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Abstract. Understanding why some problems are better solved by one
algorithm rather than another is still an open problem, and the sym-
metric Travelling Salesperson Problem (TSP) is no exception. We apply
three state-of-the-art heuristic solvers to a large set of TSP instances
of varying structure and size, identifying which heuristics solve specific
instances to optimality faster than others. The first two solvers consid-
ered are variants of the multi-trial Helsgaun’s Lin-Kernighan Heuristic (a
form of iterated local search), with each utilising a different form of Par-
tition Crossover; the third solver is a genetic algorithm (GA) using Edge
Assembly Crossover. Our results show that the GA with Edge Assembly
Crossover is the best solver, shown to significantly outperform the other
algorithms in 73% of the instances analysed. A comprehensive set of fea-
tures for all instances is also extracted, and decision trees are used to
identify main features which could best inform algorithm selection. The
most prominent features identified a high proportion of instances where
the GA with Edge Assembly Crossover performed significantly better
when solving to optimality.
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1 Introduction

Despite decades of intense study, the Travelling Salesperson Problem (TSP)
sustains its practical and theoretical interest. It has inspired the design of pow-
erful exact and heuristic solvers, able to tackle TSP problems of increasing size
in shorter computing time. The objective in the TSP, given a set of n locations
(generally called cities) and pairwise distances between them, is to find the short-
est round-trip through all cities such that the total length of the trip (a tour)
is minimised. Here we consider the most common case of the problem, the 2D
symmetric TSP, where cities correspond to points in the Euclidean plane and
distances are also Euclidean. The current TSP state-of-the-art exact solver, Con-
corde [1], remains unbeaten. Concorde has been used to optimally solve instances
of several thousand cities and, for fewer than 1 000 cities, does so in very feasi-
ble running times. However, there is interest in developing inexact or heuristic
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solvers, as they can provide surprisingly good results for large instances in reason-
ably short amounts of time when compared to obtaining a solution via Concorde.
The scenario of heuristic solvers was previously dominated by a single contender
for several years: Helsgaun’s Lin-Kernighan Heuristic (LKH+IPT) [2, 3]. How-
ever, recent evolutionary algorithms using the Edge Assembly Crossover (EAX)
[4], as well as hybrid approaches using the Generalised Partition Crossover in
concert with LKH (LKH+GPX2), have been shown to match and improve upon
LKH+IPT performance in some instances [5].

An outstanding challenge in heuristic optimisation is to understand how to
find the most suitable algorithm for a given problem instance or set of instances.
Corne and Reynolds [6] introduce the notion of the ‘footprint’ of an algorithm to
indicate how its performance generalises across different dimensions of instance
space. Smith-Miles and Lopes [7] followed this by proposing a methodology to
determine the relative performance of optimisation algorithms across various
classes of instances. Later works by Pihera and Musliu [8], Kotthoff [9], and
Kerschke et al. [10] show that per-instance automated algorithm selection tech-
niques can be used to improve the state-of-the-art in inexact TSP solving.

The main goal of this study is to perform rigorous tests comparing the run-
times to optimality of the three previously mentioned TSP heuristic solvers: (i)
LKH+IPT; (ii) an evolutionary algorithm with EAX; and (iii) a hybrid evolu-
tionary algorithm combining LKH with GPX2. A comprehensive set of features
is then to be used to characterise TSP instances taken from the available bench-
mark sets and instance generators in the literature, with the aim of identifying
specific instance space features which can provide guidance on which solver is
most effective in solving to optimality.

2 Methodology

2.1 Instances

For this study 1800 symmetric TSP instances were generated, comprised of vary-
ing instance sizes and structures:

Random Uniform Euclidean (RUE): instances generated by placing a num-
ber of points (representing the cities to be visited) randomly within a planar
square (e.g., Fig. 1(a)). The distances between the cities are determined as
the Euclidean distances between the respective points, where the cost of
travel between cities is specified as the Euclidean distance rounded to the
nearest whole number. Instances were generated using the DIMACS Portgen

generator1 with sizes n ∈ {500, 1 000, 1 500, 2 000}. One hundred and fifty
seeds of each instance size n were generated for this study.

Random Clustered Euclidean (NETGEN): a set of instances generated
with sizes n ∈ {500, 1 000, 1 500, 2 000}. Each instance was created with a
corresponding parameter, c ∈ {2, 5, 10}, which specifies the number of clus-
ters located within the instance by latin hypercube method. City locations

1 http://archive.dimacs.rutgers.edu/Challenges/TSP/
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(a) RUE - 500
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(b) MORPH - 500-10
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(c) NETGEN - 500-10
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(f) VLSI - dkg813

Fig. 1: Instance type problem domains. Plots (a)–(c) are examples of the RUE,
MORPH & NETGEN instances, all with n = 500. The MORPH example, (b), is
constructed from (a) and (c), with α = 0.5. Plot (d) shows rat575, a rattled grid
of 575 locations; plot (e) is the World instance with 734 town/cities in Uruguay
(uy734); and (f) is the VLSI problem denoted as dkg813

are then distributed with respect to the cluster centres, maintaining clus-
ter segregation, Fig. 1(c). Instances were created using the netgen software
package within the open source software R [11, 12]. Again, 150 instances were
generated for each size n, split into 50 instances per combination of c and n.

Morphed Euclidean (MORPH): instances which have been generated from
a combination of equal n-sized RUE and NETGEN instances. Pairs of RUE
(xi) and NETGEN (yi) cities are greedily matched, the first pair (x1, y1)
being the closest by euclidean distance, with this repeated ∀i ∈ {2, 3, ..., n}
until all cities have been matched. Each MORPH city is then generated by
relocating a proportional distance (defined by a parameter α) along a straight
line from xi to yi. Figure 1(b) shows a MORPH instance, generated from
a 500-city RUE instance, Fig. 1(a), and 500 city NETGEN instance with
10 clusters, Fig. 1(c). The MORPH examples in this study were generated
using the TSPMETA package [13] and with α = 0.5.



LIB: a widely-used collection of instances with different characteristics and
TSP applications [14]. Instances with size 400 6 n < 5 000 and edge weight
types EUC 2D & CEIL 2D were selected for this study.

World: instances from the World benchmark set2 which are based on real
locations of cities in different countries. Cities with duplicate coordinates
were not considered, all instances with size 400 < n < 5 000 were selected.

VLSI: a set of instances that originate from an application in very large scale
integration (VLSI) circuit design. These instance types are known to be par-
ticularly hard for many TSP solvers, including Concorde. Again, all instances
with sizes 400 < n < 5 000 were included in this study [15].

Only 93 instances of the required size and edge weight types are available, hence
the requirement to generate a large, supplemental set of instances. Where ap-
propriate, the combined instances of LIB, World and VLSI will be referred to as
TSPLIB.

2.2 Solvers

Our study considers three high-performance heuristic solvers for the symmetric
TSP. The three solvers incorporate a form of recombination (crossover) and,
according to the literature [10, 16], achieve state-of-the-art performance on Eu-
clidean TSP instances. The first two solvers are modern variants of the powerful
Lin-Kernighan-Helsgaun (LKH) heuristic [3].

LKH+IPT & LKH+GPX2: Multi-try LKH variants. LKH is an iter-
ated local search algorithm based on the the Lin-Kernighan heuristic (LK)
[17], a variable-depth method that generates complex local search moves
by heuristically constructing a sequence of edge exchanges. Over the years,
several improvements have been incorporated to LKH. The best results in
the literature have been obtained with a version known as multi-trial LKH,
where solutions generated by soft restarts of the LK heuristic are recom-
bined using Iterative Partial Transcription (IPT). An alternative version of
multi-trial LKH has been recently proposed [16], where the IPT recombina-
tion operator is substituted by GPX2, a new generalised partition crossover
proposed for the TSP. Both IPT and GPX2 are forms of partition crossover,
which are deterministic recombination operators that use features common
to the parents to decompose the evaluation function. Following [16] we con-
sider these two versions of multi-try LKH, and name them as LKH+IPT
and LKH+GPX2.

EAX: GA with Edge Assembly Crossover. A series of high-performing
evolutionary algorithms for the TSP integrate variants of edge assembly
crossover, a recombination operator that combines the edges of two parent
solutions trying to add only few, short edges not found in any of the two
parents [18]. We consider the most recent version of EAX [4], which aggre-
gates three key enhancements: (i) initialisation of the population by local

2 http://www.math.uwaterloo.ca/tsp/world/countries.html



optimisation, (ii) improved local and global variants of the edge assembly
crossover operator, and (iii) specific diversity preservation techniques that
use edge entropy measures in the population replacement scheme.

2.3 Experimental Setup

Each of the solvers are implemented as single-threaded programs and were run
on Intel Xeon Gold 6138 2.0GHz CPUs3. The common termination criterion
applied is one hour of CPU time. For the analyses in this study, the PAR10
penalised runtime was implemented [10]. This assigns a penalized runtime of 10
times the termination criterion to runs that fail to solve to optimality within
that limit. Each solver is run 30 times on each instance and times are recorded.

For EAX, the parameters used are the ones prescribed by Nagata and Koba-
yashi [4] for “small” instances (n < 10 000) in the readme file accompanying
their source code. The population size is therefore set to 100 and the number of
offspring set to 30. For LKH, version 2.0.9 is used and the default parameters
specified within the source code and the example configuration file are consid-
ered. The RECOMBINATION parameter is set to either IPT or GPX2 in order to
select the appropriate crossover operator.

Neither EAX nor LKH implement a time-based termination criterion but use
a fixed number of trials instead. The source code was therefore modified to run
within a specific amount of time and allow for consistent comparison between
EAX and the two LKH variants.

In order to know whether a solver was successful, the result of each run is
compared to the known optimal objective function values for library instances.
For generated instances, the state-of-the-art exact TSP solver Concorde [1, 19]
was used to generate an optimal solution whose objective function value is used
for comparison.

2.4 Instance Features

Two sets of features were calculated and combined together for use in this study:

TSPMETA: a set of features described by Mersmann et al. [13] which provide
a group of standard geometric features derived from TSP instances. The
features were calculated using the TSPMETA package within the R software
package [12], with 64 features generated in total.

Pihera: a feature set defined by Pihera & Musliu [8] which are based on kNN
graph transformations of each instance and the generation of extensive sum-
mary statistics of the kNN graphs. This generated 285 features, mainly com-
prised of kNN-graph transformation metrics and their summary statistics.

Pihera features were calculated for each of the instance type sets described
earlier, with no group taking longer than 30 seconds using the openly avail-
able C++ software4. The TSPMETA features took noticeably longer to calculate,

3 https://www.archie-west.ac.uk 4 https://tspalgsel.github.io/#software



roughly doubling in execution time as sizes incremented by 500 cities. Both the
TSPMETA and the Pihera features were combined to generate a comprehen-
sive feature set of 349 features. This combined group of features improved the
likelihood of extracting feature(s) which could best inform heuristic selection.

2.5 Statistical Evaluation of Heuristic Performance

Performance analysis was carried out on the three state-of-the-art solvers de-
scribed earlier (LKH+IPT, EAX, LKH+GPX2). A round-robin set of statistical
comparisons was carried out on pairs of heuristics: i.e., EAX versus LKH+IPT,
LKH+IPT versus LKH+GPX2, and LKH+GPX2 versus EAX. Mann-Whitney
statistical tests were carried out on these pairs for each TSP instance: the thirty
runs of each heuristic pair were tested against each other to determine whether
their respective runtimes could be from the same distribution of values. This was
carried out at the 99% confidence level, thus ensuring a high level of likelihood
that runtimes were identified as being from differing distributions if the Mann-
Whitney tests’ p-values < 0.01. When this occurred, a further comparison of
each heuristic’s median runtimes was carried out, and the solver with the lower
median runtime value was deemed to be the best of the two tested.

The null hypothesis of the Mann-Whitney test posits that the runtimes of the
two solvers being tested against one another are from the same distribution of
values and so, if p-values > 0.01, then the null hypothesis could not be rejected.
In this circumstance it was deemed that neither heuristic was significantly better
than the other at solving the instance to optimality, and so neither was desig-
nated as the best heuristic for the particular instance being tested. This outcome
was labelled as “ANY” in the following results.

3 Performance Analysis

Runtime performance of each heuristic was carried out using the methodol-
ogy described in the previous section. Here, results are presented by pairwise
combination, i.e., one heuristic is measured against another heuristic’s perfor-
mance. Firstly, scatter plots of the median runtimes per instance are presented,
with plots further subdivided by the instance types NETGEN, MORPH, RUE
and TSPLIB included in this study. In all plots, red scatter points correspond
to when EAX performed significantly better, blue points to LKH+GPX2, and
green to LKH+IPT. Black scatter points denote instances where one heuristic
was not deemed to be significantly quicker than the other. Diagonal black lines
on each plot indicate equality of median runtimes; boxplots of median runtime
values are also provided, located adjacent to opposite axes to provide additional
comparison of performance.

For each paired comparison, tables showing the numbers and percentages of
times of classifications are also presented, with the TSPLIB instances broken
down by VLSI, World and LIB instance types. The tables provide further detail
that can be occluded in scatter plots by coincidental or clustered data points.



3.1 EAX v LKH+IPT Performance Results

Firstly, the relative performances of EAX versus LKH+IPT are considered, and
results are shown in Fig. 2 and Table 1. It can be seen from Fig. 2(a) and (b)
that EAX is vastly superior in solving NETGEN and MORPH instance types
to optimality when compared with LKH+IPT. The median value of the boxplot
for EAX in Fig. 2(a) (which is the overall median value of all EAX runs for
NETGEN) is 7.2 seconds (s), whereas the corresponding value for LKH+IPT is
107.7s. Similar values are returned for the MORPH instances, with median EAX
runtime = 7.6s and median LKH+IPT = 116.4s.
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(b) MORPH
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(d) TSPLIB

Fig. 2: EAX v LKH+IPT runtime performance results. All plot axes are log-
scaled; scatter points are median values of 30 runs of pairwise instances in the
form (median(EAX), median(LKH+IPT)); diagonal lines represent equality of
median performance; boxplots on axes show distribution of median runtime val-
ues



However, for the RUE instances, Fig. 2(c) shows that LKH+IPT greatly
improves performance when compared against EAX. Results shown in Table
1 reinforce this result, showing that LKH+IPT solved 41.5% of instances sig-
nificantly quicker than EAX (median LKH+IPT runtime = 9.0s). Conversely,
EAX only solved 23.8% of RUE instances better than LKH+IPT (median EAX
runtime 10.6s).

Table 1: EAX versus LKH+IPT classifications
Instance Type EAX LKH+IPT ANY

RUE 143 (23.8%) 249 (41.5%) 208 (34.7%)
MORPH 562 (93.7%) 16 (2.7%) 22 (3.7%)
NETGEN 567 (94.5%) 11 (1.8%) 22 (3.7%)
TSPLIB:

VLSI 38 (66.7%) 8 (14.0%) 11 (19.3%)
World 3 (100.0%) 0 (0.0%) 0 (0.0%)
LIB 18 (54.5%) 8 (24.2%) 7 (21.2%)

Total 1331 (70.3%) 292 (15.4%) 270 (14.3%)

For the LIB instances, EAX still performed better than LKH+IPT; how-
ever, EAX did not overwhelmingly outperform LKH+IPT as it had for the
NETGEN and MORPH instance types. The 3 World instances included in our
study (uy734, zi929 and mu1979) were solved significantly better by EAX than
LKH+IPT. Focusing on VLSI only, the median runtime value for EAX was 12.8s,
with LKH+IPT returning a median runtime of 59.2s. When considering these
with the results in Table 1, it is apparent that EAX solves VLSI instances to
optimality with noticeably greater speed than LKH+IPT.

3.2 LKH+GPX2 v EAX Performance Results

Examining both Fig. 3 and Table 2, it is apparent that EAX provides consider-
ably better results than LKH+GPX2. As with the results for EAX v LKH+IPT
in the previous section, EAX performs substantially better than LKH+GPX2,
most notably for NETGEN (95.0% EAX) and MORPH (93.5% EAX) instances.
Again, however, EAX performs less effectively versus LKH+GPX2 when solv-
ing RUE types; EAX drops to 25.8%, whereas LKH+GPX2 rises to 38.8% best
effectiveness.

Comparing the classifications for EAX across Tables 1 and 2, there exists
very little difference between all results, thus inferring that EAX performs as
well against LKH+IPT as it does versus LKH+GPX2. Also, note again that
EAX is the dominant solver for VLSI, with 64.9% of all VLSI instances solved
best by EAX, and only 7 out of 57 best solved by LKH+GPX2.
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Fig. 3: LKH+GPX2 v EAX runtime performance results. All plot axes are
log-scaled; scatter points are median values of 30 runs of pairwise instances
(LKH+GPX2, EAX); diagonal lines represent equality of median performance;
boxplots on axes show distribution of median runtime values

Table 2: LKH+GPX2 versus EAX classifications
Instance Type LKH+GPX2 EAX ANY

RUE 233 (38.8%) 155 (25.8%) 212 (35.3%)
MORPH 14 (2.3%) 561 (93.5%) 25 (4.2%)
NETGEN 10 (1.7%) 570 (95.0%) 20 (3.3%)
TSPLIB:

VLSI 7 (12.3%) 37 (64.9%) 13 (22.8%)
World 3 (100.0%) 0 (0.0%) 0 (0.0%)
LIB 9 (27.3%) 19 (57.6%) 5 (15.2%)

Total 276 (14.6%) 1342 (70.9%) 275 (14.5%)



3.3 LKH+IPT v LKH+GPX2 Results

As inferred by their relative performances against EAX, the runtime results for
LKH+IPT versus LKH+GPX2 exhibit very little variation. Both Fig. 4 and
Table 3 show that, for instances of these sizes and types, and with a stopping
criterion of one hour, there exists little appreciable difference in their relative
performances. The four plots in Fig. 4 show that almost all scatter points lie
very closely to the line of median equality. When this did not hold, for example
in Fig. 4(d) where a single point is located at (1329, PAR10) (corresponding to
VLSI instance bck2217), the Mann-Whitney test does not always allow rejection
of its null hypothesis and so the instance is labelled as ANY.
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Fig. 4: LKH+IPT v LKH+GPX2 runtime performance scatter plots

Table 3 further emphasises the similarities of runtimes for both LKH+IPT
and LKH+GPX2. 97.8% of the 1893 instances studied were classed as being best
solved by either heuristic: only the RUE types returned any notable numbers of
instances solved better by either solver.



Table 3: LKH+IPT versus LKH+GPX2 Classifications
Instance Type LKH+IPT LKH+GPX2 ANY

RUE 12 (2.0%) 17 (2.8%) 571 (95.2%)
MORPH 4 (0.6%) 3 (0.5%) 593 (98.8%)
NETGEN 1 (0.1%) 3 (0.5%) 596 (99.3%)
TSPLIB:

VLSI 0 (0.0%) 0 (0.0%) 57 (100.0%)
World 0 (0.0%) 0 (0.0%) 3 (100.0%)
LIB 0 (0.0%) 2 (6.5%) 31 (93.9%)

Total 17 (0.9%) 25 (1.3%) 1851 (97.8%)

3.4 Overall Performance Classification

Due to the overall dominance of EAX in these results, and the similar behaviours
of LKH+IPT and LKH+GPX2 (now referred to jointly as SET-LKH), an ap-
propriate question to answer to determine the best solver is “When should we
not apply EAX?”. If this can be answered, then three courses of action are avail-
able: (i) Use EAX only; (ii) use one of SET-LKH; (iii) use any of the above. Due
to the close similarity between the SET-LKH results, only the results from the
EAX v LKH+IPT and EAX v LKH+GPX2 comparisons were used to determine
the overall best heuristic per instance. For overall classification, it is assumed
that LKH+IPT and LKH+GPX2 did not perform significantly differently for
any instances; only 2.2% of instances were solved significantly more quickly by
one than the other (cf. Table 3), and thus is a reasonable simplification to make
which does not adversely affect best solver selection.

Table 4 summarises the classification permutations (excluding LKH+IPT v
LKH+GPX2) and their outcomes which are used to determine the best over-
all heuristic per instance. Each permutation of EAX v LKH+IPT and EAX
v LKH+GPX2 results in different hierarchical results which are shown as pic-
tograms in Table 4; LKH+IPT denoted by a green “I”, EAX (red “E”) and
LKH+GPX2 (blue “G”).

EAX was deemed the best heuristic if it was significantly better than both
SET-LKH solvers, or better than one while not defeated by the other (top 3 rows
of Table 4). The same reasoning applies for SET-LKH (middle 3 rows), whereas
the ANY class was applied only if EAX was not significantly better than both
SET-LKH solvers, and vice versa. The permutations where EAX defeated one of
the SET-LKH solvers but was defeated by the other did not occur in our study,
and so is not shown here. Applying this methodology we can determine whether
EAX, one of the SET-LKH heuristics, or ANY of the three would be the best
approach.

Table 5 shows that, out of the 1893 instances tested, 1361 were solved sig-
nificantly better by EAX. EAX also comprises part of the ANY category, and
so can be identified as being the most effective heuristic, or at least one of the
most effective, for 84.1% of the instances tested.



Table 4: Best Heuristic Classification by Instance

EAX v
LKH+IPT

EAX v
LKH+GPX2

Pictogram Best Heuristic

EAX EAX IG
E EAX

EAX ANY I
GE EAX

ANY EAX I
G

E EAX

LKH+IPT ANY I
GE SET-LKH

ANY LKH+GPX2 I
G

E SET-LKH

LKH+IPT LKH+GPX2 IG
E SET-LKH

ANY ANY IGE ANY

Excluding the RUE instances, the proportion best solved by the classifica-
tions EAX or ANY rises to 96.6%. Conversely, considering only the RUE in-
stances, we see that the SET-LKH heuristics perform effectively 72.5% of the
time when combined with the ANY classification. The VLSI instances, often con-
sidered the most intractable or difficult to solve to optimality, are best solved by
EAX 68.4%; only 14.0% are solved significantly quicker by SET-LKH solvers.

Table 5: Best Overall Heuristic Classifications
Type EAX SET-LKH ANY

RUE 165 (27.5%) 257 (42.8%) 178 (29.7%)
MORPH 563 (93.8%) 16 (2.7%) 21 (3.5%)
NETGEN 572 (95.3%) 11 (1.8%) 17 (2.8%)
TSPLIB:

VLSI 39 (68.4%) 8 (14.0%) 10 (17.5%)
World 3 (100.%) 0 (0.0%) 0 (0.0%)
LIB 19 (57.5%) 9 (27.3%) 5 (15.2%)

Total 1361 (72.9%) 301 (15.9%) 231 (12.2%)



The marked variations in these results show how important it is to understand
the underlying TSP instance itself, and the features of the instance. Doing so can
provide important guidance on which solver can be implemented most effectively.

4 Heuristic Selection by Minimal Feature Extraction

It is important to be able to identify instance features which can inform specific
algorithm selection. To this end, a decision tree model was trained using the
Pihera and TSPMETA feature sets described earlier. A decision tree is a simple
but useful technique for creating “rules of thumb ”that can be applied to identify
instance traits that may hamper the performance of specific solvers. This process
identified key features (and their associated values) which can be used to select
the most effective instance-specific algorithms. From the head of the decision tree
shown in Fig. 5, two key features were extracted which can be used to identify
a significant variance in performance between the EAX and SET-LKH solvers:
nn5.sc.max.n, from the Pihera feature set; and mst dists median, from the
TSPMETA feature set.

 EAX
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  100%

 EAX
.04   .93   .03
  67%

 EAX/SET-LKH
.32   .34   .34
  25%
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(e)(d)(b)
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Fig. 5: Decision tree trained on all instance features (tree depth = 2)

It can be seen that 72% of instances were solved significantly faster by EAX
than either of the SET-LKH heuristics and, in a further 16%, no significant
difference was found (cf. Table 5 & Fig. 5(a)). The intuitive choice, therefore,
would be to use EAX by default; however, note that 12% of all instances tested
were best solved by the SET-LKH heuristics. It was found that 67% of all in-
stances exhibited nn5.sc.max.n < 0.71; of these, 93% were solved best by EAX
(cf. Figures 5(b) and 6(a)). When nn5.sc.max.n >= 0.71, 71% were solved by
SET-LKH heuristics in comparable (29%) or less (42%) time, Fig. 5(c).
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Fig. 6: Plots show kernels of ANY, EAX, SET-LKH classed instances for features
nn5.sc.max.n (a) and mst dists median (b). Vertical lines indicate the threshold
values obtained from the decision tree in Fig. 5

This branch of the decision tree can be further broken down when feature
mst dists median >= 0.021, with 87% of instances on that branch solved in
similar or less time by SET-LKH, Fig. 5(e). In cases where mst dists median <
0.021, we see a less distinctive split in performance, with EAX and SET-LKH
performing best in a similar number of cases, Fig. 5(d).

Figures 6(a) & (b) show that the ANY kernels, labelled as being blue in
colour, are completely masked by the EAX and SET-LKH kernels either side
of the decision tree threshold values. This infers that the instances classified as
ANY may defy simple identification using decision tree methods.

5 Conclusions

We have carried out an empirical runtime analysis of three state-of-the-art TSP
heuristic solvers (LKH+IPT, LKH+GPX2, and EAX), ranking their respective
performances using robust statistical methods. The algorithms were run on 1893
distinct instances, made up of 600 uniformly distributed, 600 strongly clustered,
600 loosely clustered, and 93 TSP problems selected from available benchmark
datasets. Our results show that EAX performs significantly better than the oth-
ers, especially for the NETGEN and MORPH instances with almost all of those
types solved significantly better by EAX. However, for the RUE types, EAX
does not perform as well as the SET-LKH solvers: EAX was only classed as the
best solver ∼ 25% of the time.

EAX was ranked the best overall solver per instance, identified as being
significantly better in 72.9% of instances. Including the ANY category (instances
where no heuristic proved to be significantly better), EAX could be applied to
85% of all instances tested to return the quickest time to optimality. Even though
we observed EAX as being strongly dominant, these results further support the



“No Free Lunch” theorem [20], i.e., that no heuristic outperforms any other
solver for all problems.

Best algorithm selection is a topic of ongoing research across all combinatorial
optimisation problems [8, 9, 21]. For the TSP instance set analysed here, we have
shown that the simple use of a decision tree can allow identification of a few dis-
criminatory features of the instance space that pinpoint which algorithm is best
applied. Our analysis identified one feature from the Pihera set (nn5.sc.max.n)
whose value strongly predicts when to use EAX. When this is used in concert
with another feature from the TSPMETA group (mst dists median), we can
quickly identify when to apply one of the SET-LKH solvers. Thus, calculat-
ing both TSPMETA and Pihera features sets of the TSP instances can provide
strong guidance to inform which solver to use.

There is no evidence to assume that EAX would continue to remain dominant
over the SET-LKH solvers for increased instance sizes, or that the similar results
for both LKH+IPT and LKH+GPX2 would also hold. Therefore an extension
of the work presented here would be to carry out similar analyses for symmet-
ric TSP instances of size > 2 000. It is anticipated that, due to the effects of
combinatorial explosion, a similar study of increased instance size would need to
implement a timeout criterion greater than the one hour used here. Renato et al.
[16] indicate that LKH+GPX2 does outperform LKH+IPT for most instances
they studied which had sizes in the range [3056, 115475]; however, their study
was not limited by a timeout criterion, and instead enforced a minimum number
of trials per run. Thus, increasing the timeout criterion for larger instances may
allow the LKH+GPX2 heuristic the capacity to realise any advantage it may
have over LKH+IPT and EAX for larger instances. We must also consider that
LKH+GPX2 is a newly developed algorithm which may not have fully opti-
mised implementation methods, and any refinements may significantly improve
its future performance.
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