
Reference Point Hyperplane Trees

Richard Connor

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, G1 1XH, United Kingdom

richard.connor@strath.ac.uk

Abstract. Our context of interest is tree-structured exact search in met-
ric spaces. We make the simple observation that, the deeper a data item
is within the tree, the higher the probability of that item being excluded
from a search. Assuming a fixed and independent probability p of any
subtree being excluded at query time, the probability of an individual
data item being accessed is (1− p)d for a node at depth d. In a balanced
binary tree half of the data will be at the maximum depth of the tree so
this effect should be significant and observable.
We test this hypothesis with two experiments on partition trees. First, we
force a balance by adjusting the partition/exclusion criteria, and compare
this with unbalanced trees where the mean data depth is greater. Second,
we compare a generic hyperplane tree with a monotone hyperplane tree,
where also the mean depth is greater. In both cases the tree with the
greater mean data depth performs better in high-dimensional spaces.
We then experiment with increasing the mean depth of nodes by using
a small, fixed set of reference points to make exclusion decisions over
the whole tree, so that almost all of the data resides at the maximum
depth. Again this can be seen to reduce the overall cost of indexing.
Furthermore, we observe that having already calculated reference point
distances for all data, a final filtering can be applied if the distance table
is retained. This reduces further the number of distance calculations
required, whilst retaining scalability. The final structure can in fact be
viewed as a hybrid between a generic hyperplane tree and a LAESA
search structure.

1 Introduction and Background

Sections 1.1 and 1.2 set the context of metric search in very brief detail; much
more comprehensive explanations are to be found in [4, 12]. Readers familiar
with metric search can skim these sections, although some notation used in the
rest of the article is introduced.

1.1 Notation and Basic Indexing Principles

To set the context, we are interested in querying a large finite metric space (S, d)
which is a subset of an infinite space (U, d). The most general form of query is a
threshold query, where a query q ∈ U is presented along with a threshold t, the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/199408293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 R. Connor

required solution being the set {s ← S | d(q, s) ≤ t}. In general |S| is too large
for an exhaustive search to be tractable, in which case the metric properties of
d require to be used to optimise the search.

In metric indexing, S is arranged in a data structure which allows exclusion
of subspaces according to one or more of the exclusion conditions deriving from
the triangle inequality property of the metric. As we refer to these later, we
summarise them as:

pivot exclusion (a) For a reference point p ∈ U and any real value µ, if
d(q, p) > µ + t, then no element of {s ∈ S | d(s, p) ≤ µ} can be a solu-
tion to the query

pivot exclusion (b) For a reference point p ∈ U and any real value µ, if
d(q, p) ≤ µ − t, then no element of {s ∈ S | d(s, p) > µ} can be a solu-
tion to the query

hyperplane exclusion For reference points p1, p2 ∈ U , if d(q, p1)− d(q, p2) >
2t, then no element of {s ∈ S | d(s, p1) ≤ d(s, p2)} can be a solution to the
query

1.2 Partition Trees

By “partition tree” we refer to any tree-structured metric indexing mechanism
which recursively divides a finite search space into a tree structure, so that
queries can subsequently be optimised using one or more of the above exclusion
conditions. These structure data either by distance from a single point, such as
the Vantage Point Tree, by relative distance from two points, for example the
Generic Hyperplane Tree or Bisector Tree. Many such structures are documented
in [4, 12]. In our context we are interested only in the latter category as will
become clear.

As there are many variants of both structures, we restrict our description to
the simplest form of binary metric search tree in each category. The concepts
extend to more complex and efficient indexes such as the GNAT [1], MIndex [10]
and various forms of SAT trees [7, 8, 2, 3], here we are only concerned with the
principles.

In both cases, search trees are formed from a finite set of points in a metric
space by selecting two reference points, and recursively forming child nodes to
store the remaining points according to which of these reference points is the
closest. During query, these nodes may be excluded from a search if it can be
determined that the child node cannot contain any solutions to the query. In
general, the term “bisector” is used when such exclusions are based on pivot
exclusion, and the term “hyperplane” is used when exclusions are based on
hyperbolic exclusion. It has long been known that, given the same basic tree
structure, both exclusion techniques can be used; as this always increases the
degree of exclusion, thus improving efficiency, it makes no sense to do otherwise.
Therefore, any sensible index using this structure will be a hybrid of these two
techniques.

Reference Point Hyperplane Trees 3

1.3 Balancing the Partition

To the above exclusion conditions, we add one more first identified in [6]:

hyperbola exclusion For reference points p1, p2 ∈ U and any real value δ, if
d(q, p1)−d(q, p2) > 2t+δ, then no element of {s ⊂ S, d(s, p1) ≤ d(s, p2)+δ}
can be a solution to the query

The addition of the constant δ means that for any pair of reference points,
an arbitrary balance can be chosen when constructing the tree. An algebraic
proof of correctness for this property follows the same lines as that for normal
hyperplane exclusion.

The purpose of this is illustrated in Figure 1. The diagrams show the two
reference points p1, p2 plotted centrally along the X axis d(p1, p2) apart. Each
other point is uniquely positioned according to its distances from p1 and p2
respectively. The data shown here is drawn from the SISAP colors data set
under Euclidean distance.

Fig. 1. Balanced Hyperbolic Exclusion

As we will use more such figures, it is worth explaining in a little detail
what is being illustrated. The only significant geometric relationship within the
scatter plot is between each point plotted and the two reference points plotted
along the X axis; there is no relation between the distances of points plotted
in this plane and their distance in the original space. The assumption is made
however that the distribution of points in this plane is likely to be the same
for both data and query as an indexing structure is being built and used; this
assumption is justified by the fact that, for any metric space, any three points
may be isometrically embedded in two-dimensional Euclidean space, giving a
meaningful semantics to the distribution if not the individual point distances.
The separation of points around the central line represents the separation of
data at construction time if a structure was being built using these 500 points as
data, with the two selected reference points. The effectiveness of the exclusion

4 R. Connor

mechanism is illustrated by the two outer lines, which show the boundaries of
queries which allow the opposing semi-space to avoid being searched for possible
solutions. If the distribution is representative, it is reasonable to use the same
set of example points for both purposes.

On the left-hand side of the figure, normal hyperplane exclusion is illustrated.
The data is split according to which is the closer reference point, which mani-
fests here as either side of the Y axis. The exclusion condition is the hyperbola
condition, depicted by the outer (hyperbolic) curves. Any query points outside
these lines do not require the opposing semi-space to be searched.

However the partition of the data is unbalanced with respect to the chosen
reference points. On the right hand side of the picture, the data set is split
according to the central hyperbolic curve, the value for this being chosen to
achieve an arbitrary balance of the data, in this case evenly divided. From the
illustration it can be seen that fewer queries will achieve the exclusion condition;
however, the magnitude of the space excluded will be greater in most cases.

For our purposes here, the point is that an even balance can be achieved
in all cases, for arbitrary data and any reference points. Of course, unlike in
a database indexing structure, an improved balance does not imply improved
performance, and our working hypothesis at this point is in fact that balancing
will, on whole, degrade performance as it reduces the mean depth of the data.

2 Balanced and Monotonous Partition Trees

Algorithms 1 and 2 give the simplest algorithms for constructing, and querying,
a balanced partition tree.

Data: Si ⊂ S
Result: Node: < p1, p2 : U, δ : R, left, right : Node>
select p1, p2 from Si;
if |Si| > 2 then

Si ← Si − {p1, p2};
for all sj ∈ Si calculate d(sj , p1)− d(sj , p2);
find median value δ;
create subsets Sl, Sr such that ;
Sl = {s← Si, d(s, p1)− d(s, p2) < δ} ;
Sr = {s← Si, d(s, p1)− d(s, p2) ≥ δ} ;
left ← CreateNode(Sl);
right ← CreateNode(Sr);

end

Algorithm 1: CreateNode (balanced)

This algorithm works correctly, but to work well requires the same refine-
ments as any other hyperplane tree, as follows:

Reference Point Hyperplane Trees 5

Data: q ∈ U, n : Node
Result: Result: {s ∈ S, d(s, q ≤ t})
Result = {};
if d(q, n.p1) ≤ t then

Result.add(p1)
end
if d(q, n.p2) ≤ t then

Result.add(p2)
end
if d(q, n.p1)− d(q, n.p2) ≥ 2t+ n.δ then

Result.add(Query(q,n.right))
end
if d(q, n.p2)− d(q, n.p1) > 2t+ n.δ then

Result.add(Query(q,n.left))
end

Algorithm 2: Query

1. The reference points need to be chosen carefully to be far apart, but also
not to be very close to any reference point previously used at a higher level
of the tree. Otherwise, in either case, few or no exclusions will be made at
the node.

2. As well as relying on hyperbolic exclusion, each node can also cheaply store
values for use, for both partitions, with both types of pivot exclusion. For
both subtrees minimum and maximum distances to either reference point
can be stored and used to allow pivot exclusion for a query. Most commonly,
only the cover radius is kept for the reference point closest to the subtree.
The minimum distance from the opposing reference point may also be of
value; an interesting observation with the balanced tree, which can be seen
by studying Figure 1, is that both these types of pivot exclusion may well
function better with a higher δ value at the node.

The monotonous hyperplane tree (MHT1) was first described in [9] where
it was described as a bisector tree using only pivot exclusion. The structure is
essentially the same, but each child node of the tree shares one reference point
with its parent, as shown in Algorithm 3. A significant advantage is that, for
each exclusion decision required in an internal node of the tree, only a single
distance needs to be calculated rather than two for the non-monotonous variant.

The query algorithm is conceptually the same, but in practice the distance
value d(q, p1) is calculated in the parent node and passed through the recursion
to avoid its recalculation in the child node.

The intent behind this reuse of reference points was originally geometric in
origin, based on an intuition of point clustering within a relatively low dimen-
sional space; this intuition becomes increasingly invalid as the dimensionality of
the space increases. Interestingly however the monotonous tree performs sub-
stantially better that an equivalent hyperplane tree in high dimensional spaces.

1 Originally named the “Monotonous Bisector* Tree”

6 R. Connor

Data: Si ⊂ S, p1 ∈ S
Result: Node: < p1, p2 : U, δ : R, left, right : Node>
select p2 from Si;
if |Si| > 2 then

Si ← Si − {p1, p2};
for all sj ∈ Si calculate d(sj , p1)− d(sj , p2);
find median value δ;
create subsets Sl, Sr such that ;
Sl = {s← Si, d(s, p1)− d(s, p2) < δ} ;
Sr = {s← Si, d(s, p1)− d(s, p2) ≥ δ} ;
left ← CreateNode(Sl, p1);
right ← CreateNode(Sr, p2);

end

Algorithm 3: CreateNode (monotonous balanced)

3 The Effect of Depth

As balance and monotonicity are orthogonal properties of the partition tree, we
have now identified four different types of tree to test in experiments. At each
node of each of the four trees described, it is not unreasonable to assume that
over a large range of queries the probability of being able to exclude one of the
subtrees is approximately constant.

Data is embedded within the whole tree. Viewed from the perspective of an
individual data item at depth d within the tree, it sits at the end of a chain
of tests, each of which may result in it not being visited during a query. The
probability of any data item being reached, and therefore having its distance
measured, is therefore (1 − p)d, where p is the probability of an exclusion be-
ing made at each higher node. It should therefore be possible to measure that
(a) unbalanced trees perform better than balanced, and (b) monotonous trees
perform better than non-monotonous, as in each case the mean data depth is
greater.

Figure 2 shows performance for the four tree types used for Euclidean search
on the SISAP colors and nasa data sets [5]. In each case ten percent of the data
is used as queries over remaining 90 percent of the set, at threshold values which
return 0.01, 0.1 and 1% of the data sets respectively; results plotted are the
mean number of distances required per query (n = 101414, 36135 respectively.)
The results presented are in terms of the mean number of distance calculations
required per query; for most mechanisms over similar data structures execution
times are proportional to these, and are not included due to space constraints2.

In all of these tests, a reasonable attempt to find “good” reference points
is made; the selection of the first reference point is arbitrary (either randomly
selected, or passed down from the construction of the parent node in the case
of monotonous trees); the second reference point is selected as the point within

2 Source code to repeat these experiments, including timings, is available from https:

//bitbucket.org/richardconnor/metric-space-framework

Reference Point Hyperplane Trees 7

Threshold
0.052 0.083 0.131

no
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns

 0

 5000

10000

15000

20000

25000

30000

35000
SISAP "colors" data set

BalPT
PT
Bal-MonPT
MonPT

Threshold
0.12 0.285 0.53

no
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns

 0

 2000

 4000

 6000

 8000

10000

12000

14000
SISAP "nasa" data set

BalPT
PT
Bal-MonPT
MonPT

Fig. 2. Four variants of hyperplane trees (monotonous or not, balanced or not) showing
number of distances performed for SISAP benchmark searches. In each case, from the
bottom (best) is: monotonous unbalanced, monotonous balanced, normal unbalanced,
normal balanced

the subset which is furthest from the first. This works reasonably well, although
performance can be improved a little by using a much more expensive algorithm
at this point.

In each case, as expected, the balanced tree does not perform as well as
the unbalanced tree, and the monotonous tree performs better than the non-
monotonous tree.

4 Balancing and Pivot Exclusion

Before describing our proposed mechanism we briefly consider the effect on ex-
clusion when relatively ineffective reference points are used. It should be noted
that this will usually be the case towards the leaf nodes of any tree, as only a
small set is available to choose from, and in fact this will affect the majority
cases of any search in a high-dimensional space. In our particular context, we
are going to compromise the effectiveness of the hyperplane exclusion through
the tree nodes, by using relatively ineffective reference points, in exchange for
placing the majority of the data at the leaf nodes.

Figure 3 shows the same data as plotted in Figure 1, but where much less good
reference points have been selected. These are not pathologically bad reference
points, in that they are the worst pair tested from a randomly selected sample of
only a few. The tradeoff between balanced and unbalanced exclusion is now very
interesting. As can be seen in the left hand figure, the large majority (450 ex.
500 points) of queries will successfully allow exclusion of the opposing subspace;
however in all but four cases the opposing subspace contains only around 2% of
the data; however, those four cases exclude 98% of the data. On the right-hand

8 R. Connor

Fig. 3. The data as plotted in Figure 1, with a much worse choice of reference points.
Note that in the right-hand chart, the pivots are so skewed that the left-hand branch
of the exclusion hyperbola does not exist in `22; the line on the left is the hyperbolic
centre of the data with respect to the reference points.

side, only 24 ex 500 queries allow exclusion, but in each case half of the data
is excluded. So for this sample of points, treated as both data and query over
the same reference points, both balanced and unbalanced versions save a total
of around 6k distance calculations out of 25k.

However one further factor that can be noticed in general terms is that the use
of pivot exclusion of both types (a cover radius can be kept for each reference
point and semispace, and also the minimum distance between each reference
point and the opposing semispace) may be more effective in the balanced version
due to the division between the sets being skewed; it can be seen here that
the left-hand cover radius in the balanced diagram is usefully smaller than the
corresponding cover radius in the left-hand diagram.

This case is clearly anecdotal, and our experiments still show that on the
whole the unbalanced version is more effective overall; however we believe this
is because of the larger mean number of exclusion possibilities before reaching
the data nodes. This is the aspect we now try to address.

5 Reference Point Hyperplane Trees

The essence of the idea presented here is to use the same partition tree structure
and query strategy, but using a fixed, relatively small set of reference points to
define the partitions. The underlying observation is that, given we can achieve
a balanced partition of the data for any pair of reference points, we can reuse
the same reference points in different sub-branches of the tree. Attempting the
same tactic without the ability to control the balance degrades into, effectively,
a collection of lists.

Any points from the data set not included in the reference point set will
necessarily end up at the leaf nodes of the tree. Thus, although the limited set
of reference points pairs may reduce the effectiveness of exclusion at each level,

Reference Point Hyperplane Trees 9

the mean depth traversed before another distance calculation is required will be
greater.

Assuming a balanced tree is constructed as above, the binary monotonous
hyperplane tree stores half of its data at the leaf nodes, which have a depth of
log2 n for n data. The non-monotonous variant has only one-third of its data in
the leaf nodes, and the mean depth is corresponding smaller. The two tree types
are illustrated in Figure 4, where it is clear to see the average depth of a data
item is always greater for the monotonous case. In fact empirical analysis shows
that for large trees, the Reference Point tree has a weighted mean data depth of
exactly one more than the Monotonous tree, which in turn has a weighted mean
data depth of exactly one more than the non-monotonous tree.

p1 p2

p3 p4 p5 p6

p7 p8 p9 p10 p11 p12 p13 p14

p1 p2

p1 p3 p2 p4

p1 p5 p3 p6 p2 p7 p4 p8

Fig. 4. Generic and Monotonous Hyperplane Trees. Note the re-use of a single parent
node for constructing the child node partition. For large trees, mean data depth is
log2 n− 1 for Generic, and log2 n for Monotonous.

To investigate this advantage further, we have considered two ways of using
a small fixed set of points for the tree navigation, illustrated in Figure 5.

5.1 Permutation Trees

The first we refer to as a permutation tree. The underlying observation here is
that, for a fixed set of n reference points, there exist

(
n
2

)
unique pairs of points

that can be used to form a balanced hyperplane partition. These can be assigned
a numbering, as can the internal nodes of the tree, so that a different permutation
is used at each node of the tree. At construction time, the permutation used for
the particular node is selected and the difference of the distances to each point
are calculated, the data is then divided into two parts based on the median of
these differences. At query time, the distance between the query and each of the
n reference points can be pre-calculated; this gives all the information that is
required to navigate the tree as far as the leaf nodes where the data is stored.

The strength of this method derives from the rate of growth of the function(
n
2

)
. For n data to be resident at the leaf nodes, we require (modulo detail)

10 R. Connor

p1 p2

p1 p3 p2 p3

p1 p4 p2 p4 p3 p4 p1 p5

p1 p2

p2 p3 p2 p3

p3 p4 p3 p4 p3 p4 p3 p4

Fig. 5. Permutation and Leanest trees. In either case, on scaling, mean data depth is
effectively log2n+ 1 as all data is stored at the leaf nodes.

around n internal nodes and therefore permutations, which in turn requires only
around

√
8n
2 reference points. This equates to around 1,400 points for 1M data,

14k for 100M data etc.

We have built such structures and measured them; the results are shown
in Figure 6. They are encouraging; for the colors data set in particular, this
is faster, and requires less distance calculations, than any other balanced tree
format. It seems to do relatively better at lower relative query thresholds, and
for the higher-complexity data of the colors data set. Finally, we should note
that the reference points from which the permutations are constructed are, at
this point, selected randomly; we believe a significant improvement could be
obtained by a better selection of these points but have not yet investigated how
to achieve this.

Threshold
0.052 0.083 0.131

no
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns

 0

 5000

10000

15000

20000

25000

30000

35000
SISAP "colors" data set

BalPT
PT
Bal-MonPT
MonPT
Permutation Tree

Threshold
0.12 0.285 0.53

no
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns

 0

 2000

 4000

 6000

 8000

10000

12000

14000

16000
SISAP "nasa" data set

BalPT
PT
Bal-MonPT
MonPT
Permutation Tree

Fig. 6. Cost of Permutation Tree indexing. The costs for the two datasets are plotted
in bold against the background of the costs plotted in Figure 2 for comparison.

Reference Point Hyperplane Trees 11

5.2 Leanest Trees

For our other test, we have selected a strategy that we did not expect to work
at all; for a set of n+ 1 reference points, we partition each level of the tree with
the same pair of points. That is, for the node at level 0, we use points {p0, p1}
to partition the space; at level two, we use the pair {p1, p2}, etc. For all nodes
across the breadth of the tree, for depth m we use the reference pair {pm, pm+1}.
This requires the selection of only log2 n+ 1 reference points for data of size n.

For this strategy, it is much easier to provide relatively good pairs of points
for partitioning the data, as there are relatively very few of them. For the results
given we used a cheap but relatively effective strategy. The first reference point
is chosen at random; repeatedly, until all are selected, another is found from the
data which is far apart (in these cases we only sampled 500 points), and so on
until all the required points are found. One further check is required, that none of
the selected points is very close (or indeed identical) to another already selected,
as that would result in the whole layer of the tree performing no exclusions at
all.

5.3 Leanest Trees with LAESA

We have one more important refinement. The build algorithm for the Leanest
Tree, for greatest efficiency, will pre-calculate the distances from the small set
of reference points to each element of the data; this data structure can then be
passed into the recursive build function as a table. This table has exactly the
same structure as the LAESA [11] structure.

The table has only n log2 n entries and may therefore typically be stored along
with the constructed tree. At query time, a vector of distances from the query to
the same reference points is calculated before the tree traversal begins. Whenever
the query evaluation reaches a leaf node of the tree, containing therefore a data
node that has not been excluded during the tree traversal, a normal tree query
algorithm would then calculate the distance between the query and the datum
s at this node. If d(q, s) ≤ t then s is included in the result set.

However, before performing this calculation (these distance calculations typ-
ically representing the major cost of the search) it may be possible to avoid it, as
for each pi in the set of reference points, d(q, pi) and d(s, pi) are both available,
having been previously calculated. If, for any pi, |d(q, pi)− d(s, pi)| > t, it is not
possible that d(q, s) ≤ t (by the principle of Pivot Exclusion (a) named in Section
1.1) and the datum can be discarded without its distance being calculated.

Of course this operation itself is not without cost, and should be performed
only if its cost is less than that of a distance calculation. This will generally be
the case at least if the size of an individual datum is greater than log2 |S|, or if
a particularly expensive distance metric is being used.

12 R. Connor

Threshold
0.052 0.083 0.131

no
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns

 0

 5000

10000

15000

20000

25000

30000

35000
SISAP "colors" data set

BalPT
PT
Bal-MonPT
MonPT
Leanest Tree
Leanest Tree/LAESA
adjusted L/L cost

Threshold
0.12 0.285 0.53

no
. o

f d
is

ta
nc

e
ca

lc
ul

at
io

ns

 0

 2000

 4000

 6000

 8000

10000

12000

14000

16000

18000
SISAP "nasa" data set

BalPT
PT
Bal-MonPT
MonPT
Leanest Tree
Leanest Tree/LAESA
adjusted L/L cost

Fig. 7. Cost of Leanest Tree indexing. The costs for the two datasets are plotted in bold
against the background of the costs plotted in Figure 2 for comparison. The LAESA
hybrid is the lowest line in each graph; this is not a true representation of overall cost,
as explained in the text; the solid line gives a good estimate of the true cost of the
hybrid mechanism.

6 Analysis

Figure 7 shows measurements for the Leanest Tree and its LAESA hybrid. These
are plotted in bold, again set in the context of the greyed-out measurements
copied from Figure 2.

In each case, the top dotted line is for the Leanest Tree measured without
using the LAESA hybrid. This is comparable to the Permutation Tree, and again
it is worth noting that this is a good performance for a balanced tree; in cases
where balancing is required, for example if the data does not fit in main memory
and requires paging, this mechanism is worthy of consideration.

The lower dotted line is the raw number of distance measurements made by
the hybrid mechanism. This is by far the best performance measured in these
terms for both data sets; however, for reasons explained above, it must be noted
that this does not represent actual measured performance in terms of query
time, as there is a significant extra cost entailed in performing the LAESA-
based filtering. In some cases however the number of distance calculations will
swamp any other cost of the query and this line would be representative for the
mechanism.

To give a fair comparison for these data sets and this metric, the solid black
line is generated, rather than measured, to take the LAESA overhead cost into
account. In fact this is done pessimistically by considering only the size of the
data access required. Thus, to the raw distance count, a factor is added according
to the number of reference points used, as a proportion of the size of the original
data points. Thus for example for the nasa data set the tree depth is 15, requiring
16 reference points, and the original data is 20 dimensions. For every time the

Reference Point Hyperplane Trees 13

LAESA exclusion is attempted, 0.8 of a distance calculation is added to the total
measured from the original space. For the colors data, these figures are 17 and
118 respectively, giving a much lower, if still pessimistic, adjustment.

It may be noted that the total number of distance measurements made by
this mechanism is similar (although in general smaller) to that required by the
pure LAESA mechanism; however, a query using LAESA requires a linear scan
of the whole LAESA table, whereas our hybrid mechanism resorts to using the
LAESA table only for data which has not already been excluded through the
tree traversal, and therefore retains scalability.

The main outcome of our work is thus represented by the solid black line
in the left hand figure, which give a substantially better better performance
for this data set than any other we are aware of. The hybrid Leanest/LAESA
mechanism appears to be very well suited for data sets which are very large and
require paging, whose individual data items are very large, or whose distance
metrics are very expensive.

7 Conclusions and Further Work

Having made the observation that the monotonous hyperplane tree is substan-
tially more efficient that the non-monotonous equivalent, even in high-dimensional
spaces, we formed the hypothesis that this is primarily due to the longer mean
search paths to each data item. We have taken this idea to its extreme, in con-
junction with an ability to force balance onto a hyperplane partition, through
the design of “permutation” and “leanest” hyperplane trees. In particular, the
latter requires only log2n+1 reference points for data of size n, therefore leaving
effectively all of the data at the leaf nodes of the tree. We have tested both
mechanisms against two SISAP benchmark data sets, and found good realistic
performance in comparison with other structures that are balanced and there-
fore usable for very large data sets, or very large data points, which require to
be paged.

Furthermore we note that the balanced tree mechanism can also be viewed as
a scalable implementation of a LAESA structure, giving very good performance
in particular for high-dimensional and expensive distance metrics. For very little
extra cost, LAESA-style filtering can be performed on the results of the tree
search, apparently giving the best of both worlds. We continue to investigate this
mechanism in metric spaces more challenging that the benchmark sets reported
so far.

8 Acknowledgements

Richard Connor would like to acknowledge support by the National Research
Council of Italy (CNR) for a Short-term Mobility Fellowship (STM) in June
2015, which funded a stay at ISTI-CNR in Pisa where some of this work was
done. The work has also benefitted considerably from conversations with Franco
Alberto Cardillo, Lucia Vadicamo and Fausto Rabitti, as well as feedback from

14 R. Connor

the anonymous referees. Thanks also to Jakub Lokoč for pointing out his earlier
invention of parameterised hyperplane partitioning!

References

1. Brin, S.: Near neighbor search in large metric spaces. In: 21th International Confer-
ence on Very Large Data Bases (VLDB 1995) (1995), http://ilpubs.stanford.
edu:8090/113/

2. Chávez, E., Ludueña, V., Reyes, N., Roggero, P.: Faster proximity searching with
the distal SAT. In: Traina, A.J.M., Traina, C., Cordeiro, R.L.F. (eds.) Similarity
Search and Applications - 7th International Conference, SISAP 2014, Los Cabos,
Mexico, October 29-31, 2014. Proceedings. pp. 58–69. Lecture Notes in Computer
Science, Springer International Publishing (2014)

3. Chávez, E., Ludueña, V., Reyes, N., Roggero, P.: Faster proximity searching with
the distal SAT. Information Systems pp. – (2016)

4. Chávez, E., Navarro, G.: Metric databases. In: Rivero, L.C., Doorn, J.H., Fer-
raggine, V.E. (eds.) Encyclopedia of Database Technologies and Applications, pp.
366–371. Idea Group (2005)

5. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library. www.sisap.org/

library/manual.pdf

6. Lokoč, J., Skopal, T.: On applications of parameterized hyperplane partitioning.
In: Proceedings of the Third International Conference on SImilarity Search and
APplications. pp. 131–132. SISAP ’10, ACM, New York, NY, USA (2010), http:
//doi.acm.org/10.1145/1862344.1862370

7. Navarro, G.: Searching in metric spaces by spatial approximation. The VLDB
Journal 11(1), 28–46 (2002)

8. Navarro, G., Reyes, N.: String Processing and Information Retrieval: 9th Inter-
national Symposium, SPIRE 2002 Lisbon, Portugal, September 11–13, 2002 Pro-
ceedings, chap. Fully Dynamic Spatial Approximation Trees, pp. 254–270. Springer
Berlin Heidelberg, Berlin, Heidelberg (2002)

9. Noltemeier, H., Verbarg, K., Zirkelbach, C.: Data structures and efficient algo-
rithms: Final Report on the DFG Special Joint Initiative, chap. Monotonous
Bisector* Trees — a tool for efficient partitioning of complex scenes of geomet-
ric objects, pp. 186–203. Springer Berlin Heidelberg, Berlin, Heidelberg (1992),
http://dx.doi.org/10.1007/3-540-55488-2_27

10. Novak, D., Batko, M., Zezula, P.: Metric index: An efficient and scalable solution
for precise and approximate similarity search. Information Systems 36(4), 721 –
733 (2011), selected Papers from the 2nd International Workshop on Similarity
Search and Applications {SISAP} 2009

11. Ruiz, E.V.: An algorithm for finding nearest neighbours in (approximately) con-
stant average time. Pattern Recognition Letters 4(3), 145 – 157 (1986), http:

//www.sciencedirect.com/science/article/pii/0167865586900139

12. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity search: the metric space
approach, Advances in Database Systems, vol. 32. Springer (2006)

