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Abstract. For decades, since the inception of the field, scheduling prob-
lems have been solved with a variety of techniques. Many proven algo-
rithms to these problems exist; however, there is no single method to
solve all the vast variety of problems that exist across many sub-fields
with differing datasets. In this paper we explore the use of an Evolution-
ary Ruin & Stochastic Recreate algorithm, with a Simulated Annealing
control mechanism, to a real-world employee scheduling problem and its
ability to solve this problem to near optimality. The combinatorial possi-
bilities of parameterisation are very large - the Taguchi design of exper-
iments method is used to examine a subset of those possibilities within
a limited runtime budget. Evolutionary Ruin and Stochastic Recreate
has not previously been applied to the specific scheduling domain of em-
ployee scheduling and rostering: we investigate the effectiveness of the
algorithm with different parameter values and discuss the insight it pro-
vides into the runtime effect of the mechanisms of Evolutionary Ruin &
Stochastic Recreate.

Keywords: Evolutionary Ruin and Stochastic Recreate, Metaheuris-
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1 Introduction

1.1 Summary

In the field of operational research, the optimised allocation of resources to ac-
tivities is paramount to operating efficiency. Resources in this context can be
machines, vehicles, raw materials, employees and so forth. When employees are
not working shifts that meet their personal preferences and skill sets there is an
associated loss of efficiency. There may be no shifts available that suit the em-
ployee (be it due to skill requirements, or shift start times etc) or there may be no
employee which suits this shift (similarly, no employee with correct skills, or no
employee with a contract that allows allocation to this shift etc.). Traditionally
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these have been viewed as two distinct problems and solved independently, in
order to reduce the size of the search space. In this implementation the two prob-
lems of shift creation and employee allocation are solved simultaneously. While
this increases the complexity of the problem, this additionally large search space
may assist in finding higher quality results.

In this paper we use the term “shift” to mean a time interval within in some
24 hour period that can have a single employee allocated to it. Shifts have the
attributes of start time, end time, length, demand covered (in terms of an integer
array with potential values of 0 or 1 per hour), skill covered, and a related shift
rule. A shift rule contains requirements set by the company, including minimum
/ maximum shift lengths, number of shifts, start times, end times. This is de-
scribed more thoroughly in 2.

The method of Evolutionary Ruin and Stochastic Recreate (ER&SR) is based
on the ‘Ruin and Recreate’ method of Schrimpf et al [15], in which candidate
solutions to optimisation problems are partly dismantled by removing certain
components (depending on the type of optimisation problem this could be em-
ployee shifts, machine schedules, vehicles from rosters, exams, etc). Then the
roster (or other type of solution) is reconstructed afterward being ruined. In this
paper we show that ER&SR with a Simulated Annealing (SA) control mecha-
nism is able to find close to optimal solutions to shift scheduling and employee
rostering problems. Further we measure the internal mechanisms of the algo-
rithm by testing the solution with a variety of hyper-parameterised test cases,
designed via the Taguchi method.

To solve this problem, we apply ER&SR first defined in [11] then explored
as a theoretical framework in [10]. ER&SR is an algorithm derived from the
traditional Ruin and Recreate algorithm defined in [16]. This methodology was
chosen as it has thus far been used to solve a complex exam timetabling problem
in [10]. More research is necessary in its application in similar problem areas,
employee scheduling & rostering being one such area. We chose to use a meta-
heuristic technique due to the especially large search space being implausible to
search for a solution of acceptable quality in a normal business time frame. A
metaheuristic can find a near-optimal solution in a reasonable time-frame and
has a smaller requirement for domain specific knowledge than exact methods.

The Taguchi method is used as a “design of experiments” approach [14], al-
lowing the parameter space to be explored without need for exhaustive search
or an imprecise grid search. This approach is lesser known, particularly in the
context of shift scheduling and employee rostering with metaheuristics.

The origin of staff scheduling research was traced to Ernst et al [6] in 1954,
where the authors analyse and discuss relief times for toll collectors [5]. In the
six decades since this paper, there has been a vast amount of research in the
field. Similar staff scheduling problems have been solved with other metaheuris-
tics, such as nurse rostering with hybrid artificial bee colony heuristics [1] and
SA for a cyclical staff scheduling problem [3], showing the wide variety of prob-
lems in staff scheduling. According to Van den Bergh et al. [2] the single most



popular classes of solution technique for personnel scheduling®, are Simulation
techniques, Integer Programming, Mixed Integer Programming and Construc-
tive Heuristics.

Unlike similar problems tackled previously in the literature, this paper deals
with a real-world shift scheduling and employee rostering problem provided by
a large international Field Service Operations company (FSO). Thus the con-
straints, specifications and parameters of the problem are dictated by real world
requirements. The benefit of the specification being provided by the FSO is the
employee and forecast demand data is a genuine representation of a real prob-
lem. Consequently, an empirically grounded view of the algorithm’s effectiveness
is obtained.

The rest of this paper is structured as follows: in Section 2 the problem
description is defined as are the prospective benefits of this approach. Section
3 details the solution implementation in Java, using the theoretical framework
provided by [10] as a basis, and the unique elements of this implementation are
highlighted. The results of using this approach are presented and discussed in
Section 4. The paper concludes with Section 5 where we summarize our research
and discuss possible future research directions and provide recognition to funders
and partners on this project.

2 Problem Description

In this section, we first describe the problem in detail, followed by the Hard
Constraints (HCs) and Soft Constraints (SCs), which describe the requirements
of a solution and optional but desired characteristics, respectively.

Employee scheduling is well known to be an NP-Hard problem [7], and our
interest is therefore in finding solutions that are ‘good enough’ to meet FSO
time requirements.

Both the shift scheduling and employee rostering problems are typical of or-
ganizations which can range from a small number of employees such as nurse
rostering [17] to larger scale such as field service engineers [13|. This problem
deals with scheduling and rostering a large number of engineers (around 25,000),
ranging up to around 200 employees. The problem has the following key charac-
teristics:

1. Due to the real-world data being provided by a UK based FSO, UK Em-
ployment Law must be adhered to. This includes maximum working hours
allowed per week, number of rest hours in between shifts, etc.

2. The employees described in the data have a variety of skills. Demand is pro-
vided for the problem in skill-based manner. Demand may fluctuate greatly
day to day, week to week. The objective of meeting demand includes not sim-
ply providing manpower to cover number of employees required per shift, but
skills required per shift, and per day, while still meeting HCs.

5 i.e. excluding the most popular but miscellaneous “Other” section



3.

The shift creation process is structured by shift rules. Shift rules contain
parameters and requirements such as shift length, shift start time boundaries
and number of shifts required for this rule.

The problem has the following HCs which must be met for a solution to be
deemed feasible:

HC1: Employees 0 or 1 shifts per day.

HC2: Employees have a minimum and maximum number of allocations per

day of week (Monday - Sunday).

HC3: Employees can have shift patterns A, B or A/B. A/B means in one

week they must do A shifts, in the next B shifts. Shift pattern is synonymous

with the number of shifts an employee works in a 7 day week, Monday to

Sunday.

HC4: Employees must be allocated to shifts equal to or after their shift time

minimum, and before or equal to their shift time maximum.

HC5: Employees must be allocated to shift lengths longer than or equal

to their minimum shift length allowed, and shorter than or equal to their

maximum shift length allowed.

HC6: Shifts must begin within their shift rules designated start and end

times.

HC7: Shift rules specify a minimum requirement of number of shifts across

the scheduling period. A possible minimum is no restriction (-1) or an en-

forced lower threshold (> 0). Every shift rule also specifies a maximum re-

quirement of shifts across the scheduling period. A possible maximum is no

restriction (-1), no shift rules of this type (0) or an enforced upper threshold
> 0).

E—ICS:) Shifts must be greater than or equal to its shift rules minimum shift

length and be lesser than or equal to its shift rules maximum shift length, if

specified.

While the above HCs are considered a requirement, the below SCs are preferred
but not a requirement of solution feasibility.

3

SC1: Shifts should cover the maximum amount of demand requirement they
possibly can.

SC2: Employees should be allocated to shifts that meet their first skill pref-
erence.

SC3: Employees should be allocated to shifts that they meet the skill re-
quirement for.

SC4: Two consecutive rest days for every employee on every week.

Implementation

3.1 Evolutionary Ruin & Stochastic Recreate

In this subsection the ER&SR algorithm is described at a high level, then covered
in more detail in subsection 3.2. This research is derived from the implementa-
tion described and defined in the theoretical framework [10]. ER&SR itself is



a more advanced variant of the ‘Ruin and Recreate’ method from which it is
derived [15]. ER&SR is executed in four major phases: solution decomposition,
evolutionary ruin, stochastic recreate and solution acceptance. This is different
from the traditional R&R method with the addition of the new operators Se-
lection and Mutation which are used as the ruin strategies. This provides an
evolutionary advantage to this technique, as described in [10].

The Solution Decomposition phase gathers fitness values of the solution as
it currently stands per component. A component is a single employee shift al-
location object, which contains information on the employee allocated and the
shift the employee is allocated to. The advantage of using this so-called ‘holistic’
approach (as opposed to the more traditional ‘perturbative’ one) is that by using
expert knowledge of the solution space we can provide additional insight into the
weaker and stronger components. Some of the constraints however must be con-
sidered holistically to resist epistasis. This phase itself only gathers information
and does not modify the solution. Each component has a fitness value assigned
based on the constraint satisfaction, where failed HCs have a dramatic effect
on solution fitness (making it infeasible), whereas SC satisfaction differentiates
substandard solutions from better solutions.

The second phase, evolutionary ruin, comprises of two operators: selection
and mutation. This phase modifies the state by corrupting the solution, removing
components selected in the solution decomposition phase. The selection operator
is concerned with the selection based on the fitness of each component. As this
is not a deterministic solution — the higher the fitness value the less likely the
component is selected for evolutionary ruin. There is still a possibility that even
with a high fitness a component can be selected, allowing exploration of the so-
lution space through a controlled stochastic mechanism. The mutation operator
is also tasked with removing components from the solution. As implied by the
name of the phase, this leaves the solution in a state of intentional deficiency.
The solution is deemed to be in a complete state regardless of constraint satisfi-
ability. The wholeness is defined by a complete set of components. The number
of components which are mutated is dependent on probabilities derived from
the number of assigned and unassigned components from the selection phase.
The mutation phase is a useful mechanism for continuing exploration even after
a good solution has been derived, so the search process keeps exploring even if
the fitness values of the individual components is high, maintaining potential for
finding a further improved solution.

Stochastic recreate is the third phase, responsible for generating a new so-
lution state. This phase probabilistically searches through potential succeeding
solution states. Stochastic recreate effectively provides stochasticity to the algo-
rithm while still providing favour to the establishment of a fitter solution. There
is potential computational difficulty in this phase due to the multifarious nature
of nearby solutions. The potential permutations are vast in number, and with
a diverse space of components requiring regeneration. This possible problem of
exponentiality of neighbours is countered with a rule which states that neigh-
bouring solutions have the same probability of being moved to. This phase is



executed repeatedly until the schedule is whole.

The final phase, solution acceptance, accepts one of the previously discovered
states based on a conditional probability function between the new state(s) and
original. The actual mechanism which controls the solution acceptance phase
is problem dependent. The authors of [10] suggest hill-climbing, SA, threshold
acceptance, great deluge or falling tide as potential strategies for controlling
probability acceptance, or any other strategies which can be found in the liter-
ature.

3.2 Application of ER&SR to Shift Scheduling and Employee
Rostering Problem

The application of ER&SR to the Shift Scheduling and Employee Rostering
Problem followed the approach outlined in section 3.1; however, this section de-
scribes the more technical details within the implementation and the changes to
the original algorithm required to meet the specific requirements of the problem.
The order the algorithm is defined in as specified by the theoretical framework
[10] has been modified to meet the requirements of this problem. Further, as
recommended in [10], SA is used as the control mechanism to allow a halting
operation, and to prevent overt disruption towards the latter stages of runtime.
A visual representation of the modified algorithm is given in Fig. 1.

Fig. 1. Visual Representation of Modified ER&SR Algorithm
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Listing 1.1. Phase 0 Post-Initialization Greedy Algorithm
void GreedyAlgorithm () {

// Randomize days.

Shuffle (days)

for (Day day : days){
while (areMoreShiftsRequired ()) {
// Initialize with current allocations

SolutionDecomposition pl = getFitnessOfAllDayESAs (day)

// Allocate best employee / shift combination.
allocateEmployee (fitnessPerAllocationOnDay )

}
}
}

3.3 Phase 0 - Initialization

The first phase initializes the problem, including creating every potential shift.
This means after this phase has run, there is a shift of every potential length,
with every potential start and end time, for every particular skill requirement,
per shift rule. It is important to note that during initialization, shifts which are
impossible are not created (for example no employees work Sundays, so no Sun-
day shifts are created). This is important as it allows the algorithm to explore
the search space without having to recreate shift objects repeatedly, saving on
potential processing costs. After initializing, this phase also creates an initial
solution by Greedy Algorithm. The purpose of an initial solution is to provide
a starting point, reducing potential processing time building a basic solution in
the first time. Additionally, it means that the second phase of evolutionary ruin
has allocations to ruin during the first cycle. After the initial solution creation,
the rest of the algorithm is cyclical until the end criterion is met, but this phase
(which can be considered Phase 0) does not repeat. The greedy algorithm in
this section is simplistic, and calls on the fitness functions of the Solution De-
composition phase to calculate preferred employee allocations. See listing 1.1 for
pseudocode.

3.4 Phase 1 - Solution Decomposition

The solution decomposition consists of Employee Shift Allocation (eSA) objects
as the componential elements for analysis. These objects consist of a shift and
an employee. Each of the eSA objects across the scheduling and rostering period
are assessed for their fitness, which is derived from each objects ability to satisfy
the HCs and SCs. The calculation by which the overall object fitness is derived is
dependent on the parameterised weightings of each constraint. The SC weight-
ings are parameterised so that users of the algorithm can modify constraints
to be worth more or less than other constraints, for use in real-world scenarios
(for trying different preferences, techniques etc.). This feature was implemented



for a more realistic and flexible business use case. By default the HC fitness
is worth 95% of the total and the final 5% is between the weighted SCs. Due
to the nature of this problem there is a separation of holistic constraints and
lower level constraints, which are described in the ER&SR algorithm. This is
due to the holistic constraints requiring knowledge of the whole solution space,
including all shifts and employee allocations. The holistic constraints mentioned
are HC2, HC3, HC7 & SCA4. In this implementation we deviate from the original
algorithm to allow consideration of these holistic constraints. This is achieved
by measuring these constraints at a schedule-wide perspective, then modifying
the fitness values of individual eSA objects. If an object is found to break these
constraints (by, for example, scheduling an employee to work a 6-day week when
contracted for 5), then we probabilistically modify the fitness of all offending
eSA objects. The schedule thus far is unchanged from the initial solution con-
struction, or since the previous iteration as this solution decomposition phase
only provides analysis of solution fitness.

3.5 Phase 2 - Evolutionary Ruin

The next phase is the evolutionary ruin section where every eSA object is evalu-
ated and employees are probabilistically removed from shifts. With all the fitness
values obtained from the Solution Decomposition phase, each eSA object is eval-
uated first in the selection mini-phase. The selection mini-phase first calculates
an acceptance rate:

P=rxx

Where P is the probability of acceptance, r is a random number between
0 and 1, and z is a parameter to tune the fastidiousness of the selection mini-
phase. Then P is compared to the fitness of the object, if the fitness is higher
than the random number, continue on to the next eSA. If instead the fitness is
lower than P, then remove the employee from this eSA.

After the selection mini-phase is the mutation mini-phase, which will proba-
bilistically remove an employee from every eSA object without regard to fitness.
This introduces an additional level of stochasticity by probabilistically deallocat-
ing employees from eSA objects, allowing additional exploration of the solution
space. This phase solely targets the components which previously were selected
for retention in the selection phase (or rather, not selected for deallocation). This
proceeds without regard for fitness values. The ruin phase causes the occasional
removal of an employee from an individual shift. Careful parameterisation of this
phase is important as excessive ruination can hinder exploitation. The chance of
the ruination occurring is calculated as follows:

P=rxx

Where P is the probability, r is a random number between 0 and 1, z is
the parameter used to increase or decrease probability, and the subscript is the
parameter to control the rate of removal.



3.6 Phase 3 - Stochastic Recreate with Solution Acceptance

This now partially complete (or possibly empty if enough components are de-
stroyed) solution is reconstructed during the stochastic recreate phase. This
phase executes repeatedly until a full solution is provided. First, the list of em-
ployees is placed into a randomized order to prevent giving preference to the
first employees in the list repeatedly. An employee is taken from the list and the
number of shifts worked per week is calculated. Every week where the employee
is not working enough shifts is allowed to rebuild. This is conducted by selecting
a random day in the week the employee is not currently working then selecting a
random shift that exists on this day, and the employee is placed onto this shift.
The fitness of this component is then analysed, and a random floating-point
number between 0 and 5 is generated. Due to the HCs consisting of 95% of the
fitness, the generated number becomes the allowed SC fitness. If the allocation
is above the acceptable limit (95% + r) then the allocation is accepted. The
recreation method repeats for all employees and all weeks until a full schedule
has been generated.

The stochastic recreate with solution acceptance phase is controlled by SA,
a frequently used methodology derived from statistical thermodynamics. In this
circumstance however it is used to control the ruining capabilities of ER&SR as
well as this phase. The acceptance probability is as follows [9]:

P=exp((lo—mn)/t) >r

Where P is the probability of accepting a worsened state, o is the original
solution energy cost (modelled as inverse fitness), n is the energy cost of the new
solution and r is a random number between 0 and 1. This allows extensive explo-
ration in the early stages of runtime but turns to more exploitive measures later
in runtime. If the solution is accepted then the previous solution is overwritten
with the current solution, and the algorithm enters the next iteration or ends if
the temperature ¢ < J.If the solution is rejected, the current solution is overwrit-
ten with the previous solution, and the algorithm enters the next iterations or
ends if the temperature ¢ < §. This phase has one additional functionality which
is noteworthy for industrial usage: due to the nature of SA, the best solution
ever found throughout all iterations is not necessarily the solution produced at
the end of runtime. As such, this implementation also saves the best solution
ever found for actual use.

4 Results

The results in this section are derived from tests which ran on an oracle enter-
prise Linux 6 OS server with a 24 core 2.3GHz Xeon CPU. Parameters were
first tuned using the Taguchi method, some of the results of these tests are also
presented in this section. The parameters which provided the best overall fitness
(as an unweighted average) are then discussed.

The effectiveness of metaheuristics is largely dependent on well-tuned pa-
rameters [4]. There are many experimental designs which can be used for tuning
the parameters, such as grid search, random search, or more popular recently;



hyper-heuristics. However the Taguchi method has not been used in person-
nel scheduling, but has much success in the experimental design of engineering
methods [18], electrical engineering [12], designing test cases for a open routing
vehicle problem using neural networks [19], and others.

The Taguchi design of experiments evolved from orthogonal arrays and Latin
squares [8]. This design of tests allow experimentation with a variety of parame-
ters in order to find a good combination of parameters to produce a high fitness
value with ER&SR, and help reduce the testing time (which is deemed impor-
tant to the FSO).

The cooling rate is used as the SA control mechanism which controls the
number of iterations. The temperature is set at 10000 for all tests, and the test-
ing included 6 potential cool rates, from 0.09 - 0.59.

An L16 (4"?) orthogonal array was designed consisting of 2 factors with 4
possible values and 16 runs - however as having 0 selection and 0 mutation rate
is redundant, this was removed (so only 15 runs). This consisted of the following
parameters: the Selection rate (SR) is used during the evolutionary ruin phase
as is the mutation rate (MR).

This is combined with an L8 (2*) orthogonal array consisting of 4 factors
with 2 possible values and 8 runs. These parameters are simply toggles to turn
SCs (SC1 - SC4) on or off. Two tables were used due to the limitations in the
number of Taguchi designs that exist.

The parameters the Taguchi tests are designed on described in more detail
in 3.2. It is likely other problems would require different parameters, as these
parameters are tuned for this problem specification and dataset. The top five
fitness results from Taguchi testing are shown in table 1.

Table 1. Top Five Taguchi Test Results

CR SC1 SC2 SC3 SC4 SR MR Mean Fitness
X1 029 0 1 1 0 1 1 97.112

X2 019 0 1 1 0 1 0.66 97.102
X3 019 0 1 1 0 1 0.66 97.094
X4 009 O 1 1 0 1 0.66 97.092
X5 009 0 1 1 0 1 0.66 96.086

Testing included running each above Taguchi test 10 times on a demand set
of 1 month for close to 200 employees. Fig. 2 highlights a sample of the testing
conducted (6 configurations out of 600 total configurations), showing that there is
a significant difference in the distribution of fitness levels obtained using different
parameter configurations. ANOVA testing was also conducted which confirmed
this. However there was little difference between the top 5 results as shown in
Fig. 3.

The best case scenario can be seen in more detail in listing 1. The parameters
for the highest fitness are fairly interesting, as it seems to be generally preferable
to have a maximum amount of selection rate and about 66% of mutation rate.
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It also highlights that it is easier to forge a solution where SC2 and SC3 are met
than SC1 and SC4. Our recommendation to the FSO in this instance is to test
parameterising the soft constraints in a weighted format to find a balance that
most satisfies the company’s and employees’ requirements. An example of the
fitness throughout a single test with a single set of parameters can be viewed in
Fig. 4.
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5 Conclusions

In this paper we present a revised implementation of the ER&SR algorithm to
tackle a real-world Employee Scheduling and Employee Rostering problem. This
approach was selected specifically due to the large search space and inherent
complexity of problem employee scheduling problems with large search spaces;
exact methods or industry solutions are unlikely to provide near-optimal solu-
tions without much longer running times than this method. However, there is
scope for further research using other metaheuristic based approaches to person-
nel scheduling and employee rostering problems, in particular when compared
to industry solvers such as CPLEX.
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