Accepted refereed manuscript of:

Varley A, Tyler A, Bondar Y, Hosseini A, Zabrotski V & Dowdall M (2018) Reconstructing the deposition environment and long-term fate of Chernobyl (137)Cs at the floodplain scale through mobile gamma spectrometry, *Environmental Pollution*, 240, pp. 191-199.

DOI: <u>10.1016/j.envpol.2018.04.112</u>

© 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u> Title: Reconstructing the deposition environment and long-term fate of Chernobyl ¹³⁷Cs
 at the floodplain scale through mobile gamma spectrometry.

3

Authors: Adam Varley¹, Andrew Tyler¹, Yuri Bondar², Ali Hosseini³, Viachaslau Zabrotski²
and Mark Dowdall³.

6

7 Affiliations:

¹Department of Biological and Environmental Sciences, University of Stirling, Stirling FK9
4LA, United Kingdom

10 ²Norwegian Radiation Protection Authority, Grini næringspark 13, 1332 Østerås, Norway

³Polessie State Radiation-Ecological Reserve, Tereshkovoy Street 7, Khoiniki, Gomel Region,

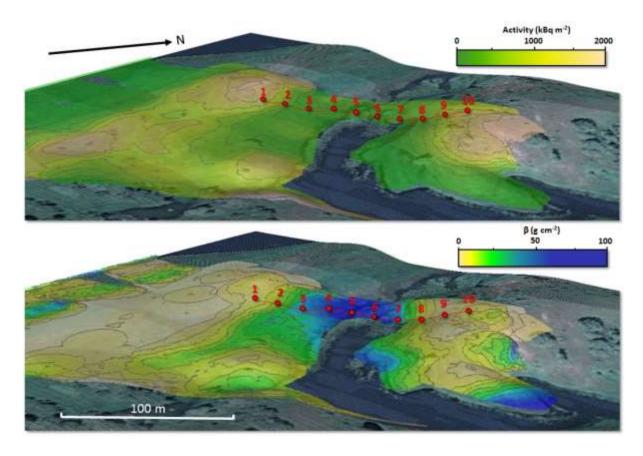
- 12 Belarus
- 13

14 Keywords: Caesium redistribution; Sedimentation rates; Floodplain functioning; 15 Gamma-ray spectrometry; Chernobyl

- 16
- 17 Abstract:

18

19 Cs-137 is considered to be the most significant anthropogenic contributor to human dose and 20 presents a particularly difficult remediation challenge after a dispersal following nuclear 21 incident. The Chernobyl Nuclear Power Plant meltdown in April 1986 represents the largest nuclear accident in history and released over 80 PBq of ¹³⁷Cs into the environment. As a result, 22 23 much of the land in close proximity to Chernobyl, which includes the Polessie State Radioecology Reserve in Belarus, remains highly contaminated with ¹³⁷Cs to such an extent 24 they remain uninhabitable. Whilst there is a broad scale understanding of the depositional 25 26 patterns within and beyond the exclusion zone, detailed mapping of the distribution is often 27 limited. New developments in mobile gamma spectrometry provide the opportunity to map the fallout of ¹³⁷Cs and begin to reconstruct the depositional environment and the long-term 28 behaviour of ¹³⁷Cs in the environment. Here, full gamma spectrum analysis using algorithms 29 30 based on the peak-valley ratio derived from Monte Carlo simulations are used to estimate the total ¹³⁷Cs deposition and its depth distribution in the soil. The results revealed a pattern of 31 32 ¹³⁷Cs distribution consistent with the deposition occurring at a time of flooding, which is 33 validated by review of satellite imagery acquired at similar times of the year. The results were 34 also consistent with systematic burial of the fallout ¹³⁷Cs by annual flooding events. These


- results were validated by sediment cores collected along a transect across the flood plain. The true merit of the approach was confirmed by exposing new insights into the spatial distribution and long term fate of ¹³⁷Cs across the floodplain. Such systematic patterns of behaviour are likely to be fundamental to the understanding of the radioecological behaviour of ¹³⁷Cs whilst also providing a tracer for quantifying the ecological controls on sediment movement and deposition at a landscape scale.
- 41

42 **Research capsule:**

43

44 Complex deposition patterns of ¹³⁷Cs have been observed on floodplains providing insight into

- 45 the role environmental processes play in the spatio-temporal redistribution of contamination
- 46

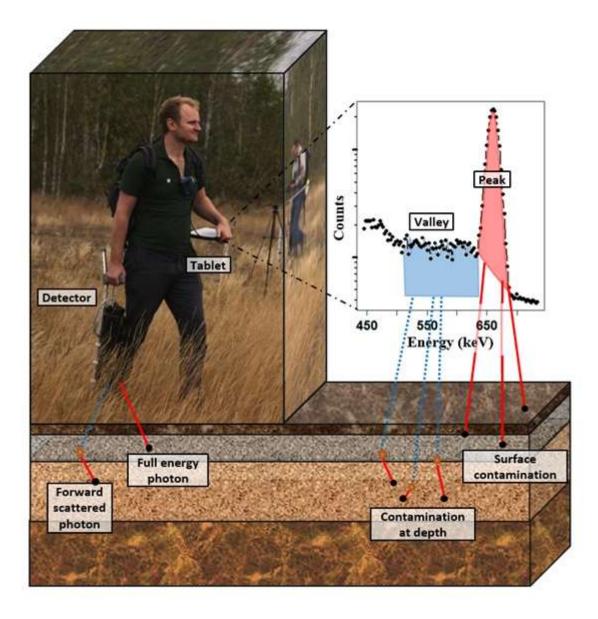
- 47
- 48
- 49 Graphical abstract. Interpolated handheld gamma-ray spectrometry estimates for activity
- 50 (kBq m⁼²) and β (g cm⁻²)
- 51
- 52

- 53 **1. Introduction**
- 54 55

Cs-137 is considered the one of the most radiologically significant anthropogenic

56 radionuclide within the environment (Miller, 2007). The majority of present day global 57 inventory of ¹³⁷Cs is derived from atmospheric weapons testing (1945-1963). More recently, 58 further more-localised contamination has been introduced into the environment through 59 reactor meltdowns occurring at Chernobyl Nuclear Power Plant (ChNPP) in 1986 and Fukishima Diachii Nuclear Power Plant (FDNPP) in 2011. The widespread nature of ¹³⁷Cs 60 61 and the risk it poses to human health are as a result of a combination of physical and chemical 62 properties. Foremost, it is one of the more abundant fission products generated during a 63 nuclear chain reaction and it has a relatively low melting point (670.8 °C) allowing it to 64 readily disperse into the atmosphere after a meltdown or nuclear bomb detonation (Isaksson 65 and Raaf, 2017). Once in the environment, it can exhibit complex biogeochemical behaviour 66 given it is highly soluble, has a tendency to react with environmental media in particular clay 67 minerals and can be readily mobilised in the presence of organic matter. It can also easily 68 enter the food chain as it is readily taken up into plant material substituting for naturally 69 occurring potassium (Penrose et al., 2016). In terms of human exposure, the combination of 70 30.1 year half-life, high energy beta decay and the 662 keV gamma-ray from the short-lived daughter product ^{137m}Ba make ¹³⁷Cs both an internal and external radiation hazard. As a 71 72 result, following any nuclear incident one of the fundamental tasks is to establish, using high quality data, the extent and intensity of ¹³⁷Cs deposition to inform decision making. This need 73 74 has been exemplified by, for example, the largescale data collection efforts initiated by the 75 Ministry of Education, Culture, Sports, Science and Technology (MEXT) within a month of the FDNPP accident (Povinec et al., 2013) and the multinational efforts over a number of 76 77 decades to confidently characterise the spatial distribution of fallout across Europe after the 78 ChNPP accident (Izrael et al., 1996).

79


In the longer term, continued measurement of ¹³⁷Cs is also important, not only to update population dose assessments (Beresford et al., 2016; Konoplev et al., 2017), but to monitor redistribution of the radiocontaminant within the environment occurring as a function soil movement, weathering and erosion (Rawlins et al., 2011). These are the same process that have enabled soil scientists to regularly utilise ¹³⁷Cs as a medium-term tracer for soil redistribution since the 1960's (Mabit and Dercon, 2014; Ritchie and McHenry, 1990).

87 Cs-137 is relatively straightforward to measure through gamma-ray spectrometry of the 662 keV photon released by its daughter product ^{137m}Ba within which it is always in secular 88 89 equilibrium (Povinec et al., 2003). However, difficulties often arise when trying to account for depth variation of ¹³⁷Cs contamination given that significant penetration into the soil 90 91 column can occur over time making precise estimates of the total inventory (Bq m^2) 92 problematic (Tyler, 2004). The oldest and most direct way to measure the depth distribution 93 is by extracting cores from a site and measuring small increments of the core (typically less 94 than 5 cm slices) within the laboratory using low background High Purity Germanium 95 (HPGe) detectors; thus building a profile. Collection, preparation and analysis of 96 environmental samples can nonetheless make this procedure time consuming and expensive 97 often yielding limited spatial representivity, which can become a major issue when 98 significant spatial heterogeneity of contamination is encountered (Golosov et al., 2000). 99 Possibly a more appropriate method that can address spatial resolution issues more 100 effectively is the deployment of field-based mobile gamma-ray spectrometry (Tyler, 2008). 101 Utilising this technique, measurements can be made directly in the field using a variety of 102 gamma-ray detectors mounted to a specific platform such as static surveyor stands (in situ) 103 (Gering et al., 1998), vehicles (carborne) (Aage et al., 2006), airborne (helicopters and fixed 104 wing) (Rawlins et al., 2011) and unmanned aerial vehicle (UAVs) (Okuyama et al., 2008). 105 The height of a detector primarily determines the spatial quality of data given that the field of 106 view (FOV) of the detector will be increased with increasing height (Tyler et al., 1996a). 107 Alongside time and cost restraints this factor is crucial in determining the choice of platform to characterise the underlying spatial distribution of 137 Cs contamination. 108

109

110 In situ technologies, utilising highly sensitive HPGe detectors, represent the standard for 111 characterisation of gamma-ray emitting radionuclides (ICRU, 1994). Nonetheless, HPGe 112 detectors generally have low efficiency, require heavy cooling systems and are as a result bulky and not suited for mapping large areas in high spatial resolution. Therefore portable 113 114 systems, known as mobile gamma-ray spectrometry, tend to use more robust sodium iodide 115 (NaI:Tl) detectors with larger detection volumes (and hence efficiency) in order to improve 116 statistical accuracy (Tyler, 2008). Airborne survey systems as an example can carry 117 hundreds of kilos of NaI:Tl providing very high detection efficiencies that are ideal to rapidly 118 characterise ¹³⁷Cs contamination on a national scale. However, such surveys come at 119 considerable cost and for safety reasons tend to be conducted at altitudes above 100 m 120 resulting in a large FOV, making resolution of localised contamination difficult. Carborne

systems on the other hand can provide a higher spatial quality of data for significantly less cost whilst still being able to carry significant detection volumes, such surveys tending to be restricted to roads or open fields. UAVs offer enormous potential in the field of gamma-ray spectrometry, however current affordable technologies cannot provide the payloads to carry detectors with sufficient detection efficiency, for long enough periods, to characterise large contaminated areas in high spatial resolution (Martin et al., 2016).

128

Figure 1. Photograph of a handheld detection system alongside a schematic representation of
 the peak to valley ratio methodology used to account for burial depth of contamination

131

132 Lightweight detection systems originally designed for nuclear security missions are now commonly being implemented in the field as backpack or handheld devices (Figure 1) to 133 characterise ¹³⁷Cs in relatively heavily contaminated environments (Cresswell et al., 2013; 134 135 Kock and Samuelsson, 2011; Nilsson et al., 2014; Plamboeck et al., 2006; Sanderson et al., 136 2013). Typically, a large number of georeferenced spectra are taken during a survey and, conventionally, the count rate in the full energy peak is used to determine the amount of ¹³⁷Cs 137 contamination in the soil. However, large uncertainties in inventory estimates (Bq m⁻²) can 138 139 be encountered when significant spatial heterogeneities in burial depth are encountered. 140 Recently, Varley et al., (2017) demonstrated that through the use of the peak-to-valley ratio 141 (PVR) improved inventory estimates could be made for aged Chernobyl deposits in Belarus. 142 The benefit of utilising the PVR to account for burial depth was first realised by Zombori et al. (1992) and has since been used widely to estimate the burial depth of ¹³⁷Cs (Feng et al., 143 144 2012; Gering et al., 2002, 1998; Kastlander and Bargholtz, 2005; Tyler, 2004). In essence, 145 the PVR is the ratio of the full energy photopeak and the forward scattered photons (Figure 1). Forward scattered photons are those photons that have lost a small amount of energy on 146 147 transition out of the soil and are represented by the "valley" region of the gamma spectrum 148 that may be observed between the full energy photopeak at 662 keV and the Compton edge 149 occurring at 480 keV. The greater the depth within the soil at which the photon originates, 150 the more probable it is that the photon will undergo forward scattering and generate a count 151 within the valley region of the spectrum. This leads to an increase of the valley "height" and a 152 concomitant decrease in the PVR.

153

154 Following the calibration and validation work of assessing the PVR method for mobile handheld gamma spectrometry (Varley et al., 2017) it was apparent that one calibration site 155 exhibited a systematic change in the deposited ¹³⁷Cs activity and depth distribution towards a 156 157 tributary of the Pripyat River. The primary aim was to follow up on this observation and to 158 complete a high resolution (<1 m) mobile gamma spectrometry survey across the flood plain 159 to characterise and explain the systematic distribution in a landscape that had been highly 160 impacted by the 1986 Chernobyl accident and that had hitherto been considered to be highly heterogenous with regards to the ¹³⁷Cs distribution. 161

162

163 Large areas of the watershed of the Pripyat River, the main watercourse of the impacted 164 region and including feeder streams, lakes, marshes and drainages, are within the 30-km 165 exclusion zone that was ultimately imposed around the ChNPP. Since the accident, high

166	concentrations of radionuclides have been observed within stagnant and slow moving bodies
167	of water associated with the Pripyat River. Such radionuclides accumulate primarily in
168	relation to sediments although accumulations of contaminants can also be observed within the
169	water itself and associated biota (Gudkov et al., 2010). Floodplains have been shown to
170	represent relatively complex post-depositional environments (Golosov et al., 2013; Iwasaki et
171	al., 2015) due to the influence of flood events on a number of processes that govern the
172	environmental behaviour of ¹³⁷ Cs and the contaminated areas of Belarus and Ukraine also
173	bear witness to this complexity (Burrough et al., 1999a; Kagan and Kadatsky, 1996; Zhukova
174	et al., 1997). In this context, it is likely that the systematic mapping of the distribution of
175	¹³⁷ Cs using handheld mobile gamma spectrometry within the watershed of the Pripyat River
176	in the Polessie State Radioecology Reserve (PSRER), will reveal a complex redistribution of
177	deposited ¹³⁷ Cs at a scale that is likely to be overlooked by conventional sampling, in situ,
178	mobile or airborne gamma spectrometry due to the limitations of sampling or measurement
179	resolution.
180	
181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	
197	

198 **2.** Methodology

199

201

200 2.1. The Study Site

202 The selected site (centred at approximately N 51°31'45.2", E 029°56'07.5") was known to be 203 periodically inundated given that it lay in a low-lying floodplain within the drainage system 204 of the Pripyat River. Lying some 19 km from the Chernobyl Plant the site had moderate dose rates ranging from 0.1 to 0.5 µSv/h recorded at 1 m in height and contamination densities of 205 137 Cs, 90 Sr and 241 Am of the order of 1.2 MBq/m², 0.2 MBq/m² and 0.032 MBq/m², 206 207 respectively. The soils at the site consist primarily of soddy gleys and peat soils of varying 208 density and being better drained at the elevated locations of the site. Vegetation at the site 209 consisted primarily of grasses and mosses, with emergent and submergent macrophytes at 210 lower elevations and near water with some sparse stands of low trees and bushes at the higher 211 elevations.

212 2.2. Soil sampling and measurement

213

214 Soil samples along a transect of approximately 120 m were taken using a steel cylindrical

corer (4 cm diameter, 20 cm depth). The transect was selected such that the main features of

216 the site, with respect to potential redistribution of 137 Cs, were accounted for. Cores were

217 divided into 2 cm increments. Overlying vegetation and humus was removed prior to

218 sectioning. Soil samples were prepared for radioanalytical measurements by air drying and

- 219 homogenization followed by mixing and sieving (2 mm aperture). After weighing, a
- subsample was transferred to an analytical geometry for counting. A HPGe (Canberra,

221 Be5030, carbon window, 50% rel. eff.) detector was used for ¹³⁷Cs determination. Count

times varied from 6000 to 80000 sec. Statistical uncertainties for the photo peak of 137 Cs were less than 5 %.

224 2.3. In situ Gamma Spectrometry

225

The survey was conducted over the course of a day by two NaI:Tl detectors, a 76×76 mm NaI:Tl and a 51×51 mm, by two operators. Each detector was connected to an Ortec

digiBase recording a 1024 channel spectral per second using Ortec's Maestro software

229 (ORTEC, 2005). GPS coordinates were recorded individually for each spectrum by an SX

Blue II differential GPS with an uncertainty of 0.6 m. Spectral measurements and spatial

231 coordinates were combined using software built within the JAVA framework and able to

232 provide real-time feedback on count rates in specified windows. Maestro's gain stabilisation 233 software was used on the 662 keV peak to avoid significant spectral drift. The detectors were 234 held at a height of about 0.1 m from the ground to reduce the field of view with a traverse speed of approximately 0.5 m s⁻¹ being maintained throughout the surveys. To compare the 235 236 performance of the 51 \times 51 mm NaI:Tl against 76 \times 76 mm NaI(Tl) concomitant transects for 237 undertaken and tie lines were run perpendicularly across the survey area and compared 238 during the later spatial analysis. Certain sections of the survey area could not be accessed on 239 foot due to the thickness of vegetation and water inundation.

240 2.4. Detector calibration

241

242 Monte Carlo Simulations (MCS) were chosen to derive the relationship between the 243 contamination burial depth and PVR over alternative expensive analytical experiments or 244 complex deterministic equations (Maučec et al., 2009; Stromswold, 1995).Crucially, MCS 245 can depict the variation of PVR with ¹³⁷Cs depth distribution much more precisely than using a small sample size of soil core data collected in the field (Likar et al., 2004). Furthermore, 246 247 uncertainties associated with field measurements can be better controlled (Boson et al., 2009) 248 making MCS an important calibration tool in field gamma-ray spectrometry (Cinelli et al., 249 2016; Clouvas et al., 1998; Maučec et al., 2004; Thummerer and Jacob, 1998; Yip et al., 250 2015).

251

252 In this study, the software package Monte Carlo N-Particle 5 code (MCNP5) was used to 253 obtain spectral responses in order to derive PVR values for appropriate depth distribution 254 (Briesmeister, 1993). To ensure that each depth distribution could be adequately modelled, disk-shaped source descriptions measuring 10 mm thick were simulated down to a depth of 255 70 g cm⁻³ (Varley et al., 2017). In this manner the PVR could be defined with higher depth 256 257 resolution and facilitated improved counting statistics as the maximum particle number in 258 MCNP5 (2×10^{-9}) could be run for each simulation, thereby effectively increasing the source 259 density without repeated random number sampling (Hendriks et al., 2002). Although 260 contributing a relatively small number of counts to the detector, the natural radioelements 261 were also modelled in MCNP5 as they were deemed to contribute to the valley region (Varley et al., 2017). Resultantly, source descriptions for ⁴⁰K and the ²³⁸U and ²³²Th series 262 263 were also provided to MCNP5 in separate simulations and were assumed to be uniform 264 (Thummerer and Jacob, 1998). Only the main components of each detector were used in

models encompassing the active volume of the detector (NaI:Tl; density 3.51 g cm⁻³), the 265 aluminium outer canning, the outer casing and the glass window of the photomultiplier tube 266 267 and the PVC protective outer casing. Detector geometries that were validated in early studies 268 were utilised: 51×51 mm (Varley et al., 2015) and 76×76 mm (Varley et al., 2017). The 269 codes used to derive these models have been validated using concrete calibration pads 270 (Grasty et al., 1991). The F8 tally implemented in MCNP5 was used to capture the 271 differential energy spectrum within the active volume of each simulated detector. A 272 Gaussian broadening parameter was applied to simulate the statistical broadening of peaks 273 brought about by the imperfect collection of photons within each detector (Kangas et al., 274 2008) Additionally, as PVR data was generated using energies that can be considered as 275 being immune to photoelectric effect and backscatter by virtue of their energy (>350 keV), a 276 standard soil composition from Beck et al. (1972) was employed and photons below 350 keV 277 were terminated in each run to save on computer time. Photons were recorded at lower 278 energy than the Compton edge (350-478 keV) as it was first thought that this statistically 279 defined region could be used alongside the valley region (496-584 keV) to improve depth 280 estimates. All nuclide decay data used throughout was obtained from the National Nuclear 281 Data Centre (2013).

282 2.5. Depth distribution model

283

284 For the purpose of the study, the relaxation mass per unit area (β) was utilised (eq 1). This relates the rate by which the surface 137 Cs activity (A_0) decreases with mass depth in the form 285 of an exponential decay function (ICRU, 1994). Where (A_m) is the ¹³⁷Cs activity of the soil in 286 Bq kg⁻¹ and ζ is the mass of soil per unit area (g cm⁻²). The value of β will approach 0 for 287 288 surface contamination and approach ∞ as the contamination is evenly distributed over the 289 entire column. Mass per unit area was preferred over physical depth (cm) in this discussion as it incorporates density (ρ) , facilitating a better approximation of shielding effects and 290 permitting a more accurate estimate of 137 Cs inventory (Bq m⁻²). Using this method, each 10 291 mm slice of ¹³⁷Cs source model was weighted according to a specific β and inventory value. 292 293 The total inventory is calculated by integrating eq 1 between the limits of 0 and 70 g cm⁻². 294 Given there was a significant layer of vegetation above the soil surface and surrounding the detector, a thickness of 1 g cm⁻² of lower level contamination was also included in 295 296 simulations. Contamination densities encountered at the site in overlaying vegetation, 297 although highly heterogeneous, was found to be approximately 5 % the contamination

298 density of the upper soil layer. Spectral responses derived using this adopted model 299 generated spectral responses that were far more representative of the scattering conditions 300 found in the field.

301

302

$$A_{m}(\zeta) = A_{m,0} \cdot e^{(-\zeta/\beta)}$$
[1]

303

304 By adopting this approach, one stipulates that the maximum activity will lie within the first 305 few centimetres of soil near the surface; an observation that has, despite the age of 306 contamination, been noted relatively recently at undisturbed sites within the PSRER 307 (Dowdall et al., 2017). Nonetheless, it must be noted that there is still a high probability of a 308 subsurface maximum, particularly in areas of significant accumulation or in the case where 309 the soil type lends itself to high vertical migration rates as observed elsewhere in Europe for 310 example (Bernhardsson et al., 2015). However, in this case the difference in contamination 311 between surface and subsurface maximum is likely to be so small it will be beyond the 312 detection limits for the PVR method. Moreover, the overall difference between final 313 estimates of inventory will be negligible compared to an estimated high β value as would be 314 anticipated using the exponential model (eq 1). Interestingly, environmental processes in the PSRER differ to the process of accumulation of historic Sellafield-derived ¹³⁷Cs discharges in 315 saltmarsh sediments off the coast of the United Kingdom, in which considerable subsurface 316 317 maxima can be encountered (Tyler, 1999; Tyler et al., 1996b).

318

319

2.6. Estimating inventory using peak-to-valley ratio

320 The primary purpose of utilising the PVR is as a correction factor to better estimate inventory, therefore the area under the peak (587-737 keV) and the valley height must be 321 322 calculated for individual field spectra. As there was going to be a small amount of spectral 323 drift throughout the survey, efforts were made to find the peak centroid by fitting a Gaussian 324 function the maximum of which acted as an updated energy calibration. The background 325 under the peak was estimated using a linear function fitted to the adjacent five channels on 326 either side of the base. The estimated background was then subtracted before fitting of a 327 second Gaussian function and integrating to determine the area. The valley height was 328 determined via subtraction of the area on the high energy side of the peak (740-755 keV) 329 from the valley region (496-584 keV) in a manner described by (Tyler et al., 1996b). The 330 routine described above was performed using the base features of the R statistical package (R

331	Core Development Team, 2016). Once these values had been derived, a linear model was
332	fitted to MCS values of PVR and calculated calibration coefficients (C) (eq 2). Here, C is
333	defined by taking the ratio of the activity (A) measured in Bq m ⁻² and peak count rate (N_p) (eq
334	3). To obtain the final activity (A) estimate for a field spectrum, the predicted value of C
335	needs to be multiplied by the number of counts in the full energy peak (N_p) .
336	
337	$log(C) = C_0 + C_s \cdot (PVR) $ ^[2]
338	
339	$C = A/N_p $ [3]
340	
341 342	2.7. Quality assessment and mapping of detector estimates
343	To assess and compare the quality of individual detector performance, approximately 300 one
344	second count time spectra were taken directly over each of the ten extracted cores sites. The
345	PVR method was then applied to each set of spectra to give some approximation of the
346	accuracy and precision of the method, assessed through the mean and standard deviation,
347	respectively. Final maps were produced by combining predicted β and activity values for all
348	data by using the inverse distance weighting algorithm to produce an interpolated surface
349	(Shepard, 1968).
350	
351	
352	
353	
354	
355	
356	
357	
358	
359	
360	

361

362 **3. Results and Discussion**

365

364 *3.1. Detector predictions compared to core results*

Mean activity (kBq m⁻²) estimations obtained using 51×51 mm and 76×76 mm sodium 366 iodide detectors over the top of the ten core positions show good agreement with activity and 367 368 depth results derived from cores (Figure 2). It should be emphasised that single point 369 comparisons may be influenced by the high scale localised heterogeneity emphasising the 370 differences in the spatial representativeness of a single core against a field gamma 371 spectrometry measurement that have >1000 the sample volume. This occurrence is most 372 apparent at site 2, whereby large standard deviations are seen on results for both detectors. 373 Based on this evidence it could be argued that the similarity between detector estimates, 374 particularly with regards to depth, could signal that this approach is in fact more reliable than 375 single coring estimates. In general, it becomes clear that the higher energy efficiency, 376 demonstrated by the 76 \times 76 mm, presented an advantage over the 51 \times 51 mm especially at 377 lower count rates, which can be realised by a reduction in the spread (standard deviation) of 378 activity and depth estimates at each site. However, this might not always the case where, for 379 example, at much higher activity sites the 51×51 mm detector may be more appropriate for 380 deployment due to the amount of dead-time experienced using the 76×76 mm. 381

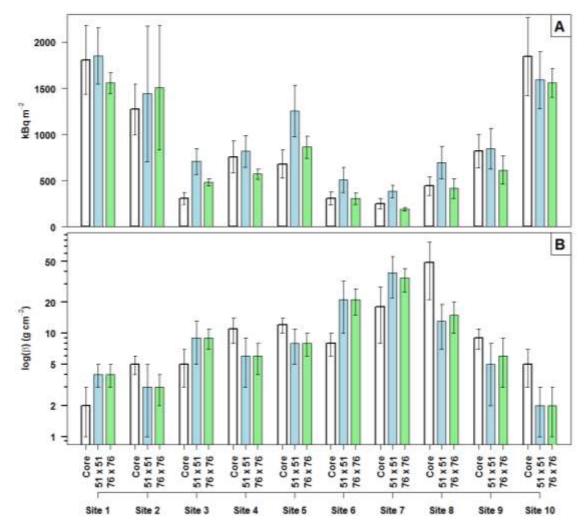


Figure 2. Mean and standard deviations for estimates derived from cores, 51×51 mm and 76 × 76 mm for the 10 sites along the transect A) activity (kBq m⁻²) and B) β (g cm⁻²).

385

382

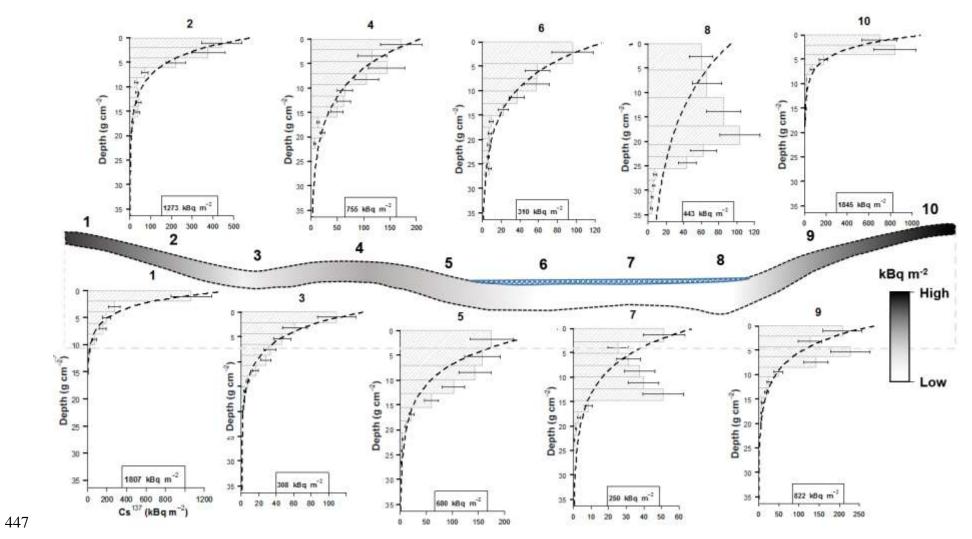
Overall, results derived using gamma-ray spectrometry provide sufficient evidence that this 386 method is a highly practical option to map the spatial and depth distribution of ¹³⁷Cs 387 388 contamination at this site and other sites with similar activities and vertical penetration. 389 Equally, other scintillation instruments, such as lanthanum bromide or cerium bromide, of 390 similar size could also be used effectively (Guss et al., 2010). In identifying ways to reduce 391 uncertainty and thus improve the quality of field data it was concluded that the assumption of 392 an exponential depth distribution must at some stage be reconsidered as this is thought to be 393 the principle cause of error within this study. This fact was highlighted in the fitting of the 394 exponential model to observed core data where large residuals were encountered. For example, R^2 values for cores 7 and 8 were 0.68 and 0.51, respectively. Although for the 395 remaining cores R² values were all greater than 0.88. Additionally, vegetation cover and 396 397 water inundation were revealed to significantly influence instrument response, which would

398 be hard to characterise by conventional in field calibration, but Monte Carlo simulations

- 399 present a practical alternative to account for these parameters. It will be the focus of future
- 400 work to test other distributions in more detail, but within the context of the present study it
- 401 was accepted that the uncertainty associated with using an exponential distribution would
- 402 have little influence on final conclusions of contamination distribution.

403 *3.2. Site interpretation*

404


Based on the results of cores taken along the transect, ¹³⁷Cs is distributed heterogeneously 405 over the extent of the site and is characterised by higher ¹³⁷Cs inventories, between 1.5 and 2 406 MBq m⁻², exhibited on the elevated areas of the site on both sides of the waterbody (Figure 407 3). Higher inventories tend to match surface distributions (corresponding to low β values). 408 409 Conversely, lower ¹³⁷Cs inventories are primarily confined to the depressions along the 410 transect and correspond reasonably well with areas affected by the rise and fall of the water 411 level in the two bodies of water present; this can be seen in cores 3, 6, 7 and 8. Furthermore, 412 the soils in the associated deeper sections appear to exhibit markedly more pronounced 413 penetration of the contaminant down the soil column. Noticeable subsurface maxima can be 414 observed in cores 7, 8 and 9 (Figure 2). This general observation is, at first consideration, perhaps contrary to what may be expected as there is extensive evidence in the literature that 415 periodic flooding often results in enhancement of ¹³⁷Cs soils levels due to the addition of 416 417 contaminated sediment following flood deposition (Burrough et al., 1999b), localised redistribution of eroded soils (Golosov et al., 1999) and the fixation of water borne ¹³⁷Cs in 418 soils (Standring et al., 2002). Here, however, the lower ¹³⁷Cs inventories associated with 419 420 topographical depressions at this site may be explained by three factors possibly acting in 421 combination.

422

423 Firstly, contamination was known to be heterogeneously deposited especially in areas close to the reactor such as the PSRER (Boulyga et al., 2003). The possibility therefore exists that 424 the depression at the site simply received less ¹³⁷Cs when deposition occurred. However, this 425 426 seems relatively unlikely given that the deposition densities on the elevations on both sides of 427 the water exhibit quite similar values (Figure 3). The systematic distribution of activity 428 estimated from handheld devices provides further support to oppose this notion given that 429 other areas within the study area also possess the highest activities on elevated areas at 430 greater distance from the water body (Figure 3).

431

A second cause may be associated with soil biogeochemistry owing to the significant 432 presence of organic matter contained within the soil. It is well established that ¹³⁷Cs remains 433 highly mobile in organic soils (Kudelsky et al., 1996; Rigol et al., 2002; Ritchie and 434 435 McHenry, 1990; Tegen and Dörr, 1996) primarily due to lower clay mineral contents. As a result, saturated organic soils may exhibit a tendency to lose ¹³⁷Cs due to its higher mobility, 436 which may ultimately result in lower inventories as ¹³⁷Cs is lost laterally. Crude examination 437 438 of the cores revealed the presence of more organic material contained within the lower cores, 439 particularly those that were submerged at the time of extraction (cores 6, 7 and 8). The fact that these same cores exhibit greater depth penetration also supports the theory that 440 441 mobilisation (as well accumulation) has occurred. Similar profiles of contamination on flood 442 plain soils have been demonstrated by Golosov et al., (Golosov et al., 1999). Yet, without 443 comprehensive chemical analysis data available this theory is hard to prove. Nevertheless, 444 accepting that this is the primary driving force behind the spatial distribution at the site is 445 difficult when considering that significant activity and the gradient of depth variation encountered between elevations and depressions (Graphical abstract). 446

448 Figure 3. Schematic diagram of estimated elevation alongside depth-activity profiles for cores taken from along the transect

449 However, the evidence points to a third and perhaps more unusual set of circumstances that may explain the spatial distribution during primary deposition. Regional flooding was known 450 451 to have taken place during the time of the Chernobyl meltdown brought on by annual snow 452 melt and this can clearly be witnessed over the entire PSRER in 30 m resolution Landsat 5 images taken on the 29th of April 1986 courtesy of the U.S. Geological survey. The pixel 453 resolution of these images is not sufficient enough to directly assess the extent of flooding at 454 the site and it has been difficult to find specific evidence in the literature indicating that this 455 456 site was flooded in April of 1986. Resultantly, at this stage it cannot be confirmed the extent 457 of flooding at the site, although it was known that other water bodies of the region were in 458 flood at that time (Korobova et al., 2007). Nevertheless, the influence of flood water across 459 the study site can be demonstrated using more recent, considerably higher resolution, satellite 460 imagery taken in autumn 2003 by Googlemaps (Figure 4A) and spring 2008 by Bing imagery (Figure 4B). For example in the Bing images, high flood water can be seen to be inundating 461 462 much of the flood plain within the main outflow (yellow box), resultantly only the highest 463 elevated areas of the study site (cores 1 and 10) can be seen to be above the water line, with 464 all other core sites between these end members being submerged under flood water (Figure 5B). This evidence, provides the explanation that the areas of lower 137 Cs deposition are as a 465 466 result of flooding at the time of contaminant deposition. Under these conditions, overlying water, potentially containing large amounts of suspended sediment, to which the ¹³⁷Cs could 467 absorb, delayed it reaching the underlying soil and sediment column and preferentially 468 transporting the ¹³⁷Cs downstream from the study site. Only elevated areas or those that 469 470 became exposed during the period of the Chernobyl fire would have received conventional 471 atmospheric deposition (Graphical abstract). Post-accident deposition was then characterised 472 by sediment with similar or lower activity concentrations (cores 7 and 8) that was washed into the area from upstream, gradually burying the ¹³⁷Cs peak deposition from the time of the 473 474 accident at a rate that is proportional to the frequency of flood inundation. The rate of 475 accumulation could relate to surface roughness a factor that may heavily be controlled by 476 aquatic and terrestrial vegetation in addition to topography (Figure 3).

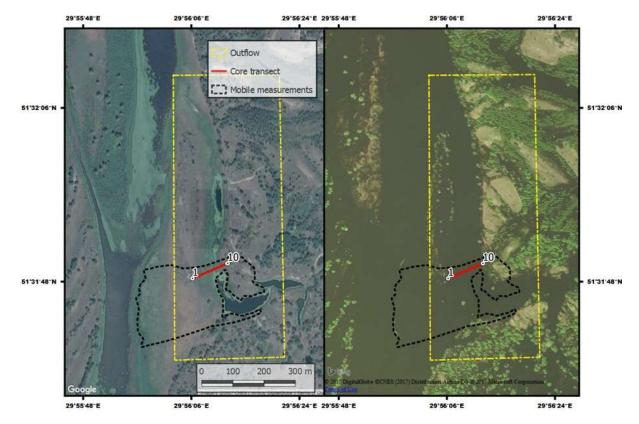


Figure 4. Satellite imagery of the study site in A) Autumn 2003 (Googlemaps) and B) Spring
2008 (Bing imagery). The location of the core transect, the outflow and convex hull of
handheld measurements are marked out on the map. The ten samples were collected on the
transect marked by the red line.

482 **4.** Conclusions

483

477

The peak-to-valley ratio method has been successfully applied to data, collected using an 484 485 inexpensive and robust handheld scintillator, to derive activity and depth estimates of ¹³⁷Cs 486 contamination within the Polessie State Radioecology Reserve. The study has verified that 487 large areas can be mapped with relatively high accuracy and much faster compared to conventional resource intensive soil sampling approaches. Spatial information gained from 488 the deployment of the handheld gamma spectrometry systems have provided a unique insight 489 490 into what proved to be a highly complex post-depositional environment, the consequences of 491 which have not been previously explored in the literature. The results have demonstrated that 492 the flooding at the time of the Chernobyl accident can explain systematic variations in 493 deposition across the floodplain and subsequent sediment accumulation is burying the peak ¹³⁷Cs fallout at a rate that is proportional to the frequency of flooding. 494

495 496	5. Acknowledgements
497	The mobile gamma-ray spectrometry system was developed by the University of Stirling with
498	funding from the Scottish Environmental Protection Agency with Dr. Paul Dale acting as
499	project manager. Extended gratitude must be given to the staff of the Polessie State
500	Radioecology Reserve for site organisation and transport and Ms. Elena Almås for her
501	impeccable translational skills.
502	
503	
504	
505	
506	
507	
508	
509	
510	
511	
512	
513	
514	
515	
516	
517	
518	
519 520	
520 521	
522	
522 523	
523 524	
525	
526	
520 527	
/	

- 528 6. References529
- Aage, H.K., Korsbech, U., Bargholz, K., Hovgaard, J., 2006. Carborne gamma-ray
 spectrometry. Calibration and applications. Appl. Radiat. Isot. 64, 948–956.
 doi:http://dx.doi.org/10.1016/j.apradiso.2006.03.013
- 533 Beck, H., DeCampo, J., Gogolak, C., 1972. In situ Ge(Li) and NaI(Tl) gamma-ray
- 534 spectrometry. United States Atomic Energy Commission. doi:10.2172/4599415
- Beresford, N.A., Fesenko, S., Konoplev, A., Skuterud, L., Smith, J.T., Voigt, G., 2016. Thirty
 years after the Chernobyl accident: What lessons have we learnt? J. Environ. Radioact.

537 157, 77-89.doi:10.1016/j.jenvrad.2016.02.003

- 538 Bernhardsson, C., Raaf, C.L., Mattsson, S., 2015. Spatial variability of the dose rate from
- 539 137Cs fallout in settlements in Russia and Belarus more than two decades after the
- 540 Chernobyl accident. J. Environ. Radioact. 149, 144–149.
- 541 doi:http://dx.doi.org.ezproxy.stir.ac.uk/10.1016/j.jenvrad.2015.07.009
- Boson, J., Johansson, L., Rameback, H., Agren, G., 2009. Uncertainty in HPGe detector
 calibrations for in situ gamma-ray spectrometry. Radiat. Prot. Dosimetry 134, 122–129.
 doi:10.1093/rpd/ncp079 [doi]
- 545 Boulyga, S.F., Zoriy, M., Ketterer, M.E., Sabine Becker, J., 2003. Depth profiling of Pu,
- 546 241Am and 137Cs in soils from southern Belarus measured by ICP-MS and alpha α and 547 γ spectrometry. J. Environ. Monit. 5, 661. doi:10.1039/b303621a
- 548 Briesmeister, J.F., 1993. MCNP-A general Monte Carlo N-particle transport code. Los
 549 Alamos National Laboratory, New Mexico 87545, USA
- 550 Burrough, P.A., Van Der Perk, M., Howard, B.J., Prister, B.S., Sansone, U., Voitsekhovitch,
- 551 O. V, 1999a. Environmental mobility of radiocaesium in the Pripyat catchment,
- 552 ukraine/belarus. Water. Air. Soil Pollut. 110, 35–55. doi:10.1023/A:1005028729330
- 553 Burrough, P.A., Van Der Perk, M., Howard, B.J., Prister, B.S., Sansone, U., Voitsekhovitch,
- 554 O. V, 1999b. Environmental mobility of radiocaesium in the Pripyat catchment,
- 555 ukraine/belarus. Water. Air. Soil Pollut. 110, 35–55. doi:10.1023/A:1005028729330
- 556 Center, N.N.D., 2013. Nuclear datasheets [WWW Document]. URL
- 557 http://www.nndc.bnl.gov/ensdf/
- Cinelli, G., Tositti, L., Mostacci, D., Baré, J., 2016. Calibration with MCNP of NaI detector
 for the determination of natural radioactivity levels in the field. J. Environ. Radioact.
- 560 155–156, 31–37. doi:10.1016/j.jenvrad.2016.02.009
- 561 Clouvas, A., Xanthos, S., Antonopoulos-Domis, M., Silva, J., 1998. Monte Carlo based

- 562 method for conversion of in-situ gamma ray spectra obtained with a portable Ge detector
- to an incident photon flux energy distribution. Health Phys. 74, 216–230.
- 564 doi:10.1097/00004032-199802000-00007
- 565 Cresswell, A.J., Sanderson, D.C.W., Harrold, M., Kirley, B., Mitchell, C., Weir, A., 2013.
- 566 Demonstration of lightweight gamma spectrometry systems in urban environments. J.
 567 Environ. Radioact. 124, 22–28. doi:10.1016/j.jenvrad.2013.03.006
- 568 Dowdall, M., Bondar, Y., Skipperud, L., Zabrotski, V., Pettersen, M.N., Selnæs, G., Brown,
- 569 J.E., 2017. Investigation of the vertical distribution and speciation of 137Cs in soil
- 570 profiles at burnt and unburnt forest sites in the Belarusian Exclusion Zone. J. Environ.

571 Radioact. 175–176, 60–69. doi:10.1016/j.jenvrad.2017.04.009

- Feng, T.C., Jia, M.Y., Feng, Y.J., 2012. Method-sensitivity of in-situ gamma spectrometry to
 determine the depth-distribution of anthropogenic radionuclides in soil. Nucl.
- 574 Instruments Methods Phys. Res. Sect. A-Accelerators Spectrometers Detect. Assoc.
- 575 Equip. 661, 26–30. doi:10.1016/j.nima.2011.09.014
- Gering, F., Hillmann, U., Jacob, P., Fehrenbacher, G., 1998. In situ gamma-spectrometry
 several years after deposition of radiocesium II. Peak-to-valley method. Radiat. Environ.
 Biophys. 37, 283–291. doi:10.1007/s004110050130
- Gering, F., Kiefer, P., Fesenko, S., Voigt, G., 2002. In situ gamma-ray spectrometry in
 forests: determination of kerma rate in air from 137Cs. J. Environ. Radioact. 61, 75–89.
 doi:http://dx.doi.org/10.1016/S0265-931X(01)00116-3
- 582 Golosov, V.N., Belyaev, V.R., Markelov, M. V., 2013. Application of Chernobyl-derived
- 583 137Cs fallout for sediment redistribution studies: Lessons from European Russia.
 584 Hydrol. Process. 27, 781–794. doi:10.1002/hyp.9470
- 585 Golosov, V.N., Walling, D.E., Panin, A. V., Stukin, E.D., Kvasnikova, E. V., Ivanova, N.N.,
- 586 1999. The spatial variability of Chernobyl-derived 137Cs inventories in a small
- 587 agricultural drainage basin in central Russia. Appl. Radiat. Isot. 51, 341–352.
- 588 doi:10.1016/S0969-8043(99)00050-0
- 589 Golosov, V.N.V., Walling, D., Kvasnikova, E.V.E., Stukin, E.D., Nikolaev, A.N., Panin, A.
- 590 V., 2000. Application of a field-portable scintillation detector for studying the
- 591 distribution of 137Cs inventories in a small basin in Central Russia. J. Environ.
- 592 Radioact. 48, 79–94. doi:10.1016/S0265-931X(99)00058-2
- Grasty, R.L., Holman, P.B., Blanchard, Y.B., 1991. Transportable calibration pads for ground
 and airborne gamma-ray spectrometers. Geological Survey of Canada.
- 595 Gudkov, D.I., Kuzmenko, M.I., Kireev, S.I., Nazarov, A.B., Shevtsova, N.L., Dzyubenko, E.

- 596 V, Kaglyan, A.E., 2010. Radioecological Problems of Aquatic Ecosystems of the
- 597 Chernobyl Exclusion Zone. ISSN Biophys. Radiatsionnaya Biol. Radioekol. 663509,
- 598 332–339. doi:10.1134/S0006350910020272
- 599 Guss, P., Reed, M., Yuan, D., Cutler, M., Contreras, C., Beller, D., 2010. Comparison of
- 600 CeBr(3) with LaBr(3):Ce, LaCl(3):Ce, and NaI:Tl Detectors. Proc. SPIE-The Int. Soc.
 601 Opt. Eng. 7805, 78050L–78050L. doi:10.1117/12.862579
- Hendriks, P.H.G.M., Maucec, M., De Meijer, R.J., Maucec, M., De Meijer, R.J., 2002.
- 603 MCNP modelling of scintillation-detector gamma-ray spectra from natural
- 604 radionuclides. Appl. Radiat. Isot. 57, 449–457. doi:10.1016/S0969-8043(02)00118-5
- ICRU, 1994. Gamm-Ray Spectrometry in the Environmental. International Commission on
 the Radiation Units and Measurements, 7910 Woodmont Avenue Bethesda, Maryland
 20814, U.S.A, Maryland 20814, U.S.A.
- 608 Isaksson, M., Raaf, C., 2017. Environmental Radioactivity and Emergency Preparedness.
- 609 CRC Press, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742,
 610 U.S.A.
- Iwasaki, T., Nabi, M., Shimizu, Y., Kimura, I., 2015. Computational modeling of 137 Cs
 contaminant transfer associated with sediment transport in Abukuma River. J. Environ.
 Radioact. 139, 416–426. doi:10.1016/j.jenvrad.2014.05.012
- 614 Izrael, Y.A., De Cort, M., Jones, A.R., Nazarov, I.M., Fridman, S.D., Kvasnikova, E. V.,
- 615 Stukin, E.D., Kelly, G.N., Matveenko, I.I., Pokumeiko, Y.M., Tabatchnyi, L.Y.,
- Tsaturon, Y., 1996. The atlas of caesium-137 contamination of Europe after the
- 617 Chernobyl accident. Radiol. consequences Chernobyl Accid. 1–10.
- Kagan, L.M., Kadatsky, V.B., 1996. Depth migration of chernobyl originated 137Cs and
 90Sr in soils of Belarus. J. Environ. Radioact. 33, 27–39. doi:10.1016/0265-
- 620 931X(95)00068-L
- Kangas, L.J., Keller, P.E., Siciliano, E.R., Kouzes, R.T., Ely, J.H., 2008. The use of artificial
 neural networks in PVT-based radiation portal monitors. Nucl. Instruments Methods
- 623 Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 587, 398-412.
- 624 doi:10.1016/j.nima.2008.01.065
- 625 Kastlander, J., Bargholtz, C., 2005. Efficient in situ method to determine radionuclide
- 626 concentration in soil. Nucl. Instruments Methods Phys. Res. Sect. A-Accelerators
- 627 Spectrometers Detect. Assoc. Equip. 547, 400–410. doi:10.1016/j.nima.2005.03.143
- 628 Kock, P., Samuelsson, C., 2011. Comparison of airborne and terrestrial gamma spectrometry
- 629 measurements evaluation of three areas in southern Sweden. J. Environ. Radioact. 102,

- 630 605–613. doi:10.1016/j.jenvrad.2011.03.010
- 631 Konoplev, A., Golosov, V., Wakiyama, Y., Takase, T., Yoschenko, V., Yoshihara, T.,
- 632 Parenyuk, O., Cresswell, A., Ivanov, M., Carradine, M., Nanba, K., Onda, Y., 2017.
- 633 Natural attenuation of Fukushima-derived radiocesium in soils due to its vertical and
- lateral migration. J. Environ. Radioact. 186, 23-33. doi:10.1016/j.jenvrad.2017.06.019
- 635 Korobova, E., Linnik, V., Chizhikova, N., 2007. The history of the Chernobyl 137 Cs
- 636 contamination of the flood plain soils and its relation to physical and chemical properties
- of the soil horizons (a case study). J. Geochem. Expl. 96, 236-255
- 638 doi:10.1016/j.gexplo.2007.04.014
- Kudelsky, A. V, Smith, J.T., Ovsiannikova, S. V, Hilton, J., 1996. Mobility of Chernobyl derived137Cs in a peatbog system within the catchment of the Pripyat River, Belarus.
- 641 Sci. Total Environ. 188, 101–113. doi:10.1016/0048-9697(96)05162-5
- Likar, A., Vidmar, T., Lipoglavsek, M., Omahen, G., 2004. Monte Carlo calculation of entire
 in situ gamma-ray spectra. J. Environ. Radioact. 72, 163–168.
- Mabit, L., Dercon, G., 2014. Guidelines for using fallout radionuclides to assess erosion and
 effectiveness of soil conservation strategies (IAEA-TECDOC-1741), International
 Atomic Energy Agency. 1400 Vienna, Austria

Martin, P.G., Payton, O.D., Yamashiki, Y., Richards, D.A., Scott, T.B., 2016. High-

resolution radiation mapping to investigate FDNPP derived contaminant migration. J.

- 649 Environ. Radioact. 164, 26–35. doi:http://dx.doi.org/10.1016/j.jenvrad.2016.06.025
- Maučec, M., de Meijer, R.J., Rigollet, C., Hendriks, P.H.G.M., Jones, D.G., 2004. Detection
- of radioactive particles offshore by γ-ray spectrometry Part I: Monte Carlo assessment of
 detection depth limits. Nucl. Instruments Methods Phys. Res. Sect. A Accel.
- 653 Spectrometers, Detect. Assoc. Equip. 525, 593–609. doi:10.1016/j.nima.2004.01.074
- Maučec, M., Hendriks, P.H.G.M., Limburg, J., de Meijer, R.J., 2009. Determination of
- 655 correction factors for borehole natural gamma-ray measurements by Monte Carlo
- 656 simulations. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers,
- 657 Detect. Assoc. Equip. 609, 194–204. doi:http://dx.doi.org/10.1016/j.nima.2009.08.054
- Miller, M.L., 2007. Cesium-137 in the Environment: Radioecology and Approaches to
- Assessment and Management. NCRP Rep. No.154, Cesium-137 Environ. Radioecol.
 Approaches to Assess. Manag. 151.
- Nilsson, J.M.C., Östlund, K., Söderberg, J., Mattsson, S., Rääf, C., 2014. Tests of HPGe- and
 scintillation-based backpack γ-radiation survey systems. J. Environ. Radioact. 135, 54–
 62. doi:10.1016/j.jenvrad.2014.03.013

- 664 Okuyama, S.-I., Torii, T., Suzuki, A., Shibuya, M., Miyazaki, N., 2008. A Remote Radiation
- 665 Monitoring System Using an Autonomous Unmanned Helicopter for Nuclear
- 666 Emergencies A Remote Radiation Monitoring System Using an Autonomous Unmanned
- 667 Helicopter for Nuclear Emergencies. J. Nucl. Sci. Technol. 45, 5–414.
- 668 doi:10.1080/00223131.2008.10875877
- 669 Penrose, B., Johnson née Payne, K.A., Arkhipov, A., Maksimenko, A., Gaschak, S.,
- 670 Meacham, M.C., Crout, N.J.M., White, P.J., Beresford, N.A., Broadley, M.R., 2016.
- 671 Inter-cultivar variation in soil-to-plant transfer of radiocaesium and radiostrontium in
- 672 Brassica oleracea. J. Environ. Radioact. 155, 112–121.
- 673 doi:10.1016/j.jenvrad.2016.02.020
- 674 Plamboeck, A.H., Nylén, T., Ågren, G., 2006. Comparative estimations of 137Cs distribution
- 675 in a boreal forest in northern Sweden using a traditional sampling approach and a
 676 portable NaI detector. J. Environ. Radioact. 90, 100–109.
- 677 doi:10.1016/j.jenvrad.2006.06.011
- Povinec, P.P., Bailly du Bois, P., Kershaw, P.J., Nies, H., Scotto, P., 2003. Temporal and
- 679 spatial trends in the distribution of 137Cs in surface waters of Northern European Seas:
- a record of 40 years of investigations. Worldw. Mar. Radioact. Stud. 50, 2785–2801.
 doi:http://dx.doi.org/10.1016/S0967-0645(03)00148-6
- 682 Povinec, P.P., Hirose, K., Aoyama, M., Povinec, P.P., Hirose, K., Aoyama, M., 2013. 5 -
- Fukushima Radioactivity Impact, in: Fukushima Accident. pp. 131–275.
- 684 doi:10.1016/B978-0-12-408132-1.00005-X
- R Core Development Team, 2016. R: A language and environment for statistical computing.
 R Foundation for Statistical Computing. ISBN 3-900051-07-0
- Rawlins, B.G., Scheib, C., Beamish, D., Webster, R., Tyler, A.N., Young, M.E., 2011.
- Landscape-scale controls on the spatial distribution of caesium 137: A study based on an
 airborne geophysical survey across Northern Ireland. Earth Surf. Process. Landforms 36,
- 690 158–169. doi:10.1002/esp.2026
- Rigol, A., Vidal, M., Rauret, G., 2002. An overview of the effect of organic matter on soil–
- radiocaesium interaction: implications in root uptake. J. Environ. Radioact. 58, 191–216.
- 693 Ritchie, J.C., McHenry, J.R., 1990. Application of Radioactive Fallout Cesium-137 for
- 694 Measuring Soil Erosion and Sediment Accumulation Rates and Patterns: A Review. J.
- 695 Environ. Qual. 19, 215–233. doi:10.2134/jeq1990.00472425001900020006x
- 696 Sanderson, D., Cresswell, A., Seitz, B., Yamaguchi, K., Takase, T., Kawatsu, K., Suzuki, C.,
- 697 Sasaki, M., 2013. Validated Radiometric Mapping in 2012 of Areas in Japan Affected

- 698 by the Fukushima-Daiichi Nuclear Accident. Scottish Universities Environmental
- 699 Research Centre, University of Glasgow, Scotland
- 700 doi:10.5525/GLA.RESEARCHDATA.67
- Shepard, D., 1968. A two-dimensional interpolation function for irregularly-spaced data, in:
 Proceedings of the 1968 23rd ACM National Conference. ACM, pp. 517–524.
- 503 Standring, W.J.F., Oughton, D.H., Salbu, B., 2002. Potential remobilization of 137Cs, 60Co,
- 704 99Tc, and 90Sr from contaminated Mayak sediments in river and estuary environments.
- 705 Environ. Sci. Technol. 36, 2330–2337. doi:10.1021/es0103187
- Stromswold, D.C., 1995. Calibration facilities for borehole and surface environmental
 radiation measurements. J. Radioanal. Nucl. Chem. 194, 393–401.
- 708 Tegen, I., Dörr, H., 1996. Mobilization of cesium in organic rich soils: correlation with

production of dissolved organic carbon. Water. Air. Soil Pollut. 88, 133–144.
doi:10.1007/BF00157418

- 711 Thummerer, S., Jacob, P., 1998. Determination of depth distributions of natural radionuclides
- with in situ gamma-ray spectrometry. Nucl. Instruments Methods Phys. Res. Sect. AAccelerators Spectrometers Detect. Assoc. Equip. 416, 161–178. doi:10.1016/S01689002(98)00636-6

Tyler, A., 1999. Monitoring anthropogenic radioactivity in salt marsh environments through
in situ gamma-ray spectrometry. J. Environ. Radioact. 45, 235-252.

Tyler, A., Sanderson, D., Scott, E., 1996a. Accounting for spatial variability and fields of
view in environmental gamma ray spectrometry. J. Environ. Radioact. 33, 213-235.

- Tyler, A., Sanderson, D., Scott, E., 1996b. Estimating and accounting for 137 Cs source
 burial through in-situ gamma spectrometry in salt marsh environments. J. Environ.
 Radioact. 33, 195-212.
- Tyler, A.N., 2008. In situ and airborne gamma-ray spectrometry, in: Radioactivity in the
 Environment, Analysis of Environmental Radionuclides. Elsevier, pp. 407–448.
 doi:10.1016/S1569-4860(07)11013-5
- Tyler, A.N., 2004. High accuracy in situ radiometric mapping. J. Environ. Radioact. 72, 195–
 202. doi:10.1016/S0265-931X(03)00202-9
- 727 Varley, A., Tyler, A., Dowdall, M., Bondar, Y., Zabrotski, V., 2017. An in situ method for
- the high resolution mapping of 137 Cs and estimation of vertical depth penetration in a
- highly contaminated environment. Sci. Total Environ. 605–606, 957–966.
- 730 doi:10.1016/j.scitotenv.2017.06.067
- 731 Varley, A., Tyler, A., Smith, L., Dale, P., 2015. Development of a neural network approach

- to characterise 226Ra contamination at legacy sites using gamma-ray spectra taken from
- boreholes. J. Environ. Radioact. 140, 130–140.
- 734 doi:http://dx.doi.org/10.1016/j.jenvrad.2014.11.011
- Yip, M., Saripan, M., Wells, K., Bradley, D., 2015. Monte Carlo Simulations for the
 Detection of Buried Objects Using Single Sided Backscattered Radiation. PLoS One.
- 737 Zhukova, O.M., Matveenko, I.I., Myshkina, N.K., Sharovarov, G.A., Shiryaeva, N.M., 1997.
- 738 Formation and dynamics of propogation of radioactive contamination in rivers of
- Belarus after the Chernobyl nuclear accident. J. Eng. Phys. Thermophysics InzhenernoFizicheskii Zhurnal 70, 73–80.
- 741 Zombori, P., Nemeth, I., Andrasi, A., Lettner, H., 1992. In-situ gamma-spectrometric
- measurement of the contamination in some selected settlements of Byelorussia (BSSR),
- 743 Ukraine (UkrSSR) and the Russian Federation (RSFSR). J. Environ. Radioact. 17, 97–
- 744 106. doi:http://dx.doi.org/10.1016/0265-931X(92)90019-P
- 745

746