions	more	phenology	

data	is	available	and	analyses	are	arguably	simpler.	The	strong	seasonality	in	

temperate	regions	accompanied	by	a	dormant	winter	season	results	in	broad	

synchronisation	of	phenology	on	the	annual	cycle.	Years	can	be	treated	to	

some	extent	as	independent	repeating	events	and	researchers	are	able	to	

make	use	of	a	relatively	simple	suite	of	“spring	indicators”	(e.g.	first	

appearance,	first	lay-date,	bud-burst	measured	in	days	since	January	1st).	

While	tropical	climates	are	often	seasonal,	annual	variation	is	more	limited	

than	in	temperate	regions	and	vegetative	growth	and	reproduction	are	

possible	at	any	time	of	the	year	resulting	in	more	diverse	phenology	and	

cycles	other	than	twelve	months	(van	Schaik	et	al.	1993).	Use	of	simple	

spring	indicators	is	not	appropriate	for	tropical	phenology	because	of	the	
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circularity	of	the	data	(e.g.	January	1st	is	an	arbitrarily	low	value	and	not	

meaningfully	different	from	December	31st).	

Furthermore,	phenology	is	subject	to	many	conflicting	demands,	for	example	

an	organism	may	receive	an	environmental	signal	to	reproduce	but	fail	to	do	

so	because	it	lacks	critical	resources	(Obeso	2002).	Inconsistencies	and	gaps	

in	data	collection	due	to	observation	error	are	also	common	in	long-term	

studies,	making	quantification	in	many	cases	harder	still.		Thus	analytical	

approaches	for	tropical	phenology	need	to	take	account	of	the	circularity	of	

the	data,	be	flexible,	quantitative	and	attribute	confidence	to	conclusions.	

2.2.2 Analyses of long-tem tropical plant phenology  

Published	analyses	of	tropical	plant	phenology	range	from	simple	

descriptions	and	correlations	with	environmental	variables	to	more	recent,	

quantitative	analyses	of	change	(Table	S2.1).	The	Newstrom	et	al.	(1994)	

framework	was	an	important	step	towards	objective	inter-site	comparisons,	

however	categorisation	loses	analytical	power	and	visual	comparisons	lack	

objective	rigour.	More	computationally	intensive	methods	have	included	

differentiation	of	species-level	reproductive	cycles	using	finite	mixture	

theory	and	bootstrapping	methods	(Cannon	et	al.	2007),	modelled	

autocorrelation	functions	(Norden	et	al.	2007),	sinusoid-based	regression	

(Anderson	et	al.	2005),	spectral	analysis	(Chapman	et	al.	1999),	circular	

statistics	(Ting	et	al.	2008;	Zimmerman	et	al.	2007;	Wright	et	al.	1999;	Wright	

&	Calderon	1995),	generalized	linear	models	(GLMs;	Newbery	et	al.	2006;	

Ting	et	al.	2008)	and	generalized	additive	mixed	models	(GAMMs;	Polansky	&	

Robbins	2013).	While	data	has	often	been	collected	at	the	scale	of	the	

individual	plant	(9/18	studies	in	Table	S2.1),	this	is	not	always	reflected	in	

analysis	where	individuals	are	clumped	into	species,	guilds,	or	a	percentage	

score	of	a	whole	community,	losing	power	and	precluding	vital	covariate	

information.	The	longest	tropical	phenology	dataset	analysed	to	date	is	22	

years	of	flowering	data	(Pau	et	al.	2013)	and	18	years	of	flowering	and	

fruiting	data	(Wright	&	Calderon	2006)	from	Barro	Colorado	Island,	Panama	

with	many	other	studies	relying	on	fewer	than	ten	years	data	(9/18	studies	

in	Table	S2.1).	
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Addressing	the	challenges	of	sample	size,	data	quality,	circularity	and	

pseudo-replication	is	of	paramount	importance	to	quantify	tropical	

phenology	and	compare	between	sites	and	over	time.	Consensus	as	to	the	

most	suitable	way	to	analyse	these	data,	what	length	of	data	is	necessary	to	

identify	cycles	and	how	to	attribute	confidence	to	results	has	been	missing,	

although	progress	is	being	made	(Hudson	&	Keatley	2010).		

In	this	article,	we	apply	statistical	theory	to	both	field	and	simulated	data,	to	

develop	and	demonstrate	objective	methods	–	based	on	Fourier	analysis	-	to	

detect	and	quantify	confidence	in	regular	phenological	cycles.	We	also	test	

the	likelihood	of	detecting	cycles	under	different	data	noise	and	length	

scenarios	and	discuss	opportunities	for	incorporating	the	resulting	insights	

into	research	and	policy.	Explanations	of	technical	terms	related	to	Fourier	

analysis	used	in	this	paper	are	given	in	the	glossary	in	Table	2.1	and	their	

first	use	in	the	text	is	indicated	in	bold	italics.	

Table	2.1.	Glossary	to	technical	terms	

Term	 Definition	

Bandwidth	 The	distance	at	which	two	peaks	in	the	periodogram	can	be	distinguished	
from	each	other,	a	quantitative	measure	of	resolution.	For	example	a	
bandwidth	of	0.1	means	that	cycles	can	be	distinguished	from	each	other	
when	the	difference	between	their	frequencies	is	at	least	0.1.	

Circular	mean	 A	mean	value	calculated	for	circular	data	where	the	arithmetic	mean	
would	be	inappropriate.	For	example,	the	circular	mean	of	5°	and	355°	is	
0°,	in	comparison	to	the	arithmetic	mean	which	is	180°.	

Circular	standard	
deviation	

A	measure	of	dispersion	calculated	for	circular	data	where	the	arithmetic	
standard	deviation	would	be	inappropriate.	

Circular	data	 Data	from	circular	distributions	(e.g.	months,	hours,	directions	etc.)	where	
there	is	no	true	zero	and	“high”	and	“low”	values	are	arbitrary	(e.g.	Figure	
2.1A).	

Co-Fourier	analysis	 Simultaneous	Fourier	analysis	of	two	time	series.	Additional	outputs	
include	relative	phase	difference	between	the	time	series	at	every	
possible	cycle	(Figure	2.1E).	

Cycle	 A	pattern	of	repeating	events	in	a	regular	order	

Cycle	length	/	
Wavelength	

The	time	taken	for	a	whole	cycle	to	repeat	itself	(e.g.	number	of	months	
between	repeating	flowering	events)	

Daniell	kernel	 A	moving-average	smoother	used	to	eliminate	fine	detail	from	the	raw	
spectral	estimate	to	make	the	output	more	stable	and	easier	to	interpret	
(e.g.	smoothed	spectral	estimate	in	Figure	2.1C)	
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Dominant	cycle	 The	cycle	length	associated	with	the	dominant	peak.	

Dominant	peak	 The	point	in	the	spectral	estimate	with	highest	power	

Fourier	analysis	 Decomposition	of	a	time	series	into	a	series	of	sinusoidal	functions.	The	
power	of	each	cycle	in	the	series	can	be	used	to	identify	dominant	cycles	
(Figure	2.1C).	

Frequency	 The	rate	at	which	something	occurs	(e.g.	number	of	flowering	cycles	per	
month	or	per	year)	

Null	continuum	 A	spectral	estimate,	derived	from	the	data	series,	that	has	been	smoothed	
extensively	so	that	only	the	underlying	shape	remains,	and	no	fine	detail	
can	be	identified	(Figure	2.1D).	

Periodogram	 The	visual	output	of	the	spectral	estimate	derived	from	Fourier	analysis	
(Figure	1c-d)	

Phase	difference	 The	distance	between	the	peaks	in	two	cycles	of	matching	frequency	and	
referenced	in	time	(Figure	2.1E).	

Power	 The	relative	tendency	of	all	possible	cycles	to	appear	in	the	data.	
Estimated	in	the	spectral	estimate	and	plotted	in	the	y-axis	of	a	
periodogram	(Figure	2.1C).	Cycles	not	well	supported	by	the	data	have	
low	power,	while	cycles	well	supported	by	the	data	have	high	power	

Radians	 The	standard	unit	of	angular	measures; 2π radians =  360°.	

Raw	spectral	estimate	 The	default	output	of	Fourier	analysis	where	all	fine-scale	structure	is	
included,	and	can	be	overly	influenced	by	certain	segments	of	the	data.	

Resolution	 The	ability	to	represent	fine	structure	and	distinguish	between	close	peaks	
in	the	spectral	estimate	derived	from	Fourier,	quantified	as	the	
bandwidth	(Bloomfield	2000).	Spectral	estimates	with	high	resolution	
will	show	all	peaks	including	minor	ones,	where	as	spectral	estimates	with	
very	low	resolution	may	show	no	peaks	at	all,	but	rather	the	general	shape	
of	the	data	(e.g.	the	null	continuum	in	Figure	2.1D).	Increased	resolution	
reduces	stability	and	visa	versa.	

Sinusoid	/	Sine	wave	/	
Cosine	wave	

A	smooth	repeating	pattern	occurring	every	2π	radians	(or	360°)	(e.g.	the	
simulated	curve	in	Figure	2.1E).	

Smoothed	spectral	
estimate	

The	output	of	Fourier	analysis	after	a	moving-average	smoother	is	
applied	to	the	raw	spectral	estimate	(Figure	2.1C-D).		

Spans	 The	user-specified	widths	of	the	Daniell	kernel	smoother,	specifically	how	
many	data	points	are	used	to	smooth	the	spectral	estimate	in	each	local	
window.	

Spectral	estimate	/	
Spectrum	

The	output	of	Fourier	analysis	showing	the	tendency	of	all	possible	cycles	
to	appear	in	the	data,	from	twice	the	observation	interval	to	the	full	length	
of	the	series	(Figure	2.1C-D).	

Stability	 Extent	to	which	small	fluctuations	in	certain	segments	of	the	data	
influence	the	spectral	estimate	derived	from	Fourier.	Greater	stability	
reduces	resolution	and	visa	versa.	(Bloomfield	2000).	

Synchrony	 The	simultaneous	occurrence	of	two	or	more	events.	

Time	series	 A	sequence	of	data	points	arranged	in	time	order	
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2.2.3 Introduction to Fourier analysis for phenology  

The	Fourier	transform	is	a	mathematical	method	used	to	identify	regular	

cycles	in	time	series	data	by	comparing	fluctuations	in	the	data	with	

sinusoids	(Bloomfield	2000)	and	has	been	used	extensively	in	disciplines	

such	as	engineering	and	mathematics.	The	Fourier	transform	calculates	the	

tendency	(hereafter	known	as	power)	of	all	possible	cycles	to	appear	in	the	

data	and	can	therefore	be	used	to	quantify	seasonal	phenology	data	without	

the	need	for	prior	knowledge	or	hypotheses	of	cycle	length.	However	it	has	

been	rarely	used	in	the	context	of	phenology	analysis	and	never	for	long-term	

observational	phenology	data.	Chapman	et	al.	(1999)	used	Fourier	to	identify	

dominant	reproductive	cycles	from	six	years	of	data	for	a	tropical	tree	

community,	but	did	not	use	a	confidence	test.	More	recently	Zalamea	et	al.	

(2011)	used	Fourier	to	identify	flowering	cycles	from	reconstructed	12-

month	series	of	herbarium	data	for	a	genus	of	neotropical	tree,	attributing	

confidence	to	cycles	using	a	bootstrapping	method.		

	Compared	to	other	data	for	which	Fourier	has	been	used,	phenology	data	are	

often	comparatively	short	and	collected	at	low	resolution	due	to	the	costs	

and	effort	incurred.	However,	in	the	field	of	movement	ecology,	Wittemyer	et	

al.	(2008)	and	Polansky	et	al.	(2010)	successfully	used	Fourier	to	confidently	

identify	regular	cycles	in	animal	movements	by	comparing	outputs	with	a	

null	hypothesis	of	random	movement	and	95%	confidence	intervals.	

	In	this	paper	we	build	on	Wittemyer	et	al.’s	(2008)	analytical	framework	to	

extend	the	existing	uses	of	Fourier	for	the	field	of	long-term	phenology	

research.	First	we	demonstrate	appropriate	application	of	Fourier	to	

phenology	data	by	quantifying	flowering	cycle	confidence,	length,	power,	

timing	and	synchrony	for	individuals	of	a	single	species	from	the	Lopé	long-

term	observational	study	of	tropical	forest	plants	(1986	–	2016).	Second,	we	

up-scale	this	Fourier-based	approach	to	analyse	flowering	phenology	using	

newly	available	data	for	all	species	from	the	Lopé	study	(856	individuals,	70	

species).	Third,	we	recognize	that	while	the	Lopé	study	is	one	of	the	longest	
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and	most	consistent	of	its	kind	in	the	tropics,	data	is	still	often	noisy	or	short	

for	certain	individuals	and/or	species.	In	order	to	apply	this	framework	

elsewhere,	and	to	inform	best	practice	for	data	collection,	we	test	the	ability	

of	the	Fourier	method	to	detect	regular	phenology	under	different	scenarios	

using	both	simulated	data	and	field	data	with	realistic	noise.		

2.3 How to detect and describe flowering 

cycles using Fourier analysis  

The	Lopé	long-term	observational	phenology	study.	

Since	1986,	researchers	from	the	Station	d’Études	des	Gorilles	and	

Chimpanzées	(SEGC),	Lopé	National	Park,	Gabon,	have	observed	individual	

plants	of	88	different	species	each	month	and	noted	the	proportion	of	each	

canopy	covered	by	new,	mature	and	senescing	leaves,	flowers,	unripe	and	

ripe	fruits.	Canopy	coverage	for	a	particular	phenophase	is	assessed	from	the	

ground	using	binoculars	and	recorded	as	a	score	from	0	to	4.	The	study	area	

experiences	an	equatorial	climate,	where	seasonality	is	determined	by	

movements	of	the	inter-tropical	convergence	zone	to	form	two	dry	and	two	

wet	seasons	annually.	See	Tutin	and	White	(1998)	for	detailed	site	

description	including	local	climate	and	vegetation.		

In	this	first	section	we	demonstrate	Fourier	analysis	using	flowering	data	for	

tree	species	Duboscia	macrocarpa	Bocq.	(Malvaceae,	n=11).	Initial	

observation	of	species-level	data	shows	no	apparent	seasonality	in	flowering	

(Figure	2.1	A-B).	However	this	is	because	the	true	flowering	cycle	for	this	

species	is	18	months	long	and	is	not	synchronised	between	individuals.	This	

unusual	reproductive	phenology	is	useful	to	demonstrate	the	explicitly	

circular	basis	of	Fourier	analysis,	and	how	analysis	at	the	individual-level	

allows	for	quantification	of	complex	tropical	phenology.		
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Figure	2.1.	Using	Fourier	analysis	to	detect	flowering	phenology	for	a	
single	species:	Duboscia	macrocarpa.		
a)	Boxplots	showing	the	proportion	of	individuals	(n=11)	in	flower	each	month	
from	1986	to	2016.	There	is	no	obvious	seasonal	flowering	pattern	for	this	
species.	b)	Time	series	plots	showing	flowering	canopy	scores	every	month	since	
1986	to	2016	(five	individuals	shown	as	an	example).	There	appears	to	be	some	
regular	flowering	cycles	for	individuals.	c)	Periodogram	displaying	the	smoothed	
spectral	estimates	(bandwidth=0.1)	derived	from	Fourier	analysis	for	each	
individual	flowering	time	series	in	(b).	The	x-axis	of	the	shows	all	possible	cycle	
frequencies	(from	one	cycle	every	two	months	to	the	full	length	of	the	series).	
The	y-axis	shows	the	power	of	each	cycle.	The	highest	peak	in	each	spectrum	
occurs	at	a	frequency	of	0.056	cycles	per	month	(indicating	a	flowering	cycle	
length	of	18	months).	d)	Periodogram	displaying	smoothed	spectral	estimate		
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(caption	for	Figure	2.1	continued…)	derived	from	Fourier	analysis	for	the	first	
flowering	time	series	shown	in	(b)	(red	line).	The	95%	confidence	intervals	for	
the	spectral	estimate	(red	shades)	show	that	the	dominant	peak	(grey	arrow)	at	
0.056	cycles	per	month	is	different	from	the	null	hypothesis	of	no	cyclicity	(the	
null	continuum:	black	dashed	line).	We	can	be	confident	that	the	18-month	cycle	
is	different	from	surrounding	noise	and	represents	a	real	flowering	cycle.	e)	
Demonstration	of	co-Fourier	analysis	to	derive	the	relative	phase	of	the	
flowering	cycle	identified	in	(d).	The	flowering	time	series	(red	line)	is	
decomposed	alongside	a	regular	cosine	curve,	simulated	to	have	the	same	cycle	
length	as	the	flowering	data	(18	months)	and	by	convention	for	our	data	
peaking	on	the	1st	January	1986	(grey	line).	The	phase	difference	(2.11	radians)	
between	the	two	time	series	can	be	converted	to	time	(6	months).	

Data	input	requirements	

For	all	Fourier	analyses	we	used	the	function	spectrum	from	the	R	base	

package	‘stats’	(R	Core	Team	2015).	The	method	requires	regular	time	

intervals	between	observations,	so	we	interpolated	data	for	gaps	up	to	three	

data	points	long	using	a	simple	linear	estimator,	interpNA	from	R	package	

‘timeSeries’	(Rmetrics	Core	Team	et	al.	2015).	For	longer	gaps	we	suggest	

analysing	time	series	in	separate	parts	but	more	sophisticated	forms	of	

interpolation	could	be	used	or	Lamb	normalized	periodogram	analysis	(Press	

et	al.	1992)	which	allows	for	unevenly	spaced	data.	

The	periodogram	

The	Fourier	transform	decomposes	a	time	series	into	a	series	of	sine	and	

cosine	waves	of	differing	frequencies,	quantifying	the	power	of	each	via	the	

spectral	estimate,	visualised	in	the	periodogram	(Figure	2.1C).		The	

shortest	possible	cycle	for	our	data	is	two	months	long	(twice	the	

observation	interval)	and	the	longest	is	the	full	length	of	the	data	available.	

Cycles	not	well	supported	by	the	data	have	low	power	while	cycles	well	

supported	by	the	data	have	high	power.	

Smoothing	the	spectral	estimate	

The	raw	(unsmoothed)	spectral	estimate	shows	all	fine-scale	structure	and	

can	be	overly	influenced	by	certain	segments	of	data.	We	smooth	all	spectral	

estimates	using	a	moving-average	smoother	-	the	modified	Daniell	kernel	-	
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available	within	function	spectrum.	The	width	of	the	Daniell	kernel	(known	

as	the	span)	is	user-specified	and	is	a	compromise	between	resolution	and	

stability.	The	classic	text	on	this	method	(Bloomfield	2000)	recommends	a	

trial	and	error	approach	for	span-choice	relying	on	visual	observation	of	the	

periodogram.	After	much	experimentation	we	found	that	successively	

applying	the	Daniell	kernel	to	achieve	a	smoothed	spectral	estimate	with	a	

bandwidth	close	to	0.1	gave	sufficient	resolution	to	identify	dominant	peaks	

in	the	periodogram.	For	example,	applying	a	Daniell	kernel	with	a	span	of	

seven,	followed	by	a	kernel	with	a	span	of	nine	to	the	first	D.	macrocarpa	

flowering	time	series	of	length	353	months	(Figure	2.1B)	resulted	in	a	

spectral	estimate	with	bandwidth	0.099.	Smoothed	spectral	estimates	

derived	from	Fourier	analysis	of	flowering	data	for	five	example	D.	

macrocarpa	individuals	are	shown	in	Figure	2.1C	

Identifying	dominant	cycles	

Interpreting	the	periodogram	begins	with	observing	the	general	shape	of	the	

spectrum	(e.g.	is	the	data	influenced	by	short	or	long	cycles)	and	then	to	

identify	the	peaks	with	highest	power,	representing	dominant	cycles	within	

the	data.	The	smoothed	spectral	estimates	derived	from	flowering	data	for	D.	

macrocarpa	show	a	similar	pattern	between	individuals	(Figure	2.1C).	The	

highest	peak	for	each	individual	is	near	to	0.056	cycles	per	month	

(equivalent	to	a	cycle	length	of	18	months).		

Assigning	confidence	to	dominant	cycles	

Tree	phenology	studies	often	rely	on	monthly	canopy	observations	and	are	

subject	to	both	measurement	error	(observation	uncertainty)	and	natural	

variation	(process	uncertainty).	Because	of	these	uncertainties	a	measure	of	

confidence	is	needed	to	differentiate	real	cycles	from	the	surrounding	noise.	

Bloomfield	(2000)	suggests	that	spectral	estimates	approximate	a	chi-square	

distribution,	and	that	95%	confidence	intervals	can	be	derived	as	follows,	
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𝑣𝑠 𝑓
Χ!! 0.975

≤ 𝑠 𝑓 ≤  
𝑣𝑠 𝑓

Χ!! 0.025
	

Eqn.	1.	

where	𝑣	is	the	degrees	of	freedom	(derived	from	the	function	output),		𝑠 𝑓 	is	

the	spectral	estimate,	𝑠 𝑓 		is	the	true	spectrum,	and	Χ!! 0.975,0.025 	are	the	

2.5%	and	97.5%	quantiles	of	the	chi	square	distribution	with	𝑣	degrees	of	

freedom.	

There	are	two	credible	null	hypotheses	-	representing	”no	cyclicity”		-	with	

which	to	compare	the	95%	confidence	intervals.	The	first	is	the	null	

continuum	of	the	spectrum,	which	is	an	extreme	smooth	of	the	spectral	

estimate	such	that	only	the	underlying	shape	remains	(dotted	line,	Figure	

2.1D).	The	second	is	simply	the	mean	spectrum	(otherwise	known	as	the	

white	noise	spectrum;	Meko	2015).	We	prefer	the	null	continuum	as	its	use	

results	in	fewer	false	positive	results	at	medium	to	high	noise	scenarios	

(Appendix	A).	

We	found	we	could	achieve	sufficient	smoothness	for	the	null	continuum	by	

successively	applying	the	Daniell	kernel	to	give	a	bandwidth	similar	to	1.	

Where	the	lower	confidence	interval	for	a	specified	frequency	does	not	

overlap	with	the	null	hypothesis,	the	peak	at	that	frequency	can	objectively	

be	considered	as	significantly	different	from	the	surrounding	noise	and	

representing	a	real	cycle.		Bloomfield	(2000)	cautions	against	general	fishing	

expeditions	for	significant	peaks	because	the	95%	confidence	intervals	

calculated	are	not	simultaneous.	We	therefore,	only	recommend	using	this	

method	to	test	the	dominant	peak,	not	all	local	peaks.	Occasionally	we	find	

that	when	data	are	highly	irregular,	the	dominant	peak	is	identified	at	the	

longest	possible	cycle	length	and	is	likely	to	score	as	“significant”	against	the	

null	continuum.	To	avoid	these	false	positive	results,	we	screen	Fourier	

outputs	and	exclude	dominant	cycles	greater	than	half	the	data	length.	

95%	confidence	intervals	for	the	smoothed	spectral	estimate	derived	from	

one	example	D.	macrocarpa	time	series	are	shown	in	Figure	2.1D.	We	can	be	

confident	that	the	dominant	peak	at	18	months	represents	a	real	flowering	

cycle	because	the	lower	confidence	interval	doesn’t	cross	the	null	continuum.		
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Assessing	timing	and	synchrony		

In	order	to	assess	timing	and	synchrony	within	populations,	we	developed	a	

method	to	reference	the	peak	events	of	tropical	phenological	cycles	in	time	

using	a	simulated	cosine	curve	within	co-Fourier	analysis.	Co-Fourier	allows	

simultaneous	Fourier	analysis	of	any	two	time	series	and	in	addition	to	

normal	outputs,	gives	an	estimate	for	the	lag	(phase	difference)	between	the	

time	series	for	every	possible	cycle.	Once	a	dominant	cycle	has	been	detected	

in	an	empirical	time	series,	we	simulate	a	cosine	curve	with	matching	cycle	

length,	by	convention	for	our	data	peaking	on	1st	January	1986.	After	co-

Fourier	analysis	of	the	empirical	time	series	alongside	the	matching	

simulated	time	series,	we	then	extract	the	phase	difference	associated	with	

the	dominant	cycle.			

In	figure	2.1E	we	show	flowering	data	for	an	example	D.	macrocarpa	

individual	alongside	a	simulated	cosine	curve	with	matching	cycle	length	(18	

months)	and	peaking	on	January	1st	1986.	The	phase	difference	between	

these	two	time	series	at	the	dominant	cycle	of	18	months	is	2.11	radians.		

Phase	difference	can	be	converted	to	time	(an	estimate	of	the	first	flowering	

peak,	in	months	since	January	1st)	by	the	following,	

𝑖𝑓 Φ!"#$"%&  >  0, Φ!"#$!! =  
Φ!"#$"%&

2Π λ  	

𝑖𝑓 Φ!"#$"%&  <  0, Φ!"#$!! =  
Φ!"#$"%& + 2Π

2Π λ 	

Eqn.	2.	

where	Φ	is	the	phase	difference	and	𝛌	is	wavelength	in	months.		

It	is	important	to	consider	that	radians	are	a	circular	unit	and	there	are	2Π	
radians	in	a	full	cycle	no	matter	how	many	months	are	in	that	cycle.		

Converting	phase	to	months	is	very	simple	when	the	cycle	is	annual:	one	

month	=	2Π/12	and	the	first	peak	month	will	be	the	only	peak	month	in	a	
given	calendar	year.	However,	for	cycle	lengths	other	than	12	months,	

conversion	to	time	will	need	some	careful	thought.	For	a	six-month	cycle,	we	
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would	expect	two	peaks	in	each	calendar	year,	and	for	an	18-month	cycle	we	

would	expect	one	peak	a	calendar	year	but	in	different	months	in	alternate	

years.	

For	the	D.	macrocarpa	time	series	used	as	an	example	in	Figure	2.1E,	the	

phase	difference	of	2.11	radians	converts	to	six	months	since	January	1st,	

placing	the	first	peak	at	the	beginning	of	July.	The	next	peak	in	flowering	will	

occur	18	months	later,	at	the	beginning	of	January.	We	would	expect	this	

individual	to	have	flowers	in	January	and	July	in	alternate	years.	

Calculating	mean	timing	and	synchrony	for	species	

Mean	phenophase	timing	can	be	computed	for	a	sample	with	the	same	

dominant	cycle	by	taking	the	circular	mean	of	the	phase	difference	(in	

radians)	for	each	individual,	as	calculated	from	co-Fourier	analysis.	

Synchrony	can	be	quantified	by	taking	the	circular	standard	deviation	of	

the	mean	phase	(all	circular	values	calculated	using	the	R	package	‘circular’;	

Agostinelli	&	Lund	2013).	For	the	D.	macrocarpa	example,	mean	phase	

difference	for	all	individuals	with	significant	dominant	cycle	at	18	months	is	

0.94+	1.68	SD	radians.	Converted	to	time,	this	references	a	flowering	peak	in	

mid-March	and	mid-September	in	alternate	years.	However	synchrony	

between	individuals	is	so	low	(SD	of	peak	month	is	4.8	months)	that	“peak	

flowering”	for	the	population	has	little	biological	meaning.	

In	Appendix	B	we	have	included	a	detailed	description	of	Fourier	analysis	for	

the	flowering	cycles	of	two	additional	species	(Antidesma	vogelianum	Muell.	

Arg.	flowering	on	a	six-month	cycle,	and	Pentadesma	butyracea	Sabine	

flowering	on	an	annual	cycle)	and	a	comparison	of	Fourier	alongside	four	

other	commonly	used	methods	for	seasonal	phenology	analysis	–	graphical	

representations,	circular	statistics,	autocorrelation	analysis	and	GAMs.	
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2.4 Scaling up – quantifying flowering 

phenology among many individuals and 

species 

2.4.1 Methods 

We	used	the	methods	developed	above	to	quantitatively	describe	flowering	

data	for	all	species	monitored	as	part	of	the	Lopé	study.	We	preselected	856	

individuals	(70	species	of	26	families)	with	the	following	criteria;	greater	

than	five	years	continuous	data,	at	least	one	flowering	event	and	no	

persistent	records	of	disease	(species	list	given	in	Table	S2.2).	Where	we	

found	isolated	gaps	longer	than	three	months,	we	excluded	data	before	or	

after	(whichever	was	shorter)	from	further	analysis.	Linear	interpolation	for	

gaps	shorter	than	three	months	was	necessary	for	95%	of	the	individuals	in	

the	sample.	Time	series’	length	ranged	from	60	to	353	months	(mean	=	249	

months).	

To	quantitatively	describe	regular	cycles,	we	ran	Fourier	analysis	and	a	

confidence	test	of	the	dominant	flowering	cycle	for	each	tree.	To	allow	

comparison	between	individuals	for	the	power	of	the	dominant	cycle,	we	

normalised	the	spectrum	so	that	the	mean	power	across	frequencies	was	

equal	to	one	(Polansky	et	al.	2010).		

To	summarise	at	the	species-level	we	calculated	the	modal	cycle	length	for	

species	with	more	than	five	individuals	with	significant	dominant	cycles.		To	

estimate	the	level	of	synchrony	at	the	species-level,	we	ran	co-Fourier	

analysis	for	each	individual	with	a	significant	dominant	cycle	equal	to	the	

modal	cycle	length	for	that	species	(only	including	species	with	more	than	

five	such	individuals).	From	the	co-Fourier	outputs	we	calculated	the	

standard	deviation	of	mean	phase	difference	in	radians	and	converted	to	

months	using	Eqn	2.	for	each	species.	

	We	present	whole	sample	summaries	for	time	series	length	and	sample	size	

per	species	and	compare	these	between	all	individuals	and	those	for	which	

we	could	detect	significant	cycles.		We	then	present	the	most	common	
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flowering	cycles	and	level	of	synchrony	(standard	deviation	of	mean	phase	

difference)	per	species.	We	also	tested	the	impact	of	time	series	length	as	a	

predictor	of	detecting	significant	regular	phenology	using	a	binomial	

Generalized	Linear	Mixed	Model	(GLMM)	with	species	as	a	random	effect.	

2.4.2 Results 

We	detected	significant	regular	flowering	cycles	for	509	out	of	856	

individuals	in	our	sample,	79%	of	which	were	annual.	Of	those	for	which	we	

could	not	confidently	detect	regular	cycles,	22	came	from	five	species	for	

which	no	significant	cycles	were	detected	(e.g.	Baillonella	toxisperma	Pierre	

and	Dacryodes	normandii	nornandii	Aubr.	&	Pell.,	Table	S2.3).	

When	only	trees	with	significant	cycles	were	included,	the	sample	

distribution	shifted	toward	longer	time	series	(Figure	2.2A),	and	mean	

sample	size	per	species	for	all	trees	(12	individuals	+	8.1	SD)	was	reduced	

(seven	individuals	+	5.8	SD)	(Figure	2.2B).		We	found	time	series’	length	to	be	

a	significant	positive	predictor	(Z	value	=	6.42,	p<0.001)	of	the	likelihood	of	

detecting	a	significant	regular	cycle	from	the	data	(GLM	outputs	in	Table	

S2.4).		
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Figure	2.2.	Summary	of	flowering	phenology	for	all	tree	species	monitored	
at	Lopé	NP,	Gabon.		
a)	Density	plot	of	time	series’	length	for	all	individuals	analysed	(red,	856	
individuals)	compared	to	individuals	with	significant	flowering	cycles	(blue,	509	
individuals).	b)Density	plot	of	number	of	individuals	per	species	for	all	
individuals	(red,	856	individuals,	70	species)	compared	to	individuals	with	
significant	flowering	cycles	(blue,	509	individuals,	65	species).	c)	Density	plot	of	
most	common	flowering	cycle	length	(mode)	per	species,	for	a	subsample	of	42	
species,	each	more	than	five	individuals	with	significant	flowering	cycles	(458	
individuals).	d)	Density	plot	of	synchrony	(standard	deviation	of	mean	peak	
month)	per	species,	for	a	subsample	of	39	species,	each	with	more	than	five	
individuals	with	significant	dominant	cycle	equal	to	the	species	modal	cycle	
length	(402	individuals).		

All individuals 
Individuals with significant flowering cycle 

(a) 

(b) 

(c) 

(d) 
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To	assess	modal	cycle	length	we	used	a	subsample	of	42	species	(458	

individuals).	The	modal	flowering	cycle	for	most	species	was	annual	(37	

species,	e.g.	P.	butyracea,	Table	S2.3),	with	others	flowering	on	a	6-month	(4	

species,	e.g.	A.	vogelianum,	Table	S2.3)	and	an	18-month	basis	(1	species,	D.	

macrocarpa;	Figures	2.2C	and	2.3	and	Table	S2.3).		

To	assess	modal	level	of	synchrony	between	species	we	used	a	subsample	of	

39	species	(402	individuals).	The	majority	of	species	had	flowering	cycles	

well	synchronised	between	individuals,	(38	species	with	standard	deviation	

of	mean	peak	less	than	one	month;	Figure	2.2D,	Table	S2.3).		

Species	showed	considerable	inter-	and	intra-specific	variation	in	flowering	

phenology	(Figure	2.3).	Some	species	were	split	between	different	cycle	

length	strategies;	e.g.	for	a	sample	of	19	Uapaca	guieensis	Muell.	Arg.	trees,	

the	dominant	flowering	cycle	was	annual	for	13	trees	and	six	months	for	six	

trees.	Species	also	varied	in	the	power	of	their	dominant	flowering	cycles.	

Despite	all	individuals	shown	in	Figure	2.3	having	significant	flowering	

cycles,	some	species	such	as	Maranthes	glabra	(Oliv.)	Prance	(mean	power	=	

9.3+1.6	S.D.)	and	Xylopia	aethiopica	(Dunal)	A.	Richard	(mean	power	=	

8.1+2.6	S.D.)	tended	to	have	much	stronger,	less	noisy	cycles	than	others	

such	as	Klainedoxa	gabonensis	Baill.	(mean	power	=	2.1+0.4	S.D.)	and	

Pseudospondias	microcarpa	(A	Rich.)	Engl.	(mean	power	=	2.4	+0.7	S.D.).	



	

	
39	

	

Figure	2.3:	Inter-	and	intra-specific	variation	in	flowering	phenology	for	
tree	species	monitored	at	Lopé	NP,	Gabon.		
Cycle	length	(sub-annual,	annual	and	supra-annual)	and	power	for	each	
individual	(grey	dots)	and	modal	cycle	length	and	mean	power	per	species	(red	
dots)	from	a	sub-sample	of	42	species	with	more	than	five	individuals	with	
significant	flowering	cycles	(458	individuals).		
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2.5 Testing Fourier under different scenarios 

using both simulated and field data 

2.5.1 Methods  

To	test	the	impact	of	noise	and	sample	length	on	cycle	detectability,	we	

undertook	a	power	analysis	of	simulated	phenology	data.	We	simulated	

10,000	individual	time	series	representing	an	annually	repeating	flowering	

cycle	peaking	in	June,	with	three	key	parameters	allowed	to	vary	between	

“individuals”;	1)	the	regularity	of	the	peak	month	(representing	process	

uncertainty),	2)	the	detectability	of	flowering	events	(representing	

observation	uncertainty)	and	3)	the	length	of	data	recorded.	For	each	year	of	

data,	we	generated	monthly	flowering	scores	of	zero	and	a	peak	of	three-

months	duration	with	positive	scores	randomly	chosen	from	a	distribution	

similar	to	that	found	in	our	field	data.	We	varied	levels	of	regularity	by	

randomly	choosing	the	peak	flowering	month	each	year	from	a	truncated	

normal	distribution	(ranging	from	two	to	11,	with	mean	six	and	standard	

deviation	randomly	selected	from	0.1	to	six).	The	standard	deviation	of	the	

distribution	was	consistent	between	years	but	allowed	to	vary	between	

individuals.	We	then	varied	levels	of	detectability	by	replacing	a	certain	

percentage	of	randomly	chosen	positive	flowering	scores	with	zeros	(from	

zero	to	60%).	Finally,	a	window	of	data	(five,	ten	or	15	years)	was	randomly	

cut	from	each	full-length	time	series	prior	to	Fourier	analysis	(example	

simulated	data	are	plotted	in	Appendix	A).	We	assessed	the	dominant	cycle	

using	a	95%	confidence	test	and	whether	it	fell	within	the	expected	interval	

for	an	annual	cycle	(11-13	months).	

To	demonstrate	the	impact	of	data	length	with	realistic	noise	we	also	

conducted	a	power	analysis	using	all	individual	time	series	from	the	Lopé	

study	longer	than	20	years,	from	which	we	had	previously	detected	

significant	annual	flowering	cycles	and	for	species	with	more	than	five	such	

individuals	(233	individuals	of	30	different	species).	We	randomly	chose	

individual	time	series	from	this	sub-sample	and	cut	shorter	windows	of	data	

(window	length	randomly	selected	from	the	range	2:20	years	with	randomly	
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selected	start	date),	repeating	10,000	times.	We	analysed	the	windowed	time	

series	with	Fourier	as	described	above	and	recorded	if	the	dominant	cycle	

was	significant	and	fell	within	the	expected	interval	for	an	annual	cycle	(11-

13	months).	We	fitted	binomial	GLMs	to	compare	the	effect	of	time	series’	

length	between	species.	

2.5.2 Results 

The	power	analysis	of	simulated	phenology	data	(Figure	2.4)	showed	that	as	

time	series’	length	increased,	from	5	to	15	years,	so	did	likelihood	of	

confidently	detecting	the	annual	cycle.	For	example,	for	a	mid-level	noise	

scenario	(cycle	regularity	2SD;	zero	replacement	20%)	the	proportion	of	the	

sample	with	a	significant	annual	cycle	was	zero	after	5	years,	57%	after	10	

years	and	81%	after	15	years.	However,	at	relatively	low-	noise	scenarios,	

(highly	regular	cycles	<1SD;	low	zero	replacement	<	20%),	the	effect	of	time	

series	length	saturated	quickly,	with	100%	likelihood	of	detecting	a	

significant	annual	cycle	after	just	five	years.	In	contrast	at	high-noise	

scenarios	(highly	irregular	cycles	>4SD;	zero	replacement	>	60%),	likelihood	

of	detecting	a	significant	annual	cycle	never	rose	above	20%	even	after	15	

years.	For	highly	regular	cycles	(SD<2),	even	poor	event	detectability	(zero	

replacement	40	–	60%)	had	little	impact	on	likelihood	of	detecting	the	cycle.	
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Figure	2.4.	Power	analysis	of	simulated	phenology	data	(n=10,000)	to	
show	the	impact	of	data	noise	and	length	on	likelihood	of	detecting	cycles	
using	Fourier	analysis.		
Noise	simulated	as	cycle	regularity	(y-axis:	standard	deviation	-	0.1:	6	-	of	mean	
month	of	annual	flowering	event)	and	event	detectability	(x-axis:	proportion	–	0:	
60%	-	of	positive	flowering	events	replaced	by	zeros).	

	

Similar	to	the	simulated	data,	we	found	that	as	time	series’	length	increased,	

so	did	likelihood	of	detecting	regular	cyclic	behaviour	for	our	field	data	
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(Figure	2.5).	We	found	that	for	the	species	in	our	sample	with	the	most	

positive	slope	estimates	for	time	series	length	(M.	glabra	and	Pycnanthus	

angolensis	Welw.	Warb.,	S2.5),	just	six	and	seven	years	of	data	respectively	

were	required	before	the	annual	flowering	cycle	could	be	detected	with	

greater	than	95%	likelihood.	However	species	ranged	widely,	with	19	species	

not	reaching	this	95%	threshold	until	after	20	years.	The	species	with	the	

least	positive	slope	estimates	were	Detarium	macrocarpum	Harms	and	

Greenwaydodendron	suaveolens	Engl.	&	Diels.	(Table	S2.5).	

	

Figure	2.5:	Power	analysis	of	annually	flowering	phenology	data	from	
Lopé	NP	to	show	the	impact	of	time	series	length	on	cycle	detection	using	
Fourier	analysis.		
Generalised	linear	model	(GLM)	predictions	(family=binomial,	link=logit)	for	
each	species.	Window	length	varied	from	2-20	years	and	results	are	from	
10,0000	random	samples	from	233	individuals	of	30	species.	
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2.6 Discussion  

2.6.1 Detectability and power 

The	flowering	phenology	of	trees	observed	at	Lopé	National	Park,	Gabon,	is	

dominated	by	annual	cycles	(88%	species),	in	contrast	with	forests	from	the	

neotropics	that	appear	to	be	dominated	by	sub-annual	reproductive	cycles	

and	the	Dipterocarp	forests	of	South-East	Asia	that	are	dominated	by	supra-

annual	reproductive	cycles	(Sakai	2001).	We	could	not	confidently	describe	

regular	cycles	for	many	individuals	in	our	sample	(41%),	where	either	

flowering	is	regular	but	the	data	were	too	noisy	or	too	short	for	detection	or	

glowering	is	irregular.	Observation	length	was	shown	to	be	a	significant	

positive	predictor	of	detecting	regular	cycles	in	both	field	data	and	

simulations.	Even	when	cycles	were	confidently	described,	we	found	that	the	

power	attributed	to	cycles	ranged	widely,	meaning	that	the	flowering	

phenology	of	some	species	is	much	noisier	than	others.	However	the	source	

of	this	noise	is	difficult	to	differentiate	for	field	data.	To	explore	this	further	

we	simulated	two	forms	of	noise	associated	with	both	process	and	

observation	uncertainty	and	found	that	cycle	regularity	has	a	greater	effect	

on	ability	to	detect	a	significant	cycle	than	event	detectability:	Fourier	

analysis	can	be	used	to	detect	the	cycle	even	if	the	observer	misidentifies	

60%	of	flowering	months.	There	are	likely	to	be	additional	sources	of	noise	in	

the	field,	such	as	false	recording	of	non-existent	phenophases,	however	we	

consider	these	to	occur	less	often.	

We	attributed	cycle	characteristics	to	the	species-level	when	we	had	five	or	

more	individuals	with	significant	cycles,	under	the	biological	assumption	that	

phenology	is	an	evolutionarily	adaptive	trait	and	likely	to	be	constraining	

con-specifics	in	a	similar	way.	However,	true	levels	of	intraspecific	variation	

are	unknown.	We	find	considerable	intraspecific	variation	for	some	species	

(i.e.	Uapaca	guineensis)	and	further	research	may	reveal	that	phenology	is	

not	necessarily	a	stable	trait	within	a	species	or	an	individual’s	lifetime		

Our	results	can	be	used	to	inform	effective	collection,	processing	and	analysis	

of	phenological	data.	We	have	shown	that	where	suitable	data	is	available,	
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objective	analyses	can	be	used	to	confidently	detect	regular	phenology	and	

that	frequency-based	outputs	–	cycle	length,	power,	timing	and	level	of	

synchrony	–	give	a	suite	of	indicators	that	could	be	used	to	quantitatively	

describe	and	compare	phenology	globally.	

2.6.2 Development for causation and change research 

The	indicators	derived	from	Fourier	analysis	can	be	used	to	address	research	

questions	such	as	the	proximate	and	ultimate	causes	of	adaptive	phenology	

and	detection	of	change.	Where	data	is	available,	analysis	at	the	individual-

level	allows	for	inclusion	of	covariates	(e.g.	location,	age,	size	of	individuals	

etc.)	in	subsequent	statistical	models,	either	in	combination	with	random	

effects	and	best	linear	unbiased	predictors	(BLUPs)	to	account	for	variation	

(for	example	between	different	sites,	genera	or	functional	groups)	or	as	fixed	

effects	to	test	hypotheses	of	the	causes	of	variation	between	individuals’	

phenology.	Co-Fourier	analysis	would	allow	testing	of	other	cyclic	factors	

(such	as	climate	data)	alongside	phenology	to	measure	synchrony.	The	

advantage	of	these	spectral	approaches	is	that	they	explicitly	model	the	

circular	nature	of	phenology	and	weather	data	without	losing	power	by	

clumping	data	points	into	arbitrary	time	periods	or	pseudo-replication.		

Detecting	long-term	changes	in	phenology	is	challenging	and	field	

observations	(Plumptre	2011)	are	vital	to	stimulate	hypotheses	and	further	

analysis.	However	it	will	be	increasingly	important	to	measure	the	statistical	

confidence	of	detected	changes.		To	date,	studies	of	change	in	tropical	

phenology	are	few	(Table	S2.1),	due	to	the	paucity	of	long-term	data.	Wavelet	

analysis	is	the	natural	extension	of	Fourier	into	the	time-frequency	domain	

(Hudson	et	al.	2010;	Polansky	et	al.	2010;	Wittemyer	et	al.	2008),	overcoming	

assumptions	of	stationarity,	to	estimate	the	spectrum	as	a	function	of	time	

(Cazelles	et	al.	2008).	For	phenology	research,	this	could	enable	analysis	of	

whether	individuals	or	species	reproduce	more	or	less	frequently	(e.g.	

change	in	dominant	cycle	length),	reproduce	at	the	same	frequency	but	with	

more	or	less	certainty	(e.g.	change	in	the	power	of	the	dominant	cycle)	or	

shift	phase	and	become	more	or	less	synchronised	over	time.	The	power	of	a	
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cycle	may	be	a	more	subtle	and	effective	indicator	for	change	than	frequency	

to	track	increasing	uncertainty	over	time,	especially	in	the	shorter	term.		

In	a	formal	comparison	of	this	Fourier-based	method	with	other	commonly	

used	methods	for	quantifying	phenology	(Appendix	B),	we	found	Fourier	is	

flexible	to	diverse	phenology	and	provides	a	suite	of	quantitative	information	

to	describe	seasonal	activity	with	attribution	of	variance	and	confidence.	

2.6.3 Steps forward 

We	have	shown	that	at	least	six	years	of	data	are	necessary	to	confidently	

detect	reproductive	cycles	amongst	our	species	sample.	For	data-collection	

scenarios	resulting	in	noisier	data	–	those	with	high	likelihood	of	

measurement	error	(e.g.	inconspicuous	flowers),	systematic	error	(e.g.	high	

inter-observer	uncertainty)	or	natural	variation	that	cannot	be	controlled	for	

(e.g.	diverse	array	of	phenological	responses	within	a	population)	–	it	will	be	

necessary	to	invest	in	large	samples	of	individuals	over	a	longer	time	period	

to	detect	cycles	confidently.	To	effectively	monitor	the	response	of	tropical	

forests	to	global	change,	it	will	be	necessary	to	focus	efforts	on	suitable	

indicator	species	–	those	with	good	signal	to	noise	ratios	-	to	maximise	

analytical	power	over	relatively	short	time	periods.		

For	many	phenology	research	questions,	collecting	sufficient	data	will	be	a	

challenge	and	require	significant	research	effort.	Ways	to	achieve	this	

include:	formation	of	research	networks	and	greater	coordination	of	

methods	and	objectives	between	sites,	internet-based	citizen-science	data	

collection	networks	and	technical	solutions	to	data	collection,	such	as	

automated	canopy	photography	and	GIS.		

2.6.4 Conclusions 

Phenology	is	a	key	adaptive	trait	shown	to	determine	species	distributions	

(Chuine	2010)	and	as	such	will	shape	how	ecosystems	respond	to	rapidly	

increasing	regional	and	global	changes	including	human	pressure.	With	the	

emergence	of	long-term	tropical	phenology	data,	the	need	also	emerges	for	

appropriate	analytical	methods	to	improve	our	understanding	of	the	
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functioning	of	ecosystems.	We	present	a	Fourier-based	method	that	can	be	

further	developed	and	tested,	to	give	simple,	flexible	and	quantifiable	

indicators	for	phenology	activity,	and	demonstrate	the	importance	of	

consistent	long-term	investment	in	phenological	research.	
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Table	S2.1	Summary	of	the	key	literature	analysing	long-term	tropical	phenology	(as	of	2016).		

	

 Reference Site Pheno-
phase1 

Data length 
(yrs) 

Analytical methods Scale Attribute 
confidence to 
results? 

Indicators4  

Data2  Analysis3 
D

es
cr

ib
in

g 
ph

en
ol

og
y Newstrom et al 

(1994) 
La Selva, Costa Rica FL 11 Graphical representation 

Categorisation 
Inds Comm (Inds) No Frequency (categorical) / 

Regularity / Duration / Amplitude / 
Timing 

Wright & 
Calderon (1995) 

BCI, Panama FL 5 Circular statistics Spp Comm (Spp) Yes Duration / Timing / Temporal 
concentration  

Sakai (1999) Lambir, Malaysia FL / FR 4.4 Categorisation 
Morisita's Index of aggregation 

Spp Comm (Guild (Inds) Yes Frequency (categorical) / 
Temporal distribution 

Sakai (2001) La Selva, Costa Rica / 
Lambir, Malaysia 

FL 11 / 4  Graphical representation Spp Comm (Inds) / (Spp) No Frequency (categorical) 

C
or

re
la

tin
g 

ph
en

ol
og

y 
w

ith
 w

ea
th

er
 

Chapman et al 
(1999) 

Kibale, Uganda FL / FR 6.34 Fourier analysis 
Coefficient of Dispersion (CD) 

Inds Comm (Spp) No Frequency 
CD 

Wright et al 
(1999) 

BCI and Gigante, 
Panama 

FR 8.5 Circular statistics 
Circular correlation analyses 

Spp Comm (Spp) Yes Productivity /Timing / Temporal 
concentration 

Anderson et al 
(2005) 

Taï National Park, 
Côte d’Ivoire 

L / FL / FR 3.9 Sinusoid-based regression  
Graphical representation 
 

Inds Comm 
Comm (Spp) 
 

Yes Frequency / Duration / Timing 

Sakai et al 
(2006) 

Lambir, Malaysia FL / FR 10 Spearman's rank correlation 
coefficient 

Inds Comm (Inds) Yes Productivity 

Cannon et al. 
(2007) 

Gunung Palung, 
Indonesia 

FR 5.7 Bootstrapping  
Finite mixture theory 

Inds Comm (Genera (Inds)) Yes Productivity 

Norden et al 
(2007) 

Nouragues, French 
Guiana 

FR 5  Modeled autocorrelation 
functions 

Spp Comm (Spp) 
 

Yes Frequency (categorical) 

Ting et al (2008) Global (48 studies) FR 1+ Circular statistics, GLMs, 
Circular correlations 

Spp Comm (Comms) Yes Duration / Timing 

Zimmerman et al 
(2007) 

EL Verde, Puerto Rico 
/ BCI, Panama 

FL / FR 10 / 15 Circular statistics  
Cross-correlation analysis 

Spp Comm (Spp) Yes Timing / Temporal concentration / 
Productivity 

Newbery et al 
(2013) 

Korup, Cameroon L / FL / FR 16 Logistic regression with GLMs Inds Spp (Inds) Yes Productivity 

Pau et al (2013) BCI, Panama / 
Luquillo, Puerto Rico 

FL 22 / 15 Regression analysis Spp Comm Yes Productivity 

D
et

ec
tin

g 
ch

an
ge

 

Chapman et al 
(2005) 

Kibale, Uganda FR 12 Graphical representation 
Regression analysis 

Inds Comm (Spp) Yes Productivity  
Coefficient of Variation 

Wright and 
Calderon (2006)  

BCI, Panama FL / FR 18 Cross-correlations  
Repeated one-way ANOVA  

Spp Comm (Guild) Yes Productivity  

Polansky and 
Boesch (2013) 

Taï National Park, 
Côte d'Ivoire 

FR 12 Semi-parametric generalized 
additive model (GAM) 
framework 

Inds Comm (Spp (Inds)) Yes Probability of phenophase 

Polansky and 
Robbins (2013) 

Bwindi, Uganda FR 7.9 Semi-parametric GAM 
framework 

Inds Comm (Spp (Inds)) Yes Probability of phenophase 

1Phenophase: L = leafing, FL = flowering, FR = fruiting; 2Scale at which data was collected: Inds = individuals, Spp = species; 3Scale at which data was analysed including hierarchical structure: Comm = 
community, Spp = species, Inds = individuals; 4Indicators derived from analysis with potential to be used more widely, for example to compare between sites or over time. Productivity refers to number of 
phenology events over a certain time period. 
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Table	S2.2.	List	of	Families	(n=26),	species	(n=70)	and	individuals	(n=856)	
included	in	Fourier	analysis.	

	Selected	according	to	the	following	criteria;	greater	than	five	years	continuous	data,	
no	data	gaps	greater	than	three	months,	at	least	one	flowering	event	and	no	records	of	
disease	or	death.	

	

	 	

Family Species N Family Species N
Mangifera	indica 5 Ficus	97 3
Pseudospondias	longifolia 2 Ficus	mucuso 2
Pseudospondias	microcarpa 12 Ficus	recurvata 4
Trichoscypha	acuminata 11 Milicia	excelsa 11
Annickia	chlorantha 10 Myrianthus	arboreus 12
Greenwayodendron	suaveolens 12 Treculia	africana 2
Monanthotaxis	congoensis 10 Pycnanthus	angolensis 15
Uvariastrum	pierreanum 12 Scyphocephalium	ochocoa 9
Xylopia	aethiopica 11 Staudtia	kamerunensis 11
Xylopia	hypolampra 10 MYRT Psidium	guineense 19
Xylopia	quintasii 12 Heisteria	parvifolia 11
Xylopia	sp593 3 Ongokea	gore 10
Aucoumea	klaineana 41 PAND Panda	oleosa 12
Canarium	schweinfurthii 10 Massularia	acuminata 10
Dacryodes	buettneri 11 Nauclea	diderrichii 18
Dacryodes	normandii 5 Nauclea	vanderguchtii 6
Santiria	trimera 9 Porterandia	cladantha 12

CALO Mammea	africana 8 Psychotria	vogeliana 29
CHRY Maranthes	glabra 9 Ganophyllum	giganteum 10
CLUS Pentadesma	butyracea 14 Lecaniodiscus	cupaniodes 5

Diospyros	dendo 27 Baillonella	toxisperma 8
Diospyros	mannii 7 Chrysophyllus	africanum 10
Diospyros	polystemon 18 Chrysophyllus	subnudum 3
Diospyros	zenkeri 8 Omphalocarpum	procerum 7
Antidesma	rufescens 1 SCYT Scytopetalum	spp 2
Antidesma	vogelianum 21 STER Cola	lizae 12
Uapaca	guineensis 29 TILI Duboscia	macrocarpa 11
Bobgunnia	fistuloides 11 ULMA Celtis	tessmannii 10
Detarium	macrocarpum 16 VERB Vitex	doniana 29
Dialium	lopense 35 VITA Cissus	dinklagei 11
Guibourtia	tessmannii 4
Parkia	bicolor 10
Pentaclethra	macrophylla 26
Pterocarpus	soyauxii 10
Tetrapleura	tetraptera 20

HUMI Sacoglottis	gabonensis 19
Irvingia	gabonensis 23
Irvingia	grandifolia 22
Klainedoxa	gabonensis 10

LAUR Beilschmeidia	fulva 8

SAPO

IRVI

MORA

MYRI

OLAC

RUBI

SAPI

ANAC

ANNO

BURS

EBEN

EUPH

FABA
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Table	S2.3.	List	of	species	with	key	outputs	from	Fourier	analysis	summarised	at	
the	species	level.		

Ordered	according	to	mean	power.	

	

	

A.	Species	with	>5	individuals	with	significant	dominant	cycles	(included	in	further	analysis)

Species Individuals
Significant	
cycles

Modal	cycle	
length	(months)

Mean	
power

Synchrony	-		sd	
phase	(months)

Maranthes	glabra 9 9 12 9.3 0.32
Xylopia	aethiopica 11 10 12 8.1 1.24
Pycnanthus	angolensis 15 15 12 7.5 0.17
Pentadesma	butyracea 14 12 12 6.7 0.46
Ongokea	gore 10 9 12 6.6 0.23
Duboscia	macrocarpa 11 11 18 5.9 4.81
Cissus	dinklagei 11 10 12 5.8 0.25
Antidesma	vogelianum 21 19 6 5.6 0.2
Porterandia	cladantha 12 12 12 5.6 0.13
Cola	lizae 12 12 12 5.4 0.25
Dacryodes	buettneri 11 10 12 4.9 0.13
Parkia	bicolor 10 10 12 4.9 1.24
Sacoglottis	gabonensis 19 15 12 4.8 0.25
Tetrapleura	tetraptera 20 12 12 4.7 0.9
Vitex	doniana 29 26 12 4.4 0.48
Greenwayodendron	suaveolens 12 5 12 4 0.36
Heisteria	parvifolia 11 11 12 3.9 0.27
Psidium	guineense 19 10 6 3.8 0.11
Monanthotaxis	congoensis 10 10 12 3.8 0.19
Scyphocephalium	ochocoa 9 5 12 3.7 0.15
Psychotria	vogeliana 29 18 6 3.6 0.11
Canarium	schweinfurthii 10 7 12 3.6 0.65
Dialium	lopense 35 14 12 3.5 0.19
Staudtia	kamerunensis	var.	gabonensis 11 9 12 3.5 0.31
Diospyros	mannii 7 5 12 3.5 0.5
Uapaca	guineensis 29 19 12 3.4 0.31
Santiria	trimera 9 6 12 3.1 1.68
Diospyros	polystemon 18 16 12 3 0.15
Irvingia	gabonensis 23 13 12 3 0.25
Aucoumea	klaineana 41 18 12 2.9 0.23
Xylopia	quintasii 12 6 12 2.9 0.21
Diospyros	dendo 27 16 12 2.8 0.23
Celtis	tessmannii 10 9 12 2.8 0.1
Pentaclethra	macrophylla 26 7 12 2.8 0.52
Diospyros	zenkeri 8 6 12 2.8 0.08
Ganophyllum	giganteum 10 10 12 2.6 0.11
Irvingia	grandifolia 22 9 12 2.6 0.17
Trichoscypha	acuminata 11 8 12 2.6 0.19
Uvariastrum	pierreanum 12 6 12 2.5 0.23
Detarium	macrocarpum 16 11 12 2.4 0.23
Pseudospondias	microcarpa 12 6 6 2.4 0.17
Klainedoxa	gabonensis 10 6 12 2.1 0.25

Total	(only	species	in	A) 664 458
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B.	Species	with	<5	individuals	with	significant	cycles	(excluded	from	further	analysis)

Species Individuals
Significant	
cycles

Modal	cycle	
length	(months)

Mean	
power

Synchrony	-		sd	
phase	(months)

Mangifera	indica 5 3 12 5.5 0.13
Guibourtia	tessmannii 4 3 12 4.1 0
Omphalocarpum	procerum 7 2 6 3.5 0
Antidesma	rufescens 1 1 6 3.5 0
Bobgunnia	fistuloides 11 3 11 3.2 0
Treculia	africana 2 1 12 3.2 0
Chrysophyllus	subnudum 3 3 12 3.1 0.21
Myrianthus	arboreus 12 4 12 3 0.86
Mammea	africana 8 3 12 2.9 0.06
Nauclea	diderrichii 18 3 12 2.8 0.1
Xylopia	sp593 3 3 12 2.8 0.38
Massularia	acuminata 10 1 32 2.7 0
Annickia	chlorantha 10 3 12 2.6 0.21
Beilschmeidia	fulva 8 1 12 2.6 0
Xylopia	hypolampra 10 4 12 2.5 0.04
Panda	oleosa 12 3 2 2.5 0
Chrysophyllus	africanum 10 1 12 2.4 0
Nauclea	vanderguchtii 6 1 12 2.4 0
Milicia	excelsa 11 3 6 2.2 0
Pseudospondias	longifolia 2 2 4 2.2 0
Pterocarpus	soyauxii 10 1 12 2 0
Ficus	mucuso 2 1 2 2 0
Lecaniodiscus	cupaniodes 5 1 12 1.8 0
Scytopetalum	spp 2 0 NA NA NA
Baillonella	toxisperma 8 0 NA NA NA
Ficus	recurvata 4 0 NA NA NA
Ficus	97 3 0 NA NA NA
Dacryodes	normandii 5 0 NA NA NA

Total	(all	species	in	A	+	B) 856 509

Mean	(all	species	in	A	+	B) 12.0 7.0
SD	(all	species	in	A	+	B) 8.1 5.8
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Table	S2.4.	Outputs	from	a	model	for	the	likelihood	of	detecting	significant	
regular	cycles	using	all	available	field	data.		

Estimates	are	from	a	Generalised	Linear	Mixed-effects	Model	(family=Binomial).	The	
predictors	are	the	length	of	the	time	series	(Years)	and	Species	are	included	as	random	
intercepts;	SE	=	standard	error.	

	

Estimate	 SE	 Z	value	 P	value	

Fixed	effects:	

	 	 	 	Years	 0.10	 0.02	 6.42	 <0.001	

	 	 	 	 	Random	effects:	

	 	 	 	Pycnanthus	angolensis	 2.11	

	 	 	Porterandia	cladantha	 1.62	

	 	 	Cissus	dinklagei	 1.39	

	 	 	Cola	lizae	 1.39	

	 	 	Duboscia	macrocarpa	 1.36	

	 	 	Ganophyllum	giganteum	 1.12	

	 	 	Heisteria	parvifolia	 1.11	

	 	 	Monanthotaxis	congoensis	 1.10	

	 	 	Chrysophyllus	subnudum	 1.05	

	 	 	Parkia	bicolor	 1.05	

	 	 	Maranthes	glabra	 0.98	

	 	 	Xylopia	aethiopica	 0.73	

	 	 	Antidesma	rufescens	 0.66	

	 	 	Xylopia	sp593	 0.51	

	 	 	Pseudospondias	longifolia	 0.48	

	 	 	Antidesma	vogelianum	 0.46	

	 	 	Vitex	doniana	 0.44	

	 	 	Diospyros	polystemon	 0.08	

	 	 	Sacoglottis	gabonensis	 -0.13	

	 	 	Pentadesma	butyracea	 -0.29	

	 	 	Dacryodes	buettneri	 -0.40	

	 	 	Ongokea	gore	 -0.46	

	 	 	Diospyros	zenkeri	 -0.54	

	 	 	Celtis	tessmannii	 -0.66	

	 	 	Tetrapleura	tetraptera	 -0.92	
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Staudtia	kamerunensis	var.	gabonensis	 -0.95	

	 	 	Guibourtia	tessmannii	 -0.95	

	 	 	Mangifera	indica	 -1.04	

	 	 	Psychotria	vogeliana	 -1.05	

	 	 	Diospyros	mannii	 -1.08	

	 	 	Santiria	trimera	 -1.09	

	 	 	Omphalocarpum	procerum	 -1.11	

	 	 	Uapaca	guineensis	 -1.13	

	 	 	Canarium	schweinfurthii	 -1.26	

	 	 	Detarium	macrocarpum	 -1.30	

	 	 	Trichoscypha	acuminata	 -1.39	

	 	 	Diospyros	dendo	 -1.49	

	 	 	Scyphocephalium	ochocoa	 -1.61	

	 	 	Psidium	guineense	 -1.63	

	 	 	Irvingia	gabonensis	 -1.68	

	 	 	Xylopia	hypolampra	 -1.75	

	 	 	Dialium	lopense	 -2.02	

	 	 	Ficus	mucuso	 -2.05	

	 	 	Mammea	africana	 -2.05	

	 	 	Aucoumea	klaineana	 -2.08	

	 	 	Bobgunnia	fistuloides	 -2.10	

	 	 	Treculia	africana	 -2.10	

	 	 	Xylopia	quintasii	 -2.13	

	 	 	Irvingia	grandifolia	 -2.21	

	 	 	Uvariastrum	pierreanum	 -2.25	

	 	 	Pseudospondias	microcarpa	 -2.32	

	 	 	Panda	oleosa	 -2.32	

	 	 	Klainedoxa	gabonensis	 -2.41	

	 	 	Greenwayodendron	suaveolens	 -2.49	

	 	 	Pentaclethra	macrophylla	 -2.59	

	 	 	Myrianthus	arboreus	 -2.61	

	 	 	Beilschmeidia	fulva	 -2.66	

	 	 	Massularia	acuminata	 -2.71	

	 	 	Annickia	chlorantha	 -3.19	
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Chrysophyllus	africanum	 -3.23	

	 	 	Lecaniodiscus	cupaniodes	 -3.24	

	 	 	Scytopetalum	spp	 -3.25	

	 	 	Milicia	excelsa	 -3.52	

	 	 	Ficus	97	 -3.55	

	 	 	Nauclea	diderrichii	 -3.57	

	 	 	Dacryodes	normandii	 -3.57	

	 	 	Baillonella	toxisperma	 -3.58	

	 	 	Nauclea	vanderguchtii	 -3.87	

	 	 	Ficus	recurvata	 -3.97	

	 	 	Pterocarpus	soyauxii	 -4.53	

	 	 		 	



	

	
58	

Table	S2.5.		Outputs	from	a	model	for	the	likelihood	of	detecting	significant	
annual	cycles	after	power	analysis	of	annually	cycling	field	data.	

Estimates	are	from	a	Generalised	Linear	Model	(family=Binomial).	The	predictors	are	
the	length	of	the	time	series	(Months)	and	Species	derived	from	a	power	analysis	to	
show	the	impact	of	time	series	length	(2-20	years	window	length)	for	detecting	
periodicity	(10,000	samples	from	233	individuals	of	30	species);	SE	=	standard	error.	

	
Estimate	 SE	 Z	value	 P	value	

Months	 0.03	 0.00	 12.54	 <0.001	

Cola	lizae	 -1.87	 0.27	 -7.05	 <0.001	

Greenwayodendron	suaveolens	 -1.96	 0.39	 -5.00	 <0.001	

Parkia	bicolor	 -2.25	 0.28	 -8.08	 <0.001	

Cissus	dinklagei	 -2.27	 0.31	 -7.37	 <0.001	

Detarium	macrocarpum	 -2.61	 0.37	 -7.03	 <0.001	

Monanthotaxis	congoensis	 -2.72	 0.31	 -8.82	 <0.001	

Canarium	schweinfurthii	 -2.77	 0.39	 -7.04	 <0.001	

Heisteria	parvifolia	 -2.80	 0.27	 -10.28	 <0.001	

Uapaca	guineensis	 -2.87	 0.38	 -7.52	 <0.001	

Celtis	tessmannii	 -2.92	 0.32	 -9.06	 <0.001	

Dacryodes	buettneri	 -2.93	 0.31	 -9.38	 <0.001	

Ongokea	gore	 -2.97	 0.41	 -7.28	 <0.001	

Ganophyllum	giganteum	 -2.98	 0.38	 -7.86	 <0.001	

Irvingia	grandifolia	 -3.13	 0.37	 -8.57	 <0.001	

Xylopia	quintasii	 -3.41	 0.45	 -7.55	 <0.001	

Irvingia	gabonensis	 -3.47	 0.50	 -6.91	 <0.001	

Diospyros	zenkeri	 -3.48	 0.48	 -7.23	 <0.001	

Klainedoxa	gabonensis	 -3.67	 0.53	 -6.94	 <0.001	

Diospyros	dendo	 -3.84	 0.52	 -7.34	 <0.001	

Staudtia	kamerunensis	var.	gabonensis	 -3.99	 0.41	 -9.78	 <0.001	

Vitex	doniana	 -4.18	 0.52	 -8.03	 <0.001	

Pentadesma	butyracea	 -4.27	 0.59	 -7.19	 <0.001	

Porterandia	cladantha	 -4.43	 0.61	 -7.24	 <0.001	

Diospyros	polystemon	 -4.49	 0.49	 -9.27	 <0.001	

Aucoumea	klaineana	 -4.68	 0.36	 -12.82	 <0.001	

Santiria	trimera	 -4.90	 0.62	 -7.85	 <0.001	

Uvariastrum	pierreanum	 -4.95	 0.73	 -6.82	 <0.001	

Maranthes	glabra	 -5.01	 0.88	 -5.72	 <0.001	
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Trichoscypha	acuminata	 -5.72	 0.62	 -9.20	 <0.001	

Pycnanthus	angolensis	 -6.44	 1.19	 -5.43	 <0.001	

Months	*Maranthes	glabra	 0.07	 0.02	 4.41	 <0.001	

Months	*Pycnanthus	angolensis	 0.07	 0.02	 4.08	 <0.001	

Months	*Porterandia	cladantha	 0.03	 0.01	 4.19	 <0.001	

Months	*Pentadesma	butyracea	 0.03	 0.01	 4.17	 <0.001	

Months	*Vitex	doniana	 0.02	 0.01	 3.56	 <0.001	

Months	*Ongokea	gore	 0.01	 0.01	 2.73	 <0.01	

Months	*Trichoscypha	acuminata	 0.01	 0.00	 1.30	 0.19	

Months	*Santiria	trimera	 0.01	 0.00	 1.10	 0.27	

Months	*Staudtia	kamerunensis	var.	gabonensis	 0.00	 0.00	 1.14	 0.26	

Months	*Uapaca	guineensis	 0.00	 0.00	 0.44	 0.66	

Months	*Canarium	schweinfurthii	 0.00	 0.00	 0.28	 0.78	

Months	*Dacryodes	buettneri	 0.00	 0.00	 0.18	 0.85	

Months	*Irvingia	gabonensis	 0.00	 0.00	 -0.98	 0.33	

Months	*Uvariastrum	pierreanum	 0.00	 0.00	 -1.00	 0.32	

Months	*Heisteria	parvifolia	 -0.01	 0.00	 -1.68	 0.09	

Months	*Diospyros	polystemon	 -0.01	 0.00	 -1.45	 0.15	

Months	*Irvingia	grandifolia	 -0.01	 0.00	 -1.95	 0.05	

Months	*Diospyros	zenkeri	 -0.01	 0.00	 -1.94	 0.05	

Months	*Parkia	bicolor	 -0.01	 0.00	 -2.32	 <0.05	

Months	*Cissus	dinklagei	 -0.01	 0.00	 -2.42	 <0.05	

Months	*Cola	lizae	 -0.01	 0.00	 -2.72	 <0.01	

Months	*Xylopia	quintasii	 -0.01	 0.00	 -2.57	 <0.05	

Months	*Celtis	tessmannii	 -0.01	 0.00	 -3.04	 <0.01	

Months	*Ganophyllum	giganteum	 -0.01	 0.00	 -3.07	 <0.01	

Months	*Monanthotaxis	congoensis	 -0.01	 0.00	 -3.51	 <0.001	

Months	*Diospyros	dendo	 -0.01	 0.00	 -3.18	 <0.01	

Months	*Klainedoxa	gabonensis	 -0.01	 0.00	 -3.15	 <0.01	

Months	*Detarium	macrocarpum	 -0.01	 0.00	 -4.50	 <0.001	

Months*Greenwayodendron	suaveolens	 -0.02	 0.00	 -4.58	 <0.001	
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Chapter 3 

Towards	effective	monitoring	of	tropical	

phenology:	maximizing	returns	and	

reducing	uncertainty	in	long-term	

studies	

A version of this chapter has been published as:  

Bush, E.R., Bunnefeld, N., Dimoto, E., Dikangadissi, J.T., Jeffery, K., 

Tutin, C., White, L. and Abernethy, K.A., 2018. Towards effective 

monitoring of tropical phenology: maximizing returns and reducing 

uncertainty in long‐term studies. Biotropica, 50(3), pp.455-464. 

 

EB, NB and KA formulated the research idea. KA, KJ, CT, LW, ED, JTD 

and EB collected and archived the data and EB performed analyses with 

advice from KA and NB.  All authors commented on draft versions of this 

manuscript, and the published version formatted for the thesis is 

presented here.  
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3.1 Abstract 

Phenology	is	a	key	component	of	ecosystem	function	and	is	increasingly	

included	in	assessments	of	ecological	change.	We	consider	how	existing,	and	

emerging,	tropical	phenology	monitoring	programs	can	be	made	most	

effective	by	investigating	major	sources	of	noise	in	data	collection	at	a	long-

term	study	site.	Researchers	at	Lopé	NP,	Gabon,	have	recorded	monthly	

crown	observations	of	leaf,	flower	and	fruit	phenology	for	88	plant	species	

since	1984.	For	a	subset	of	these	data,	we	first	identified	dominant	regular	

phenological	cycles,	using	Fourier	analysis,	and	then	tested	the	impact	of	

observation	uncertainty	on	cycle	detectability,	using	expert	knowledge	and	

generalized	linear	mixed	modelling	(827	individual	plants	of	61	species).	We	

show	that	experienced	field	observers	can	provide	important	information	on	

major	sources	of	noise	in	data	collection	and	that	observation	length,	

phenophase	visibility	and	duration	are	all	positive	predictors	of	cycle	

detectability.	We	find	that	when	a	phenological	event	lasts	>	four	weeks,	an	

additional	10	years	of	data	increases	cycle	detectability	by	114	percent	and	

that	cycle	detectability	is	92	percent	higher	for	the	most	visible	events	

compared	to	the	least.	We	also	find	that	cycle	detectability	is	four	times	as	

high	for	flowers	compared	to	ripe	fruits	after	10	years.	To	maximise	returns	

in	the	short-term,	resources	for	long-term	monitoring	of	phenology	should	be	

targeted	towards	highly	visible	phenophases	and	events	that	last	longer	than	

the	observation	interval.	In	addition,	programs	that	monitor	flowering	

phenology	are	likely	to	accurately	detect	regular	cycles	more	quickly	than	

those	monitoring	fruits,	thus	providing	a	baseline	for	future	assessments	of	

change.	

3.2 Introduction 

While	the	impacts	of	climate	change	on	phenology	are	widely	acknowledged 

(Cleland	et	al.	2007;	Chambers	et	al.	2013),	most	of	the	evidence	is	

geographically	and	taxonomically	biased	towards	temperate	regions	and	

vertebrates	(Feeley	et	al.	2017).	There	is	little	data	available	to	assess	change	

in	tropical	plant	phenology	and,	to	date,	few	relevant	published	studies	(but	
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see	Pau	et	al.	2013	and	Chapman	et	al.	2018	for	recent	examples).	The	lack	of	

evidence	for	phenological	change	in	the	tropics	should	not	be	taken	as	

evidence	of	no	change,	but	instead	reflects	the	paucity	of	long-term	data	

records	and	the	complexity	of	monitoring	highly	diverse	tropical	ecosystems.	

The	question	remains	as	to	how	to	fill	this	evidence-gap	and	assess	both	

stability	and	change	in	phenological	function.	

Phenology	datasets	that	have	already	supported	effective	statistical	tests	of	

change	have	been	either	very	long	-	for	example	Japanese	cherry	blossom	

records	began	in	the	9th	century	(Aono	&	Kazui	2008;	Primack	et	al.	2009)	-	

or	very	widespread	-	for	example	The	International	Phenology	Gardens	

network,	initiated	in	1957,	includes	89	European	sites	across	28	latitudes	

(Humboldt-University	of	Berlin	2012).	The	most	widespread	contemporary	

phenology	monitoring	programs	are	those	that	involve	citizen	scientists,	

make	use	of	accessible	technology	-	such	as	smartphones	apps	-	and	

observations	made	in	everyday	life	(e.g.	the	USA	National	Phenology	

Network’s	“Nature’s	Notebook”,	USA-NPN	2017).	From	these	successful	

temperate	examples	we	learn	that	to	achieve	phenology	datasets	with	strong	

statistical	power	(long-term,	widespread	etc.),	data	collection	methods	need	

to	have	real	sticking	power	(cultural	importance,	familiarity,	appeal	to	a	large	

spread	of	people	and	ease	of	recording).	

It	is	apparent	that	such	“sticking	power”	remains	a	challenge	in	the	tropics.	

Even	among	science-led	monitoring	programs,	there	is	little	coordination	of	

recording	effort	across	multiple	sites	(Adole	et	al.	2016;	Morellato	et	al.	

2016),	fieldwork	is	often	remote	and	logistically	challenging	and	financial	

resources	for	long-term	monitoring	are	extremely	limited	meaning	that	few	

sites	can	be	considered	long-term	(e.g.	>10	years	continuous	moniroting;	

Mendoza	et	al.	2017;	Adamescu	et	al.	2018).	In	addition,	many	of	the	tropical	

phenology	studies	that	are	now	invaluable	to	assess	global	change	were	

originally	conceived	for	the	study	of	resource	availability	and	are	not	

necessarily	optimised	to	study	climate-change	impacts	on	plants	(e.g.	

phenology	monitoring	at	Lopé	NP	was	originally	set	up	in	1984	to	study	

Gorilla	and	Chimpanzee	foraging:	Tutin	et	al.	1991).		
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While	a	complete	redesign	of	tropical	phenology	monitoring	programs	within	

tightly	coordinated	networks	would	be	ideal,	we	do	not	consider	it	to	be	

feasible	immediately,	nor	can	it	can	reach	into	the	past.	Instead	we	ask:	How	

can	we	ensure	that	existing	science-led	phenology	monitoring	programs	are	

allocating	limited	resources	most	effectively	for	their	research	aims?	

There	are	two	ways	to	improve	statistical	power	in	analyses	of	data	from	

phenology	monitoring	programs:	(1)	increase	sample	size;	and	(2)	reduce	

noise.	Sample	size	can	be	restrictive	both	spatially	(e.g.	the	number	of	sites	

recording	phenology	data	or	the	area	/	number	of	individuals	monitored)	

and	temporally	(e.g.	the	length	of	the	study).	The	spatial	sample	determines	

the	scope	of	potential	research	questions	while	the	length	of	study	positively	

affects	the	detectability	of	regular	phenological	cycles	(Bush	et	al.	2017)	and	

phenological	shifts	(Chambers	et	al.	2013).	Noise	can	be	introduced	to	

phenology	data	through	both	“process	uncertainty”	(how	well	we	can	predict	

ecological	processes	e.g.	the	regularity	of	phenological	cycles)	and	

“observation	uncertainty”	(how	easily	we	can	observe	and	record	ecological	

events).	Different	life-cycle	events	and	stages	such	as	development	of	leaves,	

flower	and	fruits,	even	from	the	same	species,	may	differ	in	regularity	and/or	

ease	of	observation,	leading	to	systematic	biases	in	phenology	recording	

related	to	the	frequency	and	type	of	observations	(see	Regan	et	al.	2008	for	a	

full	description	and	“taxonomy”	of	the	different	uncertainties	associated	with	

ecological	data).	

To	explore	this	further,	we	present	hypothetical	scenarios	of	crown	

phenology	observations	subject	to	different	combinations	of	process	and	

observation	uncertainty	and	demonstrate	how	interpretation	of	the	data	

without	careful	consideration	of	the	source	of	noise	could	lead	to	erroneous	

conclusions.	For	species	where	a	phenological	event	is	easy	to	see	(e.g.	large,	

brightly	coloured	flowers	that	contrast	with	the	leaf	canopy	or	cauliflorous	

flowers	on	the	trunk	of	the	tree),	most	observations	will	be	accurate	and	it	

will	be	straightforward	to	tell	from	the	recorded	data	if	the	actual	cycle	is	

regular	or	irregular	(Figure	3.1A-C,	Observation	uncertainty	=	Low,	Process	

uncertainty	=	Low:	High).	On	the	other	hand,	if	for	another	species	the	same	
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phenological	event	is	difficult	to	see	(e.g.	flowers	that	are	very	small,	held	

high	in	the	canopy	or	persist	for	just	a	few	days),	data	are	likely	to	be	

recorded	imperfectly	and	the	cycle	may	appear	irregular	(Figure	3.1G-H,	

Observation	uncertainty	=	High,	Process	uncertainty	=	Low:	High).	Without	

quantifying	the	observation	biases	for	these	species,	it	will	be	impossible	to	

differentiate	if	their	actual	cycles	are	regular	or	irregular	as	an	inaccurately	

recorded	regular	cycle	will	look	similar	to	an	accurately	recorded	irregular	

cycle	(Figure	3.1G	compared	to	Figure	3.1C).	This	distinction	is	important	as	

adaptive	features	of	the	phenological	cycle	itself	and	changes	in	predictability	

or	synchrony	will	be	of	great	interest	to	the	global	change	community,	

whereas	apparent	irregularity	derived	from	inaccurate	observation	will	not.	

In	this	paper,	we	seek	to	quantify	observation	biases	between	species	and	

phenophases	at	our	study	site,	Lopé	NP,	Gabon,	in	order	to	direct	precious	

resources	where	they	are	likely	to	give	robust	data	and	to	include	important	

sources	of	variation	in	future	explanatory	models	of	plant	phenology	and	

ecological	change.	
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Figure	3.1.	Simulated	data	scenarios	to	show	the	impacts	of	both	
observation	and	process	uncertainty	on	recorded	time	series	compared	to	
real	time	series.		
Red	solid	lines	indicate	observed	scores	where	as	grey	dashed	lines	indicate	
actual	scores.	Observation	uncertainty	is	“low”	when	a	phenological	event	is	easy	
to	see	and	the	recorded	time	series	closely	matches	the	real	time	series	and	
“high”	when	a	phenological	event	is	difficult	to	see	leading	to	many	missing	
observations	and	a	recorded	time	series	that	does	not	closely	match	the	real	
time	series.	Process	uncertainty	is	“low”	when	phenological	events	occur	in	
clean,	regular	cycles	and	are	easy	to	predict	and	is	“high”	when	phenological	
events	occur	in	noisy,	irregular	cycles	and	are	difficult	to	predict.	From	the	
recorded	time	series	alone,	it	is	impossible	to	differentiate	between	a	record	with	
high	process	uncertainty	but	low	observation	uncertainty	(bottom	left)	and	a	
record	with	low	process	uncertainty	but	high	observation	uncertainty	(top	
right).	
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Quantifying	observation	uncertainty	for	different	phenological	events	is	not	

easy	as	there	are	multiple	sources	of	variation	-	specific	to	the	phenology	

sampling	method	in	question	-	that	lead	to	systematic	observation	biases.	At	

Lopé,	phenology	monitoring	takes	the	form	of	crown	observations,	and	

variation	in	the	“visibility”	of	phenological	events	and	their	“duration”	are	

likely	to	be	key	factors	contributing	to	uncertainty.	Visibility,	however,	is	

inherently	subjective	from	the	point	of	view	of	the	observers.	For	example,	

the	size	of	a	flower	or	fruit	is	likely	to	influence	how	visible	it	is,	but	so	will	its	

colour,	or	the	distance	it	is	held	from	the	observer	(e.g.	a	large	green	flower	

high	up	in	the	canopy	may	be	less	“visible”	than	a	small,	red	flower	lower	in	

the	canopy	or	a	cauliflorous	flower	growing	from	the	tree	trunk).	In	order	to	

capture	this	information	many	multiple	axes	of	variation	would	need	to	be	

measured	and	then	calibrated	with	the	observer	experience.	Such	empirical	

data	is	not	readily	available	and	so	instead,	we	sought	to	describe	the	

visibility	and	duration	of	phenology	events	using	expert	knowledge	elicited	

from	long-term	phenology	observers	at	our	site.	These	experts	hold	

substantive	knowledge	of	the	ecosystem	based	on	their	personal	experience	

over	many	years	of	fieldwork	at	the	site	(Martin	et	al.	2012).	

Considering	data	for	all	species	and	phenological	events	(leaf,	flower	and	

fruit	cycles,	hereafter	“phenophases”)	recorded	as	part	of	the	Lopé	long-term	

phenology	study,	alongside	expert	knowledge	for	observation	uncertainty,	

we	ask	the	following	questions:	(1)	Can	observation	uncertainty	be	

quantified?	(2)	Does	observation	uncertainty	impact	detectability	of	regular	

cycles	among	different	species	and	phenophases?	(3)	What	are	the	relative	

contributions	of	different	sources	of	observation	uncertainty	to	cycle	

detectability?	We	believe	that	the	analysis	presented	here,	using	rare,	long-

term	data,	will	help	to	improve	resource	allocation	and	sample	design	at	

other	existing	and	emerging	tropical	phenology	programs	and	aid	robust	

assessments	of	phenological	change	in	the	future.	 	
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3.3 Methods 

3.3.1 The Lopé long-term phenology study 

Since	1984,	researchers	at	the	Station	d’Études	des	Gorilles	and	Chimpanzées	

(SEGC)	in	Lopé	National	Park,	Gabon	have	recorded	leaf,	flower	and	fruit	

phenology	monthly	for	88	species	of	tropical	trees	and	shrubs	(>1000	

individuals)	spread	over	an	area	of	33km2.	The	SEGC	study	area	is	situated	in	

a	tropical	forest-savanna	matrix	with	an	equatorial	climate	characterised	by	

two	dry	and	two	wet	seasons	annually	(see	Tutin	&	White	1998	for	detailed	

site	description).	At	the	beginning	of	every	month	(usually	completed	within	

the	first	seven	working	days),	SEGC	researchers	examine	the	crowns	of	each	

plant	from	the	ground	with	10	x	42	binoculars	and	record	the	proportion	of	

the	canopy	covered	by	each	phenophase	(new	and	senescent	leaves,	flowers,	

unripe	and	ripe	fruits)	as	a	scale	from	zero	to	four	(including	half	points;	

Tutin	&	Fernandez	1993;	Tutin	&	White	1998).		The	data	recorded	for	each	

phenophase	form	multiple	continuous	time	series	for	each	individual	tree.	

Data	are	only	recorded	autonomously	by	observers	with	more	than	one	years	

experience	with	the	plant	species	involved	and	working	under	another	

observer.	Data	have	been	recorded	by	a	total	of	only	ten	observers	

throughout	the	387	months	(32	years)	of	continuous	observations,	with	

individual	observers	making	continuous	contributions	of	2-20	years.	Thus	

this	dataset	is	likely	to	have	minimal	(but	not	zero)	inter-observer	biases.	

3.3.2 Detecting phenology Cycles Using Fourier Analysis 

We	excluded	data	collected	before	1986	when	the	project	was	being	

established	and	made	selections	for	further	analysis	according	to	the	

following	criteria;	more	than	five	years	continuous	data	for	each	individual	

plant,	no	data	gaps	greater	than	three	months,	and	no	persistent	records	of	

disease	(e.g.	field	comments	referring	to	the	ill-health	of	a	tree	consistently	

for	more	than	a	year).	The	resulting	sample	consisted	of	4280	continuous	

time	series	for	new	and	senescent	leaves,	flowers,	unripe	and	ripe	fruits	from	

856	individual	plants	of	70	species.	The	number	of	individuals	per	species	

ranged	from	one	to	41,	with	a	mean	of	12,	while	the	length	of	time	individual	
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plants	were	monitored	ranged	from	60	to	353	months,	with	a	mean	of	249	

months.		

To	identify	the	dominant	regular	cycle	for	each	time	series	in	this	sample	we	

used	Fourier	analysis;	Fourier	is	a	form	of	spectral	analysis	based	on	sine	and	

cosine	waves	that	can	be	used	to	quantitatively	describe	the	cyclic	nature	of	

any	time	series	data	(Bloomfield	2000).	We	used	a	confidence	test,	based	on	

95%	confidence	intervals	and	a	null	hypothesis	of	“no	cyclicity”,	to	determine	

if	the	dominant	cycle	was	objectively	different	to	surrounding	noise.	We	refer	

to	a	“detected	cycle”	as	one	that	can	be	quantified	and	considered	significant	

according	to	this	method.	A	full	explanation	of	the	Fourier	methods	used	and	

our	data	selection	criteria	is	given	in	Chapter	2	(Bush	et	al.	2017).	

3.3.3 Eliciting expert-knowledge on two major sources of 

observation uncertainty. 

We	gathered	expert	knowledge	to	describe	the	observation	uncertainty	

associated	with	each	phenophase	for	every	species	in	our	study.	Following	

the	recommendations	of	Martin	et	al.	(2012)	the	authors	of	this	study	were	

assigned	different	(sometimes	multiple)	roles	in	the	process	of	expert	

elicitation;	EB,	NB	and	KA	acted	as	the	“problem	owners”	defining	the	

questions	and	design	of	the	expert	survey,	while	KA,	LW,	ED	and	CT	were	the	

“experts”,	each	of	whom	had	recorded	phenology	data	at	SEGC	for	more	than	

15	years.	EB	and	NB	were	the	“analysts”	and	independently	processed	the	

expert	responses	and	analysed	the	data.		

EB	and	the	station	manager	at	SEGC	facilitated	the	process	of	expert	

elicitation	in	February	2016.	For	ease	of	interpretation	by	all	experts	we	

chose	to	elicit	knowledge	on	observation	uncertainty	in	the	form	of	

categorical	measures	(Kuhnert	et	al.	2010).	The	experts	were	independently	

presented	with	a	survey	listing	all	species	monitored	at	SEGC	and	five	

phenophases	(new	and	senescent	leaves,	flowers,	unripe	and	ripe	fruits)	and	

asked	to	record	their	perception	of	both	the	visibility	and	duration	for	each.	

Phenophase	visibility	was	presented	as	a	score	from	one	to	three,	

representing	events	that	are	“Difficult	to	see”,	“Easy	to	see”	and	“Very	
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obvious”.	Phenophase	duration	was	presented	as	a	binary	category:	“events	

lasting	<=	4	weeks”	or	“events	lasting	>4	weeks”	(the	four	week	interval	

corresponding	to	the	field	observation	frequency).	The	observers	were	

informed	that	they	were	allowed	to	leave	an	answer	blank	if	they	were	

unsure.		

A	correlation	matrix	for	phenophase	visibility	showed	that	scores	were	

positively	correlated	between	all	observer	pairs,	ranging	from	0.13	to	0.38	

(mean	=	0.27;	Figure	S3.1).	To	combine	the	expert	judgements	we	took	group	

averages	(Martin	et	al.	2012)	by	calculating	mean	event	visibility	and	modal	

duration	category	for	each	species-phenophase.	We	excluded	15%	of	species-

phenophase	visibility	scores	because	fewer	than	three	observers	provided	an	

answer,	and	31%	of	species-phenophase	duration	scores	because	either	

fewer	than	three	observers	provided	an	answer	or	there	was	no	clear	

majority	(e.g.	if	two	observers	considered	an	event	to	last	<=	4	weeks	and	

two	observers	considered	an	event	to	last	>	4	weeks).	This	may	occur	when	

the	true	event	duration	is	around	four	weeks	and	thus	the	phenophase	

cannot	be	easily	assigned	to	either	category.	

3.3.4 Modelling the impact of observation uncertainty 

on cycle detection among phenology data. 

To	compare	how	different	sources	of	observation	uncertainty	contribute	to	

variation	in	cycle	detectability	we	combined	the	data	derived	from	the	4280	

times	series	used	in	Fourier	analysis	with	the	observer	scores	for	

phenophase	visibility	and	duration.	We	only	included	species	with	more	than	

three	observed	individuals	and	complete	information	on	phenophase	

visibility	and	duration,	resulting	in	a	final	sample	of	3083	time	series	from	

827	individuals	(61	species).	Before	analysis,	we	standardized	predictors	by	

scaling	them	to	mean	=	0	and	standard	deviation	=	2	to	allow	meaningful	

comparison	of	effect	sizes	(Schielzeth	2010;	Table	3.1).		
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Table	3.1.	Key	summary	statistics	and	definitions	of	all	predictors	included	in	
the	maximal	model.	

	

a	Level	of	data-collection	for	variable	(ID	=	Tree	ID;	Sp-Ph	=	Species-phenophase)	

b	Summary	statistics	for	variables	included	in	binomial	GLMM	pre-scaling	

c	Code	for	scaled	predictor	included	in	binomial	GLMM	

	

To	test	the	effects	of	phenophase	visibility	(Visibility	Scaled)	and	phenophase	

duration	(Duration)	on	the	likelihood	of	detecting	a	cycle	we	used	a	

Generalized	Linear	Mixed	Model	(GLMM,	family	=	binomial,	link	=	logit).	As	

we	already	know	time	series	length	is	an	important	positive	predictor	of	

cycle	detection	(Chapter	2;	Bush	et	al.	2017)	we	included	it	as	a	fixed	effect	in	

the	model	(Length	Scaled).		

In	our	mixed	model	we	included	the	grouping	factors	tree	ID,	Species	and	

Phenophase	as	random	intercepts	and	all	continuous	predictors	as	random	

slopes	by	Phenophase.	First,	this	reflected	the	hierarchical	nature	of	the	data	

(multiple	phenophases	simultaneously	recorded	per	individual	tree;	duration	

and	visibility	scored	at	the	level	of	the	species-phenophase)	and	second,	it	

Variable Definition Level a Summary statistics b Predictor c 

Time series 

length 

Length of continuous 

observation of tree in 

months. 

ID Continuous (Mean = 251; 

SD = 93.9; Min = 60.0; 

Max = 353) 

Length Scaled 

Phenophase 

visibility 

Mean observer score for 

visibility, 1 (Difficult to see) 

to 3 (Very obvious).  

Sp-Ph Continuous (Mean = 

2.27; SD = 0.43; Min = 

1.0; Max = 3.0) 

Visibility Scaled 

Phenophase 

duration 

Modal observer score for 

duration, 0: <= 4 wks, 1: > 4   

wks. 

Sp-Ph Categorical (0 = 59%) Duration 

 1 
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allowed	us	to	take	account	of	the	biological	differences	(process	

uncertainties)	between	species	and	phenophases.	

We	followed	a	model	simplification	process	starting	with	the	maximal	model	

for	both	fixed	effects	(all	possible	pair-wise	interactions	between	predictors)	

and	random	effects	(random	slope	by	Phenophase	for	all	continuous	

predictors),	removing	each	term	in	a	step-wise	fashion	and	then	comparing	

resulting	models	using	AIC	values.	We	used	the	standardised	effect	sizes	

derived	from	the	final,	most	parsimonious	model	to	compare	between	

predictors.	We	temporarily	modified	the	final	model	by	removing	terms	for	

the	intercept	and	the	main	effect	of	continuous	predictors	involved	in	

interactions	to	determine	if	predictor	effect	sizes	were	different	to	zero	(95%	

confidence	intervals	derived	from	standard	errors;	Schielzeth	2010).			 	
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3.4 Results 

3.4.1 Overview of dominant phenology cycles 

Using	all	available	phenology	time	series	from	the	Lopé	long-term	study	after	

selection	criteria,	we	confidently	detected	regular	cycles	from	36%	of	the	

sample	(total	number	of	time	series	=	4280,	five	different	phenophases	from	

856	individuals).	However,	detection	differed	among	phenophases,	being	

highest	for	flowers	(59%),	unripe	fruit	(54%)	and	new	leaves	(51%)	and	

lowest	for	ripe	fruit	(29%)	and	senescing	leaves	(25%).		Annual	cycles	were	

most	commonly	detected	among	reproductive	data	(75%	all	detected	cycles	

for	flowers,	unripe	and	ripe	fruits	were	annual),	while	sub-annual	cycles	

were	most	commonly	detected	from	vegetative	data	(51%	all	detected	cycles	

for	new	and	senescing	leaves	were	sub-annual).	

3.4.2 Observation uncertainty scores 

The	inter-quartile	ranges	for	the	visibility	scores	of	all	phenophases	

overlapped	(Figure	3.2A)	but	on	average,	new	leaves	were	considered	the	

most	visible	(mean	score	=	2.42)	and	flowers	the	least	visible	(mean	score	=	

2.08).	In	contrast,	event	duration	scores	were	not	evenly	distributed	among	

phenophases	(Figure	3.2B);	Unripe	fruit	events	were	perceived	as	lasting	>	4	

weeks	for	almost	all	species	(65	out	of	66	species)	while	new	leaf	events	

were	perceived	as	lasting	<=	4	weeks	for	all	species.	
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Figure	3.2.	Summary	of	mean	scores	calculated	for	phenophase	event	
visibility	and	duration	by	phenophase.		
(A)	Distribution	of	mean	phenophase	visibility	scores	for	each	species	showing	
median	scores	(bold	horizontal	lines),	the	interquartile	range	(coloured	boxes)	
and	the	95%	range	(vertical	lines)	and	the	breaks	between	each	score	
(horizontal	dashed	lines).	(B)	Percentage	of	species	categorised	according	to	
phenophase	duration:	events	lasting	<=	4	weeks	(light	shading)	and	events	
lasting	>	4	weeks	(dark	shading).	
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3.4.3 Effects of observation uncertainty on cycle 

detection. 

After	model	simplification,	all	of	the	main	predictors	and	an	interaction	

between	Length	Scaled	and	Duration	were	retained	in	the	most	parsimonious	

model	(Table	3.2).	We	found	both	Length	Scaled	and	Visibility	Scaled	to	have	

significant	positive	effects	(95%	confidence	intervals	different	to	zero;	Figure	

3.3A	and	Table	S3.1)	on	the	likelihood	of	detecting	a	cycle	from	our	

phenology	data.	The	relative	effect	of	Visibility	Scaled	(standardised	effect	size	

=	0.79)	was	almost	half	that	of	Length	Scaled	when	Duration	<=	4	weeks	

(standardised	effect	size	=	1.51),	and	a	third	of	Length	Scaled	when	Duration	

>	4	weeks	(standardised	effect	size	=	2.31;	Figure	3.3A).	Model	predictions	

from	the	final	model	showed	that	when	a	phenophase	event	lasted	<=	4	

weeks,	the	likelihood	of	detecting	a	regular	cycle	was	0.23	after	10	years	of	

data	collection	and	0.39	after	20	years.	If	the	phenophase	event	lasted	>	4	

weeks,	the	likelihood	of	detecting	a	regular	cycle	after	20	years	of	data	

collection	increased	to	0.47	(Figure	3.3B).	We	also	found	that	for	the	least	

visible	phenophase	events	(score	=	1)	the	likelihood	of	detecting	a	regular	

cycle	was	0.26	when	the	phenophase	event	lasted	<=	4	weeks	and	0.34	when	

the	phenophase	event	lasted	>	4	wks.	For	the	most	visible	phenophase	events	

(score	=	3),	this	increased	to	0.5	when	the	phenophase	event	lasted	<=	4	

weeks	and	0.58	when	the	phenophase	event	lasted	>	4	weeks	(Figure	3.3C).	
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Table	3.2.	Results	of	model	simplification	starting	with	the	maximal	model	for	
both	fixed	and	random	effects.		
Fixed	effects	included	all	possible	pair-wise	interactions	between	main	effects	and	
random	effects	included	random	slope	by	Phenophase	for	all	continuous	main	effects.	
The	best	most	parsimonious	model	is	considered	that	with	the	least	degrees	of	freedom	
(DF)	within	two	AIC	values	of	the	model	with	the	lowest	AIC	value,	indicated	by	an	
asterisk.	

	

	

Fixed	effects	structure:	 Random	effects	structure:	 Model	statistics:	

Main	effects	 Interaction	effects	 Random	intercepts	 Random	slopes	 DF	 AIC	

Length	scaled		
Visibility	
scaled		
Duration		

Length	scaled:	Duration		
	

ID	
Phenophase	
Species	

Length	scaled	by	
Phenophase	

10	 3319.14*	

Length	scaled		
Visibility	
scaled		
Duration	

Length	scaled:	Duration		
Visibility	scaled:	Duration	

ID	
Phenophase	
Species	

Length	scaled	by	
Phenophase	

11	 3320.06	

Length	scaled		
Visibility	
scaled		
Duration	

Length	scaled:	Visibility	
scaled	Length	scaled:	Duration		
Visibility	scaled:	Duration	

ID	
Phenophase	
Species	

Length	scaled	by	
Phenophase	

12	 3320.11	

Length	scaled		
Visibility	
scaled		
Duration	

Length	scaled:	Visibility	
scaled	Length	scaled:	Duration		
Visibility	scaled:	Duration	

ID	
Phenophase	
Species	

Length	scaled	by	
Phenophase	
Visibility	scaled	by	
Phenophase	

15	 3321.67	

Length	scaled		
Visibility	
scaled		
Duration	

	 ID	
Phenophase	
Species	

Length	scaled	by	
Phenophase	

10	 3323.57	

Length	scaled		
Visibility	
scaled		
Duration	

Length	scaled:	Visibility	
scaled	Length	scaled:	Duration		
Visibility	scaled:	Duration	

ID	
Phenophase	
Species	

Visibility	scaled	by	
Phenophase	

12	 3334.95	
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Figure	3.3.	Standardised	effect	sizes	and	predictions	for	all	predictors	
retained	in	the	final	model.			
(A)	The	standardised	effect	of	each	predictor	on	the	likelihood	of	detecting	a	
regular	cycle	(filled	black	circles)	and	95%	confidence	intervals	(horizontal	
black	lines)	to	show	whether	effect	is	significantly	different	to	zero	(derived	from	
a	modified	final	model	with	intercept	and	main	effect	for	Length	Scaled	
temporarily	removed).	(B-C)	Model	predictions	for	the	relationship	between	the	
significant	predictors	-	time	series	length,	phenophase	visibility	(both	
continuous)	and	phenophase	duration	(binary)	-	and	the	likelihood	of	detecting	
a	significant	cycle	from	phenology	data.	
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3.4.5 Effects of process uncertainty on cycle detection 

The	random	intercepts	for	Phenophase	and	Species	accounted	for	most	of	

the	variance	in	the	data	(23%	and	25%,	respectively)	while	tree	ID	

accounted	for	the	least	(<0.04%;	see	Table	S3.1	for	variance	and	standard	

deviation).	The	likelihood	of	detecting	a	cycle	varied	by	Phenophase,	being	

most	likely	for	flowers	and	least	likely	for	senescing	leaves	and	ripe	fruits.	

While	for	unripe	fruits	and	new	leaves,	likelihood	of	detecting	a	cycle	was	

greater	than,	but	very	similar	to,	the	intercept	for	the	fixed	effects	model	

(Figure	3.4	and	Table	S3.1).	In	the	most	parsimonious	model,	a	random	slope	

term	by	Phenophase	was	retained	for	Length	Scaled.	The	effect	of	Length	

Scaled	as	a	predictor	of	cycle	detectability	was	positive	for	all	phenophases	

(Figure	3.4A),	however,	the	effect	was	more	positive	than	the	general	trend	

for	new	leaf,	and	flower	cycles	and	less	positive	than	the	general	trend	for	

unripe	fruit	cycles	(Table	S3.1).	
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Figure	3.4.	Predictions	from	the	final	model	by	phenophase.		
General	model	predictions	(grey	lines)	and	95%	confidence	intervals	(grey	
shades)	show	the	relationship	between	both	significant	continuous	predictors	
(A)	time	series	length	and	(B)	visibility	and	the	likelihood	of	detecting	a	
significant	cycle	from	phenology	data	when	phenophase	events	last	<=	4	weeks.	
Predictions	from	the	random	intercept	and	slope	terms	show	how	model	
predictions	vary	by	phenophase	(coloured	lines).	The	mean	probability	of	
detecting	a	cycle	from	binned	raw	data	demonstrates	the	model	fit	(coloured	
dots,	scaled	by	number	of	observations	in	each	bin).		
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3.5 Discussion 

We	have	shown	that	experienced	field	observers	can	provide	important	

information	on	major	sources	of	noise	in	phenology	monitoring	and	that	this	

can	improve	explanatory	power	for	analyses	of	complex	phenological	data.	

For	data	derived	from	crown	observations,	we	found	that	time	series	length,	

phenophase	event	visibility	and	duration	are	all	good,	positive	predictors	of	

finding	regular	phenological	cycles.	However,	a	relative	increase	in	time	

series	length	has	up	to	three	times	as	large	an	effect	on	likelihood	of	

detecting	a	cycle	as	a	similar	increase	in	phenophase	visibility	(comparison	of	

standardised	effect	sizes).		

The	hierarchical	nature	of	our	modelling	approach,	including	both	species	

and	phenophases,	also	allowed	us	to	investigate	variation	in	cycle	

detectability	due	to	biological	differences	(process	uncertainty).	Species	is	an	

important	predictor	of	cycle	detectability,	with	some	species	-	such	as	

Duboscia	macrocarpa,	Detarium	macrocarpum	and	Saccoglottis	gabonensis	-	

much	more	likely	to	have	highly	regular	cycles	among	all	phenophases	than	

the	general	trend.	We	also	found	that	cycle	detectability	varies	among	

phenophases	and	is	highest	for	flowers,	followed	by	new	leaves	and	unripe	

fruits	and	lowest	for	senescing	leaves	and	ripe	fruit.		It	is	interesting	to	note,	

that	among	reproductive	phenophases,	detectability	is	highest	for	flowers,	

then	unripe	fruits,	then	ripe	fruits.	The	fact	that	flowers	occur	first	in	a	chain	

of	linked	events	is	likely	to	contribute	to	this	pattern,	as	there	are	fewer	

accumulated	opportunities	for	ecological	processes	to	contribute	noise	at	this	

stage.	For	instance	more	regular	flowering	than	fruiting	could	arise	because	

trees	may	abort	their	reproductive	efforts	after	poor	pollination	or	

unfavourable	weather	conditions,	or	because	of	widespread	removal	of	

flowers	by	florivores	(e.g.	red	colobus	monkeys,	Procolobus	rufomitratus,	in	

Uganda;	Chapman	et	al.	2013).	
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3.5.1 Lesssons learned for effective analysis of long-term 

tropical phenology data 

The	information	gained	from	this	study	can	help	guide	us	to	more	effective	

data	collection	and	more	robust	statistical	analyses	of	tropical	phenology;	

namely	the	best	ways	to	increase	sample	size	and	reduce	noise.	Our	first	

conclusion	is	that	differences	in	observation	uncertainty	among	species	for	

the	same	phenophase	should	be	accounted	for	in	explanatory	models	of	

phenology	data,	otherwise	the	error	associated	with	observational	

differences	may	lead	to	misleading	conclusions.	For	example,	it	would	be	

possible	to	erroneously	link	some	aspect	of	leafing	phenology	to	the	

functional	group	of	the	species	(e.g.	shade-tolerant,	long-lived	species)	when	

in	reality	it	could	have	arisen	from	an	observation	bias,	such	as	visibility,	

associated	with	those	traits	(Figure	3.1).	There	have	been	a	number	of	calls	

for	more	quantitative	assessment	of	the	impacts	of	climate	on	tropical	

phenology	(Butt	et	al.	2015;	Mendoza	et	al.	2017)	and	to	correct	the	

temperate	(Northern	hemisphere)	bias	of	current	climate	change	studies	

(Feeley	et	al.	2017).	We	have	shown	that	even	a	simple	assessment	of	

observation	uncertainty,	undertaken	by	experienced	field	observers,	can	

provide	important	information	and	be	incorporated	into	and	improve	

quantitative	analyses	of	existing	tropical	phenology	data.	

3.5.2 Lessons learned for the design of tropical 

phenology monitoring programs 

Going	forward,	we	propose	that	both	established	and	new	programs	seek	to	

minimise	sources	of	noise	in	phenology	sampling	design.	We	have	shown	that	

the	length	of	study	is	the	most	important	predictor	of	cycle	detectability;	thus	

it	is	vitally	important	that	resources	be	directed	towards	maintaining	existing	

and	emerging	long-term	monitoring	programs.	For	all	phenophases,	an	

additional	10	years	of	data	collection	(from	10	to	20	years)	increases	

likelihood	of	detecting	a	cycle	by	70%	for	phenology	events	lasting	less	than	

or	equal	to	four	weeks	and	by	114%	for	events	lasting	greater	than	four	

weeks.	Observation	length	is	a	source	of	uncertainty	relevant	to	all	phenology	
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sampling	methods	(e.g.	both	crown	observations	and	traps)	and	clearly,	the	

elusive	“sticking	power”	necessary	to	ensure	long-term	data	collection	needs	

to	be	addressed	in	the	tropics.	This	can	be	achieved	either	through	

recognition	of	the	importance	of	phenology	research	and	allocation	of	

substantial	long-term	resources	from	tropical	nations	and	international	

funders,	or	through	relevant	and	innovative,	citizen-based	initiatives.	

While	increasing	the	length	of	observation	has	the	largest	relative	effect	on	

cycle	detectability,	it	is	not	always	practicable.	Often	the	duration	of	

monitoring	programs	is	outside	of	scientists’	control,	or	assessments	are	

necessary	in	the	short-term	and	cannot	wait	an	additional	ten	years.	

Therefore,	for	new	monitoring	programs	looking	to	make	meaningful	

assessments	of	cycle	regularity	through	canopy	observations	over	a	short	

time,	we	recommend	that	they	target	species	with	highly	visible	phenological	

events	that	last	longer	than	the	monitoring	interval	(in	our	case,	monthly).	

For	example,	at	Lopé,	flowers	from	species	Beilschmedia	fulva,	Milica	excela	

and	Mammea	africana	are	difficult	to	see	(visibility	score	<1.5)	and	last	

greater	than	four	weeks,	whereas	flowers	from	species	Antidesma	

vogelianum,	Mangifera	indica	and	Omphalocarpum	procerum	are	very	easy	to	

see	(visibility	score	>2.5)	and	persist	in	the	canopy	for	less	than	four	weeks.	

Data	from	the	latter	species	are	more	likely	to	be	robust	and	free	from	

observation	error	(similar	to	the	scenarios	for	“low”	observation	uncertainty	

from	Figure	3.1).	After	a	period	of	initial	monitoring	(at	least	five	years)	it	

will	be	possible	for	data	collectors	at	study	sites	to	assess	the	amount	of	

noise	associated	with	specific	species	and	phenophases	in	their	sample.	This	

information	would	allow	project	managers	to	select	directly	for	the	most	

easily	observed	species	and	target	limited	resources	towards	them	by	

increasing	sample	sizes	and	including	such	species	in	inter-site	comparisons.	

Inevitably	there	will	be	occasions	when	it	is	important	to	monitor	a	noisy	

species	or	phenophase.	For	example,	Moabi	(Baillonella	toxisperma)	nuts	are	

an	important	source	of	oil	for	cooking,	cosmetics	and	rural	enterprises	in	

central	Africa	(Plenderleith	&	Brown	2004)	but	Moabi	trees	exhibit	irregular	

phenology	(random	intercept	for	cycle	detectability	=	-0.50)	and	its	flowers	
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are	difficult	to	see,	as	they	are	small	and	held	very	high	in	the	canopy	(similar	

to	scenarios	for	“high”	process	uncertainty	and	“high”	observation	

uncertainty,	Figure	3.1).	In	such	cases	it	will	be	important	to	tailor	

observation	programs	accordingly,	by	investing	in	alternative	forms	of	

monitoring	(e.g.	installing	cameras	in	tree	canopies	opposed	to	observations	

from	the	ground),	increasing	number	of	trees	monitored	or	increasing	the	

frequency	of	observations.	

Any	systematic	biases	in	recording	phenology	data	will	of	course	be	related	

to	the	sampling	method,	“visibility”	and	“duration”	being	key	sources	of	

uncertainty	identified	for	crown	observation	sampling	protocols.	The	

duration	of	a	phenophase	may	be	of	less	concern	for	trapping	methods,	

although	different	biases	are	likely	to	arise	such	as	rate	of	decomposition	and	

trap-checking	frequency,	or	the	relative	influence	of	weather	conditions	such	

as	strong	winds	on	the	deposition	of	plant	material.	If	used	concurrently,	

crown	observations	and	trapping	methods	could	prove	to	be	complimentary,	

accounting	for	different	sources	of	uncertainty	particular	to	each.	In	

particular,	seed	traps	employed	alongside	canopy	monitoring	could	be	used	

to	further	quantify	the	duration	of	phenological	events.	

The	scientific	community	hopes	to	assess	climate-induced	changes	in	tropical	

ecological	processes	with	only	decades-long	data	at	their	disposal	(for	

example,	the	data	analysed	here	represents	the	longest	published	continuous	

phenology	dataset	in	the	tropics).	This	expectation	has	been	raised	by	the	

rate	of	change	observed	in	temperate	systems	(Schwartz	et	al.	2006).	

However,	with	such	limited	data	it	is	essential	that	variation	associated	with	

processes	outside	of	the	focal	question	be	kept	to	a	minimum.	When	

allocating	resources	for	new	and	ongoing	research,	phenologists	should	aim	

to	maintain	monitoring	programmes	for	as	long	as	possible	and	target	

species	and	phenophases	with	least	inherent	noise	to	maximise	statistical	

power	and	therefore	ability	to	assess	change	in	future	analyses.	 	
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S3 Supporting Information 

	

Figure	S3.1.Correlation	matrix	of	phenophase	event	visibility	scores	given	
by	each	observer	for	each	species-phenophase.		
The	size	of	the	dot	indicates	the	magnitude	of	the	correlation	and	the	colour	of	
the	dot	indicates	the	direction	of	the	correlation.	Observers	are	ED,	KA,	CT	and	
LW.	
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Table	S3.1	Outputs	from	the	best	model	for	the	likelihood	of	detecting	significant	
regular	cycles.	

Estimates	for	the	fixed	effects	(A)	and	random	effects	(B	and	C)	from	a	Generalised	
Linear	Mixed-effects	Model	(GLMM;	family=	Binomial)	with	time	series	(Length	Scaled),	
phenophase	visibility	(Visibility	Scaled)	and	phenophase	duration	(Duration	<=	4	weeks	
vs.	>	4	weeks)	as	predictors.	Phenophase,	Species	and	ID	are	included	as	random	
grouping	factors	in	the	hierarchical	model	(number	of	observations	=	3083;	Groups:	
Phenophase	=	5,	Species	=	61,	ID	=	827).	Residual	variance	for	binomial	models	is	by	
default	equal	to	1	(B).	Random	intercept	and	slope	show	how	the	model	for	each	level	
of	phenophase	differs	from	the	fixed	effects	model	(C).	SE=Standard	Error.	SD	=	
Standard	Deviation.	

A.		

	 	

	

	Predictor	 Estimate	 SE	 Z	value	 P	value	

Intercept	 -0.54	 0.39	 -1.39	 0.16	

Length	Scaled	 1.51	 0.32	 4.78	 <0.001	

VisibilityScaled	 0.79	 0.14	 5.77	 <0.001	

Duration	(>4wks)	 0.46	 0.17	 2.67	 <0.01	

Duration(>4wks)	*	Length	Scaled	 0.80	 0.34	 2.38	 0.02	

B.	

	 	

	

	Group	 Random	

effect	

Variance	 SD	 %	Variance	

ID	 Intercept	 <0.001	 <0.001	 <0.04	

Species	 Intercept	 0.59	 0.77	 22.77	

Phenophase	 Intercept	 0.66	 0.81	 25.47	

LengthScaled	 0.34	 0.58	 13.12	

C.	

	 	

	

	Phenophase	 Intercept	 LengthScaled	 	 	

Flowers	 1.19	 0.16	 	 	

Leaves	(new)	 0.33	 0.84	 	 	

Fruits	(unripe)	 0.23	 -0.79	 	 	

Leaves	(senescent)	

	

-0.84	 -0.31	 	 	

Fruits	(ripe)	 -0.88	 -0.07	 	 	
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Chapter 4 

Seasonal,	inter-annual	and	long-term	

weather	variability	in	western	

equatorial	Africa.	

4.1 Abstract 

Central	Africa	is	a	major	convective	region	influencing	weather	worldwide	

and	plays	a	global	role	in	the	carbon	cycle.	However	meteorological	data	are	

notoriously	sparse	and	incomplete	and	there	are	substantial	issues	with	

satellite-derived	data	because	of	cloudiness	and	inability	to	ground-truth	

estimates.	We	have	the	rare	opportunity	to	analyse	a	34-year	dataset	of	

rainfall	and	temperature	(and	shorter	periods	of	relative	humidity,	wind	

speed,	solar	radiation	and	aerosol	optical	depth)	from	a	long-term	ecological	

research	site	in	western	equatorial	Africa	(Lopé	National	Park,	Gabon)	that	

has	not	contributed	to	the	regional	climate	products	available,	thus	able	to	

act	as	an	independent	control.	Using	Generalised	Linear	Mixed	Models	and	

Wavelet	methods	we	analysed	seasonal	and	interannual	variation	and	long-

term	trends	using	this	data.	Weather	at	Lopé	has	changed	significantly	over	

the	last	three	decades,	warming	at	a	rate	of	0.23°C	per	decade	(minimum	

daily	temperature)	and	drying	at	a	rate	of	-78mm	per	decade	(total	annual	
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rainfall).	Interannual	weather	variability	at	Lopé	is	highly	influenced	by	

global	weather	patterns;	Rainfall	significantly	correlates	with	large-scale	sea	

surface	temperature	(SST)	patterns	of	the	Pacific,	Atlantic	and	Indian	oceans,	

providing	some	but	not	conclusive	support	for	the	mechanisms	behind	the	

“dry”	climate	change-models	for	western	equatorial	Africa.	The	warm	phase	

of	the	El	Niño	Southern	Oscillation	is	significantly	correlated	with	above	

average	temperatures	at	Lopé	although	this	association	is	in	addition	to	and	

doesn’t	explain	the	long-term	warming	trend.	The	long-term	observations	we	

present	here	have	not	previously	been	made	public	and	are	of	great	value	in	

such	a	data-poor	region.	
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4.2 Introduction 

The	humid	forests	of	central	Africa	make	up	30%	of	the	world’s	tropical	

forests	(Malhi	et	al.	2013),	are	a	globally	important	carbon	store	(Lewis	et	al.	

2013)	and	form	a	major	convective	region,	influencing	weather	globally	

(Bonan	2008;	Washington	et	al.	2013).	Long-term	changes	to	climate	and	

climatic	variability	in	the	region	(James	et	al.	2013)	are	likely	to	have	far-

reaching	impacts	on	the	functioning	of	African	tropical	forests	(Asefi-

najafabady	&	Saatchi	2013;	Zhou	et	al.	2014)	with	knock-on	effects	for	the	

global	carbon	cycle	(Mitchard	2018)	and	local	human	livelihoods	(Niang	et	

al.,	2014).	However,	evidence	for	changes	in	forest	function	linked	to	weather	

conditions	in	Africa	is	extremely	rare,	mainly	due	to	missing	long-term	data.		

Empirical	data	for	the	region	is	notoriously	sparse	and	incomplete.	The	

number	of	rain	gauge	stations	reporting	data	across	central	Africa	has	fallen	

from	a	peak	of	more	than	50	between	1950	and	1980	to	fewer	than	ten	in	

2010	(Washington	et	al.	2013).	A	similar	land	area	(3	million	km2)	in	North	

America	is	monitored	by	thousands	of	gauges	(NOAA	2018).	The	low	density	

of	observations	in	central	Africa	and	poor	understanding	of	local	landscape	

and	climatic	processes	(Nicholson	&	Grist	2003)	limits	the	accuracy	of	

gridded	observational	data	products	(Asefi-najafabady	&	Saatchi	2013;	

Suggitt	et	al.	2017)	particularly	for	rainfall	where	estimates	are	poorly	

conserved	spatially	(Habib	et	al.	2001;	Kidd	et	al.	2017).	As	a	result,	climate	

and	ecological	models	in	the	region	rely	heavily	on	satellite	data	despite	

major	issues	due	to	cloudiness	(Washington	et	al.	2013;	Maidment	et	al.	

2014).	This	is	especially	pertinent	in	the	western	Congo-Ogooué	Basin	where	

warm	moisture-rich	air	rises	from	the	gulf	of	Guinea	(Hansen	et	al.	2008;	Ju	&	

Roy	2008).	There	is	an	urgent	need	for	long-term	and	large-scale	climate	

observations	to	verify	regional	climate	and	vegetation	models	and	shed	light	

on	the	mechanisms	that	drive	seasonal	and	long-term	climatic	changes	in	

tropical	Africa	(Guan	et	al.	2013;	Abernethy	et	al.	2016).		

We	have	the	rare	opportunity	to	analyse	a	34-year	record	rainfall	and	

temperature	(and	shorter	periods	of	relative	humidity,	aerosol	optical	depth,	

wind	speed	and	solar	radiation)	from	a	long-term	ecological	research	site	in	
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western	equatorial	Africa.	This	local	weather	data	has	not	contributed	to	the	

regional	climate	products	available	and	is	thus	able	to	act	as	an	independent	

control.	In	this	paper	we	aim	to:	

1. Review	the	published	literature	on	drivers	of	seasonality,	inter-annual	

variability	and	long-term	trends	in	central	African	weather,	with	a	

focus	on	the	changes	documented	for	western	equatorial	Africa	(WEA;	

covering	Cameroon,	Republic	of	Congo,	Central	African	Republic,	

Equatorial	Guinea	and	Gabon,	the	location	of	our	long-term	study	

site).	

2. Analyse	seasonal,	inter-annual	and	long-term	variability	at	our	site	

using	local	weather	observations		

3. Test	the	influence	of	global	oceanic	SSTs	on	interanuual	weather	

variation	at	our	site.	

4. Compare	our	results	with	the	literature,	with	particular	focus	on	

rainfall	for	which	uncertainty	in	regional	products	is	high.	

4.2.1 Seasonal weather variation driven by the ITCZ  

Seasonality	in	central	African	weather	is	driven	by	the	Inter	Tropical	

Convergence	Zone	(ITCZ),	a	band	of	clouds	and	high	precipitation	caused	by	

converging	trade	winds	around	the	equator	that	moves	periodically	with	the	

position	of	the	sun	throughout	the	year	(National	Weather	Service	2018).	

The	ITCZ	reaches	its	Northern	limit	in	July	and	its	southern	limit	in	January	

(Figure	4.1;	Barlow	et	al.	2018).	Rainfall	peaks	in	the	Congo-Ogooué	Basin	

during	the	transitional	seasons	as	the	ITCZ	passes	the	equator	(Farnsworth	

et	al.	2011;	Suzuki	2011;	Preethi	et	al.	2015).	Most	regional	climate	estimates	

show	the	September-November	rainy	season	to	be	more	intense	than	March-

May	(Washington	et	al.	2013).	Region-wide,	just	3%	total	annual	rainfall	falls	

during	the	major	dry	season	from	June	to	August	when	the	ITCZ	is	furthest	

North,	while	around	25%	total	annual	rainfall	falls	during	the	secondary	dry	

season	from	December	to	February	(Balas	et	al.	2007).	Monthly	runoff	data	

(averaged	over	the	last	century)	for	the	two	major	rivers	in	the	region	–	the	

Congo	and	Ogooué	-	show	that	river	flow	peaks	in	May	and	November	and	is	
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lowest	in	August,	lagging	the	rainfall	pattern	(Laraque	et	al.	2001;	Mahe	et	al.	

2013).		

Whilst	day	length	is	constant	at	the	equator	and	varies	little	throughout	the	

tropics	(Borchert	et	al.	2005),	surface	solar	radiation	can	be	highly	seasonal	

(Wright	1996)	and	vary	regionally.	In	the	light	deficient	WEA	region,	there	is	

a	distinctive	drop	in	irradiance	during	the	long	dry	season	(due	to	cloud	

cover)	and	peaks	as	the	ITCZ	passes	the	equator	(Philippon	et	al.	2019).	In	

these	transitional	seasons	the	sky	is	usually	clear	in	the	morning	with	

convection	clouds	developing	into	storms	late	in	the	day	or	night	(Gond	et	al.	

2013).	The	seasonal	synchrony	between	light	and	moisture	availability	in	

WEA	is	in	contrast	to	central	equatorial	Africa	(DRC)	and	the	American	

tropics	where	the	dry	season	coincides	with	peaks	in	irradiance	(Wright	&	

Calderón	2018;	Philippon	et	al.	2019).	The	situation	is	more	complex	in	the	

Asian	tropics	where	climatic	seasonality	is	extremely	limited	near	the	

equator	(Sakai	2001;	Nagai	et	al.	2016)	but	becomes	more	pronounced	away	

from	the	equator.	For	example	in	the	northern	Asian	tropics,	insolation	peaks	

during	the	end	of	the	dry	season	and	the	beginning	of	the	rainy	season	

(dropping	during	the	late	rainy	season	and	“foggy”	early	dry	season;	Zhang	et	

al.	2010).	

Temperature	varies	relatively	little	throughout	the	year	in	WEA	but	the	

coolest	period	south	of	the	equator	occurs	during	the	long	dry	season	(June-

September;	Munzimi	et	al.	2015;	Tutin	&	Fernandez	1993)	when	the	ITCZ	is	

at	its	most	Northerly	peak	and	cloud	cover	is	highest.	It	is	in	the	long	dry-

season	also	that	surface	winds	are	strongest	(Tutin	&	Fernandez	1993;	

Preethi	et	al.	2015).		
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Figure	4.1:	Global	climatic	influences	on	western	equatorial	Africa.		
A.	The	forested	region	of	central	Africa	is	indicated	by	a	layer	of	green	pixels	
(>30%	tree	cover	in	2010	from	Hansen	et	al.	2013).	The	Northern	(July)	and	
Southern	limits	(January)	of	the	Inter	Tropical	Convergence	Zone	(ITCZ)	are	
drawn	from	Barlow	et	al.	(2018).	The	blue	zones	indicate	patterns	in	oceanic	sea	
surface	temperatures	(SSTs)	known	to	influence	weather	in	Western	Equatorial	
Africa	(WEA):	the	Pacific	Ocean	El	Niño	Southern	Oscillation	(ENSO);	North	and	
South	Tropical	Atlantic	SSTs	(NATL	and	SATL)	and	the	Indian	Ocean	Dipole	
(IOD).	B.	The	limits	of	WEA	as	defined	in	this	paper	are	indicated	by	the	grey	
rectangle	(including	the	humid	forests	of	Gabon,	Equatorial	Guinea,	Cameroon	
and	the	Republic	of	Congo).	Also	the	location	of	the	seasonal	Atlantic	cold	
tongue,	a	pool	of	cool	surface	water	that	develops	in	the	eastern	tropical	
Atlantic	during	the	boreal	summer	(Tokinaga	&	Xie	2011).	Tree	cover	data	are	
available	from	http://earthenginepartners.appspot.com/science-2013-global-
forest.	The	world	map	was	created	by	Layerace	at	Freepik.com	
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4.2.2 Inter-annual weather variability driven by the 

Oceans 

Large-scale	patterns	in	sea	surface	temperatures	(SSTs)	caused	by	ocean	

currents	and	upwellings-	such	as	the	El	Niño	Southern	Oscillation	(ENSO),	

North	and	South	tropical	Atlantic	SSTs	and	the	Indian	Ocean	Dipole	(IOD)	–	

are	known	to	influence	local	weather	conditions	across	the	tropics	

(Camberlin	et	al.	2001;	Figure	4.1).	ENSO	refers	to	the	state	of	the	

atmosphere	and	SSTs	of	the	tropical	Pacific	Ocean.	Conventional	(canonical)	

ENSO	phases	switch	periodically	every	two	to	seven	years	between	El	Niño	

conditions	when	SSTs	of	the	tropical	eastern	Pacific	are	above	average	

(usually	developing	in	December	and	January)	and	La	Niña	conditions	when	

SSTs	are	below	average	(Behera	et	al.	2013).	El	Niño	Modoki	differs	from	the	

canonical	oscillation	and	in	these	events	warming	occurs	in	the	central	

Pacific	with	cooler	waters	on	the	east	and	west	side	of	the	basin	(Behera	et	al.	

2013).	The	IOD	is	the	difference	between	the	SSTs	of	the	western	and	eastern	

tropical	Indian	ocean	with	positive	phases	representing	cool	anomalies	in	the	

south	east	and	warm	anomalies	in	the	west	(Behera	et	al.	2013).	

ENSO	has	a	relatively	straightforward,	instantaneous,	effect	on	temperature	

throughout	the	African	continent,	with	greater	warming	when	the	ENSO	

index	is	above	average	(commonly	referred	to	as	El	Niño	years)	but	only	

significantly	so	from	December-February	in	WEA	(Collins	2011;	Table	4.1).	

No	evidence	was	found	for	the	effects	of	other	SST	phenomena	on	

temperature	in	the	central	African	region.	While	inter-annual	variation	in	

central	African	precipitation	is	strongly	connected	to	SSTs	of	all	major	oceans	

(Otto	et	al.	2013),	the	interactions	are	highly	complex	and	seasonally	specific.	

In	Table	4.1	we	summarise	results	from	five	major	studies	of	oceanic	

influences	on	rainfall	in	the	region	(Camberlin	et	al.	2001;	Todd	&	

Washington	2004;	Balas	et	al.	2007;	Otto	et	al.	2013;	Preethi	et	al.	2015).	The	

main	agreements	between	these	studies	for	WEA	are	that	(1)	in	El	Niño	years	

(canonical)	rainfall	is	below	average	from	February	to	August	(Camberlin	et	

al.	2001;	Todd	&	Washington	2004;	Balas	et	al.	2007;	Preethi	et	al.	2015),	(2)	

Indian	Ocean	SSTs	positively	correlate	with	rainfall	in	January	and	February	
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(Balas	et	al.	2007;	Preethi	et	al.	2015)	and	(3)	warm	tropical	South	Atlantic	

SSTs	enhance	rainfall	from	June-September	(Camberlin	et	al.	2001;	Balas	et	

al.	2007;	Otto	et	al.	2013).	We	found	no	evidence	in	the	literature	for	how	

large-scale	climate	oscillations	impact	other	weather	variables	such	as	light	

availability	or	wind	speeds	in	the	region.	

	

Table	4.1:	The	influences	of	major	oceanic	drivers	on	temperature	and	rainfall	
in	western	equatorial	Africa.		

CEA=	Central	equatorial	Africa	(centred	on	the	Democratic	Republic	of	Congo);	WEA	=	
Western	equatorial	Africa	(covering	Cameroon,	Republic	of	Congo,	Central	African	
Republic,	Equatorial	Guinea	and	Gabon);	SST=	Sea	Surface	Temperature;	ENSO=	El	
Niño	Southern	Oscillation;	IOD=	Indian	Ocean	Dipole.	

	

4.2.3 High confidence in increased warming but 

uncertainty in precipitation changes 

There	is	high	confidence	in	warming	over	African	land	regions.	Near	surface	

temperatures	have	increased	by	at	least	0.5°C	over	the	last	century	across	

most	of	the	continent,	with	most	rapid	change	in	minimum	daily	temperature	

(Niang	et	al.	2014).	Satellite	estimates	for	tropical	Africa	show	an	annual	

Pacific	SSTs Indian	Ocean	SSTs Atlantic	SSTs

Te
m
pe

ra
tu
re Collins	2011 Africa-wide.	

Satellite	and	
reanalysis	data.	
1979-2010.

Positive	relationship	between	
ENSO	and	temperature	in	the	
dry	seasons	(Dec-Feb	and	June-
Aug;	other	seasons	not	tested).	

Not	tested Not	tested

Preethi	et	al	
2015

Africa-wide.	
Satellite	and	
gridded	obs.				
1979-2010.

Negative	relationship	between	
ENSO	and	rainfall	Jan-	Sep.	
Positive	relationship	between	
ENSO	Modoki	and	rainfall	Mar-
May.

Positive	relathionship	between	
basin-wide	SSTs	Jan-Feb.	No	
relationship	to	IOD.

Not	tested.

Camberlin	et	
al.	2001

Sub-Sahara.	
Gridded	obs.			
1951-1997.

Negative	relationship	between	
ENSO	and	rainfall	Apr-Jun.

Not	tested. Positive	relationship	between	
South	Atlantic	SSTs	and	rainfall	
Apr-Sep.

Balas	et	al.	
2007

WEA.											
Precip.	gauge	
dataset.												
1950-1998.

Negative	relationship	between	
ENSO	and	rainfall	in	all	seasons,	
(strongest	Mar-May).

Weak	positive	relationship	
between	Indian	Ocean	SSTs	and	
rainfall	in	all	seasons	except	Mar-
May	where	it	is	reversed.

Positive	relationship	between	
South	Atlantic	SSTs	and	rainfall	
Jun-Nov,	negative	relationship		
Dec-Feb.	Rainfall	most	closely	
linked	to	SST	along	Benguela	
coast	Mar-May.

Todd	&	
Washington	
2004

CEA	(but	data	
also	shown	for	
WEA).														
Gridded	obs.	
and	disharge.	
1901-1998.

Weak	negative	relatioship	
between	ENSO	and	rainfall	(Feb-
Apr	tested	only).

Not	tested. Negative	correlation	between	
NAO	and	rainfall	from	Feb-Apr	
(mediated	by	Tropical	North	
Atlantic	SSTs	and	anomolous	mid-
trophospheric	westerly	winds).

Otto	et	al.	
2013

CEA	(but	data	
also	shown	for	
WEA).	Simulated	
data	for	dry	
season	rainfall.

Strong	influence	of	ENSO	on	
rainfall	in	the	dry	seasons	(Dec-
Feb	and	June-Aug;	other	seasons	
not	tested).

Strong	influence	of	IOD	on	
rainfall	in	the	dry	seasons	(Dec-
Feb	and	June-Aug;	other	seasons	
not	tested).	IOD	negatively	
associated	with	rainfall	in	both	
dry	seasons	(strongest		Dec-Feb).

Positive	correlation	between	
North	and	South	tropical	Atlantic	
SSTs	with	rainfall	in	both	dry	
seasons	(strongest	Dec-Feb).

Major	Oceanic	DriversDataReference
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mean	temperature	increase	of	0.15°c	per	decade	from	1979-2010	(Collins	

2011).	A	recent	multi-model	ensemble	showed	that	mean	temperature	for	

the	whole	African	continent	is	likely	to	continue	to	increase	more	than	the	

global	average	(1.1	°C	at	1	°C	globally,	2.3	°C	at	2	°C,	3.4	°C	at	3	°C,	and	4.3	°C	

at	4	°C),	especially	in	the	long	dry	season	(James	&	Washington	2013).	

Tropical	land	areas	globally	have	seen	no	overall	change	in	precipitation	over	

the	last	century,	with	a	recent	increase	in	precipitation	(2003-2013)	

reversing	a	drying	trend	from	the	1970s	to	the	1990s	(Hartmann	et	al.	2013).	

Observational	datasets	(gauge	networks	and	merged-satellite	data;	1983-

2010)	show	strong	disagreement	in	the	sign	and	magnitude	of	the	rainfall	

trend	for	central	Africa	(not	including	WEA;	Maidment	et	al.	2015),	probably	

due	to	insufficient	observations	(Niang	et	al.	2014).	However,	when	gridded	

gauge-observations	(from	the	Climate	Research	Unit,	CRU	dataset)	are	

examined	for	the	Gabon/Cameroon	WEA	region,	a	decline	in	total	annual	

precipitation	of	1%	per	decade	is	evident	from	1968-1998	(Malhi	&	Wright	

2004).	Flow	data	for	the	Ogooué	river	indicates	that	runoff	in	the	same	

region	has	declined	since	the	1960s,	including	the	most	recent	decade	for	

which	data	is	available	(2000-2010)	and	that	the	flood	peak	has	moved	from	

May	to	April	(Mahe	et	al.	2013).	As	land-cover	change	has	been	minimal	in	

the	watershed	(Abernethy	et	al.	2016)	it	is	likely	that	reduced	rainfall	has	

been	the	biggest	determinant	of	this	change	in	runoff,	supporting	the	trend	

observed	directly	from	gauge	data.	

Predicted	changes	for	future	rainfall	vary	widely	across	the	African	continent,	

with	good	model	support	for	a	drying	trend	(increase	in	dry	season	water	

deficit)	in	Western	and	Southern	Africa,	a	wetting	trend	in	East	Africa,	and	

high	uncertainty	in	the	direction	of	change	centrally,	probably	due	to	the	

sparse	network	of	observations	and	poor	understanding	of	local	climate	

forcing	(James	&	Washington	2013).	However	when	Central	Africa	is	

examined	more	closely,	model	projections	for	precipitation	(and	therefore	

water	deficit)	mostly	show	no	change	or	a	weak	wet	signal	centrally,	and	a	

dry	signal	in	the	western	region	in	climate	scenarios	where	warming	is	

greater	than	2°C	(James	et	al.	2013).	Models	that	predict	the	drying	trend	in	
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WEA	show	strong	associations	with	Atlantic	and	Indian	(but	not	Pacific)	

Ocean	SSTs.	The	construction	of	these	models	suggests	that	projected	

reductions	in	rainfall	in	WEA	are	caused	by	a	northward	displacement	of	the	

ITCZ	associated	with	cool	SSTs	in	the	Gulf	of	Guinea	(the	Atlantic	cold	tongue;	

Figure	4.1B)	and	an	eastward	shift	in	convection	caused	by	contrasts	

between	Indian	and	Atlantic	SSTs	(James	et	al.	2013).	

As	for	surface	solar	radiation,	once	again	the	picture	varies	spatially	within	

central	Africa.	In	the	central	Congo	Basin	(14E-30E;	no	data	presented	for	

WEA)	there	has	been	a	recent	widespread	decline	in	cloud	optical	thickness	

and	no	change	in	aerosol	optical	thickness	(MODIS,	2000	-2012)	leading	to	an	

increase	in	downward	photosynthetically	available	radiation	(CERES,	2003-

2012;	Zhou	et	al.	2014).	While	for	sunshine	duration,	there	has	been	no	

change	in	the	central	region	but	a	weak	decline	(2-4	hours	per	decade)	in	

WEA	from	1983-2015	(SARAH-2,	Kothe	et	al.	2017).	We	found	no	evidence	

for	or	against	long-term	changes	in	relative	humidity	or	wind	speed	in	the	

region.	

4.3 Methods 

4.3.1 Description of the study area and weather data 

recording since 1984 

The	Station	d’Études	des	Gorilles	et	Chimpanzées	(SEGC)	research	station	is	

situated	at	the	northern	end	of	Lopé	National	Park,	in	the	heart	of	Gabon	(-

0.2N,	11.6E).	The	station	sits	within	a	tropical	forest-savanna	matrix,	at	an	

elevation	of	280m	and	within	10.5	km	of	the	River	Ogooué	(the	second	

largest	river	in	the	Congo-Ogooué	basin).	Ecological	research	activities,	

including	weather,	plant	and	animal	observations,	have	taken	place	at	SEGC	

continuously	from	1984	until	the	present	(>300	publications;	1983-2018).	

Weather	data	has	been	recorded	at	Lopé	since	1984	using	various	different	

types	of	equipment	split	between	two	locations:	a	savanna	site	(the	research	

station;	11.605E,	-0.201N)	and	a	forest	site	(800m	from	the	research	station	

and	approximately	10m	from	the	savanna/forest	edge;	11.605E,	-0.206N).	

From	1984	to	the	present,	a	manual	rain	gauge	was	situated	in	the	savanna	
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(50cm	above	ground	>5m	from	any	tree	or	building)	and	used	to	record	daily	

rainfall	totals	at	8am	each	morning.	There	was	a	gap	in	data	recording	in	

2013	and	occasional	missing	days	due	to	logistical	constraints	(e.g.	

availability	of	personnel).	Since	1984	daily	maximum	and	minimum	

temperatures	and	relative	humidity	were	recorded	using	a	manual	

thermometer	and	wet/dry	bulb	located	in	the	forest	(1.5m	aboveground	

under	closed	canopy),	which	was	checked	daily	when	logistics	permitted,	or	

whenever	researchers	from	SEGC	passed	it.	In	2002	all	temperature	

recording	at	the	forest	site	was	transferred	to	continuous	automatic	units	

(ONSET	HOBO®	Data	Loggers	refhttps://www.onsetcomp.com/,	these	units	

also	recorded	relative	humidity)	and	temperature	recording	using	the	same	

units	also	began	in	the	savanna.	Due	to	technical	failures	these	units	were	

replaced	in	2006	with	the	original	manual	max/min	thermometer	in	the	

forest	and	a	digital	max/min	thermometer	(Taylor	1441)	in	the	savanna.	

These	were	in	turn	replaced	by	another	type	of	automated	unit	(TinyTag	Plus	

2,	Gemini	DataLoggers	https://www.geminidataloggers.com/data-

loggers/tinytag-plus-2,	some	of	which	could	record	both	temperature	and	

relative	humidity),	deployed	in	the	forest	from	2007	and	in	the	savanna	from	

2008	and	used	until	the	present	(with	a	gap	at	the	forest	site	from	mid-2015	

to	mid-2016	and	intermittent	recording	throughout	2017	partly	due	to	

termite	infestation).	In	addition	two	weather	stations	were	installed	in	the	

savanna	(sited	near	the	research	station,	on	a	rock	4m	from	the	ground)	

between	2012	and	2016.	A	Davis	VantagePro2	

(https://www.davisinstruments.com/solution/vantage-pro2/)	was	installed	

in	January	2012	and	recorded	rainfall,	temperature,	relative	humidity,	

pressure,	wind	speed	and	direction,	UV	index	and	solar	radiation	every	30	

minutes	for	two	years	until	the	equipment	was	struck	by	lightning	in	January	

2014	and	stopped	functioning.	A	SKYE	MINIMET	weather	station	

(https://www.skyeinstruments.com/minimet-automatic-weather-station/)	

was	installed	at	the	same	location	in	2013	and	collected	temperature,	relative	

humidity,	wind	speed	and	direction	and	solar	radiation	(and	was	also	

programmed	to	collect	rainfall	but	this	never	worked).	It	ran	intermittently	

until	2016	when	the	equipment	was	also	struck	by	lightning.	Data	recorded	
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between	January	2014	and	November	2014	was	also	lost.	Finally,	a	sun	

photometer	was	installed	at	the	research	station	in	April	2014	and	used	to	

record	Aerosol	Optical	Depth	(AOD)	up	to	the	present	as	part	of	the	NASA	

Aerosol	Robotic	Network	(Aeronet;	https://aeronet.gsfc.nasa.gov/;	Holben	et	

al.	1998).			

The	remote	and	challenging	environment	at	Lopé	has	led	to	a	patchy	weather	

data	record.	This	is	especially	true	since	the	introduction	of	automated	

loggers,	due	to	unreliable	performance	combined	with	difficulties	and	time	

delays	in	replacing	or	repairing	malfunctioning	equipment	and	respecting	

annual	calibration	schedules	with	manufacturers	based	in	Europe	or	the	USA.	

In	addition,	new	equipment	was	often	introduced	out	of	necessity	when	

previous	equipment	failed,	precluding	the	opportunity	of	collecting	

simultaneous	data	for	standardisation.	This	situation	is	far	from	unique	and	

is	replicated	across	many	other	similar	field	stations	in	Africa	(Maidment	et	

al.	2017).	In	Appendix	C	we	show	daily	records	for	all	weather	observations	

at	Lopé	since	1984	and	explain	in	detail	how	we	selected	and	standardised	

data	in	order	to	reduce	systematic	biases	between	recording	equipment.	

In	brief,	we	constructed	a	long-term	record	of	daily	rainfall	(1984-2018)	by	

combining	two	sources	of	rainfall	data	(rain	gauge	and	weather	station),	

calibrating	them	using	simultaneous	records	and	where	possible	filling	

missing	daily	values	(3%	observations)	using	the	ten-day	running	mean	for	

the	time	series	however	11	months	in	three	different	years	remained	

incomplete.	

Temperature	was	recorded	at	Lopé	using	six	different	pieces	of	equipment	

across	two	sites	(forest	and	savanna).	We	used	both	maximum	and	minimum	

daily	data	to	demonstrate	seasonality	and	periodicity.	However	to	avoid	the	

erroneous	impacts	of	direct	solar	radiation	on	air	temperature	estimation	

related	to	different	equipment	(Appendix	C)	we	constructed	a	long-term	

temperature	record	using	minimum	daily	temperature	observations	only	

(1984-2018)	for	analyses	of	trends	and	inter-annual	variation.	36	months	are	

missing	from	this	record	because	there	were	fewer	than	five	observations	

from	which	to	calculate	the	monthly	mean.		
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Finally	we	used	shorter	(and/or	patchier)	periods	of	data	for	relative	

humidity	(2002-2018),	solar	radiation	(2012-2016),	wind	speed	(2012-

2016)	and	aerosol	optical	depth	(2014-2017)	to	assess	seasonality	and	

periodicity	for	these	climate	variables.	

4.3.2 Gridded regional temperature datasets 

Because	of	the	lack	of	simultaneous	recording	between	temperature	

equipment	we	also	downloaded	two	widely	used	gridded	regional	data	

products	with	which	to	compare	the	Lopé	data:	daily	minimum	air	

temperature	from	the	Gridded	Berkeley	Earth	Surface	Temperature	Anomaly	

Field	(1°	resolution;	Rohde	et	al.	2013)	and	monthly	mean	daily	minimum	

temperature	from	the	Climate	Research	Unit’s	Time-Series	v4.01	of	high-

resolution	gridded	data	(CRU	TS4.01;	0.5°	resolution;	University	of	East	

Anglia	Climatic	Research	Unit	et	al.	2017;	Harris	et	al.	2014).	Both	were	

downloaded	from	http://climexp.knmi.nl/start.cgi	for	the	grid-cell	

overlapping	the	SEGC	location	(0.2N,	11.6E).	

4.3.3 Ocean Sea Surface Temperatures (SSTs) 

We	downloaded	data	for	four	oceanic	SSTs	from	commonly	used	data	

sources:	the	Multivariate	ENSO	Index	(MEI;	Wolter	&	Timlin	1993;	Wolter	&	

Timlin	1998)	sourced	from	the	NOAA	website	

(https://www.esrl.noaa.gov/psd/enso/mei/index.html),	the	Indian	Ocean	

Dipole	(IOD)	Dipole	Mode	Index	(Saji	&	Yamagata	2003)	sourced	from	the	

NOAA	website	

(https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/)	and	SST	

anomalies	for	the	tropical	north	Atlantic	(NATL,	5°–20°N,	60°–30°W)	and	the	

south	equatorial	Atlantic	(SATL	,0°–20°S,	30°W–10°E)	sourced	from	the	

NOAA	National	Weather	Service	Climate	Prediction	Center	

(http://www.cpc.ncep.noaa.gov/data/indices/).	We	rescaled	all	four	SST	

indices	by	subtracting	the	mean	and	dividing	by	one	standard	deviation	to	

allow	direct	comparison	of	modelled	effect	sizes.	Positive	values	for	MEI	

indicate	El	Niño	conditions;	positive	values	for	NATL	and	SATL	indicate	

warm	SSTs	in	those	regions	while	positive	values	for	IOD	indicate	cool	SSTs	
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in	South	Eastern	equatorial	Indian	Ocean	and	warm	SSTs	in	the	Western	

equatorial	Indian	Ocean.	

4.3.4 Analyses 

Seasonality	

To	describe	the	seasonality	of	each	weather	variable,	we	calculated	the	mean	

value	for	each	day	of	the	year	(DOY),	the	ten-day	running	mean	of	DOY	and	

the	monthly	mean	from	empirical	daily	data.	This	allowed	us	to	summarise	

the	data	while	retaining	fine-scale	variation	where	available.		

To	assess	the	periodicity	of	each	weather	variable,	we	created	standardised	

time	series	by	calculating	the	mean	value	for	each	month	in	the	record	and	

filling	missing	months	using	the	mean	value	for	the	corresponding	calendar	

month	for	the	whole	time	series.	We	then	scaled	the	data	by	subtracting	the	

mean	and	dividing	by	its	standard	deviation.	We	computed	the	Fourier	

transform	for	each	of	these	time	series	and	inspected	the	spectra	for	peaks	

that	represent	strong	regular	cycles	in	the	data	(Chapter	2;	Bush	et	al.	2017)	

Long-term	trends	

We	assessed	whether	total	annual	rainfall	and	temperature	had	changed	over	

the	observation	period	(1984-2018)	by	fitting	generalized	linear	models	

(GLMs,	family=Poisson)	for	rainfall	and	linear	mixed	models	(LMMs)	for	

temperature	to	account	for	the	data	distribution	and	hierarchical	structure.	

We	fitted	models	with	Year	(continuous,	rescaled)	as	the	predictor	

(representing	long-term	change)	and	compared	them	to	intercept-only	

models	(representing	no	long-term	change)	using	AIC	values.	We	preferred	

simple	models	(few	parameters)	with	lowest	AIC	(significantly	different	if	

delta	AIC	>2).	We	repeated	the	same	procedure	with	gridded	data	for	Lopé	

from	the	daily	Berkeley	dataset	and	the	monthly	CRU	dataset	to	compare	

with	our	Lopé	recorded	temperature	trends.	Inspection	of	the	

autocorrelation	function	for	total	annual	rainfall	and	the	median	

autocorrelation	function	of	residuals	for	daily	temperature	(autocorrelation	

calculated	for	each	DOY)	showed	no	significant	temporal	autocorrelation.	
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We	then	investigated	whether	trends	in	daily	rainfall	and	minimum	

temperature	varied	seasonally.	Various	seasonal	definitions	are	used	

throughout	the	tropics,	usually	related	to	the	annual	rainfall	cycle.	We	

defined	our	seasons	according	to	Lopé	rainfall	climatology	where	the	long	

dry	season	extends	into	September,	i.e.	October-November	(ON),	December-

February	(DJF,	the	“short”	dry	season),	March-May	(MAM)	and	June-

September	(JJAS,	the	“long”	dry	season;	Figure	4.2A).	We	fitted	an	initial	

model	that	included	Year	(continuous,	rescaled),	Season	(factor	with	four	

levels	as	above)	and	their	interaction	as	predictors	(representing	long-term	

change	varying	by	season),	a	second	model	without	the	interaction	term	

(representing	long-term	change	not	varying	by	season)	and	a	third	model	

excluding	Year	altogether	(representing	no	long-term	change,	seasonal	

effects	only).	We	compared	the	three	models	using	AIC	values	to	test	if	the	

interaction	between	Year	and	Season	improved	the	model.	We	fitted	models	

without	the	global	intercept	to	estimate	the	magnitude	of	the	trend	in	each	

season	rather	than	comparing	each	season	trend	to	the	global	intercept.	All	

models	included	Year	and	DOY	as	random	intercepts	to	account	for	

pseudoreplication.	

Periodicity	over	time	

We	also	used	wavelet	analyses	to	assess	if	and	how	periodicity	varied	over	

time	for	rainfall	and	temperature	explicitly	taking	account	of	the	circular	

nature	of	the	data	(Adamowski	et	al.	2009).	We	computed	the	wavelet	

transform	for	the	standardised	monthly	timeseries	for	each	variable	using	

the	R	function	wt	from	the	package	biwavelet	(Gouhier	et	al.	2018)	and	

plotted	the	power	(higher	power	denotes	greater	fidelity	to	a	certain	cycle),	

significance	(a	cycle	is	significant	if	>0.95,	X2	test)	and	cone	of	influence	

(denoting	the	unreliable	region	at	the	beginning	and	end	of	the	time	series	

due	to	edge	effects).	We	then	extracted	the	power	of	the	biannual,	annual	and	

multiannual	(mean	of	the	2-4	year	periods)	components	to	assess	how	these	

dominant	cycles	varied	over	time.	The	multiannual	component	was	limited	to	

four	years	because	lower	frequency	cycles	were	heavily	influenced	by	edge	

effects.	
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Influence	of	oceanic	SSTs	on	interannual	variability	

We	tested	the	seasonal	influence	of	oceanic	SSTs	for	the	three	major	oceans	

hypothesized	to	influence	weather	in	the	Gabon	region	(Pacific:	MEI,	Indian	

Ocean:	IOD	and	Atlantic	Ocean:	NATL	and	SATL)	within	a	linear	regression	

framework	(GLMMs,	family=Poisson,	for	rainfall,	LMMs	for	temperature).	

For	the	monthly	time	series	for	each	weather	variable	we	fitted	an	initial	

model	including	each	Oceanic	Index	(MEI,	NATL,	SATL	and	IOD),	Season	and	

the	interaction	between	each	Index	and	Season	as	predictor	variables.	For	

those	weather	variables	that	had	previously	shown	to	be	changing	linearly	

over	time,	we	included	Year	(continuous,	rescaled)	and	its	interaction	with	

Season	as	predictors.	We	modified	these	initial	models	by	removing	terms,	

starting	with	the	interactions	between	each	Oceanic	Index	and	Season	and	

ending	with	the	Oceanic	Index	main	effects,	comparing	models	using	AIC	

values	to	find	the	simplest	model	with	the	lowest	AIC.	As	before,	we	fitted	

models	without	the	global	intercept	to	estimate	the	magnitude	of	the	effect	in	

each	season	rather	than	comparing	each	season	effect	to	the	global	intercept.	

All	models	included	Year	and	Season	as	random	intercepts	to	account	for	

pseudoreplication.		 	
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4.4 Results 

4.4.1 Seasonality 

Mean	total	annual	rainfall	at	Lopé	from	1984-2018	was	1465mm	+	203	sd.	

Rainfall	at	Lopé	occurs	in	a	biannual	cycle	(Figure.	4.2),	with	broad	peaks	in	

MAM	and	ON	where	mean	daily	rainfall	is	always	greater	than	5mm	(Figure	

4.3A).	The	long	dry	season	(JJAS)	is	very	consistent,	with	a	60-day	period	

(mid-June	to	mid-August)	in	which	the	ten-day	running	mean	is	never	

greater	than	1mm.	The	DJF	rainy	season	is	much	more	variable	and	the	ten-

day	running	mean	is	always	greater	than	1mm.		

Mean	daily	maximum	and	minimum	temperatures	at	Lopé	were	28.1°C	and	

21.9°C	at	the	forest	site	(1984-2018)	and	31.6°C	and	22.0°C	at	the	savanna	

site	(2002-2018),	meaning	that	the	daily	temperature	range	in	the	savanna	is	

greater	than	the	forest	(Figure	4.3C	and	D).	Maximum	daily	temperature	in	

the	forest	has	strong	annual	and	bi-annual	cycles	while	in	the	savanna	the	

annual	cycle	is	dominant	(Figure	4.2).	The	difference	between	the	two	sites	

occurs	during	the	short	dry	season	where	temperatures	are	maintained	in	

the	savanna	at	similar	levels	to	the	rainy	seasons	(ten-day	running	mean	

always	greater	than	31.7°c	from	October	to	May	in	the	savanna;	Figure	4.3C).	

In	the	forest,	the	highest	peaks	in	maximum	daily	temperature	occur	in	April	

and	September	(mean	monthly	maximum	daily	temperatures	are	29.5°c	and	

28.6°c	respectively;	Figure	4.3D).	Annual	cycles	dominate	the	minimum	daily	

temperature	record	for	both	the	forest	and	the	savanna	(Figure	4.2).	

Minimum	daily	temperatures	are	relatively	constant	from	September	to	June	

(~22.5°c)	followed	by	a	cool	period	during	the	long	dry	season	reaching	an	

annual	trough	in	July	(mean	monthly	minimum	daily	temperature	is	20.6°c	in	

both	the	savanna	and	forest;	Figure	4.3C	and	D).	

Overall	mean	humidity	is	greater	in	the	forest	than	the	savanna	throughout	

the	year	(mean	humidity	is	98.2%	and	92.7%	respectively;	Figure	4.3E	and	F)	

but	cycles	biannually	in	both	(Figure	4.2).	Relative	humidity	drops	at	the	end	

of	both	the	long	and	dry	seasons	in	the	savanna	to	a	similar	value	(89.7%	and	

90.1%	in	February	and	September	respectively)	but	is	much	more	
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asymmetrical	in	the	forest,	where	high	humidity	is	maintained	throughout	

the	short	dry	season	(10-day	running	mean	for	DJF	always	greater	than	

98.7%).	Relative	humidity	in	both	the	savanna	and	the	forest	lags	the	rainfall	

cycle	by	one	month	with	the	annual	minima	occurring	in	February	and	

September	and	the	maxima	occurring	in	May/June	and	November/December	

(Figure	4.3E	and	F).	

Both	surface	solar	radiation	and	wind	speed	are	dominated	by	annual	cycles	

at	Lopé	(Figure.	4.2),	with	the	long	dry	season	coinciding	with	low	irradiance	

(mean	monthly	solar	radiation	for	July	=	129.3	W/m2;	Figure	4.3G)	and	

increasing	wind	speeds	(mean	monthly	wind	speeds	for	August	and	

September	are	1.3	m/s	and	1.4m/s	respectively;	Figure	4.3B).	Aerosol	optical	

depth	cycles	twice	yearly	(Figure	4.2),	peaking	during	the	dry	seasons	and	

dropping	during	the	rainy	seasons	(AOD	at	500nm	is	shown	in	Figure	4.3H,	

AOD	at	440	and	675nm	is	shown	in	Figure	S4.1).	In	contrast	to	the	solar	

radiation	cycle,	which	drops	to	its	minima	during	the	long	dry	season	(JJAS),	

the	strongest	peak	in	AOD	occurs	in	the	short	dry	season	(mean	monthly	

AOD	for	February	=	0.97).		
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Figure	4.2.	Fourier	spectra	for	Lopé	weather	data.		
The	spectrum	represents	the	power	of	the	cycle	at	that	particular	frequency	and	
peaks	in	the	spectra	indicate	dominant	cycles.	The	dotted	vertical	lines	indicate	
the	position	of	annual	(0.083	cycles	per	month)	and	biannual	(0.167)	cycles.	
Timeseries	were	standardised	but	observation	lengths	differ.	
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Figure	4.4:	Seasonal	weather	variability	at	Lopé,	Gabon.		
Shown	are	the	day	of	year	means	(thin	grey	line),	seven-day	running	means	(thin	
black	line)	and	monthly	means	(bold	black	line)	for	daily	rainfall	(1984-2018),	
maximum	and	minimum	daily	temperature	(1984-2017),	relative	humidity	
(2007-2015),	surface	solar	radiation	(2012-2014)	,	wind	speed	(2012-2014)	and	
aerosol	optical	depth	at	500nm	(2014-2017).	Vertical	dotted	lines	indicate	the	
alternating	rainy	and	dry	seasons.	
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4.4.2 Long-term trends 

Total	annual	rainfall	decreased	by	52mm	per	decade,	a	change	of	-3.5%	

relative	to	mean	annual	rainfall	for	the	time	period	(GLM,	family=Poisson,	

Estimate	=	-0.036,	SE=	0.005,	Z=	-7.21,	P<0.0001;	Tables	4.2A	and	Figure	

4.4A).	However	the	slope	of	the	decline	is	seasonally	dependent	(Tables	4.2B	

and	4.3)	with	no	change	in	daily	rainfall	in	DJF	and	ON	and	most	rapid	decline	

in	JJAS	(-0.26	mm	per	day	per	decade,	equating	to	23.6%	of	mean	JJAS	daily	

rainfall)	followed	by	MAM	(-0.19	mm	per	day	per	decade,	equating	to	3.2%	of	

mean	MAM	rainfall).	

Minimum	daily	temperature	at	Lopé	has	increased	at	a	rate	of	0.23°c	per	

decade,	equivalent	to	1.1%	relative	to	mean	minimum	temperature	for	the	

time	period	(LMM,	Estimate	=	0.24;	SE	=	0.05;	T	=	5.2;	Table	4.2A	and	Figure	

4.4B).	Berkeley	minimum	daily	temperature	for	the	interpolated	Lopé	grid	

square	(1°	resolution)	increased	at	a	rate	of	0.16°c	per	decade	(LMM,	

Estimate	=	0.34,	SE	=	0.09,	T	=	3.9)	while	the	CRU	interpolated	record	(0.5°	

resolution)	increased	by	0.18°c	per	decade	(LMM,	Estimate	=	0.18,	SE	=	0.03,	

T	=	5.4;	Fig	S4.2	and	S4.3).	The	rate	of	warming	at	Lopé	also	varied	by	season	

(Tables	4.2B	and	4.3)	with	minimum	temperature	increasing	most	quickly	in	

ON	and	DJF	(0.30°c	and	0.29°c	per	decade	respectively)	and	most	slowly	in	

JJAS	(0.16°c	per	decade).	
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Table	4.2.	Model	comparisons	to	test	for	long-term	change	in	rainfall	and	
minimum	temperature.	

A.	Comparison	of	models	for	long-term	change	in	total	annual	rainfall	(generalised	
linear	model,	family=Poisson)	and	mean	minimum	daily	temperature	(linear	mixed	
model).	B.	Comparison	of	models	for	long-term	change	varying	by	season	for	daily	
rainfall	(generalised	linear	mixed	model,	family=Poisson)	and	mean	minimum	daily	
temperature	(linear	mixed	model).	Year	and	Day	of	Year	(DOY)	were	included	as	
grouping	factors	in	the	random	effects	of	all	mixed	models.	AIC	=	Akaike	Information	
Criterion,	DF	=	degrees	of	freedom.	Asterisks	indicate	the	simplest	model	with	lowest	
AIC.	

A.	 	 	

Response	 Long-term	change	(~Year)	 No	long-term	change	(~1)	

AIC	 DF	 AIC	 DF	

Rainfall	 1068.8	**	 2	 1119.0	 1	

Min	temp	 22595.1**	 5	 22608.3	 4	

B.	 	 	 	 	

Response	 Long-term	change	varying	by	season	
(~Year	*	Season)	

Long-term	change	not	varying	by	season	
(~Year	+	Season)	

AIC	 DF	 AIC	 DF	

Rainfall	 151049.8**	 10	 151261.8	 	7	

Min	temp	 22260.5**	 11	 22274.3	 8	
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Table	4.3.	Outputs	from	the	best	models	for	seasonal	changes	in	rainfall	and	
minimum	daily	temperature.	

Estimates	from	generalised	linear	mixed	models	(family	=	Poisson)	for	daily	rainfall	
and	linear	mixed	models	for	minimum	daily	temperature.	SE	=	Standard	Error.	Day	of	
Year	(DOY)	and	Year	were	included	as	random	effects.	P	values	are	not	available	for	
LMM	so	95%	confidence	intervals	were	calculated	instead.	Asterisks	indicate	
predictors	where	95%	CI	doesn’t	overlap	zero	and	thus	are	considered	significantly	
different	to	zero.	

	
	  

Response	 Predictor	 Estimate	 SE	 T/Z	value	 P	value	/	95%	CI	 	

Rainfall	 DJF	 0.69	 0.12	 5.64	 <0.0001	 **	

JJAS	 -0.02	 0.11	 -0.22	 0.83	 	

MAM	 1.12	 0.11	 9.93	 <0.0001	 **	

ON	 0.71	 0.13	 5.38	 <0.0001	 **	

Year:	DJF	 0.02	 0.03	 0.79	 0.43	 	

Year:	JJAS	 -0.25	 0.03	 -8.68	 <0.0001	 **	

Year:	MAM	 -0.06	 0.03	 -2.45	 <0.05	 **	

Year:	ON	 -0.03	 0.03	 -1.36	 0.17	 	

Min	Temp	 DJF	 22.34	 0.06	 368.60	 (22.23,	22.46)	 **	

JJAS	 21.25	 0.06	 375.47	 (21.14,	21.36)	 **	

MAM	 22.36	 0.06	 371.86	 (22.25,	22.48)	 **	

ON	 22.02	 0.07	 328.67	 (21.89,	22.15)	 **	

Year:	DJF	 0.30	 0.05	 6.05	 (0.20,	0.39)	 **	

Year:	JJAS	 0.16	 0.05	 3.41	 (0.07,	0.26)	 **	

Year:	MAM	 0.25	 0.05	 5.06	 (0.15,	0.34)	 **	

Year:	ON	 0.31	 0.05	 6.05	 (0.21,	0.41)	 **	
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Figure	4.4.	Inter-annual	variation,	long-term	trends	and	periodicity	for	
rainfall	and	temperature	at	Lopé	NP,	Gabon.		
A-B:	Inter-annual	variation	(grey	line)	and	long-term	trends	(black	line)	for	
total	annual	rainfall	(1984-2018;	generalised	linear	mixed	model,	
family=Poisson)	and	mean	minimum	daily	temperature	(1984-2017;	linear	
mixed	model).	C-D:	Wavelet	transforms	of	the	monthly	time-series	for	rainfall	
and	minimum	temperature	data	at	Lopé	The	faded	region	indicates	the	“cone	of	
influence”	where	end	effects	made	the	data	unreliable.	The	colour	indicates	the	
power	of	the	cycle	at	each	time	period,	red=	high	power	and	blue	=	low	power.	
Bold	black	lines	indicate	cycles	with	significant	power	(Chi-sq	test).	E-F:	
Extracted	wavelet	components	for	the	biannual,	annual	and	multi-annual	(mean	
of	2-4	years)	periods	from	C-D	respectively	adjusted	for	edge	effects.	
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4.4.3 Periodicity over time 

Wavelet	analysis	gave	further	indication	of	the	nature	of	these	changes.	The	

dominant	six-month	cycle	for	rainfall	was,	on	average,	3.5	times	as	powerful	

as	the	annual	component	and	65	times	as	powerful	as	the	multi-annual	

component	(Figure	4.4E)	and	remained	significant	for	most	of	the	time	

period	(Figure	4.4C).	However	the	biannual	cycle	did	lose	power	on	three	

occasions,	1996-97,	2004	and	2006	(Figure	4.4C).	The	biannual	cycle	in	

rainfall	appears	to	be	losing	power	over	time	while	the	annual	cycle	is	getting	

stronger	(Figure	4.4E).	

The	annual	cycle	for	minimum	temperature	was	more	than	twice	as	powerful	

as	the	biannual	component	and	30	times	as	powerful	as	the	multi-annual	

component	(Figure	4.4F)	and	remained	dominant	throughout	most	of	the	

time	period	with	patches	of	lost	power	at	the	end	of	the	1980s	and	between	

2005	and	2010	(Figure	4.4D).	There	are	also	periods	of	high	power	in	the	

minimum	temperature	wavelet	at	the	2-4	years	scale	and	some	significant	

high	frequency	cycles	around	2003	when	the	biannual	cycle	matches	the	

power	of	the	annual	cycle.	Both	annual	and	semiannual	components	may	be	

increasing	in	strength	over	time	(Figure	4.4F).	
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4.4.4 Influence of Sea Surface Temperatures (SSTs) on 

interannual variability 

Rainfall	was	significantly	correlated	with	the	SSTs	of	all	three	oceans	while	

minimum	temperature	was	significantly	associated	with	the	Pacific	Ocean	

only	(Table	4.4).	There	were	weak	positive	correlations	between	IOD	and	

MEI,	IOD	and	NATL	and	between	NATL	and	SATL	(all	<0.27,	Figure	S4.3).	

The	best	model	for	rainfall	incorporated	all	oceanic	indices	and	each	of	their	

interactions	with	Season,	meaning	that	all	three	oceans	impact	rainfall	at	

Lopé	in	seasonally	specific	ways	(Figure	4.5A	and	Table	4.4).	El	Niño	

conditions	reduced	rainfall	in	the	months	between	June	and	February	and	

increased	rainfall	in	MAM	(Figure	4.5G	and	Table	4.5).	The	El	Niño	effect	was	

strongest	in	DJF	and	ON	where	a	1-point	decrease	in	the	ENSO	index	resulted	

in	a	predicted	reduction	of	32mm	and	41mm	rainfall	per	month	respectively.	

In	MAM	a	1-point	increase	in	the	ENSO	index	resulted	in	a	predicted	increase	

of	7mm	rainfall	per	month.	

Warm	North	and	South	Atlantic	SSTs	coincided	with	greater	than	average	

rainfall	in	all	seasons	(all	significantly	different	from	zero	apart	from	the	

effect	of	NATL	in	MAM;	Figure	4.5A,	B	and	D	and	Table	4.5).	The	South	

Atlantic	had	a	greater	impact	on	Lopé	rainfall	than	the	North	Atlantic	(size	of	

the	estimates;	Table	4.5)	and	was	especially	strong	in	the	months	from	March	

to	September	(Figure	4D,E	and	Table	4.5);	A	1°C	increase	in	the	South	

Atlantic	SST	anomaly	increased	predicted	monthly	rainfall	in	MAM	by	80mm	

and	in	JJAS	by	16mm.	Positive	Indian	Ocean	Dipole	modes	coincided	with	

enhanced	rainfall	in	all	seasons	but	were	strongest	in	JJAS	(Figure	4.5I	and	

Table	4.5)	where	a	1-point	increase	in	the	IOD	resulted	in	an	increase	of	

11mm	monthly	predicted	rainfall.	

The	best	model	for	minimum	daily	temperature	retained	the	interaction	with	

season	for	MEI	only	(Tables	4.4	and	4.5	and	Figure	4.5A).	El	Niño	conditions	

significantly	increased	minimum	daily	temperature	from	December	to	May	

(Figure	4.5C	and	Table	4.6).	A	1-point	increase	in	ENSO	index	in	these	



	

	
112	

months	resulted	in	a	0.19°C	and	a	0.18°C	increase	in	predicted	minimum	

temperature	in	DJF	and	MAM	respectively.		
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Table	4.4.	Model	comparisons	to	test	for	the	effects	of	oceanic	indices	on	rainfall	
and	minimum	temperature	at	Lopé.		
We	used	Generalised	Linear	Mixed	Models	(family=Poisson)	for	rainfall	and	Linear	
Mixed	Models	for	temperature..	NATL=North	Tropical	Atlantic	SST;	SATL	=	South	
Tropical	Atlantic	SST;	MEI	=	Multivariate	ENSO	Index;	IOD	=	Indian	Ocean	Dipole;	AIC	
=	Akaike	Information	Criterion,	DF	=	degrees	of	freedom.	Asterisks	indicate	the	
simplest	model	with	lowest	AIC.	

	

	 	

Response Predictors DF AIC  

Rainfall 

Season + NATL: Season + SATL: Season 
+ MEI: Season + IOD: Season + Year: 
Season 26 12233.8 

** 

Season + NATL: Season + SATL: Season 
+ MEI: Season + IOD + Year: Season 23 12325.9 

 

Season + NATL: Season + SATL: Season 
+ MEI + IOD: Season + Year: Season 23 12847.0 

 

Season + NATL: Season + SATL + MEI: 
Season + IOD: Season + Year: Season 23 12374.5 

 

Season + NATL + SATL: Season + MEI: 
Season + IOD: Season + Year: Season 23 12249.2 

 

Min. Temp. 

Season + NATL: Season + SATL: Season 
+ MEI: Season + IOD: Season + Year: 
Season 27 500.1 

 

Season + NATL: Season + SATL: Season 
+ MEI: Season + IOD:+ Year: Season 24 483.8 

 

Season + NATL: Season + SATL: Season 
+ MEI: Season + Year: Season 23 476.6 

 

Season + NATL: Season + SATL: Season 
+ MEI+ Year: Season 24 487.3 

 

Season + NATL: Season + SATL + MEI: 
Season + Year: Season 20 464.2 

 

Season + NATL: Season + MEI: Season + 
Year: Season 19 457.2 

 

Season + NATL + MEI: Season + Year: 
Season 16 443.6 

 

Season + MEI: Season + Year: Season 15 442.1 ** 
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Table	4.5.	Outputs	from	the	best	model	for	the	effects	of	oceanic	indices	on	
rainfall	at	Lopé	NP.	

The	estimates	are	from	generalized	linear	mixed	models	(family=Poisson)	and	are	
from	modified	models	with	the	global	intercept	removed	to	allow	comparison	between	
effect	sizes.	Asterisks	indicate	predictors	that	are	significantly	different	to	zero.	
NATL=North	Tropical	Atlantic	SST;	SATL	=	South	Tropical	Atlantic	SST;	MEI	=	
Multivariate	ENSO	Index;	IOD	=		Indian	Ocean	Dipole.	

	

	 	

Predictor	 Estimate	 SE	 Z	Value	 P	Value	
	DJF	 4.45	 0.37	 11.89	 <0.0001	 **	

JJAS	 2.89	 0.33	 8.89	 <0.0001	 **	
MAM	 5.18	 0.37	 13.85	 <0.0001	 **	
ON	 5.43	 0.46	 11.87	 <0.0001	 **	
NATL:	DJF	 0.06	 0.02	 4.18	 <0.0001	 **	
NATL:	JJAS	 0.05	 0.02	 2.41	 <0.05	 **	
NATL:	MAM	 0.01	 0.01	 0.68	 0.49	

	NATL:	ON	 0.09	 0.02	 4.87	 <0.0001	 **	
SATL:	DJF	 0.12	 0.01	 10.47	 <0.0001	 **	
SATL:	JJAS	 0.31	 0.02	 15.52	 <0.0001	 **	
SATL:	MAM	 0.15	 0.01	 15.45	 <0.0001	 **	
SATL:	ON	 0.05	 0.01	 4.09	 <0.0001	 **	
MEI:	DJF	 -0.32	 0.01	 -24.72	 <0.0001	 **	
MEI:	JJAS	 -0.11	 0.02	 -5.29	 <0.0001	 **	
MEI:	MAM	 0.03	 0.01	 3.04	 <0.01	 **	
MEI:	ON	 -0.16	 0.01	 -11.33	 <0.0001	 **	
IOD:	DJF	 0.08	 0.02	 4.66	 <0.0001	 **	
IOD:	JJAS	 0.22	 0.02	 12.32	 <0.0001	 **	
IOD:	MAM	 0.03	 0.01	 2.63	 <0.01	

	IOD:	ON	 0.05	 0.01	 4.76	 <0.0001	 **	
Year:	DJF	 -0.05	 0.04	 -1.31	 0.19	

	Year:	JJAS	 -0.34	 0.04	 -8.68	 <0.0001	 **	
Year:	MAM	 -0.09	 0.04	 -2.65	 <0.01	 **	
Year:	ON	 -0.09	 0.04	 -2.44	 <0.05	 **	
	



	

	
115	

Table	4.6.	Outputs	from	the	best	model	for	the	effects	of	oceanic	indices	on	
minimum	temperature	at	Lopé	NP.	

The	estimates	are	from	linear	mixed	models	for	temperature	and	are	from	modified	
models	with	the	global	intercept	removed	to	allow	comparison	between	effect	sizes.	
Asterisks	indicate	predictors	that	are	significantly	different	to	zero.	MEI	=	Multivariate	
ENSO	Index.	

	

	 	

Predictor	 Estimate	 SE	 	T	Value	 Lower	95%	CI	 Upper	95%	CI	
	DJF	 22.29	 0.21	 105.32	 21.92	 22.66	 **	

JJAS	 21.19	 0.18	 115.12	 20.87	 21.51	 **	
MAM	 22.29	 0.21	 105.45	 21.92	 22.66	 **	
ON	 21.95	 0.26	 85.17	 21.50	 22.40	 **	
MEI:	DJF	 0.19	 0.04	 4.71	 0.11	 0.26	 **	
MEI:	JJAS	 0.05	 0.04	 1.29	 -0.03	 0.13	

	MEI:	MAM	 0.18	 0.05	 3.93	 0.09	 0.27	 **	
MEI:	ON	 0.05	 0.05	 1.02	 -0.05	 0.15	

	Year:	DJF	 0.31	 0.05	 5.79	 0.21	 0.42	 **	
Year:	JJAS	 0.16	 0.05	 3.21	 0.06	 0.26	 **	
Year:	MAM	 0.26	 0.05	 4.81	 0.15	 0.36	 **	
Year:	ON	 0.32	 0.06	 5.13	 0.20	 0.44	 **	
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Figure	4.5.	The	influence	of	oceanic	Sea	Surface	Temperatures	(SSTs)	on	
Lopé	rainfall	and	temperature.		
A.	Standardised	effect	sizes	for	significant	correlations	between	each	oceanic	
index	(NATL	=	northern	tropical	Atlantic	SST,	SATL=	southern	equatorial	
Atlantic	SST,	MEI	=	Multivariate	ENSO	Index,	IOD	=	Indian	Ocean	Dipole)	and	
both	total	monthly	rainfall	and	mean	minimum	daily	temperate.	Colour	
indicates	the	direction	of	the	correlation	(blue=	positive,	red=negative).	The	size	
of	the	circle	indicates	the	relative	size	of	the	effect	and	the	transparency	of	the	
circle	indicates	the	uncertainty	(low	transparency	=	low	T/Z	value	=	high	
uncertainty,	high	transparency	=	high	T/Z	value	=	low	uncertainty).	B-F	The	raw	
data	(summarised	to	seasonal	means)	and	model	predictions	(linear	mixed	
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models	for	temperature,	generalised	linear	models,	family=Poisson,	for	rainfall)	
from	the	best-fit	models	for	the	effects	of	each	oceanic	index.	

4.5 Discussion 

4.5.1 Our results 

Lopé	weather	has	changed	significantly	over	the	last	three	decades,	warming	

at	a	rate	of	0.23°c	per	decade	(minimum	daily	temperature)	and	drying	at	a	

rate	of	-52mm	per	decade	(total	annual	rainfall).	Both	trends	are	seasonally	

dependent:	warming	was	significant	in	all	seasons,	but	most	rapid	from	

October	to	February	and	most	gentle	in	the	long	dry	season,	while	rainfall	

showed	significant	decline	between	March	and	September	only,	

incorporating	both	the	long	rainy	season	and	the	long	dry	season.		

The	drying	trend	at	Lopé	supports	observations	of	reduced	flow	from	March	

to	September	(which	includes	the	long	rains	and	the	long	dry	season)	for	the	

Ogooué	river	(to	which	the	Lopé	watershed	drains;	Mahe	et	al.	2013)	and	

precipitation	declines	evident	from	gridded	gauge-data	for	the	

Gabon/Cameroon	region	(-1%	total	annual	rainfall,	1968-1998;	Malhi	&	

Wright	2004).	However,	the	Lopé	total	annual	rainfall	decline	of	-3.6%	per	

decade	exceeds	the	trend	estimated	from	the	regional	gauge-data.	While	the	

biannual	wavelet	component	for	rainfall	appears	to	be	declining	at	Lopé	

along	with	the	overall	interannual	trend,	the	annual	component	is	getting	

more	powerful.	Declines	in	rainfall	in	the	long	but	not	the	short	dry	season	

are	likely	to	be	further	differentiating	the	two	seasons	and	enhancing	an	

overall	annual	rainfall	cycle.	

The	warming	trend	recorded	at	Lopé	is	greater	than	that	estimated	for	the	

location	over	the	same	time	period	using	the	Berkeley	and	CRU	gridded	

datasets	(+0.16°C	and	+0.18°C	respectively).	It	is	also	greater	than	that	

identified	using	satellite	data	for	mean	annual	temperature	for	all	tropical	

Africa	(0.15°c	,	1979-2010;	Collins	2011),	but	is	lower	than	the	change	

estimated	from	gridded	observational	data	(CRU)	for	mean	annual	

temperature	specifically	for	African	tropical	forests	(+0.29°c	per	decade,	

1976-1998;	Malhi	&	Wright	2004).	This	latter	analysis	showed	African	
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tropical	forests	to	be	warming	faster	than	those	in	both	America	and	Asia	

(0.26	and	0.22°c	per	decade,	respectively.	While	we	haven’t	been	able	to	

calibrate	the	data	recorded	between	different	equipment	over	time	at	Lopé	

there	is	good	evidence	that	the	warming	trend	observed	there	since	1984	is	

real.	The	slower	warming	trend	in	the	already	cool	long	dry	season	is	likely	to	

account	for	the	apparent	increase	in	the	power	of	the	annual	wavelet	

component	for	Lopé	minimum	temperature.		

In	addition	to	these	directional	trends	in	climatological	averages,	interannual	

weather	variability	is	highly	influenced	by	global	weather	patterns	at	our	

site.	Our	analysis	shows	that	interannual	variation	in	rainfall	at	Lopé	is	linked	

to	the	SST	patterns	of	all	three	oceans	while	temperature	variation	is	only	

significantly	associated	with	the	Pacific.	The	SSTs	of	the	North	and	South	

tropical	Atlantic	regions	positively	influence	Lopé	rainfall	in	all	seasons	and	

the	influence	was	especially	strong	in	the	southern	equatorial	Atlantic	from	

March	to	September.	This	association	between	Atlantic	SSTs	and	rainfall	is	

supported	by	other	analyses	of	interannual	rainfall	variation	for	WEA;	

Camberlin	et	al.	(2001)	found	that	the	Atlantic	dipole	(cool	temperatures	in	

the	North	Atlantic	and	warm	temperatures	in	the	South	Tropical	Atlantic)	is	

associated	with	higher	than	average	rainfall	in	March-May,	while	Balas	et	al.	

(2007)	found	that	positive	temperature	anomalies	in	the	southern	equatorial	

Atlantic	(especially	the	Benguela	coast)	enhanced	rainfall	in	the	long	dry	

season.	In	another	study,	warm	southern	Atlantic	anomalies	were	shown	to	

correlate	positively	with	rainfall	in	both	dry	seasons	(Otto	et	al.	2013).	South	

Tropical	Atlantic	SST	and	circulation	patterns	have	been	an	important	

influence	on	Congo	Basin	precipitation	for	the	past	20,000	years	(Schefuss	et	

al.	2005).	

Lopé	rainfall	is	positively	correlated	with	ENSO	from	March	to	May	and	

negatively	correlated	from	June	to	February,	influencing	the	rainfall	contrast	

between	seasons.	In	La	Niña	years,	rainfall	is	above	average	from	December-

February,	making	it	much	more	similar	to	the	March-May	rainy	season	

(where	rainfall	is	reduced).	In	El	Niño	years,	rainfall	is	below	average	in	

December-February	increasing	the	contrast	with	the	rainy	seasons	which	are	
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also	much	more	similar	to	each	other	at	these	times	(Figure	4.3G).	While	

these	findings	support	the	conclusion	that	ENSO	influences	rainfall	in	the	

region,	there	are	disagreements	between	our	study	and	other	analyses	as	to	

the	direction	of	influence.	Three	major	analyses	of	the	effects	of	ENSO	on	

rainfall	in	central	Africa	using	satellite	and	gridded	data	concluded	that	El	

Niño	reduces	rainfall	from	December	to	September	(including	both	dry	

seasons	and	the	March-May	rainy	season;	Preethi	et	al.	2015;	Camberlin	et	al.	

2001;	Balas	et	al.	2007).	We	observed	reduced	rainfall	at	Lopé	in	El	Niño	

years	from	December-February	and	June-September,	but	found	the	opposite	

interaction	between	ENSO	and	rainfall	in	March-May.	Finally,	we	found	that	

positive	dipole	modes	for	the	Indian	Ocean	(above	average	SSTs	along	the	

east	African	coast)	led	to	increased	rainfall	in	all	seasons	at	Lopé.	The	IOD	

was	similarly	found	to	influence	rainfall	in	the	long	dry	season	in	another	

study	focussing	on	the	central	equatorial	region	just	to	the	east	of	Gabon,	

although	the	sign	of	the	correlation	was	not	made	known	(Otto	et	al.	2013).		

Overall,	our	work	supports	the	idea	that	the	drivers	of	rainfall	variability	in	

WEA	are	highly	complex,	with	strong	local	and	seasonal	influence	from	the	

major	oceans.	Land	topography	(e.g.	the	highlands	of	Gabon,	Cameroon	and	

East	Africa)	is	also	likely	to	be	a	major	influence	on	the	highly	localised	

expressions	of	rainfall	and	rainfall	variability	in	the	region	(Balas	et	al.	2007;	

Dezfuli	et	al.	2015).	

Model	projections	for	rainfall	remain	broad	for	WEA	and	as	a	result,	averaged	

model	trends	are	close	to	zero.	Those	models	that	predict	drying	in	WEA	do	

so	due	to	a	northward	shift	of	the	ITCZ,	related	to	cool	SSTs	in	the	Gulf	of	

Guinea	in	in	all	seasons,	but	most	markedly	in	March-May	(The	Atlantic	cold	

tongue;	James	et	al.	2013).	We	found	strong	reductions	in	rainfall	in	these	

months	associated	with	a	cool	southern	equatorial	Atlantic	(0°-	20°S)	and	

thus	our	data	provides	some	support	for	the	mechanisms	behind	the	“dry”	

models	for	WEA.	

Anomalously	warm	Pacific	Ocean	conditions	(El	Niño)	are	associated	with	

above	average	minimum	temperatures	at	Lopé	from	December	to	May.	This	

result	is	supported	by	a	continent-wide	study	showing	increased	warming	in	
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El	Niño	years	throughout	Africa	(Collins	2011).	As	the	long-term	trend	in	

minimum	temperature	was	retained	in	our	final	model,	alongside	ENSO,	it	is	

likely	that	the	El	Niño	effect	is	not	the	main	influence	on	long-term	warming	

in	the	region	(as	in	Collins	2011).	The	Atlantic	and	Indian	Oceans	had	no	

significant	effects	on	temperature	at	Lopé	once	the	general	warming	trend	

was	accounted	for	in	our	model.	This	means	that	both	Lopé	and	the	Atlantic	

oceans	are	warming,	but	that	we	find	no	evidence	that	one	causes	the	other,	

above	and	beyond	the	established	global	warming	trend.	This	strong	

association	between	ENSO	and	Lopé	minimum	temperature	is	likely	to	

account	for	the	periodicity	evident	in	the	wavelet	transform	at	ENSO	scales	

(two	to	eight-year	window).	

Another	question	that	arises	from	our	analysis	and	merits	further	

investigation	is:	What	causes	seasonal	variability	in	surface	solar	radiation	in	

WEA?	We	know	from	our	data	that	aerosols	are	not	the	main	driver	of	

seasonal	radiation	variability	as	the	highest	aerosol	load	at	Lopé	occurs	

during	the	short	dry	season	while	surface	solar	radiation	is	lowest	during	the	

long	dry	season.	Seasonal	and	inter-annual	variation	in	coarse	and	fine	dust	

concentrations,	as	well	as	cloud,	will	be	important	in	understanding	the	

availability	of	photosynthetically	active	radiation	for	vegetation	in	the	region.	

Of	further	interest	to	us	at	Lopé	is	the	role	of	Saharan	dust	and	smoke	mass	

in	aerosol	loads	in	WEA	(Yang	et	al.	2013)	and	its	impact	on	irradiance.	

Various	studies	have	commented	on	the	links	between	the	tropical	rain	belt	

and	African	easterly	jets	(including	anomalous	westerly	winds;	Nicholson	&	

Grist	2003),	suggesting	that	variability	in	rainfall	may	be	related	to	wind	

speeds	and	to	a	decoupling	of	the	ITCZ	and	the	tropical	rainbelt.	Further	

observations	of	wind	speed	at	Lopé	and	use	of	data	from	other	weather	

stations	in	the	region,	alongside	regional	atmospheric	models,	may	shed	light	

on	these	issues.	

4.5.2 Data quality and availability 

One	of	the	major	issues	with	climate	analysis	in	central	Africa	is	the	limited	

and	declining	publicly	available	data	from	weather	stations	in	the	region:	The	

nearest	weather	stations	to	Lopé	listed	on	the	Global	Historical	Climatology	
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Network	(GCHN)	Daily	Database	(Menne	et	al.	2012)	are	between	136	and	

185km	away	and	there	is	no	public	data	available	since	1980.	The	World	

Meteorological	Organisation	(WMO)	has	a	minimum	recommended	density	

of	weather	stations	eight	times	higher	than	the	modern	density	of	weather	

stations	in	Africa	(Collins	2011).	This	lack	of	data	has	direct	impacts	on	the	

quality	of	gridded	climate	data	products	(Suggitt	et	al.	2017)	and	ability	to	

calculate	daily	climatic	indices	for	the	extremes	(Niang	et	al.	2014).	Gabon	is	

also	one	of	the	cloudiest	places	on	earth	

(http://www.acgeospatial.co.uk/the-cloudiest-place/)	which	leads	to	large	

uncertainties	in	satellite	estimates,	with	some	satellite	algorithms	

overestimating	rainfall	in	the	region	by	at	least	a	factor	of	two	(Balas	et	al.	

2007).	Finally,	poor	correlation	between	the	rainfall	of	central	Africa	and	

neighbouring	regions	and	variability	between	individual	stations	suggests	

much	local	influence	(Balas	et	al.	2007),	further	confounding	the	challenges	

of	sparse	data.	

The	importance	of	maintaining	long-term	tropical	study	sites	and	improving	

the	quality	and	type	of	weather	measurements	has	been	known	for	some	

time	(Clark	2007).	However,	the	region	is	remote	and	there	are	many	

financial,	logistical	and	political	challenges	to	face	when	servicing	field	

stations	to	address	this.	One	such	issue	is	that	WEA	has	the	highest	frequency	

of	lightning	strike	in	the	world	(Balas	et	al.	2007)	leading	to	difficulties	and	

great	expense	maintaining	equipment.	Lightning	is	an	issue	we	regularly	

confront	at	Lopé	and	that	has	led	to	major	gaps	in	the	data	record.		While	

automatic	continuous	measurements	can	provide	vast	amounts	of	detailed	

data	relevant	for	ecological	studies	they	are	also	inherently	more	susceptible	

to	technical	failures	that	need	expert	fixes	and	in	our	experience	data	gaps	

are	more	likely	to	go	unnoticed	than	for	manual	data	collection.	Whilst	we	

welcome	new	automatic	data	methods,	we	recommend	maintaining	long-

term	manual	records	alongside	for	consistency.		

4.5.3 Conclusions for the tropical forest biome 

We	have	shown	that	while	there	are	many	agreements	between	our	data	and	

regional	analyses,	particularly	for	seasonal	norms	and	long-term	warming,	
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there	are	also	surprises,	including	the	positive	influence	of	ENSO	on	rainfall	

from	March	to	May.		While	there	remains	uncertainty	in	the	direction	of	

precipitation	change	in	the	region	more	widely,	the	reduction	in	rainfall	

observed	at	Lopé	lends	support	to	the	drying	trend	evident	from	other	

observational	data	(both	gridded	gauge	data	and	river	run-off)	for	WEA	and	

its	association	with	the	Atlantic	cold	tongue.	

It	is	only	4000	years	ago	that	the	forests	of	the	Congo-Ogooué	basin	are	likely	

to	have	retreated	due	to	climate	change	(Willis	et	al.	2013),	raising	the	strong	

possibility	that	such	ecosystem-wide	changes	might	happen	again.	Extreme	

mean	temperature	increases	are	most	likely	to	result	in	reduced	

photosynthetic	capacity	of	tropical	forests	via	reduced	enzyme	activity	

(Cusack	et	al.	2013).	Increasing	minimum	daily	temperature	(which	reflects	

night-time	temperatures)	are	likely	to	reduce	plant	growth	through	

increased	loss	of	CO2	and	moisture	due	to	respiration	and	transpiration	

(Cusack	et	al.	2013).	While	CO2	enrichment	may	act	to	override	the	influence	

of	temperature	by	increasing	plant	water	use	efficiency	(James	et	al.	2013),	

drought	has	been	shown	to	lead	to	increased	deciduousness,	shorter	trees,	

simplified	canopy	structure	and	decreased	leaf-area	index	(van	Schaik	et	al.	

1993).	It	has	been	suggested	that	African	tropical	forest	species	may	be	

relatively	drought-adapted	compared	to	those	found	elsewhere	because	of	

the	extreme	climatic	cycles	(Asefi-najafabady	&	Saatchi	2013).	However	

James	et	al	(2013)	emphasise	that	precipitation	levels	in	African	forests	are	

already	near	to	the	hydrological	limit	for	closed	canopy	forest,	and	that	drier	

conditions	are	likely	to	lead	to	water	stress.		

Our	seasonal	analysis	of	weather	variability	at	Lopé	further	serves	to	

emphasise	the	ecological	importance	of	the	long	dry	season	in	the	western	

equatorial	African	tropics;	Three-four	months	that	are	anomalously	dry	

(almost	no	rainfall	for	60	consecutive	days)	and	getting	drier,	cool	(mean	

maximum	daily	temperature	is	2.5°C	lower	in	July	compared	to	April),	and	

that	experience	high	wind	speeds,	low	humidity	and	limited	light	availability	

(although	light	quality	might	be	high;	Philippon	et	al.	2019).	Such	a	defined	

season	poses	specific	challenges	to	the	biota	and	is	likely	to	act	as	a	temporal	
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marker	for	ecological	events,	similar	to	a	winter	event	in	temperate	regions.	

The	long	dry	season	is	highly	likely	to	be	an	unfavourable	period	for	

photosynthesis	and	for	most	reproductive	events	that	require	high	energy	

and	moisture	availability.	The	response	of	the	biota	to	this	recurrent	and	

predictable	seasonal	drought	could	be	used	to	estimate	their	long-term	

response	to	drying	over	multi-annual	time	scales	(Detto	et	al.	2018).		In	

addition,	the	seasonal	synchrony	between	moisture	and	light	in	western	

equatorial	Africa	gives	an	opportunity	to	test	the	relative	importance	of	each	

for	adaptive	plant	phenology,	when	compared	to	other	tropical	regions	

where	these	factors	are	asynchronous.	In	contrast	to	the	Asian	and	American	

tropics,	the	vegetation	of	western	equatorial	Africa	“has	it	all”	in	the	rainy	

seasons	with	both	moisture	and	light	in	abundance.		

The	long-term	observations	we	presented	here	have	not	previously	been	

made	public	and,	while	they	are	derived	from	a	single	site,	are	of	great	value	

in	such	a	data-poor	region.	The	co-occurrence	of	this	local	weather	record	

alongside	long-term	vegetation	and	animal	monitoring	at	Lopé	is	well	

situated	to	elucidate	the	mechanisms	of	tropical	forest	adaptation	to	climate	

change	in	western	equatorial	Africa.	Will	warming	occur	slowly	enough	for	

plants	to	acclimate?	Can	individual	plants	adapt	to	new	rainfall	regimes	

within	their	lifetime	through	changes	in	deciduousness	and	leaf	chemistry?	

Or	will	the	new	climate	regime	lead	to	increased	mortality	and	long-term	

compositional	shifts	in	the	forest	biome?		These	are	all	vital	questions	that	

require	urgent	investigation	and	to	which	end	this	accurate	local	data	can	be	

used.	
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S4 Supporting information 

	
Figure	S4.1:	Seasonality	of	aerosol	optical	depth	at	three	different	
wavelengths	(440nm,	500nm	and	675nm)	relevant	for	photosynthetically	
active	radiation.	
Shown	are	monthly	means	of	daily	data	2014-2017	from	Lopé	NP.	
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Figure	S4.2.	Time	series	of	annual	mean	minimum	daily	temperature	for	
two	gridded	data	products	for	Lopé	NP,	Gabon.		
The	black	line	represents	temperature	data	recorded	at	Lopé	and	the	coloured	
lines	are	from	gridded	regional	data	products:	daily	minimum	air	temperature	
from	the	Gridded	Berkeley	Earth	Surface	Temperature	Anomaly	Field	(Rohde	et	
al.	2013)	and	monthly	mean	daily	minimum	temperature	from	the	Climate	
Research	Unit’s	Time-Series	v4.01	of	high-resolution	gridded	data	(CRU	TS4.01;	
University	of	East	Anglia	Climatic	Research	Unit	et	al.	2017;	Harris	et	al.	2014).	
The	annual	mean	is	calculated	from	deseasonalised	monthly	means.	

	

Figure	S4.3.	Trend	in	annual	mean	minimum	daily	temperature	for	two	
gridded	data	products	for	Lopé	NP,	Gabon.		
The	dots	and	lines	represent	the	data	(annual	means	of	monthly	means)	and	the	
thin	lines	represent	the	trend	derived	from	a	linear	mixed	model		
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Figure	S4.4.	Plot	showing	matrix	of	Pearson	correlation	coefficients	for	
four	oceanic	indices	and	rainfall.	

	

	
Figure	S4.5.	Plot	showing	matrix	of	Pearson	correlation	coefficients	for	
four	oceanic	indices	and	minimum	temperature.	
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Chapter 5 

CO2	drives	long-term	reduction	in	

tropical	canopy	leaf	turnover	

5.1 Abstract 

Phenological	cycles	in	leaf	turnover	and	leaf	photosynthetic	activity	are	

tightly	coupled	with	both	local	and	global	climatic	and	atmospheric	

processes.	However	there	are	very	few	observational	studies	of	leaf	

phenology	in	the	tropics	and	most	uncertainty	over	tropical	land	areas	in	

recent	earth	system	models	is	due	to	poorly	characterised	impacts	of	climate	

and	CO2	on	primary	productivity.	In	this	analysis	we	present	newly	available	

leaf	phenology	data	from	long-term	focal-crown	observations	at	Lopé	

National	Park,	Gabon	(1986-2018).	For	a	sample	of	108	individual	trees,	

representative	of	the	most	common	canopy	species	in	the	region,	we	use	a	

range	of	methods	(including	Fourier	analyses	and	Generalised	Linear	Mixed	

Models)	to	test	for	seasonality	and	long-term	trends	in	leaf	phenology	and	to	

evaluate	the	relative	importance	of	light,	moisture,	temperature,	CO2	and	leaf	

herbivory	as	drivers	of	monthly	and	interannual	variation	in	tropical	forest	

leaf	production.	We	found	that	despite	relatively	low	annual	rainfall	and	

strong	rainfall	seasonality,	the	Lopé	forested	region	is	dominated	by	

evergreen	leaf	phenology	with	mature	leaf	canopies	maintained	throughout	
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the	long	dry	season.	New	leaf	production	is	common	all	year	round	except	for	

the	long	dry	season	when	leaf	development	is	supressed	due	to	reduced	light	

availability.	Moisture,	light	and	leaf	herbivory	are	all	positive	predictors	of	

new	leaf	production	at	seasonal	scales.	A	long-term	decline	in	the	probability	

of	leaf	flush	for	all	species	is	strongly	associated	with	the	rise	in	CO2.	While	

the	mechanism	for	this	remains	unclear,	we	propose	a	theory	based	on	

delayed	senescence	and	increased	leaf	longevity	related	to	improved	water	

use	efficiency	and	a	slower	decline	of	photosynthetic	rate	with	leaf	age.	This	

is	the	first	time	a	reduction	in	leaf	turnover	has	been	shown	for	a	tropical	

forest	and	our	results	challenge	the	idea	that	the	warming	and	drying	trend	

predicted	for	western	equatorial	Africa	will	lead	to	increased	deciduousness.	

Such	predictions	refer	to	species	turnover	in	the	long-term	and	few	studies	

have	assessed	the	likely	impacts	of	environmental	change	within	the	lifetime	

of	long-lived	canopy	trees.	

5.2 Introduction 

Leaves	are	highly	specialised,	transitory	organs	adapted	for	optimal	carbon	

capture	and	sunlight	absorbance.	They	pass	through	a	series	of	

developmental	stages	from	leaf	bud	and	emergence	(birth)	to	maturation,	

senescence	and	eventually	abscission	(death)	and	these	phenophases	will	be	

apparent	many	times	in	a	tree’s	lifetime.	Vegetative	phenology	concerns	not	

only	the	physical	development	of	leaf	cohorts	but	also	their	physiological	

activity	(photosynthesis,	evapotranspiration	etc.)	and	is	tightly	coupled	with	

climatic	and	atmospheric	processes	on	local	and	global	scales	(Richardson	et	

al.	2013).	Leaves	and	leafy	canopies	alter	climate	and	atmospheric	

composition	through	absorption	of	sunlight,	evaporative	cooling,	carbon	

sequestration	and	oxygen	production	and	are	themselves	impacted	by	these	

processes	(Mitchard	2018;	Bonan	2008).		

Extensive	evidence	for	the	impacts	of	global	environmental	change	on	

vegetative	phenology	points	towards	elongated	growing	seasons	driven	by	

global	warming	and	elevated	CO2	in	temperate	regions	(Menzel	et	al.	2006;	

Cleland	et	al.	2007;	Chambers	et	al.	2013).	However	the	picture	is	much	less	

clear	for	the	tropics	where	phenological	controls	on	leaf	emergence,	leaf	
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longevity	and	photosynthetic	activity	are	highly	complex	and	often	poorly	

understood.	Moisture	and	light	availability	are	thought	to	be	much	more	

likely	candidates	than	temperature	as	drivers	of	seasonal	leaf	phenology	in	

the	tropics	(Cleland	et	al.	2007;	Cook	et	al.	2012).	Changes	to	precipitation	

regimes,	CO2	concentration,	temperature	and	cloudiness	are	all	hypothesised	

to	influence	tropical	foliar	development	and	tree	growth	on	interannual	

scales	(Reich	1995;	Lewis	et	al.	2009;	Richardson	et	al.	2013).	

Despite	the	importance	of	tropical	forests	for	the	global	carbon	cycle	

(Mitchard	2018),	there	are	very	few	ground-based	observational	studies	of	

leaf	phenology	in	the	tropics	and	even	fewer	that	have	monitored	

phenological	activity	over	long	time	frames.	Remote	sensing	has	great	

potential	for	sampling	leaf	phenology	across	landscapes	but	there	have	been	

controversies	over	the	biological	interpretation	of	canopy	reflectance	data	at	

the	plant-level	and	the	impacts	of	non-leaf	artefacts	such	as	solar	zenith	angle	

(Huete	&	Saleska	2010;	Morton	et	al.	2014;	Wu	et	al.	2018).	Remote	sensing	

is	thus	far	unable	to	contribute	widely	to	our	quantitative	understanding	of	

species	or	individual-level	plant	responses	to	global	environmental	change.	

Most	of	the	uncertainty	over	tropical	land	areas	in	the	most	recent	earth	

system	models	is	due	to	disagreement	on	the	modelled	impacts	of	climate	

and	CO2	on	primary	productivity	(Mitchard	2018).	

In	this	chapter	we	present	an	economic	theory	of	leaf	exchange	and	review	

the	evidence	for	seasonal	and	interannual	controls	on	tropical	tree	leaf	

phenology	before	presenting	and	discussing	newly	available	data	from	focal-

crown	observations	at	Lopé	National	Park,	Gabon	(1986-2018).	Long-term	

ground-based	phenology	data	are	a	rare	but	highly	valuable	resource	in	

global	change	research	and	can	be	used	to	evaluate	the	mechanisms	behind	

tropical	leafing	strategies	to	ground-truth	and	interpret	the	biological	basis	

for	large-scale	canopy	observations.		

5.2.1 Leaf phenology as an economic process 

The	major	axes	of	variation	in	the	leaf	phenology	of	perennial	plants	are	leaf	

habit,	individual	leaf	lifespan	and	the	timing	and	patterning	of	leaf	
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emergence.	Leaf	turnover	is	essentially	an	economic	process	and	phenology	

should	be	organised	in	a	way	that	maximises	carbon	gain	for	the	plant,	taking	

account	of	leaf	construction	costs,	photosynthetic	rate	and	its	decline	with	

leaf	age	due	to	damage,	dirt,	accumulation	of	epiphylls	and	redistribution	of	

nitrogen	within	the	plant	(Kikuzawa	&	Ackerly	1999;	Kitajima	et	al.	2002;	

Toomey	et	al.	2009).			

Plants	with	leaf-exchanging	or	(semi-)	evergreen	habits	replace	leaves	

sequentially	and	are	never	leafless	for	more	than	a	very	short	period	(Singh	

&	Kushwaha	2005).	These	species	are	found	most	frequently	in	equatorial	

and	boreal	latitudes	(Kikuzawa	1995).	Deciduous	plants	by	contrast	

undertake	complete	canopy	turnover	with	a	distinct	leafless	period	and	are	

most	common	in	temperate	regions	where	leaflessness	during	the	winter	is	

an	adaptation	to	low	temperatures	and	limited	light	availability	and	also	to	

avoid	frost	and	snow	damage.	Deciduousness	in	the	tropics	is	usually	a	

response	to	water	stress	and	is	determined	by	a	combination	of	seasonal	

drought	and	geology	(Singh	&	Kushwaha	2005;	Ouédraogo	et	al.	2016).		

Leaf	longevity	has	been	described	as	the	“duration	of	the	revenue	stream	

from	each	leaf	constructed”	(Wright	et	al.	2004)	and	among	tropical	

evergreen	trees	ranges	from	as	short	as	ten	days	to	greater	than	ten	years	

(Kikuzawa	&	Ackerly	1999).	Leaf	lifespan	strongly	co-varies	with	the	costs	of	

leaf	construction	and	maintenance	(leaf	mass	per	area)	as	well	as	the	

biomechanical	and	transport	costs	associated	with	plant	size	and	life	form	

(Kikuzawa	&	Ackerly	1999;	Wright	et	al.	2004;	Osnas	et	al.	2013).	As	a	tree	

grows,	the	cost	of	supporting	leaves	in	the	upper	canopy	increases	and	may	

be	compensated	by	increased	leaf	lifespan;	Adult	broadleaf	deciduous	trees	

in	Japan	have	longer-lived	leaves	than	seedlings	of	the	same	species	

(Kikuzawa	&	Ackerly	1999).	However,	there	is	little	evidence	for	an	impact	of	

plant	size	on	leaf	lifespan	in	trees	post-seedling	stage,	especially	when	

compared	to	other	factors.	Increased	leaf	longevity	among	mature	plants	is	

more	often	associated	with	shading	and	nutrient-poor	soils	(Reich	et	al.	

2004).	In	temperate	regions	elevated	CO2	is	thought	to	reduce	the	rate	of	

photosynthetic	decline	with	leaf	age,	making	it	economical	for	some	plant	
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species	to	delay	autumnal	senescence,	increasing	leaf	longevity	and	

extending	the	growing	season	(Cleland	et	al.	2007;	Taylor	et	al.	2008).	Reich	

(1995)	hypothesised	a	similar	effect	of	elevated	CO2	on	leaf	longevity	in	dry	

tropical	forests,	where	improved	water	use	efficiency	could	reduce	water	

stress	and	delay	leaf	fall	in	the	dry	season,	although	extreme	warming	could	

act	against	this	by	enhancing	water	stress	via	increased	evapotranspiration.	

In	addition	they	considered	the	possibility	that	elevated	CO2	could	in	fact	

accelerate	leaf	development,	leading	to	leaf	shedding	in	seemingly	

unstressful	conditions	and	reduce	leaf	lifespan.		

5.2.2 Seasonal controls on tropical leaf phenology  

In	the	neotropics	there	is	seasonal	asynchrony	between	light	and	moisture	

leading	to	light-limited	rainy	seasons	and	bright	dry	seasons	(e.g.	Barro	

Colorado	Island,	Panama;	Wright	&	Calderón	2018).	Leaf	phenology	is	key	to	

understanding	the	on-going	debate	as	to	whether	the	tropical	forests	that	

experience	this	climate	are	water-limited	(with	evidence	for	dry	season	

declines	in	productivity	mainly	originating	from	modelling	studies)	or	light-

limited	(evidence	for	dry	season	increases	in	productivity	mainly	originating	

from	in	situ	and	satellite	studies;	reviewed	in	Wu	et	al.	2016).	Young	and	

senescing	leaves	tend	to	have	reduced	infra-red	reflectance	compared	to	

mature	leaves	due	to	less	chlorophyll	per	unit	area	(Wu	et	al.	2017a,	2018).	

Leaf	demography	(the	distribution	of	leaf	ages	within	the	canopy)	is	the	

dominant	factor	accounting	for	remotely-sensed	seasonality	in	reflectance	

(Lopes	2016).	At	their	study	site	in	the	Brazilian	Amazon,	Lopes	(2016)	

observed	that	leaf	flush	occurs	at	the	start	of	the	dry	season,	3-5	months	

before	the	seasonal	peak	in	reflectance.	Wu	et.	al.	(2017b)	found	that	while	

environmental	variation	is	the	dominant	driver	of	ecosystem	productivity	at	

hourly	to	daily	timescales	(i.e.	water	availability	limits	photosynthetic	

function	in	a	given	assemblage	of	leaves),	it	is	biotic	variation	(associated	

with	leaf	phenology)	that	dominates	productivity	at	seasonal	scales	(i.e.	light	

availability	limits	new	leaf	production	in	the	canopy).		

Long-term	observations	from	Panama	show	that	tree	species	tended	to	drop	

their	leaves	before	the	dry	season	and	the	leaf	area	index	is	lowest	from	the	
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beginning	to	the	middle	of	the	dry	season,	rising	towards	the	end	of	the	dry	

season	and	peaking	in	the	rainy	season	(Detto	et	al.	2018).	New	leaf	

development	is	enhanced	during	the	dry	season	because	of	the	abundance	of	

light	and	the	reduced	leaf	area	at	this	time	is	thought	to	help	relieve	water	

stress	and	can	be	achieved	without	compromising	productivity	because	

photosynthesis	is	more	efficient	in	the	bright	conditions	(Wright	&	Cornejo	

1990).	In	the	Hawaiian	Islands,	where	dry	seasons	are	also	bright,	leaf	

phenology	is	specific	to	the	forest	type	and	rainfall	regime	(Pau	et	al.	2010).	

In	the	water-abundant	rainforests,	plants	can	take	advantage	of	increased	

light	availability	during	the	dry	season	and	respond	with	community-wide	

green-up,	where	as	the	water-limited	dry	forests	become	less	green	during	

the	same	season	due	to	water	stress.		

An	analysis	of	new	leaf	production	and	leaf	fall	along	a	spectrum	of	central	

American	tropical	forests	with	different	rainfall	regimes,	showed	that	leaf	

phenology	is	much	more	highly	synchronised	in	dry	forests	(<1500mm	total	

annual	rainfall)	with	leaf	fall	peaking	during	the	dry	season	and	leaf	

production	peaking	during	the	rainy	season	(Reich	1995).	In	contrast,	leaf	

phenology	in	the	rain	forests	(>3500mm	total	annual	rainfall)	was	much	less	

synchronised	and	the	plant	community	was	also	able	to	produce	leaves	

during	the	drier	(and	brighter)	period	of	the	year.	

In	western	equatorial	Africa,	light	and	moisture	are	strongly	synchronised	

(Chapter	4	and	Philippon	et	al.	2019))	-	with	high	irradiance	during	the	rainy	

seasons	(due	to	low	cloud	cover	during	the	day)	and	low	irradiance	during	

the	dry	seasons	(due	to	high	cloud	cover	and	increased	aerosol	load)	-	

making	the	rainy	seasons	optimal	for	both	new	leaf	development	and	

photosynthetic	activity.	Remote	sensing	studies	have	shown	that	central	

African	evergreen	forests	are	most	green	during	the	rainy	seasons	and	least	

green	during	the	long	dry	season	(Gond	et	al.	2013;	Guan	et	al.	2013;	

Philippon	et	al.	2014).	Canopy	structure	(leaf	biomass	and	water	content	of	

the	upper	canopy)	however	is	reduced	during	the	rainy	seasons	because	the	

bright	conditions	stimulate	leaf	turnover	thus	temporarily	reducing	the	leaf	

area	in	the	canopy	(Guan	et	al.	2013).	Canopy	structure	peaks	during	the	long	
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dry	season	when	leaf	turnover	is	reduced	and	the	new	leaves	produced	in	the	

dry	season	have	matured.	Evergreen	forests	in	central	Africa	are	limited	to	

the	light-deficient	western	region	(Gabon),	where	potential	

evapotranspiration	is	reduced	in	the	long	dry	season	(Philippon	et	al.	2019).	

Thus	it	appears	that	both	water	and	light	are	important	seasonal	

environmental	controls	on	tropical	vegetative	phenology	with	the	rainfall	

regime	determining	the	dominant	leaf	habitat	of	the	plant	community	in	

combination	with	potential	evapotranspiration	(lower	annual	precipitation	

and	more	extreme	dry	seasons	leading	to	deciduous	phenology)	and	seasonal	

moisture	and	light	availability	driving	the	timing	of	peak	photosynthetic	

capacity	and	leaf	production	respectively.		

5.2.3 Interannual controls on tropical leaf phenology 

Although	mechanistic	interpretations	of	the	effects	of	major	climate	and	

atmospheric	changes	(e.g.	to	temperature,	precipitation	and	CO2)	on	tropical	

tree	leaf	exchange	remain	unclear,	there	is	evidence	for	directional	changes	

in	tropical	forest	leaf	area	and	function	over	recent	decades.	A	global	analysis	

of	satellite-derived	leaf	area	index	(LAI;	1982-2009;	Zhu	et	al.	2016)	reported	

widespread	greening	across	the	tropics	attributed	mainly	to	elevated	CO2	and	

“other	factors”	such	as	land	management	and	disturbances	(e.g.	storms	and	

insect	attacks).	However	the	picture	is	more	complicated	at	regional	and	

temporal	scales.	The	global	greening	described	by	Zhu	et	al.	occurred	

predominately	pre-2000	with	seemingly	stable	or	declining	LAI	observations	

in	most	continents	since	then.	In	addition,	while	the	authors	identified	

central	Africa	as	one	of	the	strongest	regions	of	greening	using	combined	LAI	

datasets	in	the	main	analysis	(1982-2009),	an	extension	to	one	of	the	satellite	

products	(GIMMs;	1982-2014)	showed	recent	regional	variation,	with	a	

continued	increase	in	LAI	in	western	equatorial	Africa	(northern	Gabon	and	

Cameroon)	and	a	newly	emerging	decline	in	LAI	in	the	central	Congo	basin.	

In	the	same	study,	CO2	was	found	to	have	a	positive	impact	on	LAI	throughout	

equatorial	Africa	but	climatic	changes	were	shown	to	negatively	impact	LAI	

in	the	central	region,	and	have	marginal	positive	impacts	in	the	western	
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region	which	may	explain	the	local	variation	in	the	LAI	trend	(Zhu	et	al.	

2016).		

Another	analysis	of	a	number	of	remotely	sensed	vegetation	indices	

(enhanced	vegetation	index:	EVI,	vegetation	optical	depth:	VOD,	and	canopy	

backscatter)	also	uncovered	a	recent	browning	of	the	forest	canopy	in	the	

central	Congo	Basin,	attributed	to	the	long-term	drying	trend	(2000-2012;	

Zhou	et	al.	2014).	Water	deficit	stress	causes	leaves	to	become	less	turgid	and	

eventually	to	be	abscised.	The	authors	argued	that	while	in	the	short-term,	

leaves	will	be	replaced	when	water	deficit	is	alleviated,	long-term	reductions	

in	rainfall	are	likely	to	favour	deciduous	species	and	lead	to	changes	in	

species	composition	and	structure	(Fauset	et	al.	2012;	Zhou	et	al.	2014).	

Large-scale	climatic	oscillations	such	as	the	El	Niño	Southern	Oscillation	

(ENSO)	can	also	have	strong	impacts	on	leaf	development	in	tropical	forests.	

Long-term	leaf-litter	observations	at	Barro	Colarado	Island,	Panama	from	

1987-2017	showed	strong	coherence	between	leaf	fall	and	both	soil	water	

deficit	and	solar	radiation	at	ENSO	timescales.	El	Niño	years	are	associated	

with	dry	and	bright	conditions	in	this	region	and	are	preceded	by	elevated	

leaf	fall,	mirroring	the	seasonal	plant	response	to	dry	season	conditions	

(Detto	et	al.	2018).	In	western	and	central	equatorial	Africa,	ENSO	is	

negatively	correlated	with	canopy	greenness	(normalised	difference	

vegetation	index,	NDVI)	during	the	long	dry	season,	related	to	seasonal	

reductions	in	rainfall	in	El	Niño	years	(and	vice	versa	in	La	Niña	years;	

Philippon	et	al.	2014).	The	authors	attributed	this	effect	on	canopy	greenness	

in	the	long	dry	season	to	changes	in	photosynthetic	activity	not	leaf	

production	or	senescence.	

Lopé	is	a	dry	tropical	forest	in	comparison	to	the	neotropical	examples	

mentioned	in	this	introduction	(total	annual	rainfall	<1500mm)	and	has	

steadily	been	experiencing	drier	conditions	over	the	last	three	decades,	

especially	in	the	long	dry	season	(Chapter	4).	This	drying	trend	combined	

with	increasing	temperatures	is	likely	to	result	in	increased	

evapotranspiration	and	elevated	water	stress	for	plants	especially	during	the	

long	dry	season	(June-September).	In	addition,	El	Niño	years	are	known	to	
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reduce	rainfall	and	increase	temperatures	in	most	months	at	the	site	

(Chapter	4).	If	reduced	precipitation	is	translated	into	reduced	moisture	

availability	then	a	community-wide	shift	towards	deciduous	species	would	

be	expected	over	the	long-term	and	an	increase	in	water	stress	for	

established	individuals	over	the	short-term.	However	it	is	unclear	what	

mediating	effects	the	cloudiness	of	the	dry	seasons	and	elevated	CO2	may	

have	on	evapotranspiration.	In	the	following	analysis	we	test	for	seasonality	

and	long-term	trends	in	leaf	phenology	at	our	equatorial	African	site	and	

evaluate	the	relative	importance	of	light,	moisture,	temperature,	CO2	and	leaf	

herbivory	as	drivers	of	monthly	and	interannual	variation	in	tropical	forest	

leaf	production.	

5.3 Methods 

5.3.1 Sourcing data 

Phenology	data	from	the	Lopé	long-term	observational	study	

Plant	phenology	observations	began	at	the	Station	d’Études	des	Gorilles	et	

Chimpanzées	(SEGC)	in	Lopé	National	Park,	Gabon,	in	1986,	with	the	aim	of	

quantifying	food	resource	abundance	for	primates	and	other	large	mammals.	

Plant	species	were	chosen	based	on	leaf,	flower	or	fruit	presence	in	the	diet	

of	gorillas,	chimpanzees,	mandrills	and	elephants,	with	Aucoumea	klaineana	

Pierre	added	in	1996	due	its	overall	abundance	in	the	habitat	(highest	basal	

area;	White	1995).	At	the	beginning	of	each	month,	focal	crowns	are	

observed	from	the	ground	using	10	x	42	binoculars.	Canopy	coverage	of	

leaves	(new,	mature	and	senescent),	flowers	and	fruit	(unripe	and	ripe)	are	

recorded	and	noted	as	a	nine-point	score	representing	increments	of	an	

eighth	of	the	canopy,	from	absence	of	the	phenophase	to	full	coverage.	

Hereafter	these	scores	are	converted	to	percentages	from	zero	to	100%.	Leaf	

damage	(i.e.	insect	herbivory	or	fungal	damage)	was	recorded	as	a	

presence/absence	score	alongside	Lopé	phenology	observations	for	each	tree	

each	month	consistently	for	all	species	from	1995	(with	some	earlier	records	

of	exceptionally	high	leaf	damage).	Up	to	the	present,	there	have	been	>1000	

individual	plants	of	88	different	species	included	in	this	study.		
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The	SEGC	phenology	study	area	is	a	matrix	of	habitats	and	is	situated	at	the	

northern	end	of	a	continuous	forest	block.	The	forest	bounds	an	enclosed	

equatorial	savannah	that	occurs	along	the	mid	reaches	of	the	river	Ogooué	

(Figure	5.1).	The	closed-canopy	tropical	forest	is	dominated	by	A.	klaineana,	

a	characteristic	species	of	large	swathes	of	forest	in	western	Gabon.	Logging	

occurred	in	the	study	area	in	the	late	1960s	or	early	1970s	and	A.	klaineana	

was	extracted	at	a	rate	of	one	tree	ha-1	(White	1992).	Mean	total	annual	

rainfall	from	1984	to	2018	was	1465mm	and	has	declined	at	a	rate	of	78mm	

per	decade	(Chapter	4).	Mean	daily	maximum	and	minimum	temperatures	in	

the	forest	at	Lopé	over	the	same	period	were	28.1°c	and	21.9°c	respectively	

and	minimum	daily	temperature	has	increased	at	a	rate	of	0.23°c	per	decade	

(Chapter	4).	

	

Figure	5.1.	Map	of	the	Lopé	study	area.		
The	focal	trees	(black	dots)	are	located	on	the	northern	edge	of	a	continuous	
forest	block	enclosing	an	equatorial	savannah.	A	5km	botanical	transect	(black	
dashed	line)	was	set	up	in	1989.	The	inset	map	shows	the	location	of	study	area	
within	the	boundaries	of	Lopé	National	Park	and	Gabon.	SEGC	=	Station	
d’Études	des	Gorilles	et	Chimpanzées.	

We	selected	a	sample	of	species	from	the	wider	phenology	study	that	are	

most	representative	of	the	surrounding	forest	canopy	in	order	to	assess	leaf	
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Forest 
Savanna 
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turnover	at	the	community	level,	and	allow	comparison	with	remote	sensing	

studies	that	can	only	estimate	the	leaf	properties	of	the	upper	canopy.	To	do	

this	we	used	data	for	all	trees	recorded	along	a	5km	botanical	transect	

established	in	1989	near	to	the	forested	portion	of	the	phenology	study	area	

(Figure	5.1;	White	1992).	All	trees	and	lianas	with	the	centre	of	their	trunks	

within	a	5m	strip	and	>	10cm	diameter	at	breast	height	(DBH)	were	recorded	

over	a	sample	area	of	2.5ha.	We	calculated	crown	volume	(CV;	which	scales	

with	the	square	of	trunk	radius,	see	Shenkin	et	al.	in	review)	for	each	tree	

using	DBH.	We	ranked	species	according	to	the	sum	of	their	CV	and	

calculated	cumulative	CV	as	a	percentage	of	total	CV	for	the	entire	transect.	

11	species	made	up	75%	total	CV,	eight	of	which	-	A.	klaineana,	Cola	lizae	

N.Hallé,	Dacryodes	buettneri	(Engl.)	H.J.Lam,	Ganophyllum	giganteum	(Engl.)	

H.J.Lam,	Klainedoxa	gabonensis	Pierre,	Pentaclethra	macrophylla	Benth.,	

Pterocarpus	soyauxii	Taub.	and	Pycnanthus	angolensis	(Welw.)	Warb.	–	were	

included	as	part	of	the	Lopé	phenology	study.	The	eight	species	account	for	

63%	total	CV	(Figure	5.2)	and	are	all	medium	to	large	trees	with	crowns	in	

the	upper	canopy	of	the	forest	(Table	5.1).	
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Figure	5.2.	All	species	within	75%	crown	volume	along	the	5km	botanical	
transect	at	Lopé	NP.		
Shown	are	the	cumulative	crown	volume	for	each	species	in	ranked	order	with	
their	individual	contribution	written	in	text	to	the	right	of	the	bars.	Dark	bars	
indicate	species	for	which	phenology	data	has	been	recorded.	

We	selected	leaf	phenology	data	for	all	individuals	of	these	eight	species	that	

had	been	observed	for	more	than	five	years	and	are	located	within	the	

continuous	forest	block	(Figure	5.1).	The	resulting	sample	included	120	

individuals	with	a	mean	of	15	individuals	per	species	(ranging	from	10	to	42)	

and	mean	observation	length	of	293	months	(ranging	from	65	–	377;	Table	

5.1).	
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Table	5.1.	Summary	of	botanical	information,	leaf	phenology	and	sample	sizes	of	eight	species	analysed	in	this	study.	

	

Species	
(Family1)	

Botanical	description2	 Leaf	phenology3	 Leaf	damage3	 Sample4	

Aucoumea	
klaineana	
(BURS)	

Large	tree,	35-40m,	110-240	cm	dbh.	Nutrients	
exchanged	between	individuals.	Leaves	up	to	
40cm	of	7-13	leaflets.	New	leaves	flush	pink.	
Restricted	to	Gabon	where	rainfall	>1200mm.	
Most	important	timber	tree	in	Gabon.		

Incremental	leaf	exchange	with	some	seasonality.	
New	leaves	occur	at	low	level	(CC<50%)	all	year,	most	
common	Nov-Aug.	Strong	flushing	in	certain	years	after	
leaf	damage	in	Dec-Feb.	

Foliage	targeted	by	
leaf-rolling	caterpillars	
Dec-Jan,	can	result	in	
total	defoliation.	

n=	42;		
o	=	235	(65-275)	

Cola	lizae	
(STER)	

Medium	tree,	40-50cm	dbh.	Huge	leaves,	typically	
40-50cm	across	(in	young	trees	can	reach	100cm	
x	120cm).	Very	restricted	-	exclusive	to	Lopé.		

Incremental	leaf	exchange	with	some	seasonality.	
New	leaves	occur	at	low	level	(CC<25%)	all	year,	most	
common	Apr-Sept.		

Leaf	warts	(cause	
unknown)	occur	any	
time	of	year.		

n=	12;		
o=	347	(192-377)	

Dacryodes	
buettneri	
(BURS)	

Tall	tree,	15-20m	and	80-150cm	dbh.	Leaves	10-
30cm	long	of	5-8	leaflets,	dark	green.	Restricted	
mostly	to	Gabon.	Popular	timber	tree.		

Incremental	leaf	exchange	with	strong	seasonality.	
New	leaves	can	occur	at	low	level	any	time	of	year	
(CC<50%)	but	most	common	Dec-Jul.		

Foliage	targeted	by	
same	caterpillar	as	A.	
klaineana.	

n	=	11;		
o=	354	(244-377)	

Ganophyllum	
giganteum	
(SAPI)	

Large	tree,	40m	and	>1m	dbh.	Leaves	25cm	long	
of	11	leaflets.	New	leaves	shiny	from	resin.	Occurs	
throughout	western	C.	Africa	

Incremental	leaf	exchange	with	no	seasonality.	New	
leaves	occur	at	low-level	(CC<50%)	throughout	the	
year.	Occasionally	completely	defoliated.	

Low-level	leaf	damage	
(cause	unknown)	
throughout	year.	

n	=	10;		
o=	353	(317-377)	

Klainedoxa	
gabonensis	
(IRVI)	

Large	tree	45m	and	120cm	dbh	in	closed	canopy	
forest.	Leaves	of	mature	individuals	(15cm	x	5cm)	
turn	yellow	as	senesce.	Wide	ecological	tolerance	
occurring	across	west	and	central	Africa.	

Incremental	leaf	exchange	with	some	seasonality.	
New	leaves	occur	at	low-level	(CC<50%)	throughout	
the	year,	most	common	Nov-May.	Occasionally	
completely	defoliated.	

Little	leaf	damage	
observed.	

n=	10;		
o	=	375	(357-377)	

Pentaclethra	
macrophylla	
(FABA)	

Medium	to	large	tree	30m	and	40cm	dbh.	Large	
compound	leaves	20-45cm	long.	Young	leaves	
coppery.	Wide	range	across	W.	and	C.	Africa.	

Full	canopy	leaf	exchange	with	some	seasonality.	
New	leaves	can	occur	any	time	of	year	but	most	often	
Dec-Feb	(CC	often>50%).		

Little	leaf	damage	
observed.	

n	=	10;		
o	=	257	(222-261)	

Pterocarpus	
soyauxi	
(FABA)	

Large	tree,	>50m	and	2m	dbh.	Compound	leaf	
with	11-17	leaflets	(6	x	2.5cm).	Mature	leaves	
dark	green,	young	leaves	emerald.	Wide	range	
across	W.	and	C.	Africa.	

Full	canopy	leaf	exchange	with	some	seasonality.	
New	leaves	most	common	Nov-Dec	and	Apr-Jun	(CC	
often	>50%).		

Little	leaf	damage	
observed.	

n	=10;		
o=	377	(377-377).	

Pycnanthus	
angolensis	
(MYRI)	

Large	tree.	Leaves	20	x	5cm.	New	leaf	underside	
rust	coloured	and	hairy.	Occurs	throughout	W.	
and	C.	Africa.	

Incremental	leaf	exchange	with	no	seasonality.	New	
leaves	common	(>50%	inds)	all	year	(CC<50%).	
Occasionally	completely	defoliated.	

Circular	holes	(cause	
known)	in	leaves	
throughout	the	year.	

n	=15;		
o	=	242	(67-377)	

1Families:	BURS	=	Burseraceae;	STER	=	Sterculiaceae;	SAPI	=	Sapindaceae;	IRVI	=	Irvingiaceae;	FABA	=	Fabaceae;	MYRI	=	Myristicaceae.	
2Botanical	description	summarised	from	(Le	Thomas	1969;	van	der	Vossen	&	Mkamilo	2018)	
3Lopé	leaf	phenology	and	nature	of	leaf	damage	summarised	from	(White	&	Abernethy	1996)	and	Figures	XX.	CC	=	Canopy	coverage	
4Description	of	the	phenology	sample	used	in	this	study:	n=number	of	individuals;	o=mean	observation	period	(range)	in	months.	
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In	a	previous	analysis,	long-term	phenology	recorders	at	SEGC	estimated	the	

observation	uncertainties	associated	with	the	phenophases	of	all	species	

recorded	at	Lopé	(Chapter	3	and	Bush	et	al.	2018).	In	general,	new	leaves	

were	considered	highly	visible	(more	visible	than	senescing	leaves)	but	of	

short	duration	(always	lasting	less	than	four	weeks).	New	leaf	events	for	the	

eight	focal	species	of	this	study	were	categorised	as	either	“easy	to	see”	or	

“very	obvious”.	Thus	new	leaves	are	considered	a	good,	visible,	indicator	of	

leaf	flushing,	but	the	short	duration	of	new	leaf	events	means	that	some	are	

likely	to	be	undetected.	However	the	SEGC	observers	recorded	comments	

alongside	the	monthly	canopy	scores	such	as	“newish”	when	leaves	had	

matured	but	had	clearly	been	refreshed	since	the	last	observation.	We	were	

able	to	include	this	information	in	the	analyses	below	and	thus	reduce	the	

number	of	missed	new	leaf	events.	

Environmental	data	from	Lopé	and	downloaded	sources	

Rainfall	and	temperature	data	have	been	collected	at	SEGC	since	1984	with	

shorter	periods	of	data	collection	for	relative	humidity,	solar	radiation,	wind	

speed	and	aerosol	depth	(detailed	description	of	collection	methods	in	

Chapter	4).	The	rainfall	cycle	at	Lopé	is	biannual	with	a	long	dry	season	from	

June-September	and	a	shorter	dry	season	from	December-February.	These	

rainfall	patterns	have	been	used	to	determine	seasons	in	the	following	

analyses.	Minimum	and	maximum	daily	temperature	drop	during	the	long	

dry	season	alongside	surface	solar	radiation	and	relative	humidity.	As	

described	in	Chapter	4,	the	Lopé	minimum	daily	temperature	record	is	more	

reliable	than	maximum	daily	temperature	due	to	impacts	of	direct	solar	

radiation	on	the	latter	dataset.	We	therefore	used	minimum	daily	

temperature	(combined	from	both	forest	and	savanna	sites)	in	further	

analyses	in	this	chapter.	

In	addition	to	empirical	measures	from	SEGC,	we	sourced	mean	monthly	

Potential	Evapo-Transpiration	(PET;	mm	per	month)	for	Lopé	(-0.2N,	11.6E)	

from	the	Global	Potential	Evapo-Transpiration	(Global-PET)	and	Global	

Aridity	Index	(Global-Aridity)	Geo-Database	(1950-2000;	1km	resolution;	

Trabucco	&	Zomer	2009).	We	downloaded	timeseries	at	the	monthly	time	
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step	for	solar	radiation	(downward	shortwave	flux,	0.05o	resolution)	from	

the	Surface	Solar	Radiation	Data	Set	-	Heliosat	version	2	(1985-2015;	

SARAHv2;	Pfeifroth	et	al.	2017;	Kothe	et	al.	2017)	and	equatorial	

atmospheric	CO2	concentration	(14.5N	–	14.5S)	from	the	NOAA	Earth	System	

Research	Laboratory	(1980-2017;	Dlugokencky	et	al.	2017).	

5.3.2 Generating response and predictor variables 

Generating	monthly	response	and	predictor	variables	to	assess	seasonality	

For	linear	analyses	of	monthly	variation	in	leaf	phenology	we	calculated	

binomial	response	variables	as	follows.	For	each	calendar	month	and	

individual	tree	we	summed	the	number	of	years	with	and	without	1)	new	

leaves	(new	leaf	canopy	coverage	>0%	or	new	leaf	comment;	NL),	(2)	

senescing	leaves	(senescing	leaf	canopy	coverage	>0%;	SL),	(3)	a	full	leaf	

canopy	(mature	leaves	canopy	coverage	>75%;	ML)	and	(4)	leaf	damage	

(Table	5.2A).		

We	generated	predictor	variables	for	analyses	of	leaf	seasonality	as	follows	

(Table	5.2B	and	Figure	5.3).	For	each	calendar	month	we	calculated	the	long-

term	mean	for	total	monthly	rainfall,	solar	radiation	and	minimum	daily	

temperature.	As	described	in	Chapter	4,	3%	daily	rainfall	values	are	missing	

from	the	Lopé	record,	1984-2018.	Where	possible	we	filled	these	values	

using	the	10-day	running	mean	before	summarising	to	monthly	totals.	

However	11	months	(spread	over	the	years	2009,	2010	and	2013)	are	

missing	from	the	monthly	timeseries	because	they	were	incomplete	and	

therefore	did	not	contribute	to	the	long-term	monthly	means.	Also,	34%	daily	

minimum	temperature	values	are	missing	from	the	Lopé	record,	1984-2018.	

As	these	values	are	spread	throughout	the	time	period	and	the	calendar	year	

(the	number	of	daily	records	of	minimum	temperature	available	for	each	

calendar	month	ranged	from	80	to	91)	we	used	all	available	data	to	directly	

calculate	long-term	means	for	each	calendar	month.		

To	estimate	moisture	availability	we	calculated	the	mean	cumulative	water	

deficit	(CWD;	Figure	5.3B)	for	each	calendar	month	following	James	et.	al.	

(2013).	First	water	deficit	(WD)	was	calculated	as	the	difference	between	
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mean	Rainfall	from	the	Lopé	record	and	PET	from	the	Global-PET	database	

(Figure	5.3A)	for	each	calendar	month	m,	as:	

𝑊𝐷 ! = 𝑃𝐸𝑇 ! −  𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 !.	

For	the	month	with	most	positive	WD	(in	this	case	November;	Figure	5.3A),	

we	assumed	the	soil	was	saturated	and	set	CWD	to	zero.	We	then	computed	

the	CWD	for	subsequent	months	as	the	sum	of	that	month’s	WD	and	the	

previous	month’s	CWD:	

𝐶𝑊𝐷 !"# !" !,!" !….,!" !" =  0;	

𝐶𝑊𝐷 ! =  𝐶𝑊𝐷 !!! +𝑊𝐷 !.	

Finally	leaf	damage	was	summarised	as	the	long-term	mean	probability	of	

leaf	damage	each	calendar	month	for	each	individual	tree.	

Weather	data	was	recorded	for	the	entirety	of	each	month	(and	monthly	

means	are	assigned	to	the	middle	of	the	month)	whereas	phenology	data	was	

recorded	at	the	start	of	each	month	and	indicative	of	phenological	activity	

since	the	last	observation.	Thus	we	lagged	all	environmental	predictors	by	

one	month	in	monthly	analyses,	including	leaf	damage	as	we	were	interested	

in	the	new	leaf	response	following	leaf	damage	not	the	co-occurrence	of	leaf	

damage	on	new	leaves.		
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Table	5.2.	Monthly	response,	predictor	and	grouping	variables	for	linear	
seasonal	analyses	of	leaf	phenology	

A.	Response	variables	

Variable	 Description	 Data	points	 Code	

Probability	of	new	leaf	
presence	

Binomial;	c(Yearspresent,	
Yearsabsent)	

12	calendar	months	x	
120	inds	

NL	

Probability	of	senescent	
leaf	presence	

Binomial;	c(Yearspresent,	
Yearsabsent)	

12	calendar	months	x	
120	inds	

SL	

Probability	of	full	canopy	
of	mature	leaves		

Binomial;	c(Yearspresent,	
Yearsabsent)	

12	calendar	months	x	
120	inds	

ML	

Probability	of	leaf	damage	 Binomial;	c(Yearspresent,	
Yearsabsent)	

12	calendar	months	x	
120	inds	

LeafDamage	

B.	Predictor	variables	

Variable	 Description	 Data	points	 Code	

Calendar	month	 Factor;	Jan:Dec	 12	calendar	months	 Month	

Lagged	rainfall	 Continuous;	Long-term	
mean	total	monthly	rainfall	
lagged	by	1	month	

12	calendar	months	 Rain1	

Lagged	cumulative	water	
deficit	(CWD)	

Continuous;	Long-term	
mean	CWD	lagged	by	1	
month	

12	calendar	months	 CWD1	

Lagged	minimum	daily	
temperature	

Continuous;	Long-term	
mean	minimum	daily	
temperature	lagged	by	1	
month	

12	calendar	months	 MinTemp1	

Lagged	solar	radiation	 Continuous;	Long-term	
mean	radiation	lagged	by	1	
month	

12	calendar	months	 Solar1	

Lagged	probability	of	leaf	
damage	

Probability;	Long-term	mean	
probability	of	leaf	damage	
lagged	by	1	month	

12	calendar	months	x	
120	inds	

LeafDamage1	

C.	Grouping	factors	

Variable	 Description	 Data	points	 Code	

Calendar	month	 Factor;	Jan:Dec	 12	calendar	months	 Month	

Species	 Factor	 8	species	 Species	

Individual	 Factor	 120	inds	 TreeID	
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Figure	5.3.	Seasonal	variation	in	rainfall,	water	deficit	and	solar	radiation	
at	Lopé	National	Park,	Gabon.		
A.	Mean	monthly	rainfall	from	the	long-term	Lopé	record	(1984-2018;	black	
line),	mean	monthly	potential	evapo-transpiration	(PET)	from	the	Global-PET	
database	(1950-2000;	grey	line)	and	mean	monthly	water	deficit	(WD)	during	
the	dry	seasons	(vertical	dashed	lines).	B.	Cumulative	water	deficit	derived	from	
WD	shown	in	A	(method	described	in	text).	C.	Mean	monthly	surface	solar	
radiation	from	the	SARAHv2	dataset	(1984-2015).		

Generating	annualised	response	and	predictor	variables’	to	assess	inter-annual	

variation	and	long-term	trends	

For	linear	analyses	of	interannual	variation	in	the	probability	of	(1)	all	leaf-

flushing	events	(number	of	months	per	year	with	new	or	senescing	leaves	

present	or	mature	leaf	canopy	coverage	<75%)	and	(2)	major	leaf	flushing	

events	(number	of	months	per	year	with	new	or	senescing	leaf	canopy	

coverage	>50%	or	mature	leaf	canopy	coverage	<50%)	we	calculated	
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binomial	response	variables	by	summing	the	number	of	months	with	and	

without	(major)	leaf	flushing	events	for	each	tree	(Table	5.3A).	Years	for	leaf	

phenology	data	were	defined	from	mid-October	to	mid-October	mirroring	

the	relief	of	negative	water	deficit	following	the	long	dry	season	(Figure	5.3).	

This	means	that	phenology	records	taken	at	the	beginning	of	October	were	

assigned	to	the	previous	biological	year	and	the	first	phenology	observations	

in	a	biological	year	are	recorded	at	the	beginning	of	November.	

For	the	predictor	variables,	we	annualised	environmental	data	(total	annual	

rainfall,	mean	minimum	temperature,	mean	surface	solar	radiation,	mean	

CO2	concentration)	according	to	the	biological	year	(starting	from	mid-

October	as	before;	Table	5.3B	and	Figure	5.4).	Due	to	missing	rainfall	data,	

we	were	unable	to	calculate	total	annual	rainfall	(and	dependent	variables)	

for	the	years	2009,	2010	and	2013.	To	overcome	data	gaps	in	the	minimum	

temperature	record	we	first	calculated	deseasonalised	minimum	daily	

temperature	(minimum	daily	temperature	for	each	date	recorded	in	the	time	

series	minus	the	long-term	mean	minimum	daily	temperature	for	that	day	of	

the	year)	and	then	calculated	the	mean	temperature	for	each	year	using	all	

data	available.	The	number	of	deseasonalised	minimum	temperature	data	

points	contributing	to	each	yearly	mean	ranged	from	33	to	366.	To	estimate	

the	maximum	climatological	water	deficit	(MCWD)	of	the	long	dry	season	

each	year	we	calculated	the	WD	for	each	month	in	the	rainfall	timeseries	as	

for	the	monthly	predictor	values	above	and	took	the	sum	of	all	months	with	

negative	WD	between	May	and	October	(Ouédraogo	et	al.	2016).	Leaf	damage	

data	was	annualised	as	the	mean	probability	of	leaf	damage	each	biological	

year	(for	each	individual	tree	in	the	phenology	sample.	
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Table	5.3.	Annualised	response,	predictor	and	grouping	variables	for	linear	
analyses	of	leaf	interannual	variation	and	trends.	

A.	Response	variables	

Variable	 Description	 Data	points	 Code	

Probability	of	all	leaf	
flushing	events	

Binomial;	c(Monthspresent,	
Monthsabsent)	

2978	ind-years	 Flush	

Probability	of	major	
leaf	flushing	events	

Binomial;	c(Monthspresent,	
Monthsabsent)	

2978	ind-years	 MajorFlush	

B.	Predictor	variables	

Variable	 Description	 Data	points	 Code	

Year	 Factor;	Biological	year	(mid-Oct	to	
mid-Oct;	1987-2017)	

30	years	 Year	

Atmospheric	CO2	 Continuous;	Annual	mean	CO2	(ppm)	 30	years	 Rain	

Solar	radiation	 Continuous;	Annual	mean	solar	
radiation	(W/m2)	

29	years	 Solar	

Minimum	daily	
temperature	

Continuous;	Annual	mean	
deseasonalised	minimum	
temperature	(C)	

30	years	 MinTemp	

Rainfall	 Continuous;	Total	annual	rainfall	
(mm)	

27	years	 Rain	

Maximum	cumulative	
water	deficit	(MCWD)	

Continuous;	Long	dry-season	MCWD	
(mm)	

27	years	 MCWD	

Lagged	maximum	
cumulative	water	
deficit	(MCWD)	

Continuous;	Long	dry-season	MCWD	
of	the	previous	year	(mm)	

26	years	 MCWD1	

Probability	of	leaf	
damage	

Probability;	Annual	mean	
probability	of	leaf	damage	per	
individual	

2464	ind-years	 LeafDamage	

C.	Grouping	factors	

Variable	 Description	 Data	points	 Code	

Year	 Factor;	Biological	year	(mid-Oct	to	
mid-Oct;	1987-2017)	

30	years	 Year	

Species	 Factor	 8	species	 Species	

Individual	 Factor	 120	inds.	 TreeID	
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Figure	5.4.	Interannual	variation	in	environmental	conditions	and	
probability	of	leaf	damage	at	Lopé	National	Park,	Gabon.		
A.	Total	annual	rainfall	from	Lopé	(1987-2018).	B.	MCWD	calculated	using	Lopé	
rainfall	and	mean	monthly	PET	from	the	Global-PET	dataset.	C.	Mean	
deseasonalised	minimum	daily	temperature	from	Lopé	(1987-2018).	D.	Mean	
surface	solar	radiation	from	SARAHv2	(1987-2016).	E.	Mean	annual	equatorial	
CO2	concentration	from	NOAA	(1987-2018).	F.	Annual	mean	probability	of	leaf	
damage	for	all	individuals	and	species	observed	at	Lopé	(1995-2018).	Black	dots	
indicate	the	mean	probability	for	the	whole	sample	(n=120	individuals)	per	year	
and	grey	dots	indicate	mean	for	each	individual	per	year.		
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5.3.3 Analyses 

Seasonality	in	leaf	flushing	

We	assessed	the	general	character	of	leaf	phenology	for	each	species	using	

Fourier	analyses	to	identify	periodicity	within	the	new	leaf	time	series	for	

each	individual	tree	(Bush	et	al.	2017).	We	then	assessed	seasonality	and	

synchrony	for	each	species	using	circular	boxplots	to	show	the	mean,	

interquartile	range	and	95th	centiles	of	the	proportion	of	individuals	with	

new	leaves	and	leaf	damage	each	calendar	month	between	years.	Finally	we	

plotted	histograms	of	new	leaf	canopy	coverage	(%)	to	show	the	distribution	

of	the	magnitude	of	leaf	exchange	events	per	species.		

We	used	generalized	linear	mixed	models	(GLMMs;	family=Binomial)	to	

estimate	the	monthly	probability	of	(1)	new	leaves	(NL),	(2)	senescing	leaves	

(SL),	(3)	a	full	leaf	canopy	(ML)	and	(4)	leaf	damage	(LeafDamage)	as	

described	above	and	in	Table	5.2A.	We	included	Month	as	the	fixed	effect	

predictor	variable	and	to	reflect	the	hierarchical	nature	of	our	data,	we	

incorporated	random	slopes	for	Month	by	Species	(Table	5.2C).	We	included	

a	random	intercept	for	each	individual	tree	(TreeID)	to	account	for	

pseudoreplication	(Table	5.2C).	Inspection	of	model	residuals	for	each	

individual	timeseries	(split	by	TreeID)	using	the	R	packagae	“itsadug”	(van	

Rij	et	al.	2017)	showed	no	significant	lags	in	the	median	autocorrelation	

function.		

We	were	able	to	predict	the	population-level	mean	probability	for	each	

phenophase	(from	the	fixed	effect	estimates,	equal	to	the	arithmetic	mean	of	

the	species-level	random	effects)	and	the	species-level	probabilities	for	each	

phenophase	(from	the	random	effect	estimates)	directly	from	these	models.	

For	this	and	all	following	analyses	we	also	calculated	a	community-wide	

probability	for	each	phenophase	by	taking	the	mean	of	the	species-level	

predictions	weighted	according	to	each	species’	CV	(Figure	5.2).		
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Drivers	of	seasonal	variation	in	leaf	flushing		

We	tested	the	lagged	monthly	effects	of	moisture	availability	(CWD1),	

sunlight	(Solar1)	and	leaf	damage	(LeafDamage1)	on	the	probability	of	new	

leaf	events	(NL;	response	variable	created	as	above)	using	a	GLMM	

(family=Binomial).	We	chose	not	to	include	mean	minimum	daily	

temperature	as	it	is	strongly	collinear	with	solar	radiation	on	the	monthly	

scale	(r=0.86)	and	there	is	greater	evidence	for	the	influence	of	solar	

radiation	than	temperature	on	leaf	flush.	We	also	rescaled	the	predictors	

(mean=0	and	standard	deviation=1)	to	allow	direct	comparison	between	the	

slope	estimates.	We	included	random	slopes	by	species	(Species)	for	all	other	

predictors	and	random	intercepts	for	each	individual	tree	(TreeID)	and	

month	of	data	collection	(Month;	Table	5.2C).	After	inspection	of	models	

residuals	as	before,	we	included	the	lagged	response	variable	(with	lags	1	

and	2;	NL1	and	NL2)	as	random	slopes	by	individual	(TreeID)	to	reduce	

autocorrelation	(no	significant	lags	in	the	median	autocorrelation	function	

after	inclusion	of	the	lagged	variables).	We	removed	predictors	sequentially	

and	compared	models	using	AIC	values,	preferring	simple	models	with	lower	

AIC	(delta	AIC>2).		

Trends	in	leaf	flushing		

We	assessed	whether	leaf	flushing	had	changed	linearly	over	time	using	

GLMMs	(family=Binomial)	to	predict	the	probability	of	(1)	all	leaf-flushing	

events	and	(2)	major	leaf	flushing	events.	A	reduction	in	the	probability	of	

leaf	flushing	could	occur	if	leaf	flush	became	more	concentrated	in	time	and	

were	spread	over	fewer	months	each	year.	The	latter	model	was	designed	to	

test	this	whether	such	concentrated	large-scale	deciduous	events	were	

becoming	more	or	less	likely.	The	random	effects	structure	for	both	models	

included	random	slopes	for	Year	by	Species	and	individual	tree	(TreeID)	and	

random	intercepts	for	Year	to	account	for	pseudoreplication	(Table	5.3C).	

Inspection	of	model	residuals	revealed	no	significant	lags	in	the	median	

autocorrelation	functions.	
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Drivers	of	interannual	variation	in	leaf	flushing	

We	tested	the	effects	of	rainfall	(Rain),	drought	intensity	of	the	long	dry	

season	in	the	current	(MCWD)	and	previous	year	(MCWD1),	minimum	

temperature	(MinTemp),	sunlight	(Solar),	carbon	dioxide	concentration	

(CO2)	and	leaf	damage	(LeafDamage)	on	the	probability	of	all	leaf-flushing	

events	within	a	GLMM	(family=Binomial;	Table	3B).	The	strongest	

correlations	between	predictors	were	between	leaf	damage	and	CO2	(r=-

0.59),	leaf	damage	and	rainfall	(r=-0.56),	minimum	temperature	and	CO2	

(r=0.56)	and	MCWD	and	Rain	(0.42),	the	remainder	being	below	0.4	

(absolute	values;	Table	S5).	We	included	all	predictors	as	random	slopes	by	

Species	and	random	intercepts	for	individual	tree	(TreeID)	and	Year	to	

account	for	pseudoreplication	(Table	5.3C).	We	removed	predictors	

sequentially	and	compared	models	using	AIC.	As	leaf	damage	data	was	only	

consistently	recorded	since	1995,	we	undertook	two	simultaneous	model	

comparisons	to	find	the	important	drivers	of	interannual	variation	in	leaf	

flushing;	one	using	a	shorter	dataset,	inclusive	of	leaf	damage	data	(1995-

2018;	m1)	and	one	using	the	complete	dataset	without	leaf	damage	as	a	

predictor	(1986-2018;	m2).	Model	residuals	were	inspected	and	there	were	

no	significant	lags	in	the	median	autocorrelation	functions.	

5.4 Results 

5.4.1 Seasonality in leaf flushing 

Most	new	leaf	events	at	Lopé	occurred	on	a	small	scale	(median	canopy	

coverage	ranged	from	2.5%	for	C.	lizae	and	G.	giganteum	to	38%	for	P.	

soyauxii;	Figure	5.5C).	However	large-scale	canopy	turnover	events	were	

recorded	for	some	species	(95th	centile	canopy	coverage	is	50%	for	A.	

klaineana	and	100%	for	P.	macrophylla	and	P.	soyauxii).	While	new	leaves	

have	been	observed	in	every	calendar	month	for	all	species	(Figure	5.5B),	

dominant	peaks	at	annual	frequencies	in	the	mean	Fourier	spectra	(Figure	

5.5A)	for	all	species	except	G.	giganteum	and	P.	soyauxii	indicate	some	

seasonality.	Leaf	damage	has	been	recorded	for	all	species	but	most	often	for	

P.	angolensis,	C.	lizae,	G.	giganteum	and	A.	klaineana	(probability	of	leaf	
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damage	for	any	individual	in	any	month	is	28%,	13%,	9%	and	7%	

respectively;	Figure	5.5D).		
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Figure	5.5.	Summary	of	new	leaf	phenology	and	leaf	damage	for	each	
species.		
A.	These	plots	show	the	Fourier	spectra	for	each	individual	tree	(grey	lines)	and	
the	mean	spectra	for	each	species	(bold	lines).	Dashed	vertical	lines	indicate	
periodicities	of	12	months	and	6	months.	B.	Circular	boxplots	show	the	mean	
(bold	horizontal	lines),	interquartile	range	(shaded	grey	boxes)	and	95th	centile	
range	(horizontal	black	lines)	of	proportion	of	individuals	with	new	leaves	each	
calendar	month	between	years.	C.	Histograms	of	all	canopy	coverage	scores	
greater	than	zero	recorded	for	each	species.	D.	Circular	boxplots	show	the	mean	
(bold	horizontal	lines),	interquartile	range	(shaded	grey	boxes)	and	95th	centile	
range	(horizontal	black	lines)	of	proportion	of	individuals	with	leaf	damage	
each	calendar	month	between	years	
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Community-wide,	new	leaves	were	most	likely	to	occur	from	November	to	

June	(weighted	mean	probability	=	0.28-0.43)	and	least	likely	towards	the	

end	of	the	dry	season	(Figure	5.6A),	while	senescent	leaves	were	most	

common	in	August,	in	the	later	dry	season	(weighted	mean	probability	=	

0.21;Figure	5.6C).	The	community-wide	probability	of	a	tree	having	a	full	

canopy	of	mature	leaves	was	high	for	most	of	the	year	(>0.74)	but	dropped	in	

January	(weighted	mean	probability	=0.63;	Figure	5.6E).	Leaf	damage	was	

most	likely	in	the	dry	seasons,	peaking	in	January	and	September	(weighted	

mean	probabilities	=	0.21	and	017	respectively,	Figure	5.6G).	These	

community-wide	patterns	were	strongly	influenced	by	A.	klaineana	-	which	

makes	up	36%	CV	–	and	peaks	in	the	leaf	phenophases	and	damage	differed	

for	each	species	(Figure	5.6B,	D,	F	and	H).	The	community-wide	pattern	for	

new	leaves	and	mature	canopies	differed	most	strongly	from	the	species	

mean	between	January	and	May	(Figure	5.6A	and	E).	In	these	months	new	

leaves	were	more	likely	and	full	mature	leaf	canopies	were	thus	less	likely	

among	A.	klaineana	than	most	other	species	(Figure	5.6B	and	F).	GLMM	

outputs	including	fixed	effects	estimates	and	the	variance	of	random	effects	

are	show	in	supporting	information	(Tables	S5.1-5.4).	

The	maximum	probability	of	new	leaves	ranged	from	0.26	for	P.	macrophylla	

to	0.62	for	P.	angolensis	but	always	occurred	between	November	and	May	

(i.e.	not	in	the	long	dry	season,	Figure	5.6B).	New	leaves	for	species	P.	

soyauxii,	P.	angolensis	and	G.	giganteum	peaked	twice	yearly	in	May	and	

November/December	(Figure	5.6B).	The	minimum	probability	of	new	leaves	

ranged	from	0.02	for	P.	macrophylla	to	0.42	for	P.	angolensis	and	occurred	in	

August/September/October	for	all	species	except	for	C.	lizae	for	which	the	

new	leaf	minima	was	in	December	(Figure	5.6B).	Leaf	damage	was	most	

seasonal	for	A.	klaineana	with	peaks	in	January	and	September	during	both	

dry	seasons	(Figure	5.6H).	
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Figure	5.6.	Monthly	variation	in	leaf	phenology	and	leaf	damage	at	Lopé	
National	Park,	Gabon.		
These	plots	show	the	predictions	from	GLMMs	(family=binomial)	for	the	mean	
probability	of	leaf	phenology	and	damage	derived	from	the	fixed	effects	(black	
solid	line;	A,C,E,G),	the	community-wide	probability	of	leaf	phenology	and	
damage	derived	as	a	weighted	mean	of	the	species-level	predictions	according	to	
crown	volume	(grey	solid	line;	A,C,E,G)	and	the	species-level	probabilities	
derived	from	the	species-level	predictions	(coloured	lines;	B,D,F,H).	The	
percentage	scores	in	the	key	refer	to	the	crown	volume	of	each	species	in	the	
surrounding	forest.	
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5.4.2 Drivers of seasonal variation of leaf flushing 

Moisture	availability	(CWD1),	light	(Solar1)	and	leaf	damage	(LeafDamage1)	

were	all	important	predictors	of	leaf	flush	and	retained	as	fixed	effects	in	the	

best	model	for	seasonal	drivers	of	new	leaf	events	(Table	5.4).	Moisture	

availability	had	a	more	positive	effect	on	the	probability	of	new	leaf	

occurrence	than	both	light	availability	and	leaf	damage	(fixed	effects	

estimates	=	0.27	and	0.17	and	0.21	respectively,	Table	5.5A	and	Figure	5.7A).	

However,	the	relative	effects	of	these	drivers	varied	by	species;	random	slope	

estimates	for	cumulative	water	deficit	were	more	positive	than	the	fixed	

effect	estimate	for	A.	klaineana	and	D.	buettneri	and	more	negative	for	G.	

giganteum,	C.	lizae	and	P.	angolensis	(95%	confidence	intervals	don’t	cross	

zero;	Table	5.9C	and	Figure	5.7B).	Similarly,	the	random	slope	estimates	for	

solar	radiation	were	more	positive	than	the	fixed	effect	estimate	for	K.	

gabonesis	and	P.	macrophylla	and	more	negative	for	C.	lizae,	G.	giganteum	and	

P.	angolensis	(95%	confidence	intervals	don’t	cross	zero;	Table	5.9C	and	

Figure	5.6B).	Leaf	flushing	was	most	positively	impacted	by	leaf	damage	for	

P.	macrophylla,	P.	soyauxii	and	K.	gabonesis	and	least	impacted	for	P.	

angolensis,	G.	giganteum	and	A.	klaineana	(Table	5.5C	and	Figure	5.7C).	

Table	5.4.	Model	comparison	for	the	drivers	of	seasonal	variation	in	probability	
of	new	leaves.		
We	used	generalised	linear	mixed	effects	models	(family=Binomial).	The	random	
effects	structure	included	random	slopes	for	all	predictors	listed	for	each	model	by	
Species	and	random	slopes	for	the	lagged	response	variable	by	each	individual	tree	
(TreeID)	and	month.	Asterisks	indicate	the	simplest	model	with	lowest	AIC.	

Predictors	 Obs.	 DF	 AIC	 	

CWD1	+	Solar1	+	LeafDamage1	 1440	 21	 9356.7	 *	

CWD1	+	Solar1		 1440	 13	 9483.5	 	

CWD1		+	LeafDamage1	 1440	 16	 9438.3	 	

Solar1	+	LeafDamage1	 1440	 16	 9489.5	 	
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Table	5.5.	Outputs	from	the	best	model	for	the	drivers	of	seasonal	variation	in	
probability	of	new	leaves.		
Estimates	are	from	a	generalised	linear	mixed	effects	model	(family=Binomial).	The	
random	effects	structure	included	random	slopes	for	all	predictors	listed	for	each	
model	by	Species	and	random	slopes	for	the	lagged	response	variable	by	each	
individual	tree	(TreeID)	and	month.	The	predictors	CWD1	and	Solar1	were	all	rescaled	
by	removing	the	mean	and	dividing	by	1SD.	A.	Estimates	for	the	fixed	effects.	B.	
Variance	of	the	random	effects.	C.	Conditional	means	of	the	random	effects.		

A.	

	 	 	 	Predictor	 Estimate	 SE	 Z	value	 P	value	

Intercept	 -1.55	 0.29	 -5.37	 <0.0001	

CWD1	 0.27	 0.07	 3.70	 <0.001	

Solar1	 0.17	 0.07	 2.38	 <0.05	

LeafDamage1	 0.21	 0.07	 2.97	 <0.01	

B.	

	 	 	 	Group	 Random	effect	 Variance	 SD	

	TreeID	 Intercept	 0.74	 0.86	

	NL1	 4.01	 2.00	 	

	 NL2	 4.62	 2.15	 	

Month	 Intercept	 0.02	 0.12	

	Species	 Intercept	 0.62	 0.79	

	CWD1	 0.02	 0.15	

	Solar1	 0.03	 0.18	

	LeafDamage1	 0.01	 0.11	 	

C.	

	 	 	 	
Species	 Random	intercept	

Random	slope	

CWD1	 Solar1	 LeafDamage1	

A.	klaineana	 0.83	 0.22	 -0.05	 -0.09	

C.	lizae	 -0.44	 -0.14	 -0.24	 -0.02	

D.	buettneri	 0.44	 0.14	 0.09	 -0.02	

G.	giganteum	 0.50	 -0.23	 -0.14	 -0.10	

K.	gabonensis	 -0.16	 -0.01	 0.22	 0.07	

P.	macrophylla	 -1.13	 0.12	 0.28	 0.20	

P.	soyauxii	 -0.99	 0.00	 -0.03	 0.10	

P.	angolensis	 1.05	 -0.12	 -0.14	 -0.16	
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Figure	5.5.	Model	estimates	for	the	drivers	of	seasonal	variation	in	new	
leaf	events.		
Estimates	(dots)	and	95%	confidence	intervals	(horizontal	lines)	for	the	fixed	
effects	(A)	and	random	slopes	by	species	(B)	from	the	best	model	(GLMM;	
family=binomial)	for	probability	of	new	leaf	events.	Predictors	in	the	best	model	
are:	cumulative	water	deficit	(CWD1),	surface	solar	radiation	(Solar1)	and	leaf	
damage	(LeafDamage1).	

	

5.4.3 Trends in leaf flushing 

Year	was	retained	as	a	fixed-effect	in	the	best	model	for	the	probability	of	all	

leaf	flushing	events	but	not	for	major	flushing	events	where	it	was	retained	

only	at	the	species-level	(Table	5.6).	The	mean	probability	of	all	leaf	flushing	

events	has	declined	over	time	from	a	peak	of	0.57	in	1987	to	0.09	in	2017	

(fixed	effect	estimate	=	-0.90;	Table	5.7A	and	Figure	5.8A).	The	community-

wide	probability	of	leaf	flushing	has	declined	at	a	slower	rate	than	the	species	

mean	(Figure	5.8A)	because	the	very	dominant	species,	A.	klaineana,	has	

declined	less	rapidly	than	the	mean	for	all	species	(conditional	mode	of	the	

random	slope	=0.14;	Table	5.7C	and	Figure	5.8B).	Leaf	flushing	among	P.	

angolensis	trees	has	declined	most	rapidly,	while	flushing	among	P.	

LeafDamage1
Solar1
CWD1

0.0 0.1 0.2 0.3 0.4
Slope estimates (logit)

A.

CWD1 Solar1 LeafDamage1

−0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4 −0.2 0.0 0.2 0.4

Pycnanthus angolensis
Pterocarpus soyauxii

Pentaclethra macrophylla
Klainedoxa gabonensis

Ganophyllum giganteum
Dacryodes buettneri

Cola lizae
Aucoumea klaineana

Random slope estimates (logit)

B.



	

	
159	

macrophylla	has	declined	most	weakly	(conditional	mode	of	the	random	

slopes	=	-0.35	and	0.28	respectively;	Table	5.7C	and	Figure	5.8B).	As	for	the	

probability	of	major	flushing	events,	the	slope	of	the	trend	over	time	varied	

between	Species	but	there	was	no	significant	population-level	trend	(Table	

5.8).	Predicted	probability	of	major	flushing	events	remained	low	for	all	

incremental	leaf	exchanging	species	and	appeared	to	reduce	over	time	for	A.	

klaineana	and	P.	soyauxxi	(Figure	5.8C-D).	

	

Table	5.6.	Model	comparison	for	change	over	time	in	leaf	flushing.		
We	used	generalised	linear	mixed	effects	models	(family=Binomial).	The	random	
effects	structure.	The	random	effects	for	all	models	also	included	random	slopes	for	
Year	by	TreeID	.	Asterisks	indicate	the	simplest	model	with	lowest	AIC	in	each	case.	A.	
Probability	of	all	leaf	flushing	events	and	B.	Probability	of	major	leaf	flushing	events.		

A.	 	 	 	 	 	

Model	 Predictors	 Random	slope	by	
Species	

DF	 AIC	 	

Population-level	change	over	time	 Year	 Year	 9	 11465.4	 *	

Species-level	change	over	time	 Intercept	only	 Year	 8	 11482.5	 	

B.	 	 	 	 	 	

Model	 Predictors	 Random	slope	by	
Species	

DF	 AIC	 	

Population-level	change	over	time	 Year	 Year	 9	 3911.6	 	

Species-level	change	over	time	 Intercept	only	 Year	 8	 3911.3	 *	

Individual-level	change	over	time	 Intercept	only	 Intercept	only	 6	 3932.1	 	
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Table	5.7.	Outputs	from	the	best	model	for	the	trend	in	probability	of	leaf	
flushing	events.		
Estimates	are	from	a	generalised	linear	mixed	effects	model	(family=Binomial).	A.	
Coefficient	estimates	of	the	fixed	effects	including	standard	error	(SE).	B.	Variance	and	
standard	deviation	(SD)	of	the	random	effects.	C.	Conditional	modes	of	the	random	
effects.	Year	indicated	the	biological	year	starting	in	mid-October	and	the	continuous	
variable	was	rescaled	by	removing	the	mean	and	dividing	by	1SD.	

A.	

	 	 	 	Predictor	 Estimate	 SE	 Z	value	 P	value	

Intercept	 -0.90	 0.26	 -3.45	 <0.001	

Year	 -0.83	 0.12	 -7.05	 <0.0001	

B.	

	 	 	 	Group	 Random	effect	 Variance	 SD	

	TreeID	 Intercept	 0.17	 0.41	

	Year	 0.04	 0.20	

	Year	 Intercept	 0.19	 0.44	

	Species	 Intercept	 0.48	 0.69	

	Year	 0.06	 0.24	

	C.	

	 	 	 	Species	 Random	intercept	 Random	slope	

	 	Year	

	 	A.	klaineana	 0.87	 0.14	

	 	C.	lizae	 0.37	 -0.09	

	 	D.	buettneri	 -0.66	 -0.18	

	 	G.	giganteum	 0.54	 0.21	

	 	K.	gabonensis	 -0.03	 -0.18	

	 	P.	macrophylla	 -0.97	 0.28	

	 	P.	soyauxii	 -0.76	 0.21	

	 	P.	angolensis	 0.69	 -0.35	
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Figure	5.8.		Probability	of	leaf	flush	over	time	at	Lopé	National	Park,	
Gabon	1987-2017.		
A+C:	Mean	probability	(fixed	effects	prediction;	black	solid	line)	and	community-
wide	probability	(weighted	mean	of	species	predictions	by	crown	volume;	grey	
solid	line)	of	all	leaf	flushing	events	and	major	leaf	flushing	events	each	year	
derived	from	GLMMs	(family=binomial).	Also	shown	are	the	probabilities	of	
(major)	leaf	flushing	for	each	individual	each	year	(n=120;	grey	dots).B+D:	
Species-level	predictions	(random	slope	of	Year	by	Species;	coloured	lines)	from	
the	random	effects	of	the	GLMMs	(family=binomial)	of	(major)	leaf	flushing	each	
year.	
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Table	5.8.	.	Outputs	from	the	best	model	for	the	trend	in	probability	of	major	leaf	
flushing	events.		
Estimates	are	from	a	generalised	linear	mixed	effects	model	(family=Binomial).	A.	
Estimates	for	the	fixed	effects.	B.	Variance	of	the	random	effects.	C.	Estimates	for	the	
random	effects.	Year	was	rescaled	by	removing	the	mean	and	dividing	by	1SD.	

A.	

	 	 	 	Predictor	 Estimate	 SE	 Z	value	 P	value	

Intercept	 -4.38	 0.41	 -10.60	 <0.0001	

Year	 -0.24	 0.16	 -1.44	 0.15	

B.	

	 	 	 	Group	 Random	effect	 Variance	 SD	

	TreeID	 Intercept	 0.16	 0.40	

	Year	 0.04	 0.19	

	Year	 Intercept	 0.28	 0.53	

	Species	 Intercept	 1.25	 1.12	

	Year	 0.11	 0.33	

	C.	

	 	 	 	Species	 Random	intercept	 Random	slope	

	 	Year	

	 	A.	klaineana	 1.33	 -0.27	

	 	C.	lizae	 -1.43	 -0.01	

	 	D.	buettneri	 -0.52	 -0.15	

	 	G.	giganteum	 -0.17	 -0.33	

	 	K.	gabonensis	 -1.04	 0.35	

	 	P.	macrophylla	 0.71	 0.12	

	 	P.	soyauxii	 1.85	 -0.22	

	 	P.	angolensis	 -0.08	 0.47	
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5.4.4 Drivers of interannual variation in leaf flushing 

For	the	shorter	dataset	inclusive	of	leaf	damage	(1995-2018),	all	predictors	

except	for	current	year’s	rainfall	and	drought	intensity	(MCWD)	were	

retained	in	the	best	model	of	interannual	variation	in	leaf	flushing	events	

(m1;	Table	5.9A).	However	only	the	fixed	effects	estimates	for	atmospheric	

CO2	and	the	drought	intensity	of	the	previous	year’s	long	dry	season	

(MCWD1)	were	significantly	different	to	zero	(95%	confidence	intervals	

don’t	cross	zero;	Figure	5.9A	and	Table	S5.6).	Both	predictors	had	negative	

correlations	with	the	probability	of	leaf	flush	although	the	impact	of	CO2	was	

six	times	greater	than	drought	intensity	(fixed	effects	estimates	=	-1.24	and	-

0.20	respectively;	Figure	5.9A,	B	and	C	and	Table	S5.6).	For	the	longer	dataset	

exclusive	of	leaf	damage	(1986-2018),	all	predictors	except	current	year	

drought	intensity	(MCWD)	were	retained	in	the	best	model	(m2;	Table	5.9B).	

In	this	latter	model,	only	CO2	and	annual	rainfall	were	significantly	different	

to	zero	as	fixed	effects	(95%	confidence	intervals	don’t	cross	zero;	Figure	

5.9A	and	Table	S5.7).	The	effect	of	CO2	was	reduced	in	this	model	compared	

to	the	best	model	for	the	shorter	period	(fixed	effect	estimate	=	-1.02;	Figure	

5.9A).	
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Table	5.9.	Model	comparison	to	find	important	drivers	of	interannual	variation	
in	probability	of	leaf	flushing.			
We	used	generalised	linear	mixed	models	(family=Binomial)	for	(A)	a	shorter	dataset	
inclusive	of	leaf	damage	(m1;	1995-2018)	and	(B)	a	longer	dataset	exclusive	of	leaf	
damage	(m2;	1984-2018).	Predictors	include:	atmospheric	CO2,	previous	year’s	
drought	intensity	(MCWD1),	surface	solar	radiation	(Solar),	total	annual	rainfall	
(Rain),	annual	mean	deseasoned	minimum	daily	temperature	(MinTemp)	and	leaf	
damage	(LeafDamage1).	The	random	effects	structure	for	all	models	included	random	
slopes	for	all	predictors	listed	by	species	and	random	intercepts	for	each	tree	and	year.	
Asterisks	indicate	the	simplest	model	with	lowest	AIC.	

A.	 	 	 	 	

Predictors	 Obs.	 DF	 AIC	

	CO2	+	Solar	+	MinTemp	+	Rain	+	MCWD	+	MCWD1	+	
LeafDamage	

1820	 46	 7146.9	

	CO2	+	Solar	+	MinTemp	+	Rain	+	MCWD	+	MCWD1	 1820	 37	 7173.4	

	CO2	+	Solar	+	MinTemp	+	Rain	+	MCWD	+	LeafDamage	 1820	 37	 7177.6	

	CO2	+	Solar	+	MinTemp	+	Rain	+	MCWD1	+	LeafDamage	 1820	 37	 7137.6	

	CO2	+	Solar	+	MinTemp	+	MCWD1	+	LeafDamage	 1820	 29	 7139.2	 *	

CO2	+	Solar	+	MinTemp	+	MCWD1	+	LeafDamage	 2038	 29	 7910.9	 *	

CO2	+	Solar	+	MCWD1	+	LeafDamage	 2038	 22	 7914.3	

	CO2	+	MinTemp	+	MCWD1	+	LeafDamage	 2038	 22	 7924.8	

	Solar	+	MinTemp	+	MCWD1	+	LeafDamage	 2038	 22	 8026.5	

	B.	 	 	 	 	

Predictors	 Obs.	 DF	 AIC	

	CO2	+	Solar	+	MinTemp	+	Rain	+	MCWD	+	MCWD1		 2235	 37	 8883.0	 	

CO2	+	Solar	+	MinTemp	+	Rain	+	MCWD	 2235	 29	 8914.0	 	

CO2	+	Solar	+	MinTemp	+	Rain	+	MCWD1	 2235	 29	 8877.6	 *	

CO2	+	Solar	+	MinTemp	+	MCWD1	 2235	 22	 8894.8	 	

CO2	+	Solar	+	Rain	+	MCWD1	 2235	 22	 8893.4	 	

CO2	+	MinTemp	+	Rain	+	MCWD1	 2235	 22	 8900.6	 	

Solar	+	MinTemp	+	Rain	+	MCWD1	 2235	 22	 9047.4	 	
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Figure	5.9.	Model	estimates	and	predictions	for	the	drivers	of	interannual	
variation	in	leaf	flushing	events.		
A.	Model	estimates	(dots)	and	95%	confidence	intervals	(horizontal	lines)	from	
the	best	models	(GLMM;	family=binomial)	for	the	probability	of	leaf	flushing	
from	a	shorter	dataset	inclusive	of	leaf	damage	(m1;	1995-2018)	and	a	longer	
dataset	exclusive	of	leaf	damage	(m2;	1986-2018).	B-C.	Model	predictions	for	the	
impacts	of	CO2	concentration	and	previous	year	dry	season	water	deficit	
(MCWD1)	on	the	probability	of	leaf	flushing	from	the	best	model	for	the	shorter	
dataset	(m1;	GLMM;	family=binomial).	Shown	are	the	global	(predictions	from	
the	fixed	effects	estimate;	black	dashed	line),	species-level	(predictions	from	the	
random	slopes;	grey	solid	lines)	and	canopy-wide	(mean	of	species	predictions	
weighted	by	CV;	black	dotted	line,)	probabilities	of	leaf	flushing	and	the	raw	
data	for	each	species	binned	at	different	levels	of	the	predictor	variables	(grey	
dots).	
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Random	slopes	for	CO2	by	species	showed	that	in	both	models	(m1	and	m2)	

the	effect	of	CO2	was	more	negative	than	the	fixed	effect	estimate	for	K.	

gabonesis	and	P.	angolensis	and	more	positive	than	the	fixed	effect	estimate	

for	P.	macrophylla	and	G.	giganteum	(Figure	5.10	and	Tables	S5.6C	and	

S5.7C).	The	random	slopes	for	MCWD1	by	species	showed	that	the	effect	of	

MCWD1	was	more	negative	than	the	fixed	effect	estimate	for	P.	soyauxii	and	

less	negative	for	A.	klaineana	and	G.	giganteum	(Figure	5.10	and	Tables	S5.6C	

and	S5.7C).	Surface	solar	radiation,	total	annual	rainfall,	minimum	

temperature	and	leaf	damage	were	not	significantly	different	to	zero	as	fixed	

effects	in	either	model	but	did	vary	by	species	(Figure	5.10	and	Tables	S5.6C	

and	S5.7C).		

	

Figure	5.10.	Random	slope	estimates	for	the	drivers	of	interannual	
variation	in	leaf	flushing.		
Random	slope	estimates	(dots)	and	95%	confidence	intervals	(horizontal	lines)	
by	species	from	the	best	models	(GLMM;	family=binomial)	for	the	probability	of	
leaf	flushing	from	a	shorter	dataset	including	leaf	damage	(m1;	1995-2018)	and	
a	longer	dataset	excluding	leaf	damage	(m2;	1984-2018).	Random	slopes	
include:	atmospheric	CO2,	previous	year’s	drought	intensity	(MCWD1),	surface	
solar	radiation	(Solar),	total	annual	rainfall	(Rain),	annual	mean	deseasoned	
minimum	daily	temperature	(MinTemp)	and	leaf	damage	(LeafDamage1).	
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5.5 Discussion 

5.5.1 Seasonal phenology 

All	eight	species	demonstrated	evergreen,	not	deciduous,	phenology.	Two	of	

the	species	–	P.	macrophylla	and	P.	soyauxii	-	regularly	undertook	leaf	

exchange	events	covering	more	than	50%	of	the	canopy	but	leafless	periods	

were	minimal.	The	remaining	species	were	incremental	leaf	exchangers	with	

most	new	leaf	events	involving	less	than	25%	of	the	canopy.	New	leaf	flush	at	

Lopé	is	maintained	throughout	the	year	at	a	fairly	constant	level	but	drops	

during	the	long	dry	season	when	the	probability	of	senescing	leaves	peaks.	

Mature	leaves	are	most	likely	to	dominate	tree	canopies	by	the	end	of	the	

long	dry	season.	We	found	that	both	moisture	and	light	are	important	

positive	predictors	of	intra-annual	timing	and	quantity	of	leaf	flush	at	Lopé	

although	their	effects	are	difficult	to	tease	apart	as	they	are	seasonally	

synchronised	at	the	site.	

The	dominance	of	leaf-exchanging	rather	than	deciduous	leaf	habits	and	the	

maintenance	of	mature	leaf	canopies	during	the	long	dry	season	indicates	

that	soil	moisture	must	be	high	enough	during	those	months	to	maintain	leaf	

function.	This	is	somewhat	of	a	surprise	considering	the	relatively	low	annual	

rainfall	at	the	site	(which	would	be	considered	a	“dry	site”	by	Reich	1995)	

and	the	strong	seasonality	in	rainfall.	Elevated	daytime	cloud	cover	during	

the	dry	seasons	blocks	sunlight,	maintaining	fairly	high	relative	humidity	

(monthly	mean	humidity	is	always	>95%	in	the	forest)	and	causing	a	drop	in	

maximum	daily	temperature	in	both	dry	seasons	and	minimum	daily	

temperatures	in	the	long	dry	season	only	(weather	seasonality	described	in	

Chapter	4).	These	factors	are	likely	to	reduce	evapotranspiration	and	

increase	water–use	efficiency,	meaning	that	forest	plants	in	the	Gabon	region	

may	not	be	as	water-limited	as	they	appear	from	the	rainfall	regime	

(Philippon	et	al.	2019).	In	addition	the	negative	association	between	total	

annual	rainfall	and	deciduousness	established	across	a	spectrum	of	dry	to	

wet	neotropical	forests	appears	to	be	less	strong	when	there	is	more	than	

one	dry	season	per	year,	as	is	common	in	the	African	tropics	(Reich	1995).	
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The	peak	in	full	mature-leaf	canopies	during	the	long	dry	season	

corroborates	the	peak	in	leaf	biomass	and	canopy	structure	observed	at	this	

time	from	remote	sensing	observations	of	central	African	evergreen	forests	

(Guan	et	al.	2013).	However,	remote	sensing	has	also	shown	peaks	in	

reflectance	during	the	rainy	seasons	differentiating	them	from	both	dry	

seasons	where	reflectance	is	diminished	(Gond	et	al.	2013;	Guan	et	al.	2013;	

Philippon	et	al.	2014).	While	the	increase	in	senescent	leaves	(usually	brown	

or	yellow)	and	reduction	in	supply	of	newly	mature	(bright	green)	leaves	in	

the	long	dry	season	is	likely	to	contribute	to	this	seasonality	in	reflectance	it	

is	more	difficult	to	make	the	same	interpretation	for	the	short	dry	season	

where	leaf	demography	at	Lopé	is	indistinguishable	from	the	rainy	seasons.	

Instead	the	elevated	reflectance	in	the	rainy	seasons	compared	to	the	short	

dry	season	is	likely	to	be	due	to	elevated	light	and	moisture	increasing	

photosynthetic	capacity	rather	than	altering	the	demography	of	the	leaf	

cohort	or	leaf	area.		

Leaf	production	at	Lopé	appears	to	be	light	limited	(in	agreement	with	recent	

analyses	of	leaf	demography	in	the	Amazon;	Wu	et	al.	2018),	but	new	leaf	

production	is	only	supressed	during	the	long	dry	season	(Jun-Sep)	indicating	

that	the	shallower	seasonal	trough	in	solar	radiation	during	the	short	dry	

season	(Dec-Feb)	is	not	enough	to	reduce	leaf	flush,	although	it	is	enough	to	

reduce	photosynthetic	capacity	(Guan	et	al.	2013).	While	these	patterns	are	

true	for	the	canopy	as	a	whole,	they	mask	the	diversity	at	the	species	level	

revealed	here.	For	example,	C.	lizae	has	a	peak	of	new	leaf	production	just	

before	the	long	dry	season	when	light	and	water	levels	are	dropping	leading	

to	seemingly	sub-optimal	conditions	for	photosynthesis	and	leaf	

development.	Species	specific	associations	between	leaf	phenology	and	

climate	have	been	shown	previously	at	BCI	(Wright	&	Cornejo	1990)	while	

Reich	(1995)	emphasised	that	individual	trees	even	of	the	same	species	may	

experience	climatic	conditions	differently	dependent	on	their	leaf	

demography	(e.g.	variation	in	water	potential	dependent	on	mean	leaf	age	

among	unsynchronised	conspecifics).	
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Leaf	damage	at	Lopé	peaks	during	the	dry	months	in	contrast	to	that	

observed	in	the	neotropics	(e.g.	BCI,	Panama;	Reich	1995).	Leaf	damage	

(mainly	to	mature	leaves,	Table	5.1)	in	the	previous	month	is	a	positive	

predictor	of	new	leaf	production	at	seasonal	scales,	having	the	most	positive	

impact	on	P.	macrophylla,	despite	leaf	damage	rarely	being	observed	for	this	

species.	A.	klaineana,	which	makes	up	36%	crown	volume	at	Lopé,	is	targeted	

by	a	leaf-rolling	caterpillar	(Patania	balteata	moth;	White	&	Abernethy	1997;	

PlantUse	English	Contributors	2015)	which	results	in	total	defoliation	in	

some	years.	In	any	given	month,	there	is	a	7%	chance	that	an	Aucoumea	tree	

will	be	suffering	from	leaf	damage	at	Lopé.	However	this	leaf	damage	is	

strongly	seasonal,	occurring	most	often	at	the	turn	of	the	year	(December-

January;	the	short	dry	season).	It	would	be	interesting	to	examine	more	

closely	what	impact	this	biological	intermediary	has	on	overall	forest	

productivity	and	how	the	effect	is	interpreted	from	remote	sensing	studies,	

especially	as	Aucoumea	is	the	dominant	tree	species	in	this	region.	

5.5.2 Interannual phenology 

The	probability	of	leaf	flush	among	canopy	tree	species	has	declined	at	Lopé	

since	1986.	This	change	does	not	represent	a	shift	away	from	incremental	

leaf	flush	towards	more	synchronised	deciduous	phenology,	as	there	was	no	

concurrent	increase	in	major	leaf	flushing	events.	Instead	this	suggests	a	

reduction	in	all	flushing	activity	and	thus	increased	longevity	of	individual	

leaves.	The	trend	was	observed	for	all	species	at	varying	rates.	Leaf	flush	for	

the	most	common	species	(A.	klaineana)	declined	at	a	slower	rate	than	the	

global	mean,	reducing	leaf	flush	decline	for	the	canopy	as	a	whole.	The	

strongest	predictor	of	this	decline	is	elevated	CO2.		While	there	has	been	a	lot	

written	about	the	impacts	of	elevated	CO2	on	plant	growth	there	are	few	

studies	that	have	focussed	on	its	impacts	on	phenology	and	especially	of	

closed-canopy	mature	trees.	However	a	recent	analysis	of	a	similar	length	

tropical	dataset	from	BCI,	Panama	showed	increased	flowering	duration	

(especially	for	canopy	trees)	associated	with	rising	CO2	(Pau	et	al.	2017).	

In	temperate	regions,	autumnal	senescence	was	shown	to	be	delayed	

(increasing	leaf	longevity)	under	elevated	CO2	conditions	for	a	young	
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population	of	Populus	(individuals	6-7	years	old;	Taylor	et	al.	2008)	as	well	as	

for	a	closed-canopy	population	of	the	same	genus	(Tricker	et	al.	2004).	

However	growth	and	leaf	phenology	of	mature	temperate	forest	trees	of	

various	species	(individuals	~100	years	old)	showed	inconsistent	and	

species-specific	responses	to	elevated	CO2	(Asshoff	et	al.	2006).	According	to	

leaf	economics,	leaf	longevity	should	be	related	to	the	rate	of	photosynthetic	

decline	as	well	as	leaf	construction	costs	etc.	(Kikuzawa	&	Ackerly	1999).	

Elevated	CO2	may	reduce	the	rate	of	photosynthetic	decline	allowing	leaves	

to	be	maintained	for	longer.	An	alternative	explanation	for	the	decline	in	

observations	of	leaf	flush	could	be	that	elevated	CO2	enhances	the	rate	of	leaf	

expansion	(Pritchard	et	al.	1999;	Tricker	et	al.	2004)	and	that	new	leaf	events	

are	occurring	at	the	same	rate	but	being	detected	less	often	as	they	occur	

more	quickly.		

Another	factor	to	consider	is	that	the	rise	in	CO2	is	almost	perfectly	linear,	

and	that	its	correlation	with	the	decline	in	leaf	flush	may	be	related	to	

another	linear	trend	in	the	data	not	accounted	for,	such	as	an	effect	related	to	

time.	Leaf	longevity	has	been	shown	to	be	a	plastic	trait	and	can	vary	within	

the	lifetime	of	individuals	however	there	is	no	evidence	for	individual	tree	

age	effects	on	leaf	longevity	beyond	the	seedling	stage	(Kikuzawa	&	Ackerly	

1999;	Seiwa	1999).	It	has	also	been	shown	that	increased	shading	can	lead	to	

longer	leaf	longevity	within	the	lifetime	of	individual	trees	(Reich	et	al.	2004).	

However,	the	species	considered	here	are	medium	to	large	canopy	trees	

(Table	5.1)	and	88%	individuals	were	found	to	be	receiving	at	least	some	but	

mostly	full	overhead	light	in	their	positions	in	the	canopy	during	a	field	

campaign	in	2015	towards	the	end	of	the	dataset	(Figure	S5.1).	It	seems	

therefore	unlikely	that	an	increase	in	shading	has	caused	this	change	in	leaf	

flush.	

Elevated	CO2	is	known	to	alter	stomatal	density	(Beerling	&	Kelly	1997)	and	

to	increase	the	thickness	of	the	mesophyll	layer	and	number	of	chloroplasts	

(Pritchard	et	al.	1999;	Tricker	et	al.	2004),	while	leaf	thickness	is	also	

positively	associated	with	leaf	longevity	(Wright	et	al.	2004).	A	traits	analysis	

of	historical	leaf	collections	in	the	region	could	prove	a	powerful	way	of	



	

	
171	

testing	the	theory	that	elevated	CO2	has	impacted	leaf-longevity	over	the	last	

three	decades,	or	more.	Consideration	of	wood	density	may	also	prove	useful,	

with	K.	gabonesis	and	P.	angolensis,	two	hard-wooded	trees	-	showing	most	

negative	associations	with	CO2.	

In	contrast	to	the	relationship	at	seasonal	scales,	variation	in	light	and	water	

availability	at	Lopé	have	weak	negative	or	no	impacts	on	leaf	flushing	on	

interannual	scales.	The	analysis	of	the	shorter	dataset	indicated	that	leaf	

flush	is	elevated	in	years	following	unusually	negative	cumulative	water	

deficits	indicative	of	intense	long	dry	season	drought.	This	effect	was	no	

longer	significant	in	the	analysis	of	the	longer	dataset,	which	instead	

indicated	that	leaf	flush	is	suppressed	in	years	following	above	average	

rainfall.	Total	annual	rainfall	is	more	strongly	correlated	with	rainfall	in	the	

short	than	the	long	dry	season	so	it	is	possible	that	these	two	effects	could	

occur	simultaneously.	However,	leaf	damage	is	highly	correlated	with	rainfall	

and	it	is	unclear	which	one	may	be	the	most	important	factor	as	one	or	the	

other	are	retained	in	either	model.		

Another	determinant	of	leaf	longevity	that	we	haven’t	considered	in	this	

analysis	is	Nitrogen	availability.	In	temperate	regions	it	has	been	shown	that	

trees	at	N-poor	sites	have	longer	leaf	longevity	than	sites	with	high	N	(Del	

Arco	et	al.	1991).	However	organic	N	deposition	in	central	African	forests	is	

already	high	and	is	driven	by	anthropogenic	savannah	burns	(Bauters	et	al.	

2018)	which	have	a	long	history	throughout	Africa	(Archibald	et	al.	2011).	

Therefore	N	deposition	is	unlikely	to	be	contributing	to	the	increase	in	leaf	

longevity	witnessed	at	Lopé.	

Finally,	leaf	damage	was	a	positive	(but	not	significant)	predictor	of	leaf	flush	

at	interannual	scales.	It	is	well	established	that	leaf	longevity	is	strongly	

correlated	with	many	other	leaf	attributes,	and	that	short-lived	leaves	have	

higher	photosynthetic	rates	per	leaf	area,	higher	nutrient	content	and	leaf	

area	but	are	also	more	fragile	and	a	target	for	herbivory	(Reich	1995).	On	

interannual	scales,	three	of	the	species	with	the	highest	probabilities	of	leaf	

flush	(thus	shorter	leaf	lifespans)	–	A.	klaineana,	P.	angolensis,	G.	giganeteum	

and	C.	lizae	(random	intercepts	for	leaf	flush	all	>0,	Table	S5.6C)	–	also	suffer	
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the	most	leaf	damage.	The	effect	of	leaf	damage	on	leaf	flush	at	interannual	

scales	is	either	no	different	to	the	population-level	effect	or	more	positive	for	

all	four	of	these	species.	Frequency	of	leaf	damage	has	clearly	declined	since	

1995	although	the	reasons	for	this	remain	unclear.	Could	it	be	that	a	

reduction	in	insect	activity	has	resulted	in	less	leaf	damage	over	time	and	

reduced	stimulation	of	leaf	turnover?	Or	the	opposite,	that	a	reduction	in	leaf	

turnover	has	made	leaves	less	susceptible	to	leaf	damage,	as	older	leaves	are	

less	palatable?	Whatever	the	mechanism	might	be	for	increased	leaf	

longevity,	the	long-term	trend	in	reduced	leaf	flush	witnessed	at	Lopé	is	

likely	to	explain	the	increases	in	leaf	area	observed	since	1982	in	the	region	

(Zhu	et	al.	2016)	with	mature	leaves	persisting	for	longer	and	fewer	leaves	

being	dropped	from	the	canopy.		

Earth	system	models	still	cannot	agree	whether	tropical	land	areas	are	likely	

to	be	carbon	sinks	or	sources	under	different	climate	scenarios	and	this	is	

mostly	down	to	uncertainty	in	the	effects	of	climate	and	CO2	concentration	on	

productivity	and	vegetation	turnover	(Mitchard	2018).	It	is	more	important	

than	ever	to	gain	a	mechanistic	understanding	of	leaf	phenology	across	

spatial	and	temporal	scales	and	the	likely	directions	that	leafy	canopies	will	

take	under	future	environmental	conditions.	It	has	been	suggested	that	

African	tropical	forest	species	are	relatively	drought-adapted	compared	to	

species	found	elsewhere	in	the	tropics	because	of	the	climatic	cycles	

experienced	over	the	past	3000	years	(Asefi-najafabady	&	Saatchi	2013).	

However,	James	et	al	(2013)	emphasise	that	current	precipitation	levels	in	

the	African	closed-canopy	forests	are	already	near	to	the	hydrological	limits	

for	moist	forest	persistence,	and	that	drier	conditions	are	likely	to	lead	to	

water	stress.	Rising	temperatures	are	likely	to	increase	transpiration	(further	

enhancing	water	stress)	and	directly	impact	plants	by	inhibiting	

photosynthesis.	However	we	provide	further	evidence,	that	at	least	in	the	

short-term,	CO2	enrichment	may	act	to	compensate	the	influence	of	

temperature	and	drought	by	increasing	plant	water	use	efficiency.		
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S5 Supporting information 

	

	

	

	

Figure	S5.1.	Histogram	of	crown	illumination	for	trees	included	in	the	leaf	flush	
analysis.	

	Scores	were	assigned	in	2015	upon	visual	assessment	of	the	canopy	using	binoculars	
from	the	ground	according	to	the	RAINFOR	network	guidelines.	1:	Lower	understorey	
with	no	direct	light;	2:	Upper	understorey	with	some	lateral	light	(a=low,	b=medium,	
c=high);	3:	Lower	canopy	with	some	overhead	light	(a=<50%	vertical	projection	
exposed,	b=>50%);	4:	Canopy	with	full	overhead	light	and	5:	Emergent	with	crown	
completely	exposed	
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Table	S5.1.	Model	outputs	for	monthly	variation	in	probability	of	new	leaves.		

Generalised	linear	mixed	effects	models	(family=Binomial).	A.	Estimates	for	the	fixed	
effects	from	a	model	with	the	global	intercept	removed	to	estimate	the	magnitude	of	
each	monthly	intercept.	B.	Variance	of	the	random	effects.		

A.	

	 	 	Predictor	 Estimate	 SE	 Z	value	

Month:Apr	 -1.32	 0.40	 -3.27	

Month:Aug	 -1.94	 0.40	 -4.88	

Month:Dec	 -1.24	 0.33	 -3.74	

Month:Feb	 -1.31	 0.34	 -3.81	

Month:Jan	 -1.40	 0.37	 -3.76	

Month:Jul	 -1.56	 0.42	 -3.67	

Month:Jun	 -1.28	 0.36	 -3.55	

Month:Mar	 -1.33	 0.32	 -4.12	

Month:May	 -1.03	 0.36	 -2.90	

Month:Nov	 -1.50	 0.34	 -4.41	

Month:Oct	 -2.11	 0.36	 -5.92	

Month:Sep	 -2.51	 0.49	 -5.08	

B.	

	 	 	Group	 Random	effect	 Variance	 SD	

TreeID	 Intercept	 0.29	 0.54	

Species	 Month:Apr	 1.24	 1.11	

Month:Aug	 1.20	 1.09	

Month:Dec	 0.83	 0.91	

Month:Feb	 0.90	 0.95	

Month:Jan	 1.05	 1.03	

Month:Jul	 1.38	 1.17	

Month:Jun	 0.99	 0.99	

Month:Mar	 0.78	 0.88	

Month:May	 0.97	 0.99	

Month:Nov	 0.88	 0.94	

Month:Oct	 0.95	 0.97	

Month:Sep	 1.84	 1.35	
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Table	S5.2.	Model	outputs	for	monthly	variation	in	probability	of	senescent	
leaves.		

Generalised	linear	mixed	effects	models	(family=Binomial).	A.	Estimates	for	the	fixed	
effects	from	a	model	with	the	global	intercept	removed	to	estimate	the	magnitude	of	
each	monthly	intercept.	B.	Variance	of	the	random	effects.		

A.	

	 	 	Predictor	 Estimate	 SE	 Z	value	

Month:Apr	 -2.24	 0.41	 -5.51	

Month:Aug	 -1.89	 0.40	 -4.70	

Month:Dec	 -2.32	 0.31	 -7.50	

Month:Feb	 -2.35	 0.40	 -5.81	

Month:Jan	 -2.50	 0.42	 -6.00	

Month:Jul	 -2.27	 0.39	 -5.78	

Month:Jun	 -2.71	 0.40	 -6.83	

Month:Mar	 -2.39	 0.40	 -5.94	

Month:May	 -2.43	 0.45	 -5.44	

Month:Nov	 -2.43	 0.35	 -7.00	

Month:Oct	 -2.15	 0.35	 -6.14	

Month:Sep	 -1.83	 0.37	 -4.91	

B.	

	 	 	Group	 Random	effect	 Variance	 SD	

TreeID	 Intercept	 0.27	 0.52	

Species	 Month:Apr	 1.25	 1.12	

Month:Aug	 1.24	 1.11	

Month:Dec	 0.70	 0.84	

Month:Feb	 1.23	 1.11	

Month:Jan	 1.31	 1.14	

Month:Jul	 1.16	 1.08	

Month:Jun	 1.16	 1.08	

Month:Mar	 1.22	 1.10	

Month:May	 1.52	 1.23	

Month:Nov	 0.89	 0.94	

Month:Oct	 0.92	 0.96	

Month:Sep	 1.05	 1.03	
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Table	S5.3.	Model	outputs	for	monthly	variation	in	probability	of	a	full	mature	
leaf	canopy.		

Generalised	linear	mixed	effects	models	(family=Binomial).	A.	Estimates	for	the	fixed	
effects	from	a	model	with	the	global	intercept	removed	to	estimate	the	magnitude	of	
each	monthly	intercept.	B.	Variance	of	the	random	effects.		

A.	

	 	 	Predictor	 Estimate	 SE	 Z	value	

Month:Apr	 2.41	 0.28	 8.55	

Month:Aug	 2.68	 0.24	 11.06	

Month:Dec	 2.19	 0.32	 6.89	

Month:Feb	 2.10	 0.24	 8.77	

Month:Jan	 2.12	 0.35	 6.09	

Month:Jul	 2.77	 0.25	 11.07	

Month:Jun	 2.57	 0.23	 11.00	

Month:Mar	 2.30	 0.27	 8.59	

Month:May	 2.27	 0.27	 8.40	

Month:Nov	 2.57	 0.32	 7.97	

Month:Oct	 2.95	 0.25	 11.89	

Month:Sep	 3.18	 0.21	 15.27	

B.	

	 	 	Group	 Random	effect	 Variance	 SD	

TreeID	 Intercept	 0.19	 0.44	

Species	 Month:Apr	 0.56	 0.75	

Month:Aug	 0.39	 0.63	

Month:Dec	 0.74	 0.86	

Month:Feb	 0.41	 0.64	

Month:Jan	 0.91	 0.95	

Month:Jul	 0.42	 0.65	

Month:Jun	 0.36	 0.60	

Month:Mar	 0.51	 0.71	

Month:May	 0.52	 0.72	

Month:Nov	 0.76	 0.87	

Month:Oct	 0.41	 0.64	

Month:Sep	 0.25	 0.50	
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Table	S5.4.	Model	outputs	for	monthly	variation	in	probability	of	leaf	damage.		

Generalised	linear	mixed	effects	models	(family=Binomial).	A.	Estimates	for	the	fixed	
effects	from	a	model	with	the	global	intercept	removed	to	estimate	the	magnitude	of	
each	monthly	intercept.	B.	Variance	of	the	random	effects.		

A.	

	 	 	Predictor	 Estimate	 SE	 Z	value	

Month:Apr	 -1.74	 0.40	 -4.37	

Month:Aug	 -1.68	 0.37	 -4.57	

Month:Dec	 -1.75	 0.46	 -3.79	

Month:Feb	 -1.71	 0.44	 -3.89	

Month:Jan	 -1.53	 0.34	 -4.53	

Month:Jul	 -1.63	 0.38	 -4.26	

Month:Jun	 -1.79	 0.42	 -4.24	

Month:Mar	 -1.80	 0.44	 -4.14	

Month:May	 -1.80	 0.44	 -4.06	

Month:Nov	 -1.75	 0.43	 -4.08	

Month:Oct	 -1.65	 0.40	 -4.12	

Month:Sep	 -1.66	 0.43	 -3.83	

B.	

	 	 	Group	 Random	effect	 Variance	 SD	

TreeID	 Intercept	 0.10	 0.31	

Species	 Month:Apr	 1.22	 1.10	

Month:Aug	 1.04	 1.02	

Month:Dec	 1.65	 1.29	

Month:Feb	 1.50	 1.22	

Month:Jan	 0.87	 0.93	

Month:Jul	 1.14	 1.07	

Month:Jun	 1.38	 1.17	

Month:Mar	 1.47	 1.21	

Month:May	 1.52	 1.23	

Month:Nov	 1.42	 1.19	

Month:Oct	 1.24	 1.11	

Month:Sep	 1.44	 1.20	
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Table	S5.5.	Correlation	matrix	for	all	predictors	of	interannual	variation	in	
probability	of	leaf	flushing.	

	

Year	 Rain	 MinTemp	 Solar	 CO2	 MCWD	 MCWD1	

Leaf	

Damage	

Year	 1.00	 0.04	 0.54	 0.27	 1.00	 -0.34	 -0.26	 -0.59	

Rain	

	

1.00	 -0.12	 0.04	 0.03	 0.42	 0.04	 -0.56	

MinTemp	

	 	

1.00	 0.38	 0.56	 -0.18	 -0.25	 -0.16	

Solar	

	 	 	

1.00	 0.29	 -0.08	 0.18	 -0.40	

CO2	

	 	 	 	

1.00	 -0.35	 -0.27	 -0.59	

MCWD	

	 	 	 	 	

1.00	 0.00	 0.13	

MCWD1	

	 	 	 	 	 	

1.00	 -0.06	

Leaf	

Damage	 	

	 	 	 	 	

1.00	
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Table	S5.6.	Model	outputs	from	the	best	model	for	interannual	variation	in	leaf	
flushing	(m1).		

Generalised	linear	mixed	effects	models	(family=Binomial).	A.	Estimates	for	the	fixed	
effects.	B.	Variance	of	the	random	effects.	C.	Estimates	for	the	random	effects.	The	
predictors	were	all	rescaled	by	removing	the	mean	and	dividing	by	1SD.	

A.		

	 	

	

	 	 	Predictor	 Estimate	 SE	 Z	value	 P	value	 	

	Intercept	 -0.97	 0.25	 -3.84	 <0.001	 	

	CO2	 -1.24	 0.17	 -7.41	 <0.0001	 	

	MinTemp	 0.01	 0.10	 0.14	 0.89	 	

	MCWD1	 -0.20	 0.10	 -2.03	 <0.05	 	 	

LeafDamage	 0.08	 0.07	 1.23	 0.22	 	

	Solar	 -0.06	 0.09	 -0.60	 0.55	 	

	B.	

	 	

	

	 	 	Group	 Random	effect	 Varian
ce	

SD	 	 	 	

TreeID	 Intercept	 0.19	 0.43	 	

	 	Year	 Intercept	 0.10	 0.32	 	

	 	Species	 Intercept	 0.44	 0.67	 	

	 	CO2	 0.10	 0.32	 	

	 	MinTemp	 0.01	 0.11	 	 	 	

MCWD1	 0.02	 0.13	 	

	 	LeafDamage	 0.02	 0.14	 	

	 	Solar	 0.02	 0.13	 	

	 	C.	

	 	

	

	 	 	Species	 Random	
intercept	

Random	slope	

CO2	 MinTemp	 MCWD1	 LeafDamage	 Solar	

A.	klaineana	 0.90	 0.36	 -0.08	 0.23	 0.08	 0.05	

C.	lizae	 0.23	 -0.02	 -0.04	 -0.04	 0.10	 0.03	

D.	buettneri	 -0.54	 -0.09	 0.01	 -0.04	 0.04	 0.07	

G.	giganteum	 0.60	 0.34	 -0.10	 0.16	 -0.10	 -0.18	

K.	gabonensis	 0.05	 -0.33	 -0.03	 -0.09	 0.14	 0.10	

P.	macrophylla	 -0.85	 0.32	 -0.04	 -0.02	 0.02	 -0.01	

P.	soyauxii	 -0.89	 -0.09	 0.10	 -0.13	 -0.27	 -0.20	

P.	angolensis	 0.56	 -0.45	 0.17	 -0.05	 -0.02	 0.13	
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Table	S5.7.	Model	outputs	from	the	best	model	for	interannual	variation	in	leaf	
flushing	with	leaf	damage	removed	allowing	for	extended	data	period	(m2).		

Generalised	linear	mixed	effects	models	(family=Binomial).	A.	Estimates	for	the	fixed	
effects.	B.	Variance	of	the	random	effects.	C.	Estimates	for	the	random	effects.	The	
predictors	were	all	rescaled	by	removing	the	mean	and	dividing	by	1SD.	

A.		

	 	

	

	 	

	

Predictor	 Estimate	 SE	 Z	value	 P	value	

	

	

Intercept	 -1.06	 0.24	 -4.41	 <0.001	

	

	

CO2	 -1.02	 0.15	 -6.65	 <0.001	

	

	

MinTemp	 -0.11	 0.10	 -1.10	 0.27	

	

	

Rain	 -0.17	 0.08	 -1.98	 <0.05	 	 	

MCWD1	 -0.18	 0.09	 -1.93	 0.05	 	 	

Solar	 -0.01	 0.10	 -0.08	 0.94	

	

	

B.	

	 	

	

	 	

	

Group	 Random	effect	 Varianc
e	

SD	 	 	 	

TreeID	 Intercept	 0.19	 0.44	 	

	

	

Year	 Intercept	 0.09	 0.31	 	

	

	

Species	 Intercept	 0.40	 0.63	 	

	

	

CO2	 0.13	 0.36	 	

	

	

MinTemp	 0.01	 0.12	 	 	 	

Rain	 0.01	 0.11	 	

	

	

MCWD1	 0.01	 0.12	 	 	 	

Solar	 0.02	 0.16	 	

	

	

C.	

	 	

	

	 	

	

Species	 Random	
intercept	

Random	slope	 	

CO2	 MinTemp	 Rain	 MCWD1	 Solar	

A.	klaineana	 0.81	 0.15	 -0.12	 0.05	 0.20	 0.17	

C.	lizae	 0.19	 -0.20	 -0.12	 -0.12	 -0.06	 0.14	

D.	buettneri	 -0.57	 -0.18	 0.07	 -0.06	 0.01	 0.10	

G.	giganteum	 0.54	 0.35	 -0.08	 0.08	 0.12	 -0.04	

K.	gabonensis	 0.01	 -0.22	 0.01	 -0.04	 -0.09	 0.03	

P.	macrophylla	 -0.77	 0.57	 0.06	 0.06	 0.05	 -0.29	

P.	soyauxii	 -0.82	 0.11	 -0.02	 -0.12	 -0.16	 -0.17	

P.	angolensis	 0.65	 -0.55	 0.19	 0.17	 -0.06	 0.07	

	



	

	
182	

Chapter 6 

Is	Moabi	a	reliable	source	of	enterprise	

for	the	future?	

6.1 Abstract 

Moabi	oil	is	highly	valued	in	rural	communities	in	west	central	Africa	for	its	

culinary,	cosmetic	and	medicinal	properties.	The	closely	related	Argan,	Shea	

or	Karité	nut	oils	have	become	internationally	popular	since	the	late	1990s	

resulting	in	multi	billion	dollar	industries	dependent	on	wild	harvest.	In	

Gabon	most	Moabi	oil	is	kept	for	domestic	use	or	traded	locally	and	there	are	

no	international	markets.	Commercialisation	of	Moabi	oil	as	a	non-timber	

forest	product	(NTFP)	could	improve	income	generation	for	the	rural	poor	

and	aid	biodiversity	conservation	because	the	NTFP-value	of	the	slow-

growing,	threatened	Moabi	tree	is	greater	than	its	timber-value	over	the	

long-term.	Until	the	present,	Moabi	commercialisation	efforts	have	focused	

on	quality	control	and	access	to	markets	with	little	consideration	of	raw	

resource	availability,	despite	large	fluctuations	in	Moabi	fruit	production	

between	years.	In	this	study,	we	combined	over	15	years’	scientific	

monitoring	of	Moabi	phenology	at	Lopé	National	Park	with	indigenous	

knowledge	from	Moabi	oil	producers	in	rural	Gabon,	to	describe	the	factors	

that	influence	harvest	success	and	explore	the	potential	impacts	on	the	rest	

of	the	Moabi	oil	value	chain.	Moabi	fruit	production	is	highly	variable	
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between	years	and	regions	while	Moabi	harvest	requires	a	lot	of	effort	(time	

and	physical	strength)	and	harvesters	face	competition	for	fruits	from	a	

range	of	forest	animals.	Currently	we	consider	that	the	effort	required	to	

extract	the	oil	exerts	a	limit	on	the	amount	of	fruits	collected	meaning	that	

producers	are	unlikely	to	be	harvesting	to	the	limit	of	the	environmental	

resource.	However	the	Moabi	supply	chain	is	moving	towards	direct	

purchase	of	nuts	from	participants	and	more	centralised,	mechanised	oil	

production.	In	this	case	it	is	likely	that	harvest	will	increase	and	be	more	

closely	impacted	by	fluctuations	in	raw	resource	availability.	To	improve	

income	security	for	rural	producers	we	recommend	that	current	Moabi	

commercialisation	partnerships	incorporate	either	an	insurance-type	scheme	

to	compensate	participants	or	develop	other	NTFPs	alongside	Moabi	to	form	

a	diverse	“safety-net”	and	reduce	economic	shocks	when	Moabi	fruits	are	

scarce.	

6.2 Introduction 

Before	the	1990s,	Argan	Oil	and	Shea	Butter	were	practically	unknown	

outside	of	their	native	ranges	(Morocco	and	the	west	African	Sahel	

respectively)	where	they	have	long	been	revered	by	indigenous	peoples	for	

their	culinary,	cosmetic	and	medicinal	properties	(Lybbert	et	al.	2002,	2011;	

Elias	&	Carney	2007).	Successful	commercialisation	of	these	non-timber	

forest	products	(NTFPs)	has	transformed	them	into	multi-billion	dollar	

international	industries	(Lybbert	et	al.	2011;	FAO	2016).	In	fact,	Argan	is	now	

the	most	expensive	oil	in	the	world.	

A	similar	nut	oil	extracted	from	the	closely	related	Moabi	tree	(Baillonella	

toxisperma	Pierre.,	also	a	member	of	the	Sapotaceae	family)	is	highly	valued	

for	its	culinary	and	cosmetic	properties	in	its	native	range	in	west	central	

Africa	(Louppe	2005;	Iponga	et	al.	2018).	As	of	yet,	most	Moabi	oil	is	kept	for	

domestic	use	or	traded	locally	and	there	are	no	international	markets	

(Ingram	&	Schure	2010).	Moabi	is	listed	as	vulnerable	by	the	IUCN	due	to	

over	exploitation	for	timber	which	has	led	to	serious	declines	in	large	parts	of	

its	range	(White	1998).	However	the	NTFP	value	of	a	Moabi	tree	is	greater	

than	its	timber	value	over	the	long-term	(after	at	least	7.5	years;	Plenderleith	
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&	Brown	2004)	suggesting	that	NTFP	commercialisation	could	contribute	to	

its	conservation.	

Gabon	is	a	heavily	forested	country	(>	85%	land	area	in	2010;	Blaser	et	al.	

2011)	at	the	heart	of	the	Moabi	native	range.	The	country	has	a	rapidly	

urbanising	population,	yet	13%	of	the	population	(~260,000	people)	remain	

in	rural	forest	villages	where	unemployment	is	high	(countrywide	

unemployment	in	2015	=	28%)	and	a	third	live	under	the	poverty	line	

(Central	Intelligence	Agency	2018).	More	than	10%	Gabon’s	land	area	is	

designated	within	a	National	Park	(NP)	network	and	the	National	Agency	of	

National	Parks	(ANPN)	is	tasked	with	implementing	the	government’s	policy:	

to	protect	a	representative	network	of	natural	areas	and	landscapes	in	as	

natural	state	as	possible,	eliminate	and	prevent	exploitation	and	occupation	

at	odds	with	the	parks’	conservation	status	and	to	take	into	account	the	

needs	of	local	populations	in	the	national	fight	against	poverty	(Parcs	Gabon	

2018).	In	accordance	with	this	mission,	ANPN	has	engaged	in	various	

conservation	outreach	activities	–	such	as	ecotourism	and	alternative	

livelihoods	-	as	a	means	of	stimulating	economic	development	in	NP	buffer	

zones.	Under	this	banner,	ANPN	partnered	with	a	national	cooperative	of	

artisanal	craftspeople	and	producers	(Gabon	Boutique)	in	2010	to	pilot	

Moabi	oil	production	around	Lopé	NP.	Since	then	the	Moabi	oil	partnership	

has	expanded	to	the	buffer	zones	of	a	number	of	NPs	with	a	focus	on	

establishing	markets	and	securing	income	for	rural	Moabi	producers,	as	well	

as	improving	production	and	storage	techniques.	However,	Moabi	trees	are	

known	to	have	highly	variable	fruit	production	between	years	(Plenderleith	

&	Brown	2004;	Louppe	2005)	and	thus	far	there	has	been	little	consideration	

of	the	impacts	raw	resource	availability	may	have	on	successful	Moabi	

harvest	and	oil	production.		

In	this	study	we	seek	to	understand	and	quantify	the	impacts	that	raw	

resource	variability	has	on	Moabi	oil	production.	And	also	whether	improved	

ability	to	predict	Moabi	fruiting	events	could	increase	income	generation	and	

security	for	rural	producers	and	improve	market	uptake	of	Moabi	oil.	To	this	

end,	we	combine	over	15	years’	scientific	monitoring	of	Moabi	phenology	at	
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Lopé	National	Park	with	interviews	to	determine	indigenous	knowledge	of	

rural	forest	dwelling	communities.	We	use	these	data	to	describe	Moabi	

phenology,	quantify	the	factors	that	influence	Moabi	harvest	success	and	

discuss	the	possible	impacts	of	harvest	success	on	the	rest	of	the	Moabi	oil	

value	chain.	

6.2.1 NTFP commercialization as an alternative livelihood 

strategy 

NTFPs	play	important	nutritional,	cultural	and	commercial	roles	for	forest-

dwelling	people	around	the	globe.	The	diet	of	rural	children	improves	with	

proximity	to	forest	in	low-income	countries	(Rasolofoson	et	al.	2018)	and	

NTFPs	form	a	diverse	“safety	net”	for	the	rural	poor,	contributing	to	

household	income	and	helping	to	reduce	vulnerability	to	economic	shocks	

(Shackleton	&	Sheona	2004;	Awono	&	Levang	2018).	Commercialisation	of	

NTFP	harvests	has	been	a	popular	conservation	and	poverty	alleviation	

initiative	since	the	1980s	(Belcher	&	Schreckenberg	2007).	The	dual	aims	of	

NTFP	commercialisation	are	to	improve	rural	incomes	through	product	

development	and	access	to	markets	and	to	protect	intact	forests	by	providing	

an	economic	alternative	to	timber	extraction	and	clear	felling	for	

conventional	agriculture	(Arnold	&	Pérez	2001).	However	these	aims	are	

often	at	odds	with	each	other	and	common	problems	associated	with	NTFP	

commercialisation	include	degradation	of	the	natural	resource	and	

unrealised	or	unequal	distribution	of	the	benefits	in	rural	communities	

(reviewed	in	Arnold	&	Pérez	2001).	Evaluation	of	the	effectiveness	of	

integrated	conservation	and	development	projects	(ICDPs)	in	west	and	

central	Africa	is	still	in	its	infancy	and	the	focus	so	far	has	been	mainly	on	

projects	to	reduce	the	impacts	of	wild	meat	hunting	(e.g.	Wicander	&	Coad	

2018)	not	NTFPs.	

The	potential	that	NTFP	commercialisation	has	for	biodiversity	conservation	

depends	on	the	extent	of	harvest,	the	tolerance	of	the	targeted	species	(which	

varies	between	species	and	resource	type;	Ticktin	2004)	and	how	much	

competition	is	created	between	humans	and	animals	who	also	require	access	

to	the	resource.	In	addition,	market	forces	are	selective	and	the	supply	of	
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natural	resources	is	inelastic,	meaning	that	successful	markets	tend	to	drive	

production	towards	intense	management,	large-scale	domestication	or	

synthetic	alternatives,	which	are	at	odds	with	the	goals	of	maintaining	

biodiversity	in	forest	ecosystems	(Arnold	&	Pérez	2001).	

How	well	NTFP	commercialization	contributes	to	poverty	alleviation	is	also	

highly	influenced	by	market	forces.	NTFPs	can	both	fall	out	of	favour	or	

become	more	desirable	(e.g.	wooden	furniture)	as	household	incomes	rise,	

while	others	may	face	competition	from	industrial	alternatives.	Within	rural	

communities,	the	benefits	of	NTFP	commercialisation	are	often	distributed	

unequally	with	many	of	the	benefits	captured	by	the	wealthier,	more	

powerful	households	(Heubach	et	al.	2011).	Commercialisation	itself	can	put	

increased	pressure	on	traditional	systems	of	managing	common	forest	

property	(Arnold	&	Pérez	2001).	

The	harvest	of	forest	fruits	presents	particular	opportunities	and	challenges.	

Fruit	collection	is	non-destructive	and	the	local	abundance	of	fruits	at	

particular	times	facilitates	targeted	harvesting	expeditions.	However	fruits	

are	usually	perishable	meaning	that	storage	and	transport	to	market	from	

remote	areas	can	be	problematic	(Arnold	&	Pérez	2001;	Belcher	&	

Schreckenberg	2007).	Removal	of	fruits	from	the	forest	could	impact	

recruitment	and	genetic	diversity	of	the	targeted	population,	ultimately	

impacting	forest	structure	and	composition,	and	can	lead	to	heightened	

competition	between	people	and	forest	animals	for	food	(Kinnaird	1992;	Hall	

&	Bawa	1993).	

One	of	the	major	differences	between	NTFPs	and	agricultural	products	comes	

from	the	very	nature	of	wild	harvesting.	Wild	fruit	may	be	produced	far	from	

home	and	on	land	without	secure	tenure	(Belcher	&	Schreckenberg	2007).	In	

addition,	indigenous	fruits	trees	have	not	been	subjected	to	the	same	

selective	pressures	as	domesticated	species.	Of	the	NTFP	case-studies	

considered	by	Newton	et	al.	(2006),	limited	resource	availability	and	variable	

yields	were	two	major	factors	limiting	commercialization	in	68%	and	58%	of	

cases	respectively.	Complex	fruit	production	contributes	a	large	amount	of	

uncertainty	and	variability	to	income	generated	from	NTFP-based	
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livelihoods.	We	have	shown	previously	that	the	phenological	cycles	of	wild	

tropical	tree	species	are	highly	complex	with	reproductive	events	occurring	

both	regularly	and	irregularly,	on	sub-annual,	annual	and	multi-annual	time	

scales	and	often	not	synchronised	between	or	within	species	(Chapter	2	and	

Bush	et	al.	2017).		

Without	significant	investment,	scientific	knowledge	of	the	biology	of	tropical	

NTFP	species	is	likely	to	be	poor	making	it	difficult	to	assess	whether	a	

species	is	suitable	for	successful	NTFP	commercialisation	or	whether	

harvests	can	be	managed	sustainably.	Indigenous	ecological	knowledge,	on	

the	other	hand,	can	be	a	rich	source	of	information	on	plant	biology	(Wezel	&	

Lykke	2006;	Neto	et	al.	2013;	Campos	et	al.	2018).	The	potential	for	relatively	

rapid	collation	of	information	on	species	fruiting	patterns	via	indigenous	

knowledge	is	particularly	attractive	because	of	the	long	observation	periods	

required	for	robust	phenological	analyses	(Bush	et	al.	2017).	However	

knowledge	acquired	by	forest-dwelling	people	will	be	specific	to	their	

requirements	and	may	not	cover	all	areas	of	a	species’	biology	required	for	

assessment	of	NTFP	commercialization.		

62.2 Moabi Oil as an NTFP 

Moabi,	or	African	pearwood,	is	a	large	canopy	tree,	>60m	tall	at	maturity,	

found	at	low	densities	(one	adult	tree	per	20ha)	throughout	the	lowland	

rainforests	of	west	central	Africa	(Louppe	2005).	It	is	a	popular	hardwood	

timber	species	and	its	bark	and	fruit	are	important	to	rural	communities	for	

many	culinary,	cosmetic,	medicinal	and	ritual	uses	(Plenderleith	&	Brown	

2004).	Moabi	seeds	can	be	processed	to	extract	a	viscous	oil	-	similar	to	the	

closely	related	Argan,	Shea	or	Karité	nut	oils	-	and	is	highly	valued	in	rural	

communities	(Veuthey	&	Gerber	2010).	Due	to	the	laborious	processing	

required,	most	Moabi	oil	is	kept	for	domestic	use	but	some	surplus	is	traded	

locally	for	cash	income	(Endamana	et	al.	2016).	Moabi	oil	has	been	identified	

as	having	the	potential	to	be	a	high	value	NTFP	(Plenderleith	&	Brown	2004)	

and	has	been	promoted	for	commercialisation	by	various	NGOs	(e.g.	at	the	

Dja	Biosphere	Reserve,	Cameroon;	Veuthey	&	Gerber	2010;	‘Man	&	Nature’	

2017).	However	markets	remain	local	with	little	or	no	international	trade	
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(Ingram	&	Schure	2010)	and	there	is	little	accessible	information	on	the	

commercialisation	process.	

The	factors	that	favour	Moabi	oil	commercialization	are	that	the	flavour	of	

the	oil	is	preferred	locally	when	people	have	access	to	it,	the	oil	is	highly	

priced	due	to	its	scarcity	and	the	NTFP	value	of	a	Moabi	tree	is	greater	than	

its	timber	value	over	the	long-term	(Plenderleith	&	Brown	2004).	An	analysis	

in	1995	for	Moabi	oil	production	in	Cameroon	showed	that	a	Moabi	tree’s	

timber	value	after	140	years	was	CFA	462,500	(~	US	$1850,	equivalent	to	US	

$3070	in	2018),	while	the	oil	revenue	at	an	extraction	rate	of	135-165l	every	

three	years	was	CFA	300,000	(~	US$	1200,	equivalent	to	US$	1990	in	2018).	

Applying	a	discount	value	of	10%	the	authors	found	that	revenues	from	oil	

extraction	would	be	higher	than	the	equivalent	timber	value	after	7.5	years	

(Plenderleith	&	Brown	2004).	

Moabi	fruits	also	fall	to	the	ground	when	ripe,	rather	than	remaining	on	the	

tree	(White	&	Edwards	2000),	making	them	easy	to	collect.	Finally	there	is	

evidence	of	political	will	to	protect	this	species	in	its	native	range:	Moabi	is	

currently	protected	in	Cameroon	and	was	accorded	25	years	of	protection	

from	logging	in	Gabon	in	2009,	awaiting	more	data	on	declines	and	potential	

for	sustainable	harvests	(Iponga	et	al.	2018).	However	as	timber	cutting	

renders	Moabi	trees	increasingly	rare	(White	1998),	unfamiliarity	may	lead	

to	people	losing	their	preference	for	the	oil	and	replacing	it	with	other	

cheaper	alternatives,	thus	diminishing	its	value.	The	process	of	extraction	is	

laborious	and	could	benefit	from	increased	mechanisation	to	ensure	

appropriate	quantity	and	quality	of	oil	for	international	markets	(as	for	

Argan	oil;	Lybbert	et	al.	2002).	In	addition,	the	habit	of	Moabi	is	that	it	is	slow	

to	grow,	with	incremental	growth	of	1mm	per	year	when	diameter	at	breast	

height	(DBH)	is	10cm	increasing	to	9.5mm	per	year	when	DBH	is	at	least	1m	

(Louppe	2005).	It	is	also	slow	to	mature	with	flowering	only	starting	after	

50—70	years	once	the	canopy	has	reached	the	upper	storey	and	regular	

fruiting	beginning	even	later	once	the	bole	has	reached	70cm	(Louppe	2005).	

Fruiting	is	variable	between	years	(one	or	two	fruiting	events	every	three	
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years,	only	one	of	which	is	likely	to	be	abundant;	Plenderleith	&	Brown	2004;	

Louppe	2005).			

In	Figure	6.1	we	have	sketched	a	theoretical	value	chain	for	Moabi	oil	

production	from	the	perspective	of	participating	harvesters	and	producers.	

Stage	one	in	this	value	chain	is	“Harvest	success”	which	is	defined	as	the	

number	of	fruits	harvested	by	a	producer	and	is	dependent	on	the	number	of	

fruits	available	in	the	natural	environment,	the	effort	put	into	harvesting	and	

competition	from	other	Moabi	producers	and	forest	animals.	Harvest	success	

directly	determines	the	maximum	performance	possible	in	the	next	stage	of	

the	value	chain:	“Production	success”.	Production	describes	the	quantity	and	

quality	of	oil	that	is	produced	and	is	influenced	by	the	number	of	people-

hours	dedicated	to	processing	the	nuts,	the	skill	of	Moabi	producers	and	the	

availability	of	specialist	equipment.	Finally	the	last	stage	of	the	value	chain	is	

“Income”	which	is	determined	not	only	by	the	quantity	and	quality	of	oil	

produced	but	also	by	price	per	unit,	access	to	markets,	transport,	storage	and	

marketing	costs	and	taxation	levels.	This	latter	stage	of	Moabi	oil	production	

is	the	key	element	on	which	the	dual	aims	of	Moabi	commercialisation	rest;	

poverty	reduction	via	increased	income	and	biodiversity	conservation	via	

increased	value	of	standing	versus	felled	Moabi	trees.	
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Figure	6.1.	Value	chain	for	Moabi	Oil	commercialisation	from	the	
perspective	of	the	producers.	

6.2.3 Case study: Gabonese Moabi oil in the buffer zones of 

national parks 

In	the	first	year	that	ANPN	partnered	with	Gabon	Boutique,	694kg	of	raw	

nuts	and	a	small	amount	of	oil	(7l)	were	collected	from	just	five	different	

villages	around	Lopé	NP	in	an	initial	pilot	to	establish	the	processing	and	

storage	systems	required	to	mobilise	the	product	from	the	villages	to	market	

(Figure	6.2).	Although	the	participants	were	familiar	with	traditional	

techniques	to	extract	Moabi	oil	on	a	small	scale,	it	was	necessary	to	

standardise	processes	to	try	and	ensure	a	quality-controlled	approach	for	

commercialized	oil	production.	Thus	in	the	second	and	third	years,	after	

standardised	production	techniques	were	shared	with	the	participants,	oil	

was	purchased	directly	and	production	branched	out	to	the	surrounding	

areas	of	Lopé,	Birougou	and	Waka	NPs	(362l	purchased	from	114	producers	

from	26	villages	in	2011	and	334l	purchased	from	88	producers	from	15	

villages	in	2012).	However,	despite	best	efforts,	quality	(e.g.	contamination	

and	deterioration)	remained	highly	variable	between	producers	and	an	

economic	assessment	by	Gabon	Boutique	established	that,	particularly	for	

small-scale	producers,	the	time	involved	in	the	laborious	process	of	oil	
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production	was	not	well	compensated	by	the	higher	price	per	unit	for	oil	

over	nuts.	In	2013,	producers	were	given	the	option	to	sell	nuts	directly	to	

Gabon	Boutique	with	subsequent	oil	production	organized	centrally.	In	this	

year	1747kg	of	nuts	and	227l	of	oil	was	purchased	from	117	producers	(23	

villages).	Production	data	for	the	years	2014-2017	are	currently	unavailable	

but	during	this	time	production	groups	were	formed	in	certain	regions	(e.g.	

Mayengue)	with	the	aims	of	organising	oil	production	regionally	and	

allowing	producers	to	autonomously	negotiate	prices.	Recent	funding	has	

enabled	Gabon	Boutique	to	expand	the	marketing	end	and	develop	high	

value-added	products	(soap,	face	creams)	as	well	as	raw	oil.	The	amount	

purchased	from	any	one	producer	in	years	2010-2013	ranged	from	0.1	to	16l	

of	oil	(median=	2l)	and	5	to	87kg	of	nuts	(median	=	16kg).	The	median	price	

paid	per	unit	for	oil	was	CFA	5000	per	litre	(on	the	1st	December	2018,	CFA	

656	=	1	Euro).	

	

Figure	6.2.	Timeline	of	the	National	Agency	of	National	Parks	(ANPN)	and	
Gabon	Boutique	partnership	to	pilot	Moabi	Oil	commercialisation	
activities	in	the	buffer	zones	of	national	parks	from	2007	to	2018.	

Gabon	Bou)que	(GB)	is	formed	(2008).	

GB	partners	with	ANPN	to	pilot		
Moabi	oil	commercialisa)on	
	around	Lopé	NP	(2010).	
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Birougou	and	
Waka	NPs.	
Improving	

quan)ty	and	
quality	of	oil	
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Mayuenge	
(2013-2014).	
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2007	
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Produc)on	data	(2010	–	2013):	

Year	 Nuts	
(kg)	

Oil	(l)	 Producers	 Villages	

2010	 649	 7	 -	 5	

2011	 0	 362	 114	 26	

2012	 0	 334	 88	 15	

2013	 1747	 227	 117	 23	

ANPN	is	formed	(2007).	
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Until	now	the	focus	of	Gabon	Boutique’s	activities	has	been	on	improving	the	

latter	two	stages	of	the	value	chain	described	in	Figure	6.1:	production	

success	and	income.	However,	we	have	established	that	Moabi	fruits	are	a	

variable	resource	between	years	and	that	most	buyers	of	value-added	

products	require	some	guarantee	of	minimum	production	per	year	to	allow	

them	to	plan	investments	and	marketing.	It	is	also	essential	that	if	NTFP	

commercialisation	is	presented	as	an	alternative	livelihood	activity	that	it	is	

sustainable	and	doesn’t	contribute	to	poverty	or	insecurity.	With	these	issues	

in	mind,	in	this	study	we	focus	on	the	first	stage	of	the	Moabi	value	chain	-	

harvest	success	–	and	the	potential	impacts	raw	resource	variability	may	

have	on	successful	Moabi	commercialisation.	Harvest	success	is	not	simply	a	

function	of	raw	resource	availability,	and	so	it	is	also	necessary	to	take	

account	of	harvest	effort	(and	competition	for	resources;	Figure	6.1).	For	

example,	there	could	be	a	bumper	crop	of	Moabi	fruits	in	a	particular	year,	

but	a	poor	harvest	due	to	illness	or	pre-occupation	with	other	activities.	

Similarly,	another	year	with	little	fruit	available	could	be	masked	by	strong	

harvest	effort	and/or	little	competition	with	forest	animals.	It	may	be	that	

producers	never	harvest	to	the	limit	of	the	fruit	available	and	that	raw	

resource	availability	has	little	or	no	impact	on	harvest	success	at	current	

levels	of	harvest	and	production.	

6.3 Methods 

6.3.1 Botanical description of Baillonella toxisperma 

Moabi	is	a	very	large	canopy	tree	reaching	60	(-70)	m	tall	with	a	trunk	bole	

up	to	300	(-500)	cm	in	diameter	(Louppe	2005).	Moabi	can	germinate	in	the	

shade	but	afterwards	only	thrives	in	the	direct	sunlight	created	in	forest	

openings	(Doucet	et	al.	2009).	Trees	begin	to	flower	after	50-70	years	once	

the	canopy	has	reached	the	upper	storey	but	regular	fruiting	doesn’t	occur	

until	the	bole	is	at	least	70cm	diameter,	after	90-100	years	(Louppe	2005).	

The	canopy	is	recognisable	from	the	air,	and	is	fully	deciduous,	producing	

flowers	after	the	leaves	have	dropped	(Plenderleith	&	Brown	2004).	There	is	

a	phenologic	inversion	either	side	of	the	equator	with	records	of	flowers	
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occurring	from	February	to	April	north	of	the	equator	(Cameroon)	and	from	

September	to	October	south	of	the	equator	(central	Gabon;	Plenderleith	&	

Brown	2004).		

Moabi	fruits	are	large	and	globose,	5-8cm	in	diameter	and	contain	1-3	

ellipsoid	seeds	c.	4cm	long	(Louppe	2005).	Many	animals	consume	the	fruits	

(elephants,	wild	pigs,	porcupines,	duikers	and	gorillas),	but	it	is	only	

elephants	and	gorillas	that	are	able	to	consume	and	excrete	the	large	seeds	

whole	while	wild	pigs	and	porcupines	are	known	to	eat	the	seeds	

(Plenderleith	&	Brown	2004).	People	are	also	important	seed	dispersers	of	

Moabi,	inadvertently	when	gathering	fruits	for	oil	production	and	

intentionally	by	planting	Moabi	trees	near	human	settlements	(Veuthey	&	

Gerber	2010).	Extensive	gene	flow	in	Moabi	populations	indicates	unusually	

high	dispersal	distances,	both	of	pollen	and	seeds	by	animal	dispersers,	

including	humans	(Ndiade-Bourobou	et	al.	2010).	

6.3.2 Long-term Moabi phenology monitoring at Lopé NP 

Since	2003,	the	leaf,	flower	and	fruit	phenology	of	a	sample	of	eight	Moabi	

trees	(Baillonella	toxisperma)	has	been	monitored	by	researchers	at	Lopé	

National	Park	as	part	of	a	long-term	phenology	study	dating	back	to	1986.	At	

the	beginning	of	every	month	(usually	completed	within	the	first	seven	

working	days),	researchers	examine	the	crowns	of	each	tree	from	the	ground	

with	10	x	42	binoculars	and	record	the	proportion	of	the	canopy	covered	by	

each	phenophase	(new,	mature	and	senescent	leaves,	flowers,	unripe	and	

ripe	fruits)	as	a	9-point	scale	from	0	to	100%	coverage.	In	a	recent	analysis	of	

the	observation	uncertainties	associated	with	this	method,	long-term	

researchers	at	SEGC	scored	Moabi	flowers	as	“difficult	to	see”,	whereas	leaf	

changes	and	fruits	were	much	more	obvious	(Chapter	3;	Bush	et	al.	2018).	

This	is	because	the	flowers	are	small,	inconspicuous	and	held	very	high	in	the	

canopy.	Because	of	this	systematic	bias	in	the	sampling	methodology	it	is	

difficult	to	determine	if	flower	observations	are	accurate,	whereas	we	have	

greater	confidence	in	leaf	and	fruit	observations.	
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The	Lopé	study	area	is	a	tropical	forest-savanna	matrix	with	an	equatorial	

climate	characterised	by	two	dry	and	two	wet	seasons	(Chapter	4).	The	

Moabi	sample	is	fairly	young	-	mean	diameter	in	2015	was	103cm	(ranging	

from	75	to	168	cm)	-	but	all	individuals	are	reproductively	mature.	One	tree	

was	removed	from	the	sample	in	2013	after	it	died;	three	more	were	

removed	in	2016	due	to	a	change	to	fieldwork	protocol.	The	mean	length	of	

canopy	observation	is	158	months	(ranging	from	121	to	176)	and	the	time	

series	are	on	average,	96%	complete,	with	no	data	gaps	greater	than	three	

months	long.	We	filled	these	gaps	using	simple	linear	interpolations	(Chapter	

2;	Bush	et	al.,	2017).	

6.3.3 Indigenous ecological knowledge of Moabi 

phenology 

Rural	forest-dwelling	people	in	Gabon	are	highly	dependent	on	forest	

resources	and	practice	a	hunter-gatherer	lifestyle	combined	with	small-scale	

shifting	agriculture.	Families	take	daily	trips	into	the	forest	to	visit	small	

slash	and	burn	farmed	plots	and	gather	resources	such	as	fruits,	bark,	

bushmeat	and	firewood.	In	February	2016	we	visited	22	different	

communities	(villages/	quartiers)	in	the	rural	interior	of	Gabon	participating	

in	Moabi	Oil	production	with	ANPN	and	Gabon	Boutique	(Figure	6.3).	We	

conducted	interviews	in	11	locations,	but	were	unable	to	interview	in	the	

remaining	communities	because	the	inhabitants	were	already	occupied	in	the	

forest	when	we	visited,	or	didn’t	want	to	participate.	Following	local	cultural	

protocols	at	each	interview,	we	gave	an	introduction	to	all	the	gathered	

community	members	and	then	directed	the	survey	questions	to	a	select	

group	of	elders	(e.g.	Chef	de	Village	and	his	wife).	As	a	result,	the	questions	

weren’t	always	answered	directly	by	the	current	fruit	collectors	although	

they	often	contributed.	Elders	are	almost	certain	to	have	participated	in	

harvests	in	their	youth.	

Our	aims	for	the	interviews	were	to:	(1)	Gather	indigenous	ecological	

knowledge	on	the	phenological	cycles	of	Moabi,	(2)	Record	Moabi	fruit	

productivity	for	the	most	recent	years,	(3)	Establish	which	factors	influence	

Moabi	harvest	effort	and	how	this	has	varied	in	the	most	recent	years,	(4)	
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Describe	the	competition	(from	other	people	and	wild	animals)	Moabi	oil	

producers	face	when	harvesting	fruit.	

In	each	interview	we	asked	the	following	questions.		

1.	How	many	Moabi	trees	do	you	(as	a	family)	visit	to	collect	fruit?		Can	you	

mark	them	on	this	map	(sketched	map	of	house	and	key	features	in	neighboring	

forest).	

2a.	How	long	does	it	take	to	walk	to	the	closest	Moabi	tree?	

2b.	How	long	does	it	take	to	walk	to	the	furthest	Moabi	tree?	

3.	What	size	are	the	Moabi	trees	you	visit	(estimate	in	cm	or	indicate	with	your	

arms,	mark	on	the	map)?	

4.	How	many	trips	do	you	make	to	collect	Moabi	fruits	each	year?	

5.	Can	you	describe	fruit	availability	in	recent	years	for	each	tree?	(No	fruits,	

few,	a	lot	of	fruits	etc…)	

6.	Do	you	know	if	it	will	be	a	good	year	for	Moabi	fruit	before	you	see	the	fruit?	

How?	

7.	What	stops	you	from	collecting	more	fruit?	

8.	Which	animals	eat	Moabi	fruits?	
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Figure	6.3.	Location	of	communities	participating	in	Moabi	Oil	production	
with	Gabon	Boutique	in	2016.		
Shown	are	the	four	largest	cities	in	Gabon	by	population	(black	squares)	and	the	
major	roads	grey	lines).	Green	shaded	areas	indicate	NPs	near	to	the	project	
area	and	the	red	circles	indicate	villages	visited	for	this	project	in	February	
2016.	

6.3.4 Analyses 

We	calculated	the	proportion	of	trees	in	each	phenophase	in	each	month	

throughout	the	observation	period,	and	plotted	circular	boxplots	to	show	

both	the	mean	and	variation	in	phenophase	synchrony	between	years.	We	

also	calculated	the	mean	canopy	score	for	each	calendar	month	for	all	

individuals	and	years	and	displayed	this	on	the	same	plots	to	show	

phenophase	intensity.	We	plotted	the	time	series	for	mature	leaf,	flower,	

unripe	fruits	and	ripe	fruit	canopy	scores	for	each	individual	throughout	the	

time	period	to	identify	highly	synchronous	events.	Finally	we	calculated	the	

Fourier	spectra	for	each	phenophase	for	each	individual	tree	in	order	to	

identify	dominant	patterns	of	cyclicity	in	the	data.	Fourier	is	a	form	of	

spectral	analysis	based	on	sine	and	cosine	waves	that	can	be	used	to	

quantitatively	describe	the	cyclic	nature	of	any	time	series	data	(Bloomfield	

Waka	NP	

Monts	
Birougou	NP	

Lopé	NP	
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2000).	We	used	a	confidence	test,	based	on	95%	confidence	intervals	and	a	

null	hypothesis	of	‘no	cyclicity,’	to	determine	whether	the	dominant	cycle	in	

each	spectrum	was	objectively	different	to	surrounding	noise.	A	full	

explanation	of	the	Fourier	methods	used	is	given	in	Chapter	2	(Bush	et	al.	

2017).	Qualitative	responses	from	the	interviews	were	coded	and	described	

using	simple	summary	statistics	(means	and	percentages).	

6.4 Results 

6.4.1 Long-term monitoring of Moabi phenology 

Moabi	leaf	phenology	at	Lopé	is	seasonally	predictable	but	not	regular.	

Between	2003	and	2018	new	leaves	usually	appeared	between	October	and	

December	and	mature	leaves	began	to	senesce	between	July	and	October	

(Figure	6.4A-C).		
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Figure	6.4.	Average	leaf,	flower	and	fruit	phenology	of	Moabi	(Baillonella	
toxisperma	Pierre)	at	Lopé	National	Park.		
Circular	boxplots	(A-E)	show	the	proportion	of	individuals	(n=8)	in	that	
phenophase	each	month	from	2003	to	2018.	The	colour	of	the	boxplot	represents	
the	mean	canopy	score	(0:	no	canopy	coverage,	4:	full	canopy	coverage)	between	
individuals	and	years.	
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Leaf	flush	did	not	occur	to	the	same	extent	every	year,	for	every	tree,	leading	

to	a	leafing	phenology	with	weak	cyclicity;	the	dominant	mature	leaf	cycle	

was	annual	for	six	out	of	eight	individuals	but	only	one	of	these	was	

considered	significantly	different	to	a	null	spectrum	of	no	cyclicty	in	the	

Fourier	analysis,	while	another	individual	had	a	significant	dominant	leafing	

cycle	of	six	months	(Figure	6.5).		

	

	

Figure	6.5.	Fourier	spectra	for	mature	leaf	and	unripe	fruit	phenology	
timeseries	for	eight	Moabi	trees	(Baillonella	toxisperma	Pierre)	at	Lopé	
National	Park,	2003-2018.		
Stars	indicate	dominant	cycles	significantly	different	to	a	null	hypothesis	of	no	
cyclicity.	Horizontal	dashed	lines	indicate	the	position	of	peaks	in	the	spectra	
with	12	month	cycles	(0.083)	and	6	month	cycles	(0.167).	
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bottom	time	series	in	Figure	6.6)	appeared	to	be	more	prone	to	full	flushing	

than	others.	

	

	

Figure	6.6.	Time-series	plots	of	leaf,	flower	and	fruit	phenology	for	eight	
Moabi	trees	(Baillonella	toxisperma	Pierre)	at	Lopé	National	Park,	2003-
2018.		
The	canopy	score	represents	canopy	coverage	for	each	phenophase	(0:	no	
canopy	coverage,	4:	full	canopy	coverage).	Flower	presence	is	indicated	by	a	
star.	

	

Reproductive	phenology	at	Lope	showed	a	similar	picture.	In	years	when	

flowers	were	present,	they	usually	occurred	in	October,	with	fruits	
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ranged	from	0.33	to	0.92	(mean=0.73,	n=7)	and	the	probability	of	that	fruit	

event	covering	50%	or	more	of	the	canopy	(canopy	score	>=2)	ranged	from	

0.07	to	0.85	(mean=0.50,	n=7).	In	certain	years	we	observed	a	strong	

reproductive	response	from	most	of	the	sample	(e.g.	2004/5	and	2012/2013;	

Figure	6.6).	In	2010/2011	the	entire	sample	went	fully	deciduous	and	then	

flowered,	but	fruits	were	only	observed	for	one	individual	suggesting	an	

unsuccessful	reproductive	attempt	(Figure	6.6).	64%	of	fruiting	events	were	

recorded	with	no	prior	flowering	observations	(Figure	6.6)	indicating	the	

observational	uncertainty	associated	with	scoring	flowering.		

6.4.2 Indigenous knowledge 

Interviewees	described	visiting	between	two	and	40	Moabi	trees	in	

surrounding	forest	(mean	=	16	trees).	The	closest	trees	visited	were	between	

five	minutes	and	two	hours	away	(mean	=	47	minutes),	while	the	furthest	

trees	were	between	one	hour	and	13	hours	away	(mean=3.9	hours).	The	

interviewees	estimated	that	the	trees	they	visited	ranged	in	size	from	60cm	

to	300cm	DBH.	Interviewees	described	making	on	average	12	trips	into	the	

forest	to	collect	Moabi	fruits	each	year,	although	this	question	was	not	very	

successful	with	six	communities	unable	to	answer.	The	map	exercise	was	also	

unsuccessful	and	was	not	attempted	in	most	communities	after	initial	

failures.	

Interviewees	were	well	acquainted	with	the	seasonality	of	Moabi	

reproduction	through	their	harvesting	activities	but	also	appreciated	the	

variable	nature	of	inter-annual	production.	All	interviewees	estimated	the	

amount	of	fruit	available	to	them	in	the	preceding	two	years.	In	2014/15,	

seven	interviewees	considered	there	to	have	been	no	fruit	or	very	few	fruits	

(mostly	in	the	Mimongo	area)	and	only	two	interviewees	considered	there	to	

have	been	“a	lot	of”	fruit	(both	in	the	Iboundji	area.	By	contrast,	in	2013/14	

only	one	interviewee	described	there	being	only	a	few	fruits	whereas	the	rest	

remembered	a	normal	amount	(some)	or	a	lot	of	fruits	and	this	was	across	all	

districts.	Only	four	interviewees	attempted	to	recall	fruit	availability	in	years	

prior	to	2014.	Interviewees	were	unable	to	explain	this	variability	but	were	

able	to	describe	methods	they	used	to	predict	fruiting	events	within	a	season	
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from	other	phenological	signs.	When	asked	to	describe	if	they	knew	if	Moabi	

would	produce	fruit	before	seeing	the	fruit,	nine	out	of	11	interviewees	

described	how	the	trees	would	lose	all	their	leaves	in	July	–September	before	

a	big	fruiting	year,	two	out	of	11	interviewees	referred	to	the	likelihood	of	

Moabi	tree	producing	fruit	in	the	current	year	if	they	didn’t	produce	any	the	

previous	year.	One	interviewee	described	how	he	could	smell	Moabi	pollen	in	

honey	collected	from	the	forest	and	this	let	him	know	if	it	is	likely	there	will	

be	fruits.	

When	asked	to	explain	what	prevented	them	from	collecting	more	fruits,	six	

out	of	11	interviewees	referred	to	animals	eating	the	fruits	before	they	could	

access	them,	five	out	of	11	interviewees	described	the	effort	involved	in	

collecting	fruit	(time	involved,	the	weight	of	the	baskets	full	of	fruit).	When	

asked	which	animals	eat	Moabi	fruits,	interviewees	collectively	listed	pigs,	

antelopes,	porcupines,	elephants,	gorillas	and	rats.	

6.5 Discussion 

6.5.1 What determines harvest success? 

From	both	the	scientific	monitoring	and	the	interview	data	it	is	clear	that	

while	Moabi	reproduction	is	seasonal	(i.e.	when	present,	flowers	and	fruit	

arrive	at	predictable	times	of	the	year),	inter-annual	variability	in	flower	and	

fruit	production	is	high.	The	mean	probability	of	a	Moabi	tree	in	Lopé	NP	

reproducing	in	any	year	was	0.73	while	the	mean	probability	of	that	event	

covering	at	least	50%	of	the	canopy	was	0.5.	This	probability	however	is	

higher	than	the	estimates	reported	in	the	literature	that	Moabi	trees	

reproduce	in	one	or	two	years	out	of	every	three	(0.33	to	0.66)	and	that	only	

one	of	those	is	likely	to	be	abundant	(0.33;	Plenderleith	&	Brown	2004;	

Louppe	2005).		There	appears	to	be	much	regional	variation	among	the	

Moabi	population	as	to	which	years	are	good	or	bad	for	fruit	production.	

2014/15	was	a	poor	year	for	fruit	production	in	Mimongo	but	not	Iboundji	

whereas	2013/14	appeared	to	be	a	better	than	average	year	across	all	

districts	(interviewee	data).	Our	records	for	the	Lopé	trees	show	a	relatively	

strong	fruiting	response	(all	trees	with	fruit	>=	50%	canopy)	in	both	of	these	
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years.	Similarly	in	2010/11	fruit	was	only	recorded	for	one	tree	at	Lopé	but	

362	litres	of	Moabi	oil	were	collected	by	Gabon	Boutique	in	the	villages	south	

of	the	NP	indicating	that	fruit	was	readily	available	there.	

Harvest	requires	substantial	effort	for	Moabi	producers,	who	carry	fruit	back	

to	their	dwellings	using	traditional	baskets	on	their	backs,	with	some	

interviewees	describing	visiting	trees	as	far	as	13	hours	walk	away.	However	

effort	required	is	variable	between	communities	with	some	villages	enjoying	

an	abundance	of	trees	(up	to	40)	with	the	nearest	tree	as	close	as	five	

minutes	walk	away.	Collectively	interviewees	described	a	number	of	animal	

species	eating	Moabi	fruits,	although	that	depended	on	their	own	range	with	

elephant	and	gorillas	largely	absent	from	the	southwestern	villages.	

Competition	for	fruits	with	forest	animals	and	the	effort	involved	in	finding	

and	carrying	fruits	were	the	main	reasons	given	by	interviewees	for	why	they	

didn’t	harvest	more.	This	evidence	supports	our	thesis	that	without	

contextual	data	(number	of	hours	dedicated	to	harvest	and	production	and	

competition	for	resources)	it	is	problematic	to	assume	raw	resource	

availability	from	the	amount	of	nuts	or	oil	purchased	by	Gabon	Boutique.		

We	currently	do	not	have	the	data	to	establish	how	closely	tied	Moabi	

harvest	efforts	are	to	the	intensity	of	fruit	production.	Under	current	

conditions,	we	consider	it	likely	that	Moabi	production	is	limited	by	the	

number	of	hours	required	for	oil	processing,	and	it	is	unlikely	that	producers	

are	harvesting	to	the	maximum	of	the	resource	available.	However	successful	

international	trade	in	both	Argan	and	Shea	oils	has	been	enabled	by	the	

development	of	centralised,	mechanised	oil	processing	due	to	efficiency	gains	

and	higher	quantity	and	quality	of	oil	recovered	(Lybbert	et	al.	2002;	Elias	&	

Carney	2007).	In	these	cases,	producers	sell	their	nuts	directly	to	traders	and	

continue	artisanal	oil	production	mostly	to	supply	their	own	requirements	

and	domestic	trade.	If	mechanised	production	were	made	more	available	for	

Moabi	oil	production	or	if	traders	such	as	Gabon	Boutique	continue	to	buy	

raw	nuts	over	oil,	then	the	processing	limit	on	production	will	be	lifted	and	

fruit	harvest	is	likely	to	increase.	In	this	case,	harvest	may	become	more	

closely	tied	to	natural	fluctuations	and	competition	between	producers	and	
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forest	animals	may	increase	and	it	will	be	necessary	to	quantify	the	impact	

on	the	wild	population.	

6.5.2 How predictable is harvest success? 

We	have	established	that	Moabi	fruit	production	is	highly	variable	between	

years.	But	how	predictable	is	it?	Interviewees	described	a	strong	connection	

between	leaf	phenology	and	fruiting	in	Moabi	trees.	Almost	every	participant	

mentioned	that	in	a	good	fruiting	year,	Moabi	trees	lose	all	their	leaves	in	

September	before	the	flowers	arrive,	while	in	other	years	they	may	lose	some	

leaves	but	not	all.	This	could	form	a	useful	early	warning	system	for	fruit	

productivity	in	the	following	September	if	Gabon	Boutique	wanted	to	

prepare	for	oil	production	ahead	of	time.	However	from	the	scientific	

monitoring	at	Lopé	we	couldn’t	find	a	consistent	relationship	between	

deciduous	events	and	the	strength	of	the	reproductive	response.	This	may	be	

because	this	relationship	does	not	exist	at	Lopé,	because	our	sample	is	too	

small	and	trees	too	young,	or	because	our	sampling	interval	of	a	month	is	too	

long	(villagers	are	likely	to	check	trees	more	often	than	that)	and	flowers	are	

very	small	and	very	difficult	to	see.	Shea	production	is	known	to	be	

influenced	by	certain	climatic	effects,	such	as	an	unfavourable	wind	during	

flowering	or	above	or	below	average	precipitation	(Elias	&	Carney	2007)	

while	Argan	production	is	susceptible	to	drought	(Zunzunegui	et	al.	2010).	

Currently	we	do	not	know	which	climatic	or	other	factors	influence	Moabi	

fruit	production	and	why	this	varies	between	regions,	despite	the	fact	that	

improved	ability	to	predict	raw	resource	availability,	especially	under	long-

term	projections	of	climate	change	in	the	region,	could	enable	better	market	

preparedness.	The	data	from	the	scientific	study	at	Lopé	is	too	small	(sample	

size)	and	too	spatially	restricted	to	give	robust	answers	for	this	research	

question	at	present.	

6.5.3 Is Moabi suitable for NTFP commercialisation? 

Being	long-lived	and	slow	to	mature,	Moabi	is	an	unlikely	candidate	for	

intense	domestication,	favouring	Moabi	oil’s	status	as	a	wild	product.	

However,	it’s	unclear	if	the	oil	is	likely	to	remain	popular	enough	to	justify	
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the	additional	expense	related	to	wild	harvest	compared	to	other	cheaper	

natural	and	synthetic	alternatives.	Other	successful	NTFP	harvests	from	

Sapotaceae	species	originate	from	plants	with	much	quicker	life	habits	than	

Moabi;	Argan	trees	begin	to	bear	fruit	after	five	years	although	maximum	

production	isn’t	attained	until	60	years	(Morton	&	Voss	1987)	while	Shea,	

Vitellaria	paradoxa,	begins	flowering	after	10–25	years	reaching	maturity	

after	20–45	years	(Nikiema	&	Umali	2007).	However	neither	of	these	species	

have	been	domesticated	on	a	large	scale	and	current	international	trade	in	

their	oils	comes	from	naturally	regenerated	trees	within	agroforestry	

systems	(Lybbert	et	al.	2002;	Elias	&	Carney	2007).	It	is	unknown	what	level	

of	harvest	is	sustainable	for	the	wild	population	to	avoid	negative	impacts	on	

regeneration.	

Shea	butter	producers	also	have	to	accommodate	variable	quantity	and	

quality	of	fruit	production	between	years	with	descriptions	in	the	literature	

of	a	repeated	three	year	cycle	(good,	fair	then	poor	yields;	Chalfin	2000)	with	

climate,	diseases,	parasites	and	anthropogenic	fires	known	to	influence	fruit	

set	(Elias	&	Carney	2007).	This	means	that	variability	itself	does	not	

necessarily	preclude	successful	commercialisation.	However	there	are	

implications	for	both	marketing	and	income	sustainability.	On	the	marketing	

end,	instability	in	supply	could	be	accommodated	by	storing	Moabi	oil	from	

good	years	to	sell	in	poor	years	(if	the	lifespan	of	the	product	allows),	or	up-

scaling	production	to	cover	multiple	forest	zones	as	Moabi	productivity	

between	years	appear	to	be	asynchronous	spatially.	On	the	supply	end,	

income	variability	appears	to	be	more	of	a	challenge.	In	certain	years,	some	

households	might	be	unable	to	produce	any	oil	due	to	lack	of	fruit,	which	

could	cause	hardship	if	they	have	become	reliant	on	the	income	stream.	The	

shocks	inherent	to	this	system	need	to	be	accounted	for	in	the	way	the	

commercialisation	scheme	is	designed.	Projects	looking	to	engage	villagers	in	

developing	NTFPs	from	fluctuating	resources	could	guarantee	some	

minimum	payment	for	participating	households	in	years	when	fruit	is	

unavailable	(in	a	similar	way	to	an	insurance	scheme)	paid	for	by	a	reduction	

in	price	paid	per	unit	at	other	times.	This	approach	could	be	organised	

centrally	by	the	developer	or	locally	via	village	community	funds.	
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Alternatively,	market	developers	could	encourage	harvest	of	other	NTFPs	(in	

Gabon	this	might	include	Okoumé	resin,	other	edible	fruits	or	woven	rattan	

products)	to	be	bought	alongside	Moabi,	to	better	mirror	the	“safety	net”	

already	employed	by	the	rural	poor	to	reduce	vulnerability	to	such	natural	

resource	fluctuations	(Shackleton	&	Sheona	2004).	

6.5.4 Recommendations for future research 

There	are	two	avenues	for	further	research	to	fill	the	knowledge	gaps	around	

Moabi	raw	resource	availability:	citizen	science	monitoring	within	the	Moabi	

producing	villages	and	a	large-scale	scientific	monitoring	program.	While	the	

indigenous	knowledge	of	the	Moabi	system	we	collated	was	useful,	it	was	

heavily	influenced	by	the	way	that	interviewees	used	the	forest.	For	example,	

interviewees	found	it	difficult	to	answer	questions	about	the	number	of	trips	

they	take	into	the	forest	to	gather	fruit,	probably	because	they	access	the	

forest	daily	for	a	wide	variety	of	resources	and	Moabi	harvest	may	not	be	the	

sole	reason	for	a	forest	excursion,	even	if	some	Moabi	fruit	is	collected.	

Training	one	or	two	specialised	Moabi	recorders	per	village	would	be	a	

helpful	way	of	combining	expert	knowledge	of	the	forest	with	scientific	

requirements	for	standardised	data	collection.	The	Moabi	recorders	could	

make	regular	observations	of	the	Moabi	trees	in	their	surrounding	forest	(e.g.	

tree	has	lost	all	leaves,	some	flowers,	some	fruits)	and	take	note	of	the	

harvesting	effort	of	the	participants	in	the	village.	Remuneration	for	the	time	

involved	in	this	work	would	need	to	be	costed.	In	addition,	a	separate	

science-led	Moabi	Phenology	observation	network,	similar	to	the	Lopé	

observations	but	over	a	larger	area,	would	be	highly	informative	to	

understand	regional	variation	in	fruit	availability.	Because	of	the	large	size	of	

the	Moabi	canopy	and	the	highly	visible	nature	of	deciduous	events	it	is	

possible	that	remote	sensing	could	be	used	to	scale-up	scientific	monitoring	

in	the	near	future.	

Economic	development	has	become	a	common	outreach	tool	for	

conservation	initiatives	with	the	aims	of	encouraging	buy-in	from	local	

populations	and	compensating	for	real	and	perceived	losses	of	access	to	

natural	resources.	In	some	cases	(e.g.	Argan	and	Shea	oils)	traditional,	
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artisanal	products	can	find	international	appeal	and	increase	income	

generation	especially	for	the	poorest	households	(Pouliot	2012).	However,	

NTFP	commercialisation	for	both	poverty	reduction	and	biodiversity	

protection	–	like	other	ICDP	schemes	–	often	fails	both	objectives.	To	add	to	

this	complexity,	tropical	phenology	is	highly	complex	(Chapter	1;	Bush	et	al.	

2017)	and	responds	to	a	wide	variety	of	climatic	and	other	cues	(Chapter	5).	

However	hunter-gatherer	lifestyles	are	familiar	with	these	fluctuations	and	

already	make	use	of	a	wide	range	of	resources	to	accommodate	for	natural	

variability.	A	well-designed,	diverse	economic	development	program,	

incorporating	Moabi	oil	alongside	other	commercialised	products,	is	likely	to	

reduce	the	risks	incurred	by	the	rural	participants,	the	trading	bodies	and	

partner	organisations.	
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Chapter 7 

General	Discussion	

7.1 Background 

The	phenology	of	tropical	forest	ecosystems	is	key	to	understanding	the	

availability	of	resources	for	animal	and	human	users	of	the	forest,	the	role	

that	tropical	vegetation	plays	in	global	climatic	and	atmospheric	processes	

and	the	direction	of	change	in	species	communities.	Phenology	has	been	

repeatedly	picked	out	as	an	important	indicator	of	environmental	change	

(Rosenzweig	et	al.	2007;	Pereira	et	al.	2013)	with	knock-on	consequences	for	

species’	interactions	within	ecosystems	(Butt	et	al.	2015;	Morellato	et	al.	

2016).	However	tropical	phenology	is	largely	missing	from	global	

assessments	of	change	due	to	lack	of	available	data	(Feeley	et	al.	2017;	

Abernethy	et	al.	2018)	which	is	further	complicated	by	the	complexity	of	

tropical	ecosystems	and	the	diversity	of	phenological	responses	among	

tropical	species.		

The	work	contained	in	this	thesis	contributes	novel	insights	to	tropical	

phenology	research.	For	the	first	time	in	20	years,	we	make	available	one	of	

the	longest	tropical	phenology	datasets	in	the	world	from	Lopé	NP	in	western	

equatorial	Africa,	a	region	containing	most	of	Africa’s	evergreen	tropical	

forests	but	for	which	the	climatological	context	is	poorly	understood	

(Philippon	et	al.	2019).	We	assess	both	the	field	and	analytical	methods	at	
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our	long-term	site	to	develop	robust	indicators	of	tropical	phenological	

activity	and	improve	the	effectiveness	of	our	monitoring	design	and	share	

these	recommendations	for	others	(Chapters	2	and	3;	Bush	et	al.	2017,	2018).	

We	analyse	the	changing	environmental	(weather)	and	biological	

(phenology)	context	at	Lopé	for	the	first	time	and	establish	that	global	

climate	changes	are	already	impacting	this	region	of	western	equatorial	

Africa	(Chapter	4)	with	knock	on	effects	for	the	phenology	of	the	tropical	

forest	community	(Chapter	5).	And	finally	we	apply	the	developments	of	the	

previous	chapters	to	a	socio-ecological	problem:	the	availability	of	wild	

Moabi	fruits	for	NTFP	commercialisation.	In	the	following	sections	we	

expand	on	each	of	these	areas	and	discuss	realised	and	potential	

opportunities	for	their	impact.	

7.2 Developing robust indicators for 

tropical phenology  

7.2.1 Summary of results 

Fourier	methods	for	long-term	tropical	phenology	

In	Chapter	2	we	address	the	lack	of	appropriate	circular	approaches	for	

tropical	phenology	analysis	by	developing	a	new	flexible	and	robust	

analytical	approach	based	on	Fourier	analysis	with	confidence	intervals.	We	

apply	this	approach	to	both	simulated	and	long-term	field	data	and	present	

the	first	analysis	of	flowering	at	Lopé	(856	individuals,	70	species)	since	

1998	(Tutin	&	White	1998).	We	show	that	59%	of	individuals	at	Lopé	have	

regular	flowering	cycles,	and	annual	cycles	can	be	attributed	to	88%	species.	

We	also	show	that	our	ability	to	detect	regular	cycles	is	hampered	by	

observation	length	(which	varies	by	individual).	Using	a	power	analysis	we	

recommended	that	at	least	six	years	of	data	are	required	for	this	method	to	

establish	robust	estimates	of	cycle	period.	
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Reducing	uncertainty	in	long-term	phenology	studies	

It	became	apparent	in	Chapter	2	that	cycle	detectability	differs	widely	among	

species	with	some	requiring	just	six	years	of	data	before	cycles	could	be	

confidently	detected	and	others	requiring	more	than	20	years.	In	chapter	3	

we	investigate	the	source	of	this	noise.	First	we	present	a	Fourier	analysis	for	

leafing	and	fruiting	observations	from	Lopé	(856	individuals,	70	species)	in	

addition	to	the	flowering	data	presented	in	Chapter	2.		We	find	that	regular	

cycles	are	more	common	among	flowers	(59%	individuals),	unripe	fruit	

(54%)	and	new	leaves	(51%)	than	ripe	fruit	(29%)	and	senescing	leaves	

(25%).	Also	that	annual	cycles	are	more	common	among	reproductive	

phenophases	(75%	all	reproductive	cycles	were	annual)	while	sub-annual	

cycles	are	more	common	among	leaf	phenophases	(51%	all	vegetative	cycles	

were	sub-annual).	We	gathered	expert	knowledge	from	long-term	Lopé	

phenology	observers	regarding	the	systematic	biases	in	the	observation	

system	and	use	this	information	to	predict	cycle	detectability	for	a	subset	of	

827	individuals	from	61	species	(each	with	five	or	more	individuals).	We	find	

that	in	addition	to	observation	length,	the	visibility	and	duration	of	the	

phenophase	being	observed	are	also	important	positive	predictors	of	cycle	

detectability.	And	that	in	general,	cycle	detectability	among	flowering	

timeseries	is	four	times	as	high	as	ripe	fruit	after	ten	years	of	observations.	

7.2.2 Synthesis and applications 

We	have	shown	that	where	suitable	data	is	available,	objective,	circular	

analyses	can	be	used	to	confidently	detect	regular	phenology	and	that	

frequency-based	outputs	–	cycle	length,	power,	timing	and	level	of	synchrony	

–	give	a	suite	of	potential	indicators	for	quantitative	comparisons	of	

phenology	between	species	and	sites.	Particular	to	our	approach	is	the	

application	of	Fourier	methods	to	data	from	individual	trees	-	enabled	by	the	

high	resolution	of	the	long-term	data	at	Lopé	–	and	subsequent	integration	of	

individual	plants	to	ecosystem	level	phenology	(as	recommended	by	Cleland	

et	al.	2007;	Adole	et	al.	2016). Since	publication	in	2017	the	methods	for	

individual	level	plant	phenology	presented	in	Chapter	2	have	been	directly	
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used	in	a	number	of	further	studies;	A	pan-African	analysis	of	flowering	and	

fruiting	at	12	tropical	sites	(Adamescu	et	al.	2018),	two	single	site	analyses	-	

of	flowering	and	fruiting	at	Budongo	Forest	Reserve,	Uganda	(Babweteera	et	

al.	2018)	and	of	leaf	phenology	at	Mount	Kiabalu,	Borneo	(Kitayama	et	al.	

2018	PREPRINT)	and	our	own	analyses	of	observation	uncertainty	in	tropical	

phenology	monitoring	(Chapter	3:	Bush	et	al.	2018),	weather	variability	

(Chapter	4),	leaf	turnover	(Chapter	5)	and	NTFP	resource	availability	

(Chapter	6).	Phenological	analyses	using	Fourier	and	associated	Wavelet	

methods	at	the	species	and	community-level	have	also	been	used	in	a	suite	of	

recent	publications;	two	long-term	tropical	forest	fruiting	studies	(Kibale	NP,	

Uganda:	Chapman	et	al.	2018;	BCI,	Panama:	Detto	et	al.	2018),	a	short-term	

flowering	and	fruiting	study	(Guanica	State	Forest,	Puerto	Rico:	Lasky	et	al.	

2016)	and	a	long-term	analysis	of	lilac	blooming	dates	across	the	United	

States	(Fu	et	al.	2017).	 

At	Lopé	we	are	fortunate	to	have	access	to	a	relatively	long	dataset	and	a	

large	sample	of	individuals	and	species,	a	situation	that	is	rare	in	the	tropics	

where	most	datasets	are	less	than	ten	years	long	and	often	target	a	small	set	

of	species	(Mendoza	et	al.	2017;	Adamescu	et	al.	2018).	However,	even	here,	

we	find	that	data	is	noisy	and	phenophases	can	be	difficult	to	detect.	In	

Chapter	3	we	made	recommendations	to	maximise	returns	from	tropical	

phenology	monitoring	efforts.	When	allocating	resources	for	new	and	

ongoing	research	into	change	over	time,	phenologists	should	aim	to	maintain	

monitoring	programmes	for	as	long	as	possible	and	target	species	and	

phenophases	(e.g.	flowers)	with	least	inherent	biological	noise	and	high	

visibility	to	maximise	statistical	power	and	therefore	ability	to	assess	change	

in	future	analyses.	We	suggest	that	after	a	period	of	initial	monitoring	(at	

least	five	years)	it	should	be	possible	for	data	collectors	at	study	sites	to	

assess	the	amount	of	noise	associated	with	specific	species	and	phenophases	

in	their	sample,	allowing	project	managers	to	target	limited	resources.	

For	many	research	contexts,	collecting	sufficient	data	to	allow	quantitative	

analysis	of	tropical	phenology	is	likely	to	be	challenging.	We	recommended	

that	ways	to	achieve	this	could	include:	formation	of	research	networks	and	
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greater	coordination	of	methods	and	objectives	between	sites,	internet-based	

citizen-science	data	collection	networks	and	technical	solutions	to	data	

collection,	such	as	automated	canopy	photography	and	GIS.	Following	these	

and	others’	recommendations	(Adole	et	al.	2016;	Singh	&	Kushwaha	2016;	

Mendoza	et	al.	2017),	during	the	course	of	this	thesis	we	have	taken	steps	to	

develop	an	African	Phenology	Network	

(www.africanphenologynetwork.online)	to	facilitate	communication	and	

research	collaboration	between	scientists,	to	promote	standardised	

phenology	field	methods	throughout	the	continent	and	to	publicise	results	

and	publications	featuring	African	phenology.	Figure	7.1	shows	the	

phenology	sites	currently	contributing	to	the	metadata	inventory.	

	

Figure	7.1.	The	African	Phenology	Network	metadata	inventory.	
Screenshot	from	africanphenologynetwork.online	showing	the	sites	contributing	
to	the	metadata	inventory	as	of	December	2018.	

The	main	applications	of	this	research	theme	have	been	to	improve	the	

effectiveness	of	ANPNs	investment	in	the	Lopé	research	site	and	to	improve	

regional	and	pan-tropical	capacity	in	data	collection	and	analysis	so	that	

phenology	data	can	be	made	available	as	an	Essential	Biodiversity	Variable	to	

assess	biodiversity	change.	
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7.3 Tropical phenology in a time of change 

7.3.1 Summary of results 

Lopé’s	changing	weather	context	

Despite	central	Africa	being	a	major	convective	region	(Washington	et	al.	

2013)	and	playing	a	global	role	in	the	carbon	cycle	(Lewis	et	al.	2013),	

meteorological	data	for	the	region	are	notoriously	sparse	and	incomplete	In	

Chapter	4	we	present	a	previously	unpublished	34-year	record	of	rainfall	and	

temperature	from	Lopé	NP	and	shorter	periods	of	other	weather	variables	

(relative	humidity,	wind	speed,	solar	radiation,	aerosol	optical	depth).	We	

demonstrate	the	seasonal	context	at	Lopé,	which	is	characterised	by	two	

bright	rainy	seasons	and	a	cool,	cloudy,	long	dry	season	and	a	variable	short	

dry	season.	We	show	that	Lopé	NP	has	warmed	at	a	rate	of	0.23°C	per	decade	

(minimum	daily	temperature)	and	that	total	annual	precipitation	has	

reduced	at	a	rate	of	-52mm	per	decade.	We	also	show	that	interannual	

variation	in	rainfall	and	temperature	is	influenced	by	global	weather	

patterns;	El	Niño	conditions	increase	the	rainfall	contrasts	between	seasons	

while	development	of	the	Indian	Ocean	Dipole	increases	rainfall	during	the	

long	dry	season	and	development	of	the	Atlantic	cold	tongue	reduces	rainfall.		

Lopé’s	changing	biological	context	

In	chapter	5	we	selected	seven	canopy	species	(108	individual	trees)	from	

the	wider	Lopé	phenology	dataset	that	together	make	up	63%	crown	volume	

of	the	surrounding	forest.	Using	this	subset	we	test	for	community-wide	

seasonality	and	long-term	trends	in	leaf	phenology	and	evaluate	the	relative	

importance	of	light,	moisture,	temperature,	CO2	and	leaf	herbivory	as	drivers	

of	monthly	and	interannual	variation	in	tropical	forest	leaf	production.	We	

find	that	none	of	these	dominant	species	are	deciduous	with	all	maintaining	

leafy	canopies	throughout	the	dry	season.	Most	leaf	exchange	events	are	

incremental	and	new	leaf	development	is	suppressed	during	the	long	dry	

season.	Moisture,	light	and	leaf	herbivory	are	all	positive	predictors	of	new	
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leaf	production	at	seasonal	scales	while	the	decline	in	probability	of	leaf	flush	

since	1986	is	most	strongly	predicted	by	rising	atmospheric	CO2.		

7.3.2 Synthesis and applications 

Despite	the	lack	of	weather	observations	in	western	equatorial	Africa,	

climatological	trends	in	temperature	are	spatially	conservative	and	relatively	

well	understood	(Niang	et	al.	2014).	The	warming	trend	identified	at	Lopé	is	

as	expected	from	global	and	regional	climate	change	predictions	(Malhi	&	

Wright	2004;	Collins	2011;	Niang	et	al.	2014).	Precipitation	however	is	highly	

locally	variable	and	lack	of	observations	in	central	Africa	hampers	robust	

estimations	of	change	over	time	(Niang	et	al.	2014).	The	drying	trend	

established	for	Lopé	since	1984	lends	support	to	other	observations	(e.g.	

precipitation	declines	for	Gabon/Cameroon:	Malhi	&	Wright	2004	and	

reduced	river	Ogooué	flow:	Mahe	et	al.	2013)	in	a	context	of	opposing	model	

predictions	for	future	rainfall	in	this	region	(James	&	Washington	2013).	Our	

demonstration	of	the	influence	of	the	Atlantic	cold	tongue	on	rainfall	at	Lopé	

lends	weight	to	the	mechanisms	behind	the	“dry”	models	of	climate	change	

impacts	in	western	equatorial	Africa	(James	et	al.	2013).	

The	reduction	in	leaf	turnover	and	postulated	concurrent	increase	in	leaf	

lifespan	detected	among	the	dominant	canopy	species	at	Lopé	in	Chapter	5	is	

a	novel	result	and	has	not	previously	been	reported	in	any	tropical	forest.	

However	the	mechanism	for	the	proposed	correlation	with	CO2	is	unclear	

although	improved	water	use	efficiency	and	a	slower	decline	of	

photosynthetic	rate	are	possibilities	(Tricker	et	al.	2004;	Taylor	et	al.	2008).	

This	result	clearly	needs	further	investigation	to	understand	potential	

mechanistic	links.	Our	results	do	however	challenge	the	idea	that	the	

warming	and	drying	trend	witnessed	in	western	equatorial	Africa	will	

inevitably	lead	to	increased	deciduousness	(van	Schaik	et	al.	1993;	Fauset	et	

al.	2012;	Zhou	et	al.	2014).	Such	predictions	refer	to	species	turnover	in	the	

long-term	and	few	studies	have	assessed	the	likely	impacts	of	environmental	

change	within	the	lifetime	of	long-lived	canopy	trees	(which	can	be	several	

centuries;	Lindenmayer	&	Laurance	2017).The	implications	of	a	reduced	

supply	of	new	leaves	into	the	canopy	and	longer	leaf	longevity	among	the	leaf	
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cohort	for	climate	feedbacks	such	as	carbon	sequestration	and	solar	

absorption	are	unclear	and	need	investigated.	Older	leaves	accumulate	

damage	and	dirt	and	thus	eventually	have	lower	reflectance	(Toomey	et	al.	

2009),	however	reduced	leaf	turnover	also	serves	to	maintain	canopy	

structure,	potentially	contributing	to	the	increases	in	leaf	area	index	

witnessed	over	western	equatorial	Africa	(Zhu	et	al.	2016).	

Lopé,	and	the	evergreen-forested	region	of	WEA,	is	anomalous	within	the	

climatic	context	of	tropical	forests.	According	to	Neotropical	estimates	the	

habitat	with	~1500mm	rainfall	per	year	should	be	a	“dry”	forest	and	be	

expected	to	exhibit	deciduous	phenology	(Reich	1995).	A	recent	analysis	of	

irradiance	across	central	Africa	emphasised	the	unique	case	of	the	SW	Gabon	

region	(concurrent	with	the	Aucoumea	range)	with	its	light	deficient	climate	

(Philippon	et	al.	2019).	The	cloudiness	and	cool	temperatures	of	the	long	dry	

season	compensate	for	the	drought	and	reduce	evapotranspiration.	How	the	

plant	community	experiences	reduced	rainfall	over	time	may	also	be	

intercepted	by	the	cloudiness	of	the	site.	Further	information	is	needed	on	

future	projections	for	cloud	cover	and	aerosol	optical	depth	during	the	dry	

seasons	to	understand	the	ecological	implications	of	the	drying	trend	and	the	

potential	ecological	risks	associated	with	changes	to	dry	season	cloud	cover	

(Philippon	et	al.	2019).	

The	global	environment	is	changing	and	phenology	is	likely	to	be	an	

important	aspect	of	the	ecological	response.	How	tropical	forest	phenology	is	

responding	to	global	change	was	considered	sufficiently	important	for	me	to	

be	invited	to	present	an	early	version	of	this	analysis	at	a	side	event	at	the	

United	Nations	Framework	Convention	on	Climate	Change	(UNFCCC)	

Conference	of	Parties	(COP)	21	in	December	2015.	The	described	changes	in	

tropical	forest	leaf	turnover	are	likely	to	have	implications	for	human	and	

animal	users	of	the	forest,	forest	productivity	and	forest-climate	feedbacks.	

As	such	this	research	will	be	shared	with	both	the	academic	community	and	

relevant	parties	within	Gabon	(ANPN	and	the	Ministry	of	Water	and	Forests;	

Figure	1.5)	in	order	to	facilitate	its	inclusion	within	national	and	global	
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research	initiatives	that	influence	decision-making	in	governmental	policy	

and	multilateral	conventions	(such	as	the	UNFCCC).		

7.4 The social impacts of tropical phenology 

7.4.1 Summary of results 

Finally,	in	Chapter	6	we	assess	the	influence	of	raw	resource	availability	on	

successful	NTFP	commercialisation	for	integrated	conservation	and	

development.	We	combine	over	15	years’	scientific	monitoring	of	Baillonella	

toxisperma	(known	as	Moabi)	at	Lopé	National	Park	with	indigenous	

knowledge	of	Moabi	oil	producers	in	rural	Gabon,	to	describe	the	factors	that	

influence	Moabi	harvest	success	and	explore	subsequent	impacts	on	the	rest	

of	the	Moabi	oil	value	chain.	We	show	that	Moabi	fruit	production	is	highly	

variable	between	years	and	regions	although	the	climatic	or	biotic	factors	

that	influence	this	variability	are	currently	unknown.	We	consider	that	at	the	

present	time,	Moabi	harvest	is	limited	more	by	the	effort	involved	in	harvest	

and	oil	production	than	by	raw	resource	availability,	but	that	this	may	

change.	Movement	towards	centralised,	mechanised	oil	production	is	likely	

to	result	in	direct	purchase	of	raw	nuts	from	rural	producers	(as	has	

happened	in	commercialisation	of	Argan	and	Shea	oil;	Lybbert	et	al.	2002;	

Elias	&	Carney	2007)	and	release	some	of	the	current	limitations	on	fruit	

harvest.		

7.4.2 Synthesis and applications 

ANPN	has	engaged	with	NTFP	commercialisation	as	an	integrated	

conservation	and	development	outreach	tool	in	accordance	with	the	

government-wide	commitment	to	poverty	reduction.	However,	without	

careful	consideration,	NTFP	commercialisation	can	fail	both	its	objectives	of	

poverty	reduction	and	biodiversity	protection	(Arnold	&	Pérez	2001).	The	

contribution	that	NTFP	commercialization	can	make	to	poverty	alleviation	is	

strongly	influenced	by	market	forces	while	the	benefits	are	often	distributed	

unequally	within	rural	communities	(Heubach	et	al.	2011).	For	the	

biodiversity	protection	aspect	of	NTFP	commercialisation	to	be	successful,	
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the	NTFP	value	of	the	resource	needs	to	be	higher	than	its	timber	value.	

Extraction	of	Moabi	trees	for	timber	is	currently	temporarily	banned	in	

Gabon	(Iponga	et	al.	2018).	Successful	commercialisation	of	Moabi	oil	has	the	

potential	to	lend	greater	weight	to	this	legislation	and	encourage	popular	

support	for	this	policy.	

In	order	to	aid	successful	commercialisation	of	this	NTFP,	both	for	poverty	

reduction	and	biodiversity	protection	objectives,	the	variability	in	Moabi	fruit	

availability	needs	to	be	addressed	within	the	business	model	of	market	

developers.	We	recommend	that	current	Moabi	commercialisation	

partnerships	incorporate	either	an	insurance-type	scheme	to	compensate	

participants	or	develop	other	NTFPs	alongside	Moabi	to	form	a	diverse	

“safety-net”	and	reduce	economic	shocks	to	Moabi	oil	producers	when	Moabi	

fruits	are	scarce.	We	shared	an	initial	version	of	this	report	with	the	

Directorate	for	NTFPs	(Ministry	of	Water	and	Forests;	Figure	1.5)	in	Gabon	in	

February	2016	and	will	be	delivering	our	final	recommendations	to	both	

ANPN	and	Gabon	Boutique.	The	final	version	of	this	Chapter	will	be	made	

available	in	the	academic	literature	to	contribute	to	new	efforts	to	assess	the	

effectiveness	of	integrated	conservation	and	development	projects	(ICDPs)	in	

west	and	central	Africa	(e.g.	a	recent	assessment	of	ICDP	effectiveness	related	

to	wild	meat;	Wicander	&	Coad	2018).	

7.5 Pathways to impact from this thesis 

In	Figure	7.2	we	summarise	the	potential	and	realised	pathways	for	impact	

from	the	results	presented	in	this	thesis	as	discussed	in	the	previous	sections.	

There	are	four	main	areas	to	which	this	research	can	contribute:	ANPN	

Research	(1)	and	Integrated	Conservation	and	Development	(2),	global	

research	initiatives	and	networks	(3)	and	government	policy	and	multilateral	

conventions	(4).	ANPN	has	made	significant	investments	in	research	

including	their	long-term	commitment	to	the	SEGC	research	program	at	Lopé	

NP.	They	have	also	invested	in	integrated	conservation	and	development	

initiatives	such	as	their	partnership	with	Gabon	Boutique	to	develop	NTFP	

commercialisation	in	NP	buffer	zones.	In	Chapters	2,	3	and	6	we	have	made	

direct	recommendations	for	ways	in	which	these	prior	investments	can	be	
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made	most	effective	for	their	stated	aims.	The	remaining	two	areas	that	this	

research	contributes	to	are	interlinked	(Figure	1.7);	Global	research	

initiatives	and	research	networks	make	available	the	evidence	upon	which	

government	policy	and	multilateral	conventions	can	be	formed.	Of	particular	

relevance	to	the	work	presented	in	this	thesis	is	the	development	of	

Gabonese	government	policy	and	legislation	on	NTFP	use	and	protection	of	

tree	species	of	high	NTFP	value	(Iponga	et	al.	2018	)	as	well	as	multilateral	

agreements	on	climate	change	adaptation	(i.e.	UNFCCC),	fair	and	equitable	

sharing	of	the	benefits	of	genetic	resources	(i.e.	the	Nagoya	protocol	of	the	

Convention	on	Biological	Diversity,	CDB)	and	the	protection	of	threatened	

biodiversity	(i.e.	the	Global	Strategy	for	Plant	Conservation	and	the	Aichi	

Biodiversity	Targets	of	the	CBD).	

	

Figure	7.2.	Potential	and	realised	pathways	for	impact	from	the	work	
presented	in	this	thesis.	

7.6. General conclusions 

In	this	thesis	we	have	shown	that	regularly	cycling	and	synchronised	

phenology	is	common	in	tropical	tree	communities	despite	the	superficially	

Impact	opportuni-es	
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Made	recommenda-ons	for	and	implemented	updated	
sampling	strategy	for	Lopé	phenology	and	weather	programs.	
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phenology	monitoring	in	the	region.	
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“aseasonal”	tropical	environment	where	plant	growth	is	possible	throughout	

the	year.	However	the	presence	of	regular,	semi-annual	and	annual	cycles	in	

some	species	should	not	detract	from	the	diversity	in	reproductive	and	

leafing	strategies	found	among	the	tropical	tree	community,	with	irregular	

cycles,	cycles	other	than	12	months	and	unsynchronised	populations	all	

evident.	We	have	shown	that	this	biological	diversity	and	the	complexity	of	

the	ecosystem	require	long-term	(6+	years)	field	observations	to	overcome	

the	problems	of	poor	visibility,	rapidly	occurring	biological	events	and	

irregular	or	inconsistent	cycles.	

Our	evidence	supports	the	idea	that	western	equatorial	Africa	experiences	a	

strongly	seasonal	environment	with	predictable	changes	in	rainfall,	

temperature,	relative	humidity,	solar	radiation	and	wind	speed.	The	long	dry	

season	in	this	region	is	unique	both	within	central	Africa	and	the	global	

tropics	for	its	light	deficiency.	The	relative	importance	of	water	and	light	

availability	for	tropical	tree	phenology	has	been	a	question	of	debate	for	

some	time,	although	the	focus	thus	far	has	been	on	tropical	forest	regions	

where	water	and	light	availability	are	asynchronous	(Pau	et	al.	2010;	Wu	et	

al.	2017b;	Detto	et	al.	2018;	Wright	&	Calderón	2018).	The	co-occurrence	of	

moisture	and	light	at	Lopé	leads	to	an	interesting	scenario	where	the	plant	

community	“has	it	all”	in	the	bright,	rainy	seasons,	and	responds	by	

maximising	leaf	emergence	and	development	at	those	times	and	suppressing	

leaf	turnover	during	the	cloudy	long	dry	season.	While	we	can	see	that	moist	

and	light	conditions	are	important	for	the	timing	of	leaf	phenology	we	are	

limited	in	how	far	we	can	contribute	to	the	debate	on	their	relative	

importance	at	Lopé	as	the	factors	cannot	be	considered	independently	on	

seasonal	scales.			

Besides	seasonality,	the	climatic	regime	in	western	equatorial	Africa	is	

markedly	dry	and	light	deficient	throughout	the	year	compared	to	other	

evergreen	tropical	forests	and	thus	makes	an	important	case	study	to	

understand	the	survival	strategies	of	tropical	trees.		There	is	a	growing	

awareness	that	reduced	evapotranspiration	during	the	cloudy,	long	dry	

season	facilitates	the	very	presence	of	evergreen	forest	communities	in	this	
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region	despite	relatively	low	annual	rainfall	(Philippon	et	al.	2019).	If	trees	

are	able	to	access	enough	soil	moisture	for	their	photosynthetic	needs,	then	

the	long	dry	season	may	not	be	a	biological	drought	even	if	there	is	a	

climatological	water	deficit.	

Using	the	evidence	available	from	Lopé	we	have	also	shown	that	predictions	

of	increased	deciduousness	associated	with	long-term	warming	and	drying	in	

western	equatorial	Africa	are	not	yet	evident.	In	fact	we	show	that	dominant	

canopy	trees	at	Lopé	are	becoming	more	evergreen	with	fewer	deciduous	

events	since	1986.	Once	again	it	appears	that	the	long	dry	season	cloud	may	

be	playing	an	important	role	in	intercepting	the	effects	of	long-term	climate	

change	on	the	ecological	community.	Seasonally	reduced	evapotranspiration	

and	long-term	increases	in	CO2	availability	are	likely	to	be	reducing	water	

stress	by	improving	water	use	efficiency.	

	

7.7 Future work and final remarks  

Priorities	for	tropical	phenology	research	identified	at	a	recent	Royal	Society	

Theo	Murphy	meeting	on	tropical	phenology	(January	2018;	

https://royalsociety.org/science-events-and-lectures/2018/01/tropical-

phenology/)	were	to:	(1)	harmonise	data	collection	and	analytical	methods	

between	research	sites	to	facilitate	cross-site	comparisons,	(2)	develop	the	

interface	between	ground-observed	phenology	and	remote	sensing,	(3)	

invest	in	long-term	“super-sites”	(such	as	Lopé	NP)	in	order	to	maintain	

valuable	continuous	data	records	and	(4)	expand	data	observations	

throughout	the	tropics	using	new	research	approaches	such	as	citizen	

science	phenology	observations	and	phenocam	networks.		

We	have	already	made	progress	on	the	first	two	priorities	identified	above	by	

the	methodological	advances	presented	in	Chapters	2	and	3	and	the	canopy-

wide	analysis	of	leaf	turnover	in	Chapter	5,	which	is	compatible	with	remote	

sensing	observations	of	the	upper	canopy.	The	proposal	to	spatially	expand	

phenological	observations	outside	of	the	long-term	super-sites	lends	itself	

most	easily	to	our	NTFP	study	in	Chapter	6.	NTFPs	are	easily	recognized	and	
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of	great	cultural	importance	to	rural	and	urban	dwellers	in	the	region	making	

them	ideal	for	citizen	science	phenology	(“sticking	power”	described	in	

Chapter	3).	

An	obvious	avenue	for	future	work	resulting	from	this	thesis	is	to	design	a	

research	program	to	elucidate	the	mechanisms	for	the	CO2	effect	on	leaf	

turnover	demonstrated	in	Chapter	6.	We	have	proposed	a	traits	analysis	of	

historical	leaf	collections	in	the	region	(sourced	from	herbaria)	to	test	the	

effects	of	elevated	CO2	on	stomatal	density	(Beerling	&	Kelly	1997),	leaf	

thickness	and	number	of	chloroplasts	(Pritchard	et	al.	1999;	Tricker	et	al.	

2004).	Another	aspect	to	pursue	would	be	to	test	for	the	influence	of	

climatological	extremes	on	phenological	activity.	The	close	synchrony	

between	minimum	daily	temperature	and	solar	radiation	at	Lopé	prevented	

them	both	from	being	included	in	the	same	explanatory	model	for	leaf	

turnover	at	seasonal	scales	in	Chapter	6	and	we	chose	to	include	solar	

radiation	as	there	is	greater	evidence	in	the	literature	for	light	limitation	of	

new	leaf	production.	However	previous	analyses	at	Lopé	have	shown	that	

extreme	low	temperatures	(below	19°c)	are	a	trigger	for	flowering	for	some	

species	following	the	long	dry	season	(Tutin	&	Fernandez	1993).	A	predictive	

modeling	approach,	similar	to	Wright	and	Caldéron’s	recent	analysis	of	

phenological	cues	for	flowering	in	Panama	(2018),	could	be	used	to	test	for	

the	impacts	of	minimum	temperature	at	seasonal	and	interannual	scales.	

Finally,	it	will	be	of	great	value	to	test	the	influence	of	reduced	leaf	turnover	

and	the	warming	and	drying	trends	at	Lopé	on	the	reproductive	phenology	of	

tree	species	as	changes	to	flower	and	fruit	production	will	have	many	

cascading	impacts	for	forest	regeneration	and	also	the	animal	and	human	

users	of	the	forest.		

Phenology	has	the	potential	to	be	an	important	indicator	of	environmental	

change	(Rosenzweig	et	al.	2007;	Pereira	et	al.	2013)	and	an	early	warning	of	

cascading	effects	for	species’	interactions	within	ecosystems	(Butt	et	al.	

2015;	Morellato	et	al.	2016).	There	have	been	a	number	of	calls	for	more	

quantitative	assessment	of	the	impacts	of	climate	on	tropical	phenology	(Butt	

et	al.	2015;	Mendoza	et	al.	2017)	and	to	correct	the	temperate	(Northern	
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hemisphere)	bias	of	current	climate	change	studies	(Feeley	et	al.	2017).	This	

thesis	answers	these	calls	by	making	available,	for	the	first	time	in	over	two	

decades,	a	rare	long-term	tropical	phenology	record.	The	work	presented	

here	also	provides	novel	analytical	methods	and	insights	into	tropical	forest	

function	that	have	regional	and	global	importance	for	forest	regeneration	

and	productivity,	resource	availability	for	human	and	animal	users	of	the	

forest	and	climate-vegetation	feedbacks.	
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Appendix A: Power analysis of simulated data to 

show the impact of null hypothesis choice for 

detecting periodicity. 

Two	credible	null	hypotheses	with	which	to	compare	a	Fourier	spectral	

estimate	are;	(1)	the	null	continuum	of	the	spectrum	–	an	extreme	smooth	of	

the	periodogram	such	that	only	the	underlying	shape	remains	-	and	(2)	the	

white	noise	spectrum	–	the	mean	spectral	value	(Meko	2015)	(Figure	A1).			

Figure	A1.	Null	hypothesis	choice.	a)	Time	series	plot	shows	flowering	canopy	
scores	each	month	from	1987	to	2015	for	an	individual	tree.	b)	and	c)	show	
smoothed	periodograms	(Daniell	filter	spans	[7	9])	for	these	flowering	scores	
(green	line)	for	which	a	dominant	peak	is	obvious	at	0.083	cycles	per	month	
(wavelength=12	months).	95%	confidence	intervals	(grey	shades)	for	the	
smoothed	spectrum	are	used	to	test	the	null	hypotheses	that	the	dominant	peak	
(the	frequency	with	the	highest	spectral	estimate,	represented	by	green	dots)	of	
the	periodogram	is	not	different	from	b)	a	“null	continuum”	where	the	
periodogram	is	smoothed	using	extreme	spans	(Daniell	filter	spans	[75	79])	such	
that	only	the	underlying	shape	of	the	spectrum	remains	(black	dashed	line)	or	c)	
“white	noise”,	where	all	variation	in	the	spectrum	is	apportioned	equally	to	each	
frequency	(black	dashed	line).	
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We	did	a	power	analysis	to	show	the	impact	of	null	hypothesis	choice	for	

detecting	periodicity	using	time	series	data	simulated	to	represent	a	

repeating	12-month	flowering	cycle	with	varying	levels	of	noise	(regularity	of	

the	cycle	and	observation	uncertainty).	We	simulated	10,000	individual	time	

series	representing	a	10-year	long,	annually	repeating,	flowering	cycle	with	a	

peak	month	of	June	with	two	key	variables	allowed	to	vary	between	

simulated	“individuals”;	the	regularity	of	the	peak	month	(to	represent	

process	uncertainty)	and	the	detectability	of	flowering	events	(to	represent	

observation	uncertainty).	For	each	year	of	data,	we	generated	monthly	scores	

of	zero	(no-flowering)	and	a	flowering	peak	of	three-months	duration	with	

scores	randomly	chosen	from	a	distribution	of	canopy	scores	similar	to	that	

found	in	our	long-term	field	fata	from	Lopé	(see	code	in	supporting	

information	for	more	details).	Regularity	was	determined	by	choosing	the	

location	of	the	flowering	peak	each	year	from	a	truncated	normal	distribution	

(2:11)	with	mean	6	and	standard	deviation	randomly	selected	from	0.1	to	8	

(standard	deviation	was	consistent	for	each	“individual”	but	allowed	to	vary	

between	individuals).	Once	the	time	series	was	constructed,	detectability	was	

determined	by	replacing	a	certain	percentage	of	randomly	chosen	positive	

flowering	scores	with	zeros	(from	0	–	80%).	Examples	of	these	simulated	

data	are	shown	in	Figure	A2.	
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Figure	A2.	Example	simulated	data	in	six	different	noise	scenarios.	In	each	
scenario,	peak	month	each	year	was	chosen	from	a	truncated	normal	
distributions	with	mean	six	and	standard	deviation	0.1,	three	or	six,	and	positive	
flowering	scores	randomly	replaced	with	zeros	at	a	rate	of	0,	40	or	80%.	

	

We	prefer	null	hypothesis	testing	using	a	null	continuum	spectrum	rather	

than	a	white	noise	spectrum	as	it	results	in	fewer	false	positive	results	

(detection	of	significant	cycles	outside	of	expected	frequency	range)	at	

medium	to	high	noise	scenarios	(e.g.	greater	than	2SD	around	peak	flowering	

month),	which	are	more	likely	to	be	representative	of	empirical	data	than	the	

highly	regular	simulated	data,	however	this	also	results	in	a	loss	of	sensitivity	

to	some	cycles	(Figure	A3).			
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Figure	A6.	Power	analysis	of	simulated	data	to	show	the	impact	of	null	
hypothesis	choice	and	length	and	noise	of	time	series	for	detecting	periodicity.	
Data	simulated	to	represent	a	10-year	time	series	of	a	repeating	12-month	
flowering	cycle	with	varying	levels	of	noise.		The	shading	of	each	matrix	plot	
shows	the	likelihood	of	detecting	a	dominant	peak	using	Fourier	analysis	within	
the	expected	wavelength	interval	and	significant	when	compared	to	(a)	“null	
continuum”	and	(b)	“white	noise”	null	hypotheses	and	the	likelihood	of	detecting	
a	dominant	peak	falling	outside	of	the	expected	wavelength	band	and	significant	
when	compared	to		(c)	“null	continuum”	and	(d)	“white	noise”	null	hypotheses.	

	 	

(b) 

II. Decreasing detectability (proportion of 
flowering scores replaced with zeros) 
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Appendix B: Demonstration of Fourier analysis 

for three case study species and comparison 

with other common methods for quantifying 

flowering phenology. 

Demonstration	of	Fourier	analysis	for	three	case	study	species		

Here	we	show	Fourier	outputs	in	detail	for	three	different	species;	Antidesma	

vogelianum	(n=21),	Pentadesma	butyracea	(n=14)	and	Duboscia.	macrocarpa	

(n=11).	Researchers	from	Lopé	National	Park,	have	observed	individual	tree	

canopies,	using	binoculars	from	the	ground,	at	the	beginning	of	each	month	

since	1986	and	noted	the	proportion	of	the	canopy	covered	by	flowers,	

recorded	as	scores	from	0	to	4	(Tutin	&	Fernandez	1993;	Tutin	&	White	

1998).	Initial	observation	of	the	mean	proportions	of	individuals	in	flower	

each	month	over	the	years	shows	that	flowers	appear	on	a	six-monthly	cycle	

for	A.	vogelianum,	peaking	in	June	and	December	each	year,	on	an	annual	(or	

multiple	of	annual)	cycle	for	P.	butyracea	peaking	between	May	-	June	each	

year	and	can	occur	in	any	month	in	a	non-synchronised	manner	for	D.	

macrocarpa	(Figure	B1	A,	D	and	G).	To	further	describe	these	cycles	and	

extract	quantitative	indicators	we	ran	Fourier	analysis	and	a	confidence	test	

of	the	dominant	spectral	estimate	for	each	individual.		To	estimate	the	

relative	phase	of	the	dominant	cycle	for	each	individual	we	ran	co-Fourier	

analysis	of	the	data	against	a	simulated	time	series	of	the	same	frequency,	

with	phase	0,	by	convention	for	our	data	peaking	on	Jan	1st	1986.	
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Figure	B1.	Fourier	analysis	of	three	tropical	trees	species.		A.	vogelianum	(n=21),	
P.	butyracea		(n=14)	and	D.	macrocarpa	(n=11).	Plots	(a),	(d)	and	(g)	show	
circular	boxplots	of	the	proportion	of	individuals	in	flower	each	month	between	
years.	Coloured	fill	represents	mean	canopy	score	for	flowering	between	
individuals	and	years.	Plots	(b),	(e)	and	(h)	show	the	length	of	each	individual	
time	series,	between	1986	and	2016.	Plots	(c),	(e)	and	(i)	show	smoothed	
standardised	periodograms	for	each	individual	(coloured	according	to	duration	
plot).	Dominant	peaks	in	the	spectral	estimates	(s(f))	indicate	cycles	in	the	data.		
Stars	next	to	the	duration	plots	indicate	a	significant	dominant	peak	for	that	
individual	when	compared	to	a	null	hypothesis	of	no	periodicity.	
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Table	B1.	Quantitative	descriptors	of	flowering	cycles	derived	from	Fourier	analysis	for	
three	species.	

	

The	common	dominant	flowering	cycle	for	A.	vogelianum	individuals	was	6	

months	long,	synchronised	between	individuals	(SD	peak	month	=	0.2	

months)	peaking	twice	each	calendar	year	in	late	May-	early	June	and	late	

November	–	early	December	(Table	B1).	

The	common	dominant	flowering	cycle	for	P.	butyracea	individuals	was	12	

months	long,	synchronised	between	individuals	(SD	peak	month	=	0.46	

months)	peaking	once	each	calendar	year	in	mid-May	(Table	B1).	

The	common	dominant	flowering	cycle	for	D.	macrocarpa	individuals	was	18	

months	long	and	not	well	synchronised	between	individuals	(SD	peak	month	

=	4.8	months).	In	this	context,	although	mean	peak	months	for	flowering	are	

possible	to	calculate	for	the	population	(mid	March	and	mid	September	in	

alternating	calendar	years),	they	have	little	biological	meaning	(Table	B1).	

	 	

Quantitative	description	of	flowering	cycles	 A.	vogelianum	 P.	butyracea	 D.	macrocarpa		

Number	of	individuals	in	sample	 21	 14	 11	
Number	of	individuals	with	significant	
dominant	cycles	

19	 12	 11	

Mean	cycle	length	+	SD	(months)	 6	+	0	 12	+	0.25	 17.9	+	0.99	
Modal	cycle	length	(months)	 6	 12	 18	
Cycle	length	of	simulated	cosine	curve	for	co-
Fourier	analysis	(months)	

6	 12	 18	

Mean	phase	difference	to	simulated	cosine	
curve	(radians)	

-1.26	 2.27	 0.94	

Timing	of	peak	events	(months	since	Jan	1st)	 4.8	
10.8	

4.34	 2.69	
8.69	

Timing	of	peak	events	(calendar	month)	 late	May	
late	November	

mid-May	 mid-March	
mid-September	

Synchronicity:	SD	of	mean	phase	difference	
(radians)	

0.21	 0.24	 1.68	

Synchronicity:	SD	of	mean	phase	difference	
(months)	

0.20	 0.46	 4.8	
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Comparison	of	Fourier	with	other	common	methods	for	quantifying	

flowering	phenology	

We	identified	four	key	questions	commonly	asked	when	quantifying	seasonal	

phenology	activity;	1)	Is	there	a	regular	cycle?	2)	How	long	is	the	cycle?	3)	

What	is	the	peak	timing	of	the	phenology	event?	4)	How	synchronised	are	the	

phenology	events?	We	asked	these	questions	using	four	different	methods	

(graphical	representation	of	time	series	data,	circular	statistics	on	both	

species	summaries	and	individual	data	records,	autocorrelation	analyses	and	

GAMs;	Tables	B2-4	and	Figures	B2-4)	commonly	used	in	the	literature	to	

quantify	seasonal	characteristics	of	phenology	data.	We	contrasted	the	

outputs	of	these	methods	alongside	those	derived	from	Fourier	analyses	for	

phenology	as	we	present	it	in	this	paper.	This	allows	comparison	of	the	

different	methods’	abilities	to	provide	information	and	the	nature	of	that	

information	–	for	example,	is	it	quantitative	and	inclusive	of	uncertainty	or	

variance?	

We	find	that	Fourier	analysis	overcomes	the	difficulties	associated	with	

circular	statistics	regarding	non-annual	cycles.	In	the	literature,	the	solution	

given	for	the	handling	of	non-annual	species	within	circular	statistics	is	to	

use	autocorrelation	analyses	to	fist	identify	non-annual	cycles	and	then	to	

exclude	those	species	form	further	analysis	(Zimmerman	et	al.	2007)	or	to	

analyse	reproductive	events	separately	(Wright	et	al.	1999).	In	comparison,	

Fourier	analysis	is	flexible	to	non-annual	species,	as	demonstrated	in	the	

where	the	cycle	strength,	wavelength,	phase	and	synchronicity	is	calculated	

for	species	A.	voglieanum	and	D.	macrocarpa,	which	have	a	6-month	and	an	

18-month	cycles	respectively.	Fourier	analysis,	as	we	present	it,	also	

provides	a	more	comprehensive	suite	of	information	about	the	seasonal	

cycle,	including	both	measures	of	variance	and	confidence.	The	sinusoidal	

basis	of	Fourier	assumes	regular	phenological	activity,	and	as	such	the	

method	compares	negatively	to	some	other	methods	when	information	on	

the	variation	in	phenophase	intensity	between	months	or	years	is	required.	It	

is	also	worth	noting	the	power	of	such	analysis	at	the	level	of	the	individual.	
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It	is	only	with	Fourier	analysis	at	the	level	of	the	individual	that	the	18-month	

unsynchronized	cycle	of	D.	macrocarpa	trees	can	be	identified.
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Table	B2.	Methods	comparison	for	quantifying	flowering	phenology	of	Antidesma	vogelianum.		N	=	21	individuals,	mean	time	
series	length	=	232	+	94	months		-	see	Figure	B2	for	illustrations.	

	

	 	

Graphical	
representa.on	
(individual)	

Circular	sta.s.cs	
(species)	

Circular	sta.s.cs	
(individuals)	

Autocorrela.on	
analysis	(species)	

GAM	annual	
smooth	(species)	

Fourier	(species)	 Fourier	
(individuals)	

Figure	2	 A	 B	 C	 D	 E	 F	

Cy
cl
e	
re
gu
la
rit
y	
	

Regular.	Visual	
inspec,on	of	each	
,me	series,	cycles	
appear	regular.	

Regular	cycle.	Visual	
inspec,on	of	circular	
raw	data	graph,	cycle	
appears	to	be	regular	

Regular	cycle.	Visual	
inspec,on	of	circular	
raw	data	graphs,	
cycles	appear	to	be	
regular	

Regular	cycle.	There	
are	significant	lags.	

Regular.	Visual	
inspec,on	of	annual	
smooth,	peaks	
appear	to	be	
regularly	spaced.	

Significant	regular	
cycle.	Spectral	
es,mate	for	
dominant	cycle=	
0.03.	

Significant	regular	
cycle	for	19	/21	
individuals.	Mean	
normalised	s(f)	for	
dominant	cycle	=	5.6	
+		1.1	SD.	

Cy
cl
e	
le
ng
th
	

Sub-annual	cycle	of	
6	months	long.	
Visual	inspec,on	of	
each	,me	series,	
cycles	appear	to	be	
around	6	months	
long	

Cycle	neither	
unimodal	nor	
con.nuous.	
Length	of	mean	
vector=0.14;	Raleigh	
test	of	uniformity	
p=0.96;	Rao’s	spacing	
test	of	uniformity	
p<0.001	

Unclear.	High	
dispersion	of	values	
for	all	individuals,	
mean	length	of	mean	
vector	=	0.14	+	0.07.	

Subannual	cycle	in	
flower	produc.on	as	
a	species.	Significant	
lag	at	6	months.	

Sub-annual	cycle.	
Visual	inspec,on	of	
annual	smooth,	
appear	to	be	two	
significant	peaks	a	
year,	6	months	apart.	

Sub-annual	cycle	of	
6	months	long.	
Dominant	frequency	
=	0.167	cycles	per	
month	(Dominant	
wavelength	=	6	
months)	

Sub-annual	cycle	of	
6	months	long.	
Mean	of	all	
significant	dominant	
cycles	=	0.167	+	0	SD	
cycles	per	month	
(Dominant	
wavelength	=	6	
months).	

Pe
ak
	.
m
in
g	

May-June	and	
December	

Unclear.	Angle	of	
mean	vector	=	1.99	
radians	(3.8	months	
since	Jan	1st),	but	
high	dispersion	of	
values,	see	cycle	
length.	

Unclear.	Mean	angle	
of	mean	vector	=	2.2	
radians	(4.2	months	
since	Jan	1st)	,	but	
high	dispersion	of	
values,	see	cycle	
length.	

NA	 Jun	and	Dec.	Highest	
values	for	annual	
smooth	found	in	
June	and	December.	

Repea.ng	cycle	
peaking	every	6	
months	in	late	Jun	
and	late	Dec	.	Phase	
=	-0.14	radians	
(months	c(5.9,	11.9))	

Repea.ng	cycle	
every	6	months	in		
late	May	and	late	
Nov.	Mean	phase	=	
-1.26	radians	
(months	c(4.8,	10.8))	

Sy
nc
hr
on

y	 Synchronised.	Visual	
inspec,on	of	all	,me	
series	show	cycle	to	
be	synchronised	

NA	 Not	well	
synchronised.	SD	of	
mean	angle	of	mean	
vector	=	1.02	radians	
(1.95	months)	

NA	 NA	 NA	 Well	synchronised.	
SD	of	mean	phase	=	
0.21	radians	(0.20	
months)	
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Figure	B2.	Methods	comparison	for	quantifying	flowering	phenology	of	Antidesma	vogelianum,	N	=	21	individuals,	mean	time	series	length	=	
232	+	94	months		-	see	Table	B2.	

	

	 	

	

A.	Time	series	graphs	(individuals)	 B.	Raw	circular	data	graph	 C.	Autocorrela<on	analysis	(species)	

D.	GAM	annual	smooth	(species)	 E.	Fourier	for	species	(individuals	combined)	 F.	Fourier	for	individuals	
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Table	B3.	Methods	comparison	for	quantifying	flowering	phenology	of	Pentadesma	butyracea.	N=14	individuals,	mean	time	series	length	=	
274	+	92	months	-	see	Figure	B3	for	illustrations.	

	

	 	

Time	series	
(individual)	

Circular	sta3s3cs	
(species)	

Circular	sta3s3cs	
(individuals)	

Autocorrela3on	
analysis	(species)	

GAM	annual	
smooth	(species)	

Fourier	(species)	 Fourier	
(individuals)	

Figure	3	 A	 B	 C	 D	 E	 F	

C
y
cl
e
	r
e
g
u
la
ri
ty
		

Regular.	Visual	
inspec,on	of	each	
,me	series,	cycles	
appear	regular.	

Unclear.	Visual	
inspec,on	of	raw	
circular	data	graph,	
unclear	how	regular	
cycle	is.	

Regular	cycle.	Visual	
inspec,on	of	circular	
raw	data	graphs,	
cycles	appear	to	be	
regular	

Regular	cycle.	There	
are	significant	lags.	

Unclear.	Visual	
inspec,on	of	annual	
smooth,	one	broad	
peak	per	pear.	

Significant	regular	

cycle.	Spectral	
es,mate	for	
dominant	cycle=	
0.07.	

Significant	regular	
cycle	for	12/14	

individuals.	Mean	
normalised	s(f)	for	
dominant	cycle	=	6.7	
+		2.2	SD.	

C
y
cl
e
	l
e
n
g
th
	

Annual	cycle.	Visual	
inspec,on	of	each	
,me	series,	cycles	
appear	to	be	around	
12	months	long,	one	
peak	per	year.	

Cycle	is	unimodal	

and	not	con3nuous.	

Length	of	mean	
vector=0.59;	Raleigh	
test	of	uniformity	
p<0.001;	Rao’s	
spacing	test	of	
uniformity	p<0.05	

Cycle	is	unimodal.	

Low	dispersion	of	
values	for	all	
individuals,	mean	
length	of	mean	
vector	=	0.46	+	0.09.	

Annual	cycle	in	

flower	produc3on	as	

a	species.	Strongest	
significant	lag	at	12	
months.	

Annual	cycle.	Visual	
inspec,on	of	annual	
smooth,	appears	to	
be	one	significant	
peak	a	year.	

Annual	cycle.	
Dominant	frequency	
=	0.083	cycles	per	
month	(1	cycle	per	
year).	Dominant	
wavelength=	12	
months.	

Annual	cycle.	Mean	
of	all	significant	
dominant	cycles	=	
0.083	+	0.0	SD	cycles	
per	month	(1	cycle	
per	year).	Dominant	
wavelength	=	12	+	
0.25	SD	months.	

P
e
a
k
	3
m
in
g
	

May-June	 Mid-May.	Angle	of	
mean	vector	=	2.41	
radians	(month	5.6).	

Mid-May.	Mean	
angle	of	mean	vector	
=	2.88	radians	(5.5	
months).	

NA	 Mid-May.	Highest	
values	for	annual	
smooth	found	in	
May.	

Repea3ng	cycle	

peaking	every	12	

months	in	Mid-June.	

Phase	=	2.82	radians	
(month	5.4	months)	

Repea3ng	cycle	

peaking	every	12	

months	in	mid-May.	

Mean	phase	=	2.27	
radians	(month	4.3)	

S
y
n
ch
ro
n
y
	 Synchronised.	Visual	

inspec,on	of	all	,me	
series,	cycles	appear	
to	be	synchronised	

NA	 Well	synchronised.	

SD	of	mean	angle	of	
mean	vector	=	0.27	
radians	(0.52	
months)	

NA	 NA	 NA	 Well	synchronised.	

SD	of	mean	phase	=	
0.24	radians	(0.46	
months)	
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Figure	B3.	Methods	comparison	for	quantifying	flowering	phenology	of	Pentadesma	butyracea.N=14	individuals,	mean	time	series	length	=	
274	+	92	months	-	see	Table	SB3.	

	
	 	

A.	Time	series	graphs	(individuals)	 B.	Raw	circular	data	graph	 C.	Autocorrela<on	analysis	(species)	

D.	GAM	annual	smooth	(species)	 E.	Fourier	for	species	(individuals	combined)	 F.	Fourier	for	individuals	
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Table	B4.	Methods	comparison	for	quantifying	flowering	phenology	of	Duboscia	macrocarpa.	N=11	individuals,	mean	time	series	length	=		
313	+	66	months	-	see	Figure	B4	for	illustrations.		

	
	 	

Time	series	
(individual)	

Circular	sta3s3cs	
(species)	

Circular	sta3s3cs	
(individuals)	

Autocorrela3on	
analysis	(species)	

GAM	annual	
smooth	(species)	

Fourier	(species)	 Fourier	
(individuals)	

Figure	4	 A	 B	 C	 D	 E	 F	

Cy
cl
e	
re
gu
la
rit
y	
	

Unclear.	Visual	
inspec,on	of	each	
,me	series,	cycles	
difficult	to	
differen,ate.	

Unclear.	Visual	
inspec,on	of	raw	
circular	data	graph,	
unclear	how	regular	
cycle	is.	

Unclear.		 Regular	cycle.	There	
are	significant	lags.	

Irregular.	Visual	
inspec,on	of	annual	
smooth,	two	broad	
peaks	per	pear	of	
different	intensity.	

Significant	regular	
cycle.	Spectral	
es,mate	for	
dominant	cycle=	
0.05.	

Significant	regular	
cycle	for	11/11	
individuals.	Mean	
normalised	s(f)	for	
dominant	cycle	=	5.9	
+		1.4	SD.	

Cy
cl
e	
le
ng
th
	

Unclear.	Visual	
inspec,on	of	each	
,me	series,	cycles	
unclear	but	appear	
to	be	supra-annual.	

Cycle	is	neither	
uniform	nor	
unimodal.	
Length	of	mean	
vector=0.26;	Raleigh	
test	of	uniformity	
p=0.01;	Rao’s	spacing	
test	of	uniformity	
p<0.05	

Cycle	is	neither	
uniform	nor	
unimodal.	High	
dispersion	of	values	
for	all	individuals,	
mean	length	of	mean	
vector	=	0.16	+	0.07.	

18-month	cycle	as	a	
species.	Strongest	
significant	lag	at	18	
months,	also	
significant	lag	at	6	
months.	

6-month	cycle	as	a	
species.	Visual	
inspec,on	of	annual	
smooth,	appears	to	
be	two	significant	
peaks	a	year.	

6-month	cycle	as	a	
species.	Dominant	
frequency	=	0.167	
cycles	per	month	(2	
cycles	per	year).	
Dominant	
wavelength=	6	
months.	Another	
strong	peak	
observed	at	18	
months.	

18-month	cycle.	
Mean	of	all	
significant	dominant	
cycles	=	0.056	+	0.0	
SD	cycles	per	month	
(1	cycle	per	year).	
Dominant	
wavelength	=	17.9	+	
1.0	SD	months.	

Pe
ak
	3
m
in
g	

May-June	and	Dec-
Jan.	PaZern	
apparent	but	much	
varia,on.	

No	peak	3ming.	
Angle	of	mean	vector	
=	2.53	radians	
(month	4.8),	but	
length	of	mean	
vector	is	very	low.	

No	peak	3ming.	
Mean	angle	of	mean	
vector	=	2.28	radians	
(month	4.35),	but	
see	length	of	mean	
vector	is	very	low.	

NA	 May.-Jun	and	Dec-
Jan.	Highest	values	
for	annual	smooth	
found	in	May-Jun	
and	Dec-Jan.	

Repea3ng	cycle	
peaking	every	6	
months	in	mid-
March	and	mid-Sep	.	
Phase	=	0.85	radians	
(months	c(2.5,	8.5))	

Repea3ng	cycle	
peaking	every	18	
months	on	average	
in	mid-March	and	
mid-Sep	.	Mean	
phase	=	0.9	radians	
(months	c(2.7,	8.7))	

Sy
nc
hr
on

y	 Unclear.	Cycles	
difficult	to	
differen,ate	but	
perhaps	some	loose	
synchronisa,on.	

NA	 Not	well	
synchronised.	SD	of	
mean	angle	of	mean	
vector	=	0.72	radians	
(1.37	months)	

NA	 NA	 NA	 Not	synchronised.	
SD	of	mean	phase	=	
1.68	radians	(4.8	
months)	
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Figure	B4.	Methods	comparison	for	quantifying	flowering	phenology	of	Duboscia	macrocarpa.	N=11	individuals,	mean	time	series	length	=		
313	+	66	months	-	see	Figure	B4	for	illustrations.	

A.	Time	series	graphs	(individuals)	 B.	Raw	circular	data	graph	 C.	Autocorrela<on	analysis	(species)	

D.	GAM	annual	smooth	(species)	 E.	Fourier	for	species	(individuals	combined)	 F.	Fourier	for	individuals	
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Appendix C: Preparing Lopé weather data 

Rainfall	

Rainfall	has	been	recorded	using	two	pieces	of	equipment	at	Lopé	NP:	a	

manual	rain	gauge	(total	precipitation	for	the	preceding	24	hour	period	

recorded	at	8am	each	day)	and	a	VantagePro	weather	station	(precipitation	

recorded	every	30	mins)	(Figure	C1).		

	

Figure	C1.	Time	series	plot	of	rainfall	observations	at	Lopé	NP,	1984-2018.	
Coloured	dots	show	unprojected	daily	observations	from	both	the	rain	gauge	
and	the	VantagePro	weather	station.	

	

First,	we	adjusted	the	24-hr	period	for	the	VantagePro	data	to	begin	and	end	

at	8am	to	match	the	rain	gauge.	When	we	compared	simultaneous	

measurements	(2012-2014)	we	found	that	the	weather	station	consistently	

underestimated	rainfall	compared	to	the	rain	gauge	(Figure	C2).		
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Figure	C2.	Comparison	of	simultaneous	non-zero	rainfall	observations	from	the	
weather	station	and	the	rain	gauge	at	Lopé	NP,	2012-2014.	The	dotted	line	
indicates	the	expected	1:1	relationship.	The	solid	line	indicates	the	model	
prediction.	

	

To	standardise	the	data	record	we	used	rain	gauge-rainfall	to	predict	

weather	station-rainfall	for	all	simultaneous	non-zero	daily	records	within	a	

general	linear	model	(GLM,	family=Poisson;	Table	C1).		

Table	C1	Estimates	from	a	general	linear	model	(family=Poisson)	to	standardise	Lopé	
rainfall	observations.	Rainfall	observations	from	the	weather	station	(VantagePro)	
were	used	to	predict	rain-gauge	rainfall	for	all	simultaneous	non-zero	observations.	

Predictor	 Estimate	 SE	 T	value	 P	value	

Intercept	 0.86	 0.42	 2.05	 <0.05	

Rainfall	(rain	gauge)	 0.82	 0.02	 35.67	 <0.0001	

	

We	extracted	the	intercept	and	slope	from	the	GLM	to	reproject	the	weather	

station	data	and	calculated	mean	daily	rainfall	for	each	day	with	more	than	

one	record.	Between	1st	January	1984	and	31st	December	2017	there	were	

369	days	with	no	rainfall	observations	(3%	total	number	of	days).	Where	
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possible	we	filled	these	gaps	using	the	10-day	running	mean	for	the	time-

series,	but	308	missing	daily	observations	remained	in	three	blocks:	2010-

09-16	-	2010-12-26	(lost	rain	gauge	data),	2013-10-31	-	2013-11-30	and	

2014-02-02		-	2014-07-26	(lost	VantagePro	data	due	to	lightning	strike	on	

equipment).	For	further	analyses	requiring	complete	monthly	timeseries	

(Fourier	and	Wavelet	methods)	we	filled	missing	months	using	the	mean	

value	for	corresponding	calendar	month	(Figure	C3).	All	data	selection	

procedures	described	above	are	shown	as	a	flow	chart	in	Figure	C4.	

	

Figure	C3.	Time	series	plot	of	monthly	rainfall	at	Lopé	NP,	1984-2018.	The	line	
shows	the	calibrated	data	filled	with	the	10-day	running	mean	to	give	total	
monthly	rainfall.	Red	dots	indicate	missing	months,	which	were	filled	using	the	
mean	value	for	the	corresponding	calendar	month.	
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Figure	C4	Diagram	to	show	data	selection	for	rainfall	analyses.	Bold	boxes	
indicate	data	packages.	Grey	dashed	boxes	indicate	processes.	Blue	boxes	
indicate	analyses.	

	 	

A.	Lopé	con*nuous	rainfall:	
•  VantagePro	Rain	guage	

B.	Lopé	daily	rainfall:	
•  Manual	rain	gauge	

Calculate	max.	and	min.	
temp.	in	each	24-hr	period	

C.	Lopé	daily	rainfall	*me	series	for	each	source	(12612	obs.).	

D.	Lopé	daily	rainfall	*me	series	(12050	obs.).	

E.	Lopé	monthly	rainfall	(397	obs.)	

F.	Complete	Lopé	monthly	rainfall	(408	obs.).	

Periodicity	analyses	
(Fourier	and	Wavelet)	

Seasonality	analyses	
(DOY,	10-day	running	and	

Monthly	means)	

Trend	analysis	

Analysis	of	interannual	
variaDon	and	influence	of	

the	oceans	

Calibrate	data	sources	
(linear	model)	and	calculate	
mean	daily	max	and	min.	

temp	for	each	day	

Calculate	monthly	rainfall	

Fill	missing	months	using	
mean	value	for	

corresponding	calendar	
month	

Fill	gaps	using	10-day	
running	mean	

D.	Lopé	daily	rainfall	*me	series	(12419	obs.).	
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Temperature	

Maximum	and	minimum	daily	temperatures	have	been	recorded	at	Lopé	

using	six	different	pieces	of	equipment	at	the	two	sites	from	1984	to	the	

present	(Figure	C5).		

	

Figure	C5	Time	series	plots	of	maximum	(A)	and	minimum	(B)	daily	
temperature	observations	at	Lopé	NP,	1984-2018.	Coloured	dots	show	the	
unprojected	daily	observations	from	both	sites	(forest	and	savanna)	using	
different	equipment.	The	black	line	shows	monthly	mean	minimum	daily	
temperature	from	the	Berkeley	dataset.	

	

The	manual	max/min	thermometer	showed	the	highest	and	lowest	

temperature	since	last	reset	and	was	recorded	at	irregular	intervals.	In	the	

case	of	multi-day	intervals	between	data	observations	it	is	impossible	to	

know	which	day	temperature	extremes	occurred	on.	We	therefore	assigned	

the	recorded	observations	to	the	mid-date	between	the	current	and	previous	

observations	for	all	multiday	intervals	outside	of	three	major	breaks	where	

the	equipment	was	out	of	use:	1998/07	-	1999/01,	2001/03	-	2001/08	and	

2001/08	-	2006/06.	The	digital	max/min	thermometer	showed	the	highest	
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and	lowest	temperatures	of	the	previous	24hrs	(usually	recorded	between	8	

and	9am).		The	automatic	units	collected	data	in	intervals	up	to	30	minutes	

long.	We	calculated	minimum	and	maximum	daily	temperature	for	the	

continuous	data	records	using	a	24hr	period	from	8am-8am	to	match	the	

thermometer	data.	

The	three	major	challenges	for	using	this	Lopé	temperature	record	for	long-

term	analyses	are	1)	the	impacts	of	solar	radiation	during	the	day	on	

maximum	daily	air	temperature	measurements,	2)	lack	of	simultaneous	

recording	pre-2007	to	quantify	the	differing	sensitivities	of	recording	

equipment	(e.g.	to	sunlight)	and	3)	missing	data.	We	describe	here	(and	in	

diagram	form	in	Figure	C8)	how	we	addressed	these	challenges.		

Maximum	daily	temperature	is	usually	the	highest	temperature	recorded	

during	daylight	hours	and	is	strongly	influenced	by	surface	solar	radiation,	

while	minimum	daily	temperature	usually	occurs	at	night	and	is	thus	less	

impacted	by	irradiance	effects	(Bristow	&	Campbell	1984;	Dai	et	al.	1999).	

While	various	attempts	were	made	to	shade	the	recording	equipment	at	

Lopé,	it	has	since	been	shown	that	specialised	solar	radiation	shields	are	

necessary	for	accurate	recording	of	maximum	daily	air	temperature	(Jenkins	

2014;	Bell	et	al.	2015;	da	Cunha	2015).	However	recent	experience	at	Lopé	

using	specialist	TinyTag	solar	shields	has	shown	that	they	increase	the	

likelihood	of	termite	invasion,	which	has	resulted	in	equipment	failure	in	

some	cases.	The	relative	exposure	of	the	savanna	site	(away	from	the	forest	

canopy)	and	the	dynamic	nature	of	the	“shaded”	forest	site	(increasing	and	

decreasing	irradiance	in	response	to	canopy	changes)	has	interacted	with	the	

differing	sensitivities	of	each	recording	unit	and	led	to	variability	in	the	

means	and	ranges	of	maximum	temperature	data	derived	from	different	

equipment	(Figure	C6).		
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Figure	C6	Boxplots	of	maximum	(A)	and	minimum	(B)	daily	temperature	at	Lopé	
NP,	1984-2018.	Lopé	forest	observations	cover	the	period	1984	-	2018	and	Lopé	
savanna	observations	cover	the	period	2002	–	2018.	Grey	dots	show	the	daily	
data	collected	at	both	sites	(forest	and	savanna)	using	different	equipment.	
Boxplots	show	the	median	(vertical	bar),	interquartile	range	(25th	and	75th	
centiles;	filled	box),	the	normal	range	(no	more	than	1.5	times	the	interquartile	
range	from	the	25th	and	75th	centiles,	horizontal	black	lines)	and	the	outliers	
(outside	of	the	normal	range,	black	dots).		

	

Because	of	the	lack	of	simultaneous	recording	(pre-2007)	to	evaluate	these	

differences	and	the	dynamic	nature	of	sunlight	effects	over	time	even	for	

observations	deriving	from	the	same	equipment	(e.g.	canopy	changing)	we	

chose	to	use	maximum	and	minimum	daily	temperature	observations	from	

all	equipment	to	assess	mean	seasonality	(Day	of	Year	and	Monthly	means)	

and	periodicity	(Fourier	and	Wavelet	analyses)	for	each	site,	but	only	

minimum	daily	temperature	for	long-term	assessments	of	change	and	inter-

annual	variability.	As	Fourier	and	Wavelet	analyses	require	continuous	

timeseries,	we	summarised	all	max	and	min	data	(25538	daily	max	and	min	

observations)	to	monthly	mean	timeseries	for	each	site,	excluding	months	

with	fewer	than	five	observations.	We	filled	missing	months	using	the	mean	
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value	for	the	corresponding	calendar	month	from	the	entire	time	series	

(Figure	C7).	

	

Figure	C7	Time	series	plot	of	monthly	mean	maximum	(A)	and	minimum	(B)	
daily	temperature	observations	at	Lopé	NP,	1984-2018.	The	line	shows	the	
monthly	means	for	each	site.	Red	dots	indicate	missing	months,	which	were	filled	
using	the	mean	value	for	the	corresponding	calendar	month.	

	

For	long-term	analyses	we	combined	minimum	temperature	data	from	both	

sites	(mean	minimum	temperature	from	simultaneous	TinyTag	recordings	

are	22.3°c +1.1	sd	in	the	forest	and	22.0°c		+	1.2	sd	in	the	savanna)	and	
calculated	the	mean	daily	minimum	temperature	from	all	sites	and	

equipment	for	each	day	in	the	time	series	(8217	observations	from	3/1/1984	

to	31/12/2017,	34%	days	missing).	We	used	this	daily	time	series	for	trend	

analysis	and	to	calculate	monthly	timeseries.	First	we	calculated	the	average	

daily	low	temperature	for	each	month	(monthly	mean	of	minimum	daily	

temperature)	excluding	months	with	fewer	than	five	observations	(overall	

mean	number	of	observations	per	month	for	all	equipment	=	22.3).	The	

manual	max/min	thermometer	used	from	1984	to	2002	does	however	

accurately	record	the	extreme	lows	in	daily	minimum	temperature	for	the	

entire	interval	between	observations.	In	order	to	make	best	use	of	this	

information	we	also	calculated	extreme	daily	low	temperature	for	each	
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month	(monthly	minimum	of	minimum	daily	temperature)	for	the	Lopé	time-

series.	We	included	all	months,	no	matter	the	number	of	observations,	from	

the	manual	thermometer	record	but	only	months	with	more	than	five	

observations	for	all	other	data	collection	methods.		

In	the	final	Lopé	minimum	temperature	record	there	are	36	monthly	

observations	missing	(9%	total	number	of	months)	for	the	average	low	

temperature	timeseries	and	24	monthly	observations	missing	(6%	total	

number	of	months)	for	the	extreme	low	temperature	timeseries	between	

Januuary	1984	and	December	2017.	All	data	selection	procedures	described	

above	are	shown	as	a	flow	chart	in	Figure	C8.	
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Figure	C8	Diagram	to	show	data	selection	for	temperature	analyses.	Bold	boxes	
indicate	data	packages.	Grey	dashed	boxes	indicate	processes.	Blue	boxes	
indicate	analyses.	 	

A.	Lopé	con*nuous	temp:	
•  HOBO	
•  TinyTag	

•  VantagePro2	
•  SKYE	Minimet	

B.	Lopé	daily	max/min	temp:	
•  Manual	thermometer	
•  Digital	thermometer	

Calculate	max.	and	min.	
temp.	in	each	24-hr	period	

C.	Lopé	daily	max/min	temp	*me	series	for	each	source	and	site	(25538	obs.).	

D.	Lopé	daily	max/min	temp	*me	series	for	forest	(13831	obs.)	and	savanna	(9607	obs.).	

E.	Lopé	monthly	mean	daily	max/min	temp	
*me	series	for	forest	(Max	ts	=	327	obs,	Min	
ts	=	329	obs..)	and	savanna		(Max	and	Min	ts	

=	166	obs.).	

F.	Complete	Lopé	monthly	mean	daily	max/
min	temp	*me	series	for	forest	(Max	and	
min	ts	=	408	obs)	and	savanna		(Max	and	

Min	ts	=	192	obs.).	

Periodicity	analyses	
(Fourier	and	Wavelet)	

Seasonality	analyses	
(DOY,	10-day	running	and	

Monthly	means)	

E.	Lopé	daily	min	temp	*me	series	(8217	
obs.).	

Trend	analysis	

Analysis	of	interannual	
variaDon	and	influence	of	

the	oceans	

Calculate	mean	daily	max	
and	min.	temp	for	each	day	

Calculate	mean	monthly	
max	and	min.	temp	

excluding	months	<5	obs.	

Fill	missing	months	using	
mean	value	for	

corresponding	calendar	
month	

Calculate	mean	daily	min.	
temp	(across	both	sites)	

Calculate	mean	monthly	min.	temp	
(excluding	months	<5	obs.)	and	
extreme	monthly	min.	temp	

(excluding	months	<5	obs	except	for	
manual	thermometer	data).	

F.	Lopé	
monthly	

average	low	
temp	*me	
series	(372	

obs.)	

G.	Lopé	
monthly	

extreme	low	
temp	*me	
series	(384	

obs.)	
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Relative	Humidity	

Relative	humidity	(RH)	has	been	recorded	at	Lopé	using	five	different	types	

of	equipment	(wet/dry	bulb,	HOBO	units,	TinyTags,	and	both	weather	

stations)	at	the	two	sites	(savanna	and	forest)	from	1985	to	the	present	

(Figure	C9).	

	

Figure	C9	Time	series	plots	of	day	and	night	relative	humidity	at	Lopé	NP	1983-
2018.	Coloured	dots	show	daily	observations	from	both	sites	(forest	and	
savanna)	and	different	equipment.	Humidity	bulb	observations	were	recorded	
once	per	day	at	different	times.	The	remaining	observations	are	mean	values	for	
the	day	or	night	from	automated	data	collection	with	intervals	up	to	30	minutes	
long.	

	

The	four	major	challenges	in	creating	a	Lopé	humidity	record	for	long-term	

analyses	are	1)	the	impacts	of	solar	radiation	and	water	saturation	on	

humidity	measurements	and	the	differing	sensitivities	of	recording	

equipment	to	these,	2)	the	variable	observation	times	pre-2002	using	the	

wet-dry	bulb,	3)	drift	in	measurement	errors	over	time	and	low	frequency	of	

equipment	calibration	and	4)	missing	data.		
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We	know	that	direct	solar	radiation	leads	to	underestimation	of	RH	(da	

Cunha	2015)	and	that	accurate	data	requires	specialised	solar	screens,	which	

were	not	used	at	Lopé	before	2017.	To	avoid	errors	in	our	dataset	associated	

with	solar	radiation	we	separated	day	(6am-6pm)	and	night	(6pm-6am)	

observations	for	the	data	derived	from	the	automatic	units	and	calculated	the	

mean	humidity	for	each	session	per	24-hour	period	(6am-6am;	Figure	C9).	

Restricting	further	analyses	to	night	time	data	also	precluded	the	humidity	

bulb	data	as	it	was	only	collected	during	the	daytime.	In	any	case,	it	proved	

difficult	to	use	this	data	for	seasonal	or	inter-annual	analyses	as	it	was	

recorded	at	different	times	each	day	depending	on	the	research	station	

schedule	(usually	between	7am	and	6pm).		The	TinyTag	manufacturers	

(GEMINI)	advised	us	that	erroneous	0%	RH	observations	represented	a	

shorting	of	the	internal	circuit	under	conditions	of	water	saturation	and	so	

we	removed	all	zeroes	before	calculating	daily	means.		

In	2016/17	all	TinyTag	humidity	units	were	calibrated	in	the	UK	and	were	

found	to	be	over	measuring	relative	humidity	by	3.9	-	13.4%	(at	an	applied	

humidity	of	77-78%).	Following	these	checks,	two	units	were	replaced	and	

the	humidity	channels	on	the	remainder	were	adjusted.	However	is	very	

difficult	to	know	when	the	measurement	drift	occurred	between	2010	and	

2016	and	how	to	remove	this	error.	None	of	the	units	were	calibrated	

regularly	and	as	a	result	were	often	used	outside	of	expiry	periods	meaning	

that	this	measurement	drift	may	be	an	issue	for	the	other	data	too.	For	

example,	HOBO	units	often	measured	RH	>100%	(Figure	C10)	and	the	SKYE	

data	shows	downward	drift	over	time	in	2015/2016	(Figure	C9).	
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Figure	C10	Boxplots	of	night-time	relative	humidity	at	Lopé	NP,	2002-2018.	Grey	
dots	show	the	daily	(night-time)	data	observations	from	both	sites	(forest	and	
savanna)	using	different	equipment.	Boxplots	show	the	median	(vertical	bar),	
interquartile	range	(25th	and	75th	centiles;	filled	box),	the	normal	range	(no	
more	than	1.5	times	the	interquartile	range	from	the	25th	and	75th	centiles,	
horizontal	black	lines)	and	the	outliers	(outside	of	the	normal	range,	black	dots).		

	

Because	of	the	data	problems	described	above,	we	chose	to	use	the	full	night	

time	RH	automated	data	record	to	assess	mean	seasonality	(Day	of	Year	and	

Monthly	means)	and	periodicity	(Fourier	and	Wavelet	analyses;	complete	

monthly	mean	time	series	shown	in	Figure	C11)	for	each	site,	but	not	for	

long-term	assessments	of	change	and	inter-annual	variability.		

	

Figure	C11	Time	series	plot	of	monthly	mean	relative	humidity	observations	at	
Lopé	NP,	2007-2018.	The	line	shows	the	monthly	means	for	each	site.	Red	dots	
indicate	missing	months,	which	were	filled	using	the	mean	value	for	the	
corresponding	calendar	month.	 	
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Solar	Radiation	

Solar	radiation	has	been	recorded	at	Lopé	using	two	weather	stations	in	the	

savanna	from	2012	to	2016	(Figure	C12).	Because	the	data	is	short	and	

patchy	we	can	only	use	it	to	demonstrate	seasonality	and	periodicity	(Fourier	

analysis	using	the	continuous	time	series	showin	in	Figure	C13)	not	long-

term	trends	or	interannual	variation.		

	

Figure	S4.1.12	Time	series	plots	of	surface	solar	radiation	at	Lopé	NP,	2012-
2016.	Coloured	dots	show	daily	mean	observations	from	different	equipment.	
	

	

Figure	C13	Time	series	plot	of	monthly	mean	solar	radiation	observations	at	
Lopé	NP,	2012-2016.	The	line	shows	the	monthly	means	for	each	site.	Red	dots	
indicate	missing	months,	which	were	filled	using	the	mean	value	for	the	
corresponding	calendar	month.	

Wind	Speed	and	Direction	
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Wind	speed	and	direction	have	been	recorded	at	Lopé	using	two	weather	

stations	in	the	savanna	from	2012	to	2016	(Figure	C14).		

		

Figure	C14	Time	series	plot	of	wind	speed	at	Lopé	NP,	2012-2017.	Coloured	dots	
show	daily	mean	observations	from	different	equipment.	
	

Because	the	windspeed	data	is	short	and	patchy	we	can	only	use	it	to	

demonstrate	seasonality	and	periodicity	(Fourier	analysis	using	the	

continuous	time	series	shown	in	Figure	C15)	not	long-term	trends	or	

interannual	variation.		

	

Figure	C15	Time	series	plot	of	monthly	mean	wind	speed	observations	at	Lopé	
NP,	2012-2016.	The	line	shows	the	monthly	means	for	each	site.	Red	dots	
indicate	missing	months,	which	were	filled	using	the	mean	value	for	the	
corresponding	calendar	month.	
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The	two	different	weather	stations	also	recorded	wind	direction	data	but	the	

seasonal	summaries	of	wind	direction	are	very	different	from	each	station	

(Figure	C16).	Wind	measurements	are	highly	influenced	by	local	turbulence	

for	these	types	of	weather	stations	(Bell	et	al.	2015).	Because	of	the	localised	

nature	of	the	measurements,	the	disagreements	between	the	weather	

stations	and	the	short	and	patchy	nature	of	the	record	we	exclude	wind	

direction	from	current	analyses	until	there	is	a	more	extensive	data	record	at	

Lopé.	

	

	

Figure	C16	Rose	diagrams	to	show	wind	direction	at	Lopé	NP,	2012-2016.	
Circular	bar	plots	show	the	mean	proportion	of	time	spent	in	each	wind	
direction	in	each	season	(DJF:	Dec-Feb,	JJAS:	Jun-Sep,	MAM:	Mar-May,	ON:	Oct-
Nov)	for	each	piece	of	equipment.	The	shade	of	the	bar	indicates	mean	wind	
speed	(Dark	fill:	high	speeds,	Light	fill:	low	speeds).	
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Aerosol	Optical	Thickness	

We	downloaded	the	AERONET	level	2.0	data	product	(automatically	cloud-

cleared	and	manually	quality	assured)	from	the	NASA	website	and	extracted	

data	for	the	wavelengths	440,	550	and	675nm	as	relevant	for	

photosynthetically	active	radiation	(PAR:	400-700nm;	Figure	C17).).		

	

Figure	C17	Time	series	plot	of	Aerosol	Optical	Depth	at	Lopé	NP,	2014-2017.	
Coloured	dots	show	daily	mean	observations	at	different	aerosol	optical	depths	
relevant	for	photosynthetically	active	radiation	(440,	500	and	675nm).	

	

Due	to	equipment	error	and	data	removal	due	to	cloudiness,	61%	of	data	

between	24-04-2014	and	06-03-2017	is	missing.	Data	availability	is	strongly	

seasonal	and	is	most	sparse	in	the	months	June-November	(85%	data	points	

are	missing	in	August)	and	most	dense	in	March	(only	35%	data	points	

missing).	Because	the	data	is	short	and	patchy	we	can	only	use	it	to	

demonstrate	seasonality	and	periodicity	(Fourier	analysis	using	the	

continuous	time	series	shown	in	Figure	C18)	not	long-term	trends	or	

interannual	variation.		
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Figure	C18	Time	series	plot	of	monthly	mean	Aerosol	Optical	Depth	observations	
at	Lopé	NP,	2012-2017.	The	line	shows	the	monthly	means	for	each	site.	Red	dots	
indicate	missing	months,	which	were	filled	using	the	mean	value	for	the	
corresponding	calendar	month.	

	


