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Abstract  

Systemic granulomatosis is a growing disease with a high morbidity, which affects to 

the majority of farmed meagre (Argyrosomus regius). The impossibility of isolating any 

infectious agents has hypothesized a nutritional origin of the disease. In order to try to 

elucidate the nutritional origin of granulomas, juvenile meagre were fed for 15 weeks 

with six diets containing different levels of vitamin E and C and with or without 

addition of vitamin K: Diet 0 (basal premix, no K, 150 mg kg-1 E, 20 mg kg-1 C), K 

(added 23 mg kg-1 K), EC (300 mg kg-1 E, 70 mg kg-1 C), KEC (23 mg kg-1 K, 300 mg 

kg-1 E, 70 mg kg-1 C), EECC (450 mg kg-1 E, 230 mg kg-1 C) and KEECC (23 mg kg-1 K, 

450 mg kg-1 E, 230 mg kg-1 C). The diet EC significantly increased meagre growth in 

terms of final weight and length. Fish fed the highest levels of vitamin E and C 

presented lower percentage of granulomas in liver and heart than fish fed diet 0. The 

scored severity of granulomatosis in liver and kidney (main affected organs) tended to 

be lower with dietary increase of vitamin E, C and addition of vitamin K (from 1.83 diet 

0 to 1.3 diet KEECC and from 0.91 diet 0 to 0.39 diet KEECC). In liver, the diet 

KEECC significantly increased catalase expression compared with diet 0. In kidney tnfα 

expression was significantly up-regulated in fish fed diet EECC and KEECC. In heart, 

low vitamin E and C levels (300 and 70 mg kg-1, respectively) significantly increased 

superoxide dismutase and glutathione peroxidase expression and high addition 

increased the expression of tnfα and cox-2 (0 or 23 mg kg-1 K, 450 mg kg-1 E and 230 

mg kg-1 C, diet EECC and KEECC). The results show that combination of high dietary 

content of vitamin K and antioxidant vitamins E and C (23, 450 and 230 mg kg-1, 

respectively) influenced in the incidence of the granulomatosis, which suggests that this 

pathology could be mediated by nutritional factors.  
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1. Introduction 

Meagre, Argyrosomus regius (Asso, 1801), is a teleost species belonging to the 

family Sciaenidae which is found in the Mediterranean, the Black Sea and along the 

Atlantic coasts of Europe and the West coast of Africa (Chao, 1986; Haffray et al., 

2012). The meagre is a species with great potential for the diversification of the 

Mediterranean aquaculture production due to its high flesh quality and good flavour 

(Poli et al., 2003), rapid growth and good feed conversion rates (0.9 to 1.2; Jiménez et 

al., 2005; Duncan et al., 2013) as well as good growth at a wide range of salinities (5-45 

g L-1) (Márquez, 2010). It also provides low-fat flesh even under intensive farming 

conditions (Piccolo et al., 2008) and has a great capacity to adapt to captivity (El-Shebly 

et al., 2007).  

However, in the intensive culture of meagre, the main concern for commercial 

production is the occurrence of pathologies. Infectious diseases caused by trematodes 

(Hayward et al., 2007; Toksen et al., 2007; Duncan et al., 2008), nematodes (Moravec et 

al., 2007) and bacteria (Sorroza et al., 2012) have all been described in meagre. 

Furthermore, the majority of farmed populations are affected by systemic 

granulomatosis, which is the pathology with largest impact on meagre culture (Ghittino 

et al., 2004). Systemic granulomatosis is characterized by the presence of multiple 

granulomas in internal organs, which progressively produces a necrotic centre 

surrounded by a layer of epithelial cells and macrophages. This disease mostly affects 

the kidney and liver, where macroscopic nodules of varying diameter usually are 

observed. In later stages these nodules can also appear in other tissues such as spleen, 

heart, skin and eyes, and can lead to exophthalmia and cataracts (Ghittino et al., 2004).  

Granulomas can be produced by pathogens such as Mycobacterium spp. and 

Nocardia sp. (Bowser, 2009; Labrie, 2008). Elkesh et al. (2012) described the first 

report of nocardiosis in a Mediterranean population of cultured meagre. Nevertheless, in 

other fish species the non-detection of any pathogens associated to granulomas has 

supported the hypothesis that a connection exists between systemic granulomatosis and 

a nutritional imbalance. Thus, older works have reported a deficiency of vitamin C in 

the diet (Paperna et al., 1980; Tixerant et al., 1984) or a dietary mineral imbalance 

(Dunbar and Herman 1971) as the most common cause associated to systemic 

granulomatosis.  
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Vitamin E and C can modulate inflammatory reactions related to nuclear factor 

kappaB (Han et al., 2004; Poppe et al., 2013), which is responsible of the up-regulation 

of inflammatory cytokines, such as tumor necrosis factor (tnfα) and cyclooxygenase 

(cox-2) (Fox et al., 1997). TNFα is a crucial regulator and effector in the process of 

mounting innate and adaptive immune responses, regulating cell death and survival 

(Locksley et al., 2001), while COX-2 is a prostaglandin synthesis enzyme that plays a 

key role in inflammation in fish (Ishikawa et al., 2007ab) and is responsible for 

conversion of arachidonic acid into prostaglandin, related to the fish innate immune 

response (Xu et al., 2008; Legler et al., 2010). 

Vitamin C is a water-soluble vitamin involved in the biosynthesis of pro-

collagen, growth, immune response, malformations, susceptibility to bacterial infections 

and reproduction among other functions (Kumari and Sahoo, 2005; Zhou et al., 2012). 

Vitamin C together with vitamin E (α-tocopherol) and the endogenous enzymatic 

antioxidant mechanisms, such as superoxide dismutase (SOD), catalase (CAT) and 

glutathione peroxidase (GPX) has a strong powerful antioxidant effect in tissues being 

able to neutralize reactive oxygen species (ROS). At low concentrations, ROS may be 

beneficial or even indispensable in processes such as defence against micro-organisms, 

contributing to phagocytic bactericidal activity. However, when an imbalance between 

ROS generation and ROS removal occurs, a state of oxidative stress arises (Nita, et al., 

2016). This status may lead to the oxidation of various cellular constituents like lipids, 

proteins or DNA, causing alterations that produce a range of cellular damages which 

can ultimately lead to cell death (Halliwell and Gutteridge, 1995). Limited information 

is available on the effect of antioxidant vitamins in the formation of granulomas. In fish, 

it has been suggested that a deficiency of vitamin C causes an impairment of tyrosine 

catabolism, which leads to its precipitation in tissues and thereby cause development of 

the granulomas (Paperna et al., 1980; Tixerant et al., 1984). In rainbow trout 

(Oncorhynchus mykiss) granulomas of unknown aetiology have been hypothesized to be 

caused by a dietary mineral imbalance, which would lead to precipitation of calcium 

phosphate or calcium carbonate (Dunbar and Herman 1971). More recently, granulomas 

of unknown aetiology have also been described in Atlantic salmon (Salmo salar) (Good 

et al., 2015).  

Recently, our research group has found a strong effect of vitamin K related to 

systemic granulomatosis occurrence as diets without vitamin K supplementation 
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produced higher incidence of hepatic granulomas in meagre larvae (Vidal et al., 2016). 

The effects of dietary inclusion of vitamin D3 have also been studied in the development 

of systemic granulomatosis in juvenile meagre, and a negative correlation was found 

between the appearance of granulomas and levels of sterol 27-hydroxylase, a carrier of a 

metabolite of vitamin D3 (Cotou et al., 2016). These findings may support a non-

infectious origin of granulomatosis in this fish species. Thus, further studies are 

required in order to determine whether this disease can be ameliorated through nutrition.  

The overarching aim of this study was to elucidate the involvement of the 

dietary vitamins E, C and K on the appearance and incidence of systemic 

granulomatosis in meagre. To reach this objective, diets containing graded levels of the 

three vitamins were fed to juvenile meagre to determine effects on growth, survival, 

histopathology as well as fish composition and gene expression of antioxidant enzymes 

and immune response genes. 

2. Materials and methods  

2.1. Fish and feeds 

The experiment was carried out at the ECOAQUA facilities (Taliarte, Canary 

Islands, Spain). The juvenile meagre were obtained from induced spawns at the 

ECOAQUA facilities from brood stock adapted to farming conditions. Prior to the start 

of the feeding trial, fish were fed with a commercial diet (Skretting, Burgos, Spain) for 

14 days to acclimatize to the experimental conditions. Fish with an initial mean weight 

of 79.3 ± 0.5 g were transferred to 18 fibre glass tanks of 500 L with 50 fish per tank at 

an initial stocking density of 7.9 kg m-3. All tanks were covered with a net to prevent 

escapes. The temperature and dissolved oxygen concentration were measured twice a 

week with values ranging from 17.6 to 21.6° C and 5.8 to 6.6 mg L-1, respectively.  

Six isolipidic (16 % lipid) and isoproteic (50 % protein) fish meal and fish oil 

based diets were produced as extruded 3 mm pellets by Skretting ARC Feed 

Technology Plant (Stavanger, Norway) (Table 1). The basal diet (Diet 0) contained a 

vitamin premix with no vitamin K and is used in the present trial to bench-mark the 

experimental feeds, but not to generate granulomas due to the depletion of antioxidant 

vitamins. The experimental diets were obtained by supplementing the basal diet with 50 

or 200 mg kg-1 vitamin C, 150 or 300 mg kg-1 vitamin E and/or 23 mg kg-1 vitamin K. 
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Since vitamin K is very heat labile, this component was coated on the final feed in a 

cement mixer and sealed with 0.5 % fish oil. Also diets without vitamin K 

supplementation were added 0.5 % fish oil in the cement coater. This resulted in the 

following combinations of vitamin supplementation: Diet K (23 mg kg-1 vitamin K), 

Diet EC (150 mg kg-1 and 50 mg kg-1 vitamin E and C, respectively), Diet KEC (23 mg 

kg-1, 150 mg kg-1 and 50 mg kg-1 vitamin K, E and C, respectively), Diet EECC (300 mg 

kg-1 and 210 mg kg-1 of vitamin E and C, respectively), Diet KEECC (23 mg kg-1, 300 

mg kg-1 and 210 mg kg-1  vitamin K, E and C, respectively). The analysed dietary 

contents of vitamins K, E and C for each treatment are shown in Table 1.  

Table 1. Feed formulation in g kg-1. Diet codes are according to vitamins supplemented 

to the basal diet (Diet 0).  

 Diets 

Ingredients 0 K EC KEC EECC KEECC 

Wheat1 15.97 15.97 15.97 15.97 15.97 15.97 

Wheat gluten1 16.50 16.50 16.50 16.50 16.50 16.50 

Soy protein concentrate1 16.64 16.64 16.64 16.64 16.64 16.64 

Faba beans whole1 5.00 5.00 5.00 5.00 5.00 5.00 

Fish meal, N-Atlantic1 35.00 35.00 35.00 35.00 35.00 35.00 

Fish oil, N-Atlantic1 10.26 10.26 10.26 10.26 10.26 10.26 

Premixes2  0.68 0.68 0.68 0.68 0.68 0.68 

Vitamin E3*  - - 0.03 0.03 0.07 0.07 

Vitamin C4*  - - 0.01 0.01 0.06 0.06 

Vitamin K5* - 0.0035 - 0.0035 - 0.0035 

Proximate composition 

(%)       

Lipid  17.9 17.6 19.5 17.4 17.7 16.8 

Protein 48.8 49.6 48.7 48.6 48.7 48.5 

Ash 6.8 7.2 6.5 7.3 6.6 7.3 

Dry matter 91.3 91.7 90.9 92.2 91.8 91.6 

Vitamin E (mg kg-1) 158.7 172.5 283.6 276.5 416.4 449.1 

Vitamin C (mg kg-1) 16.6 19 71.1 72.4 227.0 240.0 

Vitamin K (mg kg-1) n.d. 23.0 n.d. 22.0 n.d. 23.0 

Fatty acid (%)       

14:0 1.1 1.1 1.5 1.1 0.9 1.0 

16:0 2.8 2.9 3.1 2.8 2.7 2.7 

18:0 0.4 0.4 0.4 0.4 0.4 0.3 

Total saturated6 4.4 4.5 5.4 4.4 3.7 4.3 

18:1n-9 2.5 2.1 2.5 2.1 2.0 2.0 

Total monosaturated7 5.3 5.0 5.7 4.9 4.3 4.8 

18:2n-6 1.2 1.1 1.2 1.1 0.9 1.1 

20:4n-6 0.1 0.1 0.1 0.1 0.4 0.1 
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Total n-6 PUFA8 1.4 1.3 1.5 1.3 1.6 1.3 

18:3n-3 0.3 0.3 0.3 0.3 0.2 0.3 

20:5n-3 1.3 1.4 1.4 1.3 2.2 1.4 

22:5n-3 0.1 0.1 0.1 0.1 0.1 0.1 

22:6n-3 1.8 1.7 1.7 1.9 1.5 1.6 

Total n-3 PUFA9 4.4 4.3 4.4 4.4 5.9 4.1 

Total PUFA10 6.0 5.9 6.1 6.0 7.8 5.6 

Total n-3 LC-PUFA11 3.4 3.4 3.4 3.5 5.1 3.2 
1Skretting, Stavanger, Norway; 2Trouw Nutrition, Boxmeer, the Netherlands. 

Proprietary composition Skretting ARC, including vitamins, but no vitamin K and 

minerals. Vitamin and mineral supplementation as estimated to cover requirements 

according NRC (2011); 3Lutavit E-50, Trouw Nutrition, Boxmeer, the Netherlands; 
4Lutavit C Aquastab 35%, Trouw Nutrition, Boxmeer, the Netherlands; 5Menadione 

dimethypyrimidinol bisulfite 43.7%, Trouw Nutrition, Boxmeer, the Netherlands; 
6Includes 15:0, 17:0 and 20:0; 7Includes 14:1n-7, 14:1n-5, 15:1n-5, 16:1n-5, 16:1n-7, 

18:1n-5, 18:1n-7, 20:1n-9, 20:1n-7 and 20:1n-5; 8Includes 18:3n-6, 20:2n-6, 20:3n-6 

and 22:4n-6; 9Includes 16:3n-3, 16:4n-3, 18:4n-3, 20:3n-3 and 20:4n-3. 10Includes C16 

PUFA; 11Includes 20:3n-3 and 20:4n-3; *Amount of active vitamin. Diets 0-KEECC 

represent feed with increasing levels of vitamin E, C and with or without vitamin K 

supplemented as described in Material and Methods section. n.d., not detected; PUFA, 

polyunsaturated fatty acids; LC-PUFA, long-chain PUFA. 

 

The experimental diets were fed to fish in triplicate tanks of fish to satiation 3 

times per day (8:00, 11:30, 15:00), 6 days per week for 15 weeks. All the uneaten feed 

was collected daily from each tank and dried in order to calculate the daily feed intake. 

Dead fish were recorded and removed daily and survival determined. 

2.2. Growth performance  

After 15 weeks of feeding the experimental diets, the fish were killed by an 

overdose of anaesthetic (clove oil) before they were individually weighed, length 

measured and samples collected for histopathology, biochemical analysis and gene 

expression measurements.  

Performance parameters were calculated according to the following equations: 

Survival (%) = 100*(final number fish – initial number fish)/ initial number fish; 

Growth (%) = ((final mean weight – initial mean weight)/initial mean weight)*100; 

Weight gain = (final mean weight- initial mean weight); SGR (specific growth rate) = 

100 x (ln final mean weight – ln initial mean weight)/ number of days; FI = feed intake 

(g)/fish per day; FCR (feed conversion ratio) = feed intake (g)/ weight gain (g); K 

(condition factor (%)) = 100*(fish weight/ (fish length)3 ); HSI (hepatosomatic index 
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(%)) = 100*(liver weight / fish weight); VSI (viscerosomatic index (%)) = 100* (fish 

weight - eviscerated fish weight)/fish weight. The growth curve was determined 

following the model described by Cho (1992), in which TGC (thermical growth 

coefficient) = (final weight1/3 – initial weigth1/3)/ ⅀ effective temperature (> 12 °C). 

Final weight = (initial weight1/3 + (⅀ effective temperature * TGC))3.  

 

2.3. Sample collection 

At the beginning (n = 50 fish from the stock tank) and at the end of the 

experimental trial (n = 21 fish per diet) fish were sacrificed with an overdose of 

anaesthetic and samples of liver, kidney, heart and spleen were collected and fixed in 4 

% buffered formalin for histological analysis. Additionally, 5 fish per tank (n = 15 per 

treatment) were sacrificed and liver, heart and kidney removed and frozen at -20° C for 

proximate and vitamin E analysis. Ten fish per tank were also sacrificed and the same 

tissues collected, pooled, stabilized in RNA later (Sigma, Poole, UK) and stored at -80° 

C until RNA extraction.  

2.4. Biochemical analysis 

Chemical composition of feeds and fish were analysed following standard 

procedures. Lipids in liver, heart, kidney and feeds were extracted with a choloroform-

methanol (2:1 v/v) mixture as described by Folch et al. (1957). In feed, protein content 

(Kjeldahl method), dry matter and ash were determined according to Helrich (1990).  

Fatty acids from total lipids were prepared by transmethylation as described by 

Christie (1982). Fatty acid methyl esters (FAMES) were separated and quantified by 

gas–liquid chromatography following the conditions described by Izquierdo et al. 

(1992). 

The concentration of vitamin E was determined in diets and fish tissues (liver, 

heart and kidney). Samples were weighed, homogenized in ethanolic pyrogallol and 

saponified as described by Cowey et al., 1981 for tissue and according to McMurray et 

al., 1980 for diets. HPLC analysis was performed using 150 x 4.60 mm, 5 µm reverse-

phase Luna and C18 column (Phenomenox, CA, USA). The mobile phase was 

methanol:ultrapure water (98:2 v/v) with a flow rate of 1.0 ml min-1 at ambient 
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temperature. Samples were injected (50 µl) in a high performance liquid chromatograph 

(HPLC) with UV detection at a wavelength of 293 nm to determine the vitamin E using 

(+)-α-tocopherol (Sigma-Aldrich) as the external standard. 

The concentration of vitamin C was determined in the experimental feeds as 

described by Betancor et al. (2012). Samples were weighed, homogenised and dissolved 

in 0.4 M phosphate buffer (adjusted to pH 3.0 with phosphoric acid). The samples were 

centrifuged at 3.000 rpm, supernatants removed and filtered through a disposable 0.45 

µm filter and stored at 4° C until the measurement in a HPLC with UV detection. The 

determination of vitamin C concentration was achieved by comparison with tris 

(cyclohexylammonium) ascorbic acid-2-phosphate (Sigma-Aldrich) as the external 

standard. 

The concentration of vitamin K was determined in diets as described by 

Billedeau (1989). 1 g of sample was weighed, homogenized and dissolved in 

dichloromethane (10 ml) on a shaker for 30 min. The samples were centrifuged at 1,000 

g for 10 min and supernatants removed to a 30 ml tube. Ten ml of 5 % sodium 

carbonated diluted in deionized water and 10 ml of n-pentane was added to the sample 

and centrifuged at 1,000 g for 1 minute. This step was repeated 2 more times and the 

upper n-pentane layer was transferred to a 30 ml tube and evaporated to dryness under 

nitrogen. Then, the sample was dissolved in 1 ml methanol and filtered through a 

disposable 0.45 µm filter and stored at 4° C in dark until the measurement in a gas 

chromatography–mass spectrometer (GC-MS). 

2.5. Histopathology 

The samples were dehydrated in a series of different concentrations of ethanol 

and embedded in a paraffin block. The samples were cut at 4 μm, fixed to the 

microscope slide, heated and finally stained with haematoxylin and eosin (H&E), Ziehl-

Neelsen (ZN) (Martoja and Martoja-Pearson, 1970), Fite-Faraco method (Fite et al., 

1947) and Gram stain (Gregersen, 1978). Then, the samples were used for 

histopathological evaluation. 

Additionally, an immunohistochemistry study was performed using monoclonal 

anti-actin as a primary antibody to mark smooth muscle. Liver paraffin sections in 

which granulomas had previously been identified by H&E were routinely dewaxed and 



 
 

10 

 

rehydrated. All incubations were performed at room temperature in a humid chamber. 

After antigen retrieval (High pH, Dako, Denmark), endogenous peroxidase activity was 

blocked by Peroxidase Blocking Solution (Dako, Denmark) for 1 h. Sections were 

incubated for 2 h at room temperature with a primary rabbit monoclonal antibody anti-

actin (diluted 1:200; clone HHF35; Enzo Diagnostic, USA). Immunohistochemical 

staining was carried out using horseradish peroxidase (HRP) anti-rabbit (EnVision; 

Dako, Denmark) and 3-amino, 9 ethyl-carbazole diluted in 0.1 M sodium acetate-buffer 

containing 3 % hydrogen peroxide. The slides were counterstained with Harris 

haematoxylin.  

2.6. Histopathological scoring 

A quantitative method was developed to classify the severity of granulomas in 

each organ in four different levels (score 0-3) depending on the number of granulomas 

observed. The score depends on the tissue, given that the number of granulomas 

observed in each organ was variable. The average severity was classified in liver, 

kidney and heart according to the criteria shown in Supplementary Table 1. 

Supplementary Table 1. Severity score of granulomas in liver, kidney and heart. 

Score Liver Kidney Heart 

0 No granulomas No granulomas No granulomas 

1 1 ≤ 10 granulomas 1 ≤ 3 granulomas 1 ≤ 1 granulomas 

2 10 ≤ 30 granulomas 3 ≤ 6 granulomas 2 ≤ 2 granulomas 

3 > 30 granulomas > 6 granulomas > 3 granulomas 

 

2.7. DNA extraction 

Formalin fixed tissues (liver, kidney) and formalin fixed paraffin-embedded 

tissues (FFBE, liver, heart, spleen, kidney) were sent to University of Stirling for PCR 

identification of Nocardia spp. A Nocardia positive formalin fixed paraffin-embedded 

tissue block from previous confirmed case was included. DNA was also extracted using 

Dneasy
® Blood and Tissue Kit (Qiagen) following Elkesh et al. (2013). Briefly, 25 mg 
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of paraffin-embedded tissue sections and formalin fixed tissues were cut and placed into 

sterile 1.5 mL Eppendorf tubes. The FFBE tissues sections were then dewaxed in 1.5 

mL xylene, vortexed and centrifuged at 9500 g for 5 min, before the xylene was 

removed and replaced with absolute ethanol (1.5 mL). The samples were then 

centrifuged at 9500 g for 5 min and the supernatant removed and the pellets kept. The 

xylene/alcohol washing step was repeated before the residual alcohol was allowed to 

evaporate. The samples were then processed using the Dneasy
® Blood and Tissue Kit as 

previously described.  

DNA from reference Nocardia strains was used as positive control. Bacterial 

DNA was extracted N. kampachi NCIMB 2057 following the crude boiling methods of 

Seward et al. (1997). One millilitre of a bacterial suspension grown to mid-logarithmic 

phase growth in Brain Heart Infusion broth (BHIB) was centrifuged at 2000 g for 15 

min and the pellet washed in 1 mL of STE buffer (0.1 M NaCl, 10 nM Tris pH 8.0, 1 

mM EDTA) and resuspended in 100 µL of TE buffer (10 mM Tris, 1 mM EDTA). The 

cell suspension was heated to 95 °C for 15 min, allowed to cool in ice and centrifuged 

to remove cellular debris. The DNA concentration was measured using a Nanodrop 

spectrophotometer ND-100 (Labtech International) and kept at -20 °C until required.  

2.8. PCR identification  

PCR was performed using MyTaq™ HS Mix (Bioline, UK) Two sets of 16S 

rRNA-specific Nocardia genus primers described by Laurent et al. (1999) were used; 

NG1: 5′-ACCGACCACAAGGGG-3′ and the reverse primer NG2: 5′-

GGTTGTAAACCTCTTTCGA-3′. The primers were expected to develop 600 bp size 

band. The samples were subjected to 30 cycles, in a DNA thermocycler (Tgradient, 

Biometra) initial denaturing for 1 min at 95° C followed by 95° C for 30 s, annealing at 

55° C for 20 s and 72° C for 10 seconds. After 30 cycles of amplification, 6 µL of the 

PCR products was run on 1.5 % agarose gel using Tris-acetate-EDTA (40 mM Tris, 20 

mM acetic acid, and 1 mM EDTA, pH 8.0) buffer and visualized by ethidium bromide 

staining.  

2.9. Gene expression 

Total RNA was extracted from, approximately, 100 mg of sample using TRI 

Reagent® (Sigma). Purity was assessed by spectrophotometry (A260/A280), followed 
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by a visual quality assessment via agarose gel electrophoresis on 2 % agarose gel 

stained with GelRed ™ Nucleic Acid Gel Stain (Biotium).  

The cDNA was synthetized from 1 μg of total RNA using the iScript cDNA 

Synthesis Kit (BIORAD) in 20 μl reactions, which included 4 μl 5× iScript Reaction 

Mix, 1 μl iScript Reverse Transcriptase (BIORAD), 13 μl Milli-Q sterile water and 2 μl 

RNA (1 μg) of the sample. The reverse transcription was done in a thermal cycler 

(iCycler) at 25° C for 5 min, 60 min at 42° C and finally heating the samples for 5 min 

at 85° C. 

Specific primers to each gene were designed based on the alignment of 

conserved coding regions of the genes of interest of other teleost fish species, using 

Mega 7 software (Supplementary Table 2).  

Supplementary Table 2. Sequences for real-time quantitative-PCR forward and 

reverse primers (5′–3′). The data include sequences. amplicon sizes and annealing 

temperatures (Ta). 

Target Primer 5´-3´ Fragment size 

(bp) 

Ta 

(°C) 

sod F: GGCCCTCACTTCAATCCCTA 207 59 

R: TCCTTTTCCCAGATCGTCGG 

gpx F: AAGCAGTTTGCCGAGTCCTA 103 

 

57 

R: GCTGGTCTTTCAGCCACTTC 

cat F: GCTTCCACCAACCCAGATTA 205 59 

R: GGTTCCTGTTCAGCACCATT 

cox-2 F: GGAAGTTGGTGTTGACATGCACTAC 211 59 

R: AATCAGGATGAGCCGTGTGGTC 

tnfα F: CACAAGAGCGGCCATTCATTTACAAGGAG 173 59 

R: GGAAAGACGCTTGGCTGTAGATGG 

bact F: CCATCGAGCACGGTATTGT 455 60 

R: CAGCTTCTCCTTGATGTCACG 
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tub F: GGAGTACCCCGATCGTATCA 161 59 

R: AGATGTCATACAGGGCCTCG 

ef1a F: GGTGCTGGACAAACTGAAGG 196 59 

R: GAACTCACCAACACCAGCAG 

sod, superoxide dismutase; gpx, glutathione peroxidase; cat, catalase; tnfα, tumor 

necrosis factor; cox-2, cyclooxygenase; bact, β-actin; tub, tubulin; ef1a, elongation 

factor 1α. 

The relative transcript abundance of glutathione peroxidase (gpx), superoxide 

dismutase (sod), catalase (cat), tumor necrosis factor (tnfα) and cyclooxygenase 2 (cox-

2) was determined by quantitative real time PCR (qPCR). Primer efficiency for each 

gene was previously evaluated to ensure that it was close to 100 %. All PCRs were 

performed using a Biometra TOptical Thermocycler (Analytik Jena, Goettingen, 

Germany) in 96-well plates in duplicate using 10 μl Thermo Scientific Luminaris Color 

Higreen qPCR Master Mix (Bio-Rad Hercules, California), 1 μl of forward and reverse 

primers (100 pmol μl-1), 6 μl water nuclease-free and 5 μl of a 1:10 dilution of the 

cDNA, with the exception of the reference genes, which were determined using 2 μl of 

cDNA, in a final volume of 20 μl. In addition, amplifications were carried out with a 

systematic negative control (NTC-non template control) containing no cDNA. 

The PCR conditions were an uracil-DNA glycosylase pre-treatment at 50° C for 

2 min, a denaturation at 95° C for 10 min, followed by 35 cycles: 15 s at 95° C, 30 s at 

the annealing Tm and 30 s at 72° C. Expression level of each gene was normalized by 

the corresponding geometric average expression of β actin (bactin), elongation factor 1α 

(ef1a) and tubulin (tub), which were chosen as the most stable according to GeNorm 

(Supplementary Table 2).  

2.10. Statistical analysis 

All statistical analyses were performed on Statgraphics Centurion XVI (Version 

16.1.11, StatPoint Technologies, Inc., Herndon, VA). Data were tested for normality 

and homogeneity of variance with Levene’s test prior to one-way analysis of variance 

(ANOVA) with Tukey post-hoc test or two-way ANOVA (Vitamin E and C x Vitamin 

K). In order to compare variables from two treatments, a t-student test was used for 

normally distributed variables and a Mann-Whitney test for the non-parametric ones. 
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The tissue level of severity was evaluated in a frequency distribution manner. A 

significance level of 0.05 was used.  

3. Results 

3.1. Growth performance  

Inclusion of different levels of dietary vitamins E, and C with or without vitamin 

K affected meagre final weight and length (Table 2). Juvenile meagre grew from and 

average weight of ~ 80 g to ~ 267 g in 15 weeks, with final fish weight very similar to 

that estimated by the growth curve model (Supplementary Figure 1). The final body 

weight and length were significantly increased in fish fed with low addition of vitamin 

E and C (Diet EC), being only higher than fish fed diet 0 (without vitamin K and no 

extra supplementation of vitamin E and C) and diet K with only addition of vitamin K. 

Total body length was significantly higher in fish fed diets EC, however, these 

differences were not reflected in significant differences (p > 0.05) in specific growth 

rate (SGR), survival or biometric parameters (Table 2). The feed conversion ratio (FCR) 

was good in all dietary treatments (0.83-0.87) but without significant differences. 

Table 2. Growth performance in meagre fed the experimental diets for 104 days. 

 0 K EC KEC EECC KEECC E+C Vit. K 
Vit. E+C 

x Vit. K 

Initial 

weight (g)1 
79.1 ± 0.6 79.3 ± 1.2 80.1 ± 1.3 79.5 ± 0.8 79.5 ± 1.0 79.5 ± 1.0 n.s. n.s. n.s. 

Final 

weight (g)1 
263.5 ± 6.8a 258.3 ± 7.6a 278.9 ± 9.8b 265.7 ± 5.6ab 266.2 ± 9.1ab 271.0 ± 2.6ab * n.s. n.s. 

Weight 

gain (%)1 
332.8 ± 4.1a 325.5 ± 2.5a 344.1 ± 6.6b 333.4 ± 4.7ab 338.1 ± 5.7ab 337.4 ± 7.6ab * n.s. n.s. 

Length 

(cm)1 
28.1 ± 1.6a 28.1 ± 1.4a 28.7 ± 1.6b 28.2 ± 1.5ab 28.3 ± 1.4ab 28.2 ± 1.6ab * n.s. n.s. 

TGC*10-3 2.86 ± 0.0 2.81 ± 0.0 3.01 ± 0.0 2.88 ± 0.0 2.91 ± 0.0 2.90 ± 0.0 n.s. n.s. n.s. 

FI (g)2 
1.53 ± 0.1 1.49 ± 0.0 1.57 ± 0.0 1.52 ± 0.1 1.52 ± 0.1 1.53 ± 0.0 n.s. n.s. n.s. 

FCR2 0.87 ± 0.1 0.87 ± 0.0 0.83 ± 0.0 0.87 ± 0.0 0.87 ± 0.0 0.84 ± 0.0 n.s. n.s. n.s. 

SGR2 1.14 ± 0.1 1.12 ± 0.0 1.19 ± 0.0 1.15 ± 0.0 1.17 ± 0.0 1.16 ± 0.0 n.s. n.s. n.s. 

Survival2 97.3 ± 4.6 100.0 ± 0.0 98.0 ± 2.0 96.7 ± 4.2 96.0 ± 5.3 98.0 ± 2.0 n.s. n.s. n.s. 

HIS2 1.7 ± 0.4. 1.9 ± 0.6 1.8 ± 0.4 1.7 ± 0.3 1.7 ± 0.2 1.7 ± 0.3 n.s. n.s. n.s. 

VSI2 3.4 ± 0.7 3.4 ± 1.0 3.4 ± 0.4 3.4 ± 0.3 3.3 ± 0.4 3.3 ± 0.4 n.s. n.s. n.s. 

CAI2 96.6 ± 0.6 96.6 ± 1.0 96.6 ± 0.4 96.8 ± 0.9 96.8 ± 0.4 96.7 ± 0.4 n.s. n.s. n.s. 

K2 1.2 ± 0.0 1.1 ± 0.1 1.1 ± 0.1 1.1 ± 0.0 1.1 ± 0.1 1.1 ± 0.1 n.s. n.s. n.s. 
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Data are means ± SD, where the means in each column with a different superscript are 

significantly different according to one-way ANOVA (P < 0.05). 1n=150. 2n=3. TGC, 

thermal growth coefficient; FI, feed intake; FCR, feed conversion ratio; SGR, specific 

growth rate; HIS, hepatosomatic index; VSI, viscerosomatic index; CAI, canal index; K, 

condition factor; The last three columns indicate the effect of vitamins E and C (Vit. 

E+C), vitamin K (Vit. K) or their interaction (Vit. E+C x Vit. K) according to two-way 

ANOVA. 
*   p < 0.05.  

** p < 0.01. 

 

 

 
 

Supplementary Figure 1. Growth curve of Meagre fed diets with different levels of 

vitamin E, C and K during 104 days. 

 

3.2. Tissue proximate content and fatty acid profiles  

 

The dietary treatments did not affect lipid content in the analyzed tissues 

amounting to 2.7 %, 4.6 % and 24.4 % in heart, kidney and liver, respectively (Table 3, 

4 and 5). Similarly, no differences were observed in protein, ash or dry weight among 

fish fed the experimental dietary treatments (Supplementary Table 3). The fatty acid 

profile of the tissues of fish reflected the dietary fatty acid content (Table 1). The 

highest levels of total monounsaturated fatty acids were observed in liver, followed by 

kidney and heart, whereas the total omega-3 (n-3) and total polyunsaturated fatty acid 

(PUFA) were higher in the heart, followed by kidney and liver (Tables 3, 4 and 5, 

respectively). All the other fatty acids were similarly distributed in the three tissues. 

70

100

130

160

190

220

250

280

0 10 20 30 40 50 60 70 80 90 100

W
ei

gt
h

 (
g)

Days of feeding

Growth curve

0

K

EC

KEC

EECC

KEECC



 
 

16 

 

 

Table 3. Heart fatty acid compositions (percentage of total fatty acids) of Meagre fed 

diets with different levels of vitamin E, C and K during 104 days. 

 0  K  EC  KEC  EECC  KEECC 
Vit. 

E+C 

Vit. 

K 

Vit. E+C x 

Vit. K 

Lipid content (%) 2.8 ±  0.2  2.9 ±  0.3  2.7 ±  0.8  2.7 ±  0.3  2.7 ±  0.1  2.6 ±  0.2 n.s. n.s. n.s. 

14:0 1.0 ±  0.1            1.1 ±  0.1  1.3 ±  0.5  1.3 ±  0.3  1.0 ±  0.1  1.1 ±  0.1 n.s. n.s. n.s. 

16:0 18.9 ±  1.1 ab  20.8 ±  0.2b  17.5 ±  0.5a  20.9 ±  1.0b  18.5 ±  0.4a  20.8 ±  0.8b n.s. * n.s. 

18:0 9.0 ±  0.7ab  10.0 ±  0.3b  7.9 ±  0.8a  9.5 ±  0.8ab  8.6 ±  0.6ab  9.6 ±  0.8ab n.s. * n.s. 

Total saturated1 29.5 ±  1.8ab  32.5 ±  0.7b  27.2 ±  0.8a  32.3 ±  1.7b  28.6 ±  0.4a  32.1 ±  1.5b n.s. * n.s. 

16:1n-7 1.2 ±  0.4  1.2 ±  0.1  1.4 ±  0.7  1.5 ±  0.3  1.1 ±  0.2  1.2 ±  0.1 n.s. n.s. n.s. 

18:1n-9 7.7 ±  0.6  7.7 ±  0.6  8.0 ±  1.5  8.0 ±  0.6  7.1 ±  0.3  7.4 ±  0.3 n.s. n.s. n.s. 

18:1n-7 3.0 ±  0.2ab  3.2 ±  0.1b  2.9 ±  0.1a  3.2 ±  0.1b  2.9 ±  0.1ab  3.1 ±  0.1b n.s. * n.s. 

20:1n-7 3.4 ±  0.2  3.6 ±  0.1  3.5 ±  0.4  3.8 ±  0.1  3.3 ±  0.2  3.6 ±  0.1 n.s. n.s. n.s. 

22:1n-11 2.0 ±  0.2  2.1 ±  0.1  2.4 ±  1.0  2.3 ±  0.3  1.9 ±  0.2  2.1 ±  0.2 n.s. n.s. n.s. 

Total 

monounsaturated2 
18.2 ±  1.5  18.7 ±  0.5  19.1 ±  3.7  19.7 ±  1.5  17.3 ±  0.7  18.2 ±  0.5 

n.s. n.s. n.s. 

18:2n-6 6.1 ±  0.4  6.3 ±  0.2  6.3 ±  0.3  6.2 ±  0.1  5.8 ±  0.1  6.0 ±  0.2 n.s. n.s. n.s. 

20:2n-6 0.9 ±  0.6  0.6 ±  0.1  0.5 ±  0.0  0.5 ±  0.0  0.6 ±  0.0  0.6 ±  0.0 n.s. n.s. n.s. 

20:4n-6 2.3 ±  0.2  2.4 ±  0.2  2.2 ±  0.3  2.2 ±  0.0  2.3 ±  0.3  2.3 ±  0.1 n.s. n.s. n.s. 

Total n-6 PUFA3 9.7 ±  0.1  9.8 ±  0.3  9.4 ±  0.2  9.3 ±  0.1  9.1 ±  0.5  9.3 ±  0.2 n.s. n.s. n.s. 

18:3n-3 0.6 ±  0.0  0.6 ±  0.1  0.7 ±  0.2  0.6 ±  0.0  0.6 ±  0.1  0.6 ±  0.0 n.s. n.s. n.s. 

18:4n-3 0.2 ±  0.1  0.2 ±  0.0  0.4 ±  0.2  0.3 ±  0.1  0.2 ±  0.1  0.2 ±  0.0 n.s. n.s. n.s. 

20:3n-3 0.2 ±  0.0  0.2 ±  0.0  0.2 ±  0.0  0.2 ±  0.0  0.2 ±  0.0  0.2 ±  0.0 n.s. n.s. n.s. 

20:4n-3 0.4 ±  0.0ab  0.4 ±  0.0a  0.5 ±  0.0b  0.4 ±  0.0ab  0.4 ±  0.0ab  0.4 ±  0.0ab n.s. ** n.s. 

20:5n-3 8.9 ±  0.8  8.2 ±  0.4  9.4 ±  0.8  7.9 ±  0.9  9.0 ±  0.6  8.5 ±  0.4 n.s. n.s. n.s. 

22:5n-3 1.8 ±  0.0abc  1.6 ±  0.0a  1.9 ±  0.1cb  1.7 ±  0.2ab  2.0 ±  0.2c  1.7 ±  0.1abc n.s. * n.s. 

22:6n-3 27.4 ±  2.9ab  24.7 ±  1.1ab  28.4 ±  2.5ab  24.4 ±  1.7a  29.5 ±  0.6b  25.7 ±  1.0ab n.s. * n.s. 

Total n-3 PUFA4 40.5 ±  2.5abc  36.7 ±  1.2ab  42.3 ±  3.0bc  36.3 ±  2.7a  42.9 ±  0.3c  38.1 ±  1.0abc n.s. * n.s. 

Total PUFA5 52.3 ±  2.3ab  48.8 ±  1.1ab  53.7 ±  3.2b  48.0 ±  2.5a  54.1 ±  0.6b  49.7 ±  1.2ab n.s. * n.s. 

Total n-3 LC-

PUFA5 38.7 ±  2.6ab  35.0 ±  1.3a  40.3 ±  3.3ab  34.5 ±  2.7a  41.1 ±  0.4b  36.4 ±  1.0ab n.s. * n.s. 

Data are expressed as means ± SD (n=3). Means in each column with a different 

superscript are significantly different according to one-way ANOVA (P < 0.05). 
1Includes 15:0, 20:0 and 17:0. 2Includes 14:1n-7, 14:1n-5, 15:1n-5, 16:1n-5, 18:1n-5, 

20:1n-9, 20:1n-5 and 22:1n-9. 3Includes 22:5n-6. 4Includes 16:3n-3, 16:4n-4, 18:3n-6, 

20:3n-6 and 22:4n-6. 5Includes C16 PUFA. Diets 0-KEECC represent feed with 

increasing levels of vitamin E. C and with or without vitamin K as described in Material 

and Methods section. PUFA, polyunsaturated fatty acids; LC-PUFA, long-chain PUFA. 

The last three columns indicate the effect of vitamins E and C (Vit. E+C), vitamin K 

(Vit. K) or their interaction (Vit. E+C x Vit. K) according to two-way ANOVA. 
*   p < 0.05.  

** p < 0.01. 
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Table 4. Kidney fatty acid compositions (percentage of total fatty acids) of Meagre fed 

diets with different levels of vitamin E, C and K during 104 days. 

 0 
 

K 
 

EC 
 

KEC 
 

EECC 
 

KEECC 

Lipid content (%) 4.7 ±  0.7 
 

4.5 ±  0.3 
 

 4.5 ±  0.5 
 

4.7 ±  0.5 
 

4.3 ±  0.6 
 

4.8 ±  0.3 

14:0 3.5 ±  0.3  
 

3.5 ±  0.6 
 

3.4 ±  0.4 
 

3.6 ±  0.7 
 

3.4 ±  0.3 
 

3.6 ±  0.6 

16:0 18.8 ±  0.3 
 

19.9 ±  0.4 
 

19.7 ±  0.8 
 

19.6 ±  1.2 
 

20.0 ±  0.3 
 

19.2 ±  0.7 

18:0 4.8 ±  0.4 
 

5.4 ±  0.8 
 

5.3 ±  0.8 
 

5.0 ±  1.2 
 

5.3 ±  0.3 
 

5.0 ±  0.9 

Total saturated1 28.1 ±  0.3 
 

29.7 ±  0.5 
 

29.3 ±  1.1 
 

29.1 ±  1.6 
 

29.5 ±  0.4 
 

28.7 ±  0.9 

16:1n-7 4.2 ±  0.5 
 

4.1 ±  0.7 
 

4.0 ±  0.7 
 

4.3 ±  0.8 
 

4.0 ±  0.5 
 

4.2 ±  0.8 

18:1n-9 13.7 ±  0.7 
 

12.6 ±  0.8 
 

12.8 ±  1.0 
 

12.6 ±  1.3 
 

12.2 ±  0.5 
 

12.4 ±  0.8 

18:1n-7 2.5 ±  0.1 
 

2.5 ±  0.1 
 

2.5 ±  0.1 
 

2.5 ±  0.1 
 

2.5 ±  0.1 
 

2.5 ±  0.1 

20:1n-7 4.9 ±  0.3 
 

5.0 ±  0.8 
 

4.7 ±  0.5 
 

5.0 ±  0.8 
 

4.7 ±  0.3 
 

5.1 ±  0.8 

22:1n-11 5.6 ±  0.7 
 

5.5 ±  1.4 
 

5.2 ±  1.1 
 

5.6 ±  1.7 
 

5.2 ±  0.7 
 

5.7 ±  1.5 

Total monounsaturated2 32.8 ±  2.2 
 

31.6 ±  3.7 
 

30.9 ±  3.2 
 

31.9 ±  4.7 
 

30.3 ±  2.0 
 

31.8 ±  4.0 

18:2n-6 6.8 ±  0.2 
 

6.4 ±  0.4 
 

6.4 ±  0.3 
 

6.6 ±  0.6 
 

6.3 ±  0.1 
 

6.3 ±  0.3 

20:2n-6 0.4 ±  0.0 
 

0.4 ±  0.0 
 

0.4 ±  0.1 
 

0.4 ±  0.0 
 

0.4 ±  0.0 
 

0.4 ±  0.1 

20:4n-6 1.2 ±  0.2 
 

1.3 ±  0.3 
 

1.3 ±  0.3 
 

1.2 ±  0.4 
 

1.3 ±  0.2 
 

1.3 ±  0.4 

Total n-6 PUFA3 8.7 ±  0.2 
 

8.4 ±  0.2 
 

8.4 ±  0.2 
 

8.5 ±  0.3 
 

8.4 ±  0.2 
 

8.23 ±  0.1 

18:3n-3 1.3 ±  0.0 
 

1.0 ±  0.2 
 

1.1 ±  0.2 
 

1.1 ±  0.3 
 

1.0 ±  0.1 
 

1.1 ±  0.2 

18:4n-3 1.4 ±  0.2 
 

1.2 ±  0.3 
 

1.2 ±  0.4 
 

1.3 ±  0.4 
 

1.2 ±  0.2 
 

1.4 ±  0.4 

20:3n-3 0.1 ±  0.0 
 

0.1 ±  0.0 
 

0.1 ±  0.0 
 

0.1 ±  0.0 
 

0.1 ±  0.0 
 

0.1 ±  0.0 

20:4n-3 0.6 ±  0.0 
 

0.6 ±  0.1 
 

0.6 ±  0.1 
 

0.6 ±  0.1 
 

0.6 ±  0.0 
 

0.6 ±  0.1 

20:5n-3 7.9 ±  0.3 
 

8.1 ±  0.9 
 

8.2 ±  0.3 
 

8.1 ±  0.9 
 

8.3 ±  0.4 
 

8.4 ±  0.8 

22:5n-3 1.3 ±  0.1 
 

1.3 ±  0.1 
 

1.3 ±  0.1 
 

1.4 ±  0.1 
 

1.3 ±  0.0 
 

1.4 ±  0.1 

22:6n-3 15.7 ±  1.6 
 

15.6 ±  2.4 
 

16.5 ±  2.2 
 

15.5 ±  2.7 
 

16.8 ±  1.4 
 

16.1 ±  2.4 

Total n-3 PUFA 28.9 ±  1.8 
 

28.8 ±  3.1 
 

29.8 ±  2.2 
 

29.8 ±  3.1 
 

30.2 ±  1.7 
 

29.7 ±  2.9 

Total PUFA4 39.1 ± 2.0 
 

38.7 ± 3.2 
 

39.8 ± 2.3 
 

39.0 ± 3.1 
 

40.1 ± 1.9 
 

39.5 ± 3.1 

Total n-3 LC-PUFA5 25.6 ± 2.0 
 

25.7 ± 3.4 
 

26.7 ± 2.5 
 

25.7 ± 3.5 
 

27.2 ± 1.8 
 

26.5 ± 3.3 

Data are expressed as means ± SD (n=3). 1Includes 15:0, 20:0 and 17:0. 2Includes 

14:1n-7, 14:1n-5, 15:1n-5, 16:1n-5, 18:1n-5, 20:1n-9, 20:1n-5 and 22:1n-9. 3Includes 

22:5n-6. 4Includes 16:3n-3, 16:4n-4, 18:3n-6, 20:3n-6 and 22:4n-6. 5Includes C16 

PUFA. Diets 0-KEECC represent feed with increasing levels of vitamin E. C and with 

or without vitamin K as described in Material and Methods section. PUFA, 

polyunsaturated fatty acids; LC-PUFA, long-chain PUFA. Significant differences were 

not observed according to two-way ANOVA. 
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Table 5. Liver fatty acid compositions (percentage of total fatty acids) of Meagre fed 

diets with different levels of vitamin E, C and K during 104 days. 

 0  K  EC  KEC  EECC  KEECC 

Lipid content (%) 25.6 ±  0.9  24.8 ±  1.3  22.7 ±  1.9  23.9 ±  1.7  24.2 ±  0.8  25.1 ±  1.1 

14:0 2.8 ± 0.4  2.7 ± 0.2  2.7 ± 0.3  2.8 ± 0.2  3.0 ± 0.2  2.8 ± 0.4 

16:0 21.9 ±  1.6  22.8 ±  1.3  23.0 ±  1.4  21.3 ±  1.0  21.5 ±  1.3  21.9 ±  1.9 

18:0 6.2 ±  1.0  6.5 ±  0.5  6.3 ±  1.0  6.0 ±  0.6  5.8 ±  0.5  6.4 ±  1.1 

Total saturated1 31.8 ±  2.0  32.6 ±  1.5  32.7 ±  2.1  30.9 ±  1.3  31.2 ±  1.4  31.7 ±  2.6 

16:1n-7 8.7 ±  0.5  8.9 ±  0.8  9.0 ±  0.6  8.6 ±  0.4  8.6 ±  0.5  8.6 ±  0.6 

18:1n-9 22.7 ±  1.5  22.6 ±  1.4  23.0 ±  1.4  21.6 ±  0.1  21.1 ±  1.3  22.0 ±  1.7 

18:1n-7 2.6 ±  0.1  2.6 ±  0.1  2.6 ±  0.0  2.7 ±  0.1  2.6 ±  0.0  2.6 ±  0.1 

20:1n-7 5.8 ±  0.7  5.4 ±  0.4  5.6 ±  0.5  5.9 ±  0.3  6.1 ±  0.2  5.7 ±  0.7 

22:1n-11 5.5 ±  0.6  5.0 ±  0.4  5.2 ±  0.3  5.5 ±  0.2  5.8 ±  0.3  5.4 ±  0.6 

Total monounsaturated2 48.3 ±  0.5  47.4 ±  1.4  48.3 ±  1.1  47.4 ±  0.3  47.3 ±  1.4  47.3 ±  0.7 

18:2n-6 6.1 ±  1.0  5.5 ±  0.8  5.6 ±  0.7  6.2 ±  0.7  6.3 ±  0.5  5.8 ±  1.0 

20:2n-6 0.3 ±  0.0  0.3 ±  0.0  0.3 ±  0.0  0.3 ±  0.0  0.3 ±  0.0  0.3 ±  0.0 

20:4n-6 0.2 ±  0.0  0.2 ±  0.0  0.2 ±  0.0  0.2 ±  0.0  0.3 ±  0.0  0.2 ±  0.0 

Total n-6 PUFA3 6.9 ±  1.1  6.3 ±  0.9  6.4 ±  0.9  7.1 ±  0.7  7.2 ±  0.6  6.7 ±  1.2 

18:3n-3 1.1 ±  0.1  1.0 ±  0.1  1.0 ±  0.0  1.1 ±  0.0  1.1 ±  0.1  1.0 ±  0.2 

18:4n-3 1.1 ±  0.2  1.2 ±  0.1  1.1 ±  0.1  1.2 ±  0.0  1.2 ±  0.2  1.2 ±  0.2 

20:3n-3 0.1 ±  0.0  0.1 ±  0.0  0.1 ±  0.0  0.1 ±  0.0  0.1 ±  0.0  0.1 ±  0.0 

20:4n-3 0.7 ±  0.1  0.7 ±  0.1  0.7 ±  0.1  0.7 ±  0.0  0.8 ±  0.1  0.8 ±  0.1 

20:5n-3 2.8 ±  0.3  3.0 ±  0.4  2.8 ±  0.5  3.1 ±  0.0  3.1 ±  0.5  3.2 ±  0.6 

22:5n-3 1.0 ±  0.2  1.0 ±  0.1  0.9 ±  0.2  1.1 ±  0.0  1.1 ±  0.2  1.1 ±  0.2 

22:6n-3 4.8 ±  0.5  5.4 ±  1.0  4.7 ±  0.8  5.9 ±  0.4  5.5 ±  0.9  5.5 ±  0.8 

Total n-3 PUFA4 11.9 ±  1.3  12.5 ±  1.9  11.4 ±  1.8  13.4 ±  0.4  13.1 ±  2.2  13.1 ±  2.1 

Total PUFA5 20.0 ±  2.5  20.0 ±  2.8  19.0 ±  2.8  21.7 ±  1.1  21.5 ±  2.8  21.0 ±  3.3 

Total n-3 LC-PUFA5 9.4 ±  1.0  10.2 ±  1.6  9.2 ±  1.6  11.0 ±  0.3  10.6 ±  1.8  10.7 ±  1.7 

Data are expressed as means ± SD (=3).1Includes 15:0, 20:0 and 17:0. 2Includes 14:1n-

7, 14:1n-5, 15:1n-5, 16:1n-5, 18:1n-5, 20:1n-9, 20:1n-5 and 22:1n-9. 3Includes 22:5n-6. 
4Includes 16:3n-3, 16:4n-4, 18:3n-6, 20:3n-6 and 22:4n-6. 5Includes C16 PUFA. Diets 0-

KEECC represent feed with increasing levels of vitamin E. C and with or without 

vitamin K as described in Material and Methods section. PUFA, polyunsaturated fatty 

acids; LC-PUFA, long-chain PUFA. Significant differences were not observed 

according to two-way ANOVA. 
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Supplementary Table 3. Proximate composition (%) of whole body, liver, kidney and 

heart of Meagre fed diets with different levels of vitamin E, C and K during 104 days. 

 0 K EC KEC EECC KEECC 

Whole body       

Lipid (%) 4.7 ± 0.4 4.9 ± 0.5 4.7 ± 0.3 5.1 ± 0.5 5.0 ± 0.4 4.8 ± 0.4 

Protein (%) 16.7 ± 0.7 15.8 ± 0.4 16.9 ± 0.7 15.8 ± 0.5 15.4 ± 0.4 16.9 ± 0.4 

Ash (%) 3.8 ± 0.2 3.7 ± 0.4 3.7 ± 0.2 3.9 ± 0.3 3.8 ±0.3 4.1 ± 0.4 

Moisture (%) 74.3 ± 1.2 75.1 ± 1.5 74.5 ± 1.8 75.0 ± 1.5 75.2 ± 1.4 74.1 ±1.7 

Liver       

Protein (%) 8.1 ± 0.2 7.9 ± 0.5 8.2 ± 0.3 8.2 ± 0.3 8.0 ± 0.4 8.1 ± 0.2 

Ash (%) 0.7 ± 0.0 0.7 ± 0.1 0.7 ± 0.0 0.8 ± 0.0 0.8 ± 0.2 0.8 ± 0.0 

Moisture (%) 65.0 ± 0.7 66.3 ± 1.6 65.7 ± 2.3 64.4 ± 2.1 66.1 ± 1.1 65.2 ± 1.8 

Kidney       

Protein (%) 14.7 ± 0.7 15.1 ± 0.3 14.8 ± 0.5 14.9 ± 0.5 15.1 ± 0.6 14.8 ± 0.3 

Ash (%) 0.5 ± 0.0 0.5 ± 0.0 0.4 ± 0.0 0.5 ± 0.0 0.5 ± 0.2 0.5 ± 0.0 

Moisture (%) 79.9 ± 0.3 79.8 ± 0.8 80.1 ± 1.8 79.8 ± 0.8 79.3 ± 1.0 79.6 ± 1.2 

Heart       

Protein (%) 15.4 ± 0.7 15.6 ± 0.3 15.1 ± 0.5 15.2 ± 0.5 15.8 ± 0.6 15.2 ± 0.3 

Ash (%) 0.2 ± 0.0 0.3 ± 0.0 0.3 ± 0.0 0.2 ± 0.0 0.3 ± 0.0 0.2 ± 0.0 

Moisture (%) 80.7 ± 1.0 80.7 ± 0.6 81.6 ± 0.9 81.8 ± 1.0 79.8 ± 1.3 80.6 ± 0.7 

Data are means ± SD (n=3). Significant differences were not observed according to 

two-way ANOVA. 

 

  

Significant differences were observed in the percentage of fatty acids in the 

heart, saturated fatty acids being lower in fish fed the diets EECC and EC compared 

with the rest of the diets. Significant differences were also found in the percentage of n-

3 PUFA, total n-3 PUFA and total long chain PUFA (LC-PUFA) where the lowest 

percentage was found in fish fed the diet KEC and the highest in the diet EECC. In 

heart the inclusion of vitamin K in the diet increased total saturated fatty acids and 
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decreased n-3 PUFA. In this sense, there were significant differences between fish fed 

diets EC and KEC in the percentage of saturated fatty acids, being higher when vitamin 

K was added in the diet as indicated by the two-way ANOVA. The same trend was 

observed in the other diets (K and KEECC). There was a significant reduction in the 

percentage of n-3 PUFA in heart when vitamin K was added to the diets EC and EECC 

observing the same tendency in fish fed the other dietary treatments. 

 

3.3. Histopathology  

 

Gross appearance of granulomas in tissues (liver, kidney and heart) was only 

observed in 10 fish out of 126, not being related to any particular dietary treatment. No 

granulomas were observed in the spleen in fish fed any of the dietary treatments. The 

histopathological evaluation revealed different stages of granuloma development in 

liver (Figure 1). At initial stages, granulomas were observed as isolated and irregular 

aggregates of macrophages and some lymphocytes (Figure 1a) that later formed 

concentric layers (Figure 1b). These aggregates progressively led to a necrotic centre 

with an external layer of fibrocytes (Figure 1c). In the final stages the granuloma was 

completely composed of laminar material, especially observed in heart (Figure 1d). 
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Figure 1. Different stages of granuloma formation. A) Irregular aggregates of 

macrophages and inflammatory cells. B) Concentric layers of macrophages and 

inflammatory cells. C) Necrotic centre with an external layer of fibrocytes. D) 

Granuloma composed completely of laminar material in heart. 

In order to study the origin of the granulomas, the liver immunostaining showed 

anti-actin reactivity (red marker) surrounding the concentric aggregates of macrophages 

corresponding to smooth muscle of the blood vessels (Figure 2). No calcification was 

observed at any stage or in any analyzed tissue. The specific stainings (Ziehl-Neelsen, 

Fite-Faraco and Gram stain), culture media (blood agar, tryptone soya agar and 

Lowenstein-Jensen) were negative, discarding a possible infectious origin. Additionally, 

none of the samples, except the positive control FFBE tissue and the NCIMB 2057 

strain samples, were found to be positive to the Nocardia specific primers used in this 

study. The positive control sample produced the expected size band of approximately 

600 bp. 

 

 

 

 

 

 

 

Figure 2. Positive immunoreactivity towards anti-actin antibody in hepatic granulomas.  

 

At the initial sampling, the percentage of fish presenting microscopic 

granulomas was 45 %. At the end of the feeding period, no significant differences were 

found by the two-way ANOVA in the percentage of fish with granulomas among the 

dietary treatments. However, a tendency to a reduction in the number of fish with 

granulomas when vitamins E, C and K were added to the feeds could be observed 

(Figure 3) (100 % fish with granulomas in diet 0 to 82 % fish in KEC). The most 

affected organ was the liver followed by kidney and heart. The lowest number of fish 

with hepatic granulomas were observed when high level of vitamin E, C and K were 
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supplemented to the feeds (KEECC diet), although only significantly lower than in the 

fish fed diet 0 (Figure 4a). Similar results were observed in heart, where the highest 

percentage was obtained in fish fed diet 0 and the lowest in fish fed diet EECC (Figure 

4b), as indicates the two-way ANOVA. In kidney, a tendency to a reduced presence of 

granulomas was observed in fish fed diets with the highest levels of vitamins E and C 

albeit not significant (p = 0.085; Figure 4c). 

 

Figure 3. Percentage of fish affected with granulomas in any tissue after the 

microscopic evaluation of tissues of meagre fed the different experimental feeds 

containing graded levels of vitamins C, E and K (p < 0.05). Significant differences were 

not observed by the two-way ANOVA.      
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Figure 4. Percentage of A) liver, B) kidney and C) heart with granulomas observed 

during the microscopic evaluation of meagre fed with different levels of vitamin C, E 

and K (p < 0.05). Vit. E+C, vitamins E and C; Vit. K, vitamin K. *   p < 0.05; ** p < 

0.01.                              

The severity score did not show significant differences among fish fed the 

different dietary treatments in any tissue after 15 weeks of feeding, however there was a 

clear tendency towards a decrease in the severity of granulomatosis in liver and kidney, 

dependent on diet. For instance, in liver the severity score was 1.83 in fish fed diet 0 vs 

1.30 in diet KEECC and in kidney 0.91 in fish fed diet 0 vs 0.39 in diet KEECC (Table 

6).  

 

Table 6. Average granuloma severity scored in liver, kidney and heart (p<0.05).  

 

                         Average granuloma severity 

 Liver Heart Kidney 
0 1.83 ± 0.9 0.26 ± 0.5 0.91 ± 0.9 

K 1.65 ± 0.8 0.04 ± 0.2 0.70 ± 1.0 

EC 1.57 ± 1.0 0.17 ± 0.7 0.48 ± 0.9 

KEC 1.39 ± 1.0 0.30 ± 0.9 0.65 ± 0.9 

EECC 1.39 ± 1.0 0.00 ± 0.0 0.48 ± 0.9 

KEECC 1.30 ± 0.9 0.17 ± 0.7 0.39 ± 0.7 

Data are means ± SD (n=30). Significant differences were not observed according to 

two-way ANOVA. 

 

 p Value two-way ANOVA 

 Vit. E+C Vit. K Vit. E+C 

x Vit. K 

Liver  ** n.s. n.s. 

Kidney n.s. n.s. n.s. 

Heart ** n.s. n.s. 

B 
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When the level of all three vitamins (E, C and K) were increased in the diets 

(KEC and KEECC diets) the number of fish scored with “0” increased and those scored 

with “3” in liver (p = 0.251) and kidney (p = 0.125) decreased (Figure 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Distribution of fish in each severity stage in liver, kidney and heart after 104 

days of feeding the experimental diets (p < 0.05). Significant differences were not 

observed by the two-way ANOVA. 

 

3.4. Vitamin E content in fish tissues 

Fish fed diet 0 and diet K (no extra supplementation of vitamin E and C) had 

significantly lowest concentration of vitamin E in liver, kidney and heart (Table 7). 

Increasing the dietary vitamin E concentration significantly increased vitamin E 

contents in liver (y = 0.2081x – 5.4709, R2 = 0.9533), kidney (y = 0.0529x + 17.557, R2 

= 0.9505) and heart (y = 0.0494x + 7.0763, R2 = 0.9244), showing a correlation 

between the amount of vitamin E in the diet and in the tissue (Table 7). The diet-
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dependent accumulation of vitamin E was most pronounced in liver whereas vitamin E 

levels were more stable in kidney and heart (Table 7).  

Table 7. α-tocopherol content (vitamin E) in liver, kidney and heart of meagre fed 

experimental diets during 104 days. 

 

Vitamin E content (mg kg-1) 

 

Liver 

  

Kidney 

  

Heart 

 0 27.7 ± 2.6ª  

 

27.5 ± 2.2ª  

 

14.6 ± 2.5ª  

K 26.7 ± 2.8ª  

 

26.4 ± 4.7ab  

 

13.8 ± 2.0a  

EC 64.2 ± 1.9bc  

 

30.3 ± 3.0ab  

 

21.5 ± 2.3ab  

KEC 48.2 ± 8.8b  

 

32.2 ± 8.0abc  

 

23.9 ± 4.0b  

EECC 77.8 ± 6.8cd  

 

39.0 ± 8.3bc  

 

27.1 ± 3.9b  

KEECC 88.2 ± 13.5d  

 

42.9 ± 8.5c  

 

28.4 ± 5.5b  

Two-way ANOVA               

Vit. E+C *   **   *  

Vit. K n.s.   n.s.   n.s.  

Vit. E+C x Vit. K n.s.   n.s.   n.s.  

Data are means ± SD (n=3), where the means in each column with a different 

superscript are significantly different according to one-way ANOVA (P<0.05). The last 

three columns indicate the effect of vitamins E and C (Vit. E+C), vitamin K (Vit. K) or 

their interaction (Vit. E+C x Vit. K) according to two-way ANOVA. 
*   p < 0.05.  

** p < 0.01. 

 

3.5. Gene expression analysis 

The hepatic expression of cat was significantly higher in the liver of fish fed the 

highest level of vitamin E, C and K than in fish fed diet 0, as denoted by the two-way 

ANOVA. Significant differences were not found in the gene expression of sod (p = 

0.09) or gpx (p = 0.201) in liver but fish fed diets supplemented with the lowest levels 

of vitamin E and C, but no vitamin K (EC diet) tended to show a reduced expression of 

these enzymes (Figure 6). No differences were observed in the expression levels of tnfα 

or cox-2.  
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Figure 6. Expression levels of the antioxidant enzymes cat, sod and gpx measured by 

real-time PCR in liver of meagre (p < 0.05). Vit. E+C, vitamins E and C; Vit. K, 

vitamin K. *   p < 0.05; ** p < 0.01.                              

 

No significant differences in the gene expression of cat, sod and gpx were 

observed in kidney (Figure 7). There was an increase in the mRNAlevels of gpx in fish 

fed high levels of vitamins E, C and K (KEECC diet) albeit not significant (p = 0.073). 

The two-way ANOVA showed that the expression of tnfα was affected by the dietary 

level of vitamin C and E, being significantly up-regulated in fish fed diets EECC and 

KEECC with a mild correlation found between expression of this gene and 

granulomatosis severity in kidney (R2 = 0.8504, y = -0.3007x + 1.1566). Dietary 

increase of vitamins E, C and K did not regulate the kidney expression of cox-2.  

 

 p Value two-way ANOVA 

 Vit. E+C Vit. K Vit. E+C x Vit. K 

cat ** ** n.s. 

sod n.s. n.s. n.s. 

gpx n.s. n.s. n.s. 

tnfα n.s. n.s. n.s. 

cox-2 n.s. n.s. n.s. 
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Figure 7. Expression levels of the antioxidant enzymes cat, sod and gpx measured by 

real-time PCR in kidney of meagre (p < 0.05). Vit. E+C, vitamins E and C; Vit. K, 

vitamin K. *   p < 0.05; ** p < 0.01 

 

 p Value two-way ANOVA 

 Vit. E+C Vit. K Vit. E+C x 

Vit. K 

cat n.s. n.s. n.s. 

sod n.s. n.s. n.s. 

gpx n.s. n.s. n.s. 

tnfα * n.s. n.s. 

cox-2 n.s. n.s. n.s. 
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In heart, the gene expression of sod and gpx was influenced by the inclusion of 

the vitamin E, C and K, and the interaction of them, as denoted by the two-way 

ANOVA, being significantly increased in fish fed with low levels of vitamins E and C 

and without vitamin K (EC diet) (Figure 8). There were not differences in the 

expression of cat in heart. The expression of tnfα and cox-2 was significantly increased 

in fish fed diets EECC and KEECC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Expression levels of the antioxidant enzymes cat, sod and gpx measured by 

real-time PCR in heart of meagre (p < 0.05). Vit. E+C, vitamins E and C; Vit. K, 

vitamin K. *   p < 0.05; ** p < 0.01.                             

 p Value two-way ANOVA 

 Vit. E+C Vit. K Vit. E+C x 

Vit. K 

cat n.s. n.s. n.s. 

sod * * * 

gpx * * * 

tnfα * n.s. n.s. 

cox-2 * n.s. n.s. 
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4. Discussion 

In the present study, significant differences were not found in specific growth 

rate (1.12-1.19), feed conversion ratio (0.83-0.87), survival, fish condition factor (K) or 

hepatosomatic index and viscera somatic index, all these indicators being within normal 

ranges for the species (Chatzifotis et al., 2010; Chatzifotis et al., 2012; Velazco-Vargas 

et al., 2014; Rodriguez-Lozano et al., 2017). Increasing dietary levels of vitamin E (to 

300 or 450 mg kg-1) and vitamin C (to 70 or 230 mg kg-1) seemed to improve final 

weight, similar to what has been observed in other fish species (Gao et al., 2012; Gao et 

al., 2013; Gao et al., 2014; Chen et al., 2015; Rodriguez-Lozano et al., 2017). However, 

other studies reported that the addition of vitamin C and E did not affect the growth 

performance in large yellow croaker (Larimichthys polyactis) (Ai et al., 2006) or turbot 

(Scophthalmus maximus) (Tocher et al., 2002). Given the short duration of the present 

trial and that the differences observed among the dietary treatments were minimal 

(approx. a 7 % of weight increase) these differences could however, be related to small 

differences in initial weight among the experimental tanks.  

Increasing dietary levels of vitamins E, C and K did not affect whole fish 

proximate or lipid composition, and the fat content of around 25 % in liver is similar to 

the results obtained by Rodriguez-Lozano et al. (2017). The addition of dietary vitamin 

K significantly seemed to increase saturated fatty acids and decrease total n-3 PUFA 

and total LC-PUFA in the heart. There is not a clear explanation to this observation and 

it must be noted that slight differences were observed among the diets fatty acid profile 

which could in turn explain these small differences in the fatty acid profile. On the other 

hand, no effects of vitamins E and C were observed on the tissue fatty acid profiles in 

liver or kidney, indicating that levels of antioxidant nutrients in the diet 0 were 

sufficient to protect against ROS. Indeed, tissue vitamin E levels were positively 

correlated to dietary contents indicating that only small amounts of vitamin E might 

have been oxidized in order to protect tissue PUFA from oxidation. Increased α-

tocopherol concentration in tissues in response to dietary levels have also been reported 

by other authors (Peng et al., 2009; Gao et al., 2012; Betancor et al., 2012). 

A high percentage of granulomas was observed among fish from all the dietary 

treatments. Furthermore, 45 % of affected fish with granulomas in the initial population, 

liver being the tissue with the highest prevalence and severity. Different stages of 
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development of the granulomas could be observed in all the evaluated tissues, sharing 

similar features to those described by Ghittino et al. (2004) in the same species. The 

systemic granulomatosis in meagre is similar to the pathology produced by infectious 

agents such as Mycobacterium spp. (Bowser, 2009) and Nocardia spp. (Labrie, 2008; 

Elkesh et al., 2012). The specific stainings (Ziehl-Neelsen, Fite-Faraco and Gram 

stains), culture media (blood agar, tryptone soya agar and Lowenstein-Jensen) and a 

PCR for Nocardia were negative, discarding a possible infectious origin and reinforcing 

the hypothesis of a nutritional origin of the disease.  

In the present study, the increase in dietary levels of vitamin E, C and K to 450 

mg kg-1, 230 mg kg-1 and 23 mg kg-1 respectively, significantly reduced the percentage 

of granulomas in liver and heart compared to fish fed diet 0. Besides, increasing the 

dietary level of these vitamins also reduced the severity of granulomas in livers and 

kidney in comparison with diet 0 without extra supplementation of vitamins. Significant 

differences were not found, but there was a tendency to decreased severity in kidney (p 

= 0.125) and liver (p = 0.251) when vitamins E, C and K were supplemented to the 

basal diet. The severity in heart was low in all diets. Liver was the main affected organ 

(up to 100 % of fish), followed by the kidney (29.33 – 65.33 %) and heart (0.00 – 21.30 

%). To our knowledge this is the first study to evaluate the incidence of granulomas in 

these tissues in meagre. Different stages of development of the granulomas were 

observed depending on the tissue. In liver, there were more granulomas in initial stages, 

suggesting that probably there is a later apparition or a continued formation of 

granulomas. In kidney and heart most of the granulomas were completely formed, 

probably because these tissues are the first where granulomas appear. A deficiency of 

antioxidants in the diet could cause primary lesions in the tissues and these lesions 

could potentially lead to the development of granulomas. α-tocopherol is the major 

membrane-bound lipid-soluble antioxidant (Machlin and Bendich, 1987). In addition, 

vitamin C can efficiently trap peroxyl radicals in the aqueous phase before they can 

initiate lipid peroxidation, thus protecting the biomembranes (Sies et al., 1992). Thus, 

the decrease in the incidence of systemic granulomatosis observed in the present study, 

when high levels of vitamin C and E were employed, could be due to the protective 

effect of these two antioxidant nutrients. It must be noted though that a longer 

experimental period would be necessary in order to deplete the vitamin E/C storages in 

the fish what explains why no deficiency symptoms were observed in fish fed diet “0”.  
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During the microscopic evaluation, irregular aggregates of cells around the 

blood vessels were observed. A layer of actin was observed in some granulomas after 

the immunostaining for actin. This could suggest a possible origin of the granulomas in 

the blood vessels. The vitamins studied can be involved in the normal function of the 

blood vessels. For instance, vitamin C participates in the synthesis of collagen, an 

important protein used to generate blood vessels (Lim and Lovell, 1978; Nusgen et al., 

2001). Vitamins C and E are involved in the prevention of the endothelial dysfunction 

in humans, the dysfunction increasing the tendency for arterial blockage due to a blood 

clot, or thrombosis (Riitta et al., 2003; Marguerite et al., 2003). Vitamin K is also an 

essential cofactor involved in blood coagulation and has a protective role against 

vascular injury (Butenas et al., 2002; Stafford, 2005). Therefore, it is feasible to think 

that these nutrients help to prevent the appearance of granulomas by exerting a role on 

the formation of blood vessels and other components. 

Oxidative stress is the result of the imbalance between the production of ROS 

and antioxidant defences (Nishida, 2011). There are enzymes able to neutralize ROS, 

some of the most important being SOD, CAT and GPX. In the present trial, the 

expression of theses enzymes was affected by the addition of vitamins in the diet. 

Particularly, the expression of cat was significantly higher in liver with high levels of 

vitamins E, C and K. Accordingly with these results, Mahmoud et al. (2016) observed 

that the activity of CAT was influenced by the level of dietary vitamin C in Pagrus 

major. It has been observed in several studies a correlation between the mRNA 

expression levels and the activity of antioxidant enzymes (An et al., 2010; Penglase et 

al., 2010; Shin et al., 2010; Park et al., 2011). In the present study, sod and gpx 

expression showed a tendency to increase with high levels of vitamins in the diet, albeit 

not significantly. On the contrary, in heart these two enzymes showed a higher 

expression with low addition of vitamins E and C. A positive correlation has been 

observed between the levels of vitamin C and E in the diet and the expression of SOD 

and GPX by Betancor et al. (2012) The present results seem to indicate that dietary 

vitamins E and C may have antioxidant potential by enhancing the expression of sod 

and gpx in heart and cat in liver, being influenced by the organ where they are acting. 

The antioxidant effect of both vitamins in the heart may be the cause of increased 

expression of sod and gpx, when the diet is supplemented with vitamin E and C (EC). 

However, at the highest dietary levels of these vitamins (23 mg kg-1 vitamin K, 450 mg 
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kg-1 vitamin E, 230 mg kg-1 vitamin C) there was no effect on the expression of 

antioxidants in the heart (KEECC and EECC). Therefore, high dietary vitamin E levels 

could have a pro-oxidant effect, as has been previously described in other teleost species 

(Hamre, 2011; Betancor et al., 2011).  

TNFα is a crucial regulator and effector in innate and adaptive immune 

responses, regulating cell death and survival (Locksley et al., 2001), while cox-2 is a 

prostaglandin which plays a key role in inflammation (Ishikawa et al., 2007ab) and 

innate immune response (Xu et al., 2008; Legler et al., 2010) in fish. The expression of 

tnfα was significantly increased in kidney and heart of fish fed diet with the highest 

vitamin C and E levels (23 mg kg-1 vitamin K, 450 mg kg-1 vitamin E, 230 mg kg-1 

vitamin C). Similar results were obtained by Niu et al. (2014) in turbot, where the 

addition of vitamin E from 0 to 480 mg kg-1 significantly increased the expression of 

tnfα in kidney and spleen and in the same species the supplementation of vitamin E 

increased mRNA level of tnfα in liver, spleen and head kidney improving immunity (Jia 

et al., 2017). Similarly, the expression of cox-2 was significantly higher in heart of fish 

fed with diets EECC and KEECC. Indeed, the expression of cox-2 has been associated 

with the increased pro-inflammatory cytokine tnfα in teleost (Wang et al., 2016). In 

mammals, vitamin E and C supplementation inhibit nuclear factor-kB thus reducing tnfα 

and cox-2 mRNA levels (Cárcamo et al., 2002; Han et al., 2004; Huey et al., 2008; Lee 

et al., 2008; Nakamura and Omaye, 2009), which is opposite to the regulation observed 

in the present study. Little is known about the effect of vitamin C and E in the 

expression of tnfα and cox-2 in fish, most of the studies are focused in mammalians. 

These divergent results could suggest a different mechanism of regulation of tnfα and 

cox-2 in fish and in mammals. 

In summary, increasing the dietary levels of vitamins E and C (300 mg kg-1 

vitamin E, 70 mg kg-1 vitamin C) significantly increased meagre growth in terms of 

final weight and length. Increasing dietary levels of the vitamins also affected gene 

expression leading to an up-regulation of cat in liver, tnfα in kidney, as well as tnfα, 

cox-2, sod and gpx in heart. It also reduced the percentage of granulomas in liver and 

heart, tending to be milder with dietary increase of vitamins E, C and K. The presence 

of actin around some of the granulomas and the observation of irregular aggregated of 

cells around the blood vessels, could suggest a possible origin of the granulomas in the 

blood vessels. The results show that the combination of high dietary content of vitamin 
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K and antioxidant vitamins E and C have influence on the incidence and increases the 

number of fish with lower severity of the granulomatosis in meagre, which suggests that 

this pathology could be mediated by nutritional factors. However, a high prevalence of 

granulomas was observed at the beginning of the experimental trial what prompts to 

evaluate the combination of vitamins at earlier life stages. 
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