




Abstract

Repfoducllon In la lm o nk)» is an annual event wllh spawning confined to a brief 

(typically 6 week) period eech year. Th e  reproductive cycle appears to be controlled by on 

endogenous circannual rhythm or •clock' which, under natural conditions, Is entrained by 

the seasonal changes In daylength. This thesis Investigates the mechanisms by which 

pholoperiod entrains the circannual clock which, it Is proposed, controls maturation In 

the rainbow trout, n «vw h w n fh n « m ykiM,

Abrupt changes m photoperlod can elthor advance or delay spawning and the timing of 

changes m serum calcium, oestradloM TB and lostoslorone which accompany maturation 

in the female rainbow trout. These effects can be Interpreted as corrective phase advances 

or phase delays of a clrcannual dock. 'Long' photoperiods of between 12 and 22 hours 

applied in January, followed by shorter photoperiods of between 3.5 and 13.5 hours from 

May. were equally effective tor the advancement of maturation In Decembor-spawnlng 

female rainbow trout. Maturation was also advanced, though to a lesser extent, in fish 

which remained on typical winter photoperiods (8.5 or 10 hours), provided they received 

a decrease to an even shorter photoperlod prior to the summer solstice. In contrast, 

maturation was delayed in fish maintained under a constant winter photoperiod (8.5 

hours), and these fish also exhibited a desynchronization of spawning times characteristic 

of endogenous circannual rhythms in free-run. Collectively, these results Indicate that 

direction of change of daylenglh Is the feature of the photoperiodic signal responsible for 

the entrainmont of the endogenous circannual clock; the sam e pholoperiod may be 

intorpreled as 'long' or 'shorT providing it is longer or shorter than that to which the fish 

have been prevlouely exposed. Th e  concept of a rigid critical' daylenglh lor reproductive 

fur>ctk>n it therefore untenable In the rainbow trout.

The  liming of the Increese to a 'long' pholoperiod was also on important determinant of 

spawning lime; maturation occurred in sequence In December-spawning female rainbow 

trout maintained on  constant 'long' days from January and February, and In flsh exposed to 

'long' days from December, January and February, followed by 'short' days in May.



Maturation can also be advanced or delayed by exposing rainbow trout to short (S2 

months) periods o l continuous light at dttterent phases ot the reproductive cycle. These 

eHects can be described in the form ot a partial phase-response curve. T h e  proportion ol 

nsh responding to short periods ol continuous light was dependent on both the duration ol 

the light period, and. most importantly, Its position in relation to the phase o l the 

reproductive cycle. A high proportion (2*5% ) ol lish responded with an advance in 

spawning time only when the period o l exposure to continuous light occurred close to the 

preceding natural breeding season. T h e  minimum period ol exposure capable ol advancing 

maturation In a majority (2 8 0 % ) o l rainbow trout was 1 month. In 3 consecutive 

experiments over 9 0%  ol lómale rainbow trout exposed to continuous light lor 2 months 

Irom January to March spaw ned again in a 6-wook period In Ju ly  and August, 

approximately S months In advance ot their natural spawning period. Exposure ol rainbow 

trout to short periods ol continuous light therelore provides a simple, cheap and 

predictable method lor the production ol out ol-season eggs on commercial llsh larms.

Patterns ol melatonin secretion In the rainbow trout accurately rellected the 

prevailing photoperiod, with levels elevated lor the duration ot darKness under both long 

(16L:8D or 18L:6D) and short (8L:16D  or 6L:18D) daylengths. Distinct diurnal rhythms 

in circulating melatonin were also delected in the Atlantic salmon. S alino salai . and Nile 

tiiapia. nranr.hrnmi« niinticiis. Melatonin production In the rainbow trout Is not under 

endogenous circadian control; changes In melatonin levels always coincided with the light 

to dark or dark to light transitions, and the melatonin rhythm did not persist in constant 

darkness. Additionally, the melatonin rhythm Immediately re adjusted to the new 

photoperiod when rainbow trout wore Iransterred from long (t8 L :6 D ) to short (6L:18D) 

days. Those results Indicate that melatonin production In the rainbow trout Is a direct 

response to darkness. Although the seasonally-changing patterns o l melatonin secretion 

clearly provido the rainbow trout with accurate inlormation on both daily and calendar 

lime the results of experiments designed to lest the hypothesis that melatonin conveys 

photic Information to the reproductivo axis were Inconclusive.
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Th e  rainbow trout la indiganous to «reatern North America but, with the exception of 

Antarctica, la now diatributed workJ-wlde (M acCrIm m on, 1971). Firat deacribed aa 

■«»«linn n.iirinerl by RIchardaon In 1836 the rainbow trout la currently conalderad to be 

more doaely related to the Pacific aalmon iQneorhxnchua apedea) than to the AMantIc and 

Euraalan .«»«imn apadaa (which Include the Atlantic aalmon, R «im n « « i « r  and the brown 

trout, .«»«Imn initiat. and was recently re-claaalfled aa Oncorhvnghua myklaa (fa m ily : 

Salmonidae) by the American Flsherlea Society (Kendall, 1988). Introduced Into Europe 

In the late nineteenth century it la prized (or both Ita aporting and eating qualltlea and la 

currently rivalled only by the Atlantic salmon as the most popular farmed fish In the 

United Kingdom.

1.1 ■«»«aw'nal hrmuHno

In common with many other organisms Inhabiting temperate and polar latitudes the 

rainbow trout is a seasonal breeder. Described by Lincoln and  Short (1980) as nature's 

contraceptive, seasonal breeding ensures that reproduction rxsurs at the time of year 

whan the local environmental factors which dictate survival of both parents artd offspring 

are optimal. These 'ultimate' factors (Baser, 1938) include temperature, rainfall and, 

most Importantly, food availability. However, the time required for gonadal and embryonic 

development means that breeding cannot be InHIated Instantaneously when ultimate factors 

become optimal. Reproduction Is therefore timed with reference to earlier 'proximate' 

environmental cues (Baker. 1938), which enable the organism to predict the time of year 

whan ultimata factors will be most advantageous. Th e  m ost rallabla and 'noise-free' 

Information on the time of year is provided by the seasonal changes In daylength which 

result from the tilted axis of the earth relative to the sun, and which become more 

pronounced as the distance from the equator Increases (F igure  1.1). It Is therefore not 

surprising that many organisms Indigenous to middle and higher latitudes have evolved the 

ability to utilise daylangth to time seasonal functions such aa reproduction.

The  Importance of daylength In the timing of seasonal reproductiva events was first 

demonstrated experimentally In a variety of plants by Q a rn er and Allard (1920) who

18



Figure 1.1: Seasonal changes In daylengih at various latitudes. Note that the seasonal 

variation m daylengih Is slight at lower (tropical) latitudes and becomes more pronounced 

as the distance from the equator (north or south) Increases. Daylength Is constant at the 

tropical meridian (from O ieta. 1976).



Introduced Iti» l•rlni 'ptiotoperlod' (daylangth) and 'pholopariodlam’ (the phyaiolo<|lcal 

rasponsa of an organism to ttia taasonal changas In daylangth). SubsaquanMy, MaroovHch's 

(1 9 2 4 ) work with aphids providsd lha first sxpartmantal avidsnee tor photoparlodism In 

In s a c ts . Rowan's ( t » 2 S ,  1926) observations that artificially Increased daylangths 

Induced precocious gonadal maturation In tha slate-coloured junco (snow bird). JuniiP 

r .w » m . i i .  whereas a shortaning photoperiod caused gonadal regression, heraldad the 

beginning of experimental work on photoparlodlsm In vertebrates. Similar phenomena 

w e r e  soon reported In mammals (Baker and Ranson, 1932; BIssonatta, 1932), and 

H o o v e r and Hubbard (1 9 37 ), working with the brook trout, Salvellnus fonllnalls, ware 

the first to report that artificial photoperiods could be used to manipulate the spawning 

tim e  of fish. Although, with the possible exception of studies on birds, most subsequent 

Investigations have cortcentrated on a few common laboratory animals and domesticated 

s p e c ie s  c l agricultural Importance, It Is now clear that the seasonally-changing 

photoperiod influences seasonal reproductive and other functions in many vertebrates 

Inhabiting temperate and polar dlmatas (reviewed by Hoffman, 1981).

In their early studies Garner and Allard (1920) realised that some species of plant 

w e re  'long-day' plants, only flowering when the daylengih exceeded a certain species- 

specific daylength, w hereas others were 'short-day' plants, flowering only when the 

daylength fell below a certain critical value. It was soon recognised that many insect and 

vertebrate species respond In a similar fashion. In many species indigenous to temperate 

clim ates the production of young is «m o d to oolncido with the arrival of spring. Animals 

In which reproduction le a fairly rapid process, such as birds and small mammals (s.g. 

rodents), begin Ihek breeding season In the spring of the same year as their offspring are 

b o rn , concomitant wHh lengthening daytengths, and have therefore been classified as 

'long-day' species. Conversely, mammals with longer gestation periods (S -6  months), 

s u c h  as sheep, flvls arias, and red dser, Cen/us elsnhus. commence breeding during the 

ahortenlng days of autumn and late wintar, and have therefore been classified as 'short- 

d a y ' spades. The horse, c r -i -i«  r «n «iiii«  is also oonsidarad to be a 'long-day' species 

b ecause  it hss a gestation period of nearly a year requiring It to mate under the



langthanlng d a y s  ot lha previous spring. Thus, the period o( Mms required tor gonadal and 

embryonic developm ent apparently determines the predictive cues utilised to time 

reproduction.

In m any poikllolharms. Including fish, temperature may also be an Important 

proximate cu e  tor the regulation ot seasonal events (de Vlaming. 1972; Hotfman. 1991). 

In eamnonids. however, the seaeonelly^!hanglng pholoperlod exerts the primary Influanoe 

on reproductive timing (de Vlaming. 1972; WhHehaad at el.. 1978; Scon and Sumpter. 

1983; B ye . 1 9 8 4 ; Dodd and Sumpter. 1984; Lem and M unro. 1987; Bromage and 

Cum aranatunga. 1988). Th e  principia strains of rainbow trout farmed In the United 

Kingdom spaw n In late autumn or winter, arto exposure to 'shorT days In advance of the 

natural light cycle  can advance maturation (e.g. Shlralshi and Fukuda. 1966). Hence, the 

species w a s originally classified as a •short-day' animal (Breton and Blllard. 1977; 

Blllard at a l.. 1978a.b; Peter. 1981; Follett. 1982). Fertilisation In salmónida Is 

external but gonadal developmonl in preparation lor the breeding season (spawning) may 

take a year o r more to complete (Elliott at al.. 1984; Sumpter. 1984; Sumpter et al.. 

1984). Th is  fací, in combination with experiments demonstrating that 'long' days can 

stimulate reproduction In the rainbow trout (e .g . Whitehead and Bromaga. 1980), 

supported the contention that the rainbow trout was a 'long-day' species (Bromage et al., 

1982b; Elllotl et al., 1984; Scott et al., 1984; Bromage and Duston, 1986). These  

concepts w ere  unified into a composite hypothesis by several authors who suggested that 

the lengthening daylengths of late winter and spring Initiate gametogenesis and the 

shortening daylengths of lata summer and autumn accelerate the later stages of 

reproductive development (Bromaga at al.. 1982b; Scott and Sumpter, 1983; Bye, 1984; 

ENIott at a l.. 1984; Scott at al., 1984).

In the a bo ve  scenario pholoperlod la usuaSy envisaged as providing a direct driving 

Influence on  reproductiva activity, I.e. external environmental cues (exogenous factors) 

are oonskfarad to be of primary Importance In the timing of reproduction. In recant years, 

however, there  has been a growing awareness that. In m any long-livsd species, the 

seasonally-changing pholoperlod does not directly Induce reproductiva activity, but rather



•ntraint (lynchro nlzat) an e ndo ganoua circannual rhythm o1 raproducthra function. 

CIrcannual rhylhma In varloua funcllona, Including raproductlva activity, hava ao far 

boon dam onttratad (by paralatanca undar conatant anvironm anlal condlllona) In 

approximalaly 40 organlama, principally birda and mammala (Q w innar, 19S6). Th a  firat 

convincino axparlmantal avidanca that tha aaaaonaHy.chanolno photopariod can antrain a 

circannual rhythm was providad by Q oaa't (1S69a.b) Invaatigalioni on antlar cyclaa In 

tha tlka daar. r~.»tuii. niywin w tia n  axpoaad to constam daylangtha of BL:18D (8 houra of 

light and 18 hours ot darknasa), 16L:8D  or comlnuous light (LL ) thasa animals axprassad 

an andoganous circannual rhythm of anilat raplacamom wHh a fraquancy ol approximalaly 

10 months (Gk>ss, 1969a). Under natural photoparlod conditions lha anilar cycia adoptad a 

pariodiclly ot 12 months, but co uld  also ba antrainad by saasonal pholocyclas artificially 

comprassad into 8, 4 and 3 months or axpandad to 24 months: antlor replacement ravanad 

to a circannual periodicity on exposure to a seasonal pholocycia compressed Into 2 months 

suggesting that this frequency w as beyond the range of onlralnmanl (G oss, 1969b). 

Similarly, Gwinner (1977, 1986) reported that the circannual rhythms ot testis growth 

and moult in the starling, .«itiirnua vutaarls. could ba entrained by saasonal photocyclas 

compressed Into 8, 6, 4, 3 or 2 .4  months: seasonal photocydes with periodicities ot 2 

months or less were again outwith lha range ot anlralnmant. Bacanl studies Indicate that 

tha annual reproductive cycle ot the tamale rainbow trout is also under endogenous 

circannual control: lish maintained under a constant 6L:18D photoperiod, and constant 

temperature and food ration, exhibit a rhythm of gonadal maturation and spawning that Is 

self-sustaining for at least thraa cycles, and trse-runs with a periodicity that 

approximates, but can differ significantly from, one year (Duston and Bromaga, 1986a, 

1991). This rhythm can ba entrained by seasonal photocyclas oomprassad Into 6 or 9 

months (Whitehead at al.. 1978) ot axpandad to 18 months (Brom aga at al., 1984): a 

saasonal pholocycla compraaaed into 3 months appears to ba outsida tha range of 

antrammanl tor this spades (P o N  at at.. 1982). Th is  suggests that (as m lha sika dear 

and starling) under natural conditions lha andoganous drcannual 'dock' which ulllmataly 

controls reprodudion In lha rainbow  trout Is sntralnad to a parlodidly ot one year by lha



teaaonaMy-changIng daytangth.

1 .2  artinri.i tnaninulailon ot ranrotlucllon

Undar ambiant oonditlona lha taaaonally-changtng daylangtti aynchronizai lha 

spawning «m a ol a particulw itraln of rainbow trout to a 6 -8  waak parlod aacb yaar. Thia 

saaaonallty of agg production, of ctaar banaflt to flab In tha wild, ptacas savara 

rastrlctlons on tha profHablllty of fish farming: yaar g roupa  of fish all raach markatabta 

slza at tha sama tima and farm fadlHIas ara aHhar ovar or undar utlllsad dapanding on tha 

tima ot yaar. SInca thasa problams can ba avoldad It aggs ara producad throughout tha yaar 

tachniques dasignad to modify lha lima ol spawning oflar considsrabis commarclal 

potsntial. Many of Iha axparlmanls dascrlbod In this Ihaaia w ars oonduclad on commarclal 

farms and wera designed both to provida Information on  lha mechanisms underlying lha 

photoparlodlc control ol reproduction In lha rainbow trout, and to moat the farmers' 

raquiremenis lor the development ol oommarclal techniques for the production of 'out-of- 

season'eggs.

There are three main approaches to tha modification of maturation and spawning lima 

In salmonid fish; 1) Qenatic selection. 2) Environmental manipulation, and 3) Hormonal 

manipulation.

Tha  spawning lima of a particular strain of rainbow trout Is genetically determined 

(Kalo. 1973; Busack and Gall. 1980). Wild rainbow trout are typically spring spawning 

nsh (Bahnka, 1979; Bromage and Cumaranatunga. 1968: Laird and Needham, 1988) but 

daliberata or unconscious selection ovar tha last 100 years has producad a large number 

ol diffaranl strains with spawning seasons In lha U .K . ranging from August to April 

(Sumpter, 1984; Purdom, 1988; Lincoln, 1987). M a n y  ol these ara commercially 

avaHabla and hence. In thaory, a farmer could currently obtain eggs for 9 months ol tha 

yaar by slocking a variety of strains. Importing eggs from countries such as Australia and 

South AIrloa during lha summer would oomplota lha all-year round supply. In practica, 

however. It Is dHllcult to obtain sggs m the Unllad K ingdom  outsida of October to January 

(Bromaga, personal communication). Moreover, lha Importation of strains from diffaranl



gaograptilcal locations presents two major problems. Firstly, there Is a risk that disease 

wlk be transferred from one location to another, previously unkifacted, site. Secorxfly. 

although the precise origins of most hatchery stocks are unknow n (Brom aga and 

C um aranatunga, 1988), most established farms possess strains adapted to their 

particular environm ental conditions (lor example, water tem perature, ox yge n  

availability). Strains oblalnsd from other locations may experience difficulty in adapting 

to their new  environmenl. resulting In poor growth and mortalities. Farm ers can, 

however. Instigate a selection programme with their own slock. B y  retaining the earliest 

and latest spawners lor future broodslock the spawning period can be extended with each 

genaralion (K a to . 1979; Busack and Qall. 1980). The  principal advantage of this 

technique Is that It Imposes no artificial siresses, achieving an extension of spawning lime 

by 'natural' methods. The main disadvantage of genetic manipulation Is the long time period 

required lor the results to become of economic consequence. Moreover, there are toglstlcal 

problems In the long term separation and Idanllfication of large numbers of different 

breeding stocks, and the spawning season may not even be stable alter selection (B uss. 

1982). For these reasons environmental and hormonal techniques lor Ihe manipulation of 

spawning time are generally preferred.

Daylength manipulation appears Ihe most appropriate technique for Ihe modlllcatlon of 

spawning lim e since pholoperiod resides at Ihe highest level of Ihe neuroendocrine 

pathway controlling reproduction (section 1.5; Figure 1.4) and can therefore influence 

all of the endocrine mechanisms involved in Ihe initiation and subsequent regulation of 

gonadal development. H Is therefore not surprising that this lechnique has so far proved to 

be the most successful, with a variety of photoperiod regimes capable of altering spawning 

lime in Ihe rainbow trout. For examplo. spawning can be advanced by exposing fish to 

seasonally-changing photoperiods compressed Into periods of less than 12 monihs (e.g. 

Whitehead at al.. 1978). long' (usually 18L;8D or 18L:80) followed by shorT (usually 

8L:18D or 8L;18D ) photoperiods In advance of Ihe natural light cycle, either reduced 

gradually (e .g . Breton and Billard, 1977) or abruptly (a.g. Brom age at al., 1982), and 

constant 'long' photoperiods or continuous light applied from n ea r Ihe beginning of Ihe



raproductiva cycle (a.g. Brom aga el al., 1984). Similarly, spawning can be delayed by 

exposure to seasonally changing photoparlods extended over periods greater than 12 

months, to constant 'short' pholoparlods during the flrsi hall ol the reproductive cycle  

(a .g. Bromage at al., 1984), and to constant lo ng' pholoperlods or continuous Nght (L L ) 

during the second hall o l lha raproducllva cycle (a.g. ShlralshI and Fukuda, 1968). Thaaa  

and other related studies are considered In more detail In a review ol Iha literature 

pertaining to the photoparlodlc (»n tro l ol reproducllon In salmonkt lish contained In the 

introduction to chapter 3 (section 3.1).

Although pholoperlod is the primary anvironmantal cue synchronizing reproduction in 

the rainbow Irout, and probably all salmonids, temperature t:an also modlly rsprrxiuctive 

development and the timing o l spawning (Qoryczko, 1972; Titarev, 197S; M elners- 

Qelken at al., 1988). In Finland, where water temperatures as low as 0.2°C are com m on 

In winter, certain strains o l rainbow trout spawn In Ihe spring when the w ater 

temperature exceeds 4°C (Nakarl et al.. 1988). Exposing these llsh to com pressed 

seasonal pholocycles advanced reproductive development, but. despite the oocytes attaining 

their lull size earlier than those ol controls maintained under natural photoperiod, 

ovulation did not occur until the natural spawning lime (Nakarl at al.. 1987,1988). 

Spawning was considerably arhrancad, however. In llsh which were translsrred Into a 

constant water temperature o l 10®C hallway through Ihe experiment (Nakari et al.. 

1987). Conversely. Morrison and Smith (1986) lound that spawning was delayed by 

approximately 3 months w hen winter-spawning rainbow trout, reared in conatant 

temperature (10°C) spring water, were translerred to cold creek water about 3 months 

belors the natural spawning tims. Moreover, a recent study (Davies and Bromags, 1991) 

has shown that winter-spawning rainbow irout maintained on a constant 8-10*C borehole 

water supply commenced spawning 3 weeks earlier than llsh supplied with river water ol 

seasonally Huctuallng temperalurs (2-17*C), Irrespsctivs ol whalhsr they wars expoaad 

10 an ambient or seasonally advanced pholoperlod. Tyler el al. (1987b) have shown that 

vitellogenin uptake Into cultured ovarian lolllclas ol rainbow Iroul Is temperature 

dependent, with decreased Incorporation al lower temperatures. Thus, temperature may



•x«rt H* •ttocts on roproductlvo dovelopnioni directly rather than as an entralnino agent.

The  modification of spawning lime by alteration of water temperature may be feasible 

for fish farms with a dual (spring and river) water supply but achieving artificial 

temperature changes In large volumes of water from a single source would clearly be 

uneconomic. Temperature can be ntcre conveniently used to extend the availability of the 

fry by delaying the lime of hatching of the eggs. Coldwalor Incubation (1 -2"C ), following 

Incubation at normal temperatures for the first 10-12 days after fertilisation, has baen 

shown to delay hatching by 50 days In rainbow trout (Bromage, 1982) and 100 days In 

brown trout (Maddock. 1974). with no reduction In egg quality.

Th e  hormonal manipulation of reproduction provides a possible alternative to 

environmental methods. Current knowledge of the sequence of neuroendocrine events 

controlling reproduction In the female rainbow trout Is reviewed In section 1.5. Clearly, 

simulation of the many hormonal changes which occur during the year or more required 

for ovarian development In the rainbow trout (Figures 1.5 and 1.7), even If possible, 

would be totally Impractical In a farming environment. Moreover, our knowledge of the 

neuroendocrine events controlling reproduction In fish Is far from complete (section 

1.5), thus limiting our ability to manipulate their timing by administration of exogenous 

hormones. Nevertheless, intervention has been attempted at several levels ot the 

hypothalamo-pitultary-gonadal axis In studies on a large variety ot cultivated fish species 

(reviewed by Lam, 1982; Donaldson and Hunter, 1983; Crim  et al.. 1987; Blllard. 

1989a,b; Zohar, 1989). The  most successful techniques have involved the elevation of 

Q T H  levels by administration of either crude fish pituitary extracts (usually derived from 

carp or salm on) or Q n R H  and Its analogues (often In combination with dopamine 

antagonists). These techniques have been used to advance ovulation and sparmiation, and to 

synchronize the maturation times of Individual fish, in a number of salmonid species 

including the coho salmon, nncorhvnehus kisuleh (Hunter et al.. 1981; Donaldson et al.. 

1981; Fitzpatrick at al., 1984; Van Der Kraak et al., 1985), Atlantic salmcn (CrIm el 

al.. 1983a; Crim  and Qlaba, 1984), lake trout. Rsivellnus namavcush (Erdahl and 

McClain, 1987), and rainbow trout (Scott e l al., 1982; Crim at al., 1983b; Blllard el



al.. 1984; Breton et al.. 1990). However, the degree to which ipawnlrtg can be advanced 

by such melhode la IlmHed to a maximum ot about 1 month since ovulation can only be 

Induced m nth possessing stage 7 oocytes (section 1.4: Bromage and Cumaranatunga. 

1988); premature treatment produces a significant reduction In egg quality (Hunter et 

•I,, 1961; C iim  and Olaba, 1964).

Attempts to manipulate earner stages of the temale reproductive cycle (I.e. InWate and 

mamiam oogenesIsArMellogenesIs) with hormonal treatments, and hence achieve greater 

alterations In the timing of maturation, have been largely unsuccessful (Binard el al.. 

t989a.b). However, oompareble modlflcallons m spawning lime to those achieved using 

photoperiod iroatmenls may be possible by the administration of a single hormone, 

melatonin. In m any vertébrales the pineal gland converts photic Information Into a 

circadian rhythm of melatonin secretion, and. In certain seasonally-breeding mammals, 

the duration of the nighl-llme Increase In this hormone determ ines the reproductive 

response (reviewed by Bartness and Golding. 1989; Ebling and Foster. 1989: see sections 

t.4  and 4.1 for more detailed discussions). If melatonin also convoys pholoporlodic 

Information to the roproductivo axis in the rainbow trout It should bo possIWo to mimic 

the effects ot changes In photoporiod by imposing appropriately timed alterations In the 

patterns of melatonin secretion. For example, constanl releaso melatonin implants have 

been shown to mimic the effects of a swMch from 'long' to shorf days on reproductive 

timing m a number of soasonolly-brooding mammals including rod doer (Lincoln et al.. 

1984). sheep (Lincoln and Ebling. 1985; NowaK and Rodway. 1985; English et al.. 1986; 

Poulton at al.. 1987). goats. r . «n r «  hlrcus (Deveson at al.. 1989) and sllvor foxes. V ulM l  

„„Inem (Forsberg  at al.. 1990). Th e  administration of constant-release implants 

containing melatonin may therefore provide a viable co m m ercial alternalivo to 

photoperiod manipulallon for the modificallon of spawning lime m salmonid «sh.

1.3 A im , nf thesis

T o  summarise, the annual reproductive cycle of the female rainbow trout appears to be 

controlled by an endogenous circannual rhythm or ’dock', which Is entrained by the



seasonal changes In daylength. In this respect ’long' (a  12 hours) and •short' days have 

been considered the most Important time cues during the early and later portions of the 

ovarian cycle respectively. This Implies that axposure to photoperiods of specific length 

(i.a. 'critical' daylengths) Is necessary for the entrainment of maturation and spawning In 

the rainbow trout. Recent work, however, suggests that neither abaolute daylength, nor 

the magnitude of change In daylength, may be of paramount Importance for the entrainment 

of the circannual clock controlling reproduction In the female rainbow trout (Duston atkf 

Bromage, 1987), and there Is evkfenos that this may similarly apply to the masu salmon, 

rv w v^un ^h .,.. m .w vi (Takashima and Yamada, 1984). Studies in higher vertebrates have 

also challenged the concept of a rigid critical' daylength for particular photoperlodlc 

reactlcns, instead emphasising the importance of the directicn of change of daylength and 

previous photoperiodic experience (Robinson and Follett, 1982, Robinson and Karsch, 

1987). The experiments described in chapter 3 of this thesis were designed to clarify the 

mechanisms by which photoperiod entrains the circannual clock controlling maturation in 

the female rainbow trout. Those presented In Section A  examine the effects of a range of 

daylengths on reproductive timing in order to determine which feature(s) of the 

photoperiodic signal (absolute daylength. direction of change of daylength, magnitude of 

change In daylength) are Important lor the entrainment of the clock. In section B the 

reproductive response (advance or delay in the timing of maturation) to short (s  2 

months) periods of L L  applied at different phases of the annual reproductive cycle Is 

investigaled, with additional emphasis on the devalopmeni of a commercially applicable 

method for the production of 'out-ol-season' eggs without the need for blackout facilities.

As previously discussed, in several higher vertebrates the pineal gland transduces 

photoperiodic information Into a circadian rhythm of melatonin secretion, the pettern of 

which determines the reproductive response. Th e  rainbow trout also exhibits a diurnal 

rhythm In melatonin secretion but patterns of secretion under different pholoperlod 

regimes have not been accurately defined, and there Is no Information available on the role 

of melatonin In salmonid reproduction. Chapter 4 therefore examines the role of melatonin 

In the transmission of photoperlodlc Information to the reproductive axis. Section A



defines patterns of melatonin secretion under various photoperlod regimes and 

Investigates the nature of the mechanisms governing the generation of melatonin rhythma 

m the rainbow trout. In section B  patterns of melatonin secretion are examined In two 

other commercially Important fish, the Atlantic salmon and the Nile tllapla. Qraochrom l l  

niiniinus. Finally, aactlon C  Investigates the ability of constant-release melatonin 

Implants to mimic the effects of changes In daylength on the timing of reproduction In the 

female rainbow trout.



1,4 Thm annual r«nrftriurtK/Q cvcto of th « fcfMta raklbOW iKUll

T h I«  thests Is principally concam ad with alucidating tha machanisms undartying tha 

pholoparlodic control of raprodocllon In lha lamala rainbow trout and hanca a brial 

dascriplion ol tha annual ovarian cy da  Is appropriata (lor nwra datailed accounts saa van 

dan Hurk and Paula, 1 97 »; Sum ptar. 1984; Cum aranatunga, 1985: Scott. 1987; 

Bromaga and Cumaranatunga. 1988).

Tha  pairad ovarias ara suspandad In tha dorsal part ol tha body cavity and lia althar 

sida ol lha swimbladdar. During maturation lha ovarias Incraasa In siza from lass than 1%  

to as much as 2 0 %  ol total body walght. Each ovary Is surrounded by a parltonaal 

mambrana which lorms a gonoduct through which mature eggs ara ovulated Into tha body 

cavity prior to ovlposltlon via tha urogenital papilla. In tha wild tha female rainbow trout 

digs a redd (nast) In which she lays her eggs, but llsh maintained in captivity appear to 

lack the appropriate, as yal unknown, environmental cues (possibly including a gravel 

substrata, social stimuli and pheromones) lor ovipositlon and eggs have to be stripped 

from tha fish manually.

Rainbow trout may spawn lor tha first time at either 2 or 3 years o l age depending on 

strain ar»d environmental influences such as tamparature and food availability, which 

determine size arxl growth rota. They produce a single batch of 2-3000 eggs each year but 

may spawn several times during their lifetime. At any one time at least two distinct 

populations of oocytes can be distinguished in their group-synchronous ovaries: one of 

primary oocytes, which are permanently available for recruitment into the later stages of 

egg development, artd the other of synchrorwusly developing secondary oocytes, destined to 

torm that season's batch of eggs.

Sexual differentiation of primordial germ ceHs occurs at about 3 months of age leading 

to the formation of pre-meiotlc cells known as oogonla. Th e se  cells soon start to 

prolHerate by mHotlc division, after which some are transformed into primary oocytes 

(oogenesis), marking the beginning of the first melotic prophase. At this stage the oocytes 

become enveloped In a layer of folHde cells. A  detailed histological examination enabled 

Cum aranatunga (Cum aranatunga, 1986: Brom age and Cum aranatunga, 1988) to



dIMIngulsh 7 inlerrelaMd stages ot oocyte development In the rainbow trout ovary (Figure 

1.2). Th e  timing of these stages during ovarian development Is Illustrated In Figure 1.3. 

Stages 1-3 represeni Ihe primary growlh phase (prevllellogenesis) during which the 

oocyles Increase In diameter from around 35 1o about 3S0pm. By the end of stage 3 the 

follicle cells surrounding Ihe oocytes have dMferenilaled Into a single granulosa and two 

thecal layers.

Stages 4-6 comprise Ihe secondary growlh phase during which Ihe accumulation of 

yolk Is primarily rosponsIWe for Ihe massive Increase In oocyte volum e which occurs 

prior to ovulation. Veslclos observed during stage 4, previously thought to contain 

endogenously synthesised yolk (yolk synthesised within the oocyte), are pushed to Ihe 

periphery when Ihe accumulation of exogenously synthesised yolk begins In stage 5. and 

are now believed to be precursors of the cortical alveoli, which release their distinct 

glycoprotelnaceous contents Into the perivilelline space at ferlillsalion. Exogenous yolk 

consists of a high m olecular weight (4 4 0,00 0 ) glycolipophosphoprolein named 

vitellogenin which Is synthesised by the liver and released Into Ihe blood. During stages 5 

and 6 (exogenous vllellogonosis) vitellogenin Is sequestered by receptor-mediated 

endocytosis (Ty ler et al., 1988) and enzymatically cleaved into a lipId-rlch protein, 

lipovltellln (M .W . 390.000), and a phosphale-rich protein, phosvitin (M .W . 35,000) 

lor storage. Exogenous vitellogenesis is first apparent 4-5 months before ovulation in fish 

maturing at 2 years of age and 8-9 months prior to spawning in fish maturing lor either 

the first or second lime at 3 years of age. During stage 8 Ihe centrally located nucleus 

(germinal vesicle) starts migrating towards Ihe periphery of Ihe oocyte (Ihe beginning ot 

oocyte maturation) where Ihe nuclear m em brane disintegrates (germ inal vesicle 

breakdown) and the first melotic division Is compleled with the expulsion of one set of 

chromosomes (the first polar body). The  resultant stage 7 oocyles may continue to 

sequester vitellogenin and water uptake may contribute an additional Increase In size 

prior to ovulation (BlazI and Fremont, 1988). a1 which point the ripa eggs are expelled 

from their follicles Into Ihe body cavity, where they are bathed In ovarian fluid. B y this 

stage the eggs have attained a diameler of about 5mm. Fertilisation occurs when a sperm
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Figure 1.2: Schemellc diagrem IMustretIng the diflerent tlagee of oocyte development 

which cen be recognleed during overlen meluretlon In the rekibow trout (Irom Bromege 

and Cumaranatunga, 1968).





penatrM M  ttw m icropyl«. « n  op«nlng located adiacani to the ruptured germinal vaalda: 

malotia rasumea. the second polar body Is allmlnalad and the male and female chromosome 

sets combine. After fertilisation water Is absorbed Into the perivllelllne space (water­

hardening) and the chorion becomes knpeivloos to the entry of further water and solutes.

The  total number of eggs ovulated Is dependent on the degree of atresia (resorption of 

oocytes) occurring during ovarian developmenl. Atresia Is thought to occur at any stags of 

oocyte development but Is considered to be of particular significanco during exogenous 

vltellogsnesis. during which a 75-fold reduction In oocyte numbers has been reported 

(Bromage and Cumaranatunga. 1988). However. Tyler et al. (1990) recently found no 

evidence for atresia during exogenous vltellogonosls. These differences may be explained 

by differences In the condlllon of the fish, for example their nutritional status, a factor 

known to affect the Incidence of atresia (Sprlngate at al., 1985).

Although the ovarian cycle has been describsd as s  sequence of stages It should be noted 

that the phases of ovarian development may overlap and hence several stages may be 

observed In the ovary at the same time (Bromage and Cumaranatunga. 1988; Tyler e l al.. 

1990). It Is thought likely that the sequentially Initiated physiological events (e .g. 

cortical sh/eoll formation, exogenous vllellogonesls) do not sequentially replace each 

other, but. once killlaled, remain active throughout oocyte developmeni (Wallace el al., 

1987). Although ultimately determ ined by environm ental cues, principslly the 

seasonally-changing daylenglh. the direct coordination of these events Is under 

mulllhormonal control and hence the following section reviews current knowledge of the 

principal components of the neuroendocrine system controlling ovarian development In 

salmonkts. with emphasis placed on the rainbow trout whenever posslUa (Figure t.4 ).



1 .5  M « .» n « iv in rr in «  ennimi n l r«n fnftlkjltm  In

T h «  roto ol th# plnM l gland and malatonln ki lowar vartabralas is unclaar, but Ihefa is 

aoma avidanca. principally darivad from cyprinida at prasant. that both ara Involvad m 

aoma way m ttw timing of raproducllon m talooat flah (ravlawad by da Vlaming and Oloaaa. 

1981). Malalonin waa Ural Idantiflad In lha pinaal of a aalmonid flah (Chinook aalmon, 

rw ~ h v tw .h n «  t.ha«viaeha) by Fanwlck (1970a). Subaaquant atudlaa hava damonalralad 

diurnal rhylhma m pinaal (Burton and Garn, 1983) and circulating malalonin (Q arn at 

a l.. 1978a,b: Ow ana at al.. 1978) In tha rainbow trout, with blood malatonln lavala 

alavatad al night for a parlod oorraaponding to lha duration o l darknaaa (Duaton and 

Bromaga, 1986b). Thia hormonal prollla ol aaaaonally changing daylangih may act to 

aynchronlza a varlaly of bodily rhylhma wHh tha axiarnal anvironmani, although thare la 

currantly no avldanca that malalonin can Inlluanca reproduction In aalmonid llah aa It doaa 

In aome higher vertebratea (diacuaaad In d e u ll m the introduction to chapter 4 (aection 

4 . 1 ) ) .

Although tha precise site(s) of action of melatonin remain unknown, tha brain, and In 

particular the hypothalamus, have been conakfared the moat likely targets (Binkley, 

1988). Experlmenia In which Intrahypothalamic microimplania containing melatonin 

were used to provida a localised release of me hormone hi the brains ol rodents provide 

direct evidence that melatonin exerts its reproductive effects In m e hypothalamus (Glass 

and Lynch, 1982; Hastings ol al.. 1988). Th is  evidence Is complomenlad by the 

Identification of putative melatonin receptors In the hypothalamus of several higher 

vertebrates, although receptors have also been reported In other brain regions and 

peripheral altos such as the pituitary gland and gonads (ravlawad by Morgan and 

Williams. 1989: Stankov and Rallar, 1990). B acanl studios In the goldfish, f li rg u lu «  

. . i r . i . is  (Martinoll al al„ 1991) and rainbow trout (Aggalopouloa and Domaino, 1990) 

kidlcata a wkfaspraad disirlbullon of malalonin racaptors In tha lalaoat brain. Including 

aignificant binding capacity in tha hypothalamua. No malatonln receptor altos ware 

datactad In m a pituitary gland (Martinoll at a l„  1991). Malalonin may Iharafora act 

within lha tolaoat hypothalamus to ragulata aacration of gonadotropin raloasing
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horm on«(«) (Q n R H (s )). but this remains unproven.

Tw o  forms of Q n R H  have recently been detected In the brain of the chum salmon 

n~v«m vnnh..s k a ta . Salmon ! Q n R H  (s -Q n R H -l) la a decapeptlde which showa 8 0 %  

sequence hom ology with mammalian Q n R H  (luteinizing hormone releasing horm one, 

LH R H ), differing o n ly  In amino aclda 7 and 8 (Sherwood el al., 1983). Th e  prim ary 

structure of s a lm o n -II Q n R H  (s -Q n R H -II) Is unknown, but Its existence has been 

oonfirmad by chromatographic and cross-reacllvlly studies (Sherwood at al.. 1987a. b), 

and H Is thought to be  Identical to chlekan-ll Q n R H  (c -Q n R H -II: Sherwood at al., 1984). 

At least seven other talaosts. Including the rainbow trout, possess two lonns of Q n R H  with 

the same chrom atographic and Immunological profiles as s -Q n R H -l and s -Q n R H -II  

(Sherwood et al., 1984; Sherwood, 1987b).

Thera Is currently little Information about changes in Q nR H  concentrations that may 

accompany sexual maturation in salmonids. Schafer et al. (1989) reported an Increased 

immunoreaclivily to Q n R H  (antisera raised against synthetic L H R H ) In the brains of 

rainbow trout undergoing exogenous vltellogonesis compared to previtellogenic and vesicle 

stage (stage 4 ) fish. However, Okuzaw a at al. (1990). using highly specific antisera, 

reported that s -Q n R H -I  concentrations were relatively low In the hypothalamus and other 

brain regions of m ature rainbow trout compared to Immature fish, whereas they were 

higher In the pituitary gland of mature than immature fish; c -Q n R H -II  concentrations 

were similar in m ature and Immature fish. These authors therefore suggested that more 

s -Q n R H -I  Is transported from the brain to the pituitary gland as gonadal maturity 

progresses, but that, unlike s -Q n R H -I. c -Q n R H -II does not regulate gonadal maturation 

In the rainbow trout.

Th e  primary function o1 Q n R H (s ) Is stimulation of the synthesis and rsleaaa of 

gonadotropln(s) (Q T H (s ) )  from specific glycoprotein containing calls located in the pars 

«sta lls  of the pItuMary gland. A  number of studies have provided evidence for this m 

salmonids. Both salmon and trout hypothalamic extracts stimulated Q T H  release In  v lUQ 

from pHultarles of testosterone-primed juvenile rainbow trout (Crim  and Evana, 1980; 

Crim at al., 198 1 a). Synthetic mammalian LH R H  also stimulated Q T H  release from
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rainbow trout pitultarles in v itro  (Crim and Evana, 1980; Fahraaus-van R aa at al., 

1983) and tynthatic a -Q n R H -I atimulatad Q T H  ralaaaa In a doaa-ralatad mannor trom 

Isolated rainbow trout pituitary calls (W all at al.t 1986), although tha minimum 

sllsctiva dosa varied according to tha stags of raproductlva devatopmsnt (Wall and 

M arcuzzI, 1990). in viw« synthetic mammalian LH R H  and s -Q n R H -I and their analogues 

have proved sffsctiva In sMmulatIng Q T H  relaasa In a variety of salmonid flsh Including 

ooho salmon (Van Dar Kraak at al., 1983; Donaldson at al., 1 98 «), Atlantic salmon (CrIm 

at al., 1983a, 1988a, b; C rim , 1984), brown trout (Crim and Clustt, t974; Crim  at al., 

1981) and rainbow trout (Walt at al., 1978; Crim  al al., 1983b; Crkn, 1984; QIalen and 

Qoos, 1984; Crim at al., 1988«, b ), although tha rasponsa of the rainbow trout to Q nR H  In  

v ivn  also varies seasonally (W ell at al., 1978; Qoos at al., 1982).

In addition to Q nR H s there Is now oonsMarabla evidence that a gonadotropin release 

inhibllory factor (Q R IF ) acts directly on the gonadotrophs to Inhibll Q nR H  stimulated Q T H  

relaasa In teleosts (Peter 1982. 1983; Peter at «1.. 1986). Th e  majority of studies have 

been conducted on the goldfish. In which the Q R IF  appears to be the catecholamine, 

dopamine. Chang and Peter (1983a) found that Inlra-periloneal Injection« of dopemlne 

and apomoiphlne. a dopamine agonist, caused a reduction In serum Q T H  levels In goldfish 

whereas pimozide, a dop am ine  antagonist, significantly Increased serum  Q T H . 

Furthermore, dopamine and apomorphine blocked LH R H  analogue (LH R H -a ) IrxJuced Q T H  

release whereas pimozide potentiated the effects of LH R H -a  on Q T H  release and Increased 

the occurrence of induced ovulation (Chang and Peter, 1962; Chang and Peter, 1983b). In 

the rainbow trout dopamine Inhibited pHultary Q T H  release In Yllfg (C rim , 1981) and 

pimozid« potentlaled the effecls of LHRH-a on Q T H  release (Blllsrtf »1 '»•<)•

However. In contrast to many of the telaost species so far Invastigatad, m which dopamlna 

exerts such a strong Inhibitory inftuance on Q T H  secretion that administration of LH R H -a  

alone (rather then In combination with a dopam in« antagonist) Is usually InelfecUve In 

Inducing ovulation (Peter at a l.. 1989), ovulatory Q T H  levels can be attained m LH R H -a  

treated salmonld« without uaing a dopamlna antagonist (Donaldson and Hunter, 1983). 

Thus, as a Q R IF, dopamkie m ay play a relatively minor role In saknonlde.



Although Q T H  pnparatlont h « v «  boen avalliM o lof »o m « llmo from •ahnon (Donaldton 

•t ■!.. 1972) and rainbow trout (Braton at a l.. 1979) alucldatlon of tha rola(a) ol 

Q TH (a ) In raproductlva phyalology haa baan hkidarad by lha lack of agraamant on tha 

numbar. MantNy and chamical alructura of lha Q T H (a ) In aalmonld pHultarlaa. Soma 

workart mamialn that «ah poasaas only a aktgla Q T H .  which may. howavar. hava aavaral 

laoforma (ravlawad by Fontalna and Dufour. 1997) whila olhara favour tha axiatanca of 

two or more Q TH a . Thua. Idlar and oo-workara (Idler. 1992: Idlar and N g. 1993: N g and 

Idlar. 1993) raportad lha laolallon ol two dialinct Q T H a  from chum and Chinook aalmon 

pitultarlaa. uaing affinity chrom atography on  Concanavalln  A -S a ph a ro aa . Tha  

caibohydrala poor fraction (daaignated Con A I). which la not adaorbed on lha column, la 

thought to alimulata vitellogenin incorporation by the oocytaa ol a variety of Hah Including 

tha rainbow trout and Atlantic aalmon (C am pbell. 1979: Idler. 1982: Ng and Idlar. 

1983: Idler and So. 1987). The  carbohydrate rich fraction (dealgnalad Con A ll), which la 

adaorbed on lha column, haa bean reported to alimulale almoal all ovarian activiliea but la 

conaiderad to be principally involved with the induction o l oaalrogan. and hence 

vilellogonin, aynihaala. and with final maturation and ovulation (Idler. 1982: Idler and 

Ng, 1983; Ng and Idler, 1983; Nagahama. 1987).

More recently, Kawauchi and collaaguaa, working with lernala chum aalmon 

pitultarlaa, iaolaled and characlerlaad two chem ically diatinct Q T H (a ) homologoua to 

mammalian LH and FSH  (Kawauchi at al.. 1987: Itoh at al.. 1988: Suzuki at al.. 1988a. 

b, Kawauchi at al.. 1989). Thaaa QTHa, dealgnalad Q T H  I and Q TH  I I .  were equally potent m 

atimulating gonadal growth In rainbow trout In y lvg  (Suzuki at al.. 1988a) and oealadiol- 

178 production by mid-vilalloganic ovarian folliclaa of amago aalmon, OlWiOftiynchu «

................. In vitro (Suzuki at al., 1997: Suzuki at al.. 1988a, c). Howavar, Q T H  I I  waa

more potent than Q T H  I  in atimulating ralaaaa of lha maturation-inducing atarold 17o- 

hydro xy-2 0 9 -dlhydroprogaalarona (1 7 o 2 0 B -P ) by amago aalmon poal-vllalloganic 

ovarian loHIclaa (Suzuki at al.. 1987: Suzuki at al.. 1998c).

Tha davelopmani of apadflc radlolmmunoaaaay« for Q TH  I a ndO TH  I I  haa revealed that 

Q T H  I  la the predominant Q T H  m lha pHullary and plaama during lha early alagaa ol

3 9



vHatlogenatis In the reInbow trout, w here«» Q T H  II predom ínete« In mature rainbow trout 

and poat-ovulatory amago and chum salmon (Kawauchl et a l„ 1987; Suzuki at « I.. 1987. 

S w a nso n  at « I.. 1987; Suzuki at al.. 1988d). Furtharm ora, a Q n R H  analo gu«. dea- 

Q ly '“ID -A L A * )Q n R H -« , significantly stimulated release of Q T H  I, but not Q T H  II, from 

pituitarias of rainbow trout at early vitellogenic sta ges; In contrast, pituitarias from 

reproductlvely mature trout released Q T H  II. but not Q T H  I, m response to Q n R H -a  

(K aw auchl et « I.. 1987; Swanson at al.. 1987). Th u a. there appears to be dUferentlal 

synthesis and secretion of Q T H  I and Q T H II  at dHferent stages of the salmonld reproductive 

cycle, possibly reflecting different biological roles. A  similar study m coho salmon led 

DIckhoff and Swanson (1990) to propose the • m «lur«llon«l surge hypothesis'. Th e y  

suggest that Q T H  I regulates all aspects of reproductive developmeni up to the time of 

spaw ning and Is responsibl« for the production of steroid« which causes aocumulallon of 

Q IH  I I  In the pituitary. Ovulation Is then triggered by a surge In blood levels of Q T H  I I  at 

spaw ning time.

In conjunction these studies pfovide convincing evidence tor the existence of at least 

two Q T H s  In salmonld fish. However, Q T H  I and Q TH  I I  a re  synthesised from two different 

cell types In salmonld pituitarias (Kawauchl at al.. 1989; NozakI at « I.. 1990a, b) and 

are homologous to mammalian LH and FSH  (Iloh et al.. 1988) while Con A l and Con A ll may 

originate from a single gonadotroph (van Oordt and Paute, 1983) and only Con A ll shows a 

high level of homology with LH and F SH  (Idler and M g. 1983). Thus, despite Intensive 

research, the precise number and nature of salmonld Q T H s  Is still far from dear. This 

creates problems In the Inlerpretatlon of studies reporting changes In circulating Q T H  

levels since It Is Impossible to know exactly what the available Q T H  radioimmunoassays 

develo ped In different laboratories actually measure (D o d d  and Sumpter, 1984). Th e  

m ajority, however, appear to be directed primarily against the Con A ll Q T H  (Pater. 

1981; Dodd and Sumpter, 1984; Peter et «I.. 1988).

A  number of studies In the rainbow trout hava revealed a transient rise In blood Q T H  

levels during the early stages of oocyte development followed by a much more pronounced 

Increase during the period of final maturation and ovulation (Figure 1.8: Blllard et « I..
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1978; Broinag» •! « I . .  1982«, b: Zohar M  al.. 1982; Whitehead et al., 1983; Sumpler al 

al., 1984). sim ilar changes have been obaenred In the brown trout (BUIard et al., 1978; 

Breton at a l„ 1983a). Other studlaa. however, have failed to detect an toilMal Increase In 

Q T H  (Scott and Sum pter, 1983a; Sumpler and Scow, 1987). Thesa dlacrepandes may ba 

due to differences In assay specificity, as previously mentioned, o r may reflect the 

pulsatila nature of Q T H  secretion In Immature rainbow trout (Zohar et at., 1982; Zohar el 

el., 1986). It Is worth emphasising, however, that studies utilising the homologous 

rainbow trout assay developed by Breton at al. (1976), rather than heterologous assays, 

have consistently demonstrated two phases of Increased Q T H  levels during the ovarian 

cycle of the rainbow trout (Bromage and Cumaranatunga, 1988).

The  Initial elevation In blood levels of Q TH (s ) Is thought to stimulate production of 

oestrogens. particularly oestradiol-178 and oesirone, by the ovaries (Id ler and Campbell, 

1980; Bromage et al., 1982a; Ng and Idler, 1983; Whitehead at al., 1983). Increasing 

levels of o e stra d io l-178. which peak 2 -3  months prior to ovulation (Figure 1.5), 

trigger the synthesis and secretion of vitellogenin by the liver (La m b e rt et al., 1978; 

Idler and Cam pbell, 1980; van Bohemen and Lambert, 1981; van Bohem en et al., 1982a; 

Whitehead et al., 1983). Oestrone. which Is present In the Wood before oeslradlol-178, 

Is also capable of Inducing vHellogonIn synthesis, but Is far less potent; van  Bohemen et al. 

(1982b) suggest that It may serve to sensitise the liver hepatocytes to oestradiol-178. 

Certainly, p rim a ry exposure to either oestrone or oestradiol-178 itself produces 

vitellogenin synthesis only after a lag but secondary exposure results In Immediate 

synthesis of vitellogenin In the rainbow trout (Ellloll el al., 1982; v a n  Bohemen et al., 

1982b; Law less, 1987, cited In Lazier at al., 1987). Altarnatively, since oestrona 

secretion precedes oestradk>l-178 secretion, the presence of oestrona may simply be a 

reflection of Its position In the stepwise synthesis of oestrogans by the ovary (EIHott at 

at., 1984; Brom age and Cumaranatunga, 1988).

Vitellogenin levels peak at ovulation (Figure 1.5), at which time it la the ma)or Wood 

protein (Sum pter, 1984). Calcium Is an Integral component of the vitellogenin complex 

and hence calcium  levels rise concomitantly with those of vltalloganin (Figurai .5; EINotl



Testosterone (T )

Figure 1.5: Composite graph Illustrating the seasonal changes In serum levels of a variety 

of hormones associated with the annual cycle of reproduction m the female rainbow Iroul. 

Th e  vertical lines on the x-axIs refar to the first day of each month and the a rrow  (T ) 

denotes the timing of ovulation (from Bromaga and Cumaranatunga, t988).



•t al., 1984). Sarum calcium tharelofa pcovidaa a usahil Index ol vnaHogcnln tacrallon.

Th e  aelecllve uptake of circulating vitellogenin by the developing oocytes may be 

stimulated and maintained by Q T H (s ) (N g and Idter. 1983). but the situation Is far horn 

dear. C o n  A H  Q T H  stimulated vHettogenIn uptake by rainbow trout ovarian lómeles In  

w iiro (Breton and Derrien-Quinard. 1983: T y le r  et al., 1987), but serum levels ol this 

hormone remain low or undetectable during the most active period o l vllellogenosis 

(Figure 1.5: see previous references). Idtor arul S o  (1987) have reponed that Con A IO IH  

was elevated from 'endogenous' through exogenous vHsHogsnesIs and stimulated ovarian 

uptake o l vHellogonIn In landlocked Atlantic salm on (Idler and So, 1987). Furthermore, 

administration ol antibodies to Con A I Q T H  diminished vlleHogenln uptake during 

'endogenous' vitellogenesis and reduced norm al gonadal growth during exogenous 

vitellogenesis (Idler and So, 1987). Thus, both C o n  A I andCon A l l  G T H  may be Involved m 

vitellogenin sequestration. Th e  elfects ol Q T H  I  and Q TH  II on vitellogenin incorporation 

have not been Investigated. Again, further clarification awaits the elucidation of the 

number arvi nature of fish Q T H (s ).

Testosterone levels start to rise at about the same time as the oestrogens (Figure 1.5) 

but peak later, approximately a week b e lo re  ovulation (Scott at al., 1983). Th e  

physiological role ol high levels of testosterone In female salmonids Is, however, unclear. 

One possibility Is that testosterone has no primary function and Is present in the 

circulation solely in Ns capacNy as a precursor to oeslradlol-178. However, since far 

greater concentrations of testoslerone have boon recorded in female than In male rainbow 

trout (Scott at al., 1980), a functional role seems likely. Testosterone stimulates 

synthesis ol Q T H  by the pituitarias ol Immature rainbow trout (Crim and Evans. 1979; 

Crim at al.. 1981b: Qlelen and Qoos, 1984). but this positivo steroid feedback, which 

isipears to act at both the hypothalamic and pituitary levets (Qoos, 1987), may be due to 

the conversion of testosterone to oestradk>l-17B since only aromatisablo androgens were 

olfactiva In elevating pltuNary Q T H  (Crim  at al.. 1981b). Lambert and van Bohemen 

(1980) have demonstrated the aromatlsatlon o l androgens to oestrogens by brain tissue 

from female rainbow trout and hence testosterone might be considerad to be a targetorgan
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specHIc oestrogen (Scott and Sumpter. 1983b).

Testosterone may also be Involved ki the development o l  atresia. Cumaranatunga at al.. 

(1985) found that treatment of female rainbow trout wHh testosterone during exogenous 

vitellogenesis produced widespread atrasla. W h a th a r this Is a specific effeef of 

testosterone or results from Increased steroidal nagathro feedback on Q T H  secretion 

(which In turn might lead to a reduction In vitellogenin uptake by the developing oocytes) 

Is unclear (sea Bromaga and Cumaranatunga, 1988).

Final at al. (1988) have suggested that testosterone m ay Inhibit the accumulation by 

oocytes of cyclic A M P  (c A M P ), »rhich has been impilealed In the regulation ol 

maturatlonal events associated with the actions ol 1 7 o 2 0 B -P  (Figure 1.6: Nagahama at 

al., 1985: Jalabert and Fktel, 1986; Nagahama and VamashHa. 1989). They proposed that 

the maintenance ol low cAM P levels may be necessary to equilibrate the system before the 

final. Irreversible, action ol the maturatlonal surge of 17o206-P. Since testosterone 

levels remain above basal lor approximately one m onth alter ovulation (Scott et al., 

1983) It has also been suggested that this hormone Is Involved with changes In the ovary 

In preparation lor the next reproductive cycle (Brom age and Cumaranatunga, 1988).

Towards the end of the reproductive cycle, as oestrogen levels fall, there Is a surge In 

drculatlng Q T H (s ) (Figure 1.5: Blllard el al.. 1978; Brom age el al., 1982a; Breton et 

al.. 1983; Scott and Sumpter, 1983a; Scott et al., 1963; Whitehead et al., 1983; Zohar at 

al., 1986b; Sumpter and Scott. 1987). There Is a highly signlllcani negative correlation 

between levels of oeslradlol-178 and Q T H  suggesting that the Q T H  surge occurs In 

response to a reduction In sax-starold nagativa feedback (Soon el al., 1983; Whitehead et 

al., 1983; for a detailed discussion of steroid feedback mechanisms In fish see Qoos, 

1987). Increased Q T H  stimulates secretion ol two further steroids by the ovaries, 17a- 

hydroxyprogastsrone (1 7 a O H -P ) and 17o 20B -P , raaultlng In final maturation and 

ovulation (Scon and Baynas, 1982; Soon at al., 1982; Goetz, 1983; Scon et al., 1983). 

These  steroids rise conoomitantly al or about the lim e of oocyte maturation In rainbow 

trout (Figure 1.7: Soon at al.. 1983; Springata e l a l., 1984), but 17a20B-P Is by far 

the most potent maturation-inducing steroid In salmonid fish (Qoetz, 1983; Nagahama al





F igu re  1.7: Changes In serum levels (mean ± 1 SE M ) o1 1 7 a-hydro xyprogesterone 

(1 7 a O H  P ) and I 7 a -h y d ro x y -2 0 8  d lhydro progeslerone (1 7 o 2 0 B -P ) during final 

maturation and ovulation in the rainbow trout (from Sprlngate at al.. 1984).



•I.. IM S ; N a o .h « m . ,  1M 7; ScoM M d  C « . « r lo .  1 M 7 ). T h .  principal function of 1 7 o O H - 

P  appears to ba  as lha ptacursor of 17o 20B -P ; tha thacal call layer of fha ova rian  

folllclas produces 17o O H -P  which traverses tha basal lamina and Is converted to 

1 7a20B-P by tha granulosa oaS layer (Flgufa 1.6; Nagahama at al.. IM S ;  Nagahama a n d  

Yam M hita. 198 9 ).

The  foregoing account provides a brief overview of the principal components Invotvad 

m the neuroendocrine control of reproduction m the female rainbow trout. Several of th a  

parameters described (principally calcium, but also oeslradlol-17B and loslosterono) 

have been monMored In experiments presented In this thesis to provide an assessment of 

the rate of ovarian developmenl under various photoperlod regimes. Although beyond the  

scope of this review the reader should be aware that a number of other substances h a ve  

been Implicated In the control of reproduction m salmonids (Figure 1.4). These Includa 

calcitonin (W atts  et al.. 197S; Haux et al., 1 M 7 ; Fouchereau-Peron et al., 1 9 9 0 ). 

Insulin (Ty le r et al.. 1987a), neuropeptide Y  (Breton et al.. 1989, 1990). p rolactin  

(Prune! et al., 1990). prostaglandins (Jalabert and Ssollosi. 1975; Crim. 1981; Q o e tz  

et al.. 1987). and the thyroid hormones, thyroxine and Irllodolhyronine (C yr and B a le s , 

1988; C yr et al., 1988; Dtekhoft et al.. 1989). Th u s, our knowledge of the  

neuroendocrine events controlling salmonid reproduction Is still tar from complete.





This  Chapter describes the materiels and methods relevant to more than one 

•xpertment.

2 .1 c.parimnntal animals.

Domesticated stocks of lemale rainbow trout, nnm ftlYnnhua myklM  (formerly SàknQ 

aaiidn a ü). were used for the majority of the experiments described In this thesis. 

Different experiments utilised fish of several dIHerent strains although, whenever 

possible, fish from the same source were used In related experiments. Detailed 

information regarding source, age and size of the fish Is Included In the methods section of 

each experiment.

Fish were maintained In a variety of controlled environment aquarium systems 

appropriate to the experimental protocols:

Experiments 1-4 In Chapter 3 utilised 6 circular 1200 litre capacity glass fibre 

tanks (diameter 1.5m., water depth 0.6m .; Figure 2.1) enclosed in a wooden framework 

and llghtproofed with Industrial grade black polythene sheeting. The  tanks were supplied 

with gravity fed spring water at a flow rate of approximately 50 litres per minute and a 

constant temperature of 7.5-8'>C. Hinged doorways allowed access to individual tanks. 

Artificial light was supplied by SOW pearl tungsten filamoni light bulbs secured 1.5m. 

above the tanks and providing a light Intensity of 25-30 lux (Lighlmaster photometer; 

Evans Eleclroselenium Ltd., Halstead, Essex, U .K .) at the water surface. Daylengih was 

controlled by 24 hour electronic time switches (Smith's Industries Ltd., Lcndon. U.K.). 

Th e  tanks were covered with fine mesh bird netting to prevent fish escaping. Three 

similar tanks were used In experiments In Chapter 4. Th e se  received chlorine filtered 

mains water (Flltromat chlorine flHers; Elga Ltd., High W ycombe, Bucks, U .K .) at a flow 

rate of approximately 20 litres per minute. Water temperature varied seasonally between 

4 and 17-C. Hinged fibreglass lids covered m black polythene sheeting rendered the tanks 

lightproof. Artificial light was supplied by SOW pearl tungsten filament lighi bulbs
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. « « r e d  in w .t .d x o o ( bulkhM d lam p, (modal EB.10: J . and  Q . CooflW rI. U d .. Glasgow. 

U .K .) 0.15m. a b o v . tha w a lw  « i r f a c .  Those pfovld«1 a llghl Inlanslty ol 2000 kix at the 

watar s u r t a c  d lr« :t ly  bonaath the lamps and 50-360  lux 0.5m . below tha lamps 

(n »a s u i«1  with water removed). Photoperiod was o o o h o ll«! by 24 hour dlglt.1 ^ «tlro n lc  

time wvltche. lltt«J  with b atten ., ter prot«dlo n against power c u t. (Smith’s Indu.trto. 

Ltd .).
Fish wore malntaliwd In oxyder- tanks In experiments 5-7 In Chapter 3. Tho se are 

commercially a v .lla b l. (Field, Stream and Covert Ltd.. Merkten, U .K .) o b to n g -.h a p «! 

ttb re g l... tank, (length 3.1m., width 1.65m.. water depth 0.7m.) wHh a centrally tocalml 

screen (Figure 2.2). Th e  tanks wore sub-dlvIded Into 8 section. wHh netted screen, to 

allow dmerent e x p « lm .n t .l  group, to be segregatml. Spring water was «.pplled at a rat. 

ol approximately 90 litre, per minute and water circulation and oxygen le ve l, were 

Increased by a large submersible air pump. Water temperature varted . . . « . n a l l y  between 

7 and 1 5 -C . Continuous Illumination was supplied b y  cool while fluorescent tubes 

suspended 1m. above the lank, and providing a light Intensity approximating 1000 lux 

over the majority of the water surface. Fine mesh bird netting prevonKKl fish « « » p in g .

Experim ent. 7 and 8 In Chapter 4 .m pk>y«f 2 rectangular flbregla.. tanks (length 

1.5m., width 0.9m ., water depth 0.5m .) each with a separate supply of rtmirculaling 

mains water maintained at a constant 12-C  by an electric chiller unit (Grant Instruments 

Ltd., Cam bridge, U .K .). Water was provided by each header lank at apprcxlmately 30 

litres per minute and drained Into a faecal trap and gravel Alter prior to being pumped 

(pump model PV21; Beresterd and Son Ltd., Birmingham. U.K.) back to the header tank 

(Figure 2.3). A  ball-cock controlled top-up system compensated tor w a r «  losses due to 

« K i  evaporUlon. Cool whMe fluorescent tubes securwi to the c lu n g  3m. above the 

t « , k .  provided a light Intensity of approximately 60 kix at the water « i r f a c .  An  o n -llc  

electronic lime switch (M K E l«!tr lc  Ltd.. Edm onton, London. U .K .) conIrollwJ the 

photoperiod ter both tanks. F in . mesh bird n«tlng  p r « r « i t o d  fish escaping.

At the beginning o l each experiment the fish w « .  w e lg h « l and thereafter lad dally with 

the r « i o m m .n d « l  ration and pellet s ix . of a comm ercially available trout diet
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Figure 2.2: Diagram of an 'oxyder fish hoiding tank divided into 8 sections by net screens 

to allow segregation of experimental groups (rtot to scale).





(M «ln »lre «m ; BP Nutrition U .K . Ltd., wntiam. E i m x , U .K .). A  2 ppm ■otution of m «l«!h M « 

groon (zinc fre«; Sigma Chemical Company Ltd.. Poole, Dornel, U .K .) was occasionally used 

to prevent the spread of fungal infections. Fish were stacvsd for 24-48 hours prior to any 

manipulativ« procedure.

AH mentputetive procedures were conducted under aneesthesie to aHow ease of handling 

and to minimise stress and scale damage. Th e  preferred anaesthetic was 2 -phenoxyethanol 

(Sigma Chemical Com pany Ltd.) at a concentration of 120,000 In water. Anaesthesia w as 

generally Induced within 1-2 minutes and fish placed In aerated water recovered wHhln 5 

minutes. Post-sampling mortalities were rare.

2.1.3 Idenlincellon.

When large numbers of fish required individual Idenllficallon plastic numbered lags 

(Charles NesI Ltd.. East Finchley. London, U .K .) were attached through the muscle et the 

base of the dorsal fln. If different year dassas were maintained In the same lank different 

coloured tags were used to provide rapid Idenllficallon of the age of a fish. The tags were 

secured by punching plastic pins through the twin holes In the tag and then through the 

body muscle using a tagging gun (KImbal Systems Ltd.. Lsicster. U .K .) more commonly 

used by the clothing Industry for attaching labels. Some tag losses were experienced during 

Initial experiments due to the plastic pins pulling out through the muscle layer after 

entanglement with the net. This was remedied by using a double tagging technique «(hereby 

one tag was placed on either side of the dorsal fin. Ta gs  were also examined at each 

sampling time and any loose tags re-secured.

W hen small numbers of fish required Individual Idenllficallon or where llsh needed fo 

be separated on a g ro up basis a Pan)el ( F . H .  Wright, Dental M F Q  Company Ltd., W est 

Dundee, U .K .) was used to mark fish on their ventral surface with aldan blue dye (1 %  

w/v In water; Sigma Chemical Com pany Ltd.). Th e  Paniel, which is commonly used In 

dentistry for the Induction of local anaesthesia. Hrss a Hna stream of dye under high



p r M t u n  wfilch It aW t to ptnotralo Iho Itih-t tkln. V w ying Itio numboft andlOr potW ont 

of Iho dyo markings on aach fith providad a ooda for Idantiflcallon. Markings ramalnad 

vltitalo tor up to a ytar but usuaNy rarpilrsd ona ronawal during lha firsi 6 months.

2 .1 .4  ninnri ii.m nllnn

Blood samplas w a rt usually taksn via tha Cuvarlan sinus of phanosysthtnol 

anaatthatitad Hsh although occasionally broodsloek wars Wad by cardiac punctura and 

juvanlta fish via tha caudal dorsal aorta. For broodslock lha Wood was withdrawn Into SmI 

tsru m  monovallos (SarsladI Ltd.. Laksslsr, U .K .) Illlad with 2 1 0  slarlle hypodermic 

needlas (Qlllatta U.K. Ltd., MkfcJIasax, U.K.) wharaas tor juvenUes Wood was wHhdrawn 

Into 2ml tyrin g a t (Tarum o Europe N .V .. Lauvan, Belgium) rinsed with ammonium 

haparin (4mg/ml, 179.1 unHs/mg; Sigma Chemical Com pany Ltd.) and flllod with 190 

naadlas (Olllatta U.K. Ltd.). After removal of lha needle haparinissd Worxf was transforrad 

Into new pWystyrana tubas (LP 3: Luckhams Ltd., Burgess Hill, Sussex, U .K .) and kept on 

lea prior to centrifugation (M S E  C h lltp ln ; FIsons Scientific Equipm ent Ltd., 

Loughborough. Laics.. U.K.) at 2500 rpm (4‘ C ) tor IS  minutes. Serum monovaltes were 

spun similarly after altowlng lha Wood to d o t. Th a  resulting serum or plasma was 

transferred Into new polystyrena tubes (LP 3; Luckham t Ltd.), stoppered and either 

assayed Immediately or stored at -20®C (serum) or -70®C (plasma) tor future analysis.

2 .2  nt .pemnlim  time.

Rainbow trout will mature and ovulate In captivity but will not spawn. Fish wars 

therefore examined at approximataly monthly Intervals outside the expected spawning 

pariod and at 2-weekly Intervale as lha Hsh approached maturity. Ripe (mature) females 

were recognised by distension and softening of the abdomen and the extrusion of the 

urogenital papilla which becomes swollen and reddish In colour. Ripe males, required tor 

fertilisation of the eggs, were distinguished by a darkening flash colour and the 

development of a pronounced kype (extension of the lower )aw). Anaasthetlsad females 

were Mfted from tha water head upwards and than. If found to be ripe, the eggs expressed



from «10 abdominal cavHy by exartmg gentle downward pressure on the abdomen starting 

lust behind the pectoral fins; this process Is termed 'stripping'. Th e  point at which eggs 

oouM be stripped from an mdhrldual fish was dellnad as the time of spawning for that fish.

2.3 Fnn n « - « - ■ » « " « " « «

The  eggs from Individual fish wore stripped Into clean dry 1 litre plastic jugs and the 

Ash then weighed. Milt obtalnad from a minimum of 3 fish was checked under a microscope 

for rnoimiy m ovarian fluid and added to the eggs at a concentration of approximately 1ml 

to 10,000 eggs (-Im l/W re). Th e  eggs and milt were mixed gently by hand and allowed to 

stand for a minimum of 2 minutes. After fertilisation the eggs were gently washed with 2 

or 3 changes of d e a n  running water to remove excess milt and debris. Th e  eggs wore 

allowed to stand for a further 30-45 minutes during which time they absorbed water, a 

process termed 'water hardening'. When the eggs had fully expanded they became hard and 

Arm and the following measurements could bo carried out safely and accurately:

2 .3.1 F y t  riliimaler.

Ftx each fish the mean egg diameter was estimated by counting (to the nearest half of 

an egg) the num ber of water hardened eggs aligned along a 120mm V-shaped plastic 

measuring groove. Moan egg diameter was then calculated as follows:

Mean egg diameter (mm) -  120(Numbor of eggs along groove.

Th e  accuracy of this method has been validated by comparisons with individual egg 

diameter measurements made with calipers: there was no significant difference (Studont's 

t-lest) between the two methods (Springato, 1985).

2.3.2 Pacundltv.

T h «  waMr hardarwd «oo* « ip « r « l « d  Irom #»• water uaing a ptaatic tiava, carafuWy 

poured Into a graduated beaker and the egg volume estimated to the nearest 10ml. The  

number of eggs produced by each female, the total lecundHy. was then calculatad from the 

following equations:
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Y  .  -0.283X *  5.41

Total facundity -  (antilogY)(Z/1000)

wOara: Y  -  log^ g (numbar of agga paf Niro)

X -  ago diamatar (m m )

Z  -  agg vokima (m l)

Thaaa aquallona wara darlvad from those of von Bayar (1950; cHad In Laltrltz and 

Lsvris. 1978) by Springate (1985) who found fhara was a highly significant correlation 

( r -  0 .998, PS 0.001) batwaan actual counts of agg num bers and V o n  Bayar' 

dstarmlnatlons.

The  number of agga produced par kilogram of body weight, the relative fecundity, was 

calculated as follows:

Relative fecundity (eggs/kg) -  total locundlly/post-sirippod weight of fish (kg).

2.3.3 rV»i»rtnfioini«ln Index.

Th e  stale of maturity of soma fish was assessed by calculation of the gonadosomallc 

Index (Q S I) which expresses gonad weight as a percentage of body weight;

G S I -  (gonad weight (kg)/body weight (kg)) x 100.

2.4 nelermlnalinn of total s«riim  r-jiriiim.

Total serum caldum provides a vaNd Index of vHeltogenln levels m the female rainbow 

trout (Elliott el al. 1984). Serum  calcium was determined fluoromelrically using a 

commercially available calcium analysar (m odal 940; Corning Scientific Insirumants, 

Madfleld, Massachusetts. U .S .A .).

Principla: calcain, a fluorescein darivativa, forma an Intensely fluorescent non- 

dlssoclated complex with calcium In an alkaline medium (potaaalum hyroxide); this 

fluorescence Is quenched by chelating the calcium wHh the tHranl ethylene glycol tetra- 

aoetlc a d d  (E Q TA ).
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Th #  following protocol was followsd lor routine analysis:

1. Warm up the Instruntent (15 minutes).

2. Fill the cuvette with I N  potassium hydroxide and add lOOjil calcein indicator solution.

3. Add lOOpJ calcium standard solution (10m g%) to cuvette, check for fluorescence artd 

press the 'titrate* button.

4 . Add 20M-I calcium standard, titrate and record result. Repeat. If the two standards agree 

within the HmHs of precision (4 %  for 2<Hil samples) press the calibrate' button.

5. Add 20pl aliquot of unknown serum sample, titrate and record result. Repeat as 

necessary.

Aliquots of pooled serum with a calcium content of approximately 3 0m g%  were used 

for quality control. Th e  intra-assay coefficient of variation (section 2.7.2) was 2 .80%  

and the inter-assay coefflclenl of variation was 4 .8 7% .

2.5 .«Sfmid

Serum samples were analysed for oestradiol-17B and testosterone according to the 

established methods of Duston ar>d Bromage (1987).

2.5.1 Assay buffer.

Th e  following buffer constituents were dissolved in distilled water over a magnetic 

stirrer/hotplate and made up to a final volume of 500ml:

Disodium hydrogen phosphate 8.88g

5.82g 

4.50g

0.50g

o.oag

AN chemicals were supplied by BD H  Chemicals Lid., Poole. Dorset. U .K . (Analar grade 

when available) except for sodium azide (FIsons Ltd.. Scientific Equipment Division. 

Loughborough. U.K .). Phosphate butler (pH 7.0) was stored at 4*C for up to a week.

Sodium dIhydrogen phosphate 

Sodium chloride 

Qelatirte 

Sodium azide



2.5.2 A n tia T a .

Rabbit antl-oattradlol-17B antiaarum (StarantI research Ltd.. St. Albans, Herts., 

U .K .) W M  raised soainit 1 7 B-oaa«radlol-6-(C M O )-B S A  prepared by o-cerboxy-m elhyl- 

oxlme tormallon at the steroid V  posHlon and coupling to bovine serum atoumln (B S A ). 

Rabbit antl-tastosterona antiserum (StarantI research Ltd.) w as raised against 

ta sto sta ro na -3 -(C M O )-B S A  praparad by o -carboxy-m athyl-oxim e formation at the 

steroid position and coupling to B S A . Cross reacHon data are presented In Table 2.1. The  

Ireese-dried antiserum was rsoonstitutsd with 1ml of assay buffer and transferred In 

tOOpI aliquots to polystyrene tubes (LP 3: Luckhams Ltd.) which were stored at -20*C 

until required. Th e  working solution was prepared by diluting one lOOpI aliquot to 10ml 

with assay buffer (sufficient for 100 tubes).

2.5.3 PxrSnlxbAl

[ 2 , 4 . 6 , 7 - ’ Hloestradlcl, specific activity 8 5 -1 1 0  Cl/m m ol, and (1 ,2 ,6,7-*H 1 

testosterone, specific activity 80-105 Cl/mmol, were obtained In 250pCI quantities 

from Amersham International Ltd., Amersham, Bucks. U .K . An Intermediate solution was 

prepared by diluting tOpI of the stock label to 2ml with absolute ethanol. An aliquot of the 

Intermediate solution was dried down under nitrogen and reoonsllluted In assay buffer to 

prepare a working solution of approximately 20.000 dpm/tOOtil, the concentration 

recommended by Abraham (1974).

2.5.4 Rfnriflrrix

A  stock standard solution of tOOng/ml was prapared by dissolving tpo dry oestradlol- 

178 or testosterone (both from SterantI rasaarch Ltd.) In 10ml absolute ethanol. This 

solution was stored at -20*C. Th e  working solution (tong/ml) was prsparad frashly for 

aaeh asaay by diluting tOOpI stock standard to 1ml with absoluta athanol. Sarlal dilution 

of tOOpI aHquots of tha working solution provided standards of 7.8 to 1000 pg/luba lor 

the standard curva.



Ta b I«  2.1: Cross-reactivity of oestradloM 7B and testosterone ' 

similar steroids.

I a number of structurally

SM roM C ross-reactivity

O estradlol-178

antiserum

(% )
Tesloslerorw

antiserum

O e stra dio l-1 7 8 Taken as 100 5 .8

Testosteror>e 1 .6 Taken as 100

Oettrona 7 .5 2 .9

Oestriol 1 2 .2 1 .0

11 -ketotaslosterone 1 .0 3 4 .5

Andfoslenadkxw 1 .8 1 .0

1 7a-hydroxyprogesterone 1 .0 1 .0

1 7 a -h yd ro x y-2 0 B -d lh yd ro p ro g a sta ro n e  1 .0 1 .66

Pregnenolor>e 1 .0 3 .3

Cortisol 1 .0 1 .0

Cross-reactivity Is expressed as the diminution in the proportion of bound radiolabel 

produced by lOOpg of steroid relative to that produced by either oestradk>l-176 or 

testosterone (from Duston and Bromage, 1987).



2.5.5

O fw  S «p « r «x ' d »x lr «n ^ »« le d  ch«roo«l t «b W  (S l«r « i l l  r « » « « r c h  Lid.) w «s  dte io lv«d  ki 

50nil o l « »s a y  bulfar and adrrad oontkiuoualy on lea lof 30 mlnutea batore uaa.

2 .5.6  laaOind.

DupkeaM atandaida «>d  aamplM wara aaaayad aoooiding lo Iha tokowlng protocol;

A ) gxtfactlon.

1. Add 100(11 01 aach aarum aampla to aaparala polypropylana tubas (LP 4; Luekhams 

L td .).

2. Add 2ml athyl acalala (Analar; BD H  Chamicals Ltd.) to aach tuba and tlghlly atoppar.

3. Attach tubas lo a rotary mlxar lor 1 hour.

4 . Cantrlluga at 1500 rpm (4*C) lor 10 minutas.

At this staga extracts may ba atorad at 4”C  H dasirad.

I t B .  Ethyl acalala axiracts 90-100% ol oaslradlol-178 and tasloslarona Irom tha sarum 

amd hanca a racovary slap was not Indudad In tha routina assay procadura.

B ) A a u y .

5. Translar 100(il (oesiradlol 178) or 50pl (lastoslarona) o l aach axiraci lo rimlass 

soda glass assay tubas (R.B. Radlay and Company Ltd., Sawbridgoworth, Harts., U .K .).

M R  A smaller volume ol extract was generally used lor Iha tesloslarona assay because ol 

the comparallvoly high serum testosterone levels lound In maturing tamale rainbow trout.

6. Prepare a serlas ol dilutions ol the standard hormone with absoluta ethanol In glass 

assay tubes covering the range 0-1000 pg/IOOnl.

7. Dry down extracts and standards m a vacuum oven at less than 35*C.

8. Cool dry tubes to 4*C.

9 . Add lO Onl of ontl-oestradlol-17B or anti-testosterone antiserum to each tube.

10. Add lOOpJ of tritlated oestrodk>l-178 or trHiated testosterone to each tube.

11. Vortex mix each tube tor 10 seconds and Incúbale at 4 -C  overnight.

12. Add 0.5ml of dextran-ooated charcoal to each tube (stirring during addition at 4 C ), 

vortex mix artd ir»cobate at 4*C tor 10 minutes.
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13. CantrHiio« at 2000 rpm (4*C) lor 10 m lnuM t.

14. Tranatar 0.4ml of tha auparnatant (total vokim a 0.7ml) Into glass sdntlllallon vials 

(C anbarra  Packard. Pangbourna. B arks.. U .K .) containing »m l O pllphasa  s a l» ' 

scintillation fluid (Pharmacia Lid.. Milton Kaynas. Bocks.. U.K .).

1 5 . Vorlax vials thoroughly and count tha radioactivity for s  mkiutas In a scInllKatlon 

counter (TrI-C a rb  2660/2000CA; Canbarra Packard). Include 2 further vials containing 

lOOpI tmialod hormone for estimation of the total radloacllvlty addad to each tuba and t 

vial containing sdnllllallon 5uid only lor aolomallc subtraction of tha background counts.

C ) C D c u U liO M .

16. Multiply the moan lotal dpm addad to each tuba by 0.4/0.7 (to correct lor the 

diflerenca between tha total reagent volume per tuba and the volume of the supernatant 

counted).

17. Calculate the percentage binding of standards and samples relative to the corrected 

total counts (percentage binding • (standard or sample dpm/mean total dpm)x 100).

18. Plot the percentage binding of the standards against concentration on log-linear graph 

paper (Figure 2.4) and read the concentrations of the samples from the standard curve.

19. Multiply by 0.21 (oestradlol-17B) or 0.42 (testosterone) to correct samples for 

volume of extract assayed (100 or SOpI from a total of 2.1ml; x 21 or 42). and volume of 

serum extracted (lOOpI: x 10) and to convert to ng/ml (x 1/1000).

The  sensitivity of the assays, defined as the smallest quantity of oestradiol-17B or 

testosterone statistically distmguishable from the zero standard, was 7.8pg/tubs.

D) Qusytv control.

Aliquots of pooled serum  containing approximataly 8ng/ml oestradk>l-17B and 

30ng/ml testosterone were used lor quality control. For oestradlol-17fl. the intra-assay 

coefficient of variation (sactlon 2.7.2) was 1 0 .90 %  and the Inter-assay coefficient of 

variation was 15.54% . For lasloslarons. the Intra-assay coafficlent of variation was 

5.28%  and the Inter-assay coefttcient of variation was 13.»8% .



2 .«  iLtoUInnln

S «n jm  and plasma samplas wars analysad lof malalonin by a dkact radtoimmunoassay 

adifMsd from that dascr«Md by Frasar iL lL  (1M3) lor lha maaiuramani of malalonin m 

human plaama.

2.6.1 a — » “  h..w«r

Th a  lollowing bulfar constituants wara ditaolvad In 150ml of frashly daionisad walar 

in a polyslyrana spaciman contalnar (StarlUn Lid.. Hounslow, Middx., U .K .):

Tricins (N-Trts(hydroxymsthyl)malhylolyclna) 2.6880

Sodium chlorida '  .3S0g

Qalatine 0.1 SOo

Tha  conlalnar was placad In a walar bath (~50*C) for 30 mlnutas to dtssolva tha 

galatlna. All chamicals (Analar whan avallabla) wara suppliad b y B D H  Chamicals Lid. 

Tricina buffer (pH  5.5) was prepared freshly lor each assay and maintained at 4 "C  prior 

to use.

2.6.2 Antiserum .

Sheep anti-melatonln antiserum (Guildhay Antisera LtdVStockorand Ltd., Guildford, 

Surrey. U .K .) was raised aoainst N-acelyl-5-methoxytryplophan conjugated through the 

side chain to bovine thyroglobulin. Tw o  batches are available; batch number 704/6483 

was used lor all measurements described In this thesis. Comparathra percentage cross­

reactions (m elatonin taken as 100) are 0.91 for N -acatyllryplam lna, 0 .33 lor 6- 

hydroxymalatonin, 0.22 for N-acatyltryptophan and s  0.06 lo r all other structurally 

related com pounds (data suppliad by G uildhay Antisera). Suppliad fraaza-driad lha 

antiserum w as raconstitutad with 2ml of daionisad walar to provide an Intarmadlata 

dilution of 1:10. Aliquots of lOOpI wara Iransfarrad Into polystyrene tubas (L P 3 : 

Luckhams Ltd.) and stored at -20*C. Th a  woikmg solution was prepared by dHulIng one 

lOOpI aliquot to 20ml with assay bulfar. Th is  provided sufficiani reagent for tOO tubas 

with an Initial dilution of 1-.2000.



2.6.3 B ld O li t l lL

1 0 -n i»lh y l-* H )m «la lo n ln . spacKIc activity 70-85 Cl/mmol. was obtalnad In 2 SO11CI 

quantitlaa from Amaraham IntartMtIonal Ltd. An  Intarmadiata lolutlon was praparad by 

diluting 20pl of tfta aloctt labal to 2ml with abaoluta athanol (A R  grada; Flaona Lid.). 

Storing tha Intarmadlata aolutlon In polyatyrana oontalnara raaultad m a dacraaaa In 

maaaurad radloactlvlly: glaaa oontainara wara tharalora uaad for atoraga of thaaa 

aolutlona. Tfta atock and Intarmadlala aohitlona wara atorad at -20*C. T h a  woiWng aokitlon 

waa fraahly praparad tor aach aaaay by furthar diluting tha Intarmadlata aolutlon with 

aaaay buffar to giva approximataly 4000 dpm/lOOpl.

A  atoek atandard aolutlon of img/ml waa praparad by dlasotvlng to m g malatonin (N - 

acatyl-S-methoxytryptamina; Sigma Chamical Com pany Ltd.) in 10ml abaoluta athanol 

(Fiaona Ltd.). Thia aolution waa atored at -20®C. Th a  atandarda wera fraahly prepared lor 

each aaaay as foUowa:

A ) tOOpI (Im g/m l) m ade up lo tOmI with aaaay bulfar (-tO pg/m l)

B ) lOOpI (lOpg/ml) m ade up 10 10ml with aaaay buffar (>100ng/ml)

C ) tOOpI (tOOng/ml) m ade up to 10ml wHh aaaay buffer (-1ng/m l)

D ) lOOpI (100ng/ml) m ade up to SmI with assay buffer (-2ng/m l)

Serial dilution of 2S0pl aliquots of solution C  w «h  assay buffer provided standards in 

the range 3.9-250 pg/tube for the standard curve. Solution D allowed for the Inclusion of 

a 500 pg standard H required.

2.6.5 Uelelonin-Ira« « -ru m  «nri Plasma.

I4alak>nln-lraa aarum o r plasma waa prepared by charcoal stripping of aarum or 

plasma oollaclad from hah during tha pholophasa according to the following protocol:

1. Prepare a 1 0%  w/v suspension of charcoal (activatad, untraatad; Sigma Chemical 

Com pany Ltd.) In sarum o r plasma In 30ml polystyrana 'umvaraaf contalnars (Stamm 

Ltd., Hounslow, Middx., U .K .).
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2. Sliak« lof 1 hour on Ico kl ■ thafckig waMr bath (Camlab Ltd., Cambridga, U .K .).

3. Cantmuga al 1500 rpm (4 "C ) for 30 mlnutaa.

4. Dacant tupamatant and raauapand In charcoal at 10% w/v.

5. Rapaat atapa 2 and 3.

6. Dacant aupamatant and cantrHuga at 3000 rpm (4*C) tor 15 mkiulaa.

7 . Dacant aupamatant and cantrifuga at 20,000 rpm (30 ,0 00 g; 4*C) lor 30  mlnutaa 

(L8-55M  ultracannifuga: Backman Inatrumanta, Inc., High W ycom be, Bucka., U .K .).

8. Filter aupamatant through MKIax-GV 0.22pm niter unite (Mllllpora S .A ., Molahalm, 

Franca).

9. DIvIda poolad aarum or plaama Into 6ml porllona (aufficlant lor 1 atandard curve) and 

alore at -20°C kl 7ml polyelyrana 'Bijou' boltlaa (Slarllln Ltd.).

Balora uaa each pool waa checked agalnat the prevloua pool to enaure that the aerum or 

plaama waa free of melatonin (percentage binding Indlatingulahable from that of the aero 

standard).

2.6.6 Method.

Duplicate standards and samples were assayed according to the followino protocol:

A ) A 8 I« L

t .  Prepare a series ol dilutions of melatonin standard with assay buffer In polystyrene 

assay tubes (LP 3: Luckhams Ltd.) covering the range 0-500pg/250ttl.

2. Add 250|il ol assay buffer to sampla tubes and 450(il o l assay buffer to a further 2 

tubes to be used for estimation of non-spadfic binding.

3. Add 250pl of malatonki-lraa sarum or plasma to standards and non-spacillc binding 

tubes and vortax mix.

4. Add 250)11 akquots of samplas to sampla tubas and vortax mix.

5. Add 200|il of antlsarum to aach tuba, axcaptkig lha non-apadflc bkKtkig tubas, vortax 

mix and kicubata at room tamparatura lor 30 mkiulas.

8. Add tOOpI of tmiatad malalonin to aach tuba, vortex mix and Incubate lor 18 hours at 

4*C.
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7. Add 500^1 d * x tr«n -c o «t«d  charcoal (saction 2.4.5) to aach tuba (stirring during 

addition at 4*C), vortex mix and Incubate at 4*C tor IS  mlnutas. 

a. Cantriluga at 2000 rprn (4*C) tor 15 minutas.

9. Translar 1ml o l the suparnatant (total volume 1.3ml) into glass scintillation vials 

(Canberra Packard) containing 9ml Opilphasa 'sals' scinllllalion fluid (Pharmacia Ltd.).

10. Vorlax vials thoroughly and oount the radioactivity tor 10 minutas in a scintillation 

oountar (Canbarra Packard). Induda 2 further vials oontakiing lOOpI trHIatad malatonin 

tor estimation of the total radioactivity added to each tube and 1 vial containing 

scintillation Ituid only for automatic subtraction o l background counts.

B ) Calculations.

11. Multiply the moan total dpm by 1/1.3 (to correct tor the difference between the total 

reagent volume per tube arxl the volume of the supernatant counted).

12. Subtract the mean rtomspedflc birxiing dpm from that of the standards arxl samples.

13. Calculata the percentage binding ol standards and samples relative to the corrected 

total counts (%  binding, (standard or sample dpm/mean total dpm )x100).

14. Plot the percentage binding o l the standards against concentration on log-ilnear graph 

paper (Figure 2.4) and read the concentrations ol the samples from the staixtard curve.

15. Correct to pg/ml serum or plasma (multiply by 4 lor 2S0pl samples).

The  sonslllvity of the assay, defined as the smallest quantity of melatonin statistically 

distinguishable from the ze ro  standard, was 3.9-7.8pg/tube.

C ) Ciielllv control.

Aliquots o t  pooled serum taken from Atlantic salmon parr during the scotophase. and 

containing approximately 400 pg/ml of melatonin, were used for quality control. Th e  

intra*assay coefficient of variation (section 2.7 .2 ) was 1 .9 4 %  and the inter-assay 

coefficient of variation was 7 .2 5% .

D ) U«llH«llnn

InhIbHIon curves obtained from serial dllullons of pooled rainbow trout or Atlantic 

salmon sarum ooNeclad during the sootophase were parallel to the stanrfard curve (Figures

2.5 and 2.6). For both species analysis of covariance (calculated using an In-house





Figura 2.5: Parallelism o1 an Inhibition curve obtained from a serial dilution (1 :2 ) of 

SOOul aliquots ol pooled rainbow trout serum (collectad during darkness) with the 

melatonin assay standard curve. Th e  two curves have been linearised using the logit 

transformation (R odbard and LewakJ. 1970): logit b -  In (b/100-b) where b  Is the 

proportion ot radiolabel bound lo anttoody axpressed as a percentage ol that In Itia sarò 

standard (%  maximum binding). Each pomi rapresanls the mean o l dupHcales. T h a  scale 

on the x-axIs denotes the natural log of the rnetalonm content m the standards.



Figure 2.6: Parallelism of an Inhibition curve obtained from a serial dilution (1 :2 ) of 

250 )il aliquots of pooled Atlantic salmon serum collected during darkness with the 

melatonin assay standard curve. The  two curves have been Nnearlsed using the logK 

transformation (Rodbard and Lewakf, 1670): logH b -  In (b/100-b) where b  la the 

proportion of radiolabel bound to anttxxfy expressed as a peroenlags of that in the zero 

standard (%  maximum binding). Each point raprssanta the mean of tripllcalas. Th e  scale 

on the x-axis denotes the natural log of the melalonin content In the standards.



computar progrcmuta. co urtoiy o l M . A . T h ru »h ) ro vM tad  no .Igniflcant dl«or«n<ta 

(P20.0S) batw M n Ih » «lo po t o* I t »  tlandard corvo ond Ih# InhUtion curvo obtalnod from 

poolod torum . This M ic a ta o  ttwl tho •molotonln' dotactod In rainbow trout and Atlantic 

Salmon oarum was Immunologically similar to Itio standard ho rm o r».

SInoa plasma provktas a grsatar sampla vokims dwn ssrum, mslatonin was dsisrmlnsd 

m plasma sampiss whan axpsrimsnts wars conductsd on Juvsnlla fish. Prior to using 

plasma an axparlmant was parformad to assass I t »  aitaci of ammonium haparm on tha 

malalonin assay. Blood samplas (t  .5-2m l) w ars taksn from twsivs 1-yaar old rainbow 

trout malnlalnad undar an 8L;16D artificial daylangth during a parlod 1 .5 -2 .5  hours 

aftsr dartuisss onsst. ApproxHnalely squal volumas of blood from aach fish wore dispsnssd 

kite althar amply polyslyrana assay tubas (LP 3; Luckhams Ltd.) or assay tubas containing 

1 drop (approxlmalaly tOpI) ammonium haparin (4mg/ml, 179.1 unlls/mg; Sigma 

Chamical Com pany Ltd.). Altar cantrlfugallon and storaga at -20 *C (ssetion 2 .1 .4) lha 

nina un-hssmolysad pairs of sorum and plasma samplas w ars assaysd lor malalonin as 

datailsd above. Thara was a highly significant positive correlation (r -  0.955; PsO.OOt) 

batwssn mslatonin ooncantralions dslarmlnsd In sarum and thosa delsmiinsd m plasma 

(Flgurs 2.7). There was no significant difference between mean sarum melatonin (368 ± 

S6pg/ml) and moan plasma melatonin (352 ± 54pg/ml) oonceniralions (S lud an fs  t-lasl 

tor malchad pairs; Sokal and Rohif. 1981). indicaling that ammonium haparln does not 

Interfere with the melatonin radioim m unoassay and that com parisons between 

experiments using sorum samples and those uHlIsIng plasma samplos are valid.

2 .7  .«tl.llxtk-.al m ethods

Unless otharwlsa mdlcalod detailed dascrlpllons of the following statisileal methods can 

be found in Snedeoor and Cochrane (1980) and Sakai and RohH (198t).

2.7.t P.MmaWon of th . mean 

Tha  arithmetic or sampla i 

p:

X, provides the bast aallmala of the population mean,



Serum melatonin (pg/ml)

Figure 2.7: Correlation (r-0 .9 S S : PsO.001) between the concentrations ol melatonin 

detected by redlolmmunoessey In haparinisad (plasm a) and non-heparinised (serum ) 

aliquots ol blood samples taken from rainbow trout during daiknass.



X -  £x/n w lw r« : n -  numbar o ( obaarvalions 

£x -  aum ol Wm  obaarvaliont

Ettknalas of Itia aampla maan ara praiantad ± 1 tiandard anof of lha maan (±  1SEM ):

SEM  -  t/Vn wtwra: n -  numbar of obaarvationa

a -  aampla atandard daviatlon -  V
I x » -  ( l x )* / n

n - 1

2.7.2 Coafflclanl of variation

Th a  ooalficieni o l variation (C .V .) la a maaaure o l ralative variability and therefore 

allowa the comparlaon of variation In populatlona with difforant meana:

%  C .V . -  (a X tOOy X.

2.7.3 HomooenalN nt verlaneax

Homoganelty of variancaa waa teated ualnp the F loat, which teals lor lha departure of 

the variance ratio o l two aamples from unity:

greater variance (a,*)
Degraea of freedom v ,, v ,  -  n, -1 , n , - 2

leaaer varlanca ( a,*)

Only the largaal and amaNaat variancaa ware oomparad whan more than two aamplas 

ware teatad lor homoganalty. If the calculatad valua for F ,  waa laaa than tha tabulated valua 

of F at P-O.OS (5 % ) It waa concludad that tha variancaa ware homoganoua. If F ,  waa 

graalar than tha tabulated vakia lor F  at P -0 .0 5  H waa oondudad that lha variancaa ware 

halaroganoua.



2.7.4 r-nmnarijon nl h«n i m r t —

H til«  variance* o* the Mvo sampi** wara homoganou* (»action 2 .7 .3). the moan* w »f»  

oompwad uamg Studenr* t-MM ulHialng a poolad aatknal* o* iha variance. H trie variance* 

were heterogenou* the mean* war* compared uairtg Student** t-te*t utUi*ing »eperate 

aatimat** ol aach variano* and reduced degree* ot Ireadom (*ae Parker. 197* lor detail*). 

The  cAxilallon* lor both ta*t* were parlormed on a Hewietl-Peckard mainirame oomputar 

U*mg •<* *Minltab' *tatl*tlcal package (Ryan el el.. 1961). II the calculated value ol t wa* 

graater than the tabulatad value lor t at P -0 .0 5  (5 % ) or lea* the dlllerence between 

mean* wa* concluded to be atatlatically aignlllcant.

2.7.5 Multiole comoariton*

Providing the »am ple varlarKe* were homogenou* (»action 2.7.3). one-w ay analyai* 

ol variance (A N O V A ) wa* uaed lor the preliminary compariaon ol the mean* ol three or 

more »ample*. Th e  calculation* were per formed uaing the ’Mkiitab' atatiatical package. II a 

atatiatically aignificanl (P s0 .05 ) variation between mean* wa* detected by A N O V A  

dlftarenca* between pair* of mean* were laated lo r aigniticanca uaing the following 

aquation:

with n, + n , - 2 degrees ot freedom

V ( * ^ 1 ( n ,  ♦ 1/n,) )

where: x , and x , -  mean* of aach of the two samples

n, and n , -  number ol observation* in each ol the two sample*

» »  -  error mean square from the A N O V A

If the calculatad value for t, wa* graater than the tabulated vakia for t at P -0 .05  (5 % ) 

or lea* the difference between mean* wa* oonckidad to be atatiatically slgnMcant.

If the sample variance* were helerogenou* (section 2.7.3). the Kruakal-WaHi* teat 
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was w a d  tor the preNmlnaiy oompartaon of three or more tam plet. Th e  catoulatlorw were 

pertormed uaina the -IMintMb' atatialical package. H a atallaUcally significant differsnce 

(PSO.OS) was delected between groups by the Kruskai-Wallia last dilferencea between 

pairs wars tested for signiflcanca using Dunn's muitipie comparisona procedure (Zar, 

1 M 4 ) as foiiosra:

Q o s s .» -  ^  S./SE

where: ^  and ^  -  mean ranks of each of the two samples

(a .g . R, -  rank sum. R,/ n ,)

S E  -  standard error -  V ((
N<N *  1) I d * -  I)

- )  (1/n, ♦ 1/n,) 1

1 2 12(N - 1)

N  -  total number of observations in all (k) groups

I -  number of ties tor a given (tied) v a lw

n, wid n , -  number of observations in each of the two samples

The  calculations were pertormed w in g  an in -h o w e  computer programme (courtesy of 

M. A. Thnjsh). If the calculated value tor O  was greater than the tabulated value tor Q  at 

P-O.OS (5 % ). for a number of groups, k, the difference between groups w as conduded to 

be statistically significant.

2.7.6 r .~ ~ » .r l .n n  r.1 nr~v>«k «n .

The  standard error of a proportion was calculaled as follows:

S .E . -  V
P ( 1 - P )

n -1







3.1 IntrodiicHon

In comm on with tho v a i l  majority of organitm a inhabiting tamparata and polar 

latitudaa. rapcoductlon In aaknonMa la an annual avant, wHh tpaamlog confinad to a briaf 

(typically 6 weak) period each yaar. Thia aaaaonaMy anauraa that lha fry am arga at a 

lima whan tha local anvlronmanlal faclora which diclalo Ihak aurvlval (uW mala faciera), 

auoh aa tamparalura and moat Importantly food avaHablllly. ara at thak moat favouratala. 

Braading cannot ba Initialad Inalantanaoualy whan ultimata faciera bacom a optimal, 

howavar, ainca gonadal davalopmani may taka a yaar or mora lo oomplala (Scott and 

Sumplar, 1984; Bromaga and Cumaranatunga, 1988). Th a  Initiation and modulation of 

raproductlva davalopmant la Ihorafora timed with rataranca to aarller predictive 

(proximate) environmental cuea. In flah both temperature and pholoperiod have been 

kfentltled aa Important proximate cuea but In aalmonida the primary environmental 

mfluenca on reproductive liming appeara to be the aaaaonally changing daylenglh (de 

Vlaming. 1972; Scott and Sumpter, 1983; Bye, 1984; Dodd and Sumpter, 1984; Lam and 

M unro,t987; Bromage and Cumaranatunga, 1988).

The drat recorded experimenta on the modification of aalmonid reproduction by light 

were conducted by Hoover and Hubbard (1937). Th e y  aubjected brook trout ( S a lY tUlUU  

lOQUoaiia), which had apawnad once previoualy In December, to 1 additional hour of «ghl 

per day during the Aral week of February, 2 additional houra in the aeoond week, and ao 

on, until the excesa over the natural daylength reached 8 houra. Th e  photoperiod was 

maintained at Ihia level for 4 weeks after which H was rapidly decreased to approximalely 

7 hours by the lime the fish spawned In August, 4 months In advance of their natural 

spawning parted. This technique was subsequently used commercially and over a 4 year 

period groups of about 2000 famalea oonsistenlly spawned 3-4 months In advance of the 

natural slock (Hazard and Eddy. 1951). Similar oompreaaad (aoceleraled) seasonal Ughl 

cydea were used by Corson (1955), Nomura (1982) and Henderson (1983) to advance 

maturation In the brook trout. Th e  letter author, howavar. found lha malhod to ba effacllvs 

only m Bah which had matured previoualy; virgin Bah were apparently unresponsive.

Kingsbury (1952; cited b y Henderson, 1983) and Buss (1980) used the same



approach »  achtava comparabta advancM  ki lha apawning lima of brown trout (SHOID 

A  largo numbar of atudlat hava also oonlirmad tha aflacllvanaaa of oompraasad 

aaaaonal photocyclaa for tha advancamam of maturation In both virgin and  pravloualy 

maturad rainbow trout. Q n ta dM m d lu un idU M  (N o m ura . 1962: Qoryczko. 1972: Kunaah 

at al.. 1974: WhHahaad at al.. 1978. 1980: Buaa. 1980. 1982: Bromaga at al.. 1982a: 

Pohl al a l.. 1982: Ellloll a l al.. 1984: Bromaga. 1987: Mainara-Qalkan a l al.. 1987. 

1988: Pohl-Branachald and Hoitt. 1990). Nakarl a l al. (1987. 1988) obaarvad a 

timilar accalarallon of gonadal davalopm ani In rainbow trout undar compraaaad 

pholocyclaa but spawning only oocurrad m fish transfarrad to water at 10*C: lha vary low 

amblant water tamparalura (0 .4"C ) aicpariancad b y  other fish in these axparlmanis 

inhibited ovulation (sea section 1.2). Most of these studies utilised light cycles 

oompressad Into 6 or 9 month periods which usually advanced spawning lime by about 12 

and 6 weeks respectively. Th e  sequences of hormonal changes associated with the 

reproductive cycle were also advanced oonsislent with the advences In spawning lime. 

Conversely, subjecting rainbow trout to a seasonal Mghi cycle expanded to 18 months 

delayed spawning by 3 months (Bromage at al.. 1984). Inleresimgly. exposure of rainbow 

trout to a seasonal phoiocycle compressed mio 3 months resulted m the desynchronliallon 

of maturation with spawning occurring over a 6 month period (Pohl at at.. 1982). The  

possible significance of this observation wIN be discussed later.

MacOuarrie el al. (1978) adopted a sllghi variation of the same technique to Induce 

off-season spawning of the ooho salmon (f)i¥infhynfiflU8 Kliulcti). ■ Pacific saknonid which 

normally matures at 3 years of age. By compressing or expanding by 4 months a 13.7 

month period encompassing the second year of davelopmenl. and then rearing the flsh 

under a simulated natural light cycle shilled out of phase to mamiam the Ikne dWferenoes 

attained, spawning was advanced by 3 months and  delayed by 5 months respecllvoly. 

Similarly. In pink salmon (OnaoitlYnctlui (W lttuietia). which normally m ature at 2 years 

of age. compressing an 8.3 month portion of the first year of developmeni by 3 months, or 

expanding K by 3 or 8 months, and subsequently makilalnlng these Ikne differences under 

a phaae-shifled seasonal photoperlod. achieved an advance of 2 months and delays of 4 and
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7 month. r..p«M lv*l7 (M « O u » r i .  «  H.. 197*). W h »i thOM .uthor. th .

progwty 0» *>• 7 month tMayod group ondw a 7 month phaio-thNlad Mammal photoparlod 

Mawning occurrmj axactly 2 yaar. latar. 7 month, allm IW i ralMd undar n«ural 

daylangth. SlmUmly. McCormk* and Nahnan (19S4) dalayml pawning by 3  month, in 

brook trout by mibiacting tham to a Mnulalad Mammal photocyda phaM-rtilllml 3 mon*i. 

bahind tha natural cyda. and EWon at al. (19M ) advancad maturation by 6-7 month, m 

rainbow trout axpoMd to an artiticlal Mammal Ught cyda 160' out of phaM  with tha 

■ , ■̂ ■ ,.1  pbotoparlod. It I .  of immMl to nota that «ta  flrat mdteatioo. of tha Importanca of 

daylangth m Mknonld raproductlon wara m fact obMrvad many yaar. bafor. tha flr.1 

..parimantal .tu<«aa whan brown and rainbow trout wara lran.localad from lhair naliva 

northam araa. to .Ita . In tha mHitharn hamlH>hara. ThaM  fi.h ra-ad|u.tad lhair 

maturation cyda. M  that pawning occurrad 6 month, out of phaM (at pradMiy lha Mma 

daylangth In tha MaMnally changing pholocycia) wHh corraMondIng .lock, in lha 

northarn hemiMhara (Bromaga at al.. 1989; Scott. 1990).

ComproMad mxl phaM-d>Htad Mammal photoparlod. hava alm> bM n uMd to modify 

m.luration In a numbar of non-Mimonid AM. Thu*. M * ba»» ( n ioanlfi rchui  llbfM ) • 

lurtml tfinnnhihalmu« maxlmu«) and gmtiaad M a  braam (Sparu* aura U ) mamtamad on a 

wammal photocyda compraMOd imo 10 month. Mawnad. on avarMO. 5 month, ahamf of tha 

control, ahor 3 yaar» (Qlrin and DavauchaHa. 1978). Turbot subjadad to comprassad 

cyda. of 9 and 6 month, duration maturad 3-4 and 5-6 month, m advanca of the natural 

pawning pariod ram>adlvaly. wharaa. axpandktg lha pholocycia to 15 month* c»uMd a 2- 

3 month dalay m m>awnlng (Bya. 1987). CompraMad 6 month photocyda. abo advancad 

pawning by 2-3 month, m anothar marina llalfldi. lha dab ( l l m a ntla  Mm anila ). and a 

dmulatad MaMnal pholocyda phaM-MWad 3 month, ahaad of tha natural light cyda

advancad maturation m lha m>la ---------------- --  by )u»l ovar 2 month. (By*. 1*87).

Moraovm. vyorlhlnglon *1 al. (1982) lound that accalmming Ih* chang*. m daylangih by 

iwlo* Ih* nalural rat* for Ju*l 10  waak. advancad .pawning by 3-4  month, m Iha roach 

IB ..IIII. ruilll.t. a IrMhwalar cyprimd.

Although varying Iha pariod of Ih* nalurol pholocyd* oonflrmad Ih* Imponanoa of



daylangth u  ■ pf«dlctlv« eu* lor roproductivo tlmlfrg In sahnonld llth  n provMad lltllo 

inlormatlon on tho mochantam* mvolvad. m (hit raapacl mora abrupt changaa m daylangth 

and lha auballlutlon of dHlarani phaaat ol Ilia natural pbotocyda with oonatani 'long' or 

'shorf photoparlodi haa provad mora Inlormativa.

A  aarlat of aludlaa InHIalad In lha lata 1970'a by Franch workara (ravlawad by 

Blllard, 19*S) Involvad abrupt Incraaaaa from lh a  amblant daylangth to 16L:80  (16 

hours of kohl and 8 hours of dark par day) at various Hmas balwsan January and Aprtl. 

Tha  pholoparlod was than raduosd In waakly meramams rsaehing 8L:16D within 6 months. 

This advancad tha maturation o l rainbow trout b y  2-6 months ralallva to thak natural 

spavming 8ma of lata Dacambar: lha aarilar tha raglma commancad lha oraatar was lha 

advanca m spawnHig lima. Thasa axparlmanis wara oonduclad m lha laboratory at oonslani 

tampsraturs but similar procaduras wara sflacllva m  advancing lha spawning lima ol both 

rainbow and brown trout on commarclal farms with naturally lluclualing lamparaluras 

(Breton et el.. 1983b).

Th e  eHmulatory effect of decreasing photoperiode on gonadal maturation was consistent 

with ths vlaw that gamelogsnasis m salmonids oocurrad m tha summar and autumn months 

(Blllard and Breton, 1978; Blllard at al.. 1978; Blllard. 1982). Additionally, alavalad 

levels o l Q T H  (Breton and Blllard, 1977), vllaltoganln (m easured as calcium or 

phosphoprolein phosphorus) and oaslradlol-178 (W hilahsad al al.. 1978) had bean 

assoclaled with decreasing pholoparlods. Several authors tharafora concluded that 

decreasing daylenglhs wars tha most Important factor for lha stimulation ol gonadal 

davalopmant In salmonids. that Is. they wara 'sh od-dsy' animals (Breton and Blllard. 

1977; Blllard and Breton. 1978; Blllard al al.. 1978; Paler, 1981: Follatl. 1982). Th is  

hypothesis was supported by lha apparent m hW lory sflacis of long dayfanglhs on saknonld 

rsproductlo n . T h u s , spaw ning w as d e la y e d  by 8 w eeks w h a n  m id-autum n 

(Oclobar/Novambar) spawning brook trout wara mamialnad under a daylangih artificially 

axtandad to 17 hours m August or Saplambar (AIMaon. 1981; Hazard and  Eddy, 1951) and 

by 2-3 months m fish exposed to 20L;4D from lata April (Henderson, 1983). Com bs at al. 

(1 9 6 9 ) o b s e rve d  a 1 month dalay In lh a  m aturation o f early autum n

8 0



(SaptwntM T/Oclobw) ipawning M Ckay* u ln io n  (ntm ortwnt tlU «  nt llM ) m alnlalnad undar 

oonttniioua »ght (LL ) from lata July and SMraiahi and F i* u da  (1966) raportad dalaya of 

2 -3  montha m  aaily autumn apawning aockaya and  amago ( OnCBítiyílíitlIll  ítKHiurut ) 

aaknon and lata autumn (Novambaf/Oacambaf) apawning atralna ol txook and rainbow 

trout aublactod to t6 L :8 D  or L L  Irom aarty Ju n a . SlmMarty. Atlantic aalmon (S lÉ n a  

la la t) anpoaad to 20L:4D Irom aarly Auguat maturad 6  waaka altar tha Octobar apawning 

tima o l lltair oountarparta undar natural photopartod (Erlkaaon and Lundquiat. 1980; 

Lundquiat. 198 0 ). A  allglit dalay (2 -3  waaka) w aa alao obaarvad m aarty autumn 

apawning Chinook aalmon tOr«orhvnchua tahawyticha) raarad under 1 6 L * D  lor 3 moniha 

from tha aum mar aoWica (Johnaon, 1984). Th a  moat artanalva dalay reportad waa lor 

mid-autumn apawning maau aalmon ((Tirflftiynrtlll* IM IO U ) m which axpoaure to 1 8L 4 D  

from doaa to tha aumrrwr adaHca dalayad maturation b y at laaal 5 moniha (Takaahlma and 

Yamada, 1984).

Further invetligaliona on the rainbow trout Indicalad a variability in roaponaa 

acoordkig to tha natural spawning lima ol the strain studied. Thus, oonslani 1 6L8 D  or LL 

Irom the sum m er solstica. or 16L:8D gradually increased k) LL over 6months. all causad a 

2 month delay in maturation ol a Novem ber spaw ning strain (Bourllar and Billard, 

1984a.b). Flah which naturally spawn In Dacambar/January showed a 1 month dalay m 

maturation w hen exposed to 18L8 D  from June (Skarphedinssoo el al.. 1982). Whitehead 

and Bromage (1980) and Bromaga al al. (1982b). however, reported that Dsh exposed to 

t8L:8D from the summer solatica spawned In January and February at approximalaly the 

same time as the controls.

A  further example ol the Influence ol natural spawning «m e on the response to long 

photoperioda was observed by Scott (unpubflahed: chad In Bye, 1984). H e found that 

rnamtenanoa under an 1 8 L « 0  daylengih Irom M arch dalayad maturation in an autumn 

apawning (October/Novem ber) strain but advanced maturation In a wktler (January) 

apawning strain. Thus, m agrsameni with the studMs prevloualy deacrlbad. conalam long 

days during the later stages ol *ie reproductive cycle dalayad maluratloo. (Constant long 

days during the samar part of the cycle, however, advanced maturation and spawning



Mm*. Similar resuitt hava baan achiavad In a num bar at alurfat; axpoaura of lata autumn 

and wintar ipaw ning  atrakw of rainbow trout to 1 8 L « D  or LL from January or Fabruary 

advanoad apawnlng tima by 6-10 waaka (WWtahaad and Bromaga. 1960: Bromaga at al.. 

tB62a. 1964; D utton  and Bromaga. 1966a. 1 96 7 . 1966). Furlharm ora. continuad

rnamtananoa of « » M  fttfi undar coottant long ptioloparlodt produoad tubaaquant apaamingt

at approximataly 6 month Intatvala (Bromaga at al.. 1964; Bromaga and Dutton. 1966). 

Intareatingly. 6 month cydaa can ba Induced Immadlalaly If axpoaura to long daya or LL 

occurt at or vary cloaa to apawnlng lima (SkarpharUnaaon el al.. 1962; S r » «  al al.. 

1 9 6 4 ).

Th e  diacovary that long pholoparloda ware allmulalory whan appllad aariy In tha 

reproductive c y d a  prompted aavaral workara to ra-labal aalmonida a t  •tong-rlay' animala 

(Bromaga at a l.. 1982b; Elllolt at al.. 1984: Sco n  al al.. 1984; Brom aga and Dutton. 

1986). Thia aaaoaamani waa aupportad by more detailed hormonal and hlatological atudlaa. 

Th e ta  revealed that the hormonal changea aaaoclalad with the Initlallon of the aeoond 

raproductiva cycle In tamale rainbow trout begin at laaal 9 moniha prtor to apawnlng 

(Soon and Sum pter. 1983). Moreover, the «rat algna ol Increaaed hormonal activity and 

oocyte development m virgin llah occur at laaet 1 year before ovulation (Sumpter. 1984; 

Sumpter at a l.. 1984). Thua. gonadal racrurlaacanca bagina m uch earlier than had 

prevloualy been thought.

There are alao marked variatlont In the effecia of conatant abort daya on reproduction. 

Expoalng w inter apawning rainbow trout to 6 L ;1 8 D  from ahortly after the natural 

tpawning period delayed maturation by between 1 and 5 montha dapanrJant on the time ol 

Introduction oirto the ahort photoperiod and the natural apawning lime of n>e alrain uaed 

(Bromage at al.. 1984; Dualon and Bromaga. 1966a. 1987). Flah aubiactad to conatant 

ahort daya during the middio third of the reproductive cycle (or aKghtly later), however, 

raapond with an advanca m maturation and apawnlng Hma. ThIa waa 8ral damonalralad by 

Comba at al. (1959) who advarwad the apawnlng lim a ol early autumn apawnlng aocfcatra 

aaknon by 2 -3  waaka by abruptly radudng the pholoparlod to althar 5 or 13 houra laaa 

than ambient from m id-July. VWtan Shiraiahl and Fukuda (1966) aubjaclad early autumn



.p M it n g  «oekay* and amaoo aalmon and law autiimo apaianWg brook and rainbow koul to 

an abrupt dacraata from ambiani dayWngth lo 8 L :1 6 D  m aarly Juna  apawning waa 

advancad by 4 -6  w aakt with tha graataat advanoas obaarvad In tha trout. Similarly. 

W M lahaad and Bromaga (1680) achWvad a 3 month advanca m lha apawrUng tima of 

wmtar ipawning rainbow trout axpotad to a auddan raductlon Irom ambiant photopartod to 

8L:16D at lha lum m ar tolalioa. Again a It cWar. howavar. that tha axtant of tha ratponaa 

a  dapaodant on both tha timlog of tha iw llch  to tha ihort photopanod and tha natural 

■pawning time ol Iti* strain undar invastioaiion.

m  oontratl. Eriktaon and Um dqultl (1680) lound Wat an abrupt ehanga Irom natural 

dayWngth (17L:7D) to  7L:17D m aarly A ugutI ha d  no altact on maturation of autumn 

spawning pracociout mala AManlic salmon. H ow avar, lha sama authors raportad a 

significant advwica m spawning whan lha dacraasa was aceomplishad m gradual slaps ovar 

20 . 40  or 80 days; lha shortar lha pariod of dacaWrallon lha graalar lh a  advanca m 

spawning lima. Th a y suggatiad that lha rata of changa of pholopariod (diffaranilal aflacl) 

ralhar than tha actual daylangih (proportional affaci) Is o l most imporlanca In this 

, p « ; l , s .  A  similar allact has nol baan dam onsiralad m othar salmonid spacias. T h u s , 

rainbow trout subjaciod to a saasonal lighl cycia comprassad mio 8 months spawnad 3 

months m advanca of tha controls; subsaquani axposura of lhasa flsh to tha «rsl hall of 

another 6 month pholocycia In combination with an abrupt reduction to 8L;16D at lh a  

longest day caused a similar advanca in spaw ning time (W hitehead at al., 1980). 

Simllany. whan Novambar spawnmg rainbow trout ware subjected to 17L:7D from early 

Fabruary, lollowad by an abrupt reduction lo 8 L :1 8 D  m early May. tha sama 3 month 

advanca In apawning Ikna was observed as whan « w  dacraasa was achiavad m 3 waakly 

raduclions ol 3-4 hours each (Bromaga at al.. 19B4). In each casa an abrupt raduction to

a constant short pholopariod was as affacllva in advancing apawning as a graduaay ehangino

pholopariod.

O n a  ol lha most slknulalory pholopartod raglmas is a oomblnallon o l constant long 

pholoparlods aarly m lha raproducllva cycW lollowad by an abrupt raducllon lo conatant 

shorlar pholoparlods allar 3-4 months, an anampW ol which has Just baan dascribad. m
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gcfiaral ■ much g rM M r advane* m apawnlng Mm# (3 -4  months) Is achlovad with this 

combination than with long photopariods alona (t  .5-2.5 months). A s batora. tha axtant of 

« la  rasponss is dalsnmnad by tha tmtlng o l tha changas m photopariod and tha natural 

spawning Sms ot tha strain usad: aduanoas m  spawning Hma ot batwaan 6 sraaks and 4 

months hava baan raportad tor tha rainbow  trout (W hitahaad and B ro m aga. tgeO; 

Brom aga at al.. t9S2b, t984; EWott at al.. 1 »54 : Duslon and Brom aga. 1987. 1988). 

Similarly, a dalaHad study by Takashlm a and  Vamada (1984) on tha sHacM of constant 

long photopariods (1 8 L 8 0  or LL) foSowad b y constant short photoparlods (6 L :1 8 0 ) lound 

mat apawnlng of masu salmoo oouW ba advanoad by 2-4 months according to tha «m a ol 

axposurs. Th a  machanisms undartying this rssponsa wlH ba considarad latar in tha 

chaptar.

Constant photopshod rsgimas hava also baan usad to modify matoratlon In non- 

saknonid fish. Th a  foSowing account oorxsantratas on thosa spacias In which photopariod 

ip p a w s  to ba tha primwy snviroomantal cua. Th a  rasponsa of tha saa bass to photoparlod 

manipolalion Is similar in many raspada to that ot ssimonids although temparature also 

appaars important In this spacias (Carillo  at al.. 1989s: ravlawad by C arillo  at si.. 

19 89 0 ). Saa bass m south asstam Spain spawn batwaan January and March. Exposura to 1 

month ol long days (t5 L :9 0 ) batwaan April and August In an otharwlsa short day 

(9 L :1 5 0) ragima advancad spawning by batwaan 2 waahs (August) and 9 waaks(ApriO. 

Fish subjadad to 1 month ot long days m Sspismbar. or to 1 5 L « 0  Irom tha summar 

solstica rsducad gradually to 9L:15D by tha and ol Fabruary. w are dalayad  in lhair 

maturation by 1 month and 3 months rsspactivsly. Thus, as In salmonids. long days asriy 

in tha raproductiva cy da  ^ipaar to slknulato gamatoganasis wharaas long days latar in tha 

cy da  dalay gonadal davalopmanl. Th a  Norm  Saa dab. which spawns naturally m March, also 

show sd dslayad ovarian dsvsiopmant w han axposad to constant long days (t6 L :8 D  or 

20L:4D ) from aarly August, and ovarian davslopmsnt (but not ovulation) «ras  advanosd 

whan tha pholopariod was raducad from amblani to constant short days (4 L 2 0 D  or 

8 L :1 8D ) Irom July or August (B ya . 198 7 ). Turbot In lha North S aa  typically spawn 

batwaan May and July. Extandlng lha partod of tong days which nakirally occur at spawning



time by 2 mootht delayed the subsequent spawning by 2 months In these fish, whereas 2 

months ol short days ktimodlatoly after spawning followed by oonslant long days advanced 

spawning by saveral months (B ye , 1984). It has Ihorefore been suggested that 

gameiogenesis m turbot is Initiated by short winter days and accelerated by the Increasing 

daylengths following the winter solstice (B ye  1984. 1987). In the slicKleback 

> r a .. i« r f .« i« i i«  «riiieaiusi. which sp aw ns from A p rII-Ju ly . the Initial stages of 

gamelogenesis appear lo be Independent of photoperiod and temperature. However, full 

maturity can be advanced by up to 4 months by exposure to 16L:8D from November, at 

which time the fish remain unresponsive to short days: as the natural spawning time 

approaches the fish gradually become more responsive to short photoperiods until by 

February and March all are capable of attaining m aturity, eve n  under 8 L ;t6 D  

(Baggerman, 1980). If an 8 L :t6 0  photoperiod Is continued after spawning, however, 

maturation will not occur again (Baggerm an, 1980) suggesting an obligate requirement 

for long days.

The foregoing account has reviewed the effects of the various experimental photoperiod 

regimes used to investigate the control of reproduction In salmónida and a few non- 

salmonld species. Procedures which have been found to either advance or delay maturatxm 

In salmonids are illustrated in Figures 3.1 and 3.2 respectively. T o  summarise: 1) long 

photoperiods applied early in the reproductive cycle advance spawning but maturation Is 

delayed by the same photoperiods applied during the later stages of developmont. 2) short 

photoperiods applied from shortly after the natural spawning lim e delay subsequent 

maturation but short photoperiods applied during the m iddle third or so of the 

reproductive cycle advance spaw ning. Th e  principle hypothesis arising from these 

obsenatlons was that the lengthening daylengths ol late winter and spring initiate 

gameiogenesis whereas the shortening daylenglhs ol late summer and autumn accelerate the 

later stages ol reproductive developmeni (Scott and Sumpter, 1983b; B ye , 1984; Scott at 

al., 1984).

Mora recently, however, attention has focussed on the possibility that, rather than 

actively driving (Inducing) reproductive developmenl. photoparlod m ay exert Its etlacts
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Flgur» 3.1; Pholoperiod regimes used lo advance maluraUon m sahnonids. 1) Compressed 

seasonal photocyde. 2) Cooslam 'long- pholopsriod. 3) Advanced decreasing pnotoperiod. 

4) Long' days followed by sfiorr days. C ) Control; natural seasonal pboloperlod. Adapted 

from Blllard (1985).



Figure 3.2; Photoperiod regimes used to delay maturaliort in salmonids. 1) Expar»ded 

seasonal pholocycle. 2) Constant 'short* photoperiod. 3) Corw tant ’short' photoperiod, or 

ambient dayiength, followed by constant ’long' photoperiod. C )  Control; natural seasonal 

photoperiod.



by »nlrainlng (synchronliing) an andoganou* cifcannual rhythm ol maturation. Tha  

tatantlal principlaa of antrainmant ara tluatratad In FIgura 3 .3 . Thay ara darivad from 

tha ganaral oaciKator modal davalopad by Aachoff and PWartdrlgh lor tha analysit ol 

circadian tyatam t. m which lha bahaviour ol biological rhythm s Is aquatad to that ol 

physical oscUlators (lor mora dataaod accounts saa A scho ll. t961; PWandrlgh. t M l a ) .  

Undar oonstant anvironmantal conditions sndoganous biological ihythms (Inlamal docks' 

or 'osdllato rs') Iraa-run ravaaHng thair natural, saH-sostainad, pariodicity (Figura 

3.3a). For a circannual systam this will ba closa to. but slgnincanHy dillarani from, t 

yaar. Undar natural conditions, howavar, andoganous rhythm s do not haa-run but ara 

antralnad to pariodic changas In tha anvironmant, such a s  tha saasonal changas In 

pTiotopariod. Th a  andoganous rhythm Is tharaby modillad, such that it adopts tha sama 

pariodicity as tha antraining agant, or zaltgabar ('tim a-givar': (3arman; Ascholf,t960), 

and also adopts s particular phasa ralationship to It (F ig ura  3.3b). A  praraquisita lor 

antrainmant is that tha andoganous rhythm possassas a parlodically changing sansitivity to 

tha stimulus providad by a particular lima cua. such that tha cua causas adjustmanis 

(displacamants along lha tima axis: phasa shills) ol dillarant magnituda and sign dapandmg 

on tha phasa at which the rhythm is perturbad. Thus, an appropriata anvironmantal cua 

may causa tha rhythm to adopt a naw  phasa althar m advanca ol (Figura 3.3c). or bohmd 

(Figure 3.3d) tha previous phasa, or may have no alloci at all. according to whan it is 

sppkad. This  property is dearly an essential component of the antrainmant process sirKa 

an anvironmantal signal which had tha same allad at all »m a s  would not ba a usalul liming

To  establish that an annual cycle is an andoganous drcannual rhythm a number of 

criteria should ba satisllad: t )  undar oonstant anvironmamal conditions lha rhythm should 

fraa-run with a pariodidty approximating to. but signlllcanlly diflareni from, t yaar, 

and this should ba damonsirabla over at least 2 complata cycles. 2) lha period ol lha 

rhythm should ba ralativaly Indapandani o l lam paratura. that Is. tamparatura 

oompansaiad. 3 ) the rhythm should ba capabla ol anaainmaol by a yearly zaUgabar so that 

It assumes a period ol exactly 12 months. 4) lha rhythm should possess a dlllaraniial



Environmantalô x/Tv
ATv A tH/

a) Fra a -ru n n in g b ) Entrainad

Phase advance *àm

Phasa delay -àm

Figure 3.3 : Schematic illusiralion ol the ptinciplas of entrainment, a ) An endogenous 

rhythm Iree-runs under constant environmental conditions revealing He natural period 

(t). b ) An endogenous rhythm is entrained by a periodic environmental signal, with a 

period length T .  such that I Is not» equal to T . N ota that m this lltusiralioo I In hea-run Is 

less than T  and hence the anlralrwd rhythm phasa leads (* i ' )  the environmental cycle, c) 

An endogenous rhythm In free-run Is subjected lo  a perturbation P. causing an advance 

phase shilt (»o a ). d) An  endogenous rhythm in tree-run is subjected to a perturbation 

P ,. causing a delay phase shilt (-A e ). Adapted from A sch o «. 1 »8 t (a and b) and 

S «u n d «rs . 1977 (c and d ).
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••ntltMty «o Ml« p * i«»«-ih lllln g  » « « c t »  of tho M llQobor «coordkig lo Ifio photo of tho 

rhythm portutbod (Soundofo. 1 »7 7 ). It lo not ourprioino Ihot oil thooo conditlono oro 

M idom  mol ond m procMoo moot omphoolo lo uouolly ploood on tho Urol crlloflon.

AHhough ondogonout onnuil ihydimo hod boon Impllcoltd m o numbor of olutfoo dotmp 

bock 00 for 00 Iho oorfy 18th eontury (rovloorod by Qwinnor, 1888) Iho «rol oonvIncloQ 

oxporlmontol ovldonoo lor Ihoir oxlotonoo como from «M  oludloo of PongoOoy ond Flohor 

(1857. 1883). Th o y  domonotrotod d o o r drco nnuol mythmo of hibornollon ond tho 

poromotoro of body wolQhl ond food oonoumptlon m goldon-monllod ground 

^ U lr ro lo  <gp«rr,.nrmiluo lolorollo)  mointolnod undor 12L:12D ond oonotont lomperoluro 

lor 23 montho. Tho porlod of tho onnuol hibomotlon cydo undor Ihooo oondWono woo obout 

10 monlho over 2 cydeo ond woo lotor ohown to porolot lor of loool S cydoo (Pongdioy 

ond Aomundoon, 1888). C Irconnuol m ythmo poroloting undor oonoloni onvironmonlol 

oondHIono lor tt  loool 2 cydoo w «h  periodo dovioOng olgnmcontly from t yoor hove oinco 

boon domonolrolod m opproximololy 40 orgonlomo ond looo oonduolvo ovkJonco oxM o lor 

contiderabty mora (Qw innar, 1966).

Th a  firal daar avldar>ca of an aridoganous ctrcannual rhythm In fish was provtdad by 

Sundororoj ond coHooguos (Sundororol ol ol.. 1873. 1878. 1882: Sundororoj. 1878). 

Th o y found Ihol Aolon cotfloh rM «t«m nnouoioo looolllol mointolnod undor DD or LL ond 

conotont tomporoturo lor 34 m ontho ohowod o cIrconnuol mythrn of ovorlon wolghto 

oomporodo lo Ihol ooon m Iloh uixlor noturol oonditlono but. m LL ol leoot. Iho rhythm hod 

0 porlod longth oignificontly diftoront from 1 yoor. CIrconnuol mythmo In roproductivo 

octhrlty ond bohovlourol thormorogulollon hovo oirwo boon ohown to porolot lor of looot 2 

cycloo In tho olicklobock (B o ggo rm o n . 1880) ond Iho whilo ouckor. f iMnommil« 

nnm m «r«nni (Kovolloro. 1882) roopodivoly. Tho ro lo oomo ovidonco ouggooting Ihot 

drconnuol mythrnldly moy oloo porllcipolo m  Iho roprodudivo o d M Iy  of o numbor of 

morino floh. Thuo. dobo m olnlolnod undor 12L:120 ond oonoloni tomporoturo lor 18 

montho undorwoni o oknllor ooquonoo of chonging gonod w dght ond opownkig Mmo oo «oh 

undor o olmulotod noturol cycle or m tho wild (Hlun Hon. 1875: d lo d  In Byo. 1884. 

1887). Turbol oxpoood lo 1 8L:80  ond roolriclod (8 -t 8 -C ) but not oonoloni lomporoluro
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for o vo r 2  y « « r »  »pa w n o d  at 6 -8  month In larvalt and axhIWtad a markad 

daaynchronizallon of spawning Ikna bafwaan Individual fish (Bys, 1987). Sola subjaclad 

10 1 8 L 8 D  and rastrldad (1 1 -1 5 * 0  tampatalura for 3 ya a ri also bacama dasynchronliad 

with spawning avanlually occurring o va r a 6 month parlod. four timas longar than normal 

(B ya . 1987). Such d asynchronlzatlon  Is suggastlva of Individuals fraa-runnlng on 

dHfsrant duration circannual eyclaa such that thay gradually drifi out of phasa with aach 

othar. In tha saa bass Carillo at al. (1989b) hava raportad circannual rhythms In 

raproductlva activity ovar 2 or 3 c y d a s  undar constant 1SL:9D and 9L:15D raspacth/aly 

but tamparatura was not oontroHad. Undar both photoparlods, howavar, tha parlod length 

of tha rhythm was significantly différant from 1 year.

Th a  rather equivocal results of Poston and LMngstona (1971). continuing tha work of 

Pyle (1969), provided soma Initial avidanca lor circannual rhythmlclly In salmonids. 

Brook trout ware maintained from the age of S months undar L U  DD or simulated natural 

photoparlod and constant tamparatura. At 2 years of age all tha fish matured at about tha 

same time except for the m ales In LL which spawned 8 weeks early. These  fish 

subsequently spawned again 38 w eeks later while male fish under a simulated natural 

photoperiod maintained a spawning periodicity of 1 year and spawning was delayed by 1 

month In D D . Spawning In females w as delayed by 1 month In LL and 2 months In DD m the 

second reproductive cycle suggesting that the period of any endogenous rhythm may differ 

In males and females. Eriksson and  LundquIsI (1982) reported 10 month cycles of growth 

and smoltificatlon In Atlantic salm on reared under 12L:12D and constant temperature for 

14 months. In the rainbow trout Whitehead at al. (1978) observed that fish maintained 

under 12L;12D and constant temperature spawned at approximately the same Mme as the 

controls and that changes In the serum components assodatad with reproduction occurred 

just before those under the norm al yearly cycle. A  subsequent study found that rainbow 

trout maintained under similar oondlllons matured after 49 rather than 52 weeks 

(Brom age at al.. 1982b). Further studlas utilising a range of other constant photoparlods 

(6L:18D.16L:eD,18L:6D, LL ) o ve r tha majority of the reproductive cycle Indicaled that 

spawning always occurs eventually but Is often desynchronized and usually has a period
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length differeni trom 1 year (VWtltehdad end Bromege. 1 9 W : Bfomege ct el.. 1 9 8 » ,  

1984; S k e rp h e d in e «», 1982: Scott at al.,1984). Untortunataly. thaea axperimanta. 

though aiiggaatK/e of andoganoua rfiythmlcMy, are not entirely convincing eince the 

rhylhma were followed for only 1 cyctm  o r ehowed period lengthe atypical lor a drcannual 

rhythm .

A  further Indication of d rcannual rhythmldly la Implicit m the raeuHe of prevlouely 

described studlae which used oompreaaed and expandad seasonal llghi cycles. Under the 

various experimental regimes spaw ning dkl not occur at the same phase of the seasonal 

cycle as under natural daylength. T h is  suggests that photoperiod does not direclly Induce 

reproductive developmenl. Figure 3 .4  shows the data of vyhitehead at al. (1978) and 

Bromaga et al. (1984) plohed lo sh o w  changes m the phase-angle (W: see Figure 3.3) of 

^ » w n ln g  lime under seasonally changing photocydes of varying periodicity. The «m e  of 

the shortest pholoperiod ('winter solstice') was used as the phase reference polnl In each 

case and the pholocycle was divided m io 360”. It Is clear thal Ihe spawning phase of the 

raproductve cycle occurs at a progresslvoly later phase of the pholocycle as the period of 

the pholocycle Is decreased. Th ie  decrease In phase-angle diflerence with decreasing 

zeltgebar period, which Is well established for entrained circadian systems (Aschoff, 

1978, 1981), has been found In a ll studies In which circannual rhythms have been 

entrained lo zellgebar cycles of vary in g  period (Qwinner, 1981).

Th e  most compelling evidence for the existence of endogenous circannual rhythms m 

salmonid« has recently been obtained by Duslon and Biomage (t986a). They maintained 

female rainbow trout under constant LL . 18L:8D or 8L:18D and constant temperature for 

at least 3 successive spawning perio ds. Under constant long photoperiods spawning waa 

advanced by 2 months during Ih e  first year of treatment and then occurred at 

approximately 8 month Intervals o v e r  4 successive cycles. Under constant short days 

spawning was mmally delayed b y u p  to 5 months and then occurred at approximalaly 1 

year miervals over 2 suooassiva cy cle s , maintaining the lime dMference relative to the 

controls. Th e  spawning time of Individual fish became desynchronized under all three 

regimes. These  resuHs are stro ngly Indicallve of free-running endogenous rhythms o f



Figura 3.4: E «e cls  ol compressed e nd  expanded seasonal HgW cycles on the timing o l 

spawning In rainttow trout. Th e  time o f spawning under each regime Is Indicated by an 

arrow. Each photocycle Is divided Into 3 6 0 ' and the phase-angle dlfterences are calcolated 

relative to the winter solstice. U nder the experimental photocycles spawning does not 

occur at the same phase ol the seasonal cycle as under natural daylength. Note also that 

spawning occurs at a progressively later phase of the photocycle as the period ol the 

photocyde Is decreased, I.e. there Is a  decrease In phase-angle difference with decreasing 

Zeitgeber period. From Bromage at al. (1989).



reproduction, aHhoiigK. M  m »om o p rd v io u » »ludio» (Bromao* at al.. 1»S4; Scott at al.. 

1 M 4 ), tha partod length under LL waa atypical lor a drcannual rhythm.

With tha damonatratloo ol a d rc a n n u a l dock H baoama apparent that many ol tha 

axparlmantal raiuHs datakad pravlooaly co uld  be axpWnad m larma ol the anirainmani ol

me dock by Pholoparlod admg aa a zano tar. Thus, the adxanca m apa-nmg lima caused

by a reduction Irom a oonslant long to a  oonitanl short photoparlod could be miarpralad as 

a phase adxanoa ol the endogenous d o c k  {Duston and Bromaga, 1967.1988). Tha  ablllly to 

causa such phasa-shms Is an cbHgala raxiulramant ol a zaitgabar ol an endogenous rhythm. 

In this chapter the probabla axislanca o l  an endogenous drcannual rhythm coniroHIng 

raprodudlon In the lemale rainbow trout provides tha loundatlon lor experiments designed 

to clarlly tha mechanisms by which pholoparlod entrains this clock. Tw o  series ol 

experiments were oonduded. Those deecrlbed m Sedlon A  examine the ellects ol vartous 

■long' to short' pholoperlod regimes o n  reproductivo liming and the entrainment of the 

dock. Section B similarly Invesllgatos th e  ability ol short periods of LL to cause phases- 

shlfts of the circannual dock with additional emphasis on the developmonl of a simple, 

cheap and predictable method lor th a  commercial production ol 'oul-ol-season' eggs 

wHhout the need for Wsckout tecllltlaa. A s  a corollary these experiments provide a further 

test of the hypothesis that maturation In the female reInbow trout Is ultimately under 

endooenous control.



3 2 A Th. m LMM.' tn ■ Rh«f chmiMi Hi PtKjimwirtnri on ilw EnirUnmMliit

A n n .»l » «  p »i» «v « .m n n  m th«  p ~ n «h i Hamtiow Tiou l.

Qwinnar (1986) M ales that four types of experlmenls cen be performed to test 

whether an environmental variable la  a zeitgeber of a circannual rhythmicity: 1) 

exposure of a free-running rhythm to a n  environmental cycle; the former should assume 

the period of the latter If It Is an effecllve zeitgeber. 2) varying the period of the 

environmental cycle; the period of the endogenous rhythm should (wlthm certain limits) 

follow changes In the period of th e  environmental cycle. 3 ) phase-shifting the 

environmental cycle; the endogenous rhythm should follow that phase-shift within a lew 

cycles. 4 ) exposure of animals maintained under constant conditions to pulsatile or 

stepwise changes of an environmental variable; H H Is a zeitgeber the pulse or step should 

produce a phase-shift, the magnitude a nd  direction of which should depend on the phase of 

the circannual rhythm exposed to th e  stimulus (i.e a phase-response curve should be 

available). Experiments In the rainbow  trout (detailed in section 3.1) have demonstrated 

the effectiveness of photoperlod as a  zeitgeber for the annual reproductive cycle using 

procedures 2 (compressed and expanded seasonal photocycles), 3 (phase-shifting the 

seasonal pholocycle by 180») and 4  (abrupt changes In photoperiod). The  experiments 

described In this section utilised procedure 4 to investigale the mechanisms by which 

photoperiod entrains the endo genous circannual clock which. It Is proposed, controls 

TBproduction in ihs fBfnsiB rainbow trout.

Recent work ((Juston and B ro m a g e , 1987, 1988) has indicated that an abrupt 

reduction from a constant 'long' photoperiod to a constant shorter photoperiod can advance 

maturation by 3-4 months m the femate rainbow trout. These studies have emphasised the 

importance of an abrupt reduction In daylength as an entraining cue lor the advancement of 

^ » w n ln g  time. However, all the experiments used 18L;6D as the 'long' photoperiod and 

hence any effects that this daylength p u _ U  may have had on spawning time were 

undetectable. Consequently, experim ents 1, 3 and 4 were principally designed to 

discriminate the effects of changes m  daylength from those of daylength pflLJa  (absolute
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daylength). T h l i  question was InMIally addressed In experiment 1 by exposing fish to a 

variety of constant long' days (1 8 L :6 D . 14L:10D or 10L:140) from m Id-Jenuery 

(amblant daylength 8.5L;15.SD). lollowad by an abrupt reduction to a constant shorf day 

(6L:18D ) In early May. Th e  range of 'lono' days examlnod was extended In experiments 3 

and 4 (10L;14D, 12L:12D, 14L:10D . 18L;8D . 1 8 L « D . 20L;4D and 22L:2D ), In which 

the variability In the magnitude of th e  reduction m daylength Inherent m experiment 1 

(12. 8 and 4 hours) was negated b y  decreasing the photoperiod by 8.5 hours (which 

approximates to the difference In daylongth betvreen the summer and winter solstice at the 

latitude of the experiments) In all gro u p s. Tw o additional groups of fish were Included to 

test the hypothesis that maturation can be  advanced even m flsh which do not experlonco on 

Incraase In daylangth In spring (I.e . remain on a winter photoperiod) provided they 

receive a decrease to an oven shorter photoperiod prior to the summer solstice. Thus, flsh 

were maintained on either 8L:18D  (experiment 1) or 8.5L:15.5D (experiment 4) from 

late January, and then subioctod to  an abrupt decrease In pholoperlod to 2L-.22D 

(oxporlmoni 1) or 1.5L:22.SD (experim ent 4) In oariy May.

This  section also Includes a preliminary Invesllgallon of the Importance of the position 

(In relation to the phase of the reproductive cycle) and duration of exposure to a given 

photoperlod (more thoroughly exam ined In section B ). In a recent study only 2 6 %  o f 

female rainbow trout exposed to a 'long’ photoperlod from mid-January to early M arch 

attained early maturity, whereas 7 7 %  of those subjected to 'long’ days from m id-January 

to early May matured early (D uslo n  and Bromage. 1988). This suggests that both the 

duration and the position of the 'long' pholoperlod may be Important determinants of th e  

proportion of fish responding with a n  advance In maturation. In order to discriminate 

between these two possibilities a supplementary group of fish were exposad to a 'long' 

pholoperlod from late March to early May In experiment 1. The  Importance of duration of 

exposure was further Investigated In experiment 3 by comparison of two g ro u p s  

maintalnsd under either constant 'short' days or exposed to 1 week of 'long' days m an  

oth*rw lM  ‘thort’ d «y
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3.2.1

All Iteh u tw l In «xpcrlm anM  1-4 c a m «  from «n  ntabllsiM d domMtlcatMl »toek wWi ■ 

natural tpawnlnQ parlod of Novam bar-Dacam bar. At Iha atari of aacb axparlmanl flab ware 

tranafarrad from amblani daylanglh (laMtuda 52-30-N) to ona of 6 circular pholcparlod 

tanka (aaction 2.2.1; Figura 2.1). T h a  tanka wara auppllad with conatani tamparatura 

(7 .5 -8*C) apring walar and tungatan fllamani light butoa providad a llghi Intanally of 

25-30 kix at Iha walar aurfaoa. Flah w a ra  Individually taggad (aaction 2.1.3) and walghad 

upon tranafar. Whan 2 groupa of *ah w ara malnlalnad In tha aama lank thay wara dya 

maikad (aaction 2.1.3) lo tacUHata group Idanllficallon In Iha avant of a tag loaa.

Th a  rata of maturation undar Iha varloua pholoparlod raglmaa waa aaaaaaad b y 

maaauring aarum calcium (aa an Indax of vllalloganin; aaction 2.4) at approximataly 

monthly Intanala. Aa Iha «ah  approachad maturity lhay wara examlnad at 2-waakly 

Intarvala (aacllon 2.2) and the apawning llmaa of Individual «ah racordad for each group. 

Egg diameter, total egg volume and poet-alripped body weight were maaaured for each «ah 

and both total and relativa tacundHIaa calculatad (aecllon 2.3).

Unlaaa olhetwiae alaled apawning profilea and egg data were analyaed by Studenra I- 

taat for homogenoua variances (aecllon 2.7.4) or one-way analysla of variance followed by 

a parametric multipla comparlaona procedure (aecllon 2.7.5). Th e  proporllona of flah 

analning maturity were compared b y calculallon of confidence limits (section 2 .7 .6 ). 

Hormone data was analysed by Studo nfs l-lesi (or heterogenous variances (section 2.7.4) 

or the Kruskal-Wallla test follovired by a  non-paramelrlc multiple comparlaona procedure 

(S«ctlon 2.7.5).
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3.2.2.1 Protocol

Five groups o( approslmalely 25  Iwo-yaar old virgin female ralnbovr trout w o re  

transferred on January 17 from am bient daylength (8 .5L:15 .SD ) to the foUowIng 

pholoperiod regimes:

Group A  - 18 L:6D until May 8 tollowod by 6L:18D until spawning.

Group B - 14L:10D until May 8 tollowod by 6L:18D until spawning.

Group C  - 10L:14D until May 8 tollowed by 6L:18D until spawning.

Group D - 6 L :t8 D  until May 8 followed by 2L:22D until spawning.

Group E • 6L:18D until March 26. 1 8 L :6 D until May 8, 6L-.18D until spawning.

In addition to serum calcium, circulating oestradk)l-17B and testosterone levels w ere  

measured (section 2.5) at approximately monthly Intervals to provide an alternative 

esiinialo of maturalior) rate.

3.2.2.2 Results 

Spawning

The  spawning times of the individual fish In each group are Illustrated In Figure 3 .5 . 

When the photoperlod was reduced to 6L:18D on May 8 from 18L:6D (G p. A ). 14L:10O  

(G p. B) or 10L:14D (G p. C ) spawning commenced on August 23. September 3 and October 

2 respectively. In each case considerably In advance of the natural spawning period. In 

Gps. A . B  and C  respectively 86. 72 and 66%  of the fish attained maturity over periods of 

10. 8 and 9 weeks.

Op, D . which experienced a reduction In daylength from 8L:18D to 2L:22D In early 

May. commenced spawning on D ecem ber 2. approximately 1 month after natural spawning
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began. During an 11 waak parted 7 S %  o* lha Hah In O p . 0  allalnad maturity. On 

tarmlnatlon of tha axparimant on Fabruary 19 hormona maaauramantt Indicatad that 2 of 

the S remaning Immature Hah ki O p. D  taould ahortly have oompletad maturation had lha 

axpartmant bean allowad to oonHnua.

O p. E , which racalvad 8 waaks of 'long' days from lata March to early May In an 

otharwiaa 'ahorT day raglma, commancad spawning on Saptembar 18. wan m advance of 

tha natural spawning period. During a 8 waak period 7 0 %  of lha fish In Q p . E  attained 

m aturity.

Th a  differences In mean spawning timss between groups ware all significant at tha 

PsO.001 level with tha exception of Qpa. A  vs E  (PsO.OS), and Ops. A  vs B and B vs E 

(N .8 .). Thera ware no significant ditterencas In tha proportions of flsh attaining maturity.

Cateium

All groups exhibllad significani changes (PsO.001) In total serum calcium levels 

during the reproductive cycle. However, there were considerable dHlsrences In the timing 

of these changes (Figure 3 .8 ). consisloni with the diftarancas m spawning time between 

groups. Thus, calcium levels In Q p. A  began to Increase In May, rose steeply through June 

to August, and peaked at about 81m g%  In early September; these levels were signHIcanlly 

elevatad (PsO.OS) compared to O p. E  In July, and Qp. D In July, August and September. In 

Qp. B  serum caldum Increased at a similar rate to Qp. A  from May to August, but exhibited 

a lower and broader peak attaining a maximum of approximately 44m g%  In August. 

Calcium levels in Q p. B  wore significantly higher (P iO .O S ) than those In Q p. D  during 

both July and August. In O p . C  the flrst substanHal Increase In calcium levels occurred 

between July and August, wHh a broad peak of about 33m g%  extanding from aarty 

September to late October; levels were significantly elevated ( PsO.OS) et both October 

sampling poims compared lo those In O p . D , and were alao slgnlHcanHy higher (PsO.OS) 

m late October than those In Q p . A ., which wore approachmg basal at this «m e . Serum 

calcium began to rise at about the same time In Qp. E  aa In Qp. C . but peakad higher, 

reaching approximately S 1 m g %  In early October, at which time levels were significantly



Figure 3.6: Th e  ettects ot five pholoperlod regimes (Q p s . A -E . esperlment 1) on the 

timing ot changes In total serum calcium levels (mean ±  1 S E M ) during maturation In 

female rainbow trout (Q p . A, 18L:6D/6L:18D: n -5 -1 2 : Q p . B . 14L:10D/6L:18D; n -6 - 

10: Q p. C , 10L:14D/6L:18D: n -5 * 1 2 : Q p . D , 6 L :1 8D /2L:22D : n -9 -1 3 : Q p. E, 

6 L :1 8 D n 8 L :6 D / 6 L :1 8 D ; n -9 -1 5 ).



•4«vat*d (Pso.05) comparad lo Ihosa In Qp. D. Aa calcium lavalt In Q p a . A -D  approached 

baaal balwaan lata Oclobar and aarly Dacamtiar, lavala m Qp. E  baga n  a gradual riaa 

lowarda a maximum of about 27m g% at lha laat samplino pomi m aarly Fabruary.

flam tradlo l-1 7 B

All groups axhibitad significant changas (PsO.001. Ops. A , B and E : PsO.01, O p. C ; 

PS0.05, Q p . D ) m sarum oastradlol-17B lavals during tha raproductiva óyela. Howavar, 

thara w ara considarabla diffarancas In lha timing of lhasa c h a n g as (Figura 3.7 ), 

oonsistani with lha diffarancas In spawning lima batwaan groupa. T h u s , oaslradlol-17B 

levels In Q p. A  bagan to Incraasa In May. rose steeply through June and July, and paakad at 

about 2Sng/ml In August; levels were slgnlflcanlly alavatad (PsO.05) compared to Ops. B, 

C  and D  In late May, Qp. C  In early July, and Qp. D In August. Qp. B  show ed a sharp Increase 

In oestradk>l-17B levels between late May and July, rasching a p ea k  of approximately 

20ng/ml In August. A  similar profile, with a peak of about 18ng/ml In August, was 

observed In Q p. E, although oastradk)l-17B levels In September remained slgnlflcanlly 

elevated (PsO.05) compared to those In Qp. B , which had returned to basal. Oeslradlol- 

17B levels In Qp. C  began to Increase between July and August reaching a oomparatlvaly 

low peak of approximsiely 12ng/ml In Seplamber. at which point they were significantly 

higher (PsO.05) than those In Q p. B. As oeslradlol-17B levels approached basal In (3ps. 

A -C  and Q p. E . those In Qp. D rose sharply, attaining a level significantly higher (PsO.OS) 

than those In Ops. B. C  and E by late Oclobar. Interestingly, oastradk>l-17B lavals In (Jp. A 

began to Increass again at tha sama time and ware also significantly slevalsd (PsO.OS) 

compared to Qps. B, C  and E by lata Oclobar. Qp. D  axtUbHad a m ore gradual mcraase In 

sarum oaslradlol-17B altar October exhibiting a broad peak between December and lha 

last sampling pomi m Fabruary, at which tima lavals had raachad about lengMil.

All groups sxhibitsd significant changes (P sO .O O t) In sarum  tastestarena levels 

during tha raprcductiva cycle. DIffsrsness In lha liming of these changes wara again
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Figure 3.7: Th e  effects of five photoperiod regimes (Q p s. A -E , experiment 1) on the 

timing of changes In serum oestradlol-178 levels (mean ± 1SE M ) during maturation In 

female rainbow trout (Q p . A, 18 L :6D/6 L :t 8D; n .S -1 2 : Q p . B, 14L:10D/6L:18D; n .8 - 

10: Q p . C , 10L:14D /8L:18D ; n .4 -1 2 : Q p . O, 8L:1 8D /2 L:2 2 D ; n -9 -1 3 :  Qp. E , 

8 L :1 8 D r l8 L :8 D (8 L :1 8 D ; n -9 -1 5 ).



oonslstent with Ih « <Mff*r«nc«t In spawning tltna batwsan groupa (FIgura 3 .8 ). although. 

O p . D  apart, tha dHlaranoaa batwaan groups wars lass waK dallnad than tor ca ldum  and 

oaatradiol-17B. Taatoatarorta lavals bagan to Incraasa In Ops. B. C  and E  m M a y  wHh tha 

raauH that by lata M ay lavala wara significantly alavatad (PSO.05) m O p s . B  and E 

oomparad to Op. 0 . Sanmi tastoatarona rosa staaply In Ops. A , B  and E  batwaan lata May and 

aarly July, at which tima lavala wara signlllcantly highar <Ps0.05) In O p s. A  and B than 

In Q p . D, and psaksd at approximatsly 81ng/ml (O p . A ), 62ng/nil (O p . B ) a n d  t06ng/ml 

(Q p . E )  batwaan August and Saptsmbar, batora falling towards basal In October. 

Taatosterone lavals In Qp. A  bagan to Incraasa again batwsan lata Octobsr and Oscambar. In 

accordanca with similar changss In oastradk>l-17B lavsis. In Q p . C  testoalarone levels 

Increased slowly batwasn M ay and July, rosa steeply between July and  August, and 

rsmalnad slevatsd through September and October to peak at about 104ng/ml In lata 

October: levels were sIgnIfIcanHy slevatsd (PsO.OS) compared to Q p. A  m early October 

and Ops. A  and E In late October. Testosterone levels In Q p. D Increased gradually from 

September onwards, were significantly higher (PsO.05) than those In Q p . A  by late 

October, and rose steeply between January and the last sampling point In February to 

reach • peak of about 129iio^ml.

E g g  dtam etftr and fecunditv

Egg diameter and fecundity measurements are summarised In table 3 .1 . Th e  most 

advanced spawning fish (Q ps. A . B and E) produced significantly smaller e g g s  (PsO.001) 

than tha later spawnars (Qps. C  and D), but there were no significant differences In sHher 

total or relative fecundity.







3 .2.3 c .m .fknu t !»• Th. .ttrnmm a l wnrinn ItM tllM ot m  lIMM 

p«w..nn.rinrf MM OP  Hmiwi ot m lu fU m i h  W  IMMU M W » «  UBUL

3.2.3.1

S m v n  groups of fomal* rainbow trout wara iranafarrad, ovar a parlod of 3 months, 

from «mW ent d «y l« ig lh  lo fh# loHowing pholopeflod r«glcn«»:

Group A  - 18L:6D from Docombor 2 untM May IS  toMowod by SL:18D urrtH spawning. 

Group B  - 1 8 L «D  from January 19 un«l May 15 loflowad by 6L:18D untH spawning. 

Group C  - 18L:6D from Dacembar 23 until May 15 foflowad by 8L:18D unlH spawning. 

Group D  - 18L:6D from January 19 until May 15 foHowad by 8L:18D untH spawning. 

Group E  - 18L:6D from January 19 until spawning.

Group F  - 18L:6D from Fsbruary 19 uni» May 15 followod by 8L;18D until spawning. 

Group G  - 18L:6D from Fabruary 19 until spawning.

G ps. A  and B (»nta lnsd  19  and 18 fish rsspacllvaly maintalnad In lha sama tank; thasa 

fish wara disirlbutad avanly from Ops. A . B, C  and E  which had spawnad savaral months In 

advanca of lha natural spawning saason altar pholoparlod Iraalmani m asparlmant 1. Prior 

lo transfar lo 18L:6D Ihay wara malnlalnad on 6L;18D . Th a  ramalning groups wars 

comprised of 10 two-year old (2+) virgin fish and 15 ihraa-yaar olds (3 + ) which had 

racanlly (prior to Dacambar 23) spawned naturally lor tha Hrst lime. Th e se  fish wara 

maintained on ambient daylength until transfer.

3 .2 .3 .2  Results 

S q BK q IqO

T h a  spawning limes of lha Individual «sh  m aach group are l»uslralad m Figures 3.9 

(G ps. A  and B ) and 3.10 (Gpa. C -G ). In « »h  wMoh had previously axparlanoad an advanoa 

m spawning tima m arrparlmani 1 a reduction m pholoparlod m May. following an mcrsasa 

to 18L:8D  on Daosmbar 2 (O p. A ) or January 19 (G p . B ), resulted In main spawning
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MONTH

Figure 3.9: The  effects of two photoperiod regimes (O ps. A  and B, experiment 2) on the 

timing of maturation in fernaie rainbow trout sub|ected to an advance in spawning time the 

previous year. Th e  histograms represent the number of ripe females on each sampling 

date. Line graphs Indicate the photoperiod regime (hours of light/day) applied lo each 

group. Dashed vertical lines Indicate the mean spawning lime of fish maintained under 

ambient daylength.



parlodt oomm«nclng on Juno 2 »  and July 28 raspacllvaly. In O p. A 100% o l Iha Bah 

attamad maturity wHhln a 12 waak pariod and m O p. B »4 %  of tha flah maturad o »a r 8 

«raaka.

Qroupa of pravloualy untraalad Halt, m wtUoh tha raducllon m pholopactod m M ay waa 

praoadad b y an kicraaaa to a lono' daytangth on Daoambar 23 (O p . C ). January 19 (Q p . D) 

or Fabruaiy 19 (Gp. F ). oommanoad apamming on Auguat 28, Auguat 28 and Saplambar 23 

rM ptclIvoly. In Qpa. C . D  and F raapacllvaly 91. 84 and 8 7 %  ol lha Bah attalnad malutHy 

ovar parloda ol 6, 8 and 8 waaka.

Qroupa which racalvad an Incraaaa In daylangih only, on January 19 (Q p . E )  and 

Fabruary 19 (Q p . Q ). oommancad apawning on Octobar 7 and Novambar 5 raapactivaly. 

oonaidarably lalar than Ihak oountaiparla In Qpa. D and F . In Q p. E  8 8%  of tha Bah 

apawnad ovar a pariod of 10 waaka. Unfortunalaly. an knarruptlon lo lha walar aupply 

raaultad m tha daalh of all lha Bah m (3p. Q  on Dacambar 2-3 . Examination ol mortallllaa 

on Dacamber 4 ravaalad that 2 had ovulalad. Th a  ramalnkig 9 Bah wara aaaaaaad lor 

maturity by vlaual Inapactlon. maaauramant ol oocyta diamatar and ovary walght and 

calculation of lha QSI (aacBon 2.3.3). Savan of tha flah appaarad doaa k) ovulation (<3SI- 

6.3-14.7) and would probably hava maturad by lha naxi or aubaaquant vlalt (2-4 

waaka). Tvwj ol lha flah wara aaaaaaad aa knmalura (Q S I -  0.25 and 0.57) and unHkaly lo 

apawn that year. On the baala of thaaa aatimalea. which have been Incorporated In Figure 

3.10, 8 5%  o l lha flah In Q p. Q  would hava apawned over a pariod ol 6-8 weaka.

Tha dlllarancaa In maan apawning llmea balwaan groups wara all algnlBcant at the 

PsO.001 level vrlth lha exception of Qpa. A  va B and C  va D (P s O .0 1 ). Qpa. D va F and E  va 

F (Pso.05). and Qpa. B  va C  (N .8 .), though It ahould ba noted that lha akigla flah which 

apawnad m  early May m Qp. B (FIgura 3.9) and lha akigla flah which apawnad In aarly 

July m Q p . Q  (FIgura 3 .1 0 ) wara axcludad from the atatlatical analyala (l.a. wara treated 

aa •oulBara') lo  maintain homoganalty of varlanoaa. AHhough lhara waa a landancy lor 2+ 

rainbow trout lo apawn latar than 3+ flah the allaci ol age on apawning Mma waa not 

aigniflcant (P20.0S, two-way analyala ol varlanoa (Qp. Q . axdudad): 'Mlnltab' atatlatk»l 

package. Hyan at a l., 1 9 8 1 ) . Th a ra  wara no algnHIcant dlllarancaa between tha
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periods commencing on June 29 and July 28 respectively. In  G p. A  100%  of the fish 

attained maturity wHhIn a 12 week period and In Q p. B  9 4 %  of the fish matured over 8

Groups of previously untreated fish, m which the reduction In photoperlod In May was 

preceded by an increase to a tong' daylength on December 23 (G p. C ), January 19 (G p. D) 

Of February 19 (G p. F ), oommencad spawning on August 26. August 26 and September 23 

respectively. In  Gps. C . D  and F respectively 91. 84 and 6 7 %  of fhe 8sh attained maturlly 

over periods of 6, 8 and 6 weeks.

Groups which received an increase In daylength only, on January 19 (G p . E ) and 

February 19 (G p . G ). commenced spawning on October 7 and November 5 respectively, 

considerably later than their counterparts In G p s . D and F. In G p . E  8 6%  of the fish 

spawned over a period of 10 weeks. Unfortunately, an interruption to the water supply 

resulted in the death of all the fish in Gp. G  on December 2-3. E«amination of mortalilles 

on December 4 revealed that 2 had ovulated. T h e  remaining 9 fish were assessed for 

maturlly by visual Inspection, measuremenl of oocyte diameter and ovary weight and 

calculation of the G S I (section 2.3.3). Seven of the «sh appeared close to ovulation (G S I -

6.3 14.7) and would probably have matured by the next or subsequent visit (2-4 

weeks). T w o  of the fish were essessed as Immature (Q S I -  0.25 and 0.57) and unlikely to 

spawn that year. On the basis of those estimates, which have been Incorporated In Figure 

3.10. 8 5%  of the fish in Gp. G  would have spawned over a period of 6-8 weeks.

The differences in mean spawning times between groups were all signiflcanl at the 

PsO.001 level with the exception of Gps. A v s  B and C  vs D (PsO.Ot). Gps. D vs F and E vs 

F  (PsO.05). and G ps. B  vs C  (N .S .). though It should be noted that the single fish which 

spawned In early M ay In G p. B (Figure 3.9) and fhe single fish which spawned In early 

July In G p . G  (Figure 3.10) were excluded from the slatislical analysis (I.e. wore treated 

as 'outliers') to maintain homogeneity of variances. Although there was a tendency lor 2*  

rainbow trout to spawn later than 3+ fish the effect of age on spawning time was not 

signllicani (PiO.OS. two-way analysis of varia n t» ((3p. G . excluded); 'Mlnilab' stallstical 

package. Ryan et al.. 1981). Th e re  wore no signlllcanl differences between the
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Figure 3.10 (opposite): Th e  oflecls of five pholoperiod regimes (G ps. C -G , experiment 2) 

on the timing ol maturation in lomale rainbow trout. The  stacked histograms represent the 

num ber of ripe females on each sampling dale; fish spawning for the first time are shown 

in black, those undergoing their second reproductive cycle in while. The  hatched 

histograms in Gp. G  represent an estimate ol the spawning lime. Line graphs indicate the 

pholoperiod regime (hours ol lighl/day) applied to each group. Dashed vertical lines 

indicale the mean spawning lime of fish maintained under ambient daylenglh.
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proportlont of ll»h attaining maturity (althar batwaan or within groupa).

All groups sxhibltsd signincsnt changss (PsO.001) In total tsru m  calcium Isvsis 

during tha raproductlva c y d a . Tha  liming of tha changaa m total aarum ca ld u m  was 

similar In O ps. A  and B . but calcium lavala paakad (at about 3 3m g % ) In July In O p. A, 

approximataly 1 month aartlar than paak lavala (approximalaly 5 8m g % ) oocurrad In Op. 

B (FIgura 3.11). conslslani wllh tha dlflaranca In spawning lima balwaan tha two groups. 

In August, calcium lavals w a rs  significantly highar (PsO.001) In Q p . A  than O p . B ; thara 

wara no signlllcani dllfarancos at othar llmas points.

Tha timing of tha changes In total serum calcium In Ops. C -Q  was similar m 2+ and 3+ 

fish, and there was no conalalonl relationship batween age and tha amplltuda ol the caldum 

profiles (Figures 3 .1 2 -3 .1 « ) . However, thara  wara considarabla diffarancas In the 

timing ol those changes (Flgura 3.17). consistent with the diflorencos In spawning lima 

between groups. Thus, c a ld u m  levels m Q p. C  began to Incroasa bolwaon May and June, 

rose steeply balwaan Ju n e  and July and peaked at about «O m g it In August; at the latter 3 

lime points levels wara significantly hlghar (P sO .05) In Q p. C  than In Qps. E .. F  arKf Q. 

Much shallower Increases In serum caldum oocurrad In Qps. D -Q  batwaan May and June, 

at which time levels w ere significanlly hlghar (PsO.OS) In Q p . D  than In Q p. Q . In Qp. D 

levels rose steeply thro ugh July and August and paakad at approximately S 8m g%  In 

September; these lavals w ara  significantly elevated (PsO.OS) compared to Q p. E  In July. 

Qp. F. m August, and Q p . Q  at all three time points. Serum caldum  profUas wara similar In 

Qps. E  and F. oxhiblling a  more gradual Incraasa than those obaarvad ki Qps. C  and 0 . and 

attaining lower padts of about 4 lm g %  by Saptambar. Calcium lavals In Qp. Q  remained 

slightly higher than b a s a l values from J u n e  to August, attar which they gradually 

mcraasad. reaching approximalaly 35m g% by tha last sampling polnl In November; at this 

tims lavals m Qp. Q  w ara  algnMIcanlly elevated (PsO.OS) oomparad to those m Q ps. C  and 

D, which were d o M  to basal.



Figure 3.11: The effects of two pholoperlod regimes (Qps. A  and B , experiment 2) on the 

timing of changes In total serum calcium levels (mean ± IS E M ) during maturation In 

female rainbow trout (Q p . A , 18L :6D -D ec ./6 L :1 80 -M ay ; n .1 3 -1 9 : Q p . B , 18L:6D - 

Jan ./ 8L :18 D -M a y: n -1 0 -1 8 ).



Figure 3 .12: Comparison of the eftects o f  a long photoperiod (18L:6D) from December, 

followed by a short photoperiod (6L:18D) from May (O p . C , experiment 2), on the timing 

of changes in total serum calcium levels (mean ± fS E M ) during maturation In virgin fish 

(2 -yaar olds: n -2 -5 ) and fish undergoing their second reproductive cycle (3-year olds: 

n . S - 1 1 ) .



Figure 3.13: Com parison of the effects of a long photoperiod (18L:6D) from  January, 

followed by a short photoperiod (6L:18D) from May (Op. D. exporlmont 2 ), on  the timing 

of changes In total serum calcium levels (mean ± IS E M ) during maturation In virgin fish 

(2-year olds: n -9 -1 S ) and fish undergoing their second reproductive c y c le  (3-year 

olds: n -7 -1 4 ).



Figure 3.14: Comparison of the slfects of a constani long photoperiod (1SL:6D) from 

January (Q p . E , experiment 2) on the timing of changes In total serum calcium levels 

(m ean ± 1SE M ) during maturation In virgin fish (2 -year olds: n -6 -1 0 ) and fish 

undergoing their seoond reproductive cycle (3-year olds: n*6-15).



Figure 3.15: Comparison o l the etfects of a long photoperiod (1 8 L:6 D ) from February, 

followed by a short photoperiod (6 L :t8 D ) from May (Q p. F. experiment 2), on the timing 

of changes In total serum calcium levels (mean ± tS E M ) during maturation In virgin fish 

(2 -year olds: n -6 -t O ) and fish undergoing their second reproductive cycle (3 -year 

olds: n -7 -t 3 ) .



Figure 3.16: Comparison of the effects of a constant long photoperiod (1 8 L:6 D ) from 

February (Q p . Q . experiment 2) on the timing of changes In total serum caldum  levels 

(mean ± 1 S E M ) during maturation in virgin fish (2 -yea r olds: n-6*10) a nd  fish 

undergoing their second reproductive cycle (3-year olds; n*4-14).



Flflure 3.17: The  effects of five photopertod regimes (Ops. C -Q . experiment 2) on the 

timing of changes In total serum calcium levels (mean ± 1SE M ) during maturation In 

female rainbow trout: data combined from 2 and 3-year old fish (Q p . C , 18 L :6D - 

D e c./6 L :1 8 D -M a y: n -8 -1 6 : Q p . D , 1 8 L :6D -Ja n ./6 L :1 8 D -M a y: n -1 8 -2 8 : Q p . E, 

1 8L :6 D -Ja n .: n -1 2 -2 S : Q p. F . 18L:6D-Feb./6L:18D-M ay: n -1 3 -2 2 : Q p . Q . 18L;6D- 

Feb.; n -1 2 -2 4 ).



Pnn dlaiM IBf -"H  l«n inrtltv

Egg (ttamatcr and tacundlly m aaiuram anlt are lu m m a rlia d  In laWa 3.2. Th e  moat 

advanced apawnlng 2+ Hah (Q pa. C  and D ) produced aignlllcanlly amaKar agga (PSO.01 

and PSO.001 reapecllvely) than the later apawnlng llah ol O p . E . but there ware no 

aignlllcant differencaa In egg diameter batwaan groupa In 3+ flah. Th e ra  ware no 

aignlllcant diffarancea between groupa In either total or ralatlvo fecundity. Tw o-w ay 

analyala of variance CMInHab' atatlatical pachage, Ryan at al., 1981) revealed that both 

egg diameter and total fecundity were algnlflcantly higher (PsO.001) In 3+ than 2+ Hah, 

wheraaa relative fecundity waa algnlflcantly lower (P sO .05) in 3+ than 2 *  flah.





3.2.4 g « i . r in i « n i  .I- Th a  «H a ci«  nt .  r«nna  ol conaianl lonfl' nholiHwrlnrtii lollowBd by 

^^O lfcg LuA iC lIfln i tn 1 ^*"ff** nnnKlanI «hortar nhotopaflods on Itie llmlflfl Qf fTiatUfaliOn 

In thti ten)« l «  mlnhnw Iroul 1.

3.2.4.1 Protocol

Seven groups ol 2 -year oW virgin lemale rainbow trout were translerred on January 

19 from ambient daylength (8.5L;1S.5D) to the loltowing photoperiod regimes:

Qroup A  ■ 22L:2D until M ay 6 followed by 13.SL:10.5D until spawning.

Qroup B - 20L:4D until M ay 6 lollowed by 11.5L:12.5D until spawning.

Qroup C  - 18 L:6 D until M ay 6 lollowod by 9.5L:14.5D until spawning.

Group D - 16L:8D until M ay 6 lollowed by 7.5L:16.5D until spawning.

Qroup E  - 14L:10D until M ay 6 lollowod by 5.5L:18.5D until spawning.

Qroup F - 8.5L:1S.5D until spawning.

Qroup Q  - 8.5L:1S.SD until April 29. 18L:6D until May 6. 8.5L:15.5D until spawning.

Qpg. a -E  each contained approximately 25 llsh maintained In separate tanks. Gps. F a n d  

Q  each contained IS  llsh maintained In the same lank except lor a 1 week period from April 

29 untH May 6 when G p. Q  were housed with Gp. C  lor exposure to 18L:6D.

3.2.4 2 Results 

Spawning

Th e  spawning limes o l the Individual fish In each group are lllusiralod In Figures 3.18 

(O ps. A -E ) and 3.19 (O p s. F  and Q ). When the pholoporlod was reduced by 8.5 hours on 

May 6 from 22L:2D (Q p . A ). 20L:4D (G p. B ), 18L:6D (Q p . C ), 16L:8D (Q p . D ) or 

14L:10D (G p. E ) spawning commenced on August 17, August 31. August 17. August 17 and 

August 31 respectively, considerably In advance ol the natural spawning period. Th e  

proportion ol llsh attaining maturity In Qps. A -E  respocllvoly was 92, 96. 100, 96 and 

8 2%  over periods ol 8, 8. 10. 10 and 8 weeks.
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Figure 3,18 (opposite): Th e  eltecls ol live pholoperiod regimes (G ps. A -E . experiment 3) 

on the timing ol maturation in tomaie rainbow trout. The  histograms represent the 

number ol ripe lomaios on each sampling dale. Lino graphs indicale the pholoporiod regime 

(hours ol lighl/day) applied to each group. Dashed vertical lines indicate the mean 

Spawning time of fish maintained under ambient daylength.
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MAR APR MAY JUN JUL AUQ MAR APR MAY JUN
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Figure 3 .1 9 : The  effects of two photoperlod regimes (Qps. F  and Q . experiment 3) on the 

timing of maturation in female rainbow trout. The  histograms represent the number of 

ripe females on each sampling date. Line graphs indicaie the photopertod regime (hours of 

light/day) applied to each group (note that exposure to a constant 8.5 hour photoperiod 

began In January). Dashed vertical lines indicate the mean spawning time of fish 

maintained under ambient daylength.



Qpa. F  Cthorf d«/s o n ly ) and Q  (on# waak ol 'long' days wHhki an otharwiaa 'ahocf day 

raglm a) comm ancad apaw nlng on Dacam bar 20 and Dacam bar 6 raapacllvaly, 

approximataly 1 month, and  2 waaka, ahar natural apawning bagan. Spawning waa 

daaynchronizad in Gpa. F  and Q  ralathra to Qpa. A -E ; 100%  of tha flah in Q p . F attakiad 

maturity within a 20 waak pariod and » 2 %  of Ihoaa m Q p . Q  malurad ovar 26 waaka.

Thara wara no Hgnm cam  dritarancaa balwaan tha maan apawning Hmaa o l Qpa. A -E  or 

balwaan tha proportlona o l llah attaining maturity m aach group. T h a  variancaa ol tha 

spawning prolilat ol Q p a . F  and Q  wara both signlllcantly graatar (P sO .001: F-laal) than 

thosa ol Ops. A -E . Q p a . F and Q  spawnad signlllcantly lalar (PsO.OS; nonparamatrlc 

multipla comparisons procadura) than Qpa. A -E . Th a ra  was no stgnHicant dlllaranca 

between either the m ean or median (M ann-W hilnay U-tast; 'Mlnllab' statistical package, 

Ryan at al., 1981) spawning times of Ops. F and Q .

Calcium

All groups exhibited signlllcant changes (P S0.001) In total serum  calcium levels 

during the reproductive cycle. The  timing of the changes In calcium levels was vIrtuaHy 

Identical In Qps. A -E  (F igure  3.20), consistent wHh the similarity In spawning times In 

these groups. Calcium levels In (3ps. A -E  began to rise between M ay and June, were 

significantly higher (P s O .0 5 ) than basal values by July, and continued to rise steeply 

until peaking at approximately 70 m g%  In August (Q p . C ) or 4Sm g%  (Q p . A ). 61m g% 

(Q p. B ), 54m g%  (Q p. D )  and 57m g% (Q p. E ) In September. A  rapid decline in serum 

calcium occurred in Qpa. A -E  belween September and October, and levels were approaching 

basal by November. Signlllcant dltlerences In calcium levels between groups wars only 

detected during the early part ol the annual cycle; levels in Qp. B  In April, and Qp. C  In 

both April and June, w e re  signlllcantly elevated (PsO.06) compared with thoaa In Qp. E.

Tha  liming ol the changes In sarum calcium was also virtually Identical In Qps. F and Q  

(Figure 3.21), again conalstant with tha similarity in spawning timaa in thaaa groups. In 

both groups calcium levels  llial Increased significantly (PsO.OS) abova baaal values 

balwaan September a nd  October, and had reached 27ng/ml and 25ngrml respectively by



Figure 3.20: The  effects of five photoporlod regimes (Q ps. A -E . experiment 3) on the 

timing of changes in total serum calcium  levels (mean ± 1SE M ) during maturation In 

fem ale ra inbow  trout (Q p . A . 2 2 L :2 D / 1 3 .5 L :1 0 .5 D ; n -1 0 -1 2 :  Q p . B .

20L:4D /1 1 .5 L :1 2 .5 D : n -1 1 -1 2 : Q p . C , 1 8L:6D /9.S L:14 .S D ; n -1 0 -1 2 : Q p . D , 

16L:8D/7.5L:16.5D: n -1 0 -1 2 : Q p . E . 14L:10D/5.5L:18.5D; n -1 0 -1 3 ).



Figure 3.21: Th e  effects of two photoperiod regimes (O ps. F and Q . experiment 3) on the 

timing of changes In total serum calcium levels (m ean ± 1SEM ) during maturation In 

female rainbow trout (Q p . F , 8 .5L:15.5D; n -8 -1 2 :  Q p . Q , 8 .5L:15.5D/18L:6D - 

1w k/8.5L;15.5D: n «9 -1 2 ).



tiw l u t  M m pline  point In January. SIgnIflcant dlfforancu ki calcium  lavala batw m n tha 

M O  groupa w ora only dalected In May. wtwn lavala «rara aignillcantly highar (PsO.05) In 

Q p. F than In Q p . Q . and kt Juna, «ihan lavala «rara aignillcantly M gtw r (PsO.01) ki Qp. Q  

than kl Qp. F.

Fnn Hlanrwtar «rvt liw uviliv

Egg diamatar and lacundHy maasuramanta ara lum marlaad In tabla 3.3 . Th a  most 

advancad spawning fish (Qps. A -E ) produced significantly sm aller eggs (P fO .001) than 

the later spawners (Qps. F and Q ). Mean agg diameter w u  also significantly greater In Qp. 

A  than In Q p s . D (PsO.01) and E  (PsO.OS). Thera were no significant differences In 

either total or relative fecundity.





3.2.5.1 Pfolocol

Six groups of female rainbow trout were transferred on January 17 from ambient 

daylength (8.5L:15.5D) to the following photoperiod regimes:

Group A  - 22L:20 until May 9 followed by 13.5L:10.5D until spawning.

Group B 18L:6D until May 9 followed by 9.5L:14.5D until spawning.

Group C  * 14L:10D until May 9 followed by 5.5L:18.50 until spawning.

Group D • 12L;12D until May 9 followed by 3.5L:20.5D until spawning.

Group E • 10L;14D until May 9 followed by 1.5L;22.5D until spawning.

Group F - 8.5L:15.5D until May 9 followed by 1.5L:22.5D until spawning.

Each group comprised 10 two-year old virgin fish and 15 three-year olds which had 

recently spawned naturally for the first lime. Blood samples for serum calcium analysis 

were taken exclusively from 3-year old fish.

3.2.S.2 Results 

Spawning

The  spawning times of the individual fish in each group are illustrated in Figure 3.22. 

When the photoperiod was reduced by 8.5 hours on May 9 from 22L:2D (Q p . A ), 18L:6D 

(G p. B ). 14L:10D (G p. C ) and 12L:12D (Q p . D) spawning commenced In all groups on 

August 18. considerably In advance of the natural spawning period. Unfortunately, an 

interruption to the water supply on June 26 caused the death of all but 2 of the fish In Gp. 

B, which subsequently spawned on August 16 and September 14. No examination of 

mortalities was possible on this occasion. Further interruptions to the water supply 

between August 18 and 31 and. most seriously, on October 10. resulted in the death of the
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majority of fish In Ops. A -D . Thus, although most of ths fish In these groups had spawned 

by October to, there Is a possibility that the spawning profliss wore slightly curtailed.

W hen the photoperiod was rsducad to t .5 L 2 2 .S 0  In early M ay from tOL:14D (O p . E) 

or 8.5L:15.5D (O p . F ) spawning commenced on November 9 and October 24 respectively. 

In both cases In advance of the natural spawning period. The  proportion of fish attaining 

maturity In Ops. A , C , D, E  and F was estimated as 87, 79, 65, 62 and 71%  over periods of 

4, 6 , 6, 6 and 8 weeks respectively.

There  was only one significant difference jO ps. A  vs D ; Pso.05) between the mean 

spawning times of Ops. A -D  and no slgnlflcanl difference between those of Q ps. E  and F. 

Th e re  were, however, highly significant differences (P sO .001) between the mean 

spawning times of both Qps. E  end F  when compared with Qps. A -D , though It should be 

noted that the two flsh which spawned m early May and early June In Qp. F (Figure 3.22) 

w ere excluded from the statistical analysis (I.e. were treated as 'outliers') to malnlein 

homogeneity of variances. There was a significant effect of age on apawning «m e  (PsO.Ot, 

tw o-w ay anatysis of variance: 'Mlnitab' statistical package, Ryan et al.. 1981): the mean 

spawning time of 3+ fish occurred approximately 2 weeks earlier than that of 2+ fish. 

Between group differences In the proportion of fish attaining maturity wars not algnlflcont 

but there were significant differences between year ctasses within groups: the proportion 

of 3+ fish maturing was significantly greater than tttat of 2+ fish in Qps. C  (P sO .O t), D 

(P ^O .0 5 ) and E  (P sO .O t).

Ctaloium

All groups exhibited significant changes (PsO.OOt) In total serum calcium levels 

during ths reproductive cycle. However, there were considerable differences m the «ming 

of these changes (Figure 3.23), consistent with the differences In spawning time bstwasn 

groups. The liming of the changes In calcium levels was virtually Identical In Ope. A  and C , 

consistent vrlth the similarity In spawning times. Calcium levels In these groups Increased 

slightly between March and May, were significantly higher (PsO.OS) than baaal vakisa by 

Jun e , and continued to rise at a moderate rate until they peaked at approximately 33m g%



Figure 3.23: Th e  eHects of six photoperiod regimes (G ps. A -F . experiment 4) on the 

timing of changes In total serum calcium levels (m ean ± 1SEM ) during maturation In 

female rainbow trout (Q p . A, 22L:2D/13.SL:10.5D', n -6 -1 0 ; Q p . B , 18L:6D/9.5Lt14.5D; 

n .2 -1 0 : Q p. C . 14L:100r5.5L:18 .SD ; n -9 -1 1 : Q p . D , 12L:12D/3.5L:20.SD; n -8 -1 1 : 

Q p . E , 10 L :1 4 D/1 .5L:22.5D; n -5 -1 0 : Qp. F . 8.5L;15.SD/1.5L:22.5D; n -8 -1 2 ).



(Op. A ) and 3 6 m g %  (O p. C ) In aarly AugutI, prior lo  a dadlne towards basal valúas In 

Saptsmbar. Com parad to Qp. E ,  lavais wars slgnHIcantly alavatad (P sO .0 5 ) In Q p. A  In 

May, and In O ps. A  and C  In Juna, July, aarly August and late August. Caldum  lavais In Ops. 

A  and C  wars also significantly highsr (P sO .0 5 ) than thosa In Q p . F  In July and aarly 

August and lavais In Q p. A  wars significantly alavatad (P so .0 6 ) comparad to Qp. F  In lata 

August. Th a  timing of tha changas In caldum lavais In Q p . B wss comparsbis to that In Ops. 

A  and C , consistant with tha similarity In spawning timas batwaan tha two sunriving fish 

In Qp. B and thosa In Ops. A  and C . Paaklng at about 29m g%  In aarty August, Qp. O  sxhibitad 

a similar sarum calcium profila to Ops. A  and C , sxcspt that tha first significant Incrsasa 

(P so .0 5 ) abova basal values occurred approximately one month later, between Juna and 

July: calcium levels In Qp. D w ere  significanlly higher (P «0 .0 5 ) than those In Q p. E  In 

July and Qp. F  In early August.

Compared with Qps. A -D  slgnlllcant (PsO.05) changes In serum calcium occurred 1-3 

months later In Q p s. F and Q  (Figura 3.23), consistent with the later spawning times In 

the latter groups. Th e  first significant rise (PsO.OS) In calcium levels in Qp. E  occurred 

between July and early August and extended Into a broad peak lasting until late October and 

attaining a maximum of only 2 0 m g %  prior lo a decrease In levels between October and 

November. Tw o  aarly spawning fish in Qp. F (see Figure 3.22) caused a transient increase 

in mean sarum calcium levels In May. but these two fish were not representalivs of the 

sample population and hence the difference between Qp. F and Q ps. A -E  was not significant 

at this lime. Th e  first significani Increase (PsO.05) in calcium levels In Qp. F occurred In 

August with levels gradually Increasing to peak at about 26mg% In late September, before 

commencing a symmetrical decline in October arto November.

Fno diamelnr and tecundltv

Egg diameter and fecundity measurements are summarised in table 3.4. Eggs produced 

by 2+ fish were significsntly sm aller In O ps. A  (P sO .O t), C  (PsO.(X)1), D (P<0.01) and 

E (PsO.05) compared to Qp. F. and In Qp. C  compared to Qp. E  (PsO.OS), but there were 

no slgnlllcant differences In egg diameter between groups In 3+ fish. There were no
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Summafv q I Rflautt«: Saction A

1. Expo sur« of rainbow trout to a constant ’long’ photoparlod aarly In tha raproductiva 

cycla. followad by a raductlon to a shortar daylangth aftar 3 -4  months, advancad 

maturation b y up to 4 months.

2. Malntanar>ca of rainbow trout under a constant ’long* photoparlod from early in tha 

raproductiva cycle until spawning advancad maturation by 1 -2  months.

а. ’Long' photopariods of between 12 and 22 hours, followad In each case by an 8.5 hour 

reduction in daylength, each caused a similar advance (3 -4  months) in the time of 

spawning.

4. Maturation was advanced (1 -2  nronths) in fish subjected to a ’long' day of only 10 

hours, whan followed by a reduction in daylength of 4 or 8.5 hours.

5. Maturation was advanced (2 months) even in fish which did not experience an increase 

in dayler>gth in advance of the natural light cycle (i.e. remained on a winter photoperiod 

from Jan u ary ) providing they received a reduction to an even shorter photoperiod

(1 .5L:22 .5D ) in May.

б. Maturation was delayed ar>d the spawning time of individuals became desynchronized in 

fish maintained under constant 6.5L:15.5D from January; a 1 week period of 18L:6D (late 

April to early May) within this 'short day' regime had no significant effect on the spawning 

profile.

7. Maturation was slightly delayed In fish maintained under 6L:18D from January, 

followed by a reduction to 2L:22D In May.

8. The  timir>g of the increase to a 'long' photoperiod was an important determinant of the 

timirtg of maturation; spawnirtg occurred in sequer>ce In fish exposed to an irtcrease in 

photoperiod In December. January and February, followed b y a reduction in daylength In 

May, and in fish subjected to a constant long' photoperiod from January or February.

9. A  long* to 'shorf photoperiod regime further advanced (by 1-2 months) the maturation 

of fish which had experienced an advance In spawning time the previous year; the time of 

spawning w as again dependent on the timir>g of the increase in photoperiod.



10. T h » i »  wars significant dllfersncss In tha liming o l Ihs changsa In sarum Isvals 0l 

calcium, oaslradlol-17B and tastostsrona, ccnsistsnt with lha dIHsrancaa In spawning 

lima.

11. Virgin fish and fish undsrgoing thair ssccnd rsproductivs c y d s  rssponded similarly to 

Changes in photopertod.

12. Egg diameter and total fecundity were significantly higher in 3+ than 2+ fish, 

whereas relative fecundity was significantly lower In 3 *  than 2-f fish.

13. Egg size was related to spawning time; virgin fish attaining early maturity produced 

significantly smaller eggs than later spawners.

14. There were no significant differences In either total or relative fecundity between fish 

exposed to a variety of photoperiod regimes.



3 3  H: Thm EHaelm qI Short P fio d > o i  ContlnuQum U ahl I L U  on th# Em riinm anl fli

thm  A n n ii« i  r.siH» o l R aprort..ntWwi in tha F w n a to  RalflbQW TfO U L

Pholoperlod regimes utilising L L  are panlcularly attractive tor the commercial 

production ol out-ol-season eggs because neither time control or blackout are required. 

However, lor»g-term exposure to LL can produce erratic spawning and a considerable 

reduction in the proportion of fish attaining maturity (Brom age et al.. 1984; Duston, 

1987; Bromage and Cumaranatunga, 1988). The  experiments described in this section 

assessed the ability ol short (s  2 months) periods ol LL to modify the timing ol maturation 

in the rainbow trout.

A  previous study in which female rainbow trout were subjected to relatively long 

periods of LL indicated that the timing o l exposure to LL relative to the phase ol the 

reproductive cycle could influence both the extent to which spawning was advanced and the 

proportion ol fish attaining maturity (Duston, 1987). Experiment 5 therefore examined 

the ability ol 2 month periods of LL, applied at various times within a 7 month period 

encompassing the natural spawning season, to advance maturation in female rainbow trout. 

The  importance of duration ol exposure to LL on the proportion of female rainbow trout 

responding with an advance In spawning time was subsequently investigated in experiment 

6 by exposing fish to LL periods of 2 weeks, 1 month and 2 months, in experiment 7 a 

much larger number of female rainbow trout, more relevant to commercial production 

requirements, were subjected to the most effective photoperiod regime tested in 

experiments 5 and 6. Some commercial producers are reluctant to use photoperiod 

treatments because of the possibility that males and females may respond differently to the 

same regime. In this respect a differential effect of LL  on the timing of reproduction in 

male and female fish has been reported for the brook trout (Poston and Livirigstone, 

1971). Consequently, the effects of LL on reproductive timing In male rainbow trout wore 

also documented in the commercial trial.

T o  further spread the production of out-of-season eggs within a single reproductive 

cycle it is necessary to develop techniques to delay maturation. Exposure to 16L:8D or LL



from Juno until spawning dalaysd maturation of Novambar/Decambar spawning rainbow 

trout by 2 -3  months (ShlralshI and Fukuda. 1966; Bourllar and Blllard, 1984a.b), 

although tha spawning times of Individual fish became desynchronized (Bouller and 

Blllard, 1984a,b). Similar results have been recorded for other salmonkts exposed to 

constant 'long' photoperiods or LL after the summer solstice (see section 3.1). Experiment 

8 therefore examined the ablllly of a 2 month period of L L  applied after the summer 

solstice to delay maturation In female rainbow trout, again using fish num bers 

appropriate to oommerclal production requirements.



3.3.1 rtnimful Method«

All fish used In experiments 5-8 came Irom an astabllshad domesllcaled slock wHh a 

natural spawning period under ambient daylength (latitude S1"10 'N ) of Novem ber- 

January. When It was necessary to separate small groups of flsh they were makitalnad 

indoors In oxyder tanks consisting ol 8 sections separated by netted screens (section 

2.1.1; Figure 2.2). Th e  larger numbers ol fish required for commercial trials were also 

housed Indoors, but In tanks without screens. Natural light entered the buildings via 

plastic corrugated roofing and provided variable light intensity according to external 

environmental conditions; the minimum light Intensity measured at the water surface of 

tanks maintained under ambient photoperiod (at about m idday) was 8 lux and the 

maximum was 800 lux. Photoperiod tanks were exposed to continuous (24 hour) light 

provided by cool white ttuorescent strips suspended approximately 1m. above the water 

surface. The  light Intensity at the water surface of the sectioned photoperiod lank ranged 

Irom 700-1000 lux. Duston (1987) suggested that differences In light intensity may 

cause variations in the proportion of fish maturing after photoperiod Iroalmenls. T o  avoid 

this complicalion only sections 1. 2, 4 and 5 ol the LL lank (section 2.1,1; Figure 2.2) 

were used tor maintenance of experimental fish since the light intensity at the water 

surface of those sections w as virtually Identical. Light intensity at the water surface of the 

2 non-seclloned pholoperiod tanks ranged from 100 lux at the far ends to 1500 lux 

directly beneath the fluorescent strips, but was 700-1200 lux over the ma)orily of each 

lank; this area included the most densely populated parts of the tanks close to the air 

pum ps. Water temperature varied seasonally consistent with variations In external 

environmental condlllons; maximum and minimum temperatures obtained at sampling 

times are therefore reported separately lor each experimeni.

At the start of each experiment approximately 250 tw o -year old virgin female 

rainbow trout approaching their firsi natural spawning were randomly selected Irom the 

broodstock. As the fish approached maturity they were examined at 2-waakly Intervals 

(section 2.2) and the spawning limes of Individual fish recorded. Individual fish were 

co lo ur tagged (experim eni 5) or dye marked (experiment 6 ) to allow subsequent
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Wantlflcatlon of the dale on w hich  they first spawned (section 2 .1 .3 ). W hen the 

experimental treatments were due to begin before the natural spawning time the fish were 

assigned to groups randomly; when treatments began after natural spawning each group 

received approximately equal num bers of fish from each spawning data. Groups of fish 

were assigned to tank sections In a random manner. The  fish were subsequently checked at 

monthly Intervals until they approached their second spawning period when they were 

again examined at 2-weekly intervals and the spawning limes of Individual fish recorded 

for each g ro u p . Egg diameter, total egg volume and post-stripped body weight were 

measured for samples of both first and second spawning fish and the total and relative 

fecundities calculated (section 2.3).

Unless otherwise stated spawning profiles and egg data wore analysed by one-way 

analysis of variance followed by a parametric multiple comparisons procedure (section 

2.7.5). Th e  proportions of fish attaining maturity were compared by calculation of 

confidence limits (section 2.7.6). Hormone data was analysed by the Kruskal-Wallis test 

followed by a  non-parametric multiple comparisons procedure (section 2.7.5).



3.3.2 g .n «rlm «n l S- T h a  «Weet»  nt 2 month MflQd« Qt H Btl ItM tlmliin Ol malUfllOn in 

itw» tomate f in h o w  Im ut.

3.3.2.1 PfotocQl

six group! of ipproxlm alely 22 Iwo-yoar okJ female rainbow trout wore exposed to 2 

month periods of LL b y transferring them between tanks maintained under either ambient 

daylength or LL according to the following protocol:

Group A - LL  from September IS  until November 17.

Group B - LL  from October 15 until December 16.

Group C  - LL  from Novem ber 17 until January 21.

Group D - LL from December 16 until February 17.

Group E - LL from January 21 until March 25.

Group F - LL  from February 17 until April 23.

At all other times the fish were maintained under ambient photoporlod. Tw o  further 

groups of 22 and 44 fish respectively were maintained under ambient photoperiod only 

and LL only (from September IS ) lor the duration of the experiment. Vyater temperature 

varied seasonally from  7.5-13.S"C. As a corollary to this experiment an additional 70 

fish were subjected to LL only (In tank sections 3, 6, 7 and 8; see section 3.3.1) with the 

aim of producing extra  eggs tor commercial use. The  experiment was terminated on 

October 8.

3.3.2.2 Results 

Snewnlno

The spawning times ol the individual fish in each group are Illustrated In Figures 3.24 

(controls) and 3.25 <Gps. A -F ). The  fish In all 8 groups spawned lor the first time 

between November 17  and January 21. Although some groups received LL prior to their 

6rst (winter) spawning there were no signiflcant differences between the mean spawning
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Figure 3.24: The  liming o l maturation in lemale rainbow trout maintained on natural 

seasonal pholoperiod (u p p e r graph) or continuous light (low er graph) throughout 

experiment 5. The  histograms represent the number ol ripe lómales on each sampling date 

(natural spawning time on the leH). In the lower graph Iho m ain experimental group are 

shown in black, and additional llsh included for com m ercial purposes in white. A 

rectangular box Indicates Iho liming o( Iho LL period In the lower graph.



times ot any of the groups at this stage.

The timing of the second (summer) spawning period In each group w as directly related 

to the timing of the light period, commencing 6-7 months after first exposure to LL (that 

is. 3-7 months In advance of the expected spawning lime of the ambloni photoperiod 

controls). Thus. Ops. A -F  (LL from S ept.-N ov.. Oct.-Dec. and so on) commenced spavming 

on April 23, April 23, June 2, June 17, July 16 and August 24 (or periods of 3, 4. 10 

(4/5 fish in 4 weeks). 6, 10 (17/18 fish in 6 weeks) and 6 w eeks respectively. 

Unfortunately, a number of tag losses occurred precluding conclusions regarding the effect 

of the lime of first spawning on the ability of an Individual to spawn again in the summer 

In response to a particular light treatment. As might be expected, however, there was a 

general tendency tor fish which spaw ned earliest initially to spawn early again In the 

summer.

Only one (8 % ) of the ambient photoperiod controls matured, spawning on October 8, 

the date on which the experiment w a s terminated: visual inspection indicated that none of 

the remaining fish In this group w ere  close to maturity at this lime. Additionally. 2-year 

old broodstock of the same strain maintained under ambient pholoperlod subsequently 

spawned (for the flrsi lime) between December 11 and January 5. Fish maintained on LL 

for the duration of the experiment commenced spawning on May 11 for a period of 13 

weeks. A  similarly desynchronized spawning pattern was obsenred In the additional fish 

Included for commercial purposes (F igure  3.24).

There were marked differences in the proportion of fish attaining early maturity in 

each group (Figure 3.26). Thus, a large ma)orlly of the fish ( i8 5 % ) spawned in groups 

exposed to LL from December-February (Qp. D) or January-March (Q p . E ) but only a 

minority of the fish (S33%) subjected to 2 months LL outside these periods (Qps. A, B. C  

and F) matured. Substantial mortalilios made it difficult to calculate the exact proportion 

ot fish attaining maturity under L L  only but minimum and maximum estimates were 30 

and 50%  respectively.

The  differences in the mean (sum m er) spawning times between groups wore all 

significani at the PSO.001 level with the exception ot Qps. A  vs D, A vs F, D  vs E and E vs F
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limos ot any ol Itio groups al Ihls stage.

The  liming of the second (summer) spawning period in each group was directly related 

to the liming ol the light period, com m encing 6-7 months after first exposure to L L  (that 

is, 3 7 months in advance ol the expected spawning lime of the ambient pholoperiod 

controls). Thus. Gps. A -F  (LL  from Sept. N o v., Ocl.-Dec. and so on) commenced spawning 

on April 23, April 23, June 2. June 17. July  16 and August 24 for periods ol 3, 4. 10 

(4/5 fish in 4 w eeks). 8, 10 (17/18 fish in 6 weeks) and 6 weeks respectively. 

Unloriunalely, a number ol tag losses occurred precluding conclusions regarding the effect 

of the lime ol first spawning on the ability ol an individual to spawn again In the summer 

in response to a particular light treatment. As might be expected, however, there was a 

general tendency for fish which spaw ned earliest initially to spawn early again in the 

summer.

Only one (8 % ) ol the ambient pholoperiod controls matured, spawning on October 8. 

the date on which the experiment was terminated; visual inspection indicated that none ol 

the remaining fish in this group were close to maturity at this lime. Additionally. 2-year 

old broodslock ol the same strain maintained under ambient pholoperiod subsequonlly 

spawned (for the first lime) between Decem ber 11 and January 5. Fish maintained on LL 

lor the duration ol the experiment com m enced spawning on May 11 lor a period ol 13 

weeks A similarly desynchronized spaw ning pattern was observed in the additional fish 

included for commercial purposes ^Figure 3.24).

There were marked differences in the proportion of fish attaining early maturity m 

each group (Figure 3.26). Thus, a large maiorily of the fish ( i8 5 % ) spawned in groups 

exposed to LL from December-February (G p. D) or January-M arch (G p. E ) but only a 

minority of the fish (S33%) subiecled to 2 months LL outside these periods (G ps. A, B. C 

and F ) matured. Substantial mortalities made it dillicull to calculate the exact proportion 

ol fish attaining maturity under LL only but minimum and maximum oslimales were 30 

and 5 0%  respectively.

Th e  dillerences In the mean (su m m e r) spawning limes between groups wore all 

signillcani at the P-cO.OOt level with the exception ol Gps. A vs D, A vs F. D vs E and E vs F
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Figure 3.25 (opposite): Th e  effects of 2 month periods of continuous tight (LL ) on the 

timing of maturation in temaie rainbow trout (G ps. A -F , experiment S). The  histograms 

represent the number ot ripe females on each sampling dale (natural spawning time on lire 

left). A rectangular box indícales the liming of the LL period for each group. Integers next 

to the LL periods indicate ambient daylengih betöre and after exposure.







(PsO.01), A  vs C  and B vs C  (PsO.OS), and C  vs D (N .S .). Compartson of oonfidenca limits 

showed that the proportion of fish attaining early maturity w as significantly lower In Ops. 

A , B and F (PsO.01), and In O p. C  (PsO.05), than In O ps. 0  and E .

Pnn diameter and feeundllv

During the natural winter spawning season at the start of the experiment the mean egg 

diam eter (m m .), total fecundity (number of eggs) and relative fecundity (number of 

eggs/kg) were 4.86 (±0.06: n .1 6 ), 4373 (±233: n .1 6 ) and 2180 (±117; n -1 6 ) 

raspactivaly (all measurements made on December 16).

During the summer, mean egg diameter (mm.) in Q p s. A -F  was 3.87 (n -1 ) , 4.07 

(n -1 ) .  4.29 (±0.08; n -2 ), 4.27 (±0.11; n -9 ),  4.73 (± 0 .0 5 ; n -1 7 ) and 4.78 (±0.08: 

n -4 )  respectively. Op. D produced significantly smaller eggs than the later spawning nsh 

of G p s . E  (PsO.OOt) and F (PsO.01). Similarly, G p . C  eggs were significantly smaller 

(PsO.05) than those of Gp. E . The  mean egg diameter (m m .) of fish maintained under LL 

only w as 4.73 (±0.07; n -t O ) .  which was significantly greater than that of G ps. C  

(P sO .05) and D (PsO.001). Eggs produced the previous winter were also significantly 

larger than those produced In the summer in Gps. C  (PsO.01) and D  (PsO.001).

M ean total fecundity (number of eggs) in Qps. A -F  during the summer was 1858 

(n .1 ) ,  2990 (n .1 ) ,  4731 (±231: n -2 ),  4848 (± 4 06 ; n -9 ) ,  4096 (±246: n -1 7 ) 

and 4124 (±284; n -4 ) respectively. The total fecundity of fish maintained under LL only 

was 4265 (±280: n -1 0 ). Differences In total fecundity were not significant. Insufficient 

data w as available for calculation of relative fecundities.



3 .3 .3 .1  Protocol

S ix  groups ol approximately 26 two-year oM female rainbow trout, all of which 

spaw ned for the first lime In December, were exposed to a variety ol periods ol LL by 

transferring them between tanks maintained under either ambient daylength or LL 

according to the following protocol:

Q ro u p  A  - 2 weeks LL from January 25 until February 8.

G ro u p  B - 2 weeks LL from February 23 until March 9.

Q ro u p  C  - 2 weeks LL from March 24 until April 7.

Q ro u p  D - 1 month LL from January tS  until February IS .

Q ro u p  E ■ 1 month LL from February 15 until March 16.

Q ro u p  F - 1 month LL from March 16 until April IS .

Q ro u p  Q  ■ 2 months LL from January 15 until March 16.

Q ro u p  H ■ 2 months LL from February 15 until April 15.

A t all other times the fish were maintained under ambient photoperiod. A  control group 

of 15 flsh was exposed to LL only from January 15 until the experiment was terminated on 

Jan u ary 2. the following year. Water temperature varied seasonally from 6-15.5"C.

3 .3 .3 .2  Results 

Spawntrxi

T h e  spawning times of the individual fish In each group are Illustrated In Figures 3.27 

(Q p a . A -C ), 3.28 (Ops. D -F ) and 3.29 (Qps. Q. H and LL only controls). Th e  fish were 

stripped for the first time on December 11. December 23 and January 5 and were 

distributed equally between groups in an approximate ratio of 10:14:2 from each 

spaw ning dale (Figures 3.27-3.29).
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Figure  3.27: The effects of 2 week periods of continuous light (LL ) on the timing of 

maturation In female rainbow trout (Ops. A -C , experiment 6 ). The  histograms represent 

the num ber of ripe females on each sampling date (natural spawning time on the left). A 

rectangular box Indicates the timing of the LL period tor each group. Integers next to the 

L L  periods indicate ambient daylength before and after exposure.
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Figure 3 .2 8 : Th e  ertecls of 1 month periods of continuous light (L L ) on the liming of 

maturation in female rainbow trout (Qps. D -F . experiment 6 ). Th e  histograms represent 

the num ber of ripe females on each sampling date (natural spawning time on the left). A 

rectangular box Indicates the liming of the LL period lor each group. Integers next to the 

LL periods Indicate ambient daylength before and aher exposure.
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Figure 3.29: T h e  etiecis of 2 month periods ol continuous light (L L ) on the timing of 

maturation in female rainbow trout (G ps. G  and H. experiment 6: upper and mKJdle 

graphs). Th e  lo w er graph shows the liming ol maturation In fish maintained on LL 

throughout the experiment. The  histograms represent the number o l ripe females on each 

sampling date (natural spawning lime on the left). A rectangular box Indicates the liming 

of the LL period for each group. Integers next to the LL periods indícalo ambient daylength 

before and after exposure.



T o  onable comparison of the second (summer) spawning period with the results ol 

experiment S. which was terminated on October 8. all tish which spawned up to, and 

Including, O cto b er 10, were deemed to have matured In advance of the natural spawning 

season. O p s. A -C ,  which experienced 2 week periods ol LL  (Ja n .-F a b ., Fab.-M ar. and 

M ar.-Apr.), comm enced spawning on May 9 (1 tIsh only), June 6 and  June 6 respectively 

(Figure 3 .27). In the latter two groups spawning occurred over 4 (Q p . B ) and 2 (Q p . C ) 

week periods. G p s . D -F . which experienced 1 month periods ot L L  (Ja n .-Fa b., Fab.-M ar. 

and M a r.-A pr.), commenced spawning on May 9 (main spawning period began June 20), 

June 6 and September 12 for periods ot 14 (19/20 In S weeks), 8  and  4 (at defined end 

ot summer spaw ning period) weeks respectively (Figure 3.28). Q p s . Q  and H, which 

experienced 2 month periods ot LL  (Jan.-M ar. and Feb.-Apr.), com m enced spawning on 

July 4 and Ju ly  18 lor periods ol 8 (22/23 In 4 weeks) and 12 (at defined end of summer 

spawning p erio d) weeks respectively (Figure 3.29). Of the 13 surviving fish maintained 

on LL lor the duration ol the experiment, 1 spawned on July 18 a nd  9 within a 4 week 

period com m encing on September 26 (Figure 3.29); the remaining 3 fish failed to mature 

during the experimental period. Apart trom one ill-rx>nditloned fish in Q p . C , all surviving 

fish In Q ps. A -H  which did not mature for the second time on or before October 10 spawned 

during the period from October 24 to January 2, the majority during the peak o l the 

natural spaw ning season in December (Figures 3.27 and 3.28).

Th e  time of first spawning had no apparent effect on the ability of an Individual to 

spawn again In the summer (ol the fish attaining early maturity (i.a. on  or before October 

10) 37 had previously spawned on December 11, 39 on December 23  and 2 on January 

5). However, as In experiment 5, there was a tendency for fish which had spawned earliest 

initially to spaw n earliest at the subsequent spawning (ol the 11 fish which spawned tor 

the second time In May and June, 9 had previously spawned on Decem ber 11).

There were marked differences In the proportion ol fish altalning early maturity (I.a. 

on or before October 10) In each group (Figure 3.30). Only a smaH proportion (£ 2 0% ) 

of fish exposed lo 2 weeks LL (Qps. A -C ) spawned again In the sum m er. Similarly, only a
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minority (S 2 8 % ) o f  «sh  subjected to 1 months LL from Feb.-M ar. <Qp. E ) Of Mar.-Apr. 

(Q p . F ) attained earty maturity. However, a high proportion (¿ 8 0 % ) of fish attained 

early maturity after exposure to LL lor 1 month from Jan.*Feb. (Q p . D ) or 2 months from 

Jan.-M ar. (Q p . Q ) .  A  majority (7 6 % ) of the fish subjected to LL for 2 months from Feb.- 

Apr. (Q p . H ) a lso  matured early, but. in contrast to the highly synchronized spawning 

profiles of Ops. D  artd Q . spawning occurred over an exterfoed period in Q p . H.

Comparison o f  confidence limits showed that the proportion of fish attaining early 

maturity (I.e. on o r  before October 10) was significantly lower In O ps. A , B . C  and F than 

in Ops. D . Q  and  H  (P^O.01). and in Qp. E  than in Qps. D (P sO.01). Q  (P ^ .0 1 )  and H 

(P ^O .O S). T h e r e  were significant differences (P^O.OS: nonparam etric multiple 

comparisons procedure) between the mean (summer) spawnirtg times of Qps. C  ar>d F 

(PsO.05) and betw een Qp. H arid G ps. B (PsO.05), C  (P sO .01), D (PsO.001) arid Q  

( P ^ O .O I ) .

Eqq diameter and fecunditv

During the natural winter spawning season at the start of the experiment the mean egg 

diameter (m m .) a nd  total fecundity (number of eggs) were 4.36 (±0 .03; n -4 1 ) and 

3246 (±96: n -4 1 )  respectively (m easurements made on D ecem ber 11 and 23; 

insufficient data for calculation of relative fecundity). The mean weight (gm .) was 1179 

(±51; n -4 1 : m easurements made on January 5).

As some fish were found to be ripe on every sampling visit from May through to 

January this experiment provided a comprehensive test of the effect of spawning time on 

egg diameter ar>d fecundity. There was a significant variation (P ^O .O O I) in mean egg 

diameter (m m .) o v e r time (Figure 3.31), with values ranging from 3.71 (±0.23; n -2 )  

in May to a p e a k  of 4.99 (±0.17; n -4 )  in late October. There  was also a significani 

variation (P s O .O O l; Kruskal-Wallis test) in both total (F igure  3 .3 2) and relative 

(Figure 3.33) fecundity over time in the abscence of a significant variation in mean 

weight (Figure 3 .3 4 ).

Mean total fecundity (number of eggs) peaked at 5697 (±651; n -6 )  in mid*August 
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with a nadir of 3 220  (±141; n -4 3 ) in early December; total fecundity in early December 

was significantly different from that In m id-July, early and m id -A u gust, and mid- 

October, and total fecundity in mid-Decem ber was significantly different from that in 

m id-July and e a rly  August (PsO.OS; nonparametric multiple com parisons procedure). 

Mean relative fecundity (number of eggs/Kg) peaked at 3282 (± 2 59 ; n -5 )  in mid- 

September with a  nadir of 1769 (±81; n -4 3 ) in early December; relative fecundity in 

early December w as significantly different from that in early and m id -Ju ly, early August 

and m id-Septem ber, and relative fecundity in mid-December was significantly different 

from that in e a rly  August (P^O.05; nonparametric multiple com parisons procedure). 

Mean weight (g m .) ranged from 1524 (±103; n -7 )  in early June  to 2083 (±148; n -7 ) 

in m id-October.
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Figure 3.31: T h e  relationship between egg size (mean ± IS E M ) and the timing of spawning 

in rainbow trout (pooled data from all groups in experiment 6). T h e  number of fish 

examined on each sampiing date is indicated above the error bars.
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Figure 3.32: T h e  relationship between total fecundity (mean ± 1 SE M ) and the timing of 

spawning In rainbow trout (pooled data from all groups in experiment 6). Th e  number of 

fish examined on each sampling date is indicated above the error bars.
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Figure 3.33: T h e  relationship between relative fecundity (mean ± 1 S E M ) and the timing 

of spawning in rainbow trout (pooled data from all groups in experiment 6). The number 

of fish examined on each sampling date is indicated above the error bars.



TIME (months)

Figure 3.34: T h e  relationship between fish weight (mean ± IS E M ) and  the timing of 

spawning in female rainbow trout (pooled data from all groups in experiment 6). The 

number of fish examined on each sampling date is indicated above the error bars.



3.3.4  ExM rlm enl 7: Th a  4dvancemanl ol «pawning In Ih a  rulnhoi« Imut by 2 month« 

tx O Q lu r«  IQ LL: «  eQniin«fCi«l lri«i

3.3.4.1 ProtocQt

B y transferring fish between tanks maintained under ambient daylength or LL. 224 

female broodstock. all of which spawned for the first time in December, were exposed to 2 

months of LL from January 16 until March 15 (Group A). M ale broodstock were also added 

to the tanks at a ratio of 1 male to 3 females. A further 2 5  females (Group B ) and 40 

males (G roup C ) were subjected to LL only from January 16 until the experiment was 

terminated on October 16. Another 40 males (Group D) w ere  exposed to 2 months of LL 

from January 16 until March 20 in an otherwise ambient regime. Water temperature 

varied seasonally from 7-l6°C.

T h e  rate of maturation was assessed by measuring serum  calcium (as an index of 

vitellogenin: section 2.4) levels at approximately m onthly intervals. Male fish were 

stripped in a similar manner to females (section 2.2). W hen milt could be expelled from 

the urogenital papilla by applying gentle pressure to the abdom en a fish was said to be 

‘running’. The number of running and 'non-running' m ales was recorded at monthly 

interva ls .

3 .3 .4 .2  Results 

Spawning

Th e  spawning times of the fish in each group are illustrated In Figure 3.35. Apart from 

one fish, which spawned on May 8, spawning in females subjected to 2 months LL from 

January to March (G p. A ) commenced on July 3. with 9 6 %  (133) of the 139 surviving 

fish attaining early maturity, 9 2%  within a 6-week p erio d  in July and August. In 

contrast, only 63% of females exposed to LL throughout the experiment (G p. B) attained 

early maturity, spawning over an extended period commencing with a single fish on July 

21. Milt was first available from male fish on June 5. approximately one n>onth before 

spaw ning commenced in the females. At this time approximately 6 8 %  of the males
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Figure 3.35: The advar^cement ol spawnir>g by exposure of female (Gp. A ) and male (G p. D) 

rainbow  trout to 2 month periods of continuous light (L L ) in a commercial scale trial 

(experiment 7). The  liming of maturation in smaller numbers of female (Q p . B) and male 

(Q p . C )  fish maintained under LL throughout the experiment is also shown. The histograms 

represent the percentage of ripe females or running males on each sampling date (natural 

spawning time of females shown on the left in upper graphs). A rectangular box indicates 

the timing of the LL period for each group. Integers next to the LL periods indicate ambient 

dayler>gth before and after exposure.
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subjected to 2 months LL from January to March (G p. D ). and 6 7 %  of those exposed to LL 

throughout the experiment (G p. C ). were running. Milt continued to be available from 

male fish throughout the spawning period of the females, with the percentage of males 

runnir>g remaining slightly higher in Gp. 0  than Gp. C  until Ju ly, after which the situation 

was reversed.

C flic iu m

C hanges in total serum calcium levels during the reproductive cycle were significant 

in both groups of female fish (P ^O.OOI, Qp. A ; P ^O .O l. Q p . B ). but there were no 

significant changes in calcium during the reproductive cycles of the male fish (Gps. C  and 

D). T h e  calcium profiles of Gps. A and B differed in accordar>ce with the differences in their 

spawning profiles (Figure 3.36). Calcium levels in Gp. A  began to increase between March 

and M a y and continued to rise at a moderate rate from May to June before rising steeply to 

reach about 40m g%  by the last sampling point in July; calcium levels in Gp. A  were 

significantiy higher than those in Qps. C  ar>d D in May. June and July. Calcium levels in Gp. 

B, at 13-14m g% . were consistently 2 -3m g%  higher than those in G ps. C  and D 

(significant at P^O.05 in May compared to Gp. C ), but did not begin to increase above these 

levels until the last sampling point in July, at which time they were significantly elevated 

compared to Gps. C  and 0. having reached approximately I9 m g % .

Poo diam otftf ar>d fecundity

In the winter prior to photoperiod treatment the mean egg diameter (m m .), total 

fecundity (number of eggs) and relative fecundity (n u m b e r of eggs/kg) were 4.37 

(± 0 .0 9 ; n -1 9 ), 4062 (±226; n -1 9 ). and 3187 (± 2 9 0 ; n -1 9 ) respectively (all 

measurements made on December 19).

In the summer spawning fish of Gp. A the mean egg diameter, total fecundity ar>d 

relative fecundity were 4.04 (±0.04; n -3 7 ), 4909 (± 2 73 ; n -3 4 ) and 2462 (±120; 

n -3 4 ) respectively (data combined from measurements taken on July 17 and 21, and 

August 2 ). Egg diameter and relative fecundity were both significantly lower (P^O.OI ar>d
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Figure 3.36: The effects of exposure to a 2 month period of continuous light (LL) or LL 

throughout the reproductive cycle (experiment 7) on the timing of changes in total serum 

calcium levels (mean ± 1SEM ) during the maturation of female (Q ps. A (n -1 2 ) and B 

(n -6 -1 2 )) and male (Gps. C  ( n - 6 - l l )  and D (n -6 ) )  rainbow trout.





3.3.5.1 Protocol

By transferring fish between tanks maintained under ambient photoperiod or L L  

approximately 200 two-year old female rainbow trout, which had spawned for the first 

time the previous December (same year c lass  as those In experiment 7), were exposed to 

2 months of LL from July 21 until Septem ber 22. Male broodstock were also added to the 

tanks at a ratio of 1 male to 3 females. A s  the fish approached maturity the foilowing year 

they were examined at 1-2 week intervals by farm workers who recorded the spawning 

times of individual fish and the number of fish which failed to mature. Egg diameter and 

fecundity measurements were recorded o n  February 5 and February 13. The  experiment 

was terminated on April 26.

3.3.5.2 Results 

Spaw nirvi

The spawning times of the fish are illustrated in Figure 3.37. Although 1 fish spawned 

on January 23 the main spawning period commenced on February 5. Over a period of about 

12 weeks 125 of the 171 surviving fish (7 3 % ) attained maturity. O f these, 

approximately 4 3 %  spawned in F eb ru ary. 22%  in March and 8 %  in April. Visual 

inspection indicated that none of the rem aining 2 7%  were close to maturity when the 

experiment was terminated on April 26. It should be noted that 2-year old broodstock of 

the same strain maintained under am bient photoperiod spawned (for the first time) 

between January 6 and January 18. slightly later than usual, although it had not been 

possible to Inspect these fish in December.

Egg diameter and fecundity

The mean egg diameter (mm), total fecundity (number of eggs), and relative fecundity 

(number of eggs/kg). calculated from fish w hich matured on February 5 and 13, was 4.60
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Figure 3.37: Th e  delay in spawning time obtained by exposing female rainbow trout to a 2 

month period of continuous light (LL ) in a commercial scale trial (experiment 8). Th e  

histograms represent the percentage of ripe females on each sampling date. The  dashed 

vertical line indicates the mean natural spawning time of the same year class the previous 

w inter.





3 .3.6 P tl»M -r««n n n M  ra m «

B y combining tho ro tu lli of •xporlmants 5 -8  If It  possibit to co nitn ict a partial 

pbaaa-ratponta curva, analogous to thota commonly usad to monitor tha ratponta of 

circadian rhythms to anvirorvnantal signals. Tha  curva dascrRtas tha changing magnHuda 

of tha phata-shifts (advanoa or daisy In tha timing of maturation) which occur In rsaponsa 

to 2 month pariods of LL appNad at diffsrsnt phasss of ths drcannual c y d s  (Figura 3.38). 

Each phasa-shifi Is ploltad against tha mid-point of ths LL psriod to which H raíalas. Skica 

It w as not always p o s s U a  to maintain untraatsd Ash of ths sama stock unAI tha natural 

brssding ssason following tha and of sach sxpsnmsni. ths advancs or dalay (In msan 

spawning tima) was calculated relativs to the mean natural spawning lima of tha fish at ths 

start of each axparlmant (l.a., it was assumed that, had no stimulus baan applisd. ttia Ash 

would have spawned at a similar lima tha following year).



A D VAN CE
(D AVE)
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Flgur* 3.38: Partial phase-responsa curve llluetraling the ptiase-ahlfts (advance or 

delay In spawning time) o( an endogenous circannual rhythm caused by exposure to 2 

month periods of continuous light at various phases of the rsproducthrs cycle of the female 

rainbow trout (W S  .  winter solstice. SS -  summer solstice). Phase-shifts are calculated 

relative to the mean natural spawning time of the fish at the start of each experiment 

(curve prepared by combining data from experiments 5-8).



SumiTMlv of R m u H «: Saellon B

1. Exposur* of rainbow trout to 2 month period* of LL at variou« tinim  (mid-Saptambar to 

m ld-Apm) closa to tha natural braading saaaon advanced lubaaquani maturation by 3-7 

month*.

2. Th a  tknino of tha aecoiKf (aummar) apawning period wa* directly relatad to tha liming 

of tha Mghl period, oomm andng 6-7 month* after Brat axpoaur* to LL.

3. Th e  proportion of fiah raaponding to LL with an advance In apawning tlnw wa* dapandani 

on tha timing of tha light period: a majority (28S % ) of tha flah maintalnad under LL from 

Oacam bar-Fabruary and January-M arch attained early maturity, but only a minority 

(^3 3 % ) of n*h ai^tfactad to LL outside these periods matured.

4. Th a  minimum duration of exposure to LL required to advance maturation In a majority 

(280% ) of the fish was 1 month (January to February); 2 weeks exposure to LL advanced 

spawning In less than 2 0 %  of the fish.

5. Th a  majority of fish which tailed to respond to short periods of LL rvlth an advance In 

spawning time attained maturity during tha natural breeding season.

6 . In a commercial trial 133 out of 139 fish (9 6 % ) subjected to 2 months LL from 

January to March spawned again in the summer (principally July and August); milt was 

available from similarly treated males throughout this pariod.

7. Spawning occurred earlier and was more synchronised In fish exposed to short (1 or 2 

month) periods of LL than In fish subjected to constant LL from the same date: these 

differences were reflected In the serum calcium profiles recorded utKfar each photcperiod.

8. Exposure of rainbow trout to a 2 month period of LL from late July to lata September 

delayed maturation until February to April (1-4 months).

9. Combining the results of experiments 5-8 allowed tha affects of 2 month periods of LL 

on the entrainment of the drcannual clock controlling reproduction to be described in the 

form of a phase-response curve.

to. E g g  size w as related to spawning time: fish attaining early maturity produced 

signIfIcanMy smaller eggs than later spawners.



11. Both tho total and rotativa tecunditlas ot llih  In which apawning w a t advanoad to July 

and August by sxpoaura to LL wars tignllicantty highar than Ihosa ol tiah which maturad 

during lha natural spawning psriod in Dsoambar.



3.4

3.4.1 Eim U mTWm of in« tndiX im o u« d n a n m il  d n n . h .  r H « n « . «  h i » — n lono- .nrt .h o « -

T h «  ratultt of axparinwntt 1-4, which are aummailsad in Tabla 3.5 . damonstrata lhal 

axpoaura to a conttant 'long' photoparlod aarly in lha raproducliva cycia, foMowad by an 

abrupt raductlon to a ahorlar daylength attar 3 -4  moniha, can adva nca  lha lima of 

apawning in tha rainbow trout by up to 4 moniha. Thia la m ganaral agraamant with 

pravioua aludlaa on tha rainbow trout (Whltahaad and Bromaga, 1980: Bromaga at al., 

1982b, 1984; Elllotl at al., 1984; Duaton and Bromaga. 1987, 1988), and lha maau 

aalmon (Takaahima and Yamada, 1984). If ona accapts lhal maturation in tha rainbow 

trout la ultimalaly undar andoganoua control (aactlon 3 .1 ), further avkfanca for which 

will ba diacuaaad latar. It followa that any modification In apawning tima can ba 

Intarpratad aa lha ovart axpraaaion of alther a phaaa advanca or a phaaa delay of the 

andoganoua circannual dock. It la therefore propoaad that tha advancaa In spawning tima 

observed In response to ’tong’ to ’shorr photoparlod regimes in axparlmants 1-4 reflect 

phase advances of tha erxiogenous clock. They do not, however, raftact skigla phase advances 

caused by axpoaura to 'long' days In advance of those experienced undar a natural 

photoparlod. This point is wall illustrated by the results of experiment 2 (FIgura 3.10). 

Although spawning was advanced by 1-2 months In previously untreated fish maintained 

undar constant 18L:60 from January or February (G ps. E  and Q ), a 3 -4  month advance 

was observed in fish which ware additionally exposed to a raductlon In pholoperlod in May 

(Qp*. 0  and F ). Similar results have bean reported in several previous investigations 

(Bromaga at al., 1982; Duaton and Bromaga. 1987, 1988). Th a  increase In daylangih 

early In lha raproductiva cycle, and tha subsequent decrease to a 'sh orf photoparlod In 

May. therefore caused two separate phase advances of lha andoganoua d o c k . I.a., the flah 

Intarprstad each change in photoperiod (prematura arrival of 'long' or 'short' daylangiha) 

as an Indication that lhair clock was running 'alow' and oompenaalad with a corrective 

forward adjustment.



Table 3.5: Summary of the effects of ‘lonQ’ to 'shoft' photoperiod regimes (section A ) on the 

time of spawning of female rainbow trout.

Expt./Qp. Photoperfod Dais of 
Incroase

Data of 
Oacraaaa

Main Spawning 
Period

Mean Natural 
Spawning time

1A •• 1SL:6D/6L:18D Jan. 17 May 8 Aug. 23-Oct. 10 Dec. 7
I B ” 14L:10D/eL:180 Jan. 17 May 8 Sept. 3*Oct. 31 Dec. 7
1 C ” 10L:14D/6L;18D Jan. 17 May 8 Oct. 2-Oee. 2 Dec. 7
ID  ” 6L:18D/2L:22D Nona* May 8 Dec. 2-Feb. 19 Dec. 7
1E>* SL:18D/1«L:«D/6L:taO Mar. 28 May 8 Sept. 18-Oct. 31 Dec. 7

2A *» 1SL;6D/eL;18D Dac. 2 May 19 June 29-Sept. 23 Dec. 11
2B ^ 18L;6D/6L:1SD Jan. 19 May IS July 28-Oct. 7 Dec. 11
2C 110 18L:6D/6L:18D Dac. 23 May IS Aug. 26-Oct. 7 Dec. 11
20 ^^0 18L:8D/8L;18D Jan. 19 May IS Aug. 26-Oct. 21 Dec. 11
2E ^'0 18L:6D Jan. 19 Nona Oct. 7-Dec. 18 Dec. 11
2F ” 0 18L;8D/6L:18D Fab. 19 May 15 Sept. 23-Nov. 5 Dec. 11
2Q 1̂ 0 18L:6D Fab. 19 Nona Nov. S-Oec. 18 « Dec. 11

3A 22L:2D/13.5L;10.5D Jan. 19 May 6 Aug. 17-Oct. 11 Dec. 11
3B 20L:4D/11.SL:12.5D Jan. 19 May 6 Aug. 31-Oct. 25 Dec. 11
3C 18L:6D/9.5L:14.5D Jan. 19 May 6 Aug. 17-Oct. 25 Dec. 11
3D 16L:8D/7.5L;16.5D Jan. 19 May 6 Aug 17-Oct. 25 Dec. 11
3 E ' « 14L:10D/S.5L:18.5D Jan. 19 May 6 Aug. 31-Oct. 25 Dec. 11
3F 8 5L1S 5D Nona Nona Dac. 20-May 9 Dac. 11
3 G » « As 3F * Iwk 18L8D April 29 May 6 Dec. 6-Jur>e 6 Dec. 11

4A '«> 22L:2D/13.5L;10.5D Jan. 17 May 9 Aug. 18-Sept. 14 Dec. 27
4B 18L;6D/9.SL;14.5D Jan. 17 May 9 Aug. 18.S*pt. 14 4 Dec 27
4C 14L:10D/S.5L:18.5D Jan. 17 May 9 Aug. 18-Sept. 28 Dec. 27
4D 12L:12D/3.5L;20.5D Jan. 17 May 9 Aug. 18-Sept. 28 Dec. 27
4E130 10L;14D/1.5L:22.S0 Jan. 17 May 9 Nov. 9-Dec. 20 Dec. 27
4F 8.5L:15.5D/1.5L;22.5D Jsn. 17 May 9 Oct. 24-Dec. 20 Dec. 27

the superscript, 
a; photoperiod reduced from ambient (8.5L;15.50) to 6L: 
b; fish previousiy subjected to advancing photoperiods in 
c; estimate of spawning period, 
d; only two surviving fish.

be found on the page indicated by

18D on Jan. 17. 
experiment 1.



P ravioul ttudla* utllliing 'long' to 'th o rr photoperiod regimes to Investigata the 

antrainmant of the annual raproductiva cycle of the rainbow  trout have emphaslaad lha 

Importanoa of the abrupt reduction in daylangth as an amraining cue lor the advancamant 

of spawning lima (Ouslon and Bromaga, 1 M 7 , 1988). A s these Invastigatlona used 

18L;8D as the 'long' photopariod In all thair asparlmanls they «rare unable lo detect any 

affacls that this daylangth oar sa may have had on maturation. Experiments 1, 3 and 4 

wars principally designed to Invastigata lha affects of varying tha length of the (or 

magnliuda of tha Increase to a) 'long' photoparlod in fish sublaclsd to 'long' followad by 

'short' daylengths In advance of tha natural light cy cia , in order to determine which 

faatura(s) of tha pholoperlodic signal (absolute d aylangih , magnitude of change In 

daylangth. direction of change of daylength) Is Im portant for the entrainment of 

raproductlon.

In experiment 1 fish wars exposed to an Increase in photoperiod from 8.SL:1S.SO 

(ambient daylength) In January to either 18L:60 (Q p . A ). 14L:100 (O p. B ) or 10L:14D 

((3p. C ), reduced to 6L:18D in all groups in May. Spawning was considerably ativanced In 

all 3 groups in comparison with the natural spawning period (Figure 3.5), even though 

the flsh In Qp. C  received a maximum daylength of only 10 hours, which would normally be 

regarded as a 'short' day. It Is proposed that the circannual ck x*  controlling maturation 

was advanced In each group firstly, by the Increase In photoperiod in January and 

secondly, by the decrease in photoperiod in May. Th e se  results suggest that It was the 

Increase In photoperiod that was Important lor the entrainment of the endogenous dock 

rather than the absolute daylength. However, although spawning was conskferably advanced 

In all 3  groups the timing of maturation was not Identical; tha greater the length of tha 

'long' photoparlod. and hence tha greater tha magnitude of the changes In daylangth In 

January and May, tha greater was the advancement In spawning time (Figure 3.5). A 

similar relationship between the magnitude of the change In photopariod and spawning time 

was observed by Duston and Bromaga (1987) In fish exposed to a constant long 

photoparlod (1 8 L A D ) followad by one of a range of shorter photoparlods (8 L ;t8 0 , 

10L:14D and 14L:100). In Ihak sturly spawning comm enced m tha group exposed to tha



la rgM t reduction in dayl«ngth 21 days balora tha  group subjactad to ttia smaHast 

raduction. In axparlmant 1, howavar, tha fish axposad to tha largast changas in 

photopartod (O p. A ) commancad spawning 40 d a y s  aadiar than tiosa subjactad to tha 

smafiast changas. This suggasts that tha m agnituda of tha incraasa in phoiopariod in 

January and tha dacraasa in daylangth in M a y causad approxintatafy aqual (though 

ralativaly minor) adjustmants in tha timing of maturation.

Exparimants 3 artd 4 furthar invastigatad tha Importanca of absoluta daylangth by 

sub(acting fish to a wida ranga of 'long' photoperiods varying from 10 to 22 hours; tha 

(fiffarancas in tha magnituda of tha May raduction In photopariod inharant in ttta dasign of 

axparimant 1 wara aUminatad by dacraasing tha daylangth by 8.5 hours (approximatirtg to 

tha diffarar>ca in daylangth batwaan tha sum m er and winter sciaticas) in all groups. 

Spawning was advanced in all groups (O ps. A -E . axparimant 3; A -E , axparimant 4) 

compared to fish maintained under ambient corKfitlons (Figures 3.18 and 3.22). Apart 

from Op. A vs Q p. 0  in axparimant 4. there w ere rx> significant diffarancas in spawning 

time batwaan groups subjected to 'long' photopariods of batwaan 12 and 22 hours 

(1 2 L :1 2 D , 14L:10D , 16L:8D, 1BL:6D. 2 0 L :4 D  and 2 2L:2D ), which raprasantad 

irtcraasas from tha ambient daytangth in January of batwaan 3.5 and 13.5 hours; tha 

advar>cas achieved in each axparimant wara virtually idanticai. Thus, a long' photopariod 

of 12 hours ((3p. 0 . experiment 4) was as affectiva a s  daylengths ^  up to 22 hours (Qp. A. 

axperimant 3) lor tha advartcament of spawning. Moreover, maturation was indapartdant of 

tha larigth of tha 'short' photoperiod, which rar>ged from 3.5 to 13.5 hours in groups 

exposed to 'long' photopariods of batwaan 12 ar>d 22 hours. Similarty. Takashima arid 

Yamada (1984) raporlad virtually idanticai advances in tha timing of maturation in masu 

salmon axposad to 6. 8 or 12 hour pholopariods after maintanartca on LL from Dacambar to 

AprM. although a raduction to only 18 hours was lass affactiva. These results support tha 

proposition that it is tha change in photopariod (ir>craasa or dacraasa). rather than tie  

absoluta daylangth. or tha magnituda of the change in photopariod. which is most important 

for tha antrainmant of tha artdoganous dock controHir>g reproduction in tha female rainbow 

trout.
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AWiouati advanced ooniparad lo Dsh mainlalnad under ambiem oondMona, IM i anpoaad 

10 a Iona' pbolopariod o l only 10 hours (Q p . E ,  asparlmant 4) did nol oommanoa spawnlna 

until about 12 waaka aflar those sub|aclad to daytangths of 12 hours or more (Flgura 

3.22). Analogous results ware obtained In axparlmant 1 (G p . C  vs  Qpa. A  and B ; Flgura

3.5), aiKf H was suggested that such differancas In spawning tkna may be attributabla to 

lha dMfsrances In the magnitude of the ch a n ges In pholoperlod. In experknenls 3 and 4, 

however, the magnitude of the decrease in pholoperlod was constant In Ash subfaclad to 

tong' daylangths of batwaan 10 and 22 houra, and there was no dllfsrsnos In the enacts of 

kicrsases In photoperiod varying between 3 .5  and 13.5 hours. It Is intersslina Iherafors 

that fish subjected to a 1.5 hour Increase In pholoperlod In January (Q p. E , asperlment 4) 

spawned nearly 3 months later than those exposed lo only a 3.5 hour kicraasa (Q p. 0 , 

experiment 4 ). Tw o  possible explanations w ill be considerad. Firstly, the rainbow trout 

may be able to discriminate between photoperiods ol 10 and 12 hours (or between 

Increases in pholoperlod of 1.5 and 3.5 ho urs ). This Implies the axlslenca of a 'criticar 

photoperiod for the Initiation of reproductive development, and it is true to say that 

daylangths greater than 12 hours have generally been accepted as tong' days and the spring 

equinox has been assumed to be the time at which gonadal recrudescence Is Initiated in the 

rainbow trout under natural conditions (S co tt et al., 1984; Scott, 1990). However, the 

concept of a critical daylength is considered untenable for the rainbow trout for reasons 

which will become clear later. An alternative explanation Is that the fish were unable to 

detect a single abrupt Increase In daylength o f only 1.5 hours and hence the advance in 

spawning time was due solely to the decrease In pholoperlod In May. Certainly the 1-2 

nwnth advance achieved with a 'long' pholoperiod of 10 hours In both experiment 4 (Qp. E) 

and experiment 1 (Q p. C ) equates with that attributed to a single change in photoperiod (an 

increase) in experiment 2 and previous studies (Whitehead and Bromaga, 1980: Bromaga 

et al., 1982b, 1984: Duston and Brom age, 1986a, 1987, 1988). A  nota o l caution 

regarding tha results obtained lor Q p. E In axparlmant 4: a 2-4 week kitarrupllon of tha 

parted of tong' days may hava occurred due to  an elacirical malfunction. This may axplain 

why these fish, which received an 8.5 hour decrease In photoperiod In May, oommeixiad



■pawning mora than 1 month latar than llsh which axparianoad a raduction of only 4 houra 

at thia tkna (Q p. C , a«parlnianl 1), wharaaa tha groupa axpoaad to a long' photopariod of 

IS  houra In tha two axparlmanta apawnad at approximataly lha aama tima (of. Figuraa 3.5 

and 3.22).

Claarly, to diatingulah lha affacta of an Incraaaa in photopariod to 10 houra In January 

from that of a dacraaaa In daylongth In M ay H la nacaaaary to rapaat tha axparknant wHh a 

control group maintained on a oonatant 10L;14 0  pholopariod from January. Howavar, 

furthar aupport for tha ooncluaion that tha advanca In apawning Mma In groupa axpoaad to 

long' daya of 10 houra waa dua aolaly to tha aubaaquant raduction in daylangih In May la 

providad by tha important obaarvatlon that maturation can ba advancad avan In flah which 

do not axparlanca any Increaaa In daylangth In advance of the natural light cycle. Thua, 

■pawning was advancad by about 2 montha relativa to lha natural apawnlng pariod In fiah 

maintained from January on a daylength of only 8.5 houra (approximating to amblant 

daylength at tha time) followad by a raduction to 1.5L:22.5D In May (Qp. F, axparimant 4; 

Figuraa 3.22 and 3.38). ThIa la similar to tha advances obtained in fish exposed to 'long' 

days of 10 hours, followed by 'shorr days of 5L:18D and 1.SL22.5D In experiments 1 and 

4 respectivaly. Conversely, spawning was delayed and occurred over an exlandad pariod In 

fish maintained under a constant 8 .5L:15.5D  photoperiod from January In axparimant 3 

(Q p .F ; Figures 3.19 and 3.39), whereas tha spawning times of other directly comparabla 

groups In the two axparlments (those subjected to 'long' photopariods of 22, 18 and 14 

hours) were virtually Identical. This suggests that the raduction In photopariod In May 

provided a cue which both advanced a n d  synchronized maturation. In contrast, fish 

maintained on constant daylength exhibited a desynchronization of apawnlng times 

charactarlstic of a fraa-running circannual rhythm (discussed mora thoroughly latar).

If, as suggested, an Incraasa In photoperiod of 1.5 hours In January was InsuHIdanl to 

advance spawning, whereas a decrease In daylength of 2.5 hours In January phase delayed 

tha circannual dock. It would appear that tha minimum abrupt change in daylength 

capable of phase-shifting the clock Has between 1.5 and 2.5 hours. Abrupt changes In 

photoperlod do not, of course, occur u n d e r natural conditions. In which the annual
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Figure 3.39: Comparison o( the effects o l exposure to a) constant 8.5L;15.5D (ambient 

daylength at the start ot the experiment In January) or b) 8.5L:15.SD from mid-January 

to early May, tollowed by 1.5L:22.5D until spawning, on the spawning time o( female 

rainbow trout (data from a) experiment 3 , Qp. F and b) experiment 4, Op, F ). The dotted 

lines Indicate the mean natural spawning time in each experiment.



rsproductiva c y d a  Is tntralned b y  tha saaionally-changing daylangth. Howavar, tha 

stabillly of tha clock In ratponta  to  small but abrupt (rathar than gradual) changaa In 

pholoparlod may protact H from tha altacts of 'nolaa' kiharant In tha anvironmantal aignal, 

such as colourad watar during flooding or sxtansiva d oud oovar which may oSiarwIaa bo 

paroaivsd as lata dawn or aarly duak and causa a phasa-shHi of tha dock.

Aa previously noted, not all photoparlad regimes appllad In axparlmants 1,4 advancad 

maturation. In axparlmant 1 Qp. D  ware ssposad to 6L;18D from January, raducad to 

2L:22D In May. Thasa flah com m enced spawning In early Oacambar, a sHght delay w han 

compared to the natural spaw ning period (Figure 3 .5 ). Unfortunately, the lim ited 

faclllllas available pradudad the Inclusion of a group of fish malnlalnad under a oonatant 

6L;15D pholoparlod as a contrd for Q p . D, and hence Interpretation of the results for this 

group requires caution. However, fish of the same strain exposed to constant 6L:18D under 

Idsniical conditions the previous year did not commence spawning untH March (Ouslon and  

Bromags, 1987). Similar delays In spawning time have been reported by Bromage at si. 

(1984). Furthermore, when fish which had spawned late under 8L;180 were subfeclad to 

Ihia daylangth tor an additional period spawning was not delayed further, but oocurrsd at 

Intervals of approximately 1 year (D uston and Bromage, 1986a). These data suggest that 

tha considerabis delay In spaw ning lima Initially observed under constant abort 

photopsriods Is caused by the reduction from ambient photopsriod (8 .5L:1S.5D) to 

8L :1 80 . This conclusion Is supported by the results of Q p . F In axperlment 3. From  

January onwards this group wars maintained on a constant 8.5L:1S.SD pholopariod, which 

approximated to ambient daylength at the time. However, in contrast to Ouston and  

Bromags (1987), who reported that fish maintained on constant 8L:180 from tha aam a 

data (and undar Identical tamparalura. light Intensity and fsading conditions) did not 

commence spawning until March tha following yaar, tha Aah maintained undar 8.SL:1S.SO 

In this study oommancad spawning In Dacambar (Figures 3.19 and 3.39). Tha  marked 

desynchronization In spawning tim e between individuals maintained undar constant 

8.5L;15.5D (spawning occurred over a  8 month period) compared to those exposed to a 

reduction to 8L:1BD In January and to 2L:220 In May (spawning occurred over a 3 month



period) (uggests that at laasi ona o f thaaa changat in photopariod aclad a i  a synchronizing 

eua. Moraovar, a t  mantionad pravioutty, whan fish matntainad on 0 .5L:15.5D  from 

January warn subjactad to a dacraasa in photopariod to 1.SL:22.50 in M ay (Q p . F , 

axparknant 4) thay oommancad spawning in Octotiar, approximataty 2 months in advanoa 

of those maintained on tha constant 'shorT daytangth (Figure 3.39). it it  tharalora 

proposed that the circannuat clocks of tha fish In Q p. D (axparknant 1) wara Initially 

phase delayed by the reduction from ambient daylangth to 6L:180 in January, and that 

spawning was only slightly delayed In these fish because they also received s  phase advance 

when tha photoperiod was further reduced to 2L;22D In May. Thus, the fish Intatprolad the 

decrease In photoperiod In Jan u ary as an Indication that their endogenous clock was 

running 'fast', and responded with a corrective backwanf adjustment, whereas the dacraasa 

In photoperiod In May was perceived as an Indication that their clock was running 'slow  

and hence they responded with a corrective forward adjustment.

3 .4.2 Direction of change of davlenoth and ohotooerlcxfle history.

Th e  principle conclusion to emerge from the results of experiments 1, 3 and 4 Is that 

tha direction ol change of daylength Is responsible for tha entrainment ol tha andogerraus 

drcannual clock which controls reproduction In tha female rainbow trout: daylangth n a r 

M  (absolute daylength), and the magnitude ol change In daylength, are of little Importance 

In the entrainment process. T h is  Implies that the rainbow trout reads daylengths 

comparatively, with reference to the preceding photoperlod, rather than absolutely. Th a  

response of tha fish to a particular daylength therefore depends on the jxevlous 

photoperlod(s) experienced, that Is, their photoperlodic history. In experiments 3 and 4, 

for axample, 14L:10D and 12L:12D wars Interpreled as 'long' days after an kicraaas from 

8.SL:15.SD In January, but similar photoperiods (13.5L:10.5D and 11.5L:12.5D) were 

perceived as 'short' days after a decrease from either 22L:2D or 2 0L:40  In M ay. 

Similarly, reductions In daylangth from 6L:18D to 2L:220 (experiment 1), and  from 

8,5L:15.50  to 1.5L:22.5D (axparim ant 4 ), were both Interpreted as decreases from a 

'long' to a 'short' photoperlod. Clearly, any photoperlod may be parcelved by lha fish as
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'long* or 'short' providing It Is lortger or shorter than that to which they have b aa n  

previously exposed. Th e  traditional concept of a rigid 'criticar dayiength for reproductiva 

function is therefore untenable in the raktbow trout.

Th e  Importance of photoperiodic history for salmonid fish was. in fact, racogniaad 

marty years ago by Har>derson (1963) from her work on the brook trout: the effect of m 

given photoperiod on or>e phase (of the reproductive cycle) can deperKi on the photoparlod 

to which the fish has bean exposed durir>g a previous phase'. The  reproduct^e response to a  

particular daylertgth has also been shown to be dependent on recent photoperiodic Mstory 

in a number of higher vertebrates including Japanese quail. fCoturnix cotumbt 

Robinson and Follett. 1962), voles rMicrotue montanue: Horton, 1964, 1985: M lero tua  

r>enn«vlvaniQua: Lee and Zucker, 1968), hamsters iPhodoous sunoorus: Hoffman. 1984, 

Stetson et al.. 1966: Maaocricetue auratua: Hastings et at., 1986, Rusak, 1988). rabbits 

I rwyctftia^ua cuniculua: Boyd. 1986) and sheep fOvla arias: Robinson and Karsch, 1987). 

For example. LH concentrations increased when ewes were subjected to a decrease In 

daylertgth from 16L:8D to 13L:11D, but fell to urKfetectable levels in animals exposed to a n  

increase in photoperiod from 10L:14D to 13L:11D (Robinson and Karsch. 1987). T h e  

sheep were therefore able to perceive 13L:11D as either a 'short' or a 'long* d a y . 

depending on the direction of change of dayiength. In contrast, the ability of starlings. 

Sturnua vuloaria. to accurately measure (absolute) dayiength is not affected b y  

photoperiodic history and hence the gonadal response to a particular photoperiod Is 

constant (Dawson, 1967). Th u s , photoperiodic history is important for seaso nal 

reproduction in a variety of species but may not be of universal significance.

3.4.3 IpfliMwifto ft! tho timing nf ■ In diiylon^th o n  tha • n t f ln m iH  a1  tha

drcannual clock.

H is dear from experiment 2 that, in addition to the direction of change of dayiength, 

the timing of each change in photoperiod, is important for the entrainment of tha  

endogenous clock controlling maturation In the rainbow trout. Thus, spawning w a s  

advanced compared to the natural spawning period in ait groups subjected to long
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(18L:6D ) followed by short <6L:18D) dayler>gth8 In advance of the natural light cycle. 

However, there were ntarked differences in spawning time between groups m aooordanoe 

with the timing of the Irtcrease to a 'long' photoperiod (Figures 3.9 and 3.10). Spawnlrtg 

occurred In sequence In previously untreated fish exposed to an irtcrease in photoperiod In 

December (O p . C ), January (O p . D ) and February (Q p . F ). followed In each case by a 

decrease in daylength m May. Similarly treated fish, which had experienced a previous 

advance in spawning time in experiment 1. also attained maturity earlier when the 

irtcrease In photoperiod occurred in December (Qp. A ) than when it occurred In January 

(Q p . B ). Moreover, spawnlrtg occurred earlier in fish exposed to a constant lo n g ' 

pholoperiod (rto reduction in M ay) from January (Q p . E ) than in those subjected to the 

same photoperiod from February (Q p . Q). The timing of the increase to a 'lortg* photoperiod 

is therefore an important determinant of spawning time.

The  timing of an Irtcrease m photoperiod In advance of the natural light cycle also 

determines the timing of certain morphological and physiological changes associated with 

the process of smoltification (seawater adaptation) in Atlantic salmon. Th u s , the 

development of salinity tolerance and reduction in condition factor associated with this 

ma|or developmental change occurred in late February, late February. mid-March and 

mid-April respectively in salmon parr sub}e'^ed to an Increase from ambient daylength to 

16L:8D on December 31. February 1, March 1 and April 1. in each case considerably 

advanced in comparison with the natural time of smoltification in late May (Duston ar>d 

Saunders. 1990). Similarly, smoltification was advanced by 7, 5 and 3 weeks in Atlantic 

salmon parr transferred from 8L:16D to 16L:8D in late December, late January ar>d late 

February (Thrush artd Bromage, unpublished). Smoitification in Atlantic salmon is also 

thought to be under endogenous circannual control (Eriksson and Lundquist. 1982). 

suggesting that similar mechanisms are involved in the timing of reproduction artd the 

tlmlr>g of smoltification in salmonids.

Clearly, the differences in spawning time between the groups subjected to a constant 

long' photoperiod only (O ps. E  arxl Q ) in experiment 2 can be attributed exclusively to the 

difference In the timing of exposure. In groups exposed to a 'long* to 'short' photoperiod

182



raginw, howavar, ttw raductlon in ptioloperlod lo 6L:180 In May may alao hava had a 

dIHarantlal phaaa-advancing atfaci on spawning lima, dapandani on tha liming of lha 

kicraasa In pholopariod. It, as tha rasults suggast, Incraasas In photoparlod In Dacambaf, 

January or Fabruary causad advanca phasa-shifis of ditfarant magnituda in aocordanoa 

with thair timing, than lha raductlon In pholopariod In May would ba axpaclad to parturb 

tha drcannual clock at a dlffarant phasa in aach group. This may ssplain w h y lha 

dllfaranca In maan spawning lima batwaan tha groups axposad to a Januwy/May 'long' to 

'short' switch (Q p . 0 ) and a constant 'long' photoparlod from January (Q p . E ) was only 32 

days, wharaas that batwean tha groups subjected lo a February/May lo ng' to 'shorT 

regime (Q p. F) and a constant 'long' daylength from February (Qp. Q ) was at least 55 days. 

Clearly, the dilference In spawning time within each pair (Qp. 0  vs Qp. E : Qp. F  vs G p . Q ) 

can ba attributed solely lo lha raductlon In photoparlod In May. Thus, the decrease hi 

photcparlod advanced spawning by 32 days In Qp. D (January increase) and by 55 days hi 

Qp. F  (February Increase). It Is proposed that this differential effect of 'shorf daya arose 

because exposure to an hicreasa hi pholoperlod In January advanced the circannual clock to 

a greater extent than an Increase In February, and hence the reduction in photoperiod in 

May occurred at an earlier (less advanced) phase of the circannual cycle after a February 

(Q p . F ) than a January (Qp. D ) Increase. The earlier In the circannual cycle a reduction 

from a 'long' lo a 'shorf photoperiod occurs (up to a point), the greater the phase advance 

(Duslon and Bromaga, 1988). Thus, the decrease In daylength occurred at an earlier phase 

of the circannual cycle hi Q p. F  than in (3p. D and therefore caused a greater advance In 

spawning time (55 days compared to 32 days).

Experiment 2 also demonstrated that 'long' to 'short' photoperiod regimes are an 

affacllva means of further advancing tha spawning time of fish In which maturation has 

been advanced by similar pholoperlodic manipulations the previous year. Fish which had 

spawned several months hi advance of tha natural spawning season In experiment 1 

(principally in September and October) were transferred to 8L:180 after spawning and 

then exposed to 18L:80 from either early December (Q p . A ) or mid-January (Q p . B), 

followed hi each case by a reduction in photoperiod to 8L:18D hi May. Spawning oommenced
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at laaM 2 months (O p . A ) or t month (Qp. B ) tarllar In thats nsh than in tha pravious 

yaar (c.f. Flguras 3.5 and 3.9), and was similarly advancsd oomparad to tha aartlast 

spawning Ash from othar groups In tha sama axparlmant (c.f. Figures 3.9 and 3 .t0 ). A s 

previously notad. however, maturation can ba advanced by 3-4 months In previously 

untraatsd fish using long' to 'shorf photopariod ragimas. It Is proposed that such advances 

w ars not achieved In tha previously manipulatsd Ash because they ware not exposed to the 

'long' photopariod untH aHhar 2-3 (<3p. A ) or 3-4 (Qp. B ) months attar spawning. In this 

respect Qp. A  Is comparable to Qp. F  (experiment 2), which was subjactsd to an Increase 

in photopariod about 2 months after tha natural spawning period, and subsequently 

attained maturity approximately 2 months In advance ot fish maintained under ambient 

conditions (Figure 3.10). It Is therefore suggested that, had tha Increase In daylength 

occurred closer to the spawning time of the previously advanced slock (e .g  late 

Octobar/November), and the decrease In daylength also been brought forward accordingly 

(e.g to February/March). a further 3 -4  month advance In the timing of maturation ooukt 

have been achieved.

3.4.4 Effects of charmas In davlenoth on the hormonal changes «rv w iv im vlno matiireiinn.

Th e  sequence of changes In serum levels of oestradlol-tTB. testosterone and calcium 

(as an Index of vitellogenin) In experiment 1 was the sama as that observed In previous 

studies (Figure 1.5: Scott et al.. 1980; Scott and Sumpter, 1983: Elliott at al., 1984; 

Duston and Bromaga, 1987). However, there were often marked differences In the Amfng 

of these changes In accordance with the differences In spawning Ame between groups. Th u s, 

steroid and calcium levels started to Increase In Qp. A , which commenced spawning on 

August 23. wetl before those In (3p. C , which commenced spawning on October 2 (FIgurea 

3.6, 3.7 and 3.8). Similarly, hormonal changes occurred much earllar In Q p. C  than In Q p . 

D, which commenced spawning on December 2. As the sequence of endocrine changes 

accompanying maturation In the rainbow trout Is wall astabllshad (section 1.5: Figure

1.5) only a single hormonal parameter was used to monitor maturation rate In 

axparlmants 2-4. In each of these experiments the timing of the changes In serum calcium
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I«v « lt  was oonsistant wrlth tha timing of maturation. Thus, in axparknant 2. calcium lavals 

in flsh axposad to a January/May *k>ng* to ’shorf photopariod ragima (Q p. O ) bagan to 

incraasa approximataly 1 month bafora thosa in thair c o u n ta ^ rts  subfactad only to a 

constant ’long* photopariod from January (Q p . E ; Figura 3.17). Similarly, fish axposad to 

a Fabruary/May long* to 'short' photopariod ragima (Qp. F ) axhtoitad markad incraasas In 

calcium lavals about 2 months bafora a similar risa occurrad in fish sub(actad only to a 

constant 'long' photopariod from Fabruary ((3p. Q ; Figura 3 .17). In both axamplas 

diffarancas In tha timing of changas in calcium lavais aocuratafy raflactad tha dHfaranca in 

spawning tima batwaan tha groups. In axparimant 3 tha tamporal changas in sarum 

calcium wara virtually idantical in fish exposed to 'long' photopariods of batwaan 14 and 

22 hours (Q ps. A -E ; Figura 3.20), as wara thosa In flsh subjected to constant 'shorf days 

ar)d 'short* days interspersed with one weak of 'long' days (Qps. F  and Q : Figura 3.21). 

Concomitant with tha differences In spawning tima, however, marked incraasas ki sarum 

calcium wara not apparent in Qps. F and Q  until about 3-4 months after they occurrad In 

Qps. A -E . Similarly, in experiment 4, serum calcium levels increased 2-3 months later 

in fish exposed to long' days of 10 and 6.5 hours (Qps. E  and F) than in thosa subjected to 

'long' photopariods of between 12 and 22 hours (Ops. A -D ; Figura 3.23), again consistant 

with diffarancas in spawning tima. Additionally, tha first significant (PsO.05) increase in 

sarum calcium in fish exposed to a 'long' daylength of 12 hours (Qp. D) occurred 1 ntonth 

after that in fish subjected to a 'long' photoperiod of 22 hours (Qps. A ), coincidant with the 

slightly later spawning tima in tha former group. It is clear, therefore, that tha 

modifications in spawning time achieved by manipulation of photoperiod in experiments 

1-4 were mediated by changas in tha timirn) of tha endocrine events controlling 

reproduction (sea section 1.5).

Considaring tha three directly comparabla groups in axparimant 1 (Q|M. A . B  artd C ). 

incraasas in sarum lavals of calcium and oastradiol-170 (but not testosterone) wara more 

pronour>cad in tha fish which axparlencad tha greatest advances in spawning tima. 

Accepting tha possibla misintarpreta*<on that may arise because hormone lavals wara 

measured only at monthly intervals, peak levels of these two sarum components in fish
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which commenced spawning on August 23 (Op. A ) were approximately double those In lish 

which commenced spawning on September 19 (Qp. C ; Figures 3.6 and 3.7). Although these 

differences were not statistically significant, a similar relationship between calcium (but 

not steroid) levels and spawning time was observed by Whitehead at al. (1976), who 

suggested it may reflect an increased rate of vitellogenesis In preparation for early 

spawning. Alternatively, lower blood calcium levels may result from an enhanced or more 

efficient uptake of vitellogenin by the developing oocytes. It is unlikely, however, that 

reduced oestradloM76 levels would accompany such an effect.

DIfferertces in peak honrtone levels may also be related to the magnitude of the chariges 

in photoperiod experienced by each group. Thus, the greater the magnitude of the changes 

In photoperiod in experiment 1 (e.g. a 9.5 hour increase followed by a 12 hour decrease In 

Qp. A , compared to a 1.5 hour increase followed by a 4 hour decrease in Qp. C ) the greater 

were the serum calcium and oestradioM7B levels attained. A  similar effect was noted by 

Robinson and Karsch (1987) who fourKf that peak levels of luteinizir>g hormone (LH ) In 

sheep were much lower following a 3-hour decrease In daylength (approximately 3ng/ml) 

than after an 8 -hour decrease in daylength (approximately lOng/ml; Karsch et al., 

1986). The mlr>or adjustments In spawning time attributed to differertces In the magnitude 

of the changes In photoperiod In experiment 1 may therefore be mediated through a 

differential effect on the endocrine events controlling ovarian development. In experiments 

3 ar>d 4, however, there was no consistent relationship between peak calcium levels and 

the magnitude of the Increase In photoperiod (3.5-13.5 hours) In fish which attained 

maturity at the same time (Qps. A -E , experiment 3; Ops A -D , experiment 4: Figures 3.20 

and 3.23). but peak calcium levels were considerably lower In fish which spawned within 

a similar period 2 -3  months later (Q ps. E  and F. experiment 4: Figure 3.23). Although It 

should be noted that the total difference In magnitude of the photoperiodic chartges 

experlertced by these groups was less than In experiment 1, because the reduction In 

daylength was constant, these data support the hypothesis that differences In peak calcium 

levels are related to the time of spavwiing rather than to the magnitude of the changes In 

photoperiod (although these hypotheses are not mutually exclusive). IrKflcative of an
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IncrsaMd rat* of vIMIIoganasIs In tarHar spawning llth.

Tha  paak In tanim  calcium and oattradlol-17B lavalt may also hava baan lowar In 

tom a of tha latar (pawning llth bacauta lha apawning pariod was astandad, railacting a 

datynchronixallon ol apawning tima balwaan Individual animals (discustad In mora dataN 

latar). Th u s, sarum calcium and oatlradlol-17S proHlas wara broadar In fish which 

apawnad ovar an 11 waak pariod In axparlmant 1 (Op. D) than In nth wNh a spawning 

pariod of 6-10 waaks (Qpa. A , B, C  and E ; R guras 3.6 and 3.7). It should ba nolad that 11 

waakt Is probably an undaratllmala ol tha spawning pariod in Op. D as caldum and tax 

staroid lavals in 2 of tha 5 remaining immature llth Indicated that they would hava 

completad maturation had tha sxparlmeni not been terminated. Although It was not pottibla 

to blood sample fish In Ops. F and Q  In experiment 3 throughout their axtandad spawning 

periods (20 and 26 weeks respaclivsiy) It It d e a r that their serum caldum  prolHat wara 

also sxtendad (Figurs 3.21).

3.4.5 PtiotonarlQdki allacla on reorodueilon In virgin and orevlouslv mature Heh.

Henderson (1063) reported that gonadal maturity could be advanced by photoperiod 

manipulation In brook trout undergoing their second or third reproductiva cyda, but not 

In those maturing lor lha first time. No such difference was apparent In axparimant 2 of 

tha present study in which virgin fish, and fish undergoing their second raproductiva 

cycle, responded similarly to a variety ol photoperlod regimes,' although lhara was a 

tendency for 2 *  fish to spawn later than 3 *  fish (Figure 3.10) tha dllfaranca was not 

significant, and thsrs wara no consistent dllfarencas bstwean 2*  and 34- fish with ragard 

to sarum calcium prolllat (Figures 3 .1 1 -3 .1 6) or tha proportion of fish attaining 

maturity (Table 3.2). Moreover, virgin and previously mature fish in axparimani 2 (Qp, 

O ) attained maturity at approximately the sam e time as virgin Hth axposad to a similar 

photopariod regime In axparlmant 1 (Op. A ). Th is  Indicates that, lor tha rainbow trout, H 

It valid to make comparisons batwaan axparlmantt utlHtlng either virgin fish or llth 

which hava tpawnad previously. It should ba noted, however, that there was a significant 

(PsO.Ot) affact ol age on spawning time In axparlmant 4, tha mean spawning tIma o l 2 «
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fish oocurrlng about 2 w aakt iatar than that of 3<f fish (Figura 3.22). Additionally. In 

savaral groupa (O p t. C . D and E ). significantly lass (PsO.05) virgin fish than pravlously 

matura fish attainad maturity (Tabla 3.4). Thasa affacts m ay ba ralatad to tha oorwistantly 

low watar flow ratas Imposad on tha fish In axparimant 4 (dua to drought oonditions). 

which may hava had dalatarious affacts on factors such as oxygan availability, faading arKf 

strass. Faading ar>d growth ara supprassad by strass (PIckaring. 1989. 1990) and fish 

siza Is considarad to ba a major datarminant of maturation In saimonids (Aim , 1959; 

McCormick and Naim an. 1984). Artificial diat rastriction supprassas growth of rainbow 

trout (Springata at at.. 1985; Bromaga and Jonas. 1991). producás a slight daisy in 

spawnirig tinw (Springata at si. . 1985), and causas a reduction in tha proportion of fish 

attaining maturity (Scott, 1962; Springats at al., 1985; Bromage and Jonas. 1991). In 

tha most recant study only 3 5 %  of female rainbow trout fed a *loW ration <9et throughout 

tha reproductiva cycle attainad maturity compared to 6 8%  fad a *high‘ ration diet 

(Bromaga and Jonas. 1991). Diat rastriction has also bean reported to decrease tha 

proportions of brown trout (B aganal. 1969) and Atlantic salmon attaining maturity 

(Thorpe, 1989). Unfortunately, fish which did not m ature in experiment 4 ware not 

weighed. However, tha mean post-spawning weight of tha virgin fish which did mature In 

experiment 4 was significantly less than that of their counterparts in experiment 2 

(925g. vs 1517g.; P^O.OOI, Student's t-test), which were similarly subjected to 

competition from older (larger) fish. There was no diffarartce in the mean weight of the 

fish at tha start of each experiment. This suggests that tha poor environmental oonditions 

axpariencad by tha fish in experiment 4 suppressed growth, and. in virgin fish, which 

would ba expected to have lower energy reserves than tha larger, previously mature fish, 

may hava inhibited reproduction (diverting energy resources to maintenance of body 

weight). In this respect, Thorpe (1986) has suggested that maturation of Atlantic salmon 

will proceed only if their rate of aquisition of surplus energy is above a genetically 

determinad threshold level In tha sprir>g, and DutU (1986) postulated that tha 'decision' of 

Arctic char. Salvellnua aloinui. to mature is also dapartdant on tha internal perception of 

energy reserves in tha spring. Moreover, recant work (Carraghar and Sumpter. 1990)
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h a t Indicatad that t t r a u  affects all levels of the reproductive axis in salmonids. causing 

charniet in secretion of Q T H  ar>d sex steroids and suppressing gonadal growth.

3.4.6 Th n  a d v n e m # n t  of maturation «hört p f i o A  of continuous itghL

Photoperiod regimes utilising continuous light (L L ), and hence requiring no blackout 

fadHties. are potentially attractive for the commercial production of out-of*season eggs. 

A  series of experiments, summarised in Table  3.6 (experiments 5 -6 ). were therefore 

conducted to assess the ability of short periods of LL to modify the timirtg of maturation in 

rainbow trout maintained under naturally fluctuating water temperatures. Experiment 5 

investigated the effects of exposure to 2 month periods of LL at a variety of times (between 

m id-Septem ber and m id-April) close to the natural spawning season (N ovem ber- 

January). Although some fish were exposed to LL just prior to the natural spawning period 

(e .g . Septem ber-N ovem ber) this did not affect the timing of their first (winter) 

spawnir>g. The  timing of the second (summer) spawning period in each group was directly 

related to the timing of the light period, commencing 6 -7  months after first exposure to 

LL (i.e. 3-7 months in advance of the expected spawnir>g time of the ambient oontrols; 

Figure 3.25). Similar effects were observed in response to 2 month periods of LL in 

experiments 6 aixl 7 (Figures 3.29 and 3 .35). Th e se  results coricur with those of 

experiment 2 and confirm that the timing of a change in photoperiod is an important 

determinant of spawning time. Moreover, they confirm the predominance of photoperiod 

over temperature as a Zeitgeber for the annual reproductive cycle sir>ce the experiments 

were conducted under naturally fluctuating water temperatures: in each case spawning 

occurred at the peak of the seasonal temperature cycle rather than the nadir as occurs 

urtder natural conditions. Takashima and Yamada (1984) have also investigated the effects 

of short periods of LL on the timing of reproduction In salmonid fish. They reported that 

maturation was advanced by about 4 n>onths in masu salmon exposed to LL from mid- 

December to mid-February (and 6L:16D thereafter), compared to a 2-3 month advance in 

fish subjected to LL from mid-February to mid-April or mid-Decem ber to mid- April. 

Clearly, the greater advarice observed In the former group was caused by the earlier
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Ta b I« 3.6: Summary of tha effects of oontinuout light photoperiod regimes (section B) on 
the time of spawning of female rainbow trout.

Expt./Op. Time of 
Exposure

Duration of 
Exposure

Percentage
Maturation

Main Aseasonal Mean Natural 
* Spawning Period Spawning time ^

5A Sept. IS-Nov. 17 2 months 18 Apr. 23-May S Dec. 12
SB Oct. IS'Dec. 16 2 months 21 Apr. 23-May 22 Dee. 12
S C ' « Nov. 17-Jan. 21 2 months 33 Jur>e 2-Aug. 10 Dec. 12
5D ' « Dec. 16-Feb. 17 2 months 8S June 17-Aug. 10 Dec. 12
SE ' « Jan. 21-Mar. 2S 2 months 100 July 16-Sept. 21 Dec. 12
SF ' « Feb. 17-Apr. 23 2 months 2S Aug. 24-Oct. 8 Dec. 12
Amb. ' « None None 8 Oct. 8 Dec. 12
L L ' « Sept. 1S onwards All year 30-S0 '° May 11-Aug. 10 Dec. 12

6A ' « Jan. 2S-Feb. 8 2 weeks 4 May 9 Dec. 19
6B Feb. 23-Mar. 0 2 weeks 16 June 6-Aug 1S Dec. 19
6C ' « Mar. 24-Apr. 7 2 weeks 19 June 6-Aug. 1S Dec. 19
60 ' » Jan. IS-Feb. 1S 1 month 80 May 9-Aug. 1S Dec. 19
S E 'W Feb. 1S-Mar. 16 1 month 28 June 6-Sept. 12 Dec. 19
6F 'M Mar. 16-Apr. IS 1 month 13 Sept. 12-Oct. 10 Dec. 19
6G Jan. 1S-Mar. 16 2 months 100 July 4-Aug 29 Dec. 19
6H Feb. IS-Apr. IS 2 months 76 July 18-Oct. 10 Dec. 19
L L ' » ' Jan. IS onwards All year 62 July 18-Oct. 10 Dec. 19

7A (1) J«n . 16-M«r. 15 2 months 96 July 3-Aug. 30 Dec. 21
7B (f) Jen. 16 onwards All year 63 July 21-Oct. 16 Dec. 21
7C (m) Jan. 16 onwards All year 36-76 «' June S-Oct. 2 nd
70 (m) J«n . 18-M»r. 20 2  months 34-88 «' June S-Oct. 2 nd

8 ' « July 21-Sept. 22 2 n>onths 73 Jan. 23-Apr. 26 Dec. 21

the superscript.
a; percentage aseasonal maturation.
b: natural spawning time of the fish at the start of each experiment.
c; estimate of percentage maturation.
d: percentage of 'runnirig' maies on each sampling occasion.
f; females.
m; males.
nd; not determined.
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reduction Irom L L  to 6L:1SD, vortfying the Importance of the timing of photoperlodlc 

change demonatrated In the present work.

O ne feature of the summer spawning profiles recorded In experiment 5 la that the 

majority of the Individuals In each group matured within a short period, generally lass 

than 8 weeks. In contrast, fish maintained under constant L L  Irom September In 

experiment 5 spawned over e 13 week period (Figure 3.24). Although this effect was not 

d ea r In llsh maintained under the same photoperiod In experiment 8 this group oontalnad 

only sma8 numbers of fish by spawning time and received Ha last synchronizing cue (the 

Increase to LL) et e later date (January). Moreover, a similar desynchronizing effect has 

been observed In fish maintained under constant LL In previous studies (BourHer end 

Blllard a,b, 1984; Bromage et al., 1984; Duston and Brom age, 1986a; Duston, 1987). 

These results suggest that the advances In spawning time achieved in experiments 5-7 

were due to 2 synchronizing cuss, as In experiments 1-4. T h u s , both the Increase from 

emblem ptvjtoperlod to LL and the decrease from LL to ambient daylength 2 (or less) 

months later phase advanced the circannual clock controlling reproduction (as discussed 

previously the decrease in photoperiod would be expected to have  a differential effect In 

each group according to the phase to which the clock had been advanced by the preceding 

Increase In photoperiod). This conclusion Is supported by the observation that fish 

subjected to constant LL from September (experiment 5) or January (experiments 6 arKf 

7) spawned later than their counterparts exposed to 2 m onths LL from Saptember- 

November (experiment S) or January-March (experiments 6 a n d  7).

It Is notable that the advance In spawning time achieved with periods of LL was greater 

In experiments 5 -7  than In fish subjected to comparable 'long' to 'short' photoperiod 

regimes In experiments 1-4. Thus, spawning commenced m early July following exposure 

to LL from January to March, and in lata August ahsr receiving 18L:6D from January to 

May. Although this could be attributed to a difference Hi rasponalvenesa between straHis 

both stocks had a sHnIlar natural spawnHig period with a peak Hi December. There are 

several alternatlvs explanations, which. It should be em phasised, are not mutually 

exclusive. FHstly, fish exposed to LL from January to March experienced an increase Hi
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photoptriod of about 16 hours foHowad by a dacraasa of approxknataly 14 hours, wharaas 

thosa subjactad lo 16L:6D from January to May racalvad an Incraasa of 9.5 hours foHowad 

by a dacraasa of 12 hours. Although tha rasults of axparlmant 1 suggastod that larga 

diffaranoas In tha magnHuda of tha changas in daylangth may causa mlcKK ad|ustmants In 

spawning tima axparimants 3 and 4 irtdicatad that dlffarai>cas In magnituda totaMng up lo 

12 hours had no affact on spawning tima. Thus, it Is unlikaly that tha diffaranca In 

spawning tima batwaan tha two traatmants was dua to tha diffaranca m magnituda of tha 

photoparlodic changa. A  mora iikaly axplanation is that tha raduction from L L  to amblant 

daylangth in March causad a graatar advar^ca in spawning tima than a raduction from 

18L;6D to 6L:18D in May. A  previous study, using tha sama strain of rair>bow trout 

maintained under idanticai conditions to thosa used in axparimants 1-4, has damonstratad 

that, up to a point, tha earlier tha raduction in photopariod occurs tha graatar tha advance 

in spawning tima: reductions on March 1 and May 1 advanced tha commancamant of 

spawning to lata July and lata August raspactivaiy (Duston and B ro m a ga . 1986). 

intarastingiy. however, only 2 6 %  of tha fish exposed to a raduction in daylangth in March 

attained maturity compared to 7 7 %  of thosa sub|ectad to a raduction in M ay (Duston and 

Bromaga. 1988). In contrast, virtually all of tha fish attained maturity in tha present 

study whan exposed to a raduction from (a 2 month period of) LL to ambient photopariod in 

March. This suggests that either tha changas in photopariod occur at a different phase of 

tha circannual clock in tha 2 strains or that LL affects tha dock in a different manner to 

'lor>g' days. Another alternative is that tha increasing tamparaturas axpariancad by tha fish 

exposed to LL during tha pra-spawning period may have accaiaratad gonadal davalopmant 

compared to fish sub)actad to a 'long' to 'short' switch and maintained under a constant 

tamparatura of 8*C. Certainly, tha incorporation of vitellogenin into rainbow trout 

ovarian folliclas in viiro rises with increasing tamparatura (Ty ler at a l., 1967b), ar>d 

maintanar>ca of rainbow trout in cold water delays spawnirtg (Morrison arKf Smith, 1986). 

Although tamparatura is clearly not tha predominant environmental c u e  controlling 

reproduction in tha rainbow trout it may serve to 'fine tuna’ tha time of spawning (section 

1 . 2 ) .
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3.4.7  In flu fic a  of tha Mmlno of aKDoaur» to «h o n  p f to d «  of continuous Ikiht on  tha 

DfODortion Qf ll»h  atl^nlna maturlly

Although to m « fish from « tc h  group in «xporimtnt 5 rtsporntod to 2  morrth porfodt of 

LL with an advarto« in th «  timing of maturation th «r«  ¥v«r« m ark«d cfiff«r«nc«a in th « 

proportion of fish attaining maturity d«p«nding on th« position of th «  LL p«riod In rotation 

to th « p h a M  of th« r«productiv« cycl«. Thus, a majority of th « fish (235% ) « x p o t«d  to 2 

months LL  from Dscsm bsr-Fsbruary and January*March attainsd maturity but only a 

minority ($ 3 3 % ) subjactsd to LL outsids thasa pariods m aturad (F igura  3 .2 6 ). 

Similarly, maturity was advancad in a high proportion (260% ) of fish axposad to 1 month 

of LL from January-Fabruary in axparimant 6. but only a faw fish ($26% ) axposad to 

this light traatmant at othar times responded (Figure 3.30; Table 3.6). The reasons for 

this differential response to the same photoperiod are unclear. However, a similar 

variation in the proportion of female rainbow trout maturing following photoperiod 

treatment has recently been reported by Duston and Bromage (1986). They found that the 

incidence of sexual maturation following exposure to a 'long' to 'short* photoperiod regime 

was deper>dent on the timing of the reduction In daylength relative to the phase of the 

reproductive cycle. Thus, the proportion of fish attaining early maturity when an ir>crease 

in photoperiod in January was followed by a reduction in daylength on the first day of 

March, April, May or June was 26, 52. 77 arvj 9 2%  respectively. Clearly, however, the 

duration of exposure to the 'long' photoperiod was also a variable in this experiment, 

ranging from about 6 to 19 weeks. In this respect. Bromage et al. (1964) found that 

exposing fish previously maintained on 6L:16D to 6 weeks 18L:60  from early M ay to 

m id-June had r>o effect on spawning time. In these two studies, therefore, only a smaH 

mirwrity or zero fish respectively, responded to 6 weeks exposure to a 'long' photoperiod 

with an advance in spawning time. In contrast, 7 0%  of the fish attained «arty maturity 

when exposed to 18L:6D for 6 weeks from late March to early May in experlrnem 1 (Q p . 

E ) of the present study, a similar percentage to those recorded for groups exposed to long* 

days for nearly 4 months in the same experiment. Thus, the timing of exposure to a *lor>g' 

photoperiod in relation to the phase of the reproductive cycle appears to be m ore
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Important than tha duration In datarmining tha proportion of fish attaining aarly 

m aturity.

Intaraatingly, whan flth  which initially apawnad 3-4  months aarly in Duston and 

Bromaga's (1986) axparimant (praviout paragraph) wara maintair>ad on a constant 

'short* day, along with thair non-rasponding oountarparts, both tha pravlously matura and 

knmatura fish attainad maturity approximataly 1 yaar latar, again 3-4 months in advanca 

of tha natural spawnirtg pariod. Thus, tha drcannual dock of tha non-raspondlrtg fish was 

also phasa advancad by tha initial photopariod treatmant, but this advanca was not ovartly 

axprassad (as an advar>ca in spawning tima) until tha following yaar. Thasa rasults laad tha 

authors (Duston and Bromaga. 1988) to proposa tha hypothasis that thara is a parted of 

tima associated with a particular phasa of tha circannual clock which raprasants an 

allowad zona, or 'gate*, through which tha fish must pass if they are to matura that yaar. 

Tha  concept of gating w as originally developed by Pittendrigh (1966) to describe 

drcadian rhythms in events which occur only once in tha lifetime of an individuai and 

hence are only detectable in mixed-age populations. This pheriomenon has principally bean 

studied in insects where events such as egg hatch, pupation and edosion can occur only at 

tha phase of the drcadian cycle when the gate is open; an individual which has not 

completed the necessary developmental steps prior to tha gate dosing must wan until tha 

gate re-opans tha following day (Saunders, 1977; Brady. 1961). Duston arte Bromage 

(1988) similarly speculated that in order for rainbow trout to pass through tha proposed 

gate in a particular yaar they must reach a certain threshold stage of davatepmant before 

tha drcannual dock reaches the phase at which the gate is dosed; fish vvhich do not attain 

this threshold must wait for tha gate to ra-opan the following yaar (In this ntedal a 

prograssivaly greater num ber of fish would have reached tha threshold stage of 

davatepmant before tha reductions in photoperiod in March, April. May or Jurta advanced 

tha phasa of the circannual dock beyond the 'gate-open* phasa). Thorpe (1986) suggested 

an analogous nKteal of davalopmantal regulation in tha Atlantic salmon, whereby tha 

'dadsten' to matura or smolt depends on a metabolic assessment taken at seasonally crftlcal 

timas. Th u s, if a fish parcaivas that its rata of aquisition of surplus ar>argy Is above a
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0«n«tica lly determined threshold during either the criticai period for maturetlon in the 

spring, or the critical period for smoiting in the late summer, the relevant developmental 

oonversion will proceed, in contrast. ur>der poor developmental conditions (e.g. low 

availability of food), growth opportunities during the critical periods wHI be reduced and 

hertoe the developmental conversions wIN be postponed until the folowir>g year. Duston and 

Bromage (1966) have suggested that a similar gating mechanism is irtvolved in the timing 

of puberty In sheep as they wW not mature below a certain threshold size and. even then, 

oestrous can only occur during a specific period of the year (Foster et al.. 1965, 1966).

As previously merttloned, the concept of gating Is generally applied to or>ce In a lifetime 

events and. in rainbow trout, only the timing of puberty has previously been suggested to 

Involve clrcannual gatlr>g mechanisms (Duston. 1967; Duston and Bromage. 1966). The  

rairtbow trout may undergo as many as 5 reproductive cycles and It is open to debate 

whether the maturation and ovulation of a particular batch of oocytes should be considered 

a once in a lifetime event. More likely, it would be viewed as one expression of an 

annually-repeated cycle. Nevertheless, the involvement of endogenous rhythms in the 

control of once in a lifetime or repeated events, although qualitatively different, merely 

involves two aspects of the same phenomer>on (Saunders, 1977; Brady, 1961); in each 

case the event can only occur at a particular phase of. for example, the circadian or 

drcannuai cycle. In this respect there may be types of annually-repeated events, the 

control of which, like some forms of daily-repeated behaviour (B rad y, 1961), involves 

some form of gating mechanism. It is possible, therefore, to explain the differertces in the 

proportion of fish responding to 2 (and 1) month periods of LL with an advance in 

spawnirtg time in the current study by the involvement of a gating mechanism. Thus, only a 

minority of the fish exposed to LL from September-November, October-Decem ber and 

Novem ber-January In experiment S attained maturity because only a small proportion 

had reached the threshold stage of development before the circannual d o ck  was advanced 

beyond the gate-dosed position. In contrast, a majority of the fish subjected to LL from 

Deoember-February and January-March had reached the threshold before the dock was 

ac^anced beyond the gate-dosed position ar>d hence proceeded to maturity. This hypothesis
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d o « t  not, howovor, oxplaln wtty only a minority of tho fish subjsctsd lo LL from Fsbrusry> 

AprH In sxpsrimont 5 attainsd tarty maturity (a majority of tha fish axposod to tha sama 

photoparlod attair>ad tarty maturity in axpariment 6. but tha LL pariod oocurrad slightly 

aarliar ralativa to tha wintar spawning and tha tum m ar spawning was dasynchronizad): 

all tha fish would hava baan axpactad to hava raachad tha thrashold bafora tha d o ck was 

phasa advancad. Th a  nv>st likaly axplanation ia that tha incraasa in photopariod to L L  

oocurrad d o s t  to tha tima at which tha fish parcaivad an  Incraasa in photopariod was 

occurring undar natural conditions; that is. tha 'long ' (L L ) photopariod was not 

Intarpratad as arriving pramaturaly by tha majority of tha fish.

Additional avidar>ca supporting tha axistanca of gatad circannual rhythms is providad 

by Blaka's (1959) work on pupation ar)d adosion rhythms in tha carpet baatia, Anthrenus 

verbaaci. Similar machanisms appear to be involvad in tha timing of raproduction in tha 

ragw orm , Nereia diveraleolQf (Oliva and Qanwood, 1983; Oliva. 1984). In both spadas 

tha proportion of tha population passing through each of tha annual gatas appaarad to ba 

dapandant on tamparatura. It is thought unllKaly that tamparatura ptc_fift affected the 

proportion of fish responding to each period of LL (or passing through tha 'gala') in tha 

prasant investigation since in tha study previously referred to. in which a similar 

phenomerwn was observed (Duston and Bromaga, 1988), tha fish ware maintained ur>dar 

constant temperature.

T h a  application of tha 'gating' hypothesis to tha results of axparimant $ m ay ba 

inappropriate. A  much simpler interpretation of tha results is that exposure to LL during 

tha last few months of tha first reproductive cyda  had little affect on tha subsaquant 

raprodudiva cyda because tha next batch of oocytes had not yet baan racruHad; only a few 

of tha earliest spawning fish were able to respond to tha L L  period at this tima. Scott at ai. 

(1984) suggested that tha 6 month advancement in spawning tima obsarvad in fish 

subjected to a contact lortg (18L;6D) photopariod w as related to tha ooinddanca of tha 

photopariod treatment with tha surge in Q T H  release which occurs during final oocyte 

maturation (migration of tha nucleus and germinal v a s id a  breakdown) arKJ tha pariod 

immadlataly followirtg ovulation. Tha  maintenance of this surge In Q T H  levels foHo%ving
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ovulation may ba Important for tha racruitmani of tha foltowing batch of oocytaa, arxl 

hanca only oocytaa which hava baan axpotad to LL durirto or aftar this aurga ara abla to 

matura aarly.

Aa pravkMjaly mantlonad, fiah which did not raapond to a 'lono* to 'ahorf photoparlod 

ragima with an advarica in apawning tlma in a pravioua atudy, did not than apawn at tha 

natural tlma whan aubaaquantly maintainad undar a conatant ‘ahorf photopariod, but 

inataad axpraaaad tha advanca tha following yaar (Duaton ar>d Bromaga. 1 M 8 ). Whan not 

axpoaad to LL tha fiah in axparimant 5 wara maintainad undar amblant photopariod. 

Unfortunataiy, it waa rwt possibia to maintain fiah which faliad to attain aarly maturity in 

axparimant 5 until tha subsequent natural breeding season. However, H is evident from 

the results of experiment 6 that all of the fish which failed to respond to the LL period 

eventually spawned at the rwrmai time (Figures 3.27 and 3.28). This suggests that either 

tha L L  period w a s ignored com pletely or (perhaps indicated by the alight 

desynchronization of spawning close to the natural time) that tha fiah which wara 

physiologically lr>competent to mature when their clock was advanced b y exposure to LL 

rS'entrained to the natural photocycle when returned to ambient daylength.

attflinlnq maturity.

One feature of interest from both a physiological and commercial viewpoint is tha 

duration of exposure to a *k>ng’ photopariod required to elicit a reproductiva response. Tha  

discussions of experiment 1 (Qp. E ) ar>d experiment 5 oor>cluded that tha position of tha 

1or>g‘ photoperiod in relation to the phase of the reproductive cycle is m ore important than 

Its duration in determining the proportion of fish attaining m aturity. However, tha 

duration of tha 'lortg* photopariod was 6 weeks in experiment 1 (Q p . E )  and 2 months In 

axparimant 5. Sim ilarly, tha minimum duration of exposure to ‘long* days used in 

pravioua studies is 6 weeks (Brom aga at al., 1964; Duston ar>d Brom aga. 1988). 

Exparimant 6 tharafora Investigated the importance of duration of axp M ura  to ‘long* days 

by sub)ectlr>g fish to either 2 weeks. 1 month or 2 months LL durirtg tha period (shortly
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aft«r tfm  pr«c*dlno tpswnina M a so n ) whan a rna)omy of tha fish raspondad lo 2 months LL 

with an advanca in spawning tkna in axparimant 5. AHhough a faw fish (s l9 % ) raapondad 

to only 2 waaks LL. spawning was advancad in a majority of fish (2 6 0 % ), and in a 

synchronizad mannar, only in th o M  groups axposad to LL for 1 montft from January to 

Fabruary or for 2 months from January to March (Figuras 3.28 and 3.29). Th a  mirrimum 

duration of axposura to LL raquirad to advanca spawning in a matortty of tha fish tharafora 

lias batwaan 2 waaks and 1 nw nth. This conclusion is supported by tha rasuHs of 

axparimant 3 (Op. Q ) in which fish wars axposad to 1 waak of lo ng' days from lata April to 

aarly May In an otharwiM short day ragima. This traatmant had r>o significant affact on tha 

timing of spawning compared with fish maintainad on constant 'short' days (Q p . F ; Figura 

3.19), although it should again ba  noted that tha timing of tha axposura may hava baan 

mora important than tha duration in this respect. Cartainly, avan wNhin tha ralativaly 

short period durir>g which the light treatments were applied in axparimant 6 (January- 

April) tha position of the LL periods in relation to tha phase of tha raproductiva cycle 

determined the proportion of fish respondirni to 1 or 2 months exposure with an advanca in 

spawning time.

Only two previous studies have investigated the effects of short periods of L L  on 

reproduction in salmonid fish. Duston (1987) found that 1 months axposura to LL from 

early September to early October had no effect on subsequent spawnings of rainbow trout 

of the M m e  strain as thoM  used in the present study, and maintenance under LL from early 

Saptambar to early November resulted in only a small proportion of fish spawning the 

foMowir>o summer, a similar result to the preM nt study. Takashima and Yam ada (1964) 

monitored changes in the mean Q S I of mala and female masu salmon axposad to either 4 

nx>nths (m id-Decambar to m id-April), 2 months (m id-February to m id-April), 1 month 

(mid-March to mid-April) or 10 days (mid-March to lata March) of LL. Th e y  reported 

that gonadal davaiopmant was enhanced in aH groups compared to fish maintainad uridar 

ambient photopariod. but tha maturation rata in fish axposad to only 10 days L L  was much 

slowar than in tha other groups. T h s M  results are in broad agraamant with th M a  of tha 

present study, and H is unfortunate that no details of tha proportion of fish rasportding to
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M Ch traatnwfit w a r« providad. Recant aludías In tha aaa bass hava alao damonalratad that 1 

montha axposura to long' days (15L:9D) Is sufNclant to advance or delay maturation, but 

otilar parlods of asposura ware not testad (Carrillo at al., 1 M 9 a ,b ). Thera appears to 

hava baan littls similar «vork In other vartabrataa although H Is waN known that as IHtla 

as 1 day Of oxpoturo to • 'tong* pbotoporiod It  sufficttnt to stimulatt roproductivt 

dtvolo pm tnt In torn* birds such at tha Japano ta  quail (Foitatt» 1982) artd YaNon and 

Fottar (1905) reportad that 1 waak of *lor>g' (1 5 L:9 D ) days w a t tufndant to antura tha 

normal ontat of pubarty In famala thaap. although oattrut commancad slightly latar than 

In animals axposad to 5 and 10 weak blocks of long* days.

Th a  praca<8r>g discussion incHcatad that tha rainbow trout Is insensitiva to periods of LL 

of tats than 1 month. Although tha majority of fish did rwt respond to 2 weeks LL, however, 

a small proportion did. This suggests that, like soma other vartabratas, fish are able to 

detect ralativaly short periods of ‘long' days. Tha reason for tha low percentage ratportsa to 

2 waak periods of LL may be inherent In tha haterogar>ous nature of tha population, rather 

than an inability to detect vary short periods of L L  per sa . Since tha natural spawnktg 

period of individuals within tha population may vary by 6-8 weeks a period of LL lastirtg 2 

weeks would be expected to impinge on the circannual clock of ir>dividual fish at different 

phases. Longer periods of LL, however, might be expected to perturb the clock at the 

phase(s) required to advance spawnir^g In a much greater number of the fish; a 2 month 

period of LL would encompass the individual variation of the entire population and would 

therefore be expected to invoke a response In all the fish.

3,4.9 Commercial «n»uin«llnn n t Unht nholftnarlnri ra n lm ««

O ne of the primary a' «vneriments with LL was to develop a reliable method

for the commercial p^ ^ « ^ n  rainbow trout eggs without the rteed for

blackout facilities, in ...,s  (5 -7 ) over 9 0%  of females exposed to a

2 month period of LL from January March spawned again in a 8 w eek period In July and 

August; spawning oommer>ced on a similar date in each experiment (Figures 3.25, 3.29 

and 3 .3 5 ). Moreover, milt was available from similarly treated males throughout the
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(paw ning  pwlod of lh (  («m a lm  (FIgura 3.35). Expoturt of rainbow trout to (tw rt parkxSa 

of LL  doaa to tha natural (pawning aaaaon tharafora provktaa a almpla, chaap and 

pradictabla matfiod for tba production of out-of-aaaaon agga. In oontraat, tha proportion of 

fish aftalning maturity la raducad following axpoaura lo L L  throughout tha raproducUva 

c y d a  and (pawning oocura ovar an axtandad parlod (axparlmanta 5 -7 ; Bourtlar and 

BINard, 1»84a.b; Bromaga at al., 1 9 M ; Duaton, t987; Bromaga and  Cumaranatunga, 

1B8S). Thia point la oorroboratad by tha raauHa of an aarly oommerclal acala trial uaing 

tha aama (train of nah aa In tha praaant atudy, maintalnad undar almllar oondHIona (l.a. 

o n  tha aama farm). In which tha nah farmar obaarvad that (pawning waa daaynchronizad 

In rainbow trout axpoaad to LL throughout Iha raproductlva cyda  and aatlmatad that only a 

th ird  of thaas fish attalnad maturity (C . W oods, parsonal comm unication). From  a 

practical viewpoint tha method developed In this study provides several dear advantagaa 

o v a r other methoda for tha photoparlodic manipulation of spaw ning time In that tha 

expanse and labour required for tha construction and maintenance of blackout facilities is 

unnecessary and no ra-programming of time switches Is required. Additionally, tha method 

w orked wall on a farm with naturally fluctuating water temparalura, but herein lias a 

possible drawback of tha technique. Ovulation occurred at tha warm est time of the year 

w han water temperatures reached 22®C (J. Symaa, personal communication), although tha 

highest temperature recorded on any sampling occasion was tS ’ C . Ovulated eggs remain 

viable In tha abdominal cavity lor a much shorter time at higher temperatures (Figure 

3 .4 0 : Blllard and Breton, 1977; Blllard, 1985). This necessitates checking the fish lor 

maturity at mors frequent Intervals than usual, which may lead to an  Increase in stress 

arKf Inddence of disease. Although there were no obvious signs of such dalalerlous affects 

w h e n  fish were checked frequently In experiment 7, h Is dearly preferable to maintain 

tha  flsh In water of a lower (constant. If possible) temperature, at least during the 

spaw ning period (although care should be taken to avoid dramatic changes In water 

tem perature).

In addition to advarv:lng maturation, exposure to a short parlod of L L  was able to delay 

spawning. Thus, spawning was delayed by approximately 2-3 months in fish exposed to a 2



Figura 3 .4 0 : Changas m post-ovulatory agg viability in tha abdominal cavity of tómala 

rainbow trout maintalnad at olthar 10 or 20 *C for 110 hours following ovulation. 

Fertilisation rats was assessed by measuring the percentage ol eggs reaching the eyed slags 

(from B llla rd  and Breton, 1977).



month porlod of L L  from iato July untH lata Saptambar (Flgura 3.37), with 7 3%  of tha 

flah attaininQ maturity during tha axparlmantal pariod. A  similar 2-3 month dalay In 

maturation has pravlously baan obsarvad In Novambar/Dacambar spawning strains of 

rainbow trout maintained undar constant 16L:8D or IX  from June (Shlralshi and Fukuda. 

1966; Bourllar ar>d Billard. 1964a,b). Maturation was also dalayad by 1 n>onth In a 

Oacam bar/January spaw ning strain subjactad to 1 6L:6D  from the same time 

(Skarphedinsson, 1 98 2 ), but not In similarly treated January/February spawning fish 

(Whitehead and Brom age, 1980; Bromage at al., 1982b). However, spewr>lng was delayed 

by 3 -4  months In a  January/Fabruary spawning strain of rainbow trout maintained on 

constant 8L:180 from  lata February to late July and 18L:6D tharaaftar (Bromaga at al., 

1964). Exposure to constant long photoperiods or LL after tha summer solstica has also 

been reported to d e lay  spawning in brook trout (Allison, 1951; Hazard and Eddy, 1951; 

Har>derson, 1983; Shiraishi and Fukuda, 1968), sockeye salmon (Com bs at al., 1959; 

ShlraishI and F uk uda, 1966), amago salmon (Shiraishi and Fukuda, 1988), Atlantic 

salmon (Eriksson a n d  Lundquist. 1960; Lundquist, 1960), chirtook salmon (Johnson, 

1964; Clarke, 1990), coho salmon (Clarke, 1990) and masu salmon (Takashima ar>d 

Yamada, 1964). T h e s e  studies have all subjected tha fish to tha photoperiod treatment 

throughout tha experimental pariod (until close to spawning time), whereas the present 

study demonstrates that only a 2 month pariod of LL Is necessary to dalay spawning, 

provided It is applied at an appropriate phase of tha reproductive cyda. Exposure to short 

periods of LL during the latter half of the reproductive cycle therefore provides an easily 

applicable technique to further spread the production of out-of-season eggs. In tha present 

work the majority of the fish spawned in February, but spawning was slightly 

desynchronized, continuing through March artd April. This may suggest that the Increase to 

a long photoperiod after the summer solstice phase delayed the drcannual dock oontfoNlrig 

reproduction (clock perceived to be runnirtg last'), but that the redudlon In photoperiod 

occurred too late (too dose  to spawning time) to provide a syrtchronizlng cue.



3.4.10 goo «to* mnd tecunditv.

C iM rIy, th« oommtrcial a dvantagM  oonfarrad by tha production of out-of-aaaaon agga 

would ba nagatad if tha quaRty or numbar of tha agga producad waa advarsaly affactad. Egg 

quaHty la aomatimaa daflnad in tarm a of agg aiza and amaH agga (&4.75mm  In diamatar) 

may ba unaccaptabla for aala (Sprlngata and Bromaga, 1984). Tha  raauHa of tha praaant 

atudy damonatrata that agg alza la ralatad to tha tima of apawnir^; tha graatar tha ac^anca 

in apawning tima tha amailar th a  agga producad. Thia ia claar from  tha raaulta of 

axparimanta 1-5, but ia baat demonatratad by tha oomprahanaiva aat of data obtainad in 

axparimant 6 (Figura 3.31). In tha  lattar axparlmant no aignificant changa in maan flah 

waight oocurrad ovar tha axtar>ded apawning parlod (Figura 3.34) allowing any affact of 

fiah aiza on egg diamatar to be discounted. Several previous studies have raporlad a similar 

relationship between egg size and spawning time (Nomura. 1962; Buss, 1960; Bromaga at 

al.. 1964; Duaton and Bromaga. 1988), possibly indicative of tha shorter tima availabla 

for vitellogenin ir>corporation into tha developing oocytes of earlier spawning flah.

A  pertinent question is 'Are sm all eggs really of a lower quality than large ag g sT . In 

this respect fertilisation rata, and  growth and survival of tha fry, m ay provide a more 

accurate index of agg quality. T h a  percentage fertilisation (approximately 8 0% ) of tha 

small eggs produced In experiments 1-4 was similar to that of eggs obtainad from hah 

during tha natural apawning period (N . Trotter, personal communication; n o  data availabla 

for experiments 5 '8 ). Springate at al. (1984) have shown that percentage fertilisation 

provides a reliable prediction o f  subsequent egg and fry survival. Pitman (1979) 

compared the survival rates of progeny reared from tha relatively large eggs of 5-yaar old 

rainbow trout with those from tha smaller eggs of 2-year old fish. H a  reported that a 

greater proportion of the large than the small eggs hatched and that aubaaquant growth and 

survival waa greater in progeny derived from the larger agga. A  recant study conducted 

urKfar carefully ccntroliad ccm m arcia l conditiona confirmed that rainbow trout fry 

hatched from larger eggs are kiltiaHy larger than those obtainad from amailar agga, but 

found that thia size advantage had disappeared 4 weeks after first feadir>g and that survival 

rates to eyeing, hatch, swIm-up a n d  as 3-month fad fry ware not corralaiad with egg aiza
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(Springat* and Bromaga. 1985). Similarly, tha Initial t iza  diffaranca batwaan Atlantic 

aalmon fry darivad from larga and small a g g a  was lost during tha first yaar of growth 

(Hayas and Armstrong, 1942; Thorpa at a l.. 1984). Th u s, although largar aggs may 

oonfar an at^arttaga for survival In tha wild. urKfar tha ralativaly favourabla oonditlona of 

tha oommarclal hatchary agg slza is probably not a major datarminant of lor>g-tarm 

growth and survival. Notwithstanding tha possibla oommardal significanca of raducad alza 

on agg 'quality' parhapa tha most important implication of studios which show that smaMar 

aggs ara producad whan tha timing of maturation Is advancad is that agg siza is lass 

important than ar)vironmantal factors in datarmining tha tima of ovulation.

In axparimants 1-4. conducted at constant temperatura, there ware n o  significant 

diffarancas batwaan groups in either total fecundity (num ber of aggs) or ralativa 

fecundity (number of aggs/kg). although there was a tendency for tha later spawning (arid 

hence largar) fish to produce a largar num ber of aggs (a.g. O ps. F ar>d Q . axparimant 3; 

Tabla 3.3). It is wall established that larger (and older) rainbow trout have higher total 

fecundities than smaller (and younger) fish, although, because larger fish also produce 

larger eggs, they have lower relative fecundities (Springate arxf Bromage, 1984; Bromage 

at al., 1990). Experiment 6 provided a comprehensive test of the effect of spawning time 

on egg production. Interestingly, both the total arxl relative fecundities of fish in which 

spawning was advanced to July and August w ere significantly higher (P ^ .O S ) than those 

of fish which matured during the natural spawning period in December (Figures 3.32 ar>d 

3.33). Tha parallel changes in total and relative fecundity are explained by tha previously 

mentioned observation that no significant change in the mean weight of the fish occurred 

over the period from May to January w hen data ware coilected. Th e  lower fecundities 

recorded in the later spawning fish were associated with larger eggs, reflecting the ‘trade- 

ofT between egg size and number which occurs in rainbow trout (Sprk)gate and Bromage. 

1984; Springata at al.. 1985; Bromaga at a l., 1990). Thus, far from havir>g deleterious 

affects on fecundity, tha advar>cament of spawning by exposure to LL actually mcreaaed egg 

production.

Tha reason why tha aartiar spawning fish In axparimant 6 should have a higher total
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f«cundity than thoaa attaining maturity latar It unclaar. O n# p o ttib la  raaton la tha 

irw raating tamparaturas axpariancad by tha sum m ar-apawning flah during tha pra- 

apawnirtg pariod. Rataa of food conaumptlon ara tamparatura dapartdant. a proparty 

raflactad in tha incraaaa in waight of tha flah batwaan tha atari of tha axparlmant in 

Jan u ary  and tha commancament of apawning. In contraat, no furthar growth oocurrad 

durk>g tha lattar half of tha yaar aa tamparaturea dacraaaed, Indicativa of a raduction In 

food oonaumptlon. Food oonaumption la a major datarmlnant of facundity in flah, ar>d a 

raduction in conaumption ia likeiy to produce a raduction in facur>dity (Wootton. 1979). 

Th u s . whHa tha greater time available for the Incorporation of vitellogenin into tha agga 

allowed for the production of larger egga by the later apawnir>g flah. In the abaer>ce of an 

incraaae in fiah weight, arid hence ovary volume (Sprlrtgate and Bromage, 1984; Sprir>gata 

at al.. 1985). the 'trade-off between egg aize and num ber reaultad in the production of 

few er agga. An alternative explanation la that the combined effect of a greater blood 

vitellogenin concentration, due to increaaed temperature and an Increaaed rata of 

vitellogeneala in preparation for early apawning. a nd  the Incraaaed incorporation of 

vitellogenin into the developing oocytea which occura (at leaat in vltrol at higher 

tamparaturea (Tyler et al., 1987b), waa to reduce the level of atreaia below that which 

oocura normally during ovarian development (aection 1.4). Ir>creaaed feeding at higher 

tamperaturea may also have decreased atresia in the earlier spawning fish since a reduced 

food intake, as would probably have occurred in the later spawning fish durirtg tha lattar 

half of the year as temperatures decreased (ar>d vitelloger>esis Increased), has bean shown 

to be  associated with an Increase In the level of follicular atreaia (Scott, 1962). In this 

raapact, Bromage and Jones (1991) found that total facur>dity waa significantly reduced in 

tomala rainbow trout fed a ‘low* ration diet compared to fish fed a 'high' ration diet during 

tha middle third of the reproductive cycle. It should be noted, however, that reducir>g tha 

ration ovar tha last 3 months prior to spawning had rto detrimental effects on fecurnMy 

(Brom age and Jones. 1991) and. although the fecundity of brown trout fad a rastictad diat 

waa also lower, and the egga larger (measured aa dry waight). than thoaa of tha aama aiza 

(langth) fed on high rations, these fecundity differences could not ba aooountad for by
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diffefvnc«« In t h «  l«v «l of atrosi« (Baganal. 1M 9).

3.4.11 F u rt h f  ^ Id a n e a  tor an widaQanQiia dfcannual dock.

Th a  pracading dlacuttion h a t intarpratad tha axparimantal ratulia in taunt of tha 

pholopariodic antrainmant of an andoganout drcannual dock controlling maturation. Thara 

it a oontidarabla vohjma of avidenca that tuch a dock axittt (taction 3 .1 ), d>a ttrongatt of 

which it  tha dam onttratlon of fraa-runnlng rhythmt of reproduction in rainbow trout 

maintained ur>dar oonttant photopariodt for tavaral yaart (Dutton and Brornaga. 1966a, 

1991). Although tha axparimantt conducted In tha pratant ttudy foltowad only one 

reproductiva c y c le  they provided corroborative evidence for tha h yp o th atit that 

maturation in tha rainbow trout is ultimately under andogenout control. O ne  feature of 

circannual rh y th m t it that, within a tpaciet. tha fraa-runnlng p e rio d  may exhibit 

contidarabla  intar-individual variation (Qw innar, 1986), cauting th a  rhythm t of 

individual a n im a lt to become desynchronized under constant co nd itio n t. Th a  bast 

denx>nstration of this characteristic In the present study Is provided by the  results of Qp. F 

in axpariment 3 (Figures 3.19 and 3.39). These fish were maintained ur>dar a oonttant 

6 .5L:15.5D  photoparlod, which approximated ambient daylength at tha start of tha 

experiment in January. Spawning subsequently occurred over an extar>dad period of 20 

weeks, w hereat spawning was confined to 6-10 weeks in fish subjected to ‘long’ to ’thorf 

photoperiod regimes In the same experiment (Ops. A -E ; Figure 3.18). T h is  indicates that. 

In the absence of photoperiodic cues, the circannual rhythms of individual fish were free- 

running with variable periodicity ar>d her>ce became desyr>chronized. Sim ilar effects have 

been observed In a number of other studies In which rainbow trout have been maintained 

under constant cor>ditions (Bourlier ar>d Billard. 1984a,b; Bromage et a l., 1964; Dutton 

and Bromage, 1986, 1987, 1988).

AiK>ther property of endogertous clocks, artd a prerequisite for entrainment. Is that they 

possess a differential sensitivity to the phase-shifting effects of the zeHgeber (Aschoff. 

1965; Qwinner, 1973, 1966; Saunders, 1977; Brady, 1979; Daan, 1 98 2 ). A  particular 

time cue therefore causes phase-shifts of different magnitude aruJ sign depending on the
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p h s M  at which tha rhythm la parturbed (Figura 3.3c.d). This phanomanon haa b aan moat 

thoroughly invaatigatad In circadian ayatama. Typically, indlvlduala of a apadaa ara placad 

In oonatant darknaaa ar>d axpoaad to a abort light pulaa (ganarally laaa than 1 h o u r) at 

diffarant phaaaa of thalr fraa-running circadian cycla; tha magnituda and aign o f tha 

phaaa-ahift (if any) cauaad by aach light pulaa la maaaurad ovar aubaaquant cy da a  

(Saur>dara. 1977; Brady. 1979; Daan, 1962). Thaaa phaaa-ahifta can ba plottad 

graphically agalnat tha tima (phaaa) of tha rhythm whan tha cua waa appllad to obtain a 

phaaa-raaponaa curva.

Phaaa-raaponaa curvaa hava racaivad much attention from thoaa atudylr>g d rcadlan  

rhythma bacauaa they provide  an identifying profile of the underlying clock (B rad y, 

1979; Daan, 1982). If the entrainment behaviour of circannual rhythma ia truly 

analogoua to that of circadian ayatema it ahould aiao be poaaible to daacriba tha 

antrainmant of circannual clocKa in the form of a phaae-reaponae curva. Howavar, thara 

hava been few reporta of phase-dependent phaae-ahifts of circannual rhythma in response 

to a zeitgeber atimulua. In the preaent work (experiment 2) the magnitude of tha advance 

in apawning time cauaed by expoaure to a long pholoperiod (18L:6D) waa dependent on Ka 

timing relative to the phase of the reproductive cycle; apawning occurred in aequenca In 

fiah aub|acted to an increase in photoperiod In December. January or February (Figura 

3.10). Thua, tha earlier the increaae to a 'long' photoperiod occura ralativa to  that 

experienced under a natural seasonal photocycle (i.a. the slower the circannual d o c k  ia 

parceivad to be running) the greater the corrective phase advance required to ra -se t tha 

drcannual dock. Although it is not possible to construct a phase-reaponae curve from  tha 

limited sat of data obtained In experiment 2 a number of previous studies on tha rairtbow 

trout hava indicatad that exposure to a 'long' photoperiod behind that axpariancad under a 

natural seasonal photocycia (i.a . clock perceived to be running 'fast') causes a phasa delay 

of tha circannual clock (Shlralahi and Fukuda, 1966; Skarphadinsson. 1982; Bourllar 

and Billard, 1984a.b). Furtherm ore. Bromaga at al. (1984) reported that whan 

January/Fabruary apawning fish were maintained on constant 6L:18D from February an 

increase to 18L:6D had no affect on spawning time when applied in early May. but dalayad
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maturation by 3 -4  months whan appiiad in lata July. Ciaarly than, tha raproductiva 

rasponsa to a 'long' photopariod is phasa-dapandant.

This  proparty ia amply damonstratad in tha prasant study by tha mora comprahansiva 

sat of data obtairtad by axposing rainbow trout to 2 month partods of LL at dKfarant phasas 

of tha raproductiva cycia (axparimants 5 -6 ). Thasa data ara prasantad In tha form of a 

partial phasa-rasponsa curva in Figura 3.36. It Is r>ot possibla to calculata tha axtant of 

tha individual phasa-shifts attrlbutabla to aithar tha Incraasa from ambiant photopariod to 

LL or tha subsaquant dacraasa from L L  back to ambiant photopariod for aach light parlod. 

For tha purposa of plotting a phasa-rasponsa curva tha tima of axposura to LL was 

tharafora takan as tha mid-point of tha 2 month light pariod. Th a  phasa-rasponsa curva 

shows that pariods of LL applied in advarica of a significant incraasa in daylangth occurring 

under ambient conditions phase advanced maturation (dock parcaivad as runnirtg 'slow*); 

as in axparimant 2 (previous paragraph), the mora prematurely tha arrival of a 'k>r)g' 

photopariod occurred tha greater was tha advar>cemant of tha circannual dock. Conversely, 

a pariod of L L  applied behind tha natural occurrence of 'k>r)g' days phase delayed 

maturation (clock parcaivad as running 'fast'). It is suggested that 'dead zones' exist at tha 

transition between tha phasas of tha dock at which advance and delay phase-shifts occur; 2 

month pariods of L L  appiiad at these times would have no affect on tha phase of tha 

drcannual dock (d o ck  perceived as 'accurate') and spawning would occur at tha normal 

tima. Similar dead zones are characteristic of circadian phase-response curves (Daan,

1982). From tha prasant work one such dead zone would be expected to occur between 

about April and Ju ly . i.e. at tha time whan 'long' (or increasing) photoparlods occur 

naturally. A  second dead zona is apparent close to tha natural spawning tima; although 2 

month pariods of L L  appiiad from between September and spawning tima may advar>ca 

n>aturation in a mirtority of fish in tha following raproductiva cycle, they have no affad on 

tha tim ing of spawnir>g immediately following th e ir application. Presum ably, tha circannuai 

d o ck has become entrained by tha naturally decreasing daylangth at tMs stage and hence 

tha fishes' perception of a 'long' photopariod gradually switches from that which indicates 

their circannual d o c k  is running 'fast* (delay phase-shift) to that which indicates their
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clock it running *tk>w* (advance phate*thift). T o  exclude the effect of the teaaonally* 

changing daylength on the entrainment of the drcannual dock it It obvioutly necettary to 

^ )p ly  the light perlodt to fith maintained under conttant conditiont (e.g. 6 L :ia D ).

In contratt to mott p h ate-retpo nte  curvet for drcadian ayttem t. which are utuaNy 

conttruded by the application of light pu ltet to a free-running rhythm under oonttant 

oonditiont. the phate-retponte curve pretented in the current work repretentt the effedt 

of perlodt of L L  applied within a teatonaiiy-changing photoperiod and temperature regime. 

Temperature appeart to have only a minor, direct effect on reprodudive timing in 

taknonldt (tection 1 .2 ). and the periodidty of the drcannual clock would be expeded to 

be temperature compentated (te d io n  3.1), but it thouid be r>oted that a phate-retponte 

curve obtained from an organitm  in free-run m ay be different to that recorded in the 

entrained date (Atchoff, 1965). However, a timilar, though less detailed, phase-response 

curve hat been presented by Dutton ar>d Bromage (1988) to describe the effects (advarKw 

or delay) of a redudion from a constant long (18L:6D ) to a constant short (6L:160) 

photoperiod at different phases of the reproductive cycle; the circannual dock would 

therefore have been free-runnlr>g vrhen exposed to the redudion in daylength. A t would be 

expected, the magnitude of the phase-shifts plotted in the latter study, which only related 

to a single change in photoperiod (a reduction), was about half that presented in the 

current work, in which, it is proposed, the total phase-shifts plotted represent the 

summation of two separate responses to the Increase to, and decrease from. LL.

Phase-response curves for circannual rhythm s cannot be expected to provide as 

accurate a pidure of the undertyir)g dock as those described for circadian systems because 

of the long time scale involved. Following a perturbation circadian rhythms typically pass 

through a series of transient cycles before a steady state phase-shift is attained 

(Saunders. 1977; Pittendrigh. 1981a). Since circannuai rhythms may also undergo 

transient cycles during re-entrainm ent (Q w in n e r. 1986) phase-response curves 

obtained during a single cycle m ay r>ot be fully representative of the phase-shifting effeds 

of the zeitgeber stimulus on the dock . Notably, however, fish maintained on constant 

6L:180 after a redudion from 18L:6D in March had advanced spawning by 3-4 months.
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•pawned again tha naxt yaar with a drcannual periodicity (Ouston and Bromage. 19M ). 

Similarly, fith in which «pawning was Initially delayed by 2 -3  months following a 

reduction from ambient photoperiod to 6L:18D In February spaw ned with a drcannual 

periodtoity for the next two to three years when maintained on the same photoperiod 

(Ouston and Bromage, 1986a, 1991). This suggests that the drcannual rhythm attains a 

steady-state phase-shift almost immediately (within one cycle ) in response to these 

stim uli.

There have been only a few reports of phase-dependent phase-shifts of circannual 

rhythms in response to a zeitgeber stimulus in other species. T h e  first of these came from 

Qwinner (1971) w ho found that the subsequent moulting (postjuvenile or postnuptial) 

was delayed in willow warblers iPhylloscopua trochilusi transferred from ambient 

photoperiod to constant 18L:6D in spring ar>d early summer, but was advar>ced when the 

transfer occurred In autumn. Transferring birds to constant 12L:12D at these times 

produced the opposite response. In a subsequent study Q w inner (1973) found that the 

testicular response of starlings to a 1 month period of either L L  or constant darkness (D O ) 

was dependent on the time of year at which the transfer from ambient photoperiod 

occurred. Thus, gonadal development was enhanced in starlings transferred to LL in late 

November and late February, inhibited in birds subjected to LL from late May and 

unaffected in animals exposed to LL from late August; the effects of DO were less striking 

but were approximately opposite to those of LL  (Figure 3 .4 1). Circannual rhythms in 

nfMulting, and in testicular size, have been demonstrated in willow warblers (Qwinr>er, 

1971, 1973) and starlings (Schwab. 1971) respectively, and hertce these results can be 

interpreted in terms of differential phase-shifts of a circannual clock (Qw inner. 1973. 

1986).

Reproductive activity in sheep also appears to be uruJer endogenous circannual control 

(Ducker et at., 1973; Howies et al., 1962; Almeida and Lincoln. 1984b; Karsch et al.. 

1989). and there is a growing awareness that the effects of photoperiodto char>ge on the 

timirtg of reproduction in this species can also be interpreted in terms of phase-shifts of 

an orKlogenous clock (Malpaux et al.. 1988. 1989; Jackson et al.. 1989; Malpaux ar>d
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K arich, 1990: W ayna at a l„  1990). Th a  poatlbilHy that changat In daylangth m ay hava 

diffarantial phata-rasatting affacts at diffarant timas of tha yaar was racogniaad by 

Jackson at al. (1989) w h o  tub|octad ahaap to allarnatlng 90 day pattoda o f constant 

8 L :t6 0  and tSL:8D, with transitions batwaan lha two pholoparlods tknad to o c cu r at tha 

spring and autumn squlrroxas and tha summar and wintar solsticas. T h e y  raportad 

significant ssasonal variations In both the Iniatval balwaan tha onsat of 'shorT d a y s  and lha 

oommanoamant of oastrous (assassad by monitoring circulating progastarona lavals), and 

tha lima from onsat of tong' days to tha cassation of ovarian cydas. In aach ca sa  oonsistant 

with lha hypothasis of an andoganous circannual dock exhibiting a parlodically changing 

sansitivlty to the zeltgaber. Also consistent with this hypothesis are lha results of Malpaux 

al al. (1989) who reported that Increases In daylength In advance or behind thosa of lha 

natural light cyda, respectively advanced and delayed tha breeding season In shaap 

(assassad by monitoring circulating LH levels). One Interpretation of these ofaaarvatlons Is 

that tha sheep perceived lha prematura arrival of 'long' days as an Indicallon that thek 

aiKfogenous clock was running 'slow' and therefore compensated with a corractiva forward 

adjustment (phase advance), whereas the late appearance of tong' days was patcaivsd as an 

Indication that their d o ck was running 'fast'. Initiating a corrective backward adjustment 

(phase delay). These responses are similar to those observed In the rainbow trout (a.g 

experiments 2, 5 and 8 In tha present study) suggesting that similar m echanism s may 

time seasonal events In these species.

Further evidence supporting the existence of an endogenous circannual d o c k  was 

provided by lha results of experiments In which spawning was advanced In fish which 

received 'long' days of only t o  or 8.5 hours In January (experiment 1, O p . C ;  Figure 3.5: 

exparimani 4, Ops. E  and F : Figure 3.22), provided this was followed by a reduction in 

photoparlod In May. These pholoperlods would normally bs ragardad as ‘shorf daylangths, 

but ware clearly perceived as being 'long' ralativs to tha subsequent reduction. Thasa 

results Indicate that tha daytangth does not hava to reach a 'critical' value for reproduction 

to be Inducad, and support tha proposat that photoparlod does not d irec tly  drive 

reproductive function.



3 .4 .12  CtrnarHan involvamant in dreannual maehanlam«.

T h «  •xp«rtmentt described In this chapter have elucidated which features of the 

photoperlodic signal are most important for the entrainment of the circannual d o ck  

oontrolling reproduction in the female rainbow trout, but they were rtot designed to 

investigate the mechanisms undertying the generation of the circannual rhythms 

themselves. Nevertheless, several aspects of the results may shed some light on hypotheses 

proposed to explain these phenomena. Given the lortg-term nature of drcannuai rhythms It 

has been suggested that they may be  derived from rhythms with higher frequertcles, 

especially circadian rhythms. The  following brief review of the three principle hypotheses 

proposed to accomodate this theory concentrates on their possible application to the 

circannual mechanism underlying reproduction in the rainbow trout in light of evidence 

accrued from the present aruf previous studies on this species (for more detailed 

discussions of these hypotheses see Qwinner. 1973. 1981. 1986).

T h e  first hypothesis states that circannual cycles are generated by frequency 

démultiplication of circadian rhythms, that is. subjective circadian days are counted with 

approximately 365 being perceived as equivalent to 1 year. An analogous mechanism Is 

that by which an electric clock converts the 50 cycles per second frequency of the 

commercial electrical current to 1 cycle per 12 or 24 hours. This hypothesis predicts 

that the period of the circannual rhythm is dependent on the period of the circadian 

rhythm. However, the currently available data disagree with this prediction (Gwinner, 

1981. 1986), apart from one study which showed a weak positive correlation between the 

periodicities of circadian locomotor activity and circannual moult In starlings (Qw inner. 

1973. 1966). Other experimental evidence and theoretical considerations are also In 

conflict with the hypothesis lor the species studied (Qwinner, 1986). Similarly, there la 

currently no evidence that frequency démultiplication is involved in the generation of the 

circannual rhythm of maturation in the rainbow trout, but several studies have provided 

evidence against the hypothesis. Usir>g resonance procedures (6 L :4 2 0. 6L:48D and 

6L:54D ; discussed more thoroughly later), which exposed rainbow trout to 5 0 %  or less of 

the normal number of light-dark cycles per year, Duston ar>d Bromage (1988a) observed
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that famale rainbow trout matured sllghtty In advance of those maintained under ambient 

oorKMtiont. Clearty, a delay in maturation would have been expected If the hah had been 

counting the number of light-dark cycles. Their study also demonstrated that the fish did 

not summate the total duration of dally light exposure since they received 2 5 %  or less 

hours of light per year under the resonance regimes than under a natural photoperiod. Thie 

Is also apparent from the present work sirtce fish which received lo n g ' days of 22 hours 

and 'short days of 13.5 hours (Qp. A , experiments 3 and  4) matured at approximately the 

same time as fish subfected to 10 hours less light per d ay  (Qp. D. experiment 4). Duston 

artd Bromage (1986a) also found that the circannual periods of fish maintained urtder the 

same constant photoperiod (6L:16D ) for 3 years rar>ged from 320 to 420 days, a 

variability which was also apparent after only 1 cycle In fish maintained under constant 

8 .5L:15.5D in experiment 4. To  accomodate this large inter-individual variability In 

circannual period length in the frequertcy démultiplication hypothesis there would also 

have to be a large inter-individual variation in the num ber of light-dark cycles perceived 

as a year. Also iriconsistent with the hypothesis are the observations that fish maintained 

for several years under constant 6L:180 and 18L:6D sh o w  markedly different spawning 

periodicities (about a year and 6 months respectively: Bromage et al., 1984; Scott et al., 

1984; Ouston and Bromage, 1986a), and that the reproductive cycle of the rainbow trout 

and other saimonids can be synchronized to artificial seasonal photocydes with periods 

considerably different from 1 year (section 3.1). Since the fish in such experiments were 

always exposed to daily light-dark cycles of 24 hours, which would have been expected to 

entrain any drcadian rhythms to this period, the differences in spawning time urnfer the 

different photoperiod regimes cannot easily be reconciled with a model in which drcannual 

rhythms are derived by counting circadian days. It is therefore unlikely that the 

circannual rhythm of reproduction in the rainbow trout is generated by frequency 

démultiplication of drcadian cydes.

Th e  seoor>d hypothesis has been developed from the 'external ooinddence' model for 

photoperiodic time measurement, originally proposed by Bunning (1936, 1960) and 

later expressed ntore explicitly by Pittendrigh and Minis (1964). Th is  model states that
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photoperlodlc r«actiont occur vvhon light («xtem al cuo) coincidos with a  particular phasa 

of an Intarnal, Hght-antrainad. circadian oscillation. In 'long-day* raaponalva anlmala, for 

exampla, tha photosansltlva or photo-inducible phasa is often presumed to occur during a 

period 12-24 hours after dawn. Annual cycles in reproductive or other functions arise as 

a consequence of the seasonaHy-char>glng photoperiod. ¥vhlch periodically exposes the 

photosensitive phase to light. Th is  model can also accomodate the pereistence of anrHial 

cycles under constant photoperiodic conditions If the phase relationship between the 

circadian rhythm and its entraining Hght-dark cycle Is subject to circannual variations 

(Figure 3.42A). Circannual changes In the phase relationship betw een the circadian 

rhythm and the light-dark cycle would permit the alternate exposure of the circadian 

photosensitive phase to light and darkness, resulting in circannual rhythms of overt 

functions such as reproduction. Skeleton photoperiod regimes (e .g  6 hours main 

photoperiod plus a 2 hour minor photoperiod positioned at various intervals durirtg the 

subsequent 16 hours of darkness) have provided evidence for the Involvement of circadian 

mechanisms in photoperiodic time measurement In several teleost fish including the 

stickleback (Baggerm an, 1972, 1980, 1965), catfish (Sundararaj a n d  Vasal. 1976). 

medaka. Qryzias latlpes (Chan, 1976) and mummichog, Pundulua hataroclitus (Day and 

Taylor, 1964); photosensitivity maxima generally occurred within a period 12-16 hours 

following the subjective dawn. Moreover, Baggerman (1980. 1981, 1985) reported a 

seasonal change In the circadian photosensitivity rhythm with sticklebacks transferred 

from ambient to 'short' daylengths between September ar>d A pril becoming more 

reproductively responsive to this photoperiod the later they were m oved. She therefore 

suggested that the stickleback exhibits a circannual rhythm in the phase relationship 

between a circadian rhythm in photosensitivity and Its entraining light-dark cycle 

(Baggerm an, 1985).

Skeleton photoperiods have also been employed to test for circaidian rhythms of 

photosensitivity In two salntonlds. Thus, Thorarensen and Clarke (1 9 89 ) found that a 

photoperiod of 9 L :6 0 :1 L :8 0  stimulated the physiological parameters associated with 

smoitification of coho salmon almost as effectively as 16L:8D, and  was much more
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Figure 3.42: Schematic represeritatlon of two models that derive circannuel rhythms from 

circadian rhythms. The overt circannual rhythm results from A ) changes In the phase- 

angle difference (4^) between a circadian rhythm and its entrainlr>g tight-dark cycle; In 

this example circannual variations in the phase-relationship between the circadian 

rhythm and the light-dark cycle expose the circadian photosensitive phase (ir>dicated by 

the black block) to light during the spring but not during the winter B ) changes in the 

phase-angle  difference between two circadian rhythms; in this example circannual 

variations in the phase-relationship between two circadian rhythms cause specific 

circadian phase-points (indicated by the black blocks) to coincide, and Initiate the 

photoperiodic response. In spring but not in winter (from Qwinr>er. 1986; after Qwinr>er. 

1 9 7 3 ) .
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•ff*ctiv« than 10L:14D. They theretora propotad that an andoganoui circadian rhythm of 

photoaanaitivity m aasurat dayiangth In this apaclas. In a mora comprahanalva atudy 

Duaion and Bromaga (1966a) axposad rainbow trout to akalaton photoparkxte oomprlalng 

of a main light parlod of 6 hours with additional 2 hour light pulsas poaltlonad 10-12. 

12-14 or 14-16 hours aftar tha sub)activa dawn. Th a y  raportad a slight, but significant, 

advance In tha timing of first maturation (at tha and of tha sacor>d yaar of tha axparlmant) 

in fish subjactad to tha light pulsa 12-14 hours aftar tha sub(activa dawn, whan compared 

to fish maintained uruJar 6L:16D and tha other skeleton photoparlod regimes. Th a y 

tharafora concluded that tha rainbow trout possesses a circadian photosensitivity maxima 

at about 12-14 hours after the subiectiva dawn, consistent with tha finding of tha present 

study that 'long* dayiangths of between 12 and 22 hours are equally affactiva for tha 

advancement of maturation (axparimants 3 and 4 ). Although suggestive of ar>doganous 

circadian involvamant In photopariodic time maasuramant. however, their results are rwt 

entirely convincing. Firstly, differences in spawning time between groups ware raiativaly 

small, and spawning occurred in tha 12-14 hour group at approximately tha same time as 

fish maintained under natural conditions. Secondly, 24-hour skeleton photopariods are 

considered Inadequate for tha conclusive demonstration of circadian involvamant in 

photopariodic time measurement (Follatt, 1961). Mora powerful experimental protocols 

such as T-cycies (cycles with a period within the range of entrainment but differing from 

24 hours; Pittendrlgh and Minis, 1964) and resonance photoperiods (short photoperiods 

combined with extended periods of darkness; Nanda and Hamner, 1956) are thought to 

provide definitive evidence of circadian organisation In daylength measurement (for 

details see discussions in Elliott. 1961; Pittendrigh, 1961b; Follett at al., 1961). Only 

resonance procedures have been employed in fish, and only In one species, the rainbow 

trout (Duston and Bromage. 1966a). This study produced equivocal results, in that 

spawning was advanced to a similar extent in fish exposed to photoperiods of 6L:420. 

6 L :4 6 0  and 6L:S4D when compared to fish maintained under 6L:16D . Th e  light period 

would only be expected to illuminate the photosensitive phase of a free-running (In 0 0 ) 

circadian rhythm, ar>d hence advance maturation in the same manr>er as 'long' days, in fish
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maintained under 6L:40D ar>d 6L:54D; the photosensitive phase of the fish subjected to 

6L:420 should not have been Hiuminated and hence they would have been expected lo spawn 

at the same time as fish maintained under 6L18D. Before oonsiderino the hypothesis that 

overt clrcannual rhythms are the result of drcannual changes in a circadian rhythm of 

photosensitivity it should therefore be noted that, at present, the existence of the latter 

remains unproven in the rainbow trout.

Qwinner (1981. 1986) suggests that the above hypothesis is not very plausible for 

species that show clrcannual rhythms under a wide variety of photoperiods. Th e  rainbow 

trout clearly falls into this category, exhibiting free-running cycies under 6L:18D. 

16L:8D arid L L  (Duston arid Bromage, 1988a). The  approximately 8 month periodicity of 

the reproductive cycle observed urnfer long photoperiods could be explained by the 

photosensitive phase remaining permanently illuminated irrespective of seasonal changes 

in its position, if this were the case the periodicity of the rhythm would be determined by 

the minimum period required for oocyte development. Although the model can accomodate 

the persistence of circannual rhythms in LL it cannot account for their occurrertce in 0 0 . 

in vrhich any circadian photosensitive phase would never be exposed to light. Circannuai 

rhythms in 0 0  have not yet been demonstrated in the rainbow trout but there is evidence 

tor their occurrence in another salmonid, the brook trout (Poston ar>d Livingstone. 

1971). ar>d in the catfish (SundararaJ et al., 1982), a species thought to possess a 

circadian rhythm in photosensitivity (Sundararaj and Vasal. 1976). It is also difficult to 

reconcile this model with the existence of strains of rainbow trout which spawn bi- 

annually under natural photoperiod conditions (Aida et al.. 1984; Lou et al., 1984). There 

is therefore little evider>ce that the 'external coincidence' model is applicable to the 

rainbow trout.

The  third hypothesis is based on the 'internal coincidence' model tor photoperlodic time 

measurentent. initially suggested by Pitter>drigh (1960, 1972). This model states that the 

seasonal changes In dayiength result in alterations in the phase relationshipa of two or 

n>ore circadian oscillators within an organism. Photoperiodic reactions occur when these 

internal rhythms assume a particular phase relationship to each other, i.e. when certain
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phaM 'poIntt of two or more osdllatort ooinckto. This modal can also accomodata tha 

paralatanoa of annual cydas undar constant photoparlodic oor>dltk>ns H H Is aasumad that 

tha phasa ralationship batwaan circadian osdilators varlas with a drcannual parfocNcIty, 

such that oolncldanca batwaan cartain circadian phasa-points occurs only at a particular 

phasa of tha drcannual cy da  (Figura 3.42B). Circannual rhythms of ovart functions such 

as raproduction would tharafora rasult from circannual changas in tha phasa ralationship 

batwaan circadian oscillators. Thus, Malar (1976) proposad that changas In tha phasa- 

ralationship batwaan tha drcadlan rhythms In production and sacratlon of prolactin and 

cortloostarona may undarly circannual rhythmldty In functions such as tasticular 

activity in tha whita*throatad sparrow. Zonotrlchla albicollla. Nalthar tha prasant or 

pravlous work on tha rainbow trout provida avidance to support this modal, although ona 

advantaga Is that It can accomodata tha parsistanca of circannual rhythms undar D O  (light 

only antrains tha circadian oscillations, photoparlodic raactions ara a furtction of thalr 

Intarnal phasa ralationship). reported in at least ona salmonkf (Poston and UvIrHjstona, 

1971). Moreover, the existence of two oscillators has been postulated to explain tha 

spllttlr>g of tha daily activity pattern of brown trout Into 2 components (dawn ar>d dusk) 

virhich occurs during tha transition from a mainly diurnal pattern In winter to a mainly 

rtocturnal pattern in summ er (Eriksson, 1973: Pittandrigh and Daan, 1976). Th u s , 

internal coincldenca may undarty tha annual activity cycle of this salmonid.

Although It is an attractive proposition there Is no reason par sa that circadian 

rhythms should be Involvad In tha generation or expression of circannual rhythms, artd 

avidanca to support any of the models discussed above Is. at best, tenuous. As Qwinnar

(1981) suggests, circannual rhythms may originate independently of circadian rhythms 

and tha latter may be of significance only In connection with tha process of 

synchronization, which may be a separata physiological phenomenon. In this respect tha 

next chapter considers whether tha entrainment of tha circannual dock by tha saasonally- 

changirtg photoparlod is ntadlatad by seasonal changas In a drcadian rhythm of tha pineal 

gland hormone, melatonin.



CHAPTER FOUR

PATTERNS OF MELATONIN SECRETION AND THEIR 

ROLE IN THE TRANSMISSION OF PHOTOPERIODIC 

INFORMATION TO THE REPRODUCTIVE AXIS



4.1 Introduction

Although it is clear that photoperiod times reproduction In salmonids the mechanisms 

responsible for the transmission of photic information to the neuroendocrine system 

oontrolling reproduction remain to be elucidated. In many vertebrates the pineal gland 

(hereafter referred to as the pineal) converts photic information into a circadian rhythm 

of melatonin secretion, and. In certain seasonally-breeding mammals, the duration of the 

night-tim e Increase in this hormone determines the reproductive response (reviewed by 

G o ld m a n  and Darrow, 1983; Karsch. 1984; Bittman. 1985; Tamarfcin et ai.. 1985; 

B a d ne ss  and Goldman. 1989; Ebling and Foster. 1989). T o  determine whether a similar 

m echanism  operates in salmonid fish this chapter primarily investigates the role of 

m elatonin in the processing of photoperiodic information In the rainbow trout, 

Qneorhvnchus mvkiss.

Although Other tissues are capable of synthesising melatonin (Ralph. 1981a; Pang and 

A llen . 1986), the principal source of this hormone in most vedebrates is the pineal 

(P a n g , 1985). Th e  pineal arises as an évagination of the roof of the diencephalon 

(H am asaki and Eder. 1977; Ralph. 1983). For an excellent general review of the 

functionat morphology of the pineal complex in fish see McNulty (1984a).

In  salmonid fish the pineal consists of an end-vesicle located dorsomedially to the 

telencephalon and attached to the roof of the diencephalon (between the habenular arid 

posterior commissures) by a hollow stalk, which is in open communication with the third 

ventricle  (Hamasaki and Eder. 1977; Yasutake and W ales. 1983). Th e  rainbow trout 

p ineal lacks a blood-brain barrier (Om ura et al.. 1985) and the capillaries of the er>d- 

vesicie  appear widened in comparison to capillaries in other podions of the brain (All et 

al.. 1987), features consistent with an endocrine function. No specialised system of portal 

vesse ls  exists between the pineal ar>d other brain regions (All et al., 1987). The  pineal 

com plex of some fish contains a second component, the parapineal organ, homologous to the 

parieta l eye of cedain reptiles (R alph. 1983). Although reasonably prominent in 

cyclostom es this organ Is highly regressed in teteosts, and its function Is unknown 

(M c N u lty , 1984a). Th u s, although a small parapineal organ is present in the rainbow

221



trout (R udeberg. 1969), the parapineal organ will not be considered further.

During the course of evolution the pineal has evolved from a directly photoreceptive 

organ capable of transmitting information to the brain via a neural pathway, but also 

endowed with a secretory capacity, to an entirely secretory organ, dependent on 

sympathetic neural input (Hamasaki and Eder, 1977; Oksche. 1983). The  concept that 

mammalian pinealocytes have developed from the pineal photoreceptor cells of lower 

vertebrates w a s initially proposed Independently by Collin (1971) and Oksche (1971). 

They subsequently established relationships between pineal photoreceptors, rudimentary 

(modified) photoreceptors and secretory pinealocytes and suggested that these cells were 

representatives of a single ceil line (Collin ar>d Oksche, 1981). Photoreceptor cells are 

comm on in the pineal of fish and amphibians, rudimentary photoreceptors are 

predominant in the pineal of chelonians, iacertlllans and birds, and secretory pineaiocytes 

are characteristic of mammals (Figure 4.1; for a review see Korf and Oksche, 1986). 

During these transformations several characteristics of the pineal, such as the production 

of melatonin, have been conserved in all vertebrates (Korf and Oksche. 1986; Vivien- 

Roels and Pevet, 1986). Thus, despite the considerable morphological and physiological 

diversity of the vertebrate pineal (Figure 4.1) there may be a number of similarities 

between pineal function In different vertebrate groups, and hence much is to be gained 

from a comparative approach. Th e  following review therefore seeks to establish a 

background to the present work by surveying pineal function in both lower and higher 

vertebrates, with emphasis on rhythmic melatonin production and the role of melatonin in 

reproduction.

Th e  fish pineal may convert photic information into either a neural or a humoral 

signal. Although this chapter is principally concerned with the endocrine furtctions of the 

pineal, specifically with regard to melatonin secretion, a brief review of current 

knowledge of pineal neural pathways will provide a background for the discussion of 

possible mechanisms regulating melatonin synthesis and release, and serve as a remlr>der 

that a hormonal signal is not the only mechanism by which the pineal could relay photic 

Information. T h e  fish pineal Is composed of 3 types of cells: photoreceptor (sensory)
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Figure 4.1 : Diagrammatic representation of the diversity of the vertebrate pineal. Panels 

show (centre) sagittal sections through the diencephalic roof of vertebrates and (right) 

the gradual transformation of the photoreceptor cell during phylogeny (F O . frontal organ; 

P . photoreceptor; P A O , parapineal organ; PI, pinealocyte; P IO , pineal gland; RP. 

rudimentary photoreceptor; 3rd E . third (parietal) eye: from Qern and Karn, 1963).



M ils , ganglion cells and supporting (Interstitial) cells (Ta m u ra  and H anyu. 1978; 

McNulty, 1964a). In the rainbow  trout the photoreceptors synapse directly with the 

gartglion cells, the axons of which descend the pineal tract to the brain, except for a small 

population of photoreceptors possessing k>r>g axons which proiect directly to the brain; a 

small population of Interneurons may provide an integrating network (Ekstrom artd Korf, 

1985; Ekstrom, 1967; Ekstrom  and Meissl. 1988; MelssI and Ekstrom. 1988). The  

supportir>g cells are thought to participate in the exchange of nutrients and metabolHes 

between the vascular supply and  the photoreceptor arul ganglion cells, and may play a role 

in the turnover of photopigments (McNulty. 1984a).

The  rainbow trout pineal lies beneath a pigment-free area of the skull apparently 

specialised for light penetration (Dodt, 1966. 1973). Extracellular recordings of 

nervous activity from the exposed pineal end-vesicle  a nd  pineal tract of 

anaesthetlsed/immobollsed and bilaterally-enucleated rainbow trout have demonstrated 

that during darkness a spontaneous nervous discharge emanates from both single gartglion 

cells and the axons comprising the pineal tract, and that this activity is inhibited by 

exposure to light in an intensity-dependent manner (Dodt. 1963. 1973; Morlta, 1966; 

Hanyu and Niwa, 1970). inhibition of the spontaneous discharge was produced by any 

strong light within the visible range with the exception of the red end (Hanyu and Niwa. 

1970). The teleost pineal Is therefore directly photosensitive and functions principally as 

a luminance detector (achromatic response), although a few chromatic cells (inhibited by 

short wavelengths, excited by longer wavelengths) may be present (Morlta. 1966; Dodt, 

1973).

The  central projections and terminations of the pineal nerve tract of the rainbow trout 

have been traced by Hafeez ar>d Zerihun (1974) usir>g cobalt chloride iontophoresis. They 

concluded that the tract consists only of pinealofugal (afferent) fibres which project over 

an extensive sensorimotor area in the brain; terminations were observed in the lateral 

habenular nucleus, pretectal area, d i- and mesencephalic periventricular grey, 

dorsomedial and dorsolateral thalamic nuclei, nucleus of Darkschewitsch, dorsal 

tegmentum and possibly the preoptic nucleus. Although peptidergic axons of central origin
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have recentfy been demonstrated In the pineal of the stickleback, ! 

coho salmon. Qncorhvnchus kisutch and Atlantic salmon. Salmo satar (Ekstrom  at ai.,

1988) , arKf a central noradrenergic Innervation of the pineal appears to exist In the 

stickleback (Ekstrom et al., 1986), there  Is currently no convincing evidence for 

pinealopetal (efferent) Innervation of the  rainbow trout pineal. In addition to the 

conventional axo*dendrltlc synapse between the photoreceptor arxt ganglion ceH, however, 

axo-axonic synapses between nerve cell axons of unknown origin and photoreceptors have 

been described In rainbow trout and brook trout tSalvelinua fontinalis^ pineals (Om ura, 

1979; Omura and All. 1980). Since the form er are predominant In dark-adapted pineals 

and the latter in light-adapted pineals, it has been suggested that the presynaptic side of 

the axo-axonic synapse serves to inhibit signal transmission from photoreceptors to 

ganglion cells, and also that these inhibitory nerve endings may originate In the brain 

(Om ura and All, 1980).

Th e  role of the eyes in the regulation of pineal fur>ction In salmonids Is controversial. 

Th e  eyes are also derived embryonically from the diencephalon (Tam ura arKl Hanyu, 

1978; Dodt. 1987) and visual and pineal nerve fibres overlap in certain areas of the 

brain of some teleosts. although it is not krx>wn if they make contact (Ekstrom and Melssl,

1989) . Smith and Weber (1976a) claimed that bilateral enucleation of rainbow trout 

abolished a diurnal variation in the activity of hydroxyindole-o-m ethyltransferase 

(H iO M T ; the enzyme resonsible for the final conversion step In the synthesis of 

melatonin), whereas surgical capping of the pineal area with black polythene had no effect. 

In a similar blinding/pineal masking study on the rainbow trout Hafeez et al. (1978). 

using nuclear and nucleolar diameter as an  indirect Indication of the level of cellular 

functional activity, reported that pineal photoreceptor cells were affected solely by 

incident light in the pineal region, but that pineal supporting cells were only affected by 

photic Input from the eyes. They therefore hypothesised that the pineal of the rainbow 

trout may function as a photocomparator In which photic inputs from the eyes and directly 

to the pineal affect the supporting and photoreceptor cells respectively; In this respect It 

should be mentioned that pineal supporting cells from rainbow trout exhibit stable resting
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potentials which are unaffected by light changes (M e lasi, 1986). Q e m  at al. (1978b) 

found that severing the optic tract of rainbow trout did r>ot aboiish the plasma melatonin 

rhythm, rK>r did it cause a reduction In amplitude. T h is  suggests that pineal melatonin 

production depends on direct photoreception rather than ir>direct regulation via the eyes, 

in concurrence with the directly photosensitive n ature  of the pineal indicated by 

electrophysioiogical studies. There was, though, an irtcrease In the amplitude of the 

melatonin rhythm after optic-tract section, which w as attributed to stress (Q e m  et al., 

1978b). At present, therefore, the possibility that indirect photic input from the eyes 

contributes to pineal function in the rainbow trout canr>ot be  excluded.

Since the isolation of melatonin (N -acetyl-5 -m ethox ytryptam ine) from bovine 

pineals by Lerner et al. (1956) the principal co m ponents of the biochemical pathway 

leading to its synthesis have been resolved (Figure 4 .2 ; Klein, 1979. 1985), primarily 

from work with rats, Rattus norveoicus. There is evidence for a similarly active pineal 

irxlole metabolism In a number of fish species including lampreys. Lampetre olanefi 

(Melniel, 1979; Meinlel and Hartwig, 1980: Meiniel a nd  Vivien-Roeis, 1980), eels. 

Anguilla anguilla (van Veen et al. 1982), sticklebacks (van Veen et al., 1960, 1964; 

Ekstrom and van Veen, 1984) goldfish, Carasslus auratus (M cNulty, 1984b, 1986) and 

pike. E sqk luciua (Falcon, 1984; Falcon arid Collin, 1965; Falcon et al., 1965, 1986, 

1987, 1989). Furthermore, the pike pineal is capable of synthesising all indoles that are 

known to occur in the pineal of higher vertebrates (Fa lco n  et al., 1985).

Early in v ivo  studies demonstrated se lective  uptake of 14C-labelled 5- 

hydroxytryptophan (5 -H TP ; Oguri et ai.. 1968), and  the synthesis of serotonin (5- 

hydroxytryptamine) from exogenous S -H TP  (Hafeez a nd  Q uay, 1969), by the pineal of 

rainbow trout. H IO M T activity was first demonstrated in the pineal and retina of rainbow 

trout by Quay (1965), and Fenwick (1970a) was the first to identify melatonin in the 

pineal of a salmonid (Chinook salmon, Onm rhyrirhii« tshawytschai. More recent studies 

have focused on the Influence of dally light-dark cycies o n  the synthesis and secretion of 

indoles. The rhythms In Indole metabolism characteristic of many higher vertebrates are 

illustrated in Figure 4.2. Pineal serotonin profiles a re  variable among species: for
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•sample, serotonin levels are high during the photophase (llghl-perlod) a nd  low during 

the sootophase (dark-period) In the rat (Klein. 1979). but show two peaks, closs to the 

light-dark transitions. In  the chicken. Gallus domeatlcus (Binkley. 1 9 8 8 ). There  Is 

Currentl)r little Inform ation on diurnal serotonin profiles In fish. M elssI (1978) 

reported that the pineal serotonin content of rainbow trout was slightly greater In the 

photophase than the scotophase. but the difference was not significant. In contrast, van 

Veen at al. (1982) found a  marked diurnal variation In pineal serotonin oontent of the eel, 

with lowest levels at mId-photophase and at the light-dark transition, and highest levels 

at mid-scotophase and at the dark-light transition.

In higher vertebrates N-acetyltransferase (N A T ) activity exhibits pronounced diurnal 

variations with a m any-fold  Increase In darkness which closely parallels the dally 

rhythms In N -acetylserotonIn and melatonin production (Figure 4 .2 ). S in c e  diurnal 

changes In H IO M T activity are small or absent N A T  has been considered to be the rate- 

llmltlng enzyme lor m elatonin synthesis (Klein and Weller. 1970: Klein. 1979). Recent 

studies have Indicaled that this may also be true in fish. Marked diurnal flucfuations in 

pineal N A T . with peak levels during the scotophase. have been observed in both the pike 

(Falcon et al.. 1986. 1 98 7 ) and the rainbow trout (Figure 4.3a: M orion and Forbes. 

1988). In the pike, the diurnal rhythms In pineal N-acetylserotonIn a nd  melatonin 

producllon parallelled that of N A T  activity (Falcon et al.. 1986). S o m a  controversy, 

however, has surrounded the presence of diurnal fluctuations In H IO M T activity. Hafeez 

and Quay (1970a) reported that H IO M T activity was independent of light and dark in 

pineals of non-anadromous rainbow trout. In contrasl. Smith and W eber (1974.1976a). 

working with an anadrom ous strain of rainbow trout, found H IO M T specific activity was 

minimal 1 hour before the onset of darkness but underwent a 2-fokf Increase during lha 

scolophase of a variety o f  photoperiods. In the lamprey. Gentrie eiistraii« a 4 -5  fold 

Increase in pineal H IO M T w as observed during the first 4 hours of darkness (Jo ss. i  a 7 7 i . 

A diel cycle in H IOM T specific activily was also observed in Chinook salmon by Blrks and 

Ewing (1981). but they concluded that this reflected changes In pineal protein content 

rather than changes in enzym e activity per s e . More recently, no significant diurnal



Figure 4.3: Diurnal fluctuations (mean ± 1SEM ) in a) N-acetyltransferase (N A T ) ar>d b) 

hydroxylndole-o m ethyltrantferase (H iO M T ) activity in rainbow trout pineal g la n d s  

during mid-summer. Th e  solid bars on the x-axIs denote the scotophase (from Morton artd 

Forbes. 1968).



variations In H IO M T activity were detected In pike pineals (Falcon st al„ 1986, 1987) or 

In rainbow trout retinae (Q ern el al., 1984a) or pineals (Figure 4.3b; M orton and 

Forbes, 1988). Thus. In the ma)orlty of fish studied, diurnal changes In H IO M T  activity 

appear to be o l very low  amplitude or absent, a situation similar to that In higher 

vertebrates (Figure 4 .2 : Klein, 1979: Reiter, 1990).

Diurnal rhythms In melatonin production have been detected In the vast majority of 

animals so far Investigated. These Include man (Kennaway et al., 1977: BIreau st al., 

1981), common laboratory animals such as the rat (Lynch, 1971; Kennaw ay e l at., 

1977; Johnson at al.. 1982), various hamster species (Goldman el al., 1982), rhesus 

monkey Marar-a miil.Ha /Popp.rt et al.. 1979) and marmoset, Callllhrly laoohiia laoohn. 

(G uerin and Matthews, 1990), domesticated animals such as the horse, Founa /-ahaiin. 

(Kilm er et al.. 1982), various types of cattle (Hadlund at al.. 1977; K en n aw ay et 

al.,1977: Dol el al.. 1987) and sheep. Qvis arles (Rollag and Nlswender, 1976; 

Kennaway et al., 1977; Yellon and Longo, 1987), goat. Caora hircii« (Mori et al., 1987) 

and chicken (Pelham and Ralph, 1972; Pelham, 1975; Kennaway et al., 1977), and some 

more exotic species such as the camel, Camelus dromndarln« (Kennaway et a l., 1977), 

lem mings (Dlcroslonvx species; Reiter et al., 1990), tamm ar, M aorom i« onoonii 

(M cConnell, 1986a,b ), Japanese quail, Colurnlx coturnlx lannnioa (Underwood et al„ 

1984), green sea turlle, Chelonla mvdas (Owens at al., 1980), scincid and Iguanid lizards 

(Kennaway et al., 1977; Firth et al., 1979; Underwood, 1985b) and the neotenic tiger 

salamander. Ambvaloma liorlnum (Gern and Norris, 1979; Gern et al., 1983). E v e n  an 

animal lacking a distinct pineal, the nine-banded armadillo, Dasvnue noyem oinom« 

exhibits a diurnal rhythm In circulating melatonin (Harlow at al., 1981). Th e re  are, 

however, a few exceptions currently known which do not always express diurnal rhythms 

In melatonin production; a genetically deficient inbred laboratory mouse, M uajtem flalkajl 

(Manakar, 1985), the domestic pig. Sus scrota, at certain times of the year (Retter e l al., 

1987), and certain anim als undergoing hibernation (VIvlen-Roals and Arandt, 1983: 

Haldmaier and Lynch, 1986: Jansky, 1986).

Th e  most striking feature of the melatonin rhythm Is that melatonin synthesis and



relaaie  It alw ays higher at night than during the day (Figure 4 .2 ). Th is  la true 

Irrespective of whether anim als are noclurnally or diurnally active. Moreover, the 

duration ot Increased melatonin production Is proportional to the duration of the 

acotophase. Th a t pineal or circulating melatonin concentrations remain alavatad for longer 

in animals maintained In 'short' photoperiods than In those subjected to 'long' pholoperlods 

has been demonstrated in a num ber of species Including the Syrian hamster, Mesnrrirwtu« 

■ U f lU »  (Roberts at al., 1985; Skene et al., 1987), Turkish hamster, Mnuncrirwiu« 

bfsndll (Darrow et al., 1986), Djungarlan hamster, Phodoous sunoorus (Goldman et al., 

1982, 1964), white-footed m ouse, Peromvsrtis leiimniis (Petterborg et al., 1981), 

ferret, Muatela turo IBeiim et al., 1986), mink, Mustela vlson fRaveiill at al., 1986), 

cal. Fella catus (Leyva et al., 1984), cattle (StanIslewskI et al., 1988), sheep (Rollag 

and NIswender, 1976: Arendt a l al., 1979: Lincoln and Almeida, 1981; Unooln at al., 

1982: BIttman et al.. 1983: A lm eida and Lincoln. I984a.b: BIttman and Karsch, 1984; 

Yellon et al., 1985; Karsch et a l., 1986: English et al.. 1988) tammar, (McConnell at 

al., 1986a,b), Japanese quail (Cockrem  and Follett, 1985: Underwood and Slopes, 

1985), and the box turtle. Te rra o e ne  Carolina Irlunnuls fVIvlan-Rnal« et al.. 1988).

Clearly, the cyclic production of melatonin la a ubiquitous phenomenon In higher 

vertebrates. All fish Investigated to date also exhibit diurnal rhythms of melatonin 

synthesis and secretion. This w as first demonstrated by Qern et al. (1978a) who reported 

that plasma melatonin levels in mkj-scotophase were approximately twice those In mld- 

photophase In rainbow trout maintained In a 12L:t2D photoperlod. Subsequent studies on 

the rainbow trout confirmed this observation (Qern et al., 1978b: Owens et al., 1978). 

Mora recently. Duston and Brom age (1986b) reported that serum melatonin levels were 

elevated for a period corresponding to the duration of darkness In rainbow trout 

maintained under 8L:16D or 1 6L:8D . Burton and Gern (1983) ware also able to 

demonstrate a diurnal rhythm In pineal melatonin content In this species, with peak 

melatonin levels occurring during the scotophase. The  pineal of the rainbow trout Is a 

major source of circulating melatonin since pinealectomy causes a significant raduction in 

plasma melatonin levels at m id-scotophase. and a slight, but significant reduction ki



malatonin levels at mId-photophase (Q e rn  at al., 1978b). However, a diurnal rhythm in 

melatonin secretion is still detectable in pinealectomised rainbow trout, suggesting that 

extra-pineal tissues also release melatonin into the circulation (Qern et al.. 1978b). The  

eyes are likely alternative sources since the retinae of rainbow trout are able to 

synthesise melatonin (Q e m  et al.. 1978c: O e m  and Ralph. 1979; Q em  and Kam . 1983). 

although release of retinal melatonin into the blood has r>ot yet been demonstrated. In pfce. 

maintained ur>der a 10.5L:13.5D photoperiod, melatonin levels in the plasma parallelled 

those in the pineal, and were elevated for the approximate duration of the scotophase 

(Falcon et al. 1987,1989). Aida (1989) stated that plasma melatonin levels in goldfish 

were elevated during the scotophase and that the pattern of secretion varied according to 

whether the fish were acclimated to a 'long' or 'short* photoperiod, but gave no further 

details. In two other cyprinids, the dace. Leuciscus leuciscus (Brook, 1989) and the 

common carp, Cvorinus carpio (Kezuka et al., 1968). the duration of increased melatonin 

was proportional to the duration of the scotophase under both long (18L:6D or 16L:80) 

and short (6L:16D or 8L:16D) daylengths. Th u s, in the few species of fish so far examined 

melatonin production is elevated at night and reflects the duration of the scotophase.

The  pattern of nocturnal melatonin production in mammals varies among species. 

Reiter (1983. 1966. 1987. 1988) has identified 3 different patterns of melatonin 

production in mammals (Figure 4.4) which he arbitrarily designated as types A  (or I), B 

(or I I )  and C  (or I I I ) .  In animals possessing a type A pattern melatonin production 

remains low until several hours after the onset of darkness, after which it rises rapidly to 

reach a short term peak during the latter half of the scotophase. and then declines to basal 

levels before or at the time of light onset. Th is  pattern is typical of several rodent species 

Including the Syrian hamster (Panke et al.. 1979; Tamarkin et al.. 1979; Hastings et al., 

1987) and the Mongolian gerbil, Merlones unauiculalus fRelter et al., 1980a). In type B. 

melatonin production begins to increase at or shortly after (or even slightly before) the 

onset of darkness and rises gradually towards a peak at mid-sootophase. following which 

melatonin levels gradually decline, reaching basal levels close to the time of light onset. 

This pattern appears to be the most com m on (Reiter. 1987) and Is found, for example, in
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Figure 4.4: Different patterns (arbitrarily designated A , B and C ) of pineal melatonin 

production in mammals with examples of species in which these patterns are kr>own to 

occur. In each case an extension of the scotophase is associated with an increase in the 

duration of elevated melatonin production (A ‘. B' and C ‘: from Reiter. 1968).



the rat, (Johnson et al., 1982) and in humans (Kannaway at al., 1977; Birau at al.,

1981) . Th e  third pattern, type C . is characterised by a rapid increase in meiatonki 

production aimost immediately after the onset of darkness, maintenance of high leveis for 

the duration of the scotophase, and a rapid decline to basal levels either just before or at 

the time of light onset. Animals possessing this pattern of melatonin production ictoiude the 

0|ur>garlan hamster (Goldman et al.. 1982; lllnerova et al., 1984) and the sheep, (RoMag 

and Niswender, 1976; Lincoln et al., 1985). Th e  physiological significance, if any, of 

these differer>ces is uriknown, but they might be expected to have sonte bearing on the 

mechanism by which the melatonin signal is interpreted. It is also not yet known whether 

such a classification is appropriate to other vertebrate groups since an insufficient 

number of species have been examined.

From the preceding discussion it is clear that patterns of melatonin secretion in many 

vertebrates do not merely follow tight-dark changes. Depending on the species and the 

photoperiod, increased melatonin production may begin before Ughts-off, may be delayed 

until several hours after darkness onset, and may decline before llghts-on. This suggests 

that, rather than having a direct driving influence on melatonin production (inhibition by 

light/stimulation by dark), the light-dark cycle entrains an endogenously generated 

rhythm of melatonin synthesis. The involvement of endoger>ous timing mechanisms in the 

regulation of pineal melatonin synthesis and release has been confirmed in many species 

by measuring pineal and circulating, cerebrospinal fluid or urinary melatonin (or N - 

acetyltransferase) in animats transferred from an acclimatory photoperiod to constant 

darkness (D D ). Th u s , the persistence In D O  of melatonin rhythms previously 

synchronized to a light-dark cycle has been demonstrated in vivo (Figure 4.5) in the 

rhesus monkey (Perlow  et al.. 1981; Reppert et al.. 1981), horse (Kilmer et al.,

1982) , sheep (Rollag and Niswender, 1976; Lincoln and Almeida, 1981; Almeida and 

Lincoln. 1984; Lincoln et al.. 1985: Earl et al., 1990) rat (Ralph et al., 1971; Rivest et 

al., 1981), Syrian hamster (Tamarkin et al.. 1980), Djungarlan hamster (Yellon et ai., 

1982), chicken (Lynch and Ralph, 1970: Ralph et al., 1974, 1975; Cassone and 

Menaker, 1983), quail (Cockrem and Follett, 1985), pigeon. Columba livla (Foa and
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Menaker. 1968). desert Iguana, Dipsosaurua dorsalis (Janlk  and Menaker, 1990) and 

goldfish (Alda et al.. 1989).

In mammals persistence of the pineal melatonin rhythm In D O  requires neural 

regulation (Underwood and Goldman, 1987), but the pineals of several lower vertebrates 

also exhibit circadian rhythms of melatonin secretion in vitro (Figure 4.6). This area of 

research was pioneered by Binkley and co-workers In the late 1970*s who studied N - 

acetyltransferase rhythms In pineal cultures, prior to the widespread availability of 

radioimmunoassays for melatonin. These studies (review ed by Binkley, 1979). augmented 

by those of other groups (Deguchl, 1979a,b; Kasai et a l., 1979), showed that pineal N- 

acetyltransferase rhythms in chickens are synchronized to the light-dark cycle, ar>d 

persist in DD, In vitro as well as in vivo. Subsequent investigations on chickens, quail and 

starlings rSturnus vuloarlsl have demonstrated that pineal melatonin rhythms can also be 

entrained to light-dark cycles and will persist In D D  (or dim red light) in vitro 

(TakahashI et al, i96 0 : Takahashi, 1981: cited In M enaker and Wlsner, 1983; Cockrem 

and Foilett, 1984). In chickens this occurs even when only small fragments of the pineal 

(Takahashi and Menaker, 1984) or dispersed pineal cell cultures (Robertson and 

Takahashi, I988a,b: Zatz et al.. 1988) are used. Th u s , the chick pineal possesses an 

erKk>genous circadian oscillator, and is probably multi-oscillatory in nature. However, the 

melatonin rhythm in chickens in DD becomes heavily dam ped within several days both in  

v itro  (Takahashi et al., 1980: Robertson and Takahashi. 1988a,b) and. after superior 

cervical ganglionectomy, in vivo (Cassone and M enaker, 1983). whereas the rhythm 

ur>der a light-dark cycle, or in intact hens In DD, continues unabated. In the absence of 

photic Input, therefore, the chick pineal appears to require sympathetic neural input via 

the superior cervical ganglia as in mammals.

Pineal melatonin rhythms have also been Investigated in vitro in several reptilian 

species, all iguanid lizards. Menaker and Wisner (1 9 8 3 ) demonstrated temperature- 

compensated circadian rhythms of melatonin secretion In isolated pineals of the green 

ancle lizard, Anolis carolinensls. maintained in DD. Since these rhythms persisted for up 

to 10 cycles, considerably longer than In the chicken, Underwood and Goldman (1967)
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Figure 4.6 : Persistence ol meletonin rhythms In Individuel chicken pineals transferred 

from a 12 hours llght:12 hours dim red light photoparlod regim e (A  and B) to constant 

dim red light (C  and O). Each point represents a single determination of the melatonin 

concentration In the culture medium plotted at the start of e ac h  90 minute collection 

Interval from the flow-through culture apparatus. The  light-dark cycle Is Indicated at the 

bottom of each graph (from Takahashi at al., 1980).
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have 8 u o o «> t^  that the pineal of Anolla may be more autonomous than the chick pineal. 

Persistence of pineal melatonin rhythms in vitro has also been shown for Sceloporus 

OfiCldfiOialiA subjected to 0 0  (Menaker. 1985). However, a third lizard, the desert iguana, 

does not exhibit self-sustaining rhythms of pineal melatonin secretion in vitro when 

maintained in 0 0 ; rather, it produces continuously high cor>centrations of melatonin 

(Menaker. 1985; Janik and Menaker, 1990). The latter species does, though, possess an 

extra-pineal oscillator since circulating melatonin rhythms persist in vivo: melatonin 

synthesis may therefore be driven via sympathetic innervation in this lizard (Janik and 

Menaker. 1990). Unfortunately, the role of potential neural inputs to the pineals of lower 

vertebrates has not yet been studied (Underwood. 1989).

Clearly, the majority of avian and reptilian vertebrates so far investigated appear to 

possess an intra-pineal 08cillator(s) or clock. However, only a very limited number of 

species have been examined and. even within a single taxonomic family, the iguanid 

lizards, differences in the mechanisms regulating the production of melatonin are already 

apparent. It may be no  coir>cidence that in the lizard which does not appear to possess an 

intra-pineal clock regulating melatonin production (the desert iguana) pinealectomy has 

r>o effect on locomotor rhythms, whereas in a lizard which does possess a pineal oscillator 

(the green anole lizard) behavioural rhythmicity is abolished by pinealectomy (Janik artd 

Menaker. 1990). There has been little related work on fish although recent reports 

suggest that pineal melatonin rhythms are self-sustaining in vitro in the pike (Falcon et 

al., 1989) and the goldfish (Aida el al., 1969; Kezuka et al., 1989; ligo et al.. 1991). but 

r>ot in the rainbow trout (Qern and Greenhouse. 1988). These studies wilt be referred to 

in more detail in the discussion to this chapter.

The  name 'melatonin' reflects the melanosome-aggregating properties of the horrrtone 

(Lam er et al.. 1958). Lower vertebrates undergo two kinds of rapid colour change; 

diurnal changes (blanching at night) and background adaptation (for a comprehensive 

account of pigmentation physiology see Bagnara and Hadley. 1973). Th e  first Indication of 

pineal Involvement in colour change was provided by von Frisch (1911, cited In Oksche 

and Hartwig, 1979) who observed that Illumination of the pineal area in blinded minrtows.
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Phoitinutt iflftvia. caused darkening of the body (metanosome dispersion), whereas shading 

the head of blind fish resulted In the aggregation of m elanosom es; moreover, the 

melanophore response was temporarily abolished by pinealectomy. Soon after, McCord and 

Alien (1917) discovered that bovine pineal extracts caused blanchir>g in tadpoles. B u t  

pipians. Subsequently, Young (1935) reported that pinealectomy abolished diurnal colour 

changes in intact larval and blind adult lampreys. Lamoetra olaneri. leaving them 

permanently dark. More recent studies are indicative of p ineal and/or melatonin 

involvement in colour change in some fish, but not others, often dependent on 

developmental stage (Bagnare and Hadley. 1973; Gem  et al.. 1981; Dodd ar>d Munro.

1983). In the rainbow trout bilateral enucleation reduced night-tim e pallor in Juvenile 

fish maintained on a dark background and pinealectomy of blinded fish abolished the 

rhythmic colour change; pinealectomy alone, however, had no effect (Hafeez and Quay, 

1970b). Administration of pharmacological doses of melatonin to the same fish caused 

dose-dependent body blar>ching and antagonised backgrourxf adaptation following transfer 

from a white to a black backgrournl (Hafeez. 1970). In young anadromous fish of the same 

species Smith and Weber (1976b) claimed that changes in environmental background 

colour cause dramatic alterations in the pattern of pineal H IO M T  activity. In contrast, 

Ow ens et al. (1978) found no relationship between plasm a melatonin levels and 

background adaptation in adult rainbow trout, and found no significant diurnal colour 

change in fish maintained under ambient daytength. Qern et al. (1981) therefore suggest 

that, as in several other species, melatonin may be important in colour change In young 

rainbow trout, but not in older fish. However, neither m elatonin nor pineal extracts 

caused melanosome aggregation in an in vitro bioassay utilising scales from Juvenile 

rainbow trout; it seems likely that a hypothalamic peptide stored in the pituitary, 

melanin-concentrating hornK>ne, is the most important melanosome-aggregatir>g hormone 

in the rainbow trout (Ranee and Baker. 1979; Kishida et al.. 1989).

Although the pineal and its endocrine secretions may be involved in the regulation of a 

wide variety of daily arxf seasonal physiological and behavioural events it is their function 

in the control of reproduction which has attracted the greatest attention. Not surprisingly,
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the role of the pineal and melatonin in the control of seasonal reproduction has been most 

thoroughly studied in mammals. As Intimated previously, melatonin secretion In mammals 

is regulated by photic informetion perceived by the eyes artd relayed to the pineal via a 

complex sympathetic neural pathway incorporating the suprachiasmatic nuclei 

(responsible for the circadian nature of the melatonin rhythm) and the superior cervical 

ganglia (Moore and Klein. 1974; Moore, 1976). Early studies lr>dicated that pinealectomy 

or melatonin administration were able to influence reproductive activity in a number of 

photoperiodic mammalian species; however, the results were regarded as contradictory In 

that both anti' and progonadal effects were reported, or even no effect at all (reviewed by 

Turek and Campbell. 1979: Reiter, 1980). A significant advance towards understandir>g 

the nxKfe of action of melatonin was provided by Tamarkin et al. (1976). Th e y found that 

daily injections of melatonin administered in the morning had no effect on the gonadal 

activity of Syrian hamsters maintained on a stimulatory 'long' photoperiod, whereas the 

same dose administered in the late afternoon caused testicular regression in males and 

anoestrus in females, an effect similar to that observed on exposure to 'short' 

photoperiods. These results indicated that the reproductive system possessed a diurnal 

rhythm in sensitivity to melatonin, and, since the injection of melatonin in the afternoon 

had no effect on gonadal function in pinealectomised animals, the authors suggested that 

melatonin may affect reproduction indirectly, by acting within the pineal itself to regulate 

the release of another factor. However, a subsequent study (Tamarkin et al.. 1977) 

demonstrated that three injections of melatonin administered daily over a 6-hour interval 

did cause testicular regression and anoestrus in pinealectomised Syrian hamsters, thus 

supporting an alternative hypothesis that single daily injections were effective when 

administered In the late afternoon because they summated with endogenously produced 

melatonin to increase the duration of exposure to the horm one. This line of thought 

eventually culminated In an elegant series of experiments in the OJungarian hamster and 

the sheep. In Juvenile DJungarlan hamsters pineaiectomy prevented both 'short' 

photoperiod-induced inhibition and 'long' photoperiod-induced stimulation of gonadal 

development (Carter and Goldman. 1983a,b). However, subcutaneous infusion of
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melatonin for 8, 9, 10 or 12 hours per day caused testicular regression in 

pinealsctomised Djungarlan hamsters previously maintained und e r a stimulatory long 

photoperiod (16L:8D ), whereas melatonin Infusion lor 4 or 6 hours dally did not Inhibit 

gonadal development (Carter and Qoldman, 1983a: Goldman at a l., 1984). Conversely, 

Infusion of melatonin for 4 or 6 hours per day stimulated testicular development In 

pinealectomised hamsters raised under an Inhibitory short daylength (10L:140), whereas 

8 or 12 hour infusions did not stimulate gonadal growth (Carter a nd  Qoldman, 1983b). 

Th e  lime of day at which Infusion commenced was not Important (Carter and Qoldman, 

1983a,b). Moreover, a 9 or 12 hour Infusion pattern, which Included a 2 or 3 hour 

melatonin-free period, failed to induce testicular regression in pinealectomised hamsters 

raised under a 'long' pholoperlod. Indicating that the amount of melatonin received per day 

was also unimportant (Qoldman et al., 1984). Clearly, Infusion of melatonin for 8-12 

hours mimicked the effects of 'short' days and Infusion for 4-6 hours mimicked the effects 

of 'long' days on reproductive development. Similar results have recently been reported In 

adult Djungarlan hamsters (Badness and Qoldman, 1988a,b), indicating that the duration 

of the nocturnal increase in melatonin secretion Is the feature of the melatonin rhythm 

responsible for the reproductive response to pholoperlod in this species.

Blttman and colleagues have reported similar findings In the Suffolk ewe. Th e y 

monitored the reproductive state by measuring serum luteinizing hormone (LH ) levels In 

ovarieclomised animals treated with constant-release oestradiol-17B Implants. Exposure 

to long photoperiods (16L:8D) potentiates the negative feedback effects of oestradiol on LH 

release (reduced LH : anoestrous), whereas exposure to short daylengths (8L:16D ) 

decreases the negative feedback potency of oestradiol on LH secretion (Increased LH: 

breeding condition: (or a review see Karsch et al.. 1984). The effects of adindal changes 

between 'long' and 'short' photoperlods on reproductive activity were abolished by 

pinealectomy (Bittman el al., 1983a,b). However, infusion of melatonin for 16 hours per 

day to pinealectomised sheep produced a similar rise in LH secretion to that observed in 

pineal-intact animals transferred from 'long' to 'short' days (B lltm an at al., 1983b, 

1985). Conversely, melatonin Infusion of plnealectomlsed sheep (or 8  hours dally Invoked



a decline in LH levels similar to that seen in controls transferred from 'short* to *lono* 

days (Bittman and Karsch. 1984; Blttman et al., 1985). In these experiments the 

duration of the infusion always matched the duration of the scotophase of the artificial 

photoperiod. T o  confirm the importance of melatonin In determining the reproductive 

response It was necessary to mismatch the melatonin rhythm and the photoperlod. When 

piriealectomlsed sheep maintained under a stimulatory 'short daylength were infused with 

a long-day pattern of melatonin (8 hours per day) LH levels were suppressed (Blttman 

and Karsch. 1984), whereas pinealectomised sheep subjected to an inhibitory 'long* 

photoperlod responded to a short-day infusion pattern (16 hours per day) with an 

increase in serum LH (Yellon et al., 1985). Measurements of circulating melatonin in 

these studies confirmed that the levels attained by infusion were within the normal 

physiological range for this species. Moreover, as in the hamster, the time of day during 

which the infusion was administered to the sheep was not important (Wayne et al., 1988).

Consistent with these findings Dowell and Lynch (1987) reported that a 10-hour 

pulse of melatonin ('short-day') administered via a cannula to the hypothalamus of the 

white-footed mouse caused testicular regression in anim als maintained under a 

stimulatory long (16L:8D) photoperiod, irrespective of the time of day of administration. 

A  single 5-hour pulse ('long-day') or two 5-hour pulses separated by a 3-hour 

melatonin-free interval were without effect. More recently, M aywood et al. (1990) have 

reported a similar ('short-day') response to 10 hour infusions of melatonin in male 

Syrian hamsters maintained under a long (16L:8D ) photoperiod. Constant-release 

melatonin implants have also been shown to mimic the effect of a 'short-day' on the 

reproductive response of a number of animals including the weasel, Muataia erminaa 

(Rust and M eyer. 1969), red deer. Cervus elaohus (Lincoln et al.. 1984), sheep 

(Lincoln and Ebling, 1985; Nowak and Rodway, 1985; English et al., 1986), goat 

(Deveson et al.. 1989) and silver fox, Vuloes vulpas (Fo rsbe rg  et al., 1990). In 

conjunction these studies provide compelling evidence that the reproductive response lo 

changes In daylength In certain mammals Is determined by the (uninterrupted) duration of 

the rtocturnal increase in melatonin secretion.
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In contrast, evidence for the Involvement of the pineal and melatonin In avian 

reproduction Is unconvincing. The  eyes and pineal are not essential for photoperiodically- 

induced gonadal development in many birds in which the primary photoreceptors effecting 

the reproductive response to photoperiodic change appear to be located in the brain, 

probably In the hypothalamus (reviews: Menaker. 1971; Yokoyam a at al.. 1978; Oliver 

and Bayle, 1962; Follett et al.. 1985). For example, pinealectomy had no effect on the 

gonadal response to photoperiod in the house finch, mftytrjinii« (Ham ner and

Barfield, 1970), Harris's sparrow, Zonotrlehia guerula (Donham  arnl Wilson, 1970), 

the house sparrow. Passer domesticus fMenaker et al.. 1970) the Japanese quail (Momma 

et al.. 1972; Slopes and Wilson, 1974), the female chicken (Harrison. 1972; Johnson 

and van Tienhoven, 1964), and the male turkey, Melaaaris oattQpavQ (Slopes and El 

Halawani, 1969). However, delayed sexual maturity has been reported after pinealectomy 

in both male (Cogburn and Harrison, 1977) and female (Sharp  et al.. 1981) chickens, 

and female turkeys (Slopes and Underwood, 1987). Pinealectomy also inhibited 

reproductive activity in the duck. Anas olatyrhlnchos. but only in the breeding season 

immediately following surgery (Cardinal! et al.. 1971). In the Indian weaver bird, 

Ploceus philippinus. Balasubramanian and Saxena (1973) reported that pineaiectomy in 

winter caused precocious testicular recrudescence, which was further accelerated ur>der a 

long (18L:6D) photoperiod, and also enabled the birds to respond to a non-stimulatory 

photoperiod (9 L :1 5 D ) as though it were stimulatory. A  further study found that 

pinealectomy during the breeding season prevented gonadal regression in this species 

(Saxena et al., 1979). In contrast. Haidar and Ghosh (1990) recently reported that 

pinealectomy of the Indian Jur>gle bush quail. Perdlcula asiattca. had no effect In the r>on- 

breedlr>g phase of the annual reproductive cycle, but caused testicular regression during 

the periods of gonadal recrudescence ar>d breeding associated with increased photoperiod 

ar>d temperature.

A  lack of effect of pinealectomy on avian reproduction in many experiments could be 

attributed to the melatonin secreted Into the circulation by the eyes. Thus, the retinae 

make a significant contribution to the melatonin rhythm in the blood of birds such as the
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Japanese quail (Underwood et ai.. 1964) and the pigeon (Fo a  and Menaker. 1968). 

However, the reproductive response to photoperiod was unaffected In Japanese quail which 

were both blinded and pinealectomised (Slopes and W ilso n. 1974). and melatonin 

injections had no effect on gonadal function in this species (Momma et al., 1967; Foltett at 

al., 1965). Sim ilarly, Turek and Wolfson (1976) reported that constant-release 

melatonin implants had no effect on photoperiod-induced gonadal growth in the white- 

throated sparrow. Zonoirichia albicoltis. the fox sparrow. Passerella tllaca. and the 

slate-coloured junco, Junco hvemalis. Furthermore, melatonin administration failed to 

alter the photorefractory condition of the white-throated sparrow (Turek and Wolfson, 

1976) and the canary. Serinus canarius fStorev and Nicholls. 1978). Melatonin has been 

reported to affect avian reproduction in some studies, however. Administration of 

melatonin 3 times weekly stimulated testicular development and comb growth in Juvenile 

chickens, but inhibited these reproductive parameters in maturing and adult birds 

(Balem ans, 1972). In a subsequent investigation melatonin had no effect in young 

cockerels but caused testicular regression in more mature birds (Balemans et al., 1977). 

it should be noted, however, that the effects of 5-methoxytryptophol (a derivative of 5- 

hydroxytryptophan) were equal to or greater than those of melatonin and poor 

experimental design rendered these studies difficult to interpret (see discussion in Ralph, 

1981a). Thus, despite the highly photoperiodic nature of the reproductive response in 

birds, the results of studies attempting to elucidate the role of the pineal and melatonin in 

avian reproduction are inconsistent (for more detailed reviews see Ralph. 1978, 1961a) 

and hence it is not yet possible to attribute either with a role in this process.

Although reptiles have received little attention compared to birds and mammals there 

is some evidence that the pineal and melatonin may be involved in reproductive function in 

certain members of this class. In green anole lizards maintained on a 'short* pholoperiod- 

warm temperature regime, pinealectomy stimulated ovarian and testicular development 

during the period of reproductive quiescence in winter, but w as without effect during, artd 

just subsequent to. the spring/summer breeding season (Levey, 1973; Underwood. 1961. 

1985a). When the operation was performed in autumn gonadal development was
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stimulated in males maintained under warm temperature and either ‘long* (r>ormaMy 

stimulatory) or 'short* (normally inhibitory) daylengths (Underw ood. 1981. 1985a). 

The  progonadal effects of pinealectomy were blocked by administration of melatonin eHher 

by injection (Levey. 1973) or by constant-release implants (U nderw oo d. 1981, 

1985a). although the latter author was unable to block gonadal growth by morning or 

afternoon injections (Underw ood, 1985a). Pineaiectom y in winter also stimulated 

testicular development in the Indian garden lizard, Calotea verstcoler under both ambient 

and ‘long* photoperiod, and gonadal regression was inhibited in animals exposed to a ‘shorT 

photoperiod and pineaiectomised in early summer (Haidar and Thapliyal, 1977; ThapUyai 

and Haidar, 1979). Daily injections of melatonin during the early breeding season caused 

gonadal regression in this species irrespective of the time of day of administration, 

although injections given in the early morning or late afternoon were most effective 

(M isra and Thapliyal. 1979). Testicular regression w a s also produced during the 

breeding season by melatonin injections in another lizard. Caiiiaaurn«

(Packard and Packard. 1977) and by constant-release melatonin implants in the tortoise. 

Testudo hermanni fVIvien-Roala 1985). A  recent report by Haidar and Pandey (1989) 

also indicates a rote for the pineal in testicular function of the Indian chequered water 

anake. Natrlx piscator: pinealectomy inhibited gonadal development during the later stages 

of gonadadal recrudescence and in the breeding season, inhibited gonadal collapse 

subsequently, and prevented the maintenance of full regression during the sexually 

quiescent phase. It should be noted that temperature may be a more important 

environmental cue than photoperiod for the control of seasonal reproduction in reptiles 

(Licht. 1984). In this respect, several studies have reported an effect of temperature on 

the pattern of melatonin secretion in reptiles (Owens and Q e m , 1981; Vlvien-Roels and 

Arendt, 1961. 1983; Underw ood, 1985b; V lvien -R oels et al., 1988; Firth and 

Kennaway. 1989), and pinealectomy (Firth et ai., 1988) or melatonin administration 

(Cothran artd Hutchison, 1979; Erskine and Hutchison, 1961) can alter thermoregulatory 

behaviour. Thus, the pineal and/or melatonin may mediate the effects of both photoperiod 

and temperature on seasonal reproduction (and other daily and seasonal events) in reptiles.
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Tem perature also appears to play a more Important role than photoperiod in the 

regulation of reproductive activity in amphibians (Paniagua et al.. 1990). However, a 

small num ber of studies on frogs have Indicated a role for melatonin In amphibian 

reproduction. O 'Connor (1969) found that melatonin inhibited the in vitro ovulation of 

mature oocytes of Rana ptoiena. artd daily injections of melatonin 6 hours prior to the 

onset of darkness inhibited gonadal development in Hvla cinerea maintained under a 'long' 

photoperiod-warm temperature regime (de Vlaming et al., 1974). Interestlr>gly. gonadal 

growth was also inhibited in Rana ridibunda maintained under a similar photoperiod- 

temperature regime even though the daily injections were given at the beginnirig of the 

scotophase (Delgado et al.. 1963). Moreover, pinealectomy of Rana eacuienia. inhibited 

spermatogenesis under favourable photoperiod and temperature conditions (Rastogi et al.. 

1976). Delgado and Vivien-Roels (1989) suggest that, as in some birds, melatonin 

synthesised in the eyes makes a considerable contribution to the melatonin rhythm in the 

blood in Rana pere2 l. but the significance of this observation is unknown. As temperature 

is able to modify melatonin rhythms in Rana perezi (Delgado and Vivien-Roels. 1989) and 

the neotenic tiger salamander (Qern et al.. 1983) melatonin may be able to integrate 

information on both photoperiod arxl temperature in amphibians, as suggested for reptiles.

There is evidence that the pineal and melatonin are involved in reproduction in a 

number of fish species. The  goldfish undergoes gonadal recrudescence in sprirtg, a process 

inhibited by ‘short* photoperiods and accelerated by 'long' photoperiods (Fenwick, 

1970b). W hen goldfish maintaineu under 8 L:16D  w ere pinealectomised in late 

winter/early spring gonadal development was stimulated, thus reversir>g the inhibitory 

effect of the 'short' photoperiod (Fenwick. 1970b: de Vlaming and Vodicnik, 1976; 

Vodicnik et al., 1978). In contrast, when goldfish maintained under 16L:8D  or 

15.SL:6.5D were pinealectomised at about the same time the stimulatory effect of the 

'long' photoperiod was blocked, resulting in gonadal regression (de Vlamirig and Vodicnik, 

1978; Vodicnik et ai.. 1978). Pinealectomy of goldfish during the period from late 

summer to early winter had no effect on gonadal development (Fenwick, 1970b: de 

Vlaming and Vodicnik. 1978: Vodicnik et al.. 1978). Several workers have presented
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evidence that the pineal influences reproductive activity in the QOidfish by modulatino Q TH  

secretion; from late summer to early winter pinealectomy had no effect on circulating Q T H  

levels, whereas in late winter/early spring pinealectomy depressed or abolished the 

diurnal rhythm in circulatir>g Q T H  of fish maintained under long* photoperiods and 

promoted a diurnal rhythm in serum Q T H  in fish maintained under a 'short* daylengh 

(Vodicnik et ai., 1978; Hontela and Peter, 1980). Hontela and Peter <1980) therefore 

oor>cluded that, in the spring, the pineal stimulates gonadal development under a 'long* 

photoperiod by promoting a diurnal rhythm in circulating Q TH . and suppresses gonadal 

development under a 'short* daylength by inhibiting the rhythm in serum Q TH .

de Vlaming (1975) conducted a detailed study of another cyprinid, the golden shirter, 

NQtemiQQnus crysoleucas. which spawns in late sprir>g/early summer urfoer conditions of 

'long* days and warm temperature; final gonadal maturation is inhibited by 'short* 

photoperiods or low temperatures. When shiners maintained under 9L:150  and warm 

temperatures (25**C) were pinealectomised in early spring gonadal development was 

stimulated as in the goldfish, but pinealectomy in late winter had no effect; when fish 

maintained under 15.5L:8.5D and warm temperatures were pinealectomised in late 

winter/early spring or late spring gonadal regression or a delay in final maturation 

occurred respectively (de Vlaming, 1975). Moreover, pinealectomy caused significant 

changes in gonadal activity only in fish maintained at warm temperatures. An effect of 

oinealectomy on G T H  levels was also claimed for this species (de Viaming ar>d Vodicnik, 

1977).

The  Japanese kiilifish or medaka, Qrvzias latloes. a cyprinodontid which spawns in 

late spring/summer. has been the subject of a series of similar studies by Urasaki ar>d 

colleagues (U ra sa ki,l97 2 . 1973. 1976. Urasaki et al.. 1982). Th e y reported that 

pinealectomy of fish maintained under 8L:16D  in early winter prevented gonadal 

regression, whereas pinealectomy In winter or sprir>g inhibited the gonadal recrudescence 

observed under long (213L:110) photoperiods.

Another group of fish which have attracted attention are the catfish. The  Asian catfish, 

Haterooneuaias fossilis. spawns in Ju ly -A u g ust; 'long* photoperiods and warm



temperatures stimulate ovarian deveiopment ar>d 'short' photoperiods during the post­

spawning period suppress ovarian activity (G a rg , 1968a). Under LL or D D  (In which 

spawning alw ays occurs eventually: section ;i.1 ), 14L:10O, 12L:120, and 6L:160  

(2 5 * 0 . pinealectomy inhibited ovarian development and vitellogenin synthesis during the 

post-spawning period (Septem ber-January), but had no elfect at other times (Qarg. 

1988a.b). In contrast, pinealectomy accelerated ovarian development and vitellogenin 

synthesis during the post-spawning period in fish maintained under 9L:15D (25*C), but 

also had no effect at other times (Qarg. 1966a).

Unlike the majority of species studied, the grey mullet. Li?a ramad« spawns in mid­

winter; 'short' photoperiods stimulate ovarian recrudescence and exposure to 'long' 

photoperiods. LL. or D O  appears to arrest ovarian growth (Abraham and Sagi. 1964). 

However, when ovarian growth was arrested in mullet by exposure to a 1or)g' photoperiod 

during the winter breedir)g season, pineaiectomy accelerated gonadal development in fish 

transferred to 8L;160 (as in cyprinids. the m edaka and the Asian catfish), but had no 

effect on fish maintained on 16L:8D (Sagi et al.. 1983).

The  effects of melatonin on reproduction have been investigated in a number of fish 

species, usually by the administration of daily injections. Exceptions are two early studies 

by Krockert (1936; cited in de Vlaming et al.. 1974) who observed that the appearance of 

secondary sexual characteristics was delayed in guppies. Poecilia reticulata, fed bovine 

pineals. Subsequently, intraperitoneal injections of melatonin have been shown to inhibit 

the stimulatory effects of a 'long' photoperiod on gonadal recrudescence in the goldfish 

(Fenw ick, 1970a), medaka (Urasaki, 1972). golden shiner (de Viam ing, 1975). 

stickleback (B org and Ekstrom, 1981) and killifish, Fundulus similis (de Vlaming et al., 

1974). Interestingly, the timing of the melatonin injection (2  or 8 hours after lights- 

on) in the killifish was not important, but, whereas melatonin administration to fish 

maintained under 'short' days had no effect in mid-winter, the same treatment in late 

spring retarded gonadal development (de Vlaming et al.. 1974). (Gonadal growth was also 

Inhibited In grey mullet administered melatonin under a naturally decreasing photoperiod 

ki the autumn, shortly before the mid-winter breeding season. In Asian catfish maintained

248



under 1 2L:12 0  and 25*C. conditions w hich maintain ovarian activity, melatonin 

treatment inhibited vlteilogenesis and induced foilicuiar atresia when given 2 nu>nths 

prior to the summer spawning, and caused ovarian regression vrhen administered during 

the spawning period; the higher dose of melatonin used also caused a significare reduction 

in the number of pituitary gonadotrophs on both occasions (Sundarari^ and Keshavariath, 

1976). In the latter study withdrawal of the treatment abolished the inhibitory effects of 

melatonin. Melatonin treatment in spririg similarly arrested ovarian recrudescer>ce in 

another catfish, Mvatua tenoera. maintained under 12L;12D (Saxena and Anand, 1977), 

artd caused a reduction in circulating levels of oestradiol-17B. oestrone ar>d 17aO H -P in 

catfish, Clariae batrachus exposed to naturally-increasing daylength ar>d temperature 

(NayaK and Singh, 1987). In contrast to most investigations, Borg and Ekstrom (1961) 

also observed a pronounced progonadal effect in female sticklebacks maintained under 

8L:160 and administered the lower of two doses of melatonin at the end of the breeding

In conjunction these st,. *̂ ies indicate that the pineal and/or melatonin can exert either 

pro- or anti-gonadal effects depending on the time of year and the photoperiod- 

temperature regime to which the fish are exposed; In general, the pineal appeared to 

inhibit or stimulate reproductive development under 'short' and 'long' days respectively, 

and melatonin usually inhibited reproduction. However, the mode of action remains 

unclear. It is possibly important to note that most of the studies examining the role of 

melatonin in fish reproduction were short-term experiments utilising small species of 

fish readily maintained under laboratory conditions. Moreover, in the majority of these 

species photoperiod may not be the prim ary environmental cue for reproduction; 

temperature may be of equal or greater importance. This complicates the interpretation of 

experiments designed to assess the role of the pineal and melatonin in reproduction. In 

contrast, photoperiod is by far the most important zeitgeber for the oontrol of 

reproduction In salmonids (section 3.1). There appear to be no reports of the effects of 

pinealectomy or nr>elatonin on salmonid reproduction, however, almost certainly because 

of the long time scale required for such experiments and the facilities necessary for



maintenance of saifnonid broodstock.

The  preceding review iiiustrated that the ma)ority of vertebrates investigated exhibit 

an endogenous circadian rhythm in meiatonin production entrained to the light-dark cycle, 

the precise pattern of which varies among species. Moreover, in some animais (e.g. 

certain mammais). but not others (e.g. many birds), this hormonal profile of seasonally- 

changing daylength synchronizes the reproductive cycle with the external environment. 

Although melatonin rhythms have been demonstrated in the rainbow trout, no previous 

study has utilised sufficiently frequent sampling to accurately define the patterns of 

melatonin secretion under different phok>perk>d regimes, and there has been no reported 

investigation of the role of meiatonin in salmonid reproduction. Furtherrrtore. although the 

enormous number and diversity of teleost species provides an ideal source for 

comparisons of melatonin rhythms in animais occupying a variety of different ecological 

niches, very few species have so far been examined. The experiments described in this 

chapter are divided into three sections. Section A  aims to define the patterns of melatonin 

secretion under various photoperiod regimes and to investigate the nature of the 

mechanisms governing the generation of melatonin rhythms in the rainbow trout. In 

section B patterns of melatonin secretion are examined in two other commercially 

important fish, one of which, the Atlantic salmon, is closely related to the rainbow trout, 

whereas the other, the Nile tilapia, Oreochrom ls niloticus. is a sub-tropical species. 

Finally, section C  investigates the ability of intra-peritoneal melatonin implants to mimic 

the effects of changes in daylength on the timing of reproduction in the female rainbow 

trout.



4.2 S«alon A : PUM M  of M«IMonln S « : f « t lon In Ih« R «lnhni. Trm.t

StudI«* In higher vertebrates have Indicated that 1) melatonin Is rapidly secreted 

from the pineal after symhasis and hence blood melatonin levels accurately reflect pineal 

melatonin production, 2 ) patterns of melatonin release vary In a species-specific 

manner. 3) the duration of elevated melatonin changes In accordance with changes in the 

duration of the sootophase, and 4) melatonin secretion Is under enrfogenous circadian 

control (Underwood and Goldman, 1987; Reiter. 1988). The  experiments described In 

this section utilised frequent measurements of circulating melatonin under various 

constant photoperiod regimes in order to accurately define the 24-hour patterns of 

melatonin secretion in the rainbow trout and to Investigate the importance of endogenous 

mechanisms in the generation of melatonin rhythms in this species.

Experiment 1 compared melatonin profiles In Juvenile (1+) rainbow trout maintained 

either long (1 6 L;6 D ) or short (8 L :1 6 0 ) daylengths. Experiment 2 similarly 

Investigated whether a rhythm In melatonin secretion could be detected under long 

(16L;8D) days in 4.5 month old fry. Th e  effect of a 12-hour advance in the onset of the 

sootophase was examined In experiment 3 by measuring blood melatonin levels during the 

transfer of broodslock from a long (1 8 L:6 D ) to a short (6L:18D) daylength. Experiment 4 

Investigated whether a rhythm In melatonin secretion could be detected In rainbow trout 

maintained In constant darkness after previous synchronization to either long (18L:8D) 

or short (8 L :tS D ) days.



4.2.1 Q aiw f»! nrwthodii

Th *  rainbow trout utad in axparimentt 1 -4 cama from a variaty of domasticatad stocks 

dataits of which ara providad saparataty tor aach axparimant. in axparimants 1, 3 and 4 

fish wara maintainad hi circutar ptiotopariod tanks (ssction 2.1.1; Figura 2.1). Tha  tanks 

wars supptiad with constant tamparatura (7.S-8*C) spring watar (axparimants 3 and 

4a) or chtorina ftitarad mains watar of saasonaiiy-varying temparatura (axparimants 1 

and 4b: saa axparimantai protocois for tha tamparatura on a particutar sampiing data). 

Tungstan fiiamant tight bulbs providad a tight intansity of 25-30 iux at tha watar surfaca 

(axparim ants 3 and 4a) or approxtmataiy 200 iux 0.5m . baiow tha tight sourca 

(•Kparimants 1 and 4b: saa saction 2.1.1 for dataits). Prior to tha exparlmantat pariod 

fish w ars fad ad libitum with a commercial trout diet. Blood sampling (section 2.1.4) 

began 5 -10  minutes before each time point and was generally completed within 20 

minutes (maximum 30 m inutes). A  dim red light (Safellght: Kodak Ltd., Hemal 

Hempstead. Herts., U.K.) facilitated samiiling during tha dark and a damp cloth was used to 

cover the eyes and pineal area of the larger (broodstock) fish. A small long-handled net 

allowed the Individual capture of luvenlla fish from heavily-stocked tanks during 

darkness and Individual fish were only sampled once during the course of each experiment. 

Serum (experiments 3 and 4a) or plasma (experiments 1, 2 and 4b) melatonin content 

was measured by radioimmunoassay (section 2.6). To  minimise the effects of Inter-assay 

variation on the melatonin profiles obtained In experiments 1 and 4b, each assay contained 

only one sample per treatment from each time point and equal numbers of parallel samples 

from each photoperiod regime (experiment 1 ) or day number (experiment 4b).

Stringent precautions prevented any light exposure during the experimental dark 

periods. All sources of external light (doors, windows, air vents) were shielded with 

Industrial grade black polythene sheeting. Throughout experiment 4b the tanks were also 

covered with an extra layer of black sheeting which extended down to ground level: two 

vertical slits allowsd access during darkness. Tha dim red light was turned away from the 

tanks whan fish wars removed and anaesthesia and bkxxl sampling were performed over 2 

metres away. During anaasthesla fish wars protected from the dim red light by black
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sheeting.

Inlllel analysis of the hormone data In each experiment revealed that the sa m p le  

variances were heterogenous (section 2.7.3). The  Kruskal-Wallls test (section 2 .7 .5 ) 

was therefore used tor the preliminary analysis of hormone profiles. Dus to  the 

unavoidably small number of obsenatlons In each sample, however, the non-param etric 

multipla comparisons procedure (section 2.7.5) was not suitable tor the detection of 

differences In melatonin concentrations between time points. Consequently, after log 

transformation of the data to reduce the heterogeneity of the sample variances, the results 

were analysed by o ne-w ay analysis of variance followed by a parametric m ultiple 

comparisons procedure (section 2.7.5). In each experiment the conclusion reached using 

one-way analysis of variance and the Kruskal-Wallis test was identical.



4.2.2.1 Protocol

Approximately 300 ona-yaar old rainbow trout of mixed sex were transferred on  May 

11 from ambient daylangth (IS L iS O ; latitude S6°09'N) to constant photoperiods of 

16L:8D (lights on from 0400 to 2000 hours) or 8L:16D (lights on from 0800 to 1600 

hours). Th e  time switches controlling each photoperiod tank (section 2 .1 .1 ) wars 

accurate to within 1 second of each other. After 2 months exposure to 8 L :1 6 D  blood 

samples (section 2.1.4) w ere taken at hourly Intervals over a 24-hour period (J u ly  15- 

16). At this time the mean weight of the fish was 210g. Fish were similarly blood sampled 

after 3 months exposure to 16L:6D (August 12-13). Under both photoperiods th e  water 

temperature was 15°C and 5 -7  fish were sampled al each time point.

4.2.2.2 Results

Under both 'long' and 'short' daylengths plasma melatonin concentrations were 

significantly higher (ps 0 .001) during the scolcphase than the photophase (F ig ure s  4.7 

and 4.8). Melatonin was, however, detectable In the ma|orlty of samples taken during the 

photophase with mean values ranging from 39 to 79pg/ml under 16L:8D a n d  33 to 

92pg/ml under 8L:16D. U nder both photoperiods melatonin levels Increased rapidly alter 

the onset of darkness, reaching approximately 300pg/ml 30 minutes after lights-off, 

remained elevated at about S00-600pg/ml for the remainder of the scotophase and had 

returned to daytime levels 30 minutes after lights-on. Scotophase levels w e re  slightly 

higher under 'long' (mean amplitude 6l9pg/ml) than 'short' (mean amplitude 536pg/ml) 

days but the difference w as not statistically significant, and there was no statistically 

significant increase In melatonin before lights-off. or decrease prior to lights-on, under 

either photoperiod.



TIME (hours)

Figure 4.7: Diurnal changes in plasma melatonin concentrations in 1 -year old rainbow 

trout maintained under a 16L:6D photoperiod regime. Each point represents the mean <± 

IS E M ) of 5 -6  fish. The  open bars (L ) Indicate the photophase, the hatched bar (D ) the 

scolophase.
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Figure 4 .6 : Diurnal changes in plasma melatonin concentrations in 1-year old rainbow 

trout maintained ur>der an 8L:160 photoperiod regime. Each point represents the mean (± 

IS E M ) of 4 -6  fish. The open bars (L ) indicate the photophase, the hatched bar (0 ) the 

sootophase.



4.2.3.1 Protocol

Rainbow trout aggt obtained from pbotoperiodicaHy advanced fish (section 3.2.3) were 

fertilised with ali female (X X ) milt (milt obtained from parents possessing the XX 

gertotype ¥vhich were masculinised by treatment with methyltestosterone) and laid down in 

a hatchery tray on October 8. The  eggs hatched on October 31 -N ovem ber 1 and swim-up 

arKJ first feedirtg commenced on November 16. Throughout this period the eggs and alevins 

were maintained under a dim 16L:80 photoperiod (15W  pearl tungsten filament light 

bulb; lights on from 0600 to 2200 hours). On November 18 the resulting fry were 

transferred to a small (0 .3  x 0.4m.) grey plastic tank with an initial water depth of

0.1m. T h e  water depth was gradually increased until it was necessary to transfer the fish 

to a similar larger tank (0.65 x 0.45m.) on February 24. Both tanks were supplied with 

mains w ater passed through an activated charcoai/gravel filter at a flow rate of 3 

litres/minute (Figure 4.9). Additional aeration was provided by a small aquarium pump. 

The fry w ere also exposed to a constant 16L:8D photoperiod (6 0 W  pearl tungsten filament 

light buK> providing a light Intensity of 220 lux at the water surface).

When the fish were approximately 4.5 months (142 days) old blood samples were 

taken over a 24-hour period (March 22-23). Individual fish w ere anaesthetised (section 

2.1.2) and rinsed in deionised water prior to removal of excess water with absorbent 

tissue paper. Blood was drawn by capillary action from the severed caudal dorsal aorta 

into hepartnised microcapiliary tubes (L.I.P . Ltd.. Shipley, W . Yorkshire, U .K .). Rubber 

tubirtg attached to the microcapiliary tubes allowed the blood to be gently blown out into 

polystyrene tubes (LP3; Luckham’s Ltd.). The  blood from 10 fish was pooled at each 

samplir>g time to obtain duplicate 150-250til aliquots of plasma for the melatonin assay 

(section 2.6 ). Water temperature during the sampling period w as 11*C.
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Figure 4.9: Diagram illustrating the main features of a rectangular fish hokNng tank, with 

a charooal/gravel filtered mains water supply, designed for the maintenar>ce of rainbow 

trout fry (not to scale).



4.2.3.2 Raault«

Although statistical analysis is not possible because only a single pooled sample was 

obtained for each time point It is dear that plasma melatonin concentrations in fry were 

markedly elevated during the scotophase relative to the photophase (Figure 4.10). The  

pattern of melatonin secretion was similar to that obtained ur>der a 'long' daylength in 

experiment 1 (section 4.2.2; Figure 4.7). Melatonin levels, which ranged from 77 to 

112pg/ml in the photophase, increased rapidly after the onset of darkness, reaching 

approximately 350pg/ml 30 minutes after iights-off. remained elevated at about 500- 

600pg/ml for the remainder of the scotophase. ar>d had returned to daytime levels 30 

minutes after lights>on.



Figure 4.10: Diurnal changes in p lasm a melatonin concentrations in 4.5-m onth old 

rainbow trout fry maintained under a 16L:8D  photoperiod regime. Each point represents 

the melatonin concentration in plasma pooled from 10 fish. Th e  open bars (L ) indicate the 

photophase, the hatched bar (D ) the sootophase.



4.2.4 Em w Iiim iiI 3: PatMrn« ot m«l«lonln la c f llo n  In Mlnbow trout durlno If n it w  

tram  ■ tana f i a L A P I  tft • ah«!>rt < a L ;ia D ^  <<#vUnoth.

4.2.4.1 Protocol

Tw o -y«a r old virgin fomalo rainbow trout broodstock were maintained under 18L:6D 

(lights on from 0800 to 0200 hours) for 4 months prior to an abrupt reduction in 

photoperiod to 6L:18D (lights on  from 0800 to 1400 hours) on May 15 (section 3.2.3). 

Blood samples (section 2.1.4) w ere  taken from 3-4 fish at each of the following time 

points (Lalight; D -d a rk );

Dale 1 4/5 1 4/5 1 5 / 5 1 5/5 1 5/5 1 5 /5 1 5/5 1 5 / 5 1 5/5

Tim e 0 8 3 0 1430 0 1 3 0 0 23 0 0 5 0 0 0 7 3 0 0 8 3 0 1 1 0 0 1 33 0

Photoperiod L L L D D D L L L

Date 1 5/5 1 6/5 1 6 / 5 1 6/5 1 6/5 1 6 /5 1 7/5 1 7 /5

Time 1 43 0 0 13 0 0 7 3 0 0 83 0 1 3 3 0 1 4 3 0 0 1 3 0 0 7 3 0

Photoperiod D D D L L D D D

water temperature was constant at 7.5*C.

4.2.4.2 Results

The  patterns of melatonin secretion durir>g transfer from a 'ior)g' to a 'short' dayiength 

are shown in Figure 4.11 (the 0830 samples taken on 14/5 were haemoiysed and were 

therefore not assayed). Under 18L:6D there was a significant increase (P$0.05) in 

plasma melatonin levels from approximately llO p g /m l in the photophase to about 

I80pg/ml 30 minutes after lights*off. Subsequently, there was a significant decrease 

(P ^O .O I) in melatonin from about I90pg/ml 30 minutes prior to lights-on to about 

lOOpg/ml 30 minutes after light onset. Advancing the onset of the sootophase by 12 hours 

by transferring the fish to 6 L :1 8 D  also produced a significant increase (P^O.01) in 

melatonin 30 minutes after lights-off. a rise of similar amplitude to that observed under
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Figure 4.11: Diurnal changes in serum melatonin concentrations In 2-year old rainbow 

trout during transfer from an 1 8L:60  to a 6 L :t8 D  photoperiod regime. Each point 

represents the mean (± 1SEM ) of 3 -4  Hsh. The open bars (L ) Indicale the pholophase. the 

hatched bars (D ) the scolophasa.



18L:6D. Melatonin level« ramelnad elevated 30 minutes before llghts-on but had 

significantly decreased (P sO .O S ) to about 130pg/ml 30 minutes after light onset. 

Surprisingly, of the 3 sam ples obtained during the scotophase of the second day of 

exposure to 6L:18D only the sample obtalnad at 0130 hours contained significantly 

alavatad melatonin (PsO.OS) In comparison with the previous pholophasa levels.



4.2.5 E «p »rim «n t 4 : P «H M n « o l in»l«ionin  « « c f l i o n  In rainbow Iroul m «lnM ]n «d  In 

o o n iu n t d a iK n « « «  (D P I «tier a x p o iu r«  to «> «h art (6L:1BD ) or b> Jong M 6L:gD l

4.2.5.1 Protocol 

■) ■Shorf d o v  to D P

Tw o  ifK l tttre«>year old female rainbow trout broodstock w ere maintained under 

6L:18D (lights on  from 0800 to 1400 hours) from May 15 (section 3.2.3). In early 

December the tim e clocks were re-adJusted to switch the lights on from 0730 to 1330 

hours. At 1330 h o urs  on January 8 the fish were transferred to D O . At this time the 

population consisted of approximately equal numbers of 3 and 4-year olds. Blood samples 

(section 2.1.4) w e re  taken from 2 -5  fish at approximately 2-hour intervals over 24- 

hour periods on Jan u ary 6-9 (D ay 1), January 10-11 (Day 3) and January 17-18 (Day 

9). The water temperature was 7.S*"C on each of the 3 sampling days.

b) ’Lonrf days to D O

Approximately 300  one-year old rainbow trout of mixed sex, previously sampled in 

experiment 1 (section 4.2.2), were maintained under 16L:6D (lights on from 0400 to 

2000 hours) from Ju ly  16. On August 13 the fish were re-distributed between the 2 

photoperiod tanks so  that each contained equal numbers of fish previously exposed to 

either *k>r)g' or ’short' days in experiment 1. At 2000 hours on September 19 the fish 

were transferred to D D . At this time their mean weight was 31 Og. Blood samples (section 

2.1.4) were taken from 6-8  fish at 2-hour intervals over a 72-hour period from 

September 19-22 (D ays 1-3), and from 5 fish at 2-hour intervals over a 24-hour 

period from Septem ber 24-25 (Day 6). The  water temperature was 12^C on each of the 4 

sampling days.



4.2.S.2

■) •Shoff daym to DP

Plasma malatonin concantratlons incraasad rapidly aftar transfar to DD (1300 vs 

1400 hours; P^O.OS) and ramainad alavatad throughout tha axparimantal pariod (Figura 

4.12). Maan photophasa lavals rangad from approximataly 83 to 100pg/ml ar>d maan 

scotophasa lavals from approximataly 109 to 252pg/ml (maan amplituda I70pg/m l). 

Thara w as a significant variation (P$0.05) in malatonin lavals ovar tima aftar transfar 

to DD ar>d visual inspaction of Pigura 4.12 suggastad that this variation may ba indicativa 

of an afKk>ganou8 circadian rhythm in malatonin sacration. Howavar, no significant 

rhythmicity w as detected whan tha data wara subjacted to autocorrelation and integrated 

pariodogram analysis (Statgraphics statistical package, S T S C  Inc., Rockville, U .S .A.).

b) day*  IQ DD

Plasma malatonin concentrations increased rapidly aftar transfar to DD (1900 vs 

2100 hours; P^O.01) and remained elevated throughout the experimental period (Figure 

4.13). M ean photophase levels ranged from approximately 40 to 52pg/ml and mean 

scotophase levels from about 300 to 700pg/ml (mean amplitude 473pg/ml). However, 

there was no  evidence of endogenous rhythmicity; malatonin levels did r>ot significantly 

vary ovar tima aftar transfar to DD (P 2 0 .4 ). This conclusion was supported by 

autocorrelation and integrated pariodogram analysis (Statgraphics statistical package), 

which also failed to detect a rhythm in melatonin secretion in DD.
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F ig u r «  4.12: Serum melatonin concentrations in 3 and 4-year oid rainbow trout 

m aintained under constant darkness (D D ) after previous exposure to a 6 L :1 8D  

photoperiod regime. Each point represents the mean (± 1 SE M ) of 2-5 fish. The  open bar 

(L ) indicates the photophase prior to transfer to DD. The hatched bars indicate D D ; periods 

corresponding to the scotophase and photophase of the preceding photoperiod are signified 

by O  and V  respectively.
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Figure 4.13: Plasma melatonin concentrations In 1-year old rainbow trout maintained 

under constant darkness (D D ) after previous exposure to a 16L:8D photoperiod regime. 

Each point represents the mean (±  IS E M ) of 5-7 (days 1-3) or 4 -5  (day 6) fish. The  

open bar (L ) indicates the photophase prior to transfer to DD. The  hatched bars indicate 

D D ; periods correspondirtg to the scotophase artd photophase of the preceding photoperiod 

are signified by D ar>d *L' respectively.



4.2.6 S u m n w y  of R— ulta; SaeUon A

1. In all axparknantt plasma malaionin concantratlons in rainbow trout wars significantly 

highar durtotg tha sootophasa than during tha photophasa.

2. Tha  r>octumal incraasa In circulating malatonin accurately raflactad tha duration of tha 

scotophasa in both JuvanHa and aduH rainbow trout maintainad under lor>g (1 6 L:8 0  or 

18L:6D) or short (8L:18D  or 8L:18D) artificial daylartgths.

3. All significant increases and dacraasas in malatonin levels coincided with tha light-dark 

transitions ur>dar 18L:8D and 8L:18D; there was no avldaf>ca for ‘anticipatory* lr>craa8as 

or decreases prior to lights-off and iights-on or for a delay in secretion after tha onset of 

darkless.

4. Tha malatonin rhythm immediately re-adjusted to a transfer from a long (1 8 L:6 D ) to a 

short (8L:18D) photopariod accomplishad by advancirig tha onset of the scotophase by 12 

hours.

5. Circulating malatonin levels remained continuously elevated after transfer to D O ; an 

endogenous circadian rhythm of melatonin secretion could r>ot be detected.

8. Circulatirtg melatonin was detected during the photophase in all experiments.

7. There were no significant differences in the amplitude of the melatonin rhythms under 

'long' or 'short* photoperiods in fish of similar age.

8. The  amplitude of the melatonin rhythm was greater in adult fish than in Juvenile fish.



Although closely related to the rainbow trout, the Atlantic salmon undergoes a much 

more complex life cycle (Figure 4.14) In which photoperiod appears to entrain not only 

maturation (Eriksson and Lundquist. I9 60 ; Lundqulst, 1980; Johnston et a l., 1990; 

Taranger et ai.. 1991) but also the major physiologicai. morphological artd behavioural 

adaptations associated with seaward migration (collectively kr>own as smoltification), 

which are necessary for life in the sea (Thrush arid Bromage, 1968; Duston and Saunders. 

1990). The  seasonal dependence of both of these major developmental conversions places 

even greater constraints on the development of the multi-million pound salmon farming 

industry than those experienced by trout farmers. An  appreciation of the mechanism(s) 

by which salmon transduce photoperiodic information Is therefore of interest from both a 

comparative and a commercial viewpoint. In this respect. Lindahl and Wetterberg (1986) 

have reported rhythms in circulating melatonin, with evidence for an endogenous 

circadian component, in Baltic salmon (also Saimfl-SalAf). and Smith and W eber (1980) 

suggested that the pineal arKf melatonin may be involved in the migratory behaviour of 

anadromous salmónida. In a preliminary study, therefore, experiment 5 utilised frequent 

measurements of circulating melatonin to define the 24-hour pattern of melatonin 

secretion In Atlantic salmon parr maintained under ambient photoperiod cor>ditions.

Th e  tilapias are cichlid fish (family; Cichlidae) which occur naturally in the tropical 

and sub-tropical areas of Africa and the Levant, and have been distributed throughout the 

warmer countries of the world for fish farming. T h e  natural distribution of the Nile 

tilapia encompasses the coastal rivers and lakes of Israel (33**N) and Egypt through 

Sudan. Chad, and Nigeria to the equatorial lakes of Ugar>da and Ethiopia (for further details 

see Trewavas. 1983; Lowe-McConnell. 1968). Well-suited to the low technology farming 

systems of developing nations the Nile tilapia is one of the most important tilapia species 

for aquaculture (Lowe-M cConnell. 1988). At the higher latitudes breeding has a strong 

seasonal component, which may be timed with reference to cycles of temperature and
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Figur« 4.14: LHe cycia of the Atlantic salmon (from Laird and Needham. 1 9 M ).



rakiWI, but lantiar south ths brooding sosson bocomot moro oxtondod and closo to tho 

aquator thoro la no svidonco for brooding soaaonaHty (Trowavas, 1983; Munro, 1990). In 

markod oontraat to tha rainbow trout and Atlantic salmon, a rolo for photoporlod In ths 

control of soasonal rhythms has not boon dsmonstratsd In ths Nils tllapla and hones It was 

of Intsrsst to InvssMgats whsthor pattsms of mslatonin socrotlon could bo dotseted In this 

spaciss. Exparlmsnt 6 tharofora attsmptad to msasurs circulating molatonin In Nile 

tllapla rnalmalnad under a constant 12L;12D photopsriod.



4.3.1.1 Protocol

Approximately 300 potential 82 Atlantic salmon parr (parr destined to smolt after 2 

years In freshwater) were maintained urnler ambient photoperiod (51*20*N. 7 0%  shade 

netting) artd constant water temperature (10*C) from hatching. Blood samples (section 

2.1.4) were taken from 8-10 fish (2 0 -4 0g.) at hourly intervals over a 24-hour period 

from Septem ber 15-16 (approximately 12.5 hours daylength). Light intensity was 

m easured immediately before and after each sampling time. Serum  samples were 

subsequently assayed for melatonin (section 2.5); those taken between 1800 (15/9) arid 

0800 (16/9) hours were assayed individually, whereas those obtained between 0900 

(15/9) and 1700 (15/9) hours were divided Into pools each containing equal volumes of 

serum from two fish. Results were analysed as described In section 4.2.1.

4.3.1.2 Results

Serum  melatonin concentrations varied inversely with light intensity, with levels 

significantly higher (P ^O .O I) during the scotophase than the photophase (Figure 4.15). 

Mean values ranged from 87 to 130pg/ml during the majority of the photophase and from 

219 to 306pg/ml during the majority of the scotophase (light-dark transitions 

excluded). An unexpectedly high mean value of 179pg/ml was recorded at 1000 hours, but 

this was not statistically significantly different from the majority of other photophase 

levels. Between 1700 and 1800 hours, about one hour before the onset of darkness, mean 

serum melatonin levels Increased in the absence of a measured change in light intensity 

(which was approximately 50 lux; Figure 4.15), although the increase was only 

significant (P <0.05) relative to the 1400 hours sample, and there was no significant 

difference between the 1800 and 1900 hours samples. Interestir>gly, however, the first 

significant (P sO .O I) decrease in melatonin levels the followir>g morning occurred at a 

much lower light intensity (approximately 5 lux).
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Figure 4.15: Diurnal changes In serum melatonin concentrations in Atlantic salmon parr 

maintained under a natural daylength of approximately 12.5L;11.50. Between 0900 and 

1700 hours each point represents the mean (± IS E M ) of 4 -5  pooled samples containing 

equal volumes of serum from 2 fish. Between 1800 and 0800 hours each poirtt represents 

the mean (± IS E M ) of 8-10 individual fish.



4.3.2.1 PfQtocQl

Approximately 40 (2:1; femalaimala) thraa-yaar old  Nila tilapla broodstock (maan 

weight 740g.) ware maintainad in a 4000 litre fibraolass tank supplied with recirculated 

mains water maintainad at a constant 27-28*C. These  nsh ware descended from stock 

originally obtained from a wild population resident in Lake Manzala. Egypt (31‘̂ 20'N) in 

1979 (M cAndrew and Majumdar, 1983) and had been maintained under a 12L:12D 

photoperiod from hatching. Blood samples (section 2 .1 .4 ) were initiaily taken from 4 fish 

at either midday or midnight ar>d then from 2-5 fish at each of 7 time points over a 24- 

hour period (June  24-25). Serum  melatonin was measured in duplicate SOOpI aliquots 

using an un-validated adaptation of the radioimmurwassay described in section 2.6. The  

standard curve was prepared with charcoal-stripped pooled serum collected from tilapia 

during the photophase. Results were analysed as described in section 4.2.1.

4.3.2.2 Results

A preliminary assay of 2 pools of tilapia serum collected at midday and midnight 

Indicated that melatonin was undetectable in the photophase but was present at a 

concentration of approximately 80pg/ml in the scotophase. The  subsequent assay of 

samples taken over a 24-hour period, however, detected mean scotophase melatonin levels 

of less than 25pg/mi. The decreased slope of the standard curve in this assay Indicated a 

deterioration of the radiolabel arid, since the assay has also not been adequately validated 

for the measurement of melatonin in tilapia serum, it must be emphasised that the results 

obtained in this study should be regarded as qualitative rather than quantitative. 

Notwithstanding these reservations, it is clear that there was a diurnal rhythm of 

melatonin secretion in the Nile tilapia under a 12L:12D  photoperiod: there was a 

significant variation (P ^O .O I) in serum melatonin concentrations over time (Figure 

4.16). Melatonin was undetectable ($8pg/ml) In the majority of samples taken during the
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Figure 4.16: Diurnal changes In serum melatonin concentrations in 3 -year old Nile 

tilapla maintained under a 12L:12D photoperiod regime. Each point represents the mean 

(± 1SE M ) of 2-5 fish. Th e  open bars (L ) Indicate the photophase, the hatched bar (D ) the 

scolophase.







In certain taaaonaHy-braading mammals tha pinaal gland convarit pnotic Information 

Into a circadian rhythm of ntalatonln sacration. tha pattarn of which datarm lnas tha 

raproductiva rasponsa (saction 4.1 : ravlawad by Goldman and Darrow. 1983: Karsch, 

1984: Bittman. 1985: Tamarkln at a l., 1985: Bartnass and Goldman, 1989: Ebling aixf 

Fostar. 1989). Th a  rola of tha pinaal gland and malatonin In lowar vartabratas Is lass 

daar, but thara Is soma avidanca. principally darivad from cyprlnlds at prasant, that both 

ara Involvad In soma way In tha timing of raproductlon In telaost fish (saction 4.1: 

ravlawad by da Vlaming and Olcasa, 1981). This saction dasciibas axperimants dasignad to 

tast tha hypothasls that malatonin mediates tha effects of photoperiod on reproduction in 

the female rainbow trout.

Tha prir>cipal techniquas available to investigate the role of tha pineal and melatonin in 

reproductive physiology are 1) pinealectomy ar>d 2) provision of exogerx>us melatonin, or 

a combination of both. Tha  second technique was chosen In this study in order to assess the 

ability of malatonin to mimic the effects of photoperlodic change. Exogenous melatonin can 

be administered by several routes Including feeding, injection, timed infusion, and 

Implantation of mini-osmotic pumps or Silastic packets/tubes. Silastic implants are a 

convenient vehicle for the long-term delivery of melatonin and hence were the method of 

choice in this study. They have been successfully used to investigate the effects of 

melatonin on reproduction in a variety of animals including the green anole  lizard 

(Underwood, 1985a), the hedgehog, auropaaus (Fow ler and R acey. 1990),

several hamster species (Goldman at al.. 1982), sheep (Lincoln aruf Ebllng, 1985: Nowak 

and Rodway. 1985: English et al.. 1986) and red deer (Lincoln et al.. 1984). Although 

not previously used for the administration of melatonin to fish. Silastic tubes have proven 

effective tor the lor>g-term administration of steroids to a number of fish includir>g grass 

carp. ClMiQQhefvnQodQn IdeMa fJensen et al.. 1973), milkfish. Chanoachanoa fLee  at al.. 

1986a.b.c) and brook trout (Lessm an and Habibl. 1987). Experiment 7 was a
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preliminary experiment conducted to assess the effectiveness of a range of implants for 

the controlled release of melatonin. Th e  design of experiments 6 and 9 w as based on the 

observation that Novem ber-Decem ber spawning rainbow trout subiected to a reduction 

from a lo n g ' to a ‘short* photoperiod in May respond with a considerable advar>ce in 

spawning time (section 3.2). If melatonin does mediate the effects of photoperiod on 

reproduction an equal advance in spawning time would be predicted in fish which received 

melatonin implants (■ 'short day') in May. Conversely, administration of melatonin from 

January or February might be expected to block the effects of an artificial 'long' 

photoperiod, resulting in the delay of spawning characteristicaliy observed on exposure to 

a constant 'short' photoperiod (section 3.2.4). Thus, experiments 6 aixt 9 examined the 

ability of melatonin implants to mimic a 'short day' photoperiod.



Th* fith u M d  In «xpsflments 7 and 8 came from an aetabllshed domasticatad stock witti 

a natural spawning period ol N ovam ber-Dacam ber (the sam a strain was used In 

axperlmants 1-4 In chapter 3), and w are maintained In 2 rectangular fibreglass tanks 

supplied with constant temperature (12 ’ C ) recirculating mains water (section 2.1.1; 

Figure 2.3). Cool white fluorescent tubas provided a light Intensity of approximately 60 

lux at the water surface. Th e  fish used In experiment 9 came from an established 

domesticated stock with a natural spawning period ol Jan u ary -Feb ru ary . and were 

maintalnsd In 3 circular photoperlod tanks supplied with chlorine-filtered mains water of 

seasonally-varying temperature (section 2.1.1; Figure 2 .1 ). Tu ng ste n  filament light 

bulbs provided a light Intensity ol approximately 200 lux O.Sm. below the llghl source 

(see section 2.1.1 for details).

A  variety of Implants were prepared from Silastic medical-grade sheeting (O.OOSin., 

non-relnlorced) and tubing (Dow  Corning Ltd., Reading, Berks.. U .K .). Silastic packets 

were made in 1. 2 and 2.5 cmx sizes (Plate 4.1). Th e  sheeting was cut to size with a 

scalpel blade, washed In a hot water/mild soap solution to remove surface contaminants, 

rinsed In deionised water and allowed to dry. A thin layer ol Silastic medical adhesive 

silicone type A  (D o w  Coming Ltd.), dls(>ersod 1:1 In hexane (Analar; B D H  Ltd.), was used 

to bond 2 Identical squares of sheeting on 3 sides, prior to sterilization in an autoclave 

(121'C/30 minutes). After addition o l crystalline melatonin (Sigm a Chem ical Company 

Ltd.) the open erKfs of the packets were sealed with sterilized (160°C/6 hours) adhesive 

and they were ready for use. Silastic tubing Implants were made in 2 cm  (1 .02 x 2.16 mm 

Internal/axtemal diameter) and 2.5 cm  (3.35 x 4.65 mm) lengths. O ne  end  was sealed 

with adhesive prior to decontamination and sterilization In the same way as sheeting. After 

addition ol crystalline melatonin, or melatonin dissolved In absolute ethanol and castor oil 

(1 :9 ; Sigma Chemical Company Ltd .), the open ends of the tubas w a re  sealed with 

slerlllzad adhesive and they ware ready lor use. Packets and tubas Intended lor control fish 

were constructed in an Identical fashion but contained no melatonin.

Fish were starved lor 3 days prior to Implantation of Silastic packets o r tubas Into the



......... .
m  >M  H *  m  t n

fHlillllili

Plat* 4 .1 : Exam ptm  of SMaatic packata uaad to Invaatigata lha affacta of k>ng-tann 

admlnlatration of malalonin on tfia timing of raproductlon In tornala rainbow  trout (from 

toft, 1, 2 and 2.5 cm* packata containing 10, 100 and lOOmg malatonin raapactlvaly).



parNonaal cavHy. Th a  aHa of Implantation la ahown m plata 4.2. A  le n t mdalon was mada 

slightly abova and bahind tha palvic fins of an anaasthatlsad fish a nd  tha muscia layars 

aasad apart. Th a  Implant was carafully introduoad Into tha parltonaal cavity and tha wound 

saalad with dantal tissua glua (Orahasiva; kindly donatad by tha M inistry of Agrlcultura, 

FIshsrIas and Food, Lowsstoft, U .K .) oontalning ona part to thraa CIcatrIn antibiotic 

powdar (Th a  Wallooma Foundation Ltd., London, U .K .). Fish w ars tagged and panjattad 

(section 2.1.3) to aid kfantlflcatlon and raplacad In thalr tanks. Additional aeration was 

provided to aid recovery which generally occurred within 5 m inutes. Whan a large 

number of fish were to be Implanted only a small number were Implanted Initially and 

thalr satisfactory recovery ensured over 3 days prior to Implantation of tha remaining 

Ash. Cktntrol fish and Implanted fish were maintained In separate tanks.

Q SI and hormone data were analysed by Student's t-test for homogenous variances 

(section 2.7 .4) or one-w ay analysis of variance followed by a param etric multiple 

comparisons procedure (section 2.7.5).





4.4.2 g«fw lm a nt 7- of M fmnom of implMntm tor tha admlnlatration ol malatonln

4.4.2.1 ProlocQl

Tw o -y «a r old femalo rainbow trout maintalnod undor continuous light were Implanted 

with 1 cm* Silastic packets containing either 0 . 5. 10 or 20mg melatonin or with 2 cm 

Silastic tubes containing either 5 or lO m g melatonin (2 -3  fish p e r Inrtplant type). A 

single fish was injected with microcapsules containing lOmg melatonin and made from a 

polymer urnler development as a controlled release device at A ston  University. U.K. 

(kirKlIy prepared by P. KeHy). Blood samples (section 2.1.4) were taken over a 4-month 

period and duplicate 500^1 aliquots of serum assayed for melatonin (section 2.6) against a 

buffer standard curve.

4.4.2.2 Raauila

Th e  implants were well tolerated by the fish with rto deaths occurrlr>g during the 

monitoring period. The melatonin release profiles are illustrated in Figure 4.17. Only the 

10 and 20mg Silastic packets showed any promise producing m ean serum melatonin 

concentrations approximately 2.5 times those of the controls after 28 days. After 55 days, 

however, no elevation of melatonin levels was apparent In any of the implanted fish.





4.4.3.1 Protocol

Approximataly 60 two-year old virgin female rainbow trout were transferred from 

natural photoperiod (latHude 52*30*N) and constant temperature (7 .5 -8"C ) conditions to 

a simulated natural photoperiod and constant temperature <12*C) on February 2. The  fish 

gradually became acclimatised to their new environment and most had begun to feed again 

after about 2 weeks. Groups of fish were Implanted according to the following protocol:

Group la  • Controls; each fish received one empty Silastic packet (2 c m ^  on either 

February 16 (2 fish) or February 19 (6 fish).

Group 1b • Controls; fish were subjected to a sham-operation on either May 5 (3 fish) or 

May 8 (16 fish).

Group 2 - 'Short-day' from February; each fish received one Silastic packet (2 cm^) 

containing 100mg melatonin on either February 16 (4  fish) or February 19 (8 fish). 

Group 3 • 'Short-day* from M ay; each fish received 3 Silastic packets (2.5 c m ^  each 

containing lOOmg melatonin on either May 5 (4 fish) or May 8 (12  fish).

On February 25 the fish were transferred from simulated natural photoperiod 

(10.5L:13.5D) to 18L:6D. Stood samples (section 2 .1 .4) were taken at mId-photophase 

from 2-8 of the fish which received implants in February, at 2 -3  week intervals over a 

2 month period. Duplicate 500pl aliquots of serum were assayed for melatonin (section

2.6) against a buffer standard curve. At monthly intervals from September to November 

blood samples were collected from the surviving fish in each group for analysis of serum 

calcium (section 2.4).



4.4.3.2 R a a u lf 

Malatonin

T h «  m«latonln ra la a t« profil# of tha Fabruary knplantad fish Is illustratad in FIgura 

4 .18. Aftar 6 days maan plasma malatonin ooncantrations raachad 367 (±179; 

n-2)po/m l: no controls wars samplad at this tlma. At approximataly 3. 6 and 8 waaks 

post-implantation plasma malatonin concantrations w ara ralativaly constant with maan 

lavals of 135 (±20; n «4 ). 121 (±11; n -8 )  and 132 (± 1 4; n -5)pg/m l respectively, 

compared to maan lavals of 64 (±6: n -4 ) ,  62 (± 7 ; n -4 )  and 63 (± 4 ; n«3)pg/m l 

raspactivaly In tha controls. O n  each sampling occasion plasma malatonin concantrations 

wara significantly higher (PsO.01) in the melatonin implanted fish than In tha controls.

fijfw xninn

Approximately two-thirds of the fish died between April and July (principally June). 

Th e  majority of these experienced difficulty in maintaining their position in the water and 

were found to be infected with the swim-bladder parasite. Ancylostoma ryiirtiftni« There 

was no  detectable differer)ce between members of groups which died during this period, all 

of which had immature ovaries (reflected by a Q SI of $1). T h e  remaining fish appeared to 

feed and behave normally from July onwards until tha control fish (groups la  and lb )  

died whan the pump maintainir>g the water recirculation system in their tank failed on 

November 17. T o  enable a comparison between the Q SI of the melatonin implanted fish and 

the controls, groups 2 ar>d 3 were also killed on Novem ber 22. The  QSI's are tabulated 

below:

la

Treatment

C o n tro i-Fab ru ary

M « .n  Q S I f+1SEM> 

6.57 (± 1 .3 8 )

n

4

1b Contro l-M ay 10.27 (± 1 .2 8 ) 8

la  -f 1b Control-com bined 9.04 (± 1 .0 7 ) 1 2

2 M alatonin-Fabruary 10.88 (± 2 .1 0 ) 4

3 M elatonin-M ay 7.38 (± 1 .9 9 ) 5
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Figure 4.18: Serum  melatonin concentrations (mean ± I S E M )  in 2-year old rainbow 

trout following the administration of Silastic packets containing lOOmg melatonin. The 

number of fish examined on each sampllr>g date is iixficated above the error bars.





Figure 4.19: Changes In total serum calcium levels (mean ± 1SEM ) during the latter part 

of the reproductive cycle of female rainbow trout administered Silastic packets containing 

melatonin in either February or May (Control; n -7 -1 0 : M elatonin-February; n -3 -4 : 

Melatonin-M ay: n «4 ).



4.4.4.1 Protocol

Approximately 100 two-year old virgin female rainbow trout were transferred from 

natural photoperiod (latitude 56*’N ) and seasonally-varying water temperature to 16L:60 

(also seasonally-varying water temperature) on either January 13 (7 .5 L ;1 6 .5 D ) or 

February 2 (8 .5L:15.50). Unfortunately, the majority of these fish died within a short 

time, apparently because of a deterioration In water quality shortly after their arrival. 

Th e  14 surviving fish had regained weight and were feeding normally by May and were 

divided into 2 equal groups as follows:

G ro up  1 - Controls: each fish received one 2.5cm Silastic tube, containing 200pl 

ethanol:castor oil (1:9) mixture only, on May 6.

Group 2 - 'Short-day' from M ay: each fish received one 2.5cm Silastic tube, containing 

5mg melatonin dissolved in 200pl ethanol:castor oil (1:9) mixture, on M ay 6.

Blood samples (section 2.1.4) were taken at mid-photophase on July  7 (n>3) and 

October 5 (n «1 4 ), and duplicate SOOpI aliquots of serum were assayed for melatonin 

(section 2.6) against a buffer standard curve. Between October 26 and Novem ber 3 all of 

the fish stopped feeding and 10 died, apparently in response to a further deterioration in 

water quality. The  remaining 4 fish did not regain condition and were killed on November

10. Gonad and body weights were recorded for calculation of the G S I (section 2.3.3).

4.4.4.2 Reaulta

Approximately 2 months post-implantation (Ju ly  7) serum m elatonin levels of 

76pg/ml (n>1) and 93 (± 27; n«2)pg/ml were recorded for the control and melatonin 

implanted fish respectively. At 5 months post-implantation (October 5) mean melatonin
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4.5

4.5.1 P t t f n «  of malatenln «acratton In tha rainbow trout.

T h e  present study denf>onstrates a clear diurnal rhythm in circulating melatonin in 

rainbow trout maintained under both 'long* and 'short' daylengths. Serum arxl plasma 

melatonin levels in experiments 1*4 were within the range reported for a variety of fish 

and higher vertebrates (Ta b le  4 .1 ). Specifically, melatonin levels in juvenile rainbow 

trout measured during the scotophase, at approximately 500-600pg/mi, were similar to 

those observed at m id-scotophase by other workers studying rainbow trout of 

approximately the same age (Q em  et al., 1978b; Owens et al., 1978); it should be noted, 

ho w ever, that a cross-reacting contaminant detected in chloroform-extracted trout 

plasma may have caused an over-estimate of melatonin concentrations in the assay used by 

Qern and colleagues (Q ern  et al.. 1978b). Similarly, nocturnal melatonin levels in 

broodstock fish, at approximately 200pg/ml, were comparable to those previously 

reported In adult rainbow trout (G ern et al., 1978a, b; Duston and Bromage, 1986b), 

although lower than the levels of approximately 400pg/ml observed in 2-year old fish by 

O w ens et al. (1978).

It should be noted that circulating melatonin was also detected during the photophase in 

experiments 1-4, although the concentrations were always much lower than those 

measured In the scotophase. Low blood melatonin levels in the photophase have been 

reported in a number of different vertebrate species (Ta b le  4 .1 ). and photophase 

concentrations within the range detected in this study have been reported In several 

previous studies on the rainbow trout (Qern et al., 1978a, b; Ow ens et al., 1978; Duston 

and Bromage. 1986), and also in the pike (Falcon et al.. 1989) and common carp (Kezuka 

et al.. 1988). A  permanently high baseline does not appear to be a characteristic of the 

melatonin assay used in the present work, since melatonin levels in IrKlivldual fish were 

occasionaily below the limit of detection. It is possible that a high concentration of one or 

more cross-reacting molecules was present In the serum or plasma samples, but. In view 

of the high specificity of the antibody used in this study (section 2.6), and the agreement
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Table 4.1: Day-night changes in melatonin concentrations (pg/ml serum or plasma) in a 

variety of vertebrate species.

Raf. No.

Mammals Calf 1 9 2 0 0 1

Carnal 2 9 221 2

Donkey 2 4 1 08 3

Human 2 3 9 7 4

Pig 2 2 7 6 5

Rat 6 7 5 6

Rhesus mortkey 3 2 8 6 7

Sheep 1 0 2 4 0 6

Birds Chick 5 0 2 0 0 9

Pigeon 2 0 8 5 8 1 0

Quail 1 0 4 0 0 1 1

Sparrow 94 8 4 0 1 2

Reptiles Scincid lizard 3 5 2 4 0 1 3

Sea turtle 6 0 1 43 1 4

Tortoise 2 0 1 80 1 5

Amphibians Tiger salamander 174 2 4 9 1 6

Fish Baltic salmon <2 5 3 -2 0 4 1 7

Coho salmon 2 5 -4 0 1 8

Common carp 2 3 -1  04 2 2 0  5 4 0 1 9

Dace <5 6 0 0 -1 2 0 0 * 2 0

Pike 7 0 -1 2 0 1 7 0 -2 1 0 21

Rainbow trout 8 1 1 53 2 2

1 2 4 -2 6 4 2 5 4 -5 9 6 2 3

8 5 -1 6 4 2 4 8 -6 3 7 2 4

3 5 -1 0 0 1 5 0 -3 1 6 * 2 5

Adapted from Binkley. 1988. References: Binkley. 1986 (1 -1 6 ); Lindahl and

Wetterberg. 1986 (17); Qern et al.. 1984b (18); Kezuka et al.. 1988 (1 9 ); Brook,

1989 (20); Falcon et al., 1989 (2 1 ): Gern et ai.. 1978a (22 ); Gern et al.. 1978b

(23); Owens et al.. 1976 (24); Ouston and Bromage. 1986b (25). *-unvalidated assays.



with previous studies utilising different antibodies, it appears rr>ore probable that 

circulating melatonin is present during the photophase. Confirmation, however, awaits 

further validation of the assay using concentrated extracts of serum or plasma obtained 

during the photophase and/or gas-chrom atography-mass-spectrometry (Q C -M S ). the 

most specific technique currently available.

The  source of melatonin present in the photophase is unknown but it is probably 

primarily of extra-pineal origin since pinealectomy of rainbow trout has been reported to 

cause a consktorabie reduction in circulating melatonin levels in the scotophase but only a 

slight (although still significant) decrease in the photophase (G ern et ai.. 1978b. c). 

Several extra-pineal sites of putative melatonin synthesis have been identified in higher 

vertebrates including the eyes, the Harderian gland and the gut (Ralph. 1981b; Pang and 

Allen, 1986). The  rainbow trout retina contains H IO M T (Quay, 1965; Quay et al., 1969; 

Qern et al.. 1984) and Is capable of melatonin synthesis (Qern et al.. 1978c; Qern and 

Ralph, 1979; Qern and Karn. 1983). Moreover, In marked contrast to the majority of 

species Investigated (Pang and Allen. 1986), the melatonin content of rainbow trout 

retinae was significantly higher during the photophase than the scotophase (Qern et al., 

1978c). Thus, the melatonin detected durirtg the photophase in the present study may have 

originated from the eyes. More recent studies by Karn (1983; cited by Qern and Karn, 

1983), however, have reported a significant nocturnal elevation In retinal melatonin in 

the rainbow trout, thus contradictir>g earlier findings. Fish do not possess a Harderian 

gland artd to my knowledge the fish gut has not been examined for melatonin. However. Qern 

(cited In Ralph. 1981b) was able to detect circulating melatonin in rainbow trout which 

had been both pineaiectomized and enucleated, suggesting that extra-pineal sites other than 

the eyes may also be capable of producing melatonin.

There  was considerable variation in the amplitude of the nocturnal increase in 

circulatirtg melatonin between experiments with mean scotophase levels of approximately 

500-600pg/ml in the juvenile fish sampled in experiments 1, 2 and 4b, but only about 

200pg/ml in the 2-4 year old broodstock used In experiments 3 and 4a. This cannot be 

explained by strain differences since the fish used in experiments 2 . 3 and 4a were of the
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same strain. Moreover, the Juveniles used In experiment 2 were of the same sex (all 

female) as the adults used In experiments 3 and 4a. These results are in accord with those 

of Q ern  et al. (1978b) who reported m id-scotophase plasma melatonin levels of 

596pg/ml In 1-year old and 254po/ml In 2 -year old rairtbow trout, and also with those 

from an earlier study In which mid-sootophase levels of 153po/ml w ere observed in 4- 

year old rainbow trout (Q em  et ai.. 1978a). A  similar relationship between age and the 

amplitude of night-time lr>creases In pineal or blood melatonin levels has been observed in 

one other lower vertebrate, the scincid lizard. ruoosus (Firth et al..

1979). arid a number of higher vertebrates ir>cludlr>g the Syrian hamster (Reiter et al.. 

1980a. 1982; Pang and Tang. 1983), rat (Reiter et al.. 1981; Pang et ai., 1984), 

Mongolian gerbil (Reiter et al. 1960b) and rhesus monkey (Wilson and Gordon. 1969). 

In humans a decline in circulating melatonin levels with age has been reported in sonr>e 

studies but not others (see discussions In Wurtman et al.. 1963; Lang, 1966;), although 

the current consensus Is that a decline does occur between early childhood and fully grown 

adolescence (Silman, 1991). Young et al. (1966), recently reported that human pineal 

output is not age-dependent and concluded that the decrease in circulatlrig melatonin levels 

observed during human growth and sexual maturation Is due to the increase In body mass. 

This cannot adequately account for the differences in circulating melatonin in this study, 

however, sirKe fish weighing less than lO g. (experiment 2) had similar scotophase levels 

to those weighing 300g (experiment 1), which, in turn, were only three times higher 

than those in fish weighing up to 4500g (experiment 3). In rats the reduction in pineal 

melatonin synthesis associated with old age appears to be due to a decline In H IO M T 

activity, rather than an alteration in pineal responsiveness to neural stimulation (Dax arxl 

S ugden, 1986). A  similar mechanism would be in accordance with the directly 

photosensitive, exclusively pinealofugal, nature of the rainbow trout pineal.

Clearly, the relationship between age and nocturnal melatonin concentrations in this 

study is complicated not only by the possible effects of size, but also by the sexual 

maturity of the animals. In the female rhesus monkey the rate of the decrease in nocturnal 

melatonin secretion was related rx)t only to age but also to the timing of sexual maturation,
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with lower serum melatonin levels occurring In monkeys ovulating for the first time than 

in immature animals of similar age (Wilson and Gk>rdon, 1989). In the domestic cat, 

Leyva et al. (1984) have found that significantly lower concentrations of melatonin are 

present during periods of follicle development than during periods of ovarian inactivity 

within a cycle. Sir>ce there is a negative correlation between plasma LH and melatonin 

levels in humans. W urtman (1986) speculated that the high nocturnal melatonin levels 

observed In youf>g children compared to adolescents act as a brake on puberty and that the 

subsequent decline in these levels allows the mechanisms governing adult development to 

be expressed. In this respect Silman (1991) suggests that puberty occurs in humans 

when a combination of constant melatonin output from the pineal and increasing body mass 

(see Young et al., 1988) results In circulating melatonin falling below a minimum 

critical concentration, at which point it is no longer able to Inhibit the pulatile release of 

Q n R H . This hypothesis is supported by the observation that the amplitude of the r>octurnal 

increase In circulating melatonin in certain infertile w om en, in whom pulsatile Q nR H  

secretion does rK>t occur, is approximately double that measured in fertile subjects (Berga 

et al., 1988: Brzezinski et al.. 1988). Conversely. Reiter et al. (1981) suggested that 

the depression of pineal melatonin synthesis in old female rats may be related to the 

cessation of reproductive activity in these animals. However, a causal relationship 

between the amplitude of the melatonin rhythm (rather than the rhythm per sel aruf 

reproductive competence in higher vertebrates has yet to be demonstrated.

There is even less evidence for such a relationship among lower vertebrates although 

unusually tow levels of circulating melatonin have been reported in female green sea 

turtles during mating and nesting (Ow ens et al., 1980). Interestingly, Fenwick (1970) 

observed that the pineal melatonin content of immature chirK>ok salmon was six tin>es that 

of mature fish, although the age of these fish, which may spend 1-5 years at sea before 

returning to freshwater to spawn, was not reported, and the mature salmon were sampled 

under a shorter daylength than the immature fish.

Clearty, comparisons between the processes of sexual maturation in fish and mammals 

are of limited value, although, as detailed in chapter 1. there are many similarities
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between the neuroendocrine mechanisms controlling reproduction In fish ar>d higher 

vertebrates. Puberty can be defined as the time of first spawning in rainbow trout but the 

neuroendocrine changes associated with reproductive development in virgin fish begin at 

least 1 year before ovulation (Elliott et al., 1984; Sum pter, 1964: S um pter et al.,

1984). However, H is rnM krtown whether these changes had started in the 1-year old fish 

sampled in the current work since they were no\ retained until spaw ning and may 

subsequently have matured at either 2 or 3 years of age.

At least two further factors may explain the differences in amplitude of nocturnal 

melatonin secretion observed in this study. Firstly, light intensity can have a pronounced 

effect on melatonin synthesis. Certainly, when dealirig with a light sensitive hormone, an 

increase in light intensity during the photophase might be expected to produce a more 

clearly defined secretion pattern (Lincoln et al., 1985). In the present study the Juvenile 

fish were indeed exposed to a higher light intensity (>200 lux at the water surface) than 

the broodstock (25-30 lux at the water surface). However, in G ern et a l.'s (1978b) 

investigation the 2-year old fish were subjected to a much higher light intensity (9,900 

lux) than the l -y e a r  old fish (700 lux). It therefore seems unlikely that the differences 

In amplitude of nocturnal melatonin secretion between juvenile and adult fish were due to 

differences in light intensity during the photophase. An alternative explanation is that the 

amplitude of melatonin secretion Is temperature dependent. In cold-blooded vertebrates 

especially it has been suggested that melatonin may serve to integrate information on both 

photoperiod and temperature (V ivien-R oels. 1981, 1985). Certainly, fluctuations in 

temperature would be expected to be accompanied by substantial changes in 

metabolic/enzymatic activity in poikilotherms. Most research on this topic has been 

conducted in reptiles, which may experience large variations in environm ental 

temperature and in which temperature appears to be an important proximate cue for the 

control of seasonal reproductive activity (Licht, 1984). A temperature-ir)duced increase 

in the amplitude of pineal ar>d/or circulating melatonin levels during the scotophase has 

been reported in the green sea turtle, the loggerhead turtle, Caratta caratta (Ow ens and 

Qern, 1981), the tortoise. Tastudo hermannl fVivten-Roels and Arendt, 1981, 1983),
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and tha box turtta (VIvlan-Roala at al.. 1986). In tha latter two species there were clear 

day-night differer>ces in melatonin levels at 2S-30^C but these changes were abolished at 

5**C. irrespective of time of year and photoperiod <wlntar/'short' day or summer/'lor>g' 

day) or state of arousal (hibernating or aroused): in tha box turtle tha amplitude of the 

melatonin rhythm showed a marked incraase at each of 3 increasing temperatures (IS . 20 

and 2 7 * C ). Melatonin rhythms ware similarly abolished in the frog, Rana oerezl. at 6**C, 

but a d ea r rhythm was present at 25*^0, again regardless of time of year ar>d photoperiod. 

In contrast, a clear plasma melatonin rhythm was observed at 1 0 X  (12L:12D) in another 

amphibian, the neotenic tiger salamarKJer. but the rhythm was abolished in animals 

maintained continuously at 20'*C (Q ern et al., 1963). Furthermore, the pineal melatonin 

rhythm of the green anole lizard can be entrained to a 24-hour temperature cycle with 

increased melatonin levels occurring during the cool phase of a 32^C/20”C  (12:12 hours) 

temperature cycle even when the cool phase occurs during the day (Underwood, 1985b). 

Moreover, in the sleepy lizard, Tlligua rugose. 6 hour thermoperiods administered at 

different phases of a 12L:12D photoperiod caused phase-shifts of the melatonin rhythm, 

although melatonin levels were not observed to peak in the photophase in this species 

(Firth and Kennaw ay. 1989). Thus, temperature can modify melatonin secretion in a 

num ber of poikilotherms, although the effect produced by a particular change in 

temperature (whether it is an increase or decrease in amplitude) can vary with species.

In the present study the sampling temperatures were 11, 15 and 8''C for the 4.5 

month-oid fry, 1-year old Juveniles and broodstock respectively. Thus, the much lower 

amplitude of the melatonin rhythm in the broodstock may be attributable to the lower 

temperatures experienced by these fish relative to the Juveniles. The  lower temperature 

experienced by the fry relative to the 1-year old fish may also explain why no age-related 

difference in melatonin levels was apparent between these groups (age-related and 

temperature effects need not be mutually exclusive). Tem perature has been shown to 

affect the accumulation of cy dic -A M P , which is thought to be a second messertger in 

melatonin synthesis, and also N A T  activity, in rainbow trout pineals In v itro , with 

synthesis declining rapidly either side of a maximum at about 15^C (Falcon and Collin,
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1969). Morton and Forbes (1989) found that the capacity of pineal H IO M T  to produce 

melatonin was diminished with decreasing temperature in the rainbow trout. However, 

th e y  also reported that the affinity of H iO M T  for its substrate. N-acetylserotonin, 

increases with decreasing temperature. Th u s , the decrease in reaction velocity with 

decreasing temperature appears to be oounteracted by the increase In affinity of the 

enzym e for the substrate, resulting in a constant rate of melatonin production. Th e  authors 

suggest that this mechanism  enables pineal H IO M T to accurately regulate melatonin 

production over a wide rar>ge of temperatures in the rainbow trout (Morton and Forbes. 

1969). Moreover, an increased melatonin secretion at mid-scotophase in 2-year old 

relative to 1-year old rainbow trout was observed by Qern et al. (1978b) even though the 

tw o  groups of fish were maintained at the same temperature. Additionally, Lindahl and 

W etterberg (1986) reported a much higher nocturnal elevation in plasma melatonin 

levels  in Baltic salmon rSaimo saiari in March than in D ecem ber, although the 

temperature was similar on each sampling occasion. Thus, although salmonids may be 

exposed to considerable seasonal variations in temperature, and temperature is able to 

modulate seasonal reproductive events (section 1.2), a dependence of melatonin secretion 

o n  temperature remains unproven.

Experiments 1-3 demonstrate that the nocturnal increase in circulating melatonin 

siccurately reflects the duration of the scotophase in both juvenile and adult rainbow trout. 

T h e  pattern of melatonin secretion in rainbow trout maintained under both 'long* and 

'short* photoperiods was similar to that arbitrarily classified as type C  (or type III )  in 

higher vertebrates (F igure  4.4 : Reiter, 1983, 1986, 1967, 1986). Information on 

patterns of melatonin secretion in other fish is limited to a few species. Notwithstandir>g 

the reservation that only four samples were taKen during the scotophase, the plasma 

melatonin profile of pike maintained under a natural 10.5L:13.5D photoperiod (Falcon et 

a l., 1989) appears similar to that observed in the rainbow trout in the present study. In 

Lindahl and Wetterberg's (1986) ‘four-seasons' study of the Baltic salmon the duration of 

the nocturnal increase in melatonin secretion (assessed at 2-5 hour intervals) was. in 

general, directly proportional to the duration of the scotophase. but r>o pattern type



clearly predom inated. In com m on carp m aintained under long (1 6 L:8 D ) or short 

(8L:16D) daylangths plasma melatonin levels (assessed at 2 hour Intervals) Increased 

rapidly after the onset of darkness and remained elevated for the remainder of the 

scotophasa, as In the rainbow trout: under 'short' days, however, two peaks In circulating 

melatonin w e re  observed (K ezuka at al., 198 8 ). Brook (1989) reported that the 

melatonin rhythm In the dace most dosaly resembled a type B (or type II )  pattern under a 

long photo period  (1 8 L:8 D ) and a type C  pattern under short days (8 L :1 8 D ); 

Interestingly, she  also observed two peaks In circulating melatonin under 'short' days. 

Thus, in the tw o  cyprlnkf fish for which data la available the melatonin rhythm exhibits 

two peaks under 'shorT daylengths. Similar patterns have been observed In some studies 

on humans a nd  sheep maintained under 'short' photoperiods (Arendt. 1979; Arendt el al.,

1985). Th e re  w as, however, no evidence for a similar biphasic pattern of melatonin 

secretion In rainbow trout maintained under 'short' days In the present study. No previous 

studies on fish have employed such frequent sampling Intervals as those used In the 

present Investigation; It Is possible that the apparent existence of more than one peak In 

circulating melatonin observed in some studies Is an artifact caused by the pulsatile 

nature of m elatonin release (Blltman et al., 1983; English et al., 1987; Gern and 

Greenwood, 1988; StanIslewskI et al.. 1988). T h e  only previous Investigation on the 

effect of photoperkxf on the pattern of melatonin secretion In the rainbow trout (Duston 

and Bromage, 1986b) also Indicated that the duration of the nocturnal melatonin rise was 

proportional to the duration of the scotophase but suggested a type B pattern; this 

discrepancy between the two studies Is no doubt due to the fact that In the earlier work 

only 2 and 3 samples were taken during the scolophase under 'long' end 'shorf daylengths 

respectively.

Th e  results of experiment 2 demonstrate that rainbow trout possess a distinct 

melatonin rhythm  at only 4.5 months of age: the pattern of secretion In these young fish 

was almost identical to that observed In 1 -year old fish maintained under the same 

photoperiod (1 6 L :8 D ) In experiment 1. To  m y knowledge no previous studies have 

examined circulating (or pineal) melatonin levels In very young fish. However, the



ontoo«n«tic development of the pineel. with reference to substances thought to be Involved 

In photoreception and phototransduction, has been Investigated In two species. Opsin and 

serotonin immunoreactive photoreceptors were present In the pineals of embryonic 

sticklebacks 72-80 hours after fertilisation, but immunoreactive retinal photoreceptors 

could not be demonstrated until just after hatching at 144 hours post-fertilisation 

(Ekstrom at al.. 1983; van V een et al.. 1984). Similarly, S-antlgen, a-transducin, opsin 

and serotonin immunoreactive photoreceptors were present In the pineals of Atlantic 

salmon 30 days prior to hatching whereas no immunoreactivity to these substances was 

observed in retinal photoreceptors until after hatching, which occurred at 110 days post­

fertilisation (Ostholm et a l.. 1987). Th u s, in two fish with v e ry  different rates of 

embryonic development, the developing pineal is probably capable of perceiving light 

information much earlier than the eyes. Moreover, the presence of serotonin in embryonic 

pineal photoreceptors may be  irnficative of an active indoleamine metabolism. This  early 

differentiation of pineal photoreceptors suggests that a functional pineal is important for 

the successful development of young fish. In this respect, Ostholm et ai. (1987) suggested 

that early differentiation of pineal photoreceptors may enable salmon fry to change skin 

colour and show negative phototactic behaviour in order to locate dark areas in the gravel 

and hence avoid predators. Moreover, a mechanism that allowed early photoperiodic 

entrainment of diurnal and/or seasonal rhythms might be expected to optimise the 

survival chances of alevins and  fry. The  results of experiment 2 show  that by 4.5 months 

of age circulatir>g melatonin provides a hormonal template of photoperiodic information In 

rainbow trout fry. Thus, the photoperiodic entrainment of diurnal and seasonal rhythms in 

salmonid (and perhaps o th er) fish may be mediated by diel and seasonal changes in 

patterns of melatonin secretion from a very early age.

4.5.2 Qanaration of melatonin rhythm« in the rainbow _tfQuL

Art Important firtdirtg o f the present work Is that the distinct diurnal rhythms in 

circulating melatonin demonstrated in rainbow trout maintained urtder 'long' and 'short* 

daylengths (experiments 1 -3 ) did not persist in O D  (experiment 4 ). This is in complete



contrast to the situation prevalent in those higher vertebrates so far investigated, which 

show persistence in DD of in vivo melatonin rhythms previously synchronized to a light- 

dark cycle <see section 4.1; Figure 4 .5 ). O n ly  one other study has examined in vivo 

patterns of melatonin secretion in fish maintained in O D . Aida et al. (1989) transferred 

goldfish from 12L:12D to DD and took blo od  samples at 4-hour intervals on days 1-3. 7- 

8 and 14-15. They reported that plasma melatonin levels on days 1-3 were higher durir>g 

the period corresponding to the scotophase of the acdimatory photoperiod than during the 

period corresponding to the photophase, but that d ear daily cycles had disappeared after 

7-8 days in DD. and melatonin concentrations remained permanently elevated by days 14- 

15. These  firufings are irtdicative of free-running endogenous rhythms of melatonin 

secretion in individual fish, which became desynchronized after a period in D D . Workers 

in the same laboratory found that cultured goldfish pineals from fish maintained under a 

12L:12D photoperiod continued to express a circadian rhythm of melatonin secretion In 

DD for up to 4 days, with significantly higher melatonin levels associated with the period 

corresponding to the scotophase of the acclimatory photoperiod (Aida, 1989; Kezuka et al., 

1989: ligo et al.. 1991). Similarly. F a lco n  et al. (1989) have dem onstrated that 

rhythms in pineal N-acetyltransferase and  melatonin persist in vitro for at least 3 days 

in the pike: significantly elevated levels were again principally associated with the 

subjective scotophase of the previous (1 0 L:1 4 D ) photoperiod although the melatonin 

rhythm exhibited a slight phase-shift with maximal secretion occurring slightly later on 

successive days. Moreover, even fractions of pike pineals are capable of releasing 

melatonin for 3 days in DD (Falcon and Collin . 1989). Thus, both the goldfish and the pike 

appear to possess an intra-pineal oscillator (or oscillators) which participates in the 

regulation of melatonin secretion.

In contrast, Qern and Greenhouse (1 9 8 8 ) were unable to demonstrate persistence of 

the melatonin rhythm In isolated rainbow trout pineals maintained in D D ; although clear 

rhythms in melatonin secretion were present in cultures maintained under 12L:12D or 

14L:10D, melatonin levels remained continuously elevated after transfer to D O  (although 

the amplitude of the Increased melatonin production gradually decreased over time).



Interestingly, MelssI et al. (1990) were also unable to demonstrate a circadian rtiythm in 

neural output during long-term recordir>gs from pineal ganglion cells of isolated rainbow 

trout pineals. Th e  results obtained in vivo in the present study are in agreement with 

those obtained in vitro by Qern and Greenhouse (1 9 8 8 ) and therefore support their 

contention that the rainbow trout pineal does not contain a circadian oscillator capable of 

regulating melatonin release. Additionally, however, they provide evider>ce that melatonin 

release m vivo is not controlled by an extra-pineal circadian clock. This concurs with the 

findings of Hafeez and Zerihun (1974) who reported that the pineal tract innervation of 

the rainbow trout was exclusively pinealofugal. although pinealopetal innervation via 

another route, perhaps including the eyes (Smith arxl W eber, 1976; Hafeez et al.. 1978), 

cannot be discounted (see section 4.1). if a central peptidergic Innervation of the pineal 

occurs In the rainbow trout, as has been demonstrated for the Atlantic salnx>n and the coho 

salmon (Ekstrom et al.. 1988), the present results also suggest that it is does not function 

to relay information from a central oscillator to the mechanism regulating melatonin 

secretion. To  my kr>owledge the desert iguana is the o n ly  other non-mammalian vertebrate 

so far shown not to possess an intra-pineal oscillator, but melatonin rhythms did persist 

in D D  In vh/o indicating that an extra-pineal circadian clock regulates melatonin secretion 

in this species (Janik and Menaker. 1990). Firth et al. (1979) w ere unable to 

demonstrate a free-running rhythm of melatonin secretion in vivo in sleepy lizards, but 

they probably employed insufficient sampling points (6 -hour intervals): moreover, they 

detected an 'anticipatory' increase in plasma melatonin prior to darkness onset, suggestive 

of an endogenous rhythm of melatonin secretion in this species.

It must be borne in mind that the pulsatile nature of melatonin release from rainbow 

trout pineals (Qern and Greenhouse. 1988) or rapid desynchronization of the rhythms of 

individual fish may have masked endogenous rhythmicity. As the day-night changes in 

circulating melatonin were so distinct in fish exposed to light-dark cycles, however, and 

since persistence of melatonin rhythms in vivo has been clearly demonstrated in DD in the 

sheep (Rollag and Niswender, 1976; Almeida and Lincoln. 1964; Lincoln et al.. 1965). a 

species also known to exhibit episodic secretion of melatonin (Bittman et al., 1983;



English et al., 1987). it seems unlikely that endogenous rhythmicity was concealed by 

pulsatile secretion in the present study. Moreover, previous in vivo studies m  a number 

of animals including the goldfish (Aida et al.. 1989), desert iguana (Janik a n d  Menaker. 

1990). quail (Cockrem  and Follett. 1985). sheep (Roilag and Niswender, 1 9 7 6 ; Almeida 

and Lincoln, 1984; Linoin et al., 198$) and rhesus monkey (Periow  et al., 1981; 

Reppert et al.. 1981) have shown that the melatonin rhythms of individual animals 

previously entrained to a light-dark cycle drift out of phase only slowly in D D  (Figure 

4.5) and hence retain sufficient synchrony In the days followir>g transfer to D D  for the 

persistence of the rhythm to be dearly demonstrated using groups of anim als. There 

remains the possibility that one hundred years of domestication has le a d  to the 

disappearance of circadian control of melatonin secretion in farmed rainbow trout, and 

that such a m echanism may be retained in wild fish. However, this argum ent is 

unconvir>cing since circadian control has been retained in other dom esticated species 

investigated (see above and section 4.1). Melatonin production in the rainbow  trout 

appears, therefore, to be a direct response to darkness.

Additional support for this conclusion is provided by the patterns o f melatonin 

secretion observed in experiment 1 In which all significant increases and decreases in 

circulating melatonin were coincident with the light to dark or dark to light transitions; 

there was no evidence for 'anticipatory' increases or decreases prior to lights-off and 

lights-on or for a delay in secretion after the onset of darkness. In contrast, patterns of 

melatonin secretion in many higher vertebrates are entrained to the light-dark cycle and 

do not merely follow light-dark changes (Figure 4.4: Underwood and G o ld m an , 1967; 

Reiter, 1988). Th e re  is limited evidence that this may also be the case in som e fish. Thus, 

a significant increase in plasma melatonin before lights-off has been reported in common 

carp maintained under 16L:6D (Kezuka et al., 1988), and decreases in melatonin content 

prior to light onset have been observed in pike pineals sampled u n d e r a natural 

10.5L:13.5D photoperiod (Falcon et al.. 1987) and in the plasma of Baltic salmon at 

several daylertgths between October and March (Lindahl and W etterberg, 1986). In 

addllion, the results of experiments 5 and 6 (to be discussed in more detail later) indicate
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that an Increase in plasma melatonin may have occurred before a detectable decrease In 

light Intensity in the Atlantic salmon and that plasma melatonin had returned to daytime 

levels prior to light onset In the tiiapla.

Th e  results of experiment 3, In which rainbow trout were transferred from 18L:6D to 

6L:18D. accomplished by advancing the onset of the scotophase by 12 hours, also provide 

evidence that melatonin production in this species is a direct response to darkness. On the 

day of transfer to 6L:18D there w as an immediate increase in circulating melatonin levels 

which, at 30 minutes after lights-off. had reached a similar amplitude to that observed at 

the same time point under 1 8L:60  (Figure 4.11). Serum melatonin concentrations under 

6L:18D remained elevated until 30 minutes prior to lights-on, but. as under 18L:6D. had 

returned to daytime levels 30 minutes after light onset. Thus, the pattern of melatonin 

secretion adjusted immediately to the change in photoperiod (although it is not clear why 

the melatonin rhythm was less distinct on the second day after transfer). This result is 

consistent with those of Qern and Greenhouse (1968) who reported that pulses of darkness 

applied to superfused rainbow trout pineals caused a rapid increase in melatonin secretion 

whether they were administered during the early or late stages of the photophase. In 

contrast, exposure of cultured pike pineals to darkness at midday did not induce an 

immediate rise in melatonin release (Falcon et al.. 1969), a result in accordance with the 

proposed circadian nature of melatonin production in this species.

Illnerova and colleagues have conducted a series of studies similar to that employed in 

the present work to examine the re-entrainment behaviour of melatonin rhythms in rats 

and Djur>garian hamsters. When rats were transferred from 16L:8D (lights off 2000 to 

0400 hours) to 8L:16D by a symmetrical extension (lights off 1600 to 0600 hours) or 

afternoor>/evenir>g prolongation (lights off 1200 to 0400 hours) of the scotophase the 

pineal N-acetyltransferase rhythm required 6 days to adjust to the new photoperiod, 

although re-entrainment was quicker when the scotophase was extended into the morning 

hours (lights off 2000 to 1200 hours: Illnerova et al.. 1986). Similarly, when rats were 

subjected to an 8-hour advance phase-shift of a 12L;12D photoperiod (lights off 1800 to 

0600 h o u rs ^ lig h ts  off 1000 to 2200 hours) adjustment of the pineal N -
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acstyltransterase rhythm look 5 days, w hereas re-entraInment occurred almost 

Immediately following an 8-hour delay phase-shift (f lig h ts  off 0200 to 1400 hours: 

lllnerova e l al., 1987). Ra-entrainmant of pineal melatonin and N-acatyltransferasa 

rhythms occurred more gradually In Djungarlan hamsters taking 4-6  weeks to adjust to a 

change from 16L:8D to 8L:16D accomplished by a symmetrical extension of the scotophase 

(lllnerova at at.. 1984). Hastings at al. (1 9 87 ) observed a similarly gradual re- 

entrainment of pineal melatonin rhythms m Syrian hamsters with adjustment to a change 

from 16L:8D to 8L:16D occurring over a period of 8 weeks, regardless of whether the 

change In photoperiod was achieved by an 8-hour advance or 8-hour delay phase-shift. 

Moreover. Lynch et al. (1978) found that human plasma and urinary melatonin rhythms 

took 5-7 days to re-entrain to a 12-hour phase-shift (accomplished by extending the 

photophase), and Rappert et al. (1981) reported that adjustment of the melatonin rhythm 

In the cerebrospinal fluid of rhesus monkeys subjected to a 12-hour phase-shift 

(accomplished by extending the scotophase) required 3 days. Thus. In al least 4 higher 

vertebrates, and possibly the pike, re-entrainment of the melatonin rhythm to a phase- 

shift of the light-dark cycle occurs not immediately, as In the rainbow trout, but 

gradually, although there are marked dllferences in the rale of re-entraInment which may 

occur over several days or weeks, deperrding on the species.

It should also be noted from the preceding discussion that, in rats at least, the rate of 

re-entrainment to a change from a ‘long’ to a ‘short’ photoperiod may also depend on 

whether the Increase In duration of the scotophase Is accomplished by advancing Its onset, 

delaying its offset, or a combination of the two. It Is therefore relevant to compare the 

results of the present work with studies in which a similar protocol was adopted to achieve 

the change In daylength. In experiment 3 the melatonin rhythm of the rainbow trout 

adjusted Immediately to a change from a ‘long' to a ‘shorT photoperiod achieved by a 12- 

hour advance In the onset of the scotophase. In rats. Djungarlan and Syrian hamsters, 

however, when a transfer from long (16L:8D) to short (8L:16D) days was accomplished 

by an advance In the onset of the scotophase (this Includes symmetrical extensions of the 

scotophase) re-enirainmeni of the melatonin rhythm to the new photoperiod always



occurred gradually over several days or even weeks (lilnerova et al.. 1984, 1986; 

Hastings et al., 1987). G radual re-entraInment through a series of transients is a 

characteristic response of a circadian rhythm to a phase-shift of the zeitgeber (although 

the speed of re-entrainment to asymmetrical phase-shifts appears to depend on the free- 

running period of the entrained rhythm; Aschoff, 1981). Th u s, there would appear to be 

fundamental differences between the mechanisms regulating melatonin secretion in the 

rainbow trout and certain higher vertebrates, especially rodents.

4.5.3 Melatonin secretion In the Atlantic satmon.

Th e  pattern of melatonin secretion observed in Atlantic salmon parr under a natural 

12.SL:11.5D photoperiod w as similar to that observed in rainbow trout maintained on 

artificial 'long* and 'short' daylengths. Th u s, serum melatonin concentrations increased 

rapidly as darkness fell, remained elevated for the remainder of the night and returned to 

daytime levels as light intensity increased the following morning. Melatonin levels during 

the scotophase, at 200-300 pg/ml. were within the range reported for other vertebrates, 

including the rainbow trout (Table 4.1). but were slightly higher than those observed in 

Baltic salmon parr (also Salmo aalar: i.e. same species, different geographical location) 

by Lindahl and Wetterberg (1966). In contrast to the present work, however, the latter 

authors were unable to detect melatonin during the photophase, and hence the day-night 

change In melatonin concentration in the two studies was similar.

Interestingly, between two of the sampling times Just prior to the onset of darkness 

(1700 and 1800 hours), there was a small rise in circulating melatonin in the absence of 

a detectable change in light intensity ( ‘-5 0  lux). Th is  may represent an 'anticipatory' 

irtcrease In melatonin levels, suggesting the irtvolvement of ertdogenous mechanisms in the 

regulation of melatonin secretion in Atlantic salmon parr. This result, however, should be 

treated with caution; firstly, because the increase was statistically significant (P$0.05) 

relative to only one of the preceding photophase samples, secondly, because the light 

intensity measured shortly after the 1800 hours sampling point was reduced considerably 

(to 24 lux), and thirdly, because there was no significant difference between melatonin
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levels at 1600 and 1900 hours, during which time the tight intensity decreased to close to 

the limit of detection of the lightmeter (from 24 to 6 lux). Nevertheless, the first 

significant decrease in melatonin levels the following morning (between 0600 and 0700 

hours) occurred at a light Intensity of approximately 5 lux. suggesting that melatonin 

production In the Atlantic salmon can be suppressed at a much lower light Intensity than 

that experierYced by the fish which showed an increase In melatonin levels prior to the 

onset of darkness. As previously mentioned. Lindahl and Wetterberg (1986) reported 

decreases In plasma melatonin before dawn In Baltic salmon parr, also suggestive of 

endogenous circadian control of melatonin secretion, although they did rK>t observe this 

pherYomenom on all sampling occasions, nor did they detect any increases In circulating 

melatonin prior to the onset of darkness, possibly because their daytime samples were not 

taken very close to dusk. Experiments utilising square-w ave artificial photoperiods, 

similar to those used to study the rainbow trout in experiments 1-3. and maintenance in 

D D . are required to clarify the role of endogenous m echanisms in the regulation of 

m elatonin rhythms in the Atlantic salm on, interestingly. W eber and Smith (1980) 

speculated that the pineal and melatonin may play a role in the migratory behaviour of 

anadromous salmonids. In view of this, and of the close phylogenetic links between rainbow 

trout and Atlantic salmon (see Sanford. 1990). possible differences In the mechanisms 

regulatlr>g melatonin secretion in these species merit further attention.

4.5.4 Melatonin secretion in the Nile tllapia.

Notwithstanding the reservations about the quality of the radioimmunoassay (section 

4 .3 .2 .2 ). experiment 6 demonstrated a distinct diurnal rhythm of circulating melatonin 

In the Nile tilapla. T o  my knowledge this is the first time that a rhythm in melatonin 

secretion has been reported In cichlid fish. Moreover, there was a significant decrease 

(P ^ O .O I) In serum melatonin before llghts-on suggesting that. In contrast to the rainbow 

trout, endogenous circadian mechanisms are involved in the generation of the melatonin 

rhythm In this species. The  fish used in this study had been maintained in the laboratory 

under a constant 12L:12D photoperiod and temperature of 27-28"C  since birth. Tilapla



■re multiple spawners (Rana, 1988), and under thete laboratory conditlona the strain of 

tllapla used In the current study exhibit spawning cycles throughout the year (M cEwen, 

personal communication). However, the flsh used were descendents of a stock recently 

(1979) acquired from Lake M anzala, Egypt. At this latitude (31°20'N) they would be 

exposed to considerable seasonal variations In temperature and daylength, experiencing a 

photoperiod of approximately 14L:10D at the summer solstice and about 10L:14D  at the 

winter solstice. Nile tllapla originating from the lakes of the Nile delta bread between 

April and August with peak spawning In May and June (Trewavas. 1983; M unro. 1990). 

At the limit of Its northern range In Israel (33°N) breeding Is even m ore restricted, 

occurring In April and May (Trew avas, 1983: Munro, 1990). In contrast, the breeding 

season becomes more extended farther south and close to the equator there Is no evidence 

lor breeding seasonality (Trew avas. 1983: Munro. 1990). It Is therefore conceivable 

that, at higher latitudes, photoperiod provides an Important environmental cue for the 

timing of reproduction In the Nile tllapla, which may bo encoded In the diurnal rhythm of 

melatonin secretion demonstrated in experiment 6.

Information on the effects of photoperiod on reproductive activity of tllapla Is scarce. 

Blllard claimed that no gonadal development occurred In Oreochrom is esculenlus 

maintained under 6-8 hour photoperiods (although this species occurs naturally in 

equatorial regions) and Bruton suspected that the breeding of Oraochromis mossambicus I n 

South Africa w as correlated with daylength (personal communications cited in Balarin and 

Hatton. 1979). It has also been suggested that courtship behaviour of tilapia maintained in 

aquaria may be triggered by a 'long* photoperiod (Cridland, 1962; Qokfstein, 1970: both 

cited In Balarin and Hatton. 1979). Clearly, however, the role of photoperlod and 

melatonin In the control of reproduction In tllapla requires futher Investigation. A 

comparison of Nile tllapia Indigenous to Egypt or Israel with those native to equatorial 

regions may provide useful information in this respect.

The  importance of temperature for reproduction in tilapia is well docum ented; tilapia 

generally spawn between 20-23°C and maintenance of fish at temperatures below 20°C 

can be used to prevent reproduction (Balarin and Hatton, 1979). Thus, In the Nile delta



the Nile tilapia starts spaw ning when the air temperature rises to 19*’C  In April, 

spawnirtg peaks as the temperature Increases to 22**C and 24**C in May and June  

respectively, but decreases as the temperature rises even higher in July and August, with 

no spawning occurring from Septem ber onwards (Trew a vas. 198 3 ). Interestingly, 

Qerakfes (1980) reported that the temperature required for reproduction in Nile tilapia 

was 2*C greater under a 10L:14D  photoperiod (25*C) than under 13L:11D (23"*C), 

suggestirtg an interaction of photoperiod and temperature in the control of breeding in this 

species. T h e  possibility exists, therefore, that in the Nile tiiapia, melatonin Is able to 

integrate information on seasonal char>ges in temperature as well as photoperiod, as 

discussed earlier for other species.

Whether or not melatonin is involved in mediating the effects of photoperiod and/or 

temperature on seasonal breeding In the Nile tilapia, the pattern of melatonin secretion 

may be important in the entrainment of diurnal rhythms in this species. For example, the 

fish used in the present study usually spawn in the evening (1 0 -1 2  hours into the 

photophase of the 12L:12D photoperiod; McEwen. personal communication). In contrast. 

Tilapia 2 illi maintained in the same laboratory usually spawn in the morning (M cEwen. 

personal communication). That spawning is usually restricted to a particuiar time of day 

has also been shown in another tilapia. Oreochromi« moaftambicug. in which spawning has 

only been observed in the afternoon coincident with a peak in the number of territorial 

males (M unro and Singh. 1987). These observations suggest that the Nile tilapia 

possesses a circadian rhythm in spawning activity which may be entrained by the daily 

tight-dark cycle: this entrainment may be mediated by the diurnal rhythm in melatonin 

secretion. Th e  Nile tilapia also appears to possess circadian rhythms In otolith growth 

(Tanaka et al.. 1981) and respiratory rate (Ross and McKinney. 1988). which are 

entrained by the daily light-dark cycle. Th u s, the pattern of melatonin secretion 

demonstrated in this study may mediate the entrainment of a variety of circadian rhythms 

by photoperiod in the Nile tilapia. Th e  apparent presence of an endogenous circadian 

rhythm of melatonin secretion in the Nile tiiapia, in which at least some physiological and 

behavioral rhythms probably possess an endogenous circadian component, may be
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Indicative of a more complex circadian organisation in this species than in the more 

primitive rainbow trout, in which there Is no convincing evidence for the involvement of 

endogertous circadian mechanisms in the control of diurnal rhythms (discussed in more 

detail later).

4 .5 .5  T h e  role of meletonin in the Irensmlsmion of photoperlodlc informetion to the 

reproductive axis.

Experiments 1*3 clearly demonstrated that circulating melatonin is elevated for the 

duration of the scotophase in the rainbow trout and therefore provides this fish with 

accurate information on both daily and calendar time. In view of the highly photoperiodic 

nature of the reproductive response in the rainbow trout (chapter 3) the hypothesis that 

melatonin mediates the photoperiodic entrainment of seasonal reproduction in this species 

is extremely attractive. Unfortunately, neither experiments 8 or 9, which were designed 

to test this hypothesis, reached completion, due to mortalities before spawning. However, 

measurements of the Q S I obtained at the enforced termination of each experiment did not 

indicate a difference in maturation rate between controls and fish implanted with 

melatonin in either January/February or M ay. M oreover, there was no significant 

difference in serum calcium levels between groups during the latter stages of experiment 

8. In contrast, the ability of constant-release implants containing melatonin to modify the 

timing of reproduction has been demonstrated in several higher vertebrates. Silastic 

packets containing melatonin administered subcutaneously to rams during exposure to 

'long' days induced all the reproductive changes normally observed upon exposure to 

'short* days, and blocked the subsequent response to photoperiodic change (Lincoln and 

Ebling, 1985). Intravaginal melatonin implants prepared from Silastic tubing advanced 

the onset of oestrous in prepubertal and adult ewes maintained under natural daylength if 

they were administered In July, but not in May (Nowak and Rodway. 1985). Similarly. 

English et al. (1988) reported that Silastic packets implanted subcutaneously in June, 

but not in April or May, advanced the onset of ovarian cyclicity by 5 -10 weeks in maiden 

adult ewes maintained under natural photoperiod. A comparable effect was observed in
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ewes receiving a stow-releasing intrarumlnal soluble glass bolus containlrig melatonin in 

July  (Poulton et ai., 1987). Q o ats receiving melatonin implants from April after 

previous exposure to 2 months of 'long' days gave birth 2 -3  months In advar>ce of the 

natural spring breeding season (Deveson et al.. 1989). Subcutaneous administration of 

Silastic packets containing melatonin to male red deer at the nadir of the sexual cycle In 

May advanced autumnal sexual development by more than 1 month (Lincoln et al.. 1984). 

Th e  autumnal onset of reproductive activity was also advanced by several months in male 

sliver foxes administered constant-release melatonin implants from Jun e , an effect 

similar to that observed in animals exposed to artificial 'short' days at this time 

(Forsberg et al., 1990). Thus, there is ample evidence that constant-release melatonin 

implants can mimic the effects of a 'short' photoperiod in a number of seasonally-breeding 

m ammals. Unfortunately, similar long-term experiments utilising constant-release 

melatonin implants have not been reported in lower vertebrates.

Although the results of the present study provide no evidence for the hypothesis that 

changes in patterns of melatonin secretion mediate the effects of changes in photoperiod on 

reproductive timing in the rainbow trout it should be emphasised that, aside from the fact 

that neither experiment reached completion, the failure to detect an effect of melatonin 

may have been due to an inadequate release of the hormone from the Silastic implants. 

Measurements of circulating melatonin in experiment 8 clearly demonstrated that Silastic 

packets are capable of providing long-term elevation of circulating melatonin levels in the 

rainbow trout; over a 2-month period melatonin levels in implanted fish were 

approximately double those in control fish (Figure 4.18). However, apart from the burst 

in levels measured 6 days post-implantation, serum melatonin concentrations always 

remained below those measured during the scotophase in experiments 1-4 (although 

measurements were taken only from the February implant group, which received only one 

100mg implant per fish, and not from the May implant group, which received three 

lOOmg implants per fish). It is therefore possible that the elevation In circulating 

melatonin levels produced by the implants was insufficient to 'over-ride' the natural 

rhythm in melatonin production which occurred In response to the long (18L:6D )
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photoperkxj. and which may have been of sufficient amplitude to mask the effects of the 

im plants. Certainly, Silastic tubing appears inappropriate for the long-term  

administration of melatonin to rainbow trout sirtce no ir>crease in circulating melatonin 

concentrations could be detected 2 or 5 months after the implantation of Silastic tubes 

containing melatonin in experiment 9. The  inability to achieve long-term  elevation of 

melatonin levels within the r>ormal night-time physiological range for this poïkilothermie 

species is probably principally related to the effects of temperature ($12*’C ) on release 

rate. Th e  proximity of intra-peritoneal implants to the hepatic portal circulation may 

also be a contributing factor since melatonin is rapidly metabolised by the liver. Clearly, 

a more thorough examination of the releasing properties of a range of implant types in 

cold-water fish is necessary before the experiments described in the present work are 

repeated.

4.5.6 In f  rpffttation of tha malatonln aignal

The  rainbow trout is unique amor>g the small number of vertebrates studied to date in 

that neither intra- or extra-pineal endogenous circadian clocks appear to be involved in 

the regulation of melatonin secretion in this species. However, the absence of endogenous 

circadian regulation of melatonin secretion in the rainbow trout does not preclude the 

hypothesis that the photoperiodic entrainment of diurnal and seasonal rhythms in this 

species is mediated by diel and seasonal changes in melatonin profiles. In the context of the 

present work the mechanism by which melatonin may mediate the effects of photoperiod on 

seasonal events such as reproduction is of interest. Tvro main hypotheses have been 

proposed to explain how animals interpret seasonal changes in the melatonin signal 

(Karsch. 1966; Reiter. 1987. 1986). Th e  first contends that the duration of the 

nocturnal increase in melatonin secretion codes for daylength, the second that a 

photoperiodic response is deper>dent on the phase relationship between the melatonin 

rhythm and a circadian rhythm of sensitivity to melatonin which Is entrained by the 

light-dark cycle (a form of internal coincidence: see section 3.4.12). Although these 

hypotheses are not mutually exclusive, experiments in which 'long* or 'short* day patterns
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of melatonin have been administered at different times of the day do not support the phase 

hypothesis (see section 4.1) and the duration hypothesis currently appears to be the most 

generaily applicable and most widely accepted of the two. Even in the Syrian hamster, in 

which evidence for the phase hypothesis was strongest (reviewed by Stetson and Watson- 

W hitm yre. 1966), convincing evidence against a role for phase has been provided by 

recent w ork which denrwnstrated that 10-hour infusions of melatonin, chosen to mimic a 

'short-day* pattern of melatonin release, elicit a 'short-day* reproductive response 

(gonadal regression/atrophy) in pinealectomised animals when delivered both at non-24 

hour intervals and alternately during the day and night, results consistent instead with the 

duration hypothesis (Maywood et al., 1990).

Should melatonin prove to be important in the timir>g of seasonal events In the rainbow 

trout, both hypotheses may be considered plausible. Although the melatonin rhythm itself 

is not generated endogenously in the rainbow trout the phase hypothesis remains feasibie 

for this species since the exogenously generated seasonal change in patterns of melatonin 

secretion means that elevated melatonin would coincide with different circadian phases at 

different times of the year. If the circadian phase of the melatonin-sensitive period also 

varied seasonally such a mechanism would be even more flexible. However, the patterns of 

melatonin secretion described in the present study, with melatonin levels remaining 

elevated throughout the scotophase, are more d ea rly  consistent with the duration 

hypothesis, although it should be remembered that the duration of melatonin release per se 

probably provides no information on direction of change of photoperiod. In this respect 

several mammalian studies have demonstrated that the duration of elevated melatonin 

secretion reflects the prevailing daylength irrespective of photoperiodic history (Hastings 

et al.. 1966; Hoffmann et al., 1986: Robinson and Karsch, 1987). Information on 

direction of change of photoperiod must therefore be processed downstream of the pineal 

via, an as yet unknown, neural mechanism which operates as an 'interval timer* and is 

able to compare the current melatonin pattern with the preceding pattern of melatonin 

secretion held In memory. Recent evidence suggests that this mechanism may also require 

information on the duration of the melatonin-free interval (M ayw ood et ai.. 1990;
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Hastings et al.. 1991), and in poikilothermtc anlmais such as the rainbow trout. It might 

be postulated that the neural machinery responsible for interpreting the melatonin signal 

is also capable of extracting information on seasonal changes in temperature which may be 

encoded in the melatonin rhythm, possft>ly by alterations in amplitude.

The  apparent importar>ce of the duration of melatonin secretion suggests that the 

physiological basis of the circadian rhythm in photosensitivity thought to underly 

photoperlodic time measurement (section 3.4.12) is Inherent In the circadian rhythm of 

nocturnal melatonin production; the effects of skeleton photoperiods, resonance 

photoperiods and T -c y c le s  (section 3.4.12) can be attributed to the truncation of the 

melatonin signal by light applied during the subjective night (Hastings et al.. 1985, 

1989). A  similar m echanism may explain the effects of skeleton photoperiods in teleost 

fish (section 3 .4 .1 2 ). including the rainbow trout, in which melatonin production is 

strictly under exogenous control, as the direct suppressive effect of light would still serve 

to shorten the duration of uninterrupted melatonin secretion. Th e  finding that melatonin 

production does not oscillate in DO in the rainbow trout may also provide an explanation 

for the equivocal results obtained with resonance photoperiods (section 3.4.12; Duston and 

Bromage, 1986a) as light puises would simply provide occasional interruptions to a 

constantly elevated melatonin signal rather than falling in the subjective night of a 

circadian oscillation in melatonin secretion.

A  pertinent question is 'Why should melatonin production be under endogenous 

circadian control in other vertebrates investigated, but not in the rainbow trout?'. 

Hastings et al. (1 9 8 9 ) suggest there is adaptive value in using a self-sustaining 

oscillatory mechanism for the generation of melatonin rhythms; such a mechanism is able 

to interpolate between samples of the tight-dark cycle to define subjective day and night 

ar)d will be resistant to intermittent exposures to darkness. For example, the suppression 

of melatonin levels which occurs in nocturnal animals at dawn will not be reversed by 

subsequent exposure to darkness (such as on return to a burrow; Hastings et al., 1989), 

neither will melatonin levels increase in diurnal species should they seek shelter in 

darkness during the day. In oontrast, exposure of rainbow trout to darkness during the day
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would result in an immediate increase in melatonin production (as in experiment 3) and 

hence continuous sampling of the light-dark cycle is required if melatonin rhythms are to 

provide an accurate representation of daylength. Perhaps the absence of circadian control 

over melatonin secretion in the rainbow trout is compensated for by the comparatively 

long exposure to a change in daylength (compared to some other vertebrates) required to 

eiidt a reproductive response (section 3.4.6). For an anirrmi that requires a year or more 

to complete reproductive devek>prr>ent this may not be an unfavourable mechanism. Aside 

from the possibility that the rainbow trout may represent the primitive state, the ecology 

of the species may also be significant. Rainbow trout generally inhabit shallow open water 

and hence are likely to be exposed to the complete light-dark cycle. Moreover, the rainbow 

trout pineal is able to detect light at low Intensities (mean threshold of 7.8 x 10'^ lu x ; 

Morita. 1966) and hence may still function efficiently under conditions such as flooding 

or ice cover during which light transmission is inhibited. If melatonin rhythms were 

abolished for short periods urxJer such corxJitions. however, this would be expected to have 

little effect on long-term rhythms such as the reproductive cycle since the circannual 

clock would simply free-run during this period. Th e  absence of endogenous circadian 

control of melatonin secretion m ay not, therefore, be a disadvantage for the rainbow trout.

4.5.7 Non-reproduclive functions of melatonin.

If melatonin does rx)t mediate the effects of photoperiod on reproduction in the rainbow 

trout the question that arises is: what does it do?. Although large quantities of melatonin 

can cause melanosome-aggregation in rainbow trout (Hafeez, 1970) it is unlikely that 

melatonin Is of major importance In colour change in this fish under natural conditions 

(section 4.1). In their theory of the evolution of melatonin's functions and effects Qern 

(1961), and Qern and Karn (1 9 83 ). state that the original role of m elatonin was 

probably to maximise photoreceptor cell function within the pineal and  retinae 

themselves, arnf that the resulting rhythmic secretion of melatonin into the circulation for 

elimination by the liver facilitated the evolution of melatonin’s role in the timing of 

certain daily and seasonal rhythms. Thus, melatonin has been implicated In several aspects
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of rhythmic photoreceptor metabolism (Besharse and Dunis. 1982; Q em  and Kam, 1983; 

P a n g  ar>d Allen. 1986) such as renewal of the photoreceptor outer segments (disc 

shedding) and aggregation of meianosomes within the pigment epHheiium (urtoovering the 

ou te r segments and allowing increased surface area for photoreception at night). In this 

respect intraocular or systemic injection of melatonin during the photophase has been 

sh o w n  to cause melanosome aggregation within the retinal pigment epithelium of the 

rainbow  trout (C h e ze  and All. 1976). M oreover, MeissI et al. (1990) recently reported 

an  intra-pineal action of melatonin in the rainbow trout, whereby the hormone reversibly 

inhibited neural output from pineal ganglion cells, suggesting that melatonin may be 

involved in the regulation of neural output from the pineal, especially at night when 

m elatonin concentrations are high. Th is  evidence for Intra-retinal and intra-pineai 

functions of melatonin In the rainbow trout, which is a relatively primitive teleost 

(B atten and Ingleton, 1967), is consistent with the hypothesis that the original role of 

melatonin was within the synthesising organs themselves.

It is possible that the rainbow trout represents the primitive state, in which the role 

of melatonin is limited to intra-pineal and intra-retinal functions such as those discussed 

a bo ve . However, the widespread distribution of melatonin receptors in the rainbow trout 

brain  (Aggelopoulos and Demaine. 1990) argues against such a restricted role. Ar>other 

possibility is that melatonin is invotved in the synchronization of daily rhythms in the 

rainbow trout, as previously suggested for the tilapia. There Is considerable evidence for 

the involvement of the pineal and melatonin in circadian organisation, especially in lower 

vertebrates (reviews by Underwood and Qroos, 1982; Underwood. 1989). Th e  importance 

of the pineal in the regulation of circadian rhythms was first demonstrated in the house 

sparrow  in which it was discovered that the free-running rhythm of locomotor activity in 

D O  was abolished by pinealectomy (Qaston and Menaker. 1968). Subsequent studies 

show ed that the rhythm of locomotor activity could be restored by transplantir)g the pineal 

of another sparrow into the eye of the pinealectomised bird, and that the rhythm of the 

recipient assumes that of the donor (Zimmerman and Menaker. 1975. 1979). Moreover, 

constant-release Silastic implants can alter the free-running period of activity rhythms
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or produce arrhythm idty In house sparrows (TureK et al.. 1976). and dally melatonin 

Injections can entrain activity rhythms in pinealectomised starlings (Q w inner and 

Benzinger, 1 9 7 8 ). In combination these data suggest that, in certain birds, the pineal 

participates in th e  regulation of circadian activity rhythms via the rhythmic secretion of 

melatonin. Th e  Influence of the pineal and melatonin varies between species, however. 

Thus, the pineal appears to play a major role in the regulation of circadian rhythms in 

passerine birds, such as the house sparrow, but only a mirtor role in gallinaceous birds, 

such as the Jap a ne se  quail, in which pinealectomy and melatonin administration had little 

or no effect on  locomotor activity (Simpson and Follett. 1981). Pinealectomy also has 

major effects o n  circadian activity rhythms in a number of lizard species, such as the 

green anole liza rd  (reviewed by Underwood, 1988). Moreover, constant-release Silastic 

implants can alter the free-running period of activity rhythms o r produce arrhythmicity, 

and daily m elatonin Injections can entrain activity rhythms in at least one species 

(Underwood, 1 9 8 6 ). As in some birds, these data are consistent with the hypothesis that 

the rhythmic secretion of melatonin from the pineal of certain lizards serves to entrain 

other components of the circadian system. It should be noted, however, that pinealectomy 

has no effect o n  circadian k>conx>tor rhythms in the desert iguana (JaniK and Menaker. 

1990). a further demonstration that the influence of the pineal on circadian organisation 

in lower vertebrates is not universal. Nevertheless, even in mammals, in which 

pinealectomy h a s  little or no effect on the circadian system, and the S C N  are generally 

considered to be  the major (if not the sole) generators of circadian rhythms (including the 

rhythm in pineal melatonin secretion: Underwood and G o ldm an, 1987). recent work in 

rodents has indicated that daily melatonin injections can entrain circadian activity 

rhythms, suggestive of an important role for melatonin in the synchronization of daily 

rhythms in som e higher vertebrates (reviewed by Armstrong, 1989).

There is a lso evidence that the pineal and melatonin m ay be involved in circadian 

organisation in a  number of fish, although it should be noted that rhythmicity in some 

species may be under strictly exogenous control (Rusak, 1981). Pinealectomy has been 

found to cause changes in the free-running periods of several fish maintained in DD
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Including the lake chub, CQueeiue plumbeua. the burbot. Lota Iota, and the white tucker, 

Catoetomue eommaraoni (Kavaliere, 1979a, 1980a, 1981a), and In the latter tpeciet 

a lto  retulted in the aplittlng of circadian activity into a num ber of free>running 

componentt (Kavaliers. 1979b). Qarg and Sundararaj (1986) repo rted  that free- 

running rhythms In locomotor activity observed In Aslan catfish in D D  becam e arrhythmic 

after pinealectomy. Pineaiectomy also abolished the free-running rhythm in locomotor 

activity observed in rive r lampreys, LamMtrM i«v>nir.a maintained in D D , and the 

rhythm was restored w h e n  the pineal from another fish was transplanted Into the 

pineaiectomised fish (Sam ejina et al.. 1987). This suggests that, in the lam prey at least, 

the pineal may participate in the regulation of circadian activity rhythm s via the 

rhythmic secretion of melatonin, as appears to be the case in some birds and  lizards. In 

this respect, a marked decrease in swimming activity ar>d schooling behaviour (suspected 

to be under endogenous circadian control) has been reported in the damselfish, Chromis 

v ir id is , in the days folk>wir>g injection of melatonin (Sparwasser, 1987).

In salmonids, endogenous circadian rhythms of swimmir)g activity have been claimed 

for the pink salmon, sockeye salmon, the brown trout and the brook trout (Qodin, 1961, 

and references therein). In the sockeye salmon, pinealectomy caused an  increase in 

swimming activity (B yrn e, unpublished: cited in Hafeez, 1970), and administration of 

melatonin by injection inhibited activity, but only during the photophase of a 12L:12D 

photoperiod (Byrne. 1970). Administration of melatonin by injection has also been shown 

to Inhibit swimming activity in the rainbow trout, but this may simply have been a 

reflection of the toxic effects of high doses of melatonin on locomotor ability (impairment 

of normal smooth body movements/lateral tilting) since the dose levels used were 

considered to be pharmacological in nature (Hafeez, 1970). This view is supported by the 

observation that pinealectomy had no effect on swimming activity in fish maintained under 

identical conditions in the sam e study (Hafeez, 1970). Moreover, in a study started sir>ce 

the completion of the w ork described in this thesis, rainbow trout administered constant- 

release melatonin implants which achieved circulating melatonin levels approximately 

double those detected in juvenile fish at night, exhibited no obvious inhibition of
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locomotory activity or tha feeding response during the photophase of a 16L:8D photoperiod 

(personal observation). In addition, recent attempts to correlate activity and feeding 

rhythms with pineal rhythms in the rainbow trout have been unsuccessful; both activity 

and feeding were found to be extremely labile with fish alternating between diurnal, 

crepuscular and nocturnal activity, with th) evidence for a circadian component (E . 

M organ, personal co m m unication). Th is  lability suggests rainbow trout m ay be 

opportunists able to take advantage of a large variety of food sources as and when they 

become available. In this respect Matty and Majid (1980) concluded that feeding in the 

rainbow trout is mainly governed b y  the degree of gut distension, rather than by a 

biological clock, with feeding activity during the photophase peaking every 8-10 hours if 

food is made constantly available. T o  date, therefore, there is little evidence to suggest that 

the pineal and/or melatonin are involved in the synchronization of rhythms in activity and 

feeding in the rainbow trout. A s previously mentioned, the absence of an endogenous 

component coupled to the regulation of melatonin synthesis and secretion, and the lack of 

convir)cing evidence for the involvem ent of endogenous circadian mechanisms in the 

control of behavioural rhythms o r in photoperiodic time measurement (see section 

3.4.12). suggests that circadian organisation in the rainbow trout, and possibly other 

salmonids. may be less complex than in some other species of fish and other vertebrate 

groups.

4.5.8 Alternative mechanisms for the transmission of photoperiodic information to the 

reproductive axis.

It Should be noted that the putative pineal-mediated effects on reproduction in some 

fish (section 4.1) could be attributed to neural signals or to pineal products other than 

melatonin. Electrophysiological studies have clearly demonstrated that neural pathways 

are transmitting photic information (section 4.1), but. unfortunately, the role of neural 

outputs from the pineal of lower vertebrates has not been studied (Underwood. 1989). 

McNulty (1984) believes that the wide distribution In the brain of the rainbow trout of 

nerve terminals emanating from the pineal tract (Hafeez and Zerihun. 1974) is an
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indicatton of tha relative importance of neural pathways in pineal-medlated photosensory 

responses. As previously mentioned, how ever, melatonin receptors are also widely 

distributed in the brain of the rainbow trout and other lower vertebrates (Aggelopoulos 

and Dem aine. 1990; MartinoM et al., 1 99 1 ), in contrast to the m ore localised 

distribution found in the mammalian brain (M organ ar>d Williams. 1969). Th is  suggests 

that both neural and humoral pathways m ay be important in a wide range of pineal- 

mediated responses in the rainbow trout a nd  other lower vertebrates, although their 

precise roles may be different. With regard to humoral signals, a large number of pineal 

substances other than melatonin have been identified in many vertebrates, although they 

may not all be synthesised la_ailu (Pevet. 1982a). These  include other 5-methoxylndoles 

(Pevet, 1982b), proteins and peptides (P evet. 1982a: Ebadi et al.. 1969), all of which 

have been implicated in the control of reproduction.

Th e  importance of extra-pineal photoreceptors in the photoperiodic control of 

reproduction In salmonids is also unknown. In the goldfish Delahunty et ai. (1979) 

reported that optic tract section caused ovarian regression in spring and reduced serum 

oestradiol-17B levels in both spring and autum n. T h e y  therefore proposed that the 

stimulatory effects of increasing daylength on  ovarian growth in spring are primarily 

mediated by retinal pathways, a conclusion in contrast to previous studies asserting the 

importance of the pineal in this process (de Vlaming and Vodicnik, 1976; Vodicnik et al., 

1978). Blinding similarly prevented the photoperiodic stim ulation of ovarian 

development in the catfish, Myslus tengara (Saxena, 1980). In contrast. Shiraishi 

(1965) reported no difference in the gonadal response of intact and blinded ayu-fish, 

PlecQQiQsaus altivetls (sometimes classified as a salmonid species: Tam ura and Hanyu, 

1976) to 'long' and 'short' photoperiods, and bilateral enucleation of sticklebacks did not 

prevent the development of secondary sexual characteristics which occurred in response 

to a 'long', but r>ot a 'short*, photoperkxf (B org. 1982). T h e  reproductive response of the 

Japanese killifish to photoperiodic change was also conserved after blirtding. although to a 

lesser extent than in intact fish (Urasaki. 1978. 1976). Q arg and Jain  (1985) reported 

that the photoperiodic stimulation of gonadal development can occur in the absence of the

323



•yes In the Indian murrel, Channa punetatu«. and blinding also had little effect on ovarian 

development in Asian catfish maintained under DD or L L  (Garg. 1988b). Thus, the eyes 

appear to be involved in mediating the effects of photoperiod on reproduction in some fish 

but not others.

in addition to the eyes another class of extra-pineal photoreceptors may be involved in 

the transmission of photoperiodic information to th e  reproductive axis in fish. 

Investigations by von Frisch (1911), Scharrer (1928) a n d  Hartwig (1975) (all cited in 

Oksche and Hartwig. 1979) have indicated that the brain of the European minnow, 

Phoxlnus phoxinus. contains light sensitive regions in th e  diencephaion (in the vicinity of 

the third venticle) and in the antero-dorsal hypothalamus. The  existence of encephalic 

photoreceptors has also been suggested by studies in eels (van Veen et al.. 1976) and lake 

chub (Kavaliers, 1960b,1981b), in which locomotory responses to light were conserved 

in fish subjected to both blinding and pineaiectomy; In contrast, masking the brain area of 

blind eels from light disrupted locomotor activity patterns. A  notable study in this context 

is that of Day and Taylor (1983) who found that m um m ichogs. Fundutus heteroclitus. 

which had been both bilaterally enucleated and pinealectomised, were still able to perceive 

dayler>gth; as in intact fish ovarian development occurred in response to a 'long', but not a 

'short', photoperiod. This indicates that neither the eyes or the pineal have an essential 

photoreceptive or endocrine role in reproduction in this species. Thus, as in some birds 

(section 4.1), the photoperiodic control of reproduction in some fish may be mediated by 

encephalic rather than retinal or pineal photoreceptors. The  relative importance of 

pineal, retinal and encephalic photoreceptors in the mediation of the effects of light (and 

dark) on a particular physiological or behavioural function appears, therefore, to vary 

among species.

4 .5 .9  Summary

The  present work demonstrates that the nocturnal increase in circulatir>g melatonin 

accurately reflects the duration of the scotophase in both Juvenile and adult rainbow trout 

maintained under either 'long' or short' artificial photoperiods. Melatonin production in







T h «  principal aim of the experiments described in this thesis was to clarify the 

mechanisms by which photoperiod entrains the endogenous circannuai rhythm o r  clock 

which, it Is proposed, controls maturation in the female rainbow trout. C h a p te r 3 

examined the effects of a rar>ge of daylengths on reproductive timing in order to determine 

which features of the pholoperiodic signal are important for the entrainment of the clock, 

and chapter 4 investigated the potential of chartges in patterns of melatonin secretion to 

convey photoperiodic information to the reproductive axis. This chapter reviews the main 

conclusions and questions arising from the present study and makes some suggestions for 

future work.

Depending on the timing of exposure in relation to the phase of the annual reproductive 

cycle, abrupt changes in photoperiod can either advance or delay spawning and the ch a rg e s  

in serum calcium, o e stradio M 70 and testosterone which accompany maturation in the 

female rainbow trout. Th e se  effects can be interpreted as corrective phase advances or 

phase delays of the endogenous circannuai clock which controls reproduction. Th e  results 

of the present study provide convincing evidence that the direction of change of dayler>gth 

is the feature of the photoperiodic signal responsible for the entrainment of the circannuai 

clock. Th u s, the same photoperiod may be perceived by the fish as ’long’ o r 'short' 

providing it is longer or shorter than that to which they have been previously exposed. 

Moreover, maturation can be advanced even in fish which do not experience an ir>crease in 

daylength in spring (i.e. remain on a winter photoperiod) provided they receive a decrease 

to an even shorter photoperiod prior to the summer solstice. Daylength per se (absolute 

daylength), and the m agnitude of change in daylength, were shown to be of little 

importance in the entrainment process. Clearly, the rainbow trout reads daylengths 

comparatively, with reference to the preceding photoperiod, rather than absolutely. The 

traditional concept of a rigid 'criticar daylength for reproductive function is therefore not 

applicable to the rair>bow trout. Consequently, extreme care should be taken in both the 

design artd interpretation of future photoperiod experiments to account for the influence of 

photoperiodic history.

Further evidence for the preceding conclusions may be obtained by an experiment in

3 2 7



which the natural decrease in dayler>gth is artificiaily accelerated during the last quarter 

of the year so that December spawnir>g rainbow trout are exposed to, for example, a 

constant 2L:22D photoperiod from the time of the winter solstice. If the conclusions of the 

present work are correct, increasirtg the photoperiod to 6L:16D in January should cause a 

similar advance In spawning time to . for exantple, increasing the daylength from 8L:16D 

to 14L:10D at this time. Similarly, a reduction in daylength from 8L:16D to 2L;22D the 

following May should cause another advance In spawning time comparable to that which 

would be obtained following a reduction from 14L:100 to 8L:16D. In contrast, spawnirig 

would be expected to be delayed and desynchronized in constant daylength controls 

(2L:22D, 8L:16D ). a comparison of which would also allow any effect of the initial 

photoperiod manipulation to be distinguished.

Th e  present study provides strong supportive evidence for the proposition that 

maturation in the rainbow trout is ultimately under endogenous circannual control. 

Firstly, the desynchronization of spawning times observed in fish maintained under 

constant 'short' days indicates that the circannual rhythms of individual fish were free- 

running with variable periodicity, a characteristic feature of endogenous clocks under 

constant conditions. Secondly, the timing of each change in photoperiod, relative to the 

phase of the reproductive cycle, w as shown to be an important determinant of spawning 

time. An essential property of endogenous clocks is that they possess a differential 

sensitivity to the phase-shifting effects of the zeitgeber such that a particular time cue 

causes phase-shifts of different magnitude and sign depending on the phase at which the 

rhythm is perturbed. This property was clearly demonstrated in the current work in 

which it was possible to construct a partial phase-response curve to describe the effects 

of 2 month periods of LL applied at different phases of the reproductive cycle. In this 

respect the entrainment behaviour of circannual clocks can be considered analogous to that 

of circadian oscillators. It should be noted that the experiments conducted cor>centrated on 

photoperiod regimes designed to advar>ce spawning and her>ce the phase-response curve 

obtained is biased towards perturbations causing advance phase-shifts. It would therefore 

be desirable to perform additional experiments with LL periods applied at times likely
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either to cause phase delays, or to have no effect (I.e. occur In a 'dead zone'), in order to 

obtain a more complete phase-response curve.

Th e  proportion of fish responding to short periods of LL Is dependent on both the 

duration of the light period, ar>d, most importantly, its position in relation to the phase of 

the reproductive cycle. Th e  minimum period of exposure to LL capable of advancing 

maturation in a majority of rainbow trout w as 1 month. This suggests that the rainbow 

trout is unable to recognise a 'new* daylertgth as the current photoperiod Immediately, and 

hence cannot perceive a change in daylength, by comparison with the preceding 

photoperiod(s) held in mem ory, until a m inimum period of time has elapsed. Under 

natural conditions, where the photoperiod Is charYging only gradually, such a mechanism 

may prevent misinterpretation of the prevailing photoperiod due to the influence of other 

environmental factors such as moonlight, coloured water or extensive cloud cover. One 

month m ay. however, be an overestimate of the time required for an individual to register 

a new daylength since a minority of fish respor>ded to only 2 weeks LL with an advance in 

spawning. Th e  provision of less heterogenous populations by grading fish into, for 

example, early, mid- and late spawners, may enable the situation to be clarified in future 

studies.

Differences in the proportion of rainbow trout responding with an advance in 

maturation to 1 and 2 nrionth periods of LL applied at different times close to the preceding 

ovulation may be explained by a 'gating' m echanism. However, this hypothesis remains 

unproven. It would be interesting to know If the circannual clock of the non-responding 

fish was initially advanced by exposure to LL , but, the fish being physiologically 

Incompetent to mature at this stage, was subsequently re-entrained to ambient daylength. 

or whether the LL periods were completely Ignored. Maintenance of fish under constant 

conditions after exposure to LL to ascertain whether the fish subsequently spawn close to 

the normal time or express an advance in spawning the following year should differentiate 

between these two possibilities. The  possibility that the circannual clock re-sets at 

ovulation might also be considered, as this would explain why only a few fish, perhaps the 

earliest spawners. responded to LL periods applied prior to the natural winter spawning
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perkxJ. Th*  importanc« of alevated Q T H  (avals to tha racruitmant of a frash batch of oocytas 

and tha possibility that ovulation was pravantad by high tamparaturas. and/or atrasia 

occurrad In soma groups, should also ba axaminad. A  dataiiad histological study of ovarian 

samplas takan at fraquant intarvals from fish axposad to a variety of LL traatmants would 

provide an afflciant method of invastigatir>g most of thasa possibilities.

Exposure of rainbow trout to short periods of L L  provides a simple, cheap and 

pradictabia ntathod for tha production of out-of-saason aggs without tha need for blackout 

facilities. In 3 consacutiva axparimants ovar 9 0%  of famalas axposad to LL for 2  months 

from January to March spawnad again In a 6 -w a a k  period in July and August, 

approximately 5 months in advance of their natural spawning time. Similarly treated 

males produced milt throughout the spawning period of the females. Moreover, spawning 

was delayed by 2 -3  months in a high proportion of fish subjected to LL from July to 

September. Short periods of LL have considerable potential for use not only on trout farms 

but also in salmon farming v^ere  the size and location of broodstock tanks often precludes 

tha construction of blackout facilities, and where it is sometimes desirable to apply 

photoperiod treatments to fish maintained in sea cages. When applying the method on a 

farm for the first time it will be necessary to conduct a preliminary examination of the 

effects of LL applied at different times of the year since the optimum time for application 

of LL Is likely to vary according to the natural spawning time and strain of the species 

under investigation. Although the technique is readily applicable on farms with 

seasonally-fluctuating water temperatures it may be necessary to check fish for maturity 

at more frequent intervals when spawning coincides with high summer temperatures in 

order to retain egg viability. Where a borehole water supply is available it may prove 

advantageous to transfer the fish to constant temperature water prior to spawning, 

preferably when the temperatures of the seasonally-changing and borehole supplies are 

about equal.

Patterns of melatonin secretion in the rainbow trout accurately reflect the prevailing 

photoperiod, with levels elevated for the duration of darkness. This pattern of secretion is 

similar to that arbitrarily classified as type C  in higher vertebrates. In contrast to many
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higher vertebrates, however, melatonin production in the rainbow trout is not under 

endogerKMis circadian control: all significant changes in melatonin levels coir>cide with the 

light to dark or dark to light transitions, and the melatorkn rhythm does not persist in DO. 

Moreover, the melatonin rhythm Immediately re-acijusts to the new photoperiod when 

rainbow trout are transferred from 'long* to 'shorf days. Melatonin production In the 

rainbow trout appears, therefore, to be a direct response to darkness. Clearly, serial 

sampling of individual animals maintained in D D  is required In order to exclude the 

possibility that endogenous rhythmicity was masked in the present study by pulsatile 

release of melatonin or rapid desyr>chronization of the melatonin rhythms of individual 

fish. This technique was r>ot appropriate to the small fish used in the present work, but in 

future studies it may be possible to cannulate some of the larger broodstock for serial 

sampling In order to confirm the findir>gs presented in this thesis.

There were no significant differences in the amplitude of melatonin rhythms in 

rainbow trout of comparable age maintained under either 'long' or 'short' daylengths (but 

otherwise identical conditions) suggesting that the amplitude of the melatonin rhythm does 

not provide the fish with information on dayler>gth. However, there were considerable 

differences in amplitude between juvenile and adult fish which may be related to age. 

degree of sexual maturation, temperature or light intensity. The experiments described in 

this thesis were not designed to detect age-related differences in melatonin secretion arxl 

hence it was not possible to ascertain the cause(s) of the difference in amplitude of 

nocturnal melatonin secretion between juvenile and adult fish. Clearly, a longitudinal 

study of melatonin secretion under corKJitions of constant temperature and light intensity 

(during the photophase) is indicated. Comparison of sexually mature fish with sterile fish 

(for example, triploids) of the same age/size, or of precociously mature males with 

immature fish of the same age/size, may clarify the relationship between sexual 

maturation and circulating melatonin levels. Examination of the effects of temperature and 

light intensity on the amplitude of melatonin rhythms would be relatively simple to 

perform In groups of sibling fish maintained under otherwise constant conditions, it 

should, of course, be recognised that rK>ne of the possible causes of the observed variation
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In amplitude of the melatonin rhythm are mutually exclusive.

The  pattern of circulating melatonin In 4.5 month old rainbow trout fry was similar to 

that observed in juvenile and adult fish, IndicatirH} that the pineal Is capable of transducing 

photic Information into a humoral signal even In very yo ung fish. In combination with 

observations that photoreceptor differentiation occurs earlier in the pineal than the eyes 

in the two teleosts so far studied (section 4.5) this resuN suggests that a functional pineal 

is important for the successful development of young fish. In view of this, and of the 

putative role of melatonin in the photoperiodlc entrainment of diurnal and seasonal 

rhythms. H would be interesting to measure melatonin in eggs and alevins to ascertain at 

which stage of development rhythmic melatonin production commences.

The  pattern of circulating melatonin in Atlantic salmon parr under a natural daylength 

was similar to that observed in rainbow trout under arlificiat photoperiods, with the 

exception that a small 'anticipatory' rise In melatonin secretion was detected prior to the 

onset of darkness, possibly suggesting the involvement of endoger>ous mechanisms in the 

generation of melatonin rhythms in salmon. In view of the difference in complexity 

between the life cycles of the Atlantic salmon and the non-anadromous strain of rainbow 

trout utilised in the present work, possible differences in the mechanisms regulating 

melatonin secretion in these species merit further attention, in this respect, examination 

of melatonin profiles in fish maintained under square-wave artificial photoperiods and in 

OD should enable the role of endogenous mechanisms in the generation of melatonin 

rhythms in Atlantic salmon to be elucidated.

A  distinct diurnal rhythm in circulating melatonin was also detected in a sub-tropical 

strain of Nile tilapia. A  role for photoperiod in the control of seasonal rhythms has not 

been demonstrated in this species ar>d hence it would be of interest to irivestigate whether 

patterns of melatonin secretion reflect the seasonally-changing photoperiod, whether they 

can be influenced by other environmental variables such as temperature, arid if melatonin 

can affect the timing of reproduction in tiiapla. A  comparison of the effects of photoperiod 

and melatonin on the tlmlr>g of reproduction in tllapla lndiger>ous to sub-tropical regions, 

which experience considerable seasonal variations in daylength and temperature, with
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those native to equatorial regions, may provide useful information in this respect.

The pattern of circulating melatonin observed in the Nile tliapia differed from those 

seen in the rainbow trout and Atlantic salmon in that a decrease in melatonin levels 

occurred prior to lights-on. Th is  suggests that, in contrast to the rainbow trout. 

erKfogenous circadian mechanisms are involved in the generation of melatonin rhythms in 

the Nile tilapia. This may be indicative of a more complex circadian organisation in the 

latter species, in which the possibility that melatonin mediates photoperiodic entrainment 

of circadian rhythms should be investigated. In this respect H would be beneficial to 

aquacuiturlsts to alter the spawning behaviour of some tilapia species so that the spawning 

times of individuals were synchronized and spawning occurred at the most convenient time 

of the day for egg collection; if melatonin is able to entrain daily rhythms in spawning 

behaviour such alterations may be achieved by appropriately timed melatonin 

administration.

As with other vertebrate groups it is becoming apparent that patterns of melatonin 

secretion, and the importance of melatonin to circadian organisation and the timing of 

seasonal events such as reproduction, may show considerable variation in teleosts. There 

are over 20,000 teleost species occupying an immense variety of ecological niches, and it 

would be of interest to investigate whether differences in patterns of melatonin secretion, 

and the role of melatonin in daily and seasonal physiological and behavioural events, 

correlate with the individual life-history tactics and the environmental pressures to 

which a particular species is exposed. In this context future studies might consider the 

effects of light intensity and wavelength on melatonin production, factors which may be of 

greater importance to animals living in aquatic environments than to terrestrial animals. 

For example, fish could be exposed to equal photon densities of light of different 

wavelengths to ascertain their ability to suppress melatonin secretion. To  discriminate the 

direct suppressive effects of light per se from those of a change in light intensity 

melatonin production could be studied in fish exposed to 24-hour cycles composed of light 

of different intensities (e .g. 'hlgh*:*medium', 'medium‘:'low‘, 'low*:zero). Much of the 

preliminary work on melatonin rhythms in different species could be conveniently
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conducted using pineal cultures.

Although the duration of the nocturnal increase in melatonin secretion clearly provides 

the rainbow trout with an accurate representation of daylength the results of the implant 

studies provide no evidence that melatonin is involved in the transmission of photoperiodic 

information to the reproductive axis. H ow ever. sir>ce neither experim ent reached 

completion (spaw ning), and the implants did not increase p la sm a  melatonin to 

physiological levels, these results cannot be regarded as conclusive. Given the highly 

photoperiodic nature of the reproductive response in salmonids. a nd  the apparent 

similarities in the m echanisms underlying this response in salm onids and certain 

seasonally-breeding mammals in which melatonin has been shown to be important, the 

hypothesis that melatonin mediates the photoperiodic entrainment of seasonal reproduction 

remains extremely attractive, it is therefore suggested that, providing high-release rate 

melatonin implants are available, a priority of future work should be to repeat the 

experiments on reproduction described in this thesis. It would also be interesting to assess 

the ability of constant-release melatonin implants to influence the timing of 

smoltification, the other major developmental conversion under photoperiodic control in 

salmonids. Additionally, the possibility that timed infusions of melatonin could be used to 

mimic daylength In future studies should be investigated, although this technique may 

prove technically difficult in fish.

It should be recognised that there is no a priori reason why melatonin should mediate 

the effects of photoperiod on reproduction or other seasonal events in salmonids, and hence 

the possible contribution of other factors should not be ignored. In this context the roie of 

extra-pineal photoreceptors in the transmission of photoperiodic information to the 

reproductive axis is unknown as is the function of neural outputs from the pineal and 

pineal products other than melatonin. AHhough pinealectomy experiments may help to 

distinguish the relative importance of these factors (for example, ca n  pinealectomised 

animals respond to changes in daylength?) there have been no reports of the long-term 

effects of pinealectomy on reproduction in salmonid fish. Unfortunately, pinealectomy 

necessarily removes both the humoral and r>eural outputs of the pineal and  hence one can
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never be sure to which an effect should be attributed. Th e  replacement of melatonin 

rhythms In pinealectomlsed fish by timed infusions or the developm ent of specific 

melatonin receptor antagonists to nullify the effects of melatonin in intact fish may 

overcome these problems and allow the functions of neural pathways to be differentiated 

from those of melatonin and/or other pineal hormones. In view of the widespread 

distribution of melatonin receptors in the brain of the rainbow trout (section 1.5) the 

characterisation of receptors at different target sites, which may be associated with 

different physiological and behavioural functions, also deserves urgent attention.

In cortclusion. the work presented in this thesis derrtonstrates that the direction of 

change of daylength is the feature of the photoperiodic signal responsible for the 

entrainment of the endogenous circannual rhythm which controls reproduction in the 

female rainbow trout. Seasonal changes in daylength are reflected in the seasonally- 

changing pattern of melatonin secretion which provides accurate information on  both daily 

and calendar time. Information on the direction of change of daylength may therefore be 

conveyed to the reproductive axis via changes in patterns of m elatonin secretion. 

Elucidation of the role of melatonin (if any) in the transmission of photoperiodic 

information to the reproductive axis should be the first priority of future work.
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