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• We link ecological status of lake macro-
phyte communities to nutrient levels.

• We establish nutrient criteria for ʽgoodʼ
ecological status in shallow lakes of
Europe.

• Different regression and categorical
methods yield similar nutrient criteria.

• Empirically derived nutrient criteria can
guide lake restoration efforts.

• This methodology can be applied to
other ecosystems and indicators.
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European water policy has identified eutrophication as a priority issue for water management. Substantial prog-
ress has beenmade in combating eutrophication but open issues remain, including setting reliable andmeaning-
ful nutrient criteria supporting ʽgoodʼ ecological status of the Water Framework Directive.
The paper introduces a novel methodological approach - a set of four different methods - that can be applied to
different ecosystems and stressors to derive empirically-based management targets. The methods include
Ranged Major Axis (RMA) regression, multivariate Ordinary Least Squares (OLS) regression, logistic regression,
and minimising the mismatch of classifications. We apply these approaches to establish nutrient (nitrogen and
phosphorus) criteria for the major productive shallow lake types of Europe: high alkalinity shallow (LCB1;
mean depth 3–15 m) and very shallow (LCB2; mean depth b 3 m) lakes.
Univariate relationships between nutrients andmacrophyte assessments explained29–46% of the variation.Mul-
tivariatemodelswith both total phosphorus (TP) and total nitrogen (TN) as predictors had higher R2 values (0.50
for LCB1 and 0.49 for LCB2) relative to the use of TN or TP singly. We estimated nutrient concentrations at the
boundary where lake vegetation changes from ʽgoodʼ to ‘moderate’ ecological status. LCB1 lakes achievedʽgoodʼ macrophyte status at concentrations below 48–53 μg/l TP and 1.1–1.2 mg/l TN, compared to LCB2 lakes
below 58–78 μg/l TP and 1.0–1.4 mg/l TN. Where strong regression relationships exist, regression approaches
offer a reliable basis for deriving nutrient criteria and their uncertainty, while categorical approaches offer
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advantages for risk assessment and communication, or where analysis is constrained by discontinuousmeasures
of status or short stressor gradients.
We link ecological status of macrophyte communities to nutrient criteria in a user-friendly and transparent way.
Such analyses underpin the practical actions and policy needed to achieve ʽgoodʼ ecological status in the lakes of
Europe.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Human activities – intensive agricultural land use, wastewater dis-
posal and combustion of fossil fuels – have dramatically increased nutri-
ent loading to the aquatic environment (Carpenter et al., 1998; Smith
and Schindler, 2009). The rate of nitrogen input into the terrestrial ni-
trogen cycle has doubled since pre-industrial times (Vitousek et al.,
1997), while there has been an approximately threefold increase in
phosphorus inputs to the biosphere, mainly through use of fertilizers
(Bennett et al., 2001). Undesirable disturbances in lakes, such as toxic
cyanobacterial blooms (Carvalho et al., 2013a), loss of submerged vege-
tation (Sand-Jensen et al., 2000; Zhang et al., 2017), severe oxygen defi-
ciency (Diaz and Rosenberg, 2008) and decline in sensitive fish species
(Müller and Stadelmann, 2004) are commonly associated with nutrient
enrichment. Therefore, eutrophication impairs ecosystem services and
incurs high economic costs (Dodds et al., 2008; Le et al., 2010).

Evidence suggests that lowering anthropogenic nutrient loading to
aquatic ecosystems is key to controlling eutrophication (Schindler
et al., 2016; Vollenweider, 1992), but how low is ‘low’ and which nutri-
ents to target? Nutrient management is costly and complex (Schindler,
2012) so an appropriate nutrient management strategy is critical if it is
to deliver the sought-after ecological gains (Conley et al., 2009).

During the last few decades, substantial achievements in nutrient
control have been made (e.g., Kronvang et al., 2005). However, im-
provements in the ecological status of lakes have been relatively slow,
with some lakes failing to recover their original clearwater state despite
substantially reduced nutrient loading (Søndergaard et al., 2007). De-
layed recovery has been recorded, in particular for lake macrophyte
communities (Bakker et al., 2013; Eigemann et al., 2016; Jeppesen
et al., 2005; Lauridsen et al., 2003). Explanations include high internal
loading of phosphorus from sediments (which may last longer than
20 years; Søndergaard et al., 2003) and complex biotic interactions, es-
pecially for shallow lakes, which can switch between alternative stable
states (Hilt et al., 2018; Scheffer and vanNes, 2007). As nutrient concen-
trations increase such lakes are more prone to switch from a vegetated
to turbid state (Phillips et al., 2016), but to restore the desired vegetated
clearwater state, nutrient levelsmay need reducing towell below those
atwhich vegetation collapsed (Ibelings et al., 2007). Setting appropriate
nutrient criteria is therefore key to effective lake management.

A wide variety of approaches have been used to derive nutrient
criteria (Charles et al., 2019; Dodds and Welch, 2000; Huo et al.,
2017). The stressor-response approach involvesmodelling statistical re-
lationships between nutrient concentrations and biological metrics
(Dolman et al., 2016; US EPA, 2010). This method has the advantage
of linking nutrient criteria directly to predefined ecological outcomes.
For instance, in rivers, nutrient criteria are set to prevent benthic chloro-
phyll exceeding specific levels (Dodds and Welch, 2000), whilst for
lakes, critical thresholds for cyanobacterial blooms have been used to
define nutrient criteria (Carvalho et al., 2013a; Downing et al., 2001;
Yuan et al., 2014; Yuan and Pollard, 2015).

However, this approach necessitates quantifying robust stressor-
response relationships which in some cases has proved to be a task of
daunting complexity (Borics et al., 2013; Dodds et al., 2002).Many stud-
ies have established strong empirical links between phytoplankton and
nutrients (Carvalho et al., 2013b; Phillips et al., 2013), yet macrophyte-
nutrient relationships are much less studied. Relationships have been
established between nutrients and macrophyte metrics such as coloni-
zation depth (Søndergaard et al., 2013), total cover (Han and Cui,
2016) or trophic indices (Lyche-Solheim et al., 2013; Penning et al.,
2008). However, on their own these are of little use for lake manage-
ment, as different metrics can respond differently to eutrophication
and re-oligotrophication processes (Pall andMoser, 2009) or responses
can vary between lake types (Kolada et al., 2014). There is a need to es-
tablish stressor-response models linking nutrients and holistic assess-
ments of macrophyte communities that integrate several measures of
plant composition and abundance, and on a type-specific basis. How-
ever, the issue is complex as various lake properties, such as lake size
and depth, as well as climate, will influence these criteria (Scheffer
and van Nes, 2007).

In theory, waterbody-specific criteria could be developed, consider-
ing all relevant factors. However, in real-life situations, wheremanagers
must cope with restricted resources, limited data, transboundary water
issues and a huge number of water bodies (Finland - 4275, Poland -
1038 and Sweden - 7232 lake water bodies; ETC/ICM, 2012) establish-
ing broad-scale type-specific nutrient criteria is justified. These type-
specific criteria also offer a high-level screening tool for prioritizing
lakes ahead of more focused nutrient-management activities (Bennion
et al., 2005).

The Water Framework Directive (WFD; EC, 2000) was adopted to
protect and enhance Europe's water resources. It requires the ecological
status of water bodies to be classified according to (1) biological ele-
ments (phytoplankton, benthic invertebrates, fish fauna, macrophytes
and phytobenthos), (2) chemical and physico-chemical elements (e.g.
nutrients, oxygen, transparency, salinity, temperature, and specific pol-
lutants), and (3) hydromorphological elements (e.g. lateral connectiv-
ity). Water bodies are classified into five status categories: high (no or
minor anthropogenic impact), good (slight anthropogenic impact) -
which represents the required minimum goal for water management,
andmoderate, poor or bad. Two decades have been devoted to develop-
ing and harmonizing the biological assessment systems of EU member
states (Birk et al., 2012, 2013; Poikane et al., 2014, 2015). However,
gaps remain regarding nutrient criteria, i.e. the values required to sup-
port biology of a given status. Recent analysis (Phillips and Pitt, 2016)
found that the methods used to set nutrient criteria varied widely be-
tween member states, with large ranges in the nutrient values stated
to support ‘good’ ecological status (GES). While variation is expected
due to specific environmental conditions, large differences remain
within common water body types. Moreover, the relationship between
nutrients and biology that underpins these criteria is often unclear.

This study (1) establishes stressor-response models linking macro-
phyte status and nutrient concentrations; (2) estimates nutrient (total
phosphorus and total nitrogen) criteria that support GES for macro-
phytes in the commonest lake types of lowland Europe and (3) com-
pares these criteria and discusses their applicability.

Macrophyte status reveals the onset of undesirable ecological
changes in productive shallow lakes, while empirically derived nutrient
criteria guide the urgency, scale and design of remedial action, and serve
as a benchmark for assessing progress.

We focus here on high alkalinity shallow lakes as these are com-
monly degraded by nutrient enrichment and are therefore among the
most challenging to manage, while macrophytes play a pivotal role in
their functioning and the restoration of macrophytes is therefore a

http://creativecommons.org/licenses/by/4.0/
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Table 1
Summary of data used showing lake types and range of nutrient values available.

Countries Lake code Lake type description Number of lake-years Range of values

For regressions For categorical methods For TP (μg/l) For TN (mg/l)

Belgium
Denmark
Germany
Estonia
Latvia
Lithuania
The Netherlands
Poland
UK (Central and East)

LCB1 High alkalinity
(N1.0 meq/l) shallow
(mean depth 3–15 m)

87 161 8–597 0.22–6.4

LCB2 High alkalinity
(N1.0 meq/l)
very shallow
(mean depth b 3 m)

202 202 9–1466 0.16–11.9
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common management priority (Coops et al., 2007; Søndergaard et al.,
2007). The relative importance of nitrogen and phosphorus in driving
eutrophication of such lakes also remains contested (Moss et al., 2012;
Søndergaard et al., 2017) and there is thus a case to develop both N
and P criteria in parallel.

2. Material and methods

2.1. Background

In this study, we use data from the Central Baltic region of Europe,
which were collated for the purpose of intercalibrating biological met-
rics (Portielje et al., 2014). As required by the WFD, EU member states
established biological assessment methods for macrophytes in lakes.
Nine countries of Central Europe and the Baltic countries are included
in this study: Belgium (Leyssen et al., 2005), Denmark (Søndergaard
et al., 2010), Germany (Schaumburg et al., 2004), the Netherlands
(Coops et al., 2007), Poland (Ciecierska and Kolada, 2014), United
Kingdom (Willby et al., 2012), Estonia, Latvia, and Lithuania (Portielje
et al., 2014; Poikane et al., 2015, 2018). National assessments were
expressed as an Ecological Quality Ratio (EQR) ranging from 1 (near-
natural condition) to 0 (the worst possible ecological condition) and
each national method was applied to the macrophyte survey data of
all other countries.

National boundaries for high-good and good-moderate status were
intercalibrated and harmonized between European member states
Fig. 1. Relationship between common metric for macrophytes and a) total phosphorus and b)
moderate boundaries. Solid line shows type II RMA regression, dotted lines show upper and lo
using a common macrophyte metric to express each member state's
boundaries on a common scale (Portielje et al., 2014; Poikane et al.,
2015, 2018). We used this common metric EQR and the intercalibrated
class boundaries to establish relationships with nutrients from which
nutrient criteria were determined. Nutrient concentrations used were
annual mean total phosphorus (TP) and total nitrogen (TN) values for
each lake (Table 1).
2.2. Methods for establishing nutrient criteria

2.2.1. Univariate regressions
To determine nutrient values consistent with a given ecological sta-

tus we compared univariate and multivariate linear regression models
with a variety of categorical approaches. For the univariate regression
we use Ranged Major Axis regression (RMA; Legendre and Legendre,
2012), a type II approach. Our choice of this approach reflects the signif-
icant uncertainty in estimates of both the biological EQR and mean nu-
trient concentrations, either of which could be treated as the
independent predictor variable. We determined the linear region of
the relationship by fitting a generalized additive model to visualise the
relationship, and confirmed the linear region using segmented regres-
sion. After fitting univariate relationships (Fig. 1), the nutrient concen-
tration (TN or TP) corresponding to the biological status boundary (i.e.
good-moderate or high-good) was determined from the regression
equation using the intercalibrated common metric criteria values.
total nitrogen for high alkalinity very shallow (L-CB2) lakes showing high/good and good/
wer quartiles of residuals.



Fig. 2. Relationship betweenmean TP and TN in high alkalinity very shallow lakes (L-CB2). Dotted lines show contours of predicted TN and TP concentration when macrophyte EQR is at
a) high/good and b) good/moderate boundary (±25th& 75th residuals of prediction). Horizontal and vertical lines show intersectionwith RMA regression of observed TP and TN showing
good moderate boundary concentrations.
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2.2.2. Multivariate regressions
For multivariate regression an unlimited range of potential pairs of

TN and TP concentrations occur at the specified boundary EQR values.
On a bivariate plot these can be expressed as contours and the values
we report were those where the contour line intersected with an RMA
regression fitted to the relationship between TN and TP (Fig. 2). For
both univariate and multivariate approaches, we used the upper and
lower quartiles of the regression residuals to determine the potential
range of criteria values. We estimated uncertainty in the predicted nu-
trient criteria values from these quartiles, which will contain 50% of
the observed data, and themost likely value associatedwith a particular
ecological status from the fitted line.
2.2.3. Categorical methods
Additionally, we used two categorical methods – logistic regression

and minimising mis-match of classifications - for setting nutrient
criteria. Categorical methods are less constrained by the requirements
of linear regression models, they are intuitively simple to understand
and may offer the best approach where relationships are weak or the
stressor gradient is short.

We fit a binomial logistic regression model to data that were classi-
fied into two groups (ʽgood or betterʼ and ʽmoderate or worseʼ - in the
case of the good-moderate criteria; ʽhighʼ and ʽgood or worseʼ - in the
case of high-good criteria). Nutrient boundary estimates are presented
for a 50% probability of being in ʽmoderate or worseʼ status for the
good-moderate criteria, or in ʽgood or worseʼ for the high-good criteria
(Fig. 3). Alternative probabilities of 25% and 75% were also assessed to
reflect different risks of failing to meet the desired standard.

We estimated the nutrient concentration that gives the lowest mis-
match between classifications based on biology and on nutrient concen-
tration. Criteria values were obtained by (i) plotting the percentage of
water bodies that would be at ʽgood or betterʼ status for biology butʽmoderate or worseʼ for nutrients for different potential nutrient criteria
values; (ii) overlying an inverse plot showing the percentage of water
bodies where biology is moderate or worse but nutrients are ʽgood or
betterʼ; (iii) estimating the point of intersection where the mismatch
of classifications is minimized (Fig. 4).

We compiled the results from all of these approaches, together with
their uncertainty estimates, to summarise:
• Themost likely criteria, determined from the “best” regressionmodel,
where the best model was defined as the one with the highest R2;

• The range of potential criteria values, as defined by the upper and
lower quartiles of the residuals of the best regression model;

• The range of potential criteria values derived from the upper and
lower values predicted from the different regression and categorical
approaches (Fig. 5).

Nutrient concentrations were log transformed prior to modelling.
Statistical analyses were carried out with the R software package (R
Core Team, 2016). GAM models were fitted using the mgcv package
(Wood, 2010), segmented regression with segmented (Muggeo, 2009)
and RMA with lmodel2 (Legendre, 2011).

3. Results

3.1. Univariate regression models

For high alkalinity very shallow lakes (LCB2), the relationship with
total phosphorus predicted a concentration for the good-moderate
boundary of 60 μg/l, with 50% of the data having values between 33
and 104 μg/l (Fig. 1). The univariate relationships for TN had lower r2

values (0.37) than those for TP (r2 = 0.41), predicting good-moderate
criteria of 1.30mg/l with a range 0.94–1.75 mg/l. Corresponding results
for the high-good boundary were 30 (range 16–53) μg/l TP and 0.89
(range 0.65–1.20) mg/l TN.

For high alkalinity shallow lakes (LCB1) the univariate relationships
for TP (r2=0.46, p b 0.001) predicted a good-moderate criteria of 53 μg/
l with 50% of values ranging between 38 and 80 μg/l (Fig. S1 in the
supporting information). Relationships for TN (r2 = 0.29, p b 0.001)
produced a good-moderate criteria of 1.12mg/lwith 50%of values rang-
ing between 0.87 and 1.70 mg/l. High-good criteria were 27 (range
20–41) μg/l for TP and 0.63 (range 0.49–0.96) mg/l for TN.

3.2. Bivariate regression models

For the LCB2 lakes (Fig. 2), including both TP and TN in models in-
creased the R2 value significantly (R2 = 0.49, p b 0.001) relative to
both the TP and TN univariate models (r2 = 0.41 TP and r2 = 0.37
TN). The resulting good-moderate criteria values were similar to those



Fig. 3. Binary logistic regression (± 95% confidence limits) between total phosphorus/nitrogen and the probability of macrophytes from high alkalinity very shallow (L-CB2) lakes being
classified as a)moderate orworse, b) good orworse. Lines showpotential good/moderate and high/good boundary values at p=0.5 and intersectionswith fit±95% confidence limits, and
alternative values at p = 0.75 and p = 0.25 (good/moderate only) reflecting differing levels of precaution.
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from the univariate models (TP 58, range 34–99 μg/l; TN 1.23, range
0.84–1.78 mg/l).

For the LCB1 lakes, including both TP and TN increased the R2 value
(R2 = 0.50, p b 0.001) significantly relative to the use of TN only (r2 =
0.29) or TP only (r2 = 0.46). The bivariate regression provided good-
moderate criteria values similar to those predicted by univariate regres-
sion: TP 51 range 37–78 μg/l; TN 1.15 range 0.87–1.69 mg/l (Fig. S2 in
the supporting information).
3.3. Logistic regressions

The binary logistic regression of TP and TN on macrophyte assess-
ments are presented in Fig. 3. Nutrient good-moderate criteria corre-
spond to a 50% probability of being classified as ʽmoderateʼ status or
worse. For LCB2 lakes (Fig. 3) these criteria are 61 μg/l TP (95% confi-
dence limits 45–83 μg/l TP) and 1.0 mg/l TN (95% confidence limits
1.13–1.55 mg/l TN). For LCB1 lakes (S2) good-moderate criteria are 48
μg/l TP (95% confidence limits 36–65 μg/l TP) and 1.08 mg/l TN (95%
confidence limits 0.88–1.36 mg/l TN) (Fig. S3 in the supporting
information).

Nutrient high-good criteria correspond to a 50% probability of being
classified as ʽgoodʼ status or worse: LCB1: 16 μg/l TP and 0.30 mg/l TN;
LCB2: 18 μg/l TP and 0.59 mg/l TN.
3.4. Minimise the mismatch between biological and nutrient classification

The percent of water bodies at ʻgoodʼ or better status for biology butʻmoderateʼ or worse for nutrients for different potential criteria values
was overlain on a plot of the percentage of water bodies where biology
is ʻmoderate or worseʼ but nutrients are ʻgood or betterʼ. The point of in-
tersection of these lines reveals a concentration where the rate of mis-
match of classifications is minimized. For LCB2 type the values for TP
were 78 μg/l and for TN of 1.41mg/l (Fig. 4). For good-moderate criteria
in the LCB1 lake type this intersection occurred at a TP concentration of
50 μg/l and a TN concentration of 1.11mg/l (Fig. S4 in the supporting in-
formation). This approach also demonstrates that it is possible to



Fig. 4. Percentage ofwater bodies wheremacrophyte or nutrient classifications for ecological status differ in comparison to the level used to set the boundary values for good/moderate or
worse (top row) and high/good or worse (bottom row) for a) total phosphorus and b) total nitrogen in high alkalinity very shallow (L-CB2) lakes. Lines are loess smooths, vertical lines
mark mean and range of intersections which identify the good/moderate boundary.
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achieve relatively low rates of mismatch, ca 10%–20%, that may be
reassuring to policy makers.

3.5. Comparison and summary of estimated nutrient criteria

Overall, the nutrient criteria predicted by the different methods
were broadly similar within lake types and higher for the shallower
lake type LCB2 (Table 2, Fig. 5).

4. Discussion

4.1. Which nutrient levels support GES for macrophytes?

Most nutrient criteria for freshwaters focus on phytoplankton, rang-
ing from classical models linking chlorophyll-a to nutrients (Carlson,
1977; Vollenweider and Kerekes, 1980) to the more recent, addressing
cyanobacteria blooms and their hazards (Carvalho et al., 2013a; Yuan
et al., 2014; Yuan and Pollard, 2015). Many empirical studies describe
degradation of macrophyte communities across enrichment gradients
(Sand-Jensen et al., 2000) and stress the need to establish nutrient
criteria to combat macrophyte decline (Scheffer and van Nes, 2007).
However, few studies have suggested such criteria and then only for
limited regions (Ireland; Free et al., 2016; UK;Willby et al., 2012).With-
out empirically-based nutrient criteria the issue of how low is ‘low’ be-
comes one of judgement alone.

In this study, we established stressor-response models between
macrophyte assessments and nutrients and set nutrient criteria, which
support GES for macrophyte communities for the major lake types of
lowland Europe (Table 3). Our main findings are that:

• Significant relationships exist between macrophyte status and nutri-
ent concentration (for TP r2 = 0.41–0.46, for TN r2 = 0.29–0.37,
both p b 0.001) with multivariate models including both TP and TN
having higher explained variability (R2 = 0.49–0.50) compared with
univariate models;

• Lake depth is a key factor in determining nutrient sensitivity, with
very shallow lakes (mean depth b 3 m) having greater tolerance to
nutrients (Fig. 5);



Fig. 5. Comparison of total phosphorus (a) and total nitrogen (b) criteria for different lake types/different criteria setting methods.
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• Different methods applied to the same data yielded nutrient criteria
values that are broadly similar (Fig. 5) and are consistent with other
studies of high alkalinity lakes (Table 3, note different lake types).

4.2. Relationships between macrophyte communities and nutrients

While highly significant, the relationships betweenmacrophyte sta-
tus and nutrient concentration show considerable unexplained variabil-
ity, reflecting the limitations of simple models to describe complex
biological systems (Moss, 2008; Søndergaard et al., 2011). The ex-
plained variability (41%–46% for TP univariate models and 29–37% for
TN; Fig. 1) is similar to other relationships between macrophytes and
nutrients based on a variety of metrics (r2 = 0.34; Kolada et al., 2014;
r2 = 0.31–0.55, Lyche-Solheim et al., 2013; r2 = 0.31–0.43; Penning
et al., 2008; r2 = 0.24–0.31, Søndergaard et al., 2010; r2 = 0.49;
Willby et al., 2012). However, the relationships are generally weaker
Table 2
Summary of predicted total phosphorus and total nitrogen criteria values for lake types. Include
of the residuals of the best regression model. The range of potential criteria values derived from

Nutrient Type Good – moderate status criteria

Best model
(25th and 75th percentile)

Range

Total phosphorus (μg/l) LCB1 51 (37–78) 48–53
LCB2 58 (34–99) 58–78

Total nitrogen (mg/l) LCB1 1.15 (0.87–1.69) 1.08–1
LCB2 1.23 (0.84–1.78) 1.00–1
than for phytoplankton metrics (Carvalho et al., 2013b; Dolman et al.,
2016; Lyche-Solheim et al., 2013; Phillips et al., 2008, 2013).

High unexplained variation inmacrophyte status is not surprising as
many other factors, absent from the analysis, will influence lakemacro-
phytes. The importance of intrinsic factors, such as water body alkalin-
ity, depth, size and colour (Søndergaard et al., 2010; van Geest et al.,
2003; van Nes et al., 2002; Willby et al., 2012) is diminished by
partitioning lakes into types. However, variation in these parameters
within types will remain important, alongside inter-annual fluctuations
in climate-related factors (Jeppesen et al., 2003). The effects of stressors
other than nutrient enrichment can also add to uncertainty and influ-
ence the setting of reliable nutrient criteria, especially when interacting
with nutrient stress: synergism may prompt overly protective values,
while antagonism could lead to values being too relaxed (Côté et al.,
2016). With only 26% of lake water bodies in Europe being affected by
more than one pressure, multi-stressor effects are perhaps less relevant
s the value predicted by bestmodel and the range defined by the 25th and 75th percentiles
the different regression and categorical approaches.

High – good status criteria

of criteria values Best model
(25th and 75th percentile)

Range of criteria values

25 (19–39) 16–27
27 (16–46) 18–31

.15 0.63 (0.48–0.92) 0.30–0.63

.41 0.73 (0.50–1.05) 0.59–0.92



Table 3
Various nutrient criteria set using different approaches, including this study.

Reference Lake type Nutrient criteria Approach to setting criteria

TP (μg/l) TN (mg/l)

Phytoplankton
Dolman et al., 2016 Shallow (b3 m) 41–75 0.71–1.09 Supporting GES for phytoplankton

Polymictic (N3 m) 36–51 0.48–0.67
Stratified lakes of Germany 21–34 0.26–0.51

Free et al., 2016 Irish lakes 24–31 Supporting GES for phytoplankton

Cyanobacteria
Carvalho et al., 2013a Medium-high alkalinity lakes of Europe 22 – 10% of lakes exceeded the WHO low risk threshold

48 – 10% of lakes exceeded the WHO moderate risk threshold
Downing et al., 2001 Northern temperate lakes 30 – Minimal risk of Cyanobacteria dominance

70 40% risk of Cyanobacteria dominance
Yuan and Pollard, 2015 US lakes 25 (16–39) 0.37 (0.26–0.54) Exceedance of WHO low risk threshold

87 (57–130) 1.1 (0.75–1.5) Exceedance of WHO moderate risk threshold
Yuan et al., 2014 US lakes – 0.57–1.1 Probability of high microcystin concentrations at or below 10%

– 0.25–0.40 Probability of high microcystin concentrations at or below 5%

Macrophytes
Willby et al., 2012 High alkalinity

UK lakes (b3 m)
High alkalinity
UK lakes (3–15 m)

49–66 – Site-specific model including alkalinity and lake depth
38–44 –

Free et al., 2016 Irish lakes 16–19 – Supporting GES for macrophytes
This study LCB1 (3–15 m) 51 1.15 Predicted by best model

37 0.87 75% of lakes reaching good status
48–53 1.08–1.15 Range predicted by different approaches

LCB2 (b3 m) 58 1.23 Predicted by best model
34 0.84 75% of lakes reaching good status
58–78 1.0–1.41 Range predicted by different approaches
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in lakes than rivers or transitional waters (Birk, 2019). However, hydro-
morphological pressures (e.g. elevated water level fluctuations and
shoreline modification) are still likely to influence macrophytes in
some lakes (del Pozo et al., 2010; Mjelde et al., 2013; Radomski and
Goeman, 2001). As nutrient loads reduce, macrophytes often recover
slowly due to longer generation times, dispersal limitation, herbivory
and high nutrient content in sediments (Bakker et al., 2013; Jeppesen
et al., 2005; Lauridsen et al., 2003), and may also therefore not be in
equilibrium with water column nutrient concentrations. Furthermore,
nutrient thresholds in shallow lakes differ when switching to a turbid
state versus returning to a clear-water one (Ibelings et al., 2007;
Scheffer and van Nes, 2007). Collectively, these factors impose uncer-
tainties which cannot be ignored when setting and using nutrient
criteria.

4.3. N or P or both?

The nature of nutrient limitation is a perennial topic in limnology.
Phosphorus is the key limiting nutrient in freshwaters, although nitro-
gen can also be limiting, especially in shallow lakes (Phillips et al.,
2008), during summer (Dolman et al., 2016) and in highly eutrophic
lakes (Søndergaard et al., 2017). Recent studies confirm that nitrogen
contributes to the decline of macrophyte communities (González
Sagrario et al., 2005; Moss et al., 2012; Søndergaard et al., 2017). The
need to reduce only phosphorus (Schindler, 2012, Schindler et al.,
2016), or both phosphorus and nitrogen (Conley et al., 2009; Dodds
and Smith, 2016; Paerl et al., 2016) to mitigate eutrophication is, how-
ever, still disputed. For lakes, criteria setting has focused mainly on
phosphorus (e.g., Carvalho et al., 2013a; Free et al., 2016) with very
few studies addressing nitrogen (Dolman et al., 2016).

We show that multivariate models including both TP and TN have
higher R2 values (0.49–0.50) than univariate models, thus stressing
the relative importance of nitrogen and phosphorus in driving eutrophi-
cation in the shallow lakes of Europe and the advantage of considering
both in parallel. Our study establishes nitrogen criteria 1.1–1.2 mg/l
for LCB1 and 1.0–1.4 mg/l for LCB2 lakes (Table 3). These values exceed
those set by Dolman et al. (2016) for phytoplankton but are similar to
the 1.2–2.0 mg/l TN suggested by González Sagrario et al. (2005) as
the critical threshold for switching from a clear to turbid state in Danish
shallow lakes.

4.4. Why do shallower lakes have higher nutrient criteria?

The very shallow high alkalinity lakes (LCB-2) had higher TP criteria.
One prominent cause of macrophyte decline in lakes is through light
limitation caused by increasing phytoplankton shading, as reflected by
strong relationships between macrophyte colonization depths and
water transparency (Blindow, 1992). Because light declines exponen-
tially with depth, moremodest nutrient levels and algal growth can sig-
nificantly altermacrophyte composition and abundance in deeper lakes.
In addition, the macrophyte community in fertile shallower lakes may
be resilient to expected increases in phytoplankton abundance because
grazing zooplankton are buffered from fish predation by macrophyte-
based refugia (Scheffer and vanNes, 2007), or because thewater is shal-
low enough for rooted macrophytes to reach the surface. Variation in
lake depths may thus be a significant contributor to the uncertainty in
stressor-response relationships within lake types.

4.5. Which methods should be used to set criteria supporting GES?

Many approaches can be used to estimate and define nutrient
criteria (Fig. 5). It is important to consider their advantages, limitations
and the most appropriate way to use them because these approaches
are an integral part of the ‘small print’ that accompanies any environ-
mental criteria, nutrients or otherwise.

Large-scale stressor-response relationships provide a robust and ef-
ficient tool to estimate nutrient criteria for large groups of lakes (Phillips
et al., 2008). Our study, similar to others, highlights the uncertainty in
these relationships, explaining only 35–45% of the variation in the mac-
rophyte response.While thesemodels lack someof the precision of site-
specific models calibrated for individual lakes or limited geographic
areas (Carvalho et al., 2009; Willby et al., 2012) simple stressor-
responsemodels offer several advantages. Firstly, uncertainty can be ex-
plicitly quantified and incorporated into management decisions. For
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instance, it is possible to define a nutrient threshold at which a given
percentage of lakes would achieve any level of status, measured on a
continuous scale (Dolman et al., 2016; Phillips et al., 2013).

Secondly, assessment systems are often criticized for either being
applicable only to limited geographical areas or not explicitly linked to
stressors (Hering et al., 2010; Penning et al., 2008). This creates prob-
lems for transboundary river basin management requiring coordinated
actions across states – a major issue for the EU where 60% of the terri-
tory lies in transboundary river basins (Hering et al., 2015). In the pres-
ent analysis, we used data collected from lakes across Central Europe
and the Baltic countries, developing models to underpin lake manage-
ment within large geographical areas spanning several countries. In
some cases local datasets can yield strong stressor-response relation-
ships (Free et al., 2016) but the transferability of such relationships is
unknown, while in many national datasets stressor gradients are too
short or insufficient data is available to develop usable stressor-
response relationships (Borics et al., 2013; Timm and Möls, 2012). We
note that even in our own analyses, derivation of nutrient criteria for
the high-good boundary was sometimes based on extrapolation into
poorly populated regions of the fertility gradient and the confidence in
such values is therefore lower, although they remain largely consistent
with published studies.

Finally, water managers demand simple and transparent environ-
mental standards (Birk et al., 2012). The stressor-response relationship
provides a graphic and intuitive approach that is easily understood and
applicable in data-poor conditions, provided its limitations are clearly
communicated. It also serves to emphasise that criteria are not a ‘line
in the sand’ but rather a zone in which the confidence of achieving a
prescribed outcome (e.g. GES) varies.

However, variation in response is naturally high, reflecting themany
factors that influence biology, whether stressor-related, intrinsic or sto-
chastic (Søndergaard et al., 2010, 2011). This may preclude the use of
linear regressionmodels to determine criteria values. Our analyses sug-
gests that categoricalmethods (logistic regression orminimising of clas-
sification mismatches) will produce similar values to regression
approaches when applied to the same dataset. These alternatives may
be useful where uncertainty is high or dataset constraints apply, and
provide an outcome that is easily understood by non-experts.
Minimising classification mismatches may be advantageous where it
is important politically that environmental regulation is seen to be
‘fair’ (e.g., sites are no more likely to ‘pass’ on biology but ‘fail’ on nutri-
ents, than they are to ‘fail’ on biology but ‘pass’ onnutrients). Logistic re-
gression on the other hand lends itself to the setting of alternative
objectives (e.g. preventing deterioration, restoration of GES, protection
of high status in designated sites) for which different levels of precau-
tion are appropriate (Phillips et al., 2013; Yuan and Pollard, 2015). On
the negative side, all categorical approaches are insensitive to the gradi-
ents in quality that exist within classes which may limit their applica-
tion if the range of classes observed is small.

4.6. Recommendations for future applications

In this paper, we focus on nutrient enrichment - the most important
anthropogenic pressure to lakes of Europe (ETC/IM, 2012) and aquatic
vegetation. For shallowproductive lakes,macrophyte communities rep-
resent an important component which have, to date, been surprisingly
neglected in nutrient target setting. However, this approach can be ap-
plied also to other indicators, e.g., phytoplankton, benthic invertebrates
and fish fauna which have been widely used in lake ecological assess-
ment (Carvalho et al., 2013b; Lyche-Solheim et al., 2013; Poikane
et al., 2016, 2017). Our methodology is applicable to other pressures,
e.g., water level fluctuations and shoreline modifications, as there is a
growing (but still limited) evidence of the importance of these pres-
sures to the lakes of Europe (Mjelde et al., 2013; Reyjol et al., 2014).

Moreover, the lessons derived from this are applicable much more
widely. In this paper, we offer and evaluate a novel methodology
which can be applied to other aquatic (and terrestrial) ecosystems
and other indicators, whether in Europe or elsewhere.

5. Concluding remarks

• Wepresent fourmethods to link GES to nutrient concentrations: RMA
regression, multivariate OLS regression, logistic regression and
minimising the mismatch of classifications.

• Where strong regression relationships are found, modelled values at
class boundaries offer a reliable estimate of nutrient criteria and
their statistical uncertainty. Conversely, categorical methods may be
particularly useful where the level of uncertainty precludes robust
stressor-response statistical models. Logistic regression is well suited
to risk assessment where there is a need to assess the probability of
compliance (e.g. 50% or 90% of lakes reaching ʽgoodʼ status) at differ-
ent nutrient thresholds.

• Our study, in line with others, stresses the importance of controlling
nitrogen besides phosphorus, in managing eutrophication of shallow
lakes.

• In this study, we link ecological status of macrophyte communities to
nutrient criteria in a user-friendly and transparentway. Such analyses
can guide the practical actions and policy needed to support GES for
macrophyte communities in the lakes of Europe.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.09.350.
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