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Abstract. In this work we establish conditions which guarantee the existence
of (strictly) positive steady states of a nonlinear structured population model.

In our framework, the steady state formulation amounts to recasting the non-
linear problem as a family of eigenvalue problems, combined with a fixed point

problem. Amongst other things, our formulation requires us to control the

growth behaviour of the spectral bound of a family of linear operators along
positive rays. For the specific class of model we consider here this presents a

considerable challenge. We are going to show that the spectral bound of the

family of operators, arising from the steady state formulation, can be controlled
by perturbations in the domain of the generators (only). These new boundary

perturbation results are particularly important for models exhibiting fertility

controlled dynamics. As an important by-product of the application of the
boundary perturbation results we employ here, we recover (using a recent the-

orem by H. R. Thieme) the familiar net reproduction number (or function)

for models with single state at birth, which include for example the classic
McKendrick (linear) and Gurtin-McCamy (non-linear) age-structured models.

1. Recap and motivation. In recent years we have developed a general frame-
work to treat steady state problems of nonlinear partial differential and partial
integro-differential equations, see [6, 7, 8]. We have been mainly interested in
studying models of physiologically structured populations (for reference on struc-
tured population models see for example the monographs [14, 27, 31, 37]). The
types of nonlinearities naturally arising in these models present considerable chal-
lenges. For example a basic size-structured population model can be formulated as a
quasi-linear first order hyperbolic partial differential equation with a nonlinear and
non-local boundary condition. On the other hand, the method we have developed to
treat the steady state problem capitalises on the fact that the models we have con-
sidered describe the dynamics of populations, and consequently in our framework
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2 ÀNGEL CALSINA AND JÓZSEF Z. FARKAS

we have to study families of positive linear operators, admitting desirable spec-
tral properties. In particular, the operators that naturally arise generate positive
strongly continuous semigroups, often with further desirable regularity properties,
such as eventual compactness and irreducibility. The spectral theory of these oper-
ators is well developed (at least on abstract Lebesgue spaces), see for example the
monographs [3, 10, 20, 33].

To start let us briefly recall from [7] how we can (re)formulate the positive steady
state problem for a nonlinear evolution equation, in general. We are then going to
show in the subsequent section how to apply this general framework to a specific
class of model exhibiting fertility controlled dynamics. Let X and Y be Banach
lattices, and let us consider the (parametrised) family of abstract Cauchy problems.

du

dt
= Au u, D(Au) ⊆ X , u(0) = u0. (1)

Above, for every u ∈ Y, Au is a linear operator, typically, the generator of a strongly
continuous semigroup on the state space X . For many of the concrete applications
we have considered (see e.g. [6, 7, 22]) X can be naturally chosen as the Lebesgue
space of integrable functions; while in the simplest case (as for example in case of
the model we have considered in [22]) we have Y = R.

The relationship between u ∈ Y-parameter space, and u ∈ X -state space, is
determined in general by the so-called environmental operator:

E : X → Y, E(u) = u. (2)

The latter condition we call the environmental condition, or environmental feed-
back. From the biological point of view, E determines how the standing population
affects (via population level interaction) individual development, hence the termi-
nology (see e.g. [18, 19] for more details). From the mathematical point of view,
the parametrisation can often be chosen in such a way that E is a positive linear
operator, for example an integral operator. In particular, if problem (1)-(2) can be
set up such that the range of E is contained in Rn for some n ∈ N, then we say that
problem (1) incorporates n-dimensional nonlinearity. Otherwise we say that our
model incorporates an infinite dimensional nonlinearity. We note that for models
with infinite dimensional nonlinearities (e.g. the one we have considered in [6]) it
is often desirable (from the mathematical point of view) to set Y = X . Also note
that (in particular also in the case when Y = X ), E is not necessarily surjective.

The advantage of the abstract formulation above is that the (positive) steady
state problem can be formally written as:

Au u = 0u, Ψ(E(u)) = u; 0 6≡ u ∈ X+, (3)

where Ψ : Y+ → Y+ is an appropriately defined non-linear map. At the same time,
(at least) in case of (structured) population models, the generators Au naturally
determine well-posed positive linear evolution problems. There is a well-developed
mathematical framework to analyse these linear evolution problems, for example
using the theory of positive strongly continuous semigroups. Solving problem (3)
(that is, establishing the existence of a positive steady state of our nonlinear model)
then amounts to study the spectral behaviour of the family of operators {Au |u ∈
Y} (note that Y is an infinite dimensional vector space, in general), and to prove
the existence of a fixed point of a (possibly set-valued and non-convex) nonlinear
map, which is related to the feedback condition Ψ(E(u)) = u in (3). Both of these
problems pose different types of challenges depending on the type of nonlinearity,
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and the structure of the model equations, we are dealing with. In the present
paper we are going to tackle one of these important challenges through a concrete
example, and therefore further develop, and at the same time also demonstrate, the
applicability of the general theory outlined in [7].

It is evident that there are natural models of biological populations which give rise
to equations incorporating different types of nonlinearities, in particular both finite
and infinite dimensional ones, simultaneously. A case in point is a population ex-
hibiting a hierarchical structure, in which the hierarchy affects individual mortality.
More specifically we have a population in mind in which older (more experienced)
individuals possess an advantage when competing for resources, for example food.
At the same time we assume that individual fertility rate is modulated by the total
population size, due to scramble competition effects.

As a motivating example consider the following age-specific mortality rate µ, and
fertility rate β.

µ

(
a,

∫m
a
u(r, t) dr∫m

0
u(r, t) dr

)
, β

(
a,

∫ m

0

u(r, t) dr

)
. (4)

Above a ∈ [0,m] denotes age, while u(a, t) denotes the density of individuals of age
a at time t. Note that while the mortality of an individual of age a depends on
the proportion of older individuals in the population, the fertility of an individual
of age a depends on the total number of individuals in the population. In partic-
ular, the corresponding age-structured partial differential equation model (see the
next section) describes the time evolution of a hierarchic age-structured population,
where individuals in the population compete with older individuals for resources,
e.g. food, affecting their mortality. Similar hierarchic age-structured population
models were in fact already introduced and studied for example by Cushing in [13].
Importantly, here we assume that individual mortality is affected by the proportion
of older individuals, while individual fertility (or the success of mating) is affected
by the total population size. This in fact can be viewed as mortality is affected by
pure contest competition (mass independent), while fertility is affected by scramble
(mass dependent) competition. Realistic ecological situations may include popu-
lations exhibiting cannibalistic behaviour, where the death rate of individuals is
modulated by the proportion of older (larger) individuals in the population. In
general, the effects of frequency dependent survival probabilities have been studied
in the case of specific real world (e.g. fish) populations, see e.g. [32].

It turns out however that incorporating certain types of nonlinearities (such as
the ones above in (4)) in a structured population model, poses some challenges, when
trying to apply the abstract framework (1)-(3) to study the existence of positive
steady states. In particular, our steady state problem formulation in (3) requires,
amongst other things, to control the spectral bound s(Au) on positive rays in the
parameter space Y. But as we can see µ is in fact constant along such positive rays,
since clearly

µ

(
·,
∫m
· u(r, t) dr∫m
0
u(r, t) dr

)
≡ µ

(
·,
∫m
· αu(r, t) dr∫m
0
αu(r, t) dr

)
, ∀α > 0.

Hence the information how the spectral bound of the generator Au changes with
respect to perturbations of u along rays is encoded in the fertility function β. In
general for distributed states at birth models (such as the one we considered in [22]),
since the recruitment operator appears as a bounded perturbation of the main part
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of the generator, this does not pose additional problems. However, for single state
at birth models, such as the one we consider here, the function β only plays a role in
the definition of the domain of the unbounded generator Au, and as a consequence
any useful information pertaining the growth (or decay) of its spectral bound can
only be extracted from its domain D(Au). Our main aim in this work is to show
(in the next section) that we can deal with such domain perturbation problems by
using the framework of Sobolev towers, as we have already indicated in [5].

As a by-product, using the Sobolev tower construction and the boundary pertur-
bation results contained in [20], together with a recent result of H. R. Thieme from
[36], we recover the familiar net reproduction number/function. In particular, we
rigorously justify that the biologically plausible definition of the net reproduction
number (see e.g. [27]) - for the linear McKendrick model -, and function (see e.g.
[23]) - for the nonlinear Gurtin-MacCamy age-structured model -, is indeed the
spectral radius of an appropriate operator, which arises when we apply the natural
splitting to the generator Au. Note that the idea (which we proposed earlier in [5],
see in particular the Concluding Remarks section) to lift the age-structured problem
into the extrapolated space is crucial, as this allows us to apply the necessary and
natural splitting of the generator Au which is required to apply Thieme’s theorem
and to arrive at the biologically plausible net reproduction number/function (see
also [21] for more details in the direction of net reproduction functions).

2. Boundary perturbations - through a concrete example. Our general goal
in this section is to show how the spectral bound of the family of operators {Au |u ∈
Y+} can be controlled (along positive rays in Y) by perturbations in the domain
of Au only. We are going to demonstrate this through a concrete example, but the
approach we present here is quite general and can be applied to a variety of models
with non-local boundary conditions (single state at birth). Here as an example
we consider a model of a hierarchic age-structured population with mortality and
fertility rates as described in (4). In particular, with the specific choice of the vital
rates in (4) the familiar (single state at birth) Gurtin-McCamy-type age-structured
population model reads as follows.

pt(a, t) + pa(a, t) =− µ

(
a,

∫m
a
p(r, t) dr∫m

0
p(r, t) dr

)
p(a, t), a ∈ (0,m), m <∞, (5)

p(0, t) =

∫ m

0

β

(
a,

∫ m

0

p(r, t) dr

)
p(a, t) da, t > 0, p0(a) := p(a, 0).

(6)

We set the state space as X = L1(0,m), and we note that our model (5)-(6)
is highly nonlinear. In particular the nonlinearities are induced by two essentially
different type of competition effects (scramble and contest), which are incorporated
in the model via the two operators F1 and F2, which are defined as follows.

F1(p)(·) =

∫m
· p(r) dr∫m
0
p(r) dr

, p ∈ X+ \ {0}, F2(p) =

∫ m

0

p(r) dr, p ∈ X+. (7)

The results obtained for this model will therefore also illustrate that the general
framework we have outlined in [7] can be applied to models incorporating multiple
(different) types of competition effects (inducing different types of nonlinearities),
simultaneously.
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To formulate the (positive) steady state problem for model (5)-(6) in the form
of (3), we set the parameter space as Y := L1(0,m) = X , and we define for every
u ∈ Y0

+ := Y+ \ {0} the linear operators Bu and Φu as follows.

Bu p =− p′ − µ (·, F1(u)(·)) p, (8)

D(Bu) =
{
p ∈W 1,1(0,m) | p(0) = Φu(p)

}
, (9)

Φu p =

∫ m

0

β (a, F2(u)) p(a) da, D(Φu) = X+. (10)

In (9) above W 1,1(0,m) denotes the usual Sobolev space of integrable functions
with generalized first derivative in L1. For every u ∈ Y0

+ it can be shown that Bu
generates a positive and eventually compact semigroup of operators, under some
very mild smoothness assumptions on the model ingredients β and µ (see e.g. [23]
for more details). For example, we may, and we will, in the rest of the paper assume
that µ and β are non-negative, continuous and bounded, and that µ 6≡ 0, β 6≡ 0.

Moreover, the semigroup generated by Bu can be shown irreducible if we impose
the natural assumption that

β(m, ·) 6= 0. (11)

To establish the existence of a positive steady state of model (5)-(6), using the
general framework from [7], we need to assure (amongst other things) the existence
of a ‘desirable’ set in the parameter space Y, where the spectral bound of the
operators Bu vanish. In particular, our goal is to show that this level set, defined
specifically as

S = {u ∈ Y0
+ | s(Bu) = 0}, (12)

intersects every positive ray in Y in a unique point (element), and that it is contained
in a ball B ⊂ Y of a sufficiently large radius. To this end, it is sufficient to show that
the spectral bound is strictly monotone decreasing (or, alternatively, increasing)
along positive rays, that is ∀u ∈ Y0

+, we have s (Bu) > s (Bαu) , ∀α > 1; and in
particular that it changes sign along every ray in the set B ∩Y+. But, as we noted
before, µ is constant along positive rays (since F1 is constant along rays in Y), hence
to establish that the spectral bound is strictly monotone along rays in the positive
cone we need to control the spectral bound via the boundary operator Φu, which
only appears in the domain of the generator Bu.

It is the main purpose of this paper to show how this can be done using the
framework of Sobolev towers, in particular using the extrapolated space of X . To the
best of our knowledge the notion of extrapolated spaces was originally introduced to
establish existence of solutions of some nonlinear evolution equations, see e.g. [16].
Significantly, later they were also employed to deal with boundary perturbations of
generators of semigroups, see e.g. [17, 25] for more details. We also mention that
there is a well-developed and fruitful theory of integrated semigroups, in particular
with applications to age-structured population models. We refer the interested
reader for example to [29, 30] for more details and further references.

Recall from [20, Ch.II] that the extrapolated space X−1 corresponding to the
generator A (assuming it is invertible) is defined as the completion of X with respect
to the following norm:

||x||−1 :=
∣∣∣∣A−1 x

∣∣∣∣
X . (13)

Then, X is dense in X−1 and the generator A of the strongly continuous semigroup
T has a unique continuous extension A−1 with D(A−1) = X , which is the generator
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of the so-called extended semigroup T−1 on X−1. Recall also from [20, Ch.II] that
in general A| is called the part of A in Z ⊆ X if

A| z := A z, D(A|) := {z ∈ D(A) ∩ Z |A z ∈ Z} . (14)

Note that A is the part of A−1 in X .
In our setting we consider the modified generator

B̂u p = −p′ − µ (·, F1(u)(·)) p, D(B̂u) =
{
p ∈W 1,1(0,m) | p(0) = 0

}
, (15)

and introduce the operator

Ĉu p = −Φu(p)
(
B̂u
)
−1

(
exp

{
−
∫ ·

0

µ(r, F1(u)(r)) dr

})
, (16)

where
(
B̂u
)
−1

is the unique continuous extension of B̂u with domainD

((
B̂u
)
−1

)
=

X . Note that Ĉu is a bounded linear operator from X to X−1, and in fact it is of
rank 1. For convenience we also introduce the notation

π(a) := π (a, F1(u)) := exp

{
−
∫ a

0

µ(r, F1(u)(r)) dr

}
, a ∈ [0,m]. (17)

Proposition 1. For every u ∈ Y0
+, the operator Bu is the part of the operator((

B̂u
)
−1

+ Ĉu
)

in X .

Proof. First we show that the domain of the part of

((
B̂u
)
−1

+ Ĉu
)

in X coincides

with the domain of Bu. That is, we need to show that

D1 :=

{
y ∈ X

∣∣∣∣ ((B̂u)−1
+ Ĉu

)
y ∈ X

}
=
{
y ∈W 1,1(0,m) | y(0) = Φu(y)

}
=: D2.

(18)
First assume that y ∈ D2. We define the following sequences of functions

yn(x) :=

{
y(x), x > 1

n
y
(

1
n

)
nx, x ≤ 1

n

}
, n ∈ N, x ∈ [0,m], (19)

πn(x) :=

{
π(x), x > 1

n
π
(

1
n

)
nx, x ≤ 1

n

}
, n ∈ N, x ∈ [0,m]. (20)

Note that yn(0) = πn(0) = 0, ∀n ∈ N, and yn → y, πn → π in X , moreover

∀n ∈ N, yn, πn ∈ D(B̂u). Since(
B̂u
)
−1
yn →

(
B̂u
)
−1
y, and − Φu(yn)

(
B̂u
)
−1
πn → −Φu(y)

(
B̂u
)
−1

π = Ĉu y,
(21)

in X−1; we have that(
B̂u
)
−1
yn − Φu(yn)

(
B̂u
)
−1
πn →

((
B̂u
)
−1

+ Ĉu
)
y, in X−1. (22)

But we are going to show that in fact(
B̂u
)
−1
yn −Φu(yn)

(
B̂u
)
−1
πn →

((
B̂u
)
−1

+ Ĉu
)
y = −y′ − µy, in X . (23)
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To this end note that for x > 1
n we have (below for simplicity we are suppressing

the arguments in the functions y, µ and π)(
B̂u
)
−1
yn − Φu(yn)

(
B̂u
)
−1
πn = −y′n − µ yn + Φu(yn) (π′n + µπn) = −y′ − µ y,

(24)
since π′n(x) + µπn(x) = 0, ∀x > 1

n .

While for x ≤ 1
n we have(

B̂u
)
−1
yn − Φu(yn)

(
B̂u
)
−1
πn (25)

=− n y
(

1

n

)
− µn y

(
1

n

)
x+ Φu(yn)

(
nπ

(
1

n

)
+ µnπ

(
1

n

)
x

)
. (26)

Therefore we obtain∣∣∣∣∣∣∣∣(B̂u)−1
yn − Φu(yn)

(
B̂u
)
−1
πn − (−y′ − µ y)

∣∣∣∣∣∣∣∣
X
≤
∫ 1

n

0

|y′ + µ y|dx

+

∫ 1
n

0

∣∣∣∣Φu(yn)nπ

(
1

n

)
− n y

(
1

n

)∣∣∣∣ dx+

∫ 1
n

0

∣∣∣∣nx(Φu(yn)µπ

(
1

n

)
− µ y

(
1

n

))∣∣∣∣ dx

≤
∫ 1

n

0

|y′ + µ y|dx+

∣∣∣∣Φu(yn)π

(
1

n

)
− y

(
1

n

)∣∣∣∣+
sup(µ)

2n

∣∣∣∣Φu(yn)π

(
1

n

)
− y

(
1

n

)∣∣∣∣
−−−−→
n→∞

0, (27)

since y and y′ belong to L1, Φu(yn)→ Φu(y) = y(0) (yn tends to y in X ), y
(

1
n

)
→

y(0) (note that y is a continuous function), and π
(

1
n

)
→ 1, as n → ∞. Hence we

conclude that y ∈ D1.
Next assume that y ∈ D1 and take an arbitrary sequence of smooth functions

yn, such that yn ∈W 1,1(0,m) and yn(0) = 0 for every n ∈ N, and such that yn → y
in X . Then we have

((
B̂u
)
−1

+ Ĉu
)
yn −−−−→

n→∞

((
B̂u
)
−1

+ Ĉu
)
y = z ∈ X , (28)

with convergence in X−1. Using the definition of the X−1 norm it is shown that
(28) is equivalent to

(
B̂u
)−1

((
B̂u
)
−1

+ Ĉu
)
yn = yn +

(
B̂u
)−1

−1
Ĉu yn = yn −

(
B̂u
)−1

−1
Φu(yn)

(
B̂u
)
−1
π

= yn − Φu(yn)π →
(
B̂u
)−1

z =: w ∈ D(B̂u), in X ;

(29)

i.e. w ∈W 1,1(0,m), and w(0) = 0.
Since yn −→

X
y and Φu(yn) → Φu(y), we have w = y − Φu(y)π, which implies

that y ∈W 1,1(0,m), and y(0) = w(0) + Φu(y)π(0) = Φu(y); that is y ∈ D2.
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Now, for y ∈ D1, we have((
B̂u
)
−1

+ Ĉu
)
y =

(
B̂u
)
−1

y − Φu(y)
(
B̂u
)
−1
π (30)

=
(
B̂u
)
−1

(y − Φu(y)π) =
(
B̂u
)
−1

(y − y(0)π) (31)

= −(y′ − y(0)π′)− µ(y − y(0)π) = −y′ − µy = Bu y, (32)

where we used that (y− y(0)π) ∈ D
(
B̂u
)

, and that y ∈ D2 = D1. Hence the proof

is completed.

From the point of view of applying our steady state framework to model (5)-(6),

the significance of recovering the generator Bu as part of

((
B̂u
)
−1

+ Ĉu
)

is that,

since the semigroups T (t) and T−1(t) are similar, that is

T (t) =

((
B̂u
)
−1

+ Ĉu
)−1

T−1(t)

((
B̂u
)
−1

+ Ĉu
)
, t ≥ 0, (33)

holds; their spectra coincide, see [20, Ch.II] for more details.

This in particular means that we can study the behaviour of s

((
B̂u
)
−1

+ Ĉu
)

as a function of u, instead of studying directly the behaviour of s(Bu) as a function
of the parameter u, and vice versa.

Note that if we define the positive cone of X−1 as the completion of X+ with
respect to the norm || · ||−1, then it is shown that X−1, with the usual partial
ordering, is a Banach lattice itself.

We now formulate conditions which guarantee the existence of a (strictly) positive
steady state of the nonlinear model (5)-(6).

Theorem 2.1. Assume that β is a strictly monotone decreasing function with re-
spect to its second variable, and that

1. µ > µ0, for some µ0 > 0.
2. ∃K > 0 such that max

a∈[0,m]
{β(a,K)} < µ0.

3. β(m,x) > 0, ∀x ∈ R+.

Then, if there exists an r > 0, such that s(Bu) > 0 holds for all u ∈ Y0
+ , ||u|| ≤ r,

then model (5)-(6) admits a strictly positive steady state.

Proof. Similarly as we have applied our framework previously e.g. in [6] for a model
with infinite dimensional nonlinearity, but with distributed recruitment process;
our goal is to transform the steady state problem into a fixed point problem in
the parameter space. This requires us to establish some desirable properties of the
level set S (defined in (12)). In particular, we are going to establish the following
properties.

(i) s (Bu) is a continuous function of the parameter u.
(ii) s (Bu) is strictly monotone decreasing (as a function of u) along rays in Y0

+.
(iii) The zero level set S ⊂ Y0

+ defined in (12) is contained in a bounded ball.

To establish the continuity of s (Bu) as a function of the parameter u, previously
(see [7]) we used the notion of generalised convergence of operators and perturbation
results from [28]. Here, in contrast, we employ a more direct approach, noting that
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Bu generates an eventually compact positive semigroup, therefore its spectral bound
s (Bu) is an isolated eigenvalue, for every u ∈ Y0

+. In fact s (Bu) is the dominant
real solution of the characteristic equation

1 =

∫ m

0

β(a, F2(u)) exp

{
−
∫ a

0

(λ+ µ(r, F1(u)(r))) dr

}
da =: K(u, λ). (34)

We now set

K(u, λ)− 1 =: G(u, λ) :

{
Y \

{
u ∈ Y :

∫ m

0

u(r) dr = 0

}}
× R→ R, (35)

and apply the Implicit Function Theorem. In particular we use Theorem A from
Appendix A in [12]. Note that if we naturally extend the functions β and µ as
β(·, x) = β(·, 0), ∀x < 0, and µ(·, x) := µ(·, 0), ∀x < 0, then G as defined above in
(35) (on an open set) is a continuous map.

Also note that for any (u∗, s(Bu∗)) ∈
{
Y \

{
u ∈ Y :

∫m
0

u(r) dr = 0
}}
× R we

have

G (u∗, s(Bu∗)) = 0,

and the map λ → G(u, λ) is continuously differentiable for every parameter value
u ∈ Y \

{
u ∈ Y :

∫m
0

u(r) dr = 0
}

.
In fact, since

∂G

∂λ
(u, λ) = −

∫ m

0

aβ(a, F2(u)) exp

{
−
∫ a

0

(λ+ µ(r, F1(u)(r))) dr

}
da 6= 0, (36)

we have that the map x → ∂G
∂λ (u∗, s(Bu∗))x is a linear homeomorphism from R

onto R.
Then, the Implicit Function Theorem implies that s(Bu∗) is a continuous function

of u∗ for all u∗ ∈ Y \
{
u ∈ Y :

∫m
0

u(r) dr = 0
}

.
Next we show that the function u→ s(Bu) is strictly monotone decreasing along

positive rays in Y. Using the extended generator, we have for every u ∈ Y0
+, v ∈ X+,

and 0 < α1 < α2 (note that u is a parameter, while v is an element of the positive
cone of the state space X )(((

B̂α1u

)
−1

+ Ĉα1u

)
−
((
B̂α2u

)
−1

+ Ĉα2u

))
v =

(
Ĉα1u − Ĉα2u

)
v ≥ 0, (37)

a positive perturbation.
Indeed, using that F1 is invariant along rays and the notation (17), we have(
Ĉα1u − Ĉα2u

)
v = (Φα1u(v)− Φα2u(v))

(
−
(
B̂u
)
−1
π

)
=

∫ m

0

(β(a, F2(α1u))− β(a, F2(α2u))) v(a)da

(
−
(
B̂u
)
−1
π

)
≥ 0.

This is because F2(α1u) − F2(α2u) = (α1 − α2)
∫m

0
u(a)da < 0, and hence the

integral above is positive because β decreases with respect to its second variable

and, moreover, we have

(
−
(
B̂u
)
−1
π

)
∈ (X−1)+, because(

−
(
B̂u
)
−1

)
π = lim

n→∞

(
−B̂u

)
πn = lim

n→∞

(
nπ

(
1

n

)
(1 + µx)χ[0, 1n ](x)

)
,

where the limits above are in X−1, (see also the proof of Prop. 1).
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Note that
(
B̂α1u

)
−1
−
(
B̂α2u

¯

)
−1

= 0 follows from the fact that the parts of(
B̂α1u

)
−1

and
(
B̂α2u

)
−1

in X satisfy B̂α1u = B̂α2u, and the only unique continuous

extension of the zero operator from a dense subset to X is the zero operator.
As we have noted before, Bu generates a positive and eventually compact semi-

group of operators, which is also irreducible under our hypotheses, and therefore
the spectral bound s(Bu) belongs to its spectrum and it is an eigenvalue of algebraic

multiplicity one; and as a consequence the same holds for s

((
B̂u
)
−1

+ Ĉu
)

.

Also note that for every sufficiently large λ, we have the identity

R

(
λ,

((
B̂α1u

)
−1

+ Ĉα1u

))
−R

(
λ,

((
B̂α2u

)
−1

+ Ĉα2u

))
=R

(
λ,

((
B̂α1u

)
−1

+ Ĉα1u

))(
Ĉα1u − Ĉα2u

)
R

(
λ,

((
B̂α2u

)
−1

+ Ĉα2u

))
, (38)

and therefore Proposition A.2 in [1] (see also Theorem 1.3 in [2]) implies that

s

((
B̂α1u

)
−1

+ Ĉα1u

)
> s

((
B̂α2u

)
−1

+ Ĉα2u

)
, (39)

which indeed shows that the function u → s(Bu) is strictly monotone decreasing
along positive rays in Y.

Finally we are going to prove that the zero level set S is contained in a bounded
ball. To this end we let

λu := s

((
B̂u
)
−1

+ Ĉu
)

= s(Bu), u ∈ Y0
+.

We are going to show that for all u ∈ Y0
+ such that ||u|| > K holds, we have λu < 0,

which implies the assertion that S is contained in a bounded ball.
Note that for every u ∈ Y0

+, λu is a dominant real eigenvalue of multiplicity one
with a corresponding strictly positive eigenvector pu, satisfying the equation((

B̂u
)
−1

+ Ĉu
)
pu = λu pu, (40)

which is equivalent to((
B̂u
)
−1
− λu I

)
pu = Φu(pu)

(
B̂u
)
−1

(
exp

{
−
∫ ·

0

µ(r, F1(u)(r)) dr

})
. (41)

Note that the definition of B̂u (in particular the homogeneous boundary condi-
tion) implies that

s

((
B̂u
)
−1

)
= −∞, (42)

which means that for any λ the operator

((
B̂u
)
−1
− λ I

)
is invertible. Hence from

(41) we obtain

Φu(pu) =

Φu(pu) Φu

(((
B̂u
)
−1
− λu I

)−1 [(
B̂u
)
−1

(
exp

{
−
∫ ·

0

µ(r, F1(u)(r)) dr

})])
,

(43)
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which yields (since pu is strictly positive)

1 =

Φu

(((
B̂u
)
−1
− λu I

)−1 [(
B̂u
)
−1

(
exp

{
−
∫ ·

0

µ(r, F1(u)(r)) dr

})])
=: F (λu).

(44)

Note that F is monotone decreasing for λu > 0, and at λu = 0 we have

F (0) =Φu

(
exp

{
−
∫ ·

0

µ(r, F1(u)(r)) dr

})
(45)

=

∫ m

0

β(a, F2(u)) exp

{
−
∫ a

0

µ(r, F1(u)(r)) dr

}
da

<

∫ m

0

µ0e
−µ0a da < 1,

for every u ∈ Y0
+ satisfying ||u|| > K, which shows that the spectral bound indeed

changes sign in a bounded ball along every ray in Y0
+, and hence S itself is contained

in a bounded ball.
We also note that the fact that S is bounded away from the origin follows directly

from our last assumption in Theorem 2.1.
To complete the proof let us denote by B+ the unit sphere of Y intersected with

the positive cone Y+, and define a map Θ from the closed and convex set B+ into
itself as:

Θ : n︸︷︷︸
∈B+

h−1

−−→ u︸︷︷︸
∈S

g−→ Bu︸︷︷︸
∈g(S)⊂C(X )

e−→ Vu︸︷︷︸
∈W 1,1

+ (0,m)

k−→ Vu︸︷︷︸
∈L1

+(0,m)

p−→ u′︸︷︷︸
∈S

h−→ n′︸︷︷︸
∈B+

.

(46)
Above, h, defined as h(u) = u

||u|| , is continuous with a continuous inverse (this

is because S is bounded away from the origin and it is contained in a bounded
ball). The projection p along positive rays in L1

+ is also continuous and bounded.
k is the compact injection of W 1,1(0,m) into L1(0,m). The map e, which assigns
the strictly positive normalised eigenvector Vu of Bu to Bu, is analytic, (see e.g.
[11, Lemma 1.3]). Finally, the map g above, which assigns the linear operator
(Bu, D(Bu)) ∈ C(X ) (the set of closed operators on X ) to the parameter value
u ∈ S, is shown to be continuous using the notion of generalised convergence,
see [28, Sect.2 Ch. IV]. (Note that compared to e.g. [6, 8] the situation is more
delicate, as both the operator and its domain depend on the parameter value u.) In
particular, continuity is established via [28, Th.2.25 Ch. IV.], which characterizes
generalised convergence of operators via convergence of their resolvents. Since the
resolvent of Bu is explicitly given as (f ∈ L1(0,m))

R(Bu, λ) f =

[∫m
0
β(a, F2(u))

∫ a
0
f(x) exp

{
−
∫ a
x

(λ+ µ(r, F1(u)(r))) dr
}

dxda

1−
∫m

0
β(a, F2(u)) exp

{
−
∫ a

0
(λ+ µ(r, F1(u)(r))) dr

}
da

+

∫ a

0

f(x) exp

{∫ x

0

(λ+ µ(r, F1(u)(r))) dr

}
dx

]
exp

{
−
∫ a

0

(λ+ µ(r, F1(u)(r))) dr

}
,

(47)
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it is shown, by applying Lebesgue’s dominated convergence theorem, that for any
sequence {un} ⊂ S tending to û ∈ S there exists a λ large enough, such that

||R(Bun , λ)−R(Bû, λ)|| → 0, (48)

as n→∞.
By Schauder’s fixed point theorem the map Θ has a fixed point. Equivalently, the
map h−1 ◦Θ ◦ h, which maps S into itself, has a fixed point u∗ which turns out to
be a steady state of the problem:

Bu∗ u∗ = Bu∗
((
h−1 ◦Θ ◦ h

)
u∗
)

= Bu∗ ((p ◦ k ◦ e ◦ g)u∗)

= Bu∗ (α (Vu∗) (k ◦ e ◦ g)u∗) = α (Vu∗)Bu∗ ((k ◦ e ◦ g)u∗)

= α (Vu∗)Bu∗ (Vu∗) = 0,

for some 0 6= α(Vu∗) ∈ R; since Vu∗ belongs to the kernel of Bu∗ .

The following (counterpart) result can be established along similar lines.

Theorem 2.2. Assume that β is a strictly monotone increasing function with re-
spect to its second variable, and that

1. β(m,x) > 0, ∀x ∈ R+.
2. There exists an r > 0, such that s(Bu) < 0 holds for all u ∈ Y0

+ , ||u|| ≤ r.
3. There exists an R > r > 0, such that s(Bu) > 0 holds for all u ∈ Y0

+ ,
||u|| ≥ R.

Then, model (5)-(6) admits a strictly positive steady state.

As we have already noted in [7], the crucial condition that the spectral bound is
monotone (and changes sign) along positive rays of the parameter space is closely
related to the biologically meaningful condition that an appropriately defined net
reproduction function, or in our case a net reproduction functional, changes mono-
tonously (and crosses the value 1) along positive rays of the parameter space. We
now further explore this connection, and in particular we recover the familiar net
reproduction number/function for age-structured (single state at birth) models.

To this end, for every fixed u ∈ Y0
+ we define the net reproduction number as

R(u) =

∫ m

0

β(a, F2(u)) exp

{
−
∫ a

0

µ(r, F1(u)(r)) dr

}
da, (49)

(notice that R(u) coincides with F (0) as defined in (44)), and for u ≡ 0 (i.e. the
extinction state/environment) we may naturally define the net reproduction number
as

R(0) =

∫ m

0

β(a, 0) exp

{
−
∫ a

0

µ(r,0) dr

}
da. (50)

Note that naturally R : Y0
+ → R+ can be considered as a functional, and so

we may call it the net reproduction functional, see also [21] for more details in
this direction. Also note that for the specific model we considered here we had to
formally defineR at the extinction steady state (zero population density) separately,
since F1 is not defined at 0 in general. Note that in general the value R(0) is often
denoted by simply R or R0 is usually referred to as the net reproduction number
or basic reproduction number in the literature. We would like to emphasize though
that for nonlinear models one really has to keep in mind that these scalar values (for
exampleR0) are simply the values of a net reproduction function/functional at fixed
population densities (environments). Indeed, net reproduction numbers, functions
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and functionals play an important role when studying the existence and the local
asymptotic stability of equilibria of physiologically structured population dynamical
models, for more details see e.g. the recent papers [4, 5, 15, 19, 21, 22, 23, 35, 36].

We now rigorously establish the connection between the spectral bound s(Bu)
and the net reproduction functional R(u), as defined in (49).

Proposition 2. For every u ∈ Y0
+ we have

σ

(
−Ĉu

((
B̂u
)
−1

)−1
)

= {0,R(u)} ,

and in particular
s(Bu) ≷ 0 ⇐⇒ R(u) ≷ 1. (51)

Proof. To establish the relationship (51) for u ∈ Y0
+ we apply Theorem 3.5 from [36]

to the extended generator

((
B̂u
)
−1

+ Ĉu
)

in X−1. Note that one can verify that

the operators
(
B̂u
)
−1
, Ĉu satisfy the assumptions of Theorem 3.5 in [36]. Hence

applying Theorem 3.5 from [36] we obtain

s(Bu) = s

((
B̂u
)
−1

+ Ĉu
)

≷ 0 ⇐⇒ r

(
−Ĉu

((
B̂u
)
−1

)−1
)

≷ 1. (52)

It remains to show that

r

(
−Ĉu

((
B̂u
)
−1

)−1
)

= R(u).

To this end note that the equation(
−Ĉu

((
B̂u
)
−1

)−1
)
p = λ p (53)

=Φu

(((
B̂u
)
−1

)−1

p

)[(
B̂u
)
−1

(
exp

{
−
∫ ·

0

µ(r, F1(u)(r)) dr

})]
,

shows that λ = 0 is an eigenvalue with corresponding eigenvectors p =
(
B̂u
)
−1
w

(spanning an infinite dimensional subspace), such that w ∈ X and∫ m

0

β(a, F2(u))w(a) da = 0,

holds.
On the other hand if λ 6= 0 then we have that

p = α

[(
B̂u
)
−1

(
exp

{
−
∫ ·

0

µ(r, F1(u)(r)) dr

})]
=: α v,

for some α 6= 0, which together with

λα v = Φu

(((
B̂u
)
−1

)−1

α v

)
v = αΦu

(((
B̂u
)
−1

)−1

v

)
v,

yields

λ = Φu

(((
B̂u
)
−1

)−1

v

)
= Φu

(
exp

{
−
∫ ·

0

µ(r, F1(u)(r)) dr

})
.
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Hence we have shown that (below σ stands for the spectrum)

σ

(
−Ĉu

((
B̂u
)
−1

)−1
)

= {0,Φu (π)} = {0,R(u)} , (54)

which establishes the assertions of Proposition 2.

Remark 1. Note that by appropriately defining the operator B0 we can also es-
tablish that s(B0) ≷ 0 ⇐⇒ R(0) ≷ 1.

Remark 2. We would like to emphasize that in the proof of Proposition 2 we did
not really use that F1, F2 assume the particular form as in (7).

Remark 3. We recall from [26] the classic nonlinear (Gurtin-McCamy) age-structured
population dynamical model here.

pt(a, t) + pa(a, t) =− µ
(
a,

∫ m

0

p(r, t) dr

)
p(a, t), a ∈ (0,m), (55)

p(0, t) =

∫ m

0

β

(
a,

∫ m

0

p(r, t) dr

)
p(a, t) da, t > 0. (56)

Note that the proof of Proposition 2 can be directly adapted for this model (with
a one dimensional nonlinearity, i.e. Y = R, since the environment individuals are
experiencing is simply determined by the total population size P (t) =

∫m
0
p(a, t) da),

and of course also for the basic linear age-structured McKendrick model (i.e. when
β and µ do not depend on the total population size P (t)).

Thus we have rigorously justified the biologically inspired definition of the net
reproduction number

R =

∫ m

0

β(a) exp

{
−
∫ a

0

µ(r) dr

}
da, (57)

(appearing frequently in the literature, see e.g. [27]) for the linear age-structured
McKendrick model; and similarly the net reproduction function, which, for the
Gurtin-McCamy (non-linear) age-structured model (55)-(56) reads as:

R(P ) =

∫ m

0

β(a, P ) exp

{
−
∫ a

0

µ(r, P ) dr

}
da. (58)

Also note that analogously one arrives at the definition of the net reproduction
function

R(P ) =

∫ m

0

β(s, P )

γ(s, P )
exp

{
−
∫ s

0

µ(r, P )

γ(r, P )
dr

}
ds, (59)

for the size-structured version of the Gurtin-McCamy model (55)-(56), see e.g. [23],
where stability criteria for positive steady states were also established in terms of
the derivative of the net reproduction function above.

3. Concluding remarks. In this paper we have treated the (positive) steady state
problem of a nonlinear structured population model with a nonlinear and non-local
boundary condition. In particular we have showed that the growth behaviour of the
spectral bound of the parametrised family of linear operators arising in the steady
state formulation can be controlled by boundary perturbations only. This way we
have demonstrated how our general framework developed in [7] can be applied to
treat classes of nonlinear models with single state at birth, and in particular with
fertility/reproduction controlled dynamics.
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We note that for certain classes of models, a more direct fixed point approach
as employed previously e.g. in [24] can be also applied. The question is whether
one formulates the fixed point map on the state space as e.g. in [24], or on the
parameter (environment) space. Sometimes, in particular when it is not feasible to
obtain an implicit formula for the steady state, it may not be possible to formulate
a fixed point map on the state space. Another disadvantage of formulating the
fixed point problem on the state space is that often fixed point theorems rely on
contraction arguments, and so in the context of population models special care has
to be taken to avoid the extinction steady state, as e.g. in [24], where a fixed point
theorem on conical shells in Banach spaces was employed.

For these reasons in general we prefer to formulate a fixed point problem on the
parameter space, and make use of the spectral properties of the family of operators
arising from the parametrisation (using the environment as parameter), partly be-
cause this then has a natural biological intepretation, too. In fact, the goal of the
present work was to show how the spectral bound of the family of operators can
be controlled by boundary perturbations only, and the results here can be readily
extended to nonlinear size-structured models with non-local boundary conditions,
see e.g. [7] or even [8] (including a diffusion operator, too) in this direction.

We emphasize that the general idea of lifting a problem into the extrapolated
space, where the boundary condition becomes a bounded perturbation of the ge-
nerator is very powerful, and can be applied to a variety of models. To name an-
other concrete example, let us consider here the following general selection-mutation
model (see also [9] for more details).

ut(l, a, t) + ua(l, a, t) = −µ(E1[u], l, a)u(l, a, t),

u(l, 0, t) =

∫ ∞
0

∫ ∞
l̂

b(l, l̂)β(E2[u], l̂, a)u(l̂, a, t) da dl̂, (60)

u(l, a, 0) = u0(l, a).

In the model above u(l, a, t) denotes the density of individuals of age a and matu-
ration age l at time t. E1 and E2 are the environmental operators, as described in
Section 1. µ denotes the mortality rate, β the fertility function and b is the proba-

bility density function describing the mutation, that is
∫ l2
l1
b(l, l̂) dl is the probability

that the offspring of an individual of age at maturity l̂ has maturity age l ∈ (l1, l2).
In [9] the existence and uniqueness of a positive steady state of model (60) was

established, for the case when E1 ≡ E2, and when the mortality µ is a strictly
monotone increasing function of its first variable, while the fertility β is a strictly
monotone decreasing function of its first variable, as well. In contrast, in [7] we
treated the case of E1 ≡ E2 ≡ E[u(·, ·, t)] = (P (t), Q(t)) (i.e. two-dimensional
nonlinearity), where

P (t) =

∫ am

0

∫ l

0

u(l, a, t) dadl, Q(t) =

∫ am

0

∫ am

l

u(l, a, t) da dl, (61)

(note the finite maximal age) denote the juvenile and adult populations respectively,
but crucially without any further monotonicity assumptions on µ and β. Here we
point out (without elaborating the details) that following the lines presented in the
previous section, the positive steady state problem for model (60) could be treated,
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for example in case of the following choice of E1 and E2:

E1[u(l, a, t)] :=

∫ am

0

(
α

∫ a

0

u(l, x, t) dx+

∫ am

a

u(l, x, t) dx

)
dl∫ am

0

∫ am

0

w(x)u(l, x, t) dxdl

,

E2[u(l, a, t)] :=

∫ am

0

∫ am

l

u(l, a, t) da dl (= Q(t)) ,

where w is some non-negative weight function and α ∈ [0, 1].
Finally we mention that in the future we intend to explore the possibility to use

our framework in the dynamic setting, that is, we aim to investigate the possibility of
using the (re)formulation (1) not just to prove the existence of positive steady states,
but also to establish further qualitative results, for example results concerning the
global (in)stability of the extinction steady state. We anticipate that lifting the
problem into the extrapolated space will prove to be fruitful again. We also note
that it would be worthwhile to explore the connection between our framework and
the theory of monotone dynamical systems and in particular persistence theory (see
e.g. [34]), and to compare the advantages/disadvantages of the two approaches.
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