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Abstract 15 

Currently, there is a trend to use high-fat diets in intensive aquaculture that is 16 

accompanied with incidence of fatty liver when dietary lipid level surpasses an upper 17 

limit. So, it is necessary to develop appropriate strategies to reduce the risk of fatty liver 18 

in commercial fish farming. Studies in mammals have revealed a correlation between 19 

fatty liver and AMP-activated protein kinase (AMPK) activity, which has been 20 

recognized as a key modulator of lipid metabolism. Considering the frequent 21 

occurrence of fatty liver in blunt snout bream farming, an in-vitro study was designed 22 

to evaluate the efficiency of metformin, as a stimulator of AMPK, in activation of 23 

AMPK and its subsequent effects on lipid metabolism in primary hepatocytes. Fish 24 

hepatocytes were seeded at a density of 1×106 ml-1 in 6-well tissue culture plates and 25 

treated with three different media including: 1) Leibovitz's L-15 medium [L15] as 26 

control, 2) high-fat medium [L15+400 µM oleic acid], and 3) metformin medium 27 

[L15+400 µM oleic acid+200 µM metformin]. After 48 h of culture, the cells and 28 

supernatant were collected for analysis. The results showed significant (P < 0.05) 29 

enhancement of cell triglyceride and total cholesterol concentrations in the high-fat 30 

medium group over control, and metformin addition significantly reduced the values. 31 

Also, the high-fat medium group exhibited significantly higher aspartate 32 

aminotransferase activity than both control and metformin groups. The lowest AMPK 33 

and phospho-AMPK protein expression was found in the high-fat medium group while 34 

metformin addition significantly up-regulated their expression levels. Mitochondrial 35 

and peroxisomal oxidation rates in the high-fat medium group were significantly lower 36 

than control while similar oxidation rates were observed for metformin treated and 37 

control groups. The high-fat medium group showed significantly lower CPT I activity 38 

than control, and metformin inclusion increased the activity. Expression of genes 39 
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associated with lipid metabolism such as PPARα, CPT I, AOX, PGC-1α and TFAM 40 

was suppressed in the high-fat medium group, and metformin supplementation up-41 

regulated their expression levels. The opposite trend was true for the expression of 42 

ACC2 gene. Also, the results showed down-regulation of FAS and SREBP-1C genes in 43 

the high-fat medium group, and metformin addition resulted in further reduction of their 44 

expression level. The lowest activities of mitochondrial complexes (I-III) were found 45 

in the high-fat medium group and metformin prevented high-fat-induced reduction of 46 

mitochondrial complexes activity. Notably increased concentrations of reactive oxygen 47 

species and malondialdehyde were found in the high-fat medium group, and metformin 48 

treatment reduced their concentrations. Moreover, metformin group exhibited higher 49 

glutathione peroxidase activity than the high-fat medium group. The findings in this 50 

study showed clearly that metformin activated AMPK in blunt snout bream hepatocytes, 51 

which contributed to enhanced lipid metabolism and attenuated lipid deposition in the 52 

cells incubated with high-fat medium.    53 

Key words: blunt snout bream; fatty liver; metformin; AMP-activated protein kinase; 54 

lipid metabolism   55 
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1. Introduction 56 

It is well known that adequate levels of non-protein energy sources should be 57 

incorporated in fish diet in order to maximize protein utilization for growth (Wilson and 58 

Halver, 1986). Dietary lipids have been extensively used as a source of concentrated 59 

energy for saving protein and increasing feed efficiency in economical fish farming 60 

practices (Boujard et al., 2004; Hillestad et al., 1998). Use of high-fat (high energy) 61 

diets has become a common practice in the aquaculture industry since the discovery of 62 

the protein sparing effects of lipids by Lee and Putnam (1973). However, it become 63 

apparent that dietary lipid content could be increased up to a certain level but, thereafter, 64 

undesirable impacts could be achieved such as reduced growth performance and 65 

unwanted lipid accumulation that can subsequently result in hyperlipidemia, fatty liver, 66 

and lipid peroxidation (Du et al., 2005, 2008; Ji et al., 2011; Jin et al., 2013; Li et al., 67 

2012; Lu et al., 2013a). Fatty liver, which is characterized by excessive triglyceride 68 

accumulation in hepatocytes (Bolla et al., 2011; Lu et al., 2013), is not only a sign of 69 

wasted dietary energy but also has detrimental effects on fish health (Lu et al., 2013b; 70 

Nanton et al., 2003). Poor growth performance and high mortality caused by fatty liver 71 

have been reported in several farmed fish species leading to substantial economic losses 72 

(Du et al., 2014). Accordingly, it is vital to recognize the nutritional factors and 73 

mechanisms involved in the development of fatty liver.  74 

The complex metabolic regulation systems in animals enable them to adapt to 75 

nutritional modifications (Soengas, 2014). As such, in most animals increasing dietary 76 

lipid is accompanied with alterations in lipid metabolism including suppression of 77 
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lipogenic enzymes (Clarke and Hembree, 1990; Gélineau et al., 2001; Hillgartner et al., 78 

1995) and increased fatty acid oxidation (Kim et al., 2004). Therefore, an appropriate 79 

approach for cost effective fish production could be developing strategies to inhibit 80 

excessive fat deposition in liver, and instead increase the utilization of dietary lipid to 81 

promote edible biomass production. Research in mammals has revealed a correlation 82 

between fatty liver and AMP-activated protein kinase (AMPK) activity (You and 83 

Rogers, 2009). It has been demonstrated that AMPK plays a key role in regulating lipid 84 

metabolism, and is now known as a metabolic master switch for modification of cellular 85 

energy charge (Jäger et al., 2007). Stimulation of AMPK leads to suppression of 86 

anabolic processes such as fatty acid and cholesterol synthesis, and activation of 87 

catabolic processes like fatty acid oxidation (Fryer and Carling, 2005; Hardie et al., 88 

2006; Kahn et al., 2005). For instance, AMPK phosphorylates acetyl-CoA-carboxylase-89 

2 (ACC-2) leading to reduction of malonyl-CoA (an inhibitor of carnitine 90 

palmitoyltransferase I, CPT I), which subsequently results in increased fatty acid 91 

oxidation in mitochondria (Merrill et al., 1997; Vavvas et al., 1997). Knockout of the 92 

AMPK gene is linked to higher incidence of obesity and fatty liver (Viollet et al., 2003). 93 

On the other hand, its over-expression attenuates fatty liver through activation of 94 

enzymes associated with fatty acid oxidation (Jørgensen et al., 2007; Winder et al., 95 

2000). Thus, AMPK has received attention as a novel target for treatment of fatty liver 96 

in mammals (Lin et al., 2007). Although the existence of AMPK has been reported in 97 

several fish species including blunt snout bream (Megalobrama amblycephala) (Xu et 98 

al., 2017), rainbow trout (Oncorhynchus mykiss) (Polakof et al., 2011b) and turbot 99 
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(Scophthalmus maximus) (Zeng et al., 2016), its role in regulating fish lipid metabolism 100 

has not yet been investigated. 101 

Blunt snout bream is an herbivorous freshwater fish native to China, and has been 102 

a favored aquaculture species in China due to its fast growth, tender flesh and high 103 

disease resistance. However, occurrence of fatty liver has been a common issue when 104 

reared in captivity due to its lower hepatosomatic index compared to other farmed fish 105 

species (Lu et al., 2014a). Metformin has been identified as one of the most commonly 106 

known agents for activation of AMPK and its potency in treatment of fatty liver has 107 

been established in mammals. To better understand the role of AMPK in regulating 108 

lipid metabolism in fish, effects of metformin on AMPK activation, lipid metabolism 109 

and lipid accumulation were investigated in primary hepatocytes of blunt snout bream.  110 

2. Materials and methods 111 

2.1. Experimental fish 112 

Blunt snout breams (averaging 100 g) were purchased from a private farm and 113 

transported to the aquaculture laboratory of Jimei University. The fish were stocked 114 

into a 1000-L tank supplied with aerated fresh water in a recirculating system and fed 115 

twice daily (8:30 and 16:30) with a commercial diet (Tongwei, Suzhou, China) (35% 116 

protein and 5% lipid) for two weeks. The average water temperature was 28±1.5 °C 117 

and the photoperiod was maintained on a 12:12 light:dark schedule. The fish were 118 

fasted for 24 h prior to sampling. 119 

2.2. Isolation of hepatocytes 120 

Prior to isolation of hepatocytes, fish were anesthetized with MS-222 (tricaine 121 

methanesulfonate; Sigma, USA) (100 mg l-1) and bled by cutting the gill arches. Then, 122 
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liver was rapidly isolated and washed several times in ice-cold phosphate buffered 123 

saline (PBS) containing antibiotic (100 IU ml-1 penicillin G sodium and 100 IU ml-1 124 

streptomycin). After removal of PBS by sterile pipette, the samples were cut into small 125 

pieces (about 1 mm3) and digested with pancreatin at 28 °C for 30 min. Thereafter cell 126 

suspension was centrifuged at 500 ×g for 10 min and washed twice. The harvested cell 127 

pellets were re-suspended in Leibovitz's L-15 medium (L15 medium) (HyClone™, 128 

USA) with 15% fetal bovine serum (Biological Industries, USA) at a density of 1×106 129 

ml-1. For each test three different fish were used and each time the livers were pooled 130 

to make a single sample. 131 

2.3. Cell treatment 132 

Two milliliter of isolated hepatocytes was seeded in each well of 6-well culture 133 

plates. After 24 h, all cells attached and cultured in 2 ml of the following media: control 134 

medium (L15), high-fat medium (L15+400 µM oleic acid), and metformin medium 135 

(L15+400 µM oleic acid+200 µM metformin). After 48 h, the cells and supernatant 136 

were collected for analysis. The supernatant was collected by sterile pipette. Then, cells 137 

were harvested by trypsinization (0.25% trypsin–EDTA) at 25 °C in 5 min. All the tests 138 

were performed in three replicates. Each replicate was made up by pooling six wells 139 

for Western blotting, and two wells for the rest of the tests.    140 

2.4. Biochemical parameters 141 

Cell triglyceride and total cholesterol (TC) concentrations were determined by 142 

colorimetric enzymatic methods using commercial kits (Beijing BHKT Clinical 143 

Reagent Co., Ltd, China) as described previously (Lu et al., 2016a). Activities of 144 

aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in supernatant 145 

were measured through enzymatic colorimetric methods according to Reitman and 146 
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Frankel (1957). 147 

2.5. Gene expression 148 

Total RNA was extracted from the hepatocytes using RNAiso Plus (Takara Co. Ltd, 149 

Japan) according to the protocol provided by the manufacturer. Isolated RNA was 150 

quantified using the NanoDrop ND-2000 spectrophotometer, and its integrity was 151 

confirmed by agarose gel electrophoresis. RNA samples were treated by RQ1 RNase-152 

Free DNase prior to RT-PCR (Takara Co. Ltd, Japan) to avoid genomic DNA 153 

amplification. cDNA was generated from 500 ng DNase-treated RNA using ExScriptTM 154 

RT-PCR kit (Takara Co. Ltd, Japan), and the mixture consisted of 500 ng RNA, 2 µl 155 

buffer (5×), 0.5 µl dNTP mixture (10 mM each), 0.25 µl RNase inhibitor (40 U µl-1), 156 

0.5 µl dT-AP primer (50 mM), 0.25 µl ExScriptTM RTase (200 U µl-1), and total volume 157 

made up to 10 µl with DEPC-treated H2O. The reaction conditions were as follows: 158 

42 °C for 40 min, 90 °C for 2 min, and 4 °C thereafter. 159 

Real-time PCR was employed to determine mRNA levels based on the SYBR® 160 

Green I fluorescence kit (Takara Co. Ltd, Japan). Primer characteristics used for real-161 

time PCR are listed in Table 1, according to the MIQE Guidelines (Bustin et al., 2011). 162 

Real-time PCR was performed in a Mini Option real-time detector (BIO-RAD, USA). 163 

The fluorescent quantitative PCR reaction solution consisted of 12.5 µl SYBR® premix 164 

Ex TaqTM (2×), 0.5 µl PCR forward primer (10 µM), 0.5 µl PCR reverse primer (10 165 

µM), 2.0 µl RT reaction (cDNA solution), and 9.5 µl dH2O. The reaction conditions 166 

were as follows: 95 °C for 3 min followed by 45 cycles consisting of 95 °C for 10 s and 167 

60 °C for 20 s. The fluorescent flux was then recorded, and the reaction continued at 168 

72 °C for 3 min. The dissolution rate was measured between 65 and 90 °C. Each 169 

increase of 0.2 °C was maintained for 1 s, and the fluorescent flux was recorded. All 170 

amplicons were initially separated by agarose gel electrophoresis to ensure that they 171 
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were of correct size. A dissociation curve was determined during the PCR program to 172 

make sure that specific products were obtained in each run. All reactions were 173 

performed in three technical replicates. The gene expression levels were normalized 174 

towards mean of the reference gene (β-actin). The gene expression was calculated by 175 

using the comparative (2-ΔΔCt) method (Livak and Schmittgen, 2001). 176 

2.6. Western blotting 177 

Western blots were carried out following the protocols described by Lau and 178 

Richards (2011) with slight modifications. Briefly, cell pellets (about 108 cells) were 179 

lysed in ice-cold lysis buffer (Cell Signaling, Danvers, MA, USA) and centrifuged at 180 

12000 ×g for 5 min, and then the resulting supernatants were stored at -80 °C. Total 181 

protein was determined according to the methods outlined by Bradford (Bradford, 182 

1976). Aliquots of each sample were added to an equal volume of SDS-sample buffer 183 

(Laemmli, 1970), boiled for 5 min, and 20 μg of total protein was loaded into each well, 184 

separated by SDS-PAGE for 1-2 h at 100 V using a Mini-Protean system (BioRad, 185 

Spain) and transferred to a polyvinylidene fluoride (PVDF) membranes (Millipore, 186 

Massachusetts, USA). Subsequently, the membrane was blocked with blocking buffer 187 

(20 mM Tris-HCl, 150 mM NaCl, 0.05% Tween-20, pH 7.6) containing 5% (w/v) non-188 

fat dry milk for 1 h. The membrane was then incubated with rabbit polyclonal 189 

antibodies against GAPDH blots (Cell Signaling Technology, USA), anti-AMPKα (Cell 190 

Signaling Technology, USA) and antiphospho-AMPKα (#2535, Cell Signaling 191 

Technology, USA) at 4 °C overnight. After washing, membranes were incubated with 192 

anti-rabbit secondary antibody. Bands were visualized by an electro-193 

chemiluminescence (ECL) system (GE Healthcare, Buckinghamshire, UK) and 194 

quantified by the densitometry band analysis tool in ImageJ 1.44p. 195 
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2.7. Mitochondria 196 

The activities of respiratory chain complexes (I, II, III) and citrate synthase were 197 

determined using commercial kits (Nanjing JianCheng Bioengineering Institute, China) 198 

as described previously (Lu et al., 2017). Thiobarbituric-acid-reactive substances 199 

assays were performed with a malondialdehyde (MDA) kit (Nanjing JianCheng 200 

Bioengineering Institute) as described by Rueda-Jasso et al. (2004). Mito tracker green 201 

was used for mitochondrial labeling. Hepatocytes were incubated in phenol red-free 202 

Dulbecco's Modified Eagle's Medium (DMEM) containing 10% foetal calf serum and 203 

labeled with 80 nM Mito Tracker Green FM (Beyotime C1048-50μg; Nantong, China), 204 

and incubated for 30 min at 28 °C, in a humidified atmosphere, 5% CO2 in air, 205 

subsequently washed with DMEM medium, and examined and photographed by 206 

fluorescence microscopy (450-490 nm excitation light, 520 nm barrier filter; Olympus). 207 

2.8. Fatty acid oxidation rate 208 

Mitochondrial and peroxisomal β-oxidation of hepatocytes were determined using 209 

radiolabelled [1-14C] palmitate (16:0) as a substrate, as described previously (Lu et al., 210 

2014b). Palmitate oxidation rates were measured at 28 °C using two media as described 211 

by Frøyland et al. (1995), the first allowing the total (mitochondrial and peroxisomal) 212 

activities to occur (13.2 mM HEPES [pH 7.3], 16.5 mM MgCl2, 82.5 mM KCl, 13.2 213 

mM dithiothreitol, 6.6 mM ADP, 0.2 mM NAD+, 100 mM-CoA and 0.7 mM EDTA), 214 

the second allowing the peroxisomal activity only (the medium only differing by the 215 

presence of 73 mM antimycin and 10 mM rotenone to block the mitochondrial 216 

respiratory chain). Palmitate oxidation was measured with 115 µM [1-14C] palmitate 217 

supplemented with 1.2 mM L-carnitine. The samples were incubated for 60 min at 218 

28 °C, then reactions were stopped by addition of 1.5 M KOH; fatty acid-free bovine 219 

serum albumin (BSA, 100 mg ml-1) was added to the suspension in order to bind 220 
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unoxidized substrates and then 4 M HClO4 was added to precipitate unoxidized 221 

substrates bound to BSA. The total solution was then centrifuged at 1880 �g for 15 222 

min. Aliquots of 200 µl were transferred to a scintillation tube containing 4 ml of liquid 223 

scintillation cocktail and assayed for radioactivity in a LS6500 liquid scintillation 224 

analyzer (Beckman, USA).  225 

2.9. Oxidative status 226 

Cell suspensions were incubated at 37 °C for 30 min with 10 µM 2ˈ,7ˈ 227 

dichlorofluorescein diacetate (DCFH/DA, Nanjing Jiancheng Bioengineering Institute, 228 

China). To measure the intracellular reactive oxygen species (ROS), the fluorescence 229 

of DCF was excited by a 15mW laser tuned to 488 nm and the emitted fluorescence 230 

was measured with 530/30 band pass filter in a FACScalibur Becton Dickinson flow 231 

cytometer. The conditions for data acquisition and data analysis were established using 232 

negative and positive controls with the CellQuest Program of Becton Dickinson and 233 

these conditions were maintained during all the experiments. Total superoxide 234 

dismutase (SOD) activity was measured using a commercial kit (Nanjing Jiancheng 235 

Bioengineering Institute, China) according to Nakano (1990). Glutathione peroxidase 236 

(GPX) activity was measured using the method of Dabas et al. (2012). Thiobarbituric-237 

acid-reactive substances assays were performed with amalondialdehyde (MDA) kit 238 

(Nanjing Jiancheng Bioengineering Institute, China) as described by Rueda-Jasso et al. 239 

(2004).  240 

2.10. Statistical analysis 241 

Data were analyzed by one-way ANOVA using the SPSS 16.0 for Windows. 242 

Duncan's test was used for the multiple comparisons. The level of significance was set 243 

at P < 0.05. All data were presented as means ± SE. 244 
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3. Results 245 

3.1. Cellular lipid accumulation 246 

Hepatocytes cultured with high-fat medium had significantly (P < 0.05) higher TG 247 

and TC contents than the control group, and metformin addition to high-fat medium 248 

significantly reduced their values (Fig. 1A, B). Also, significantly higher AST activity 249 

was detected in the high-fat medium group and a significant reduction was obtained by 250 

metformin supplementation (Fig. 1C). A similar trend was observed for ALT activity 251 

although no significant differences were found between high-fat and metformin groups 252 

(Fig. 1D).  253 

3.2. AMPK activity 254 

    Western blot analyses revealed significant reduction in expression of AMPK and 255 

phospho-AMPK proteins in the high-fat medium group, while metformin inclusion 256 

significantly increased their expression levels (Fig. 2).  257 

3.3. Fatty acid β-oxidation 258 

Both mitochondrial and peroxisomal fatty acid oxidation rates were significantly 259 

lower in the high-fat medium group than in the control, while their values were 260 

significantly improved by metformin addition and comparable values to those of 261 

control group were achieved (Fig. 3A, B). Similarly, CPT I activity was significantly 262 

lower in the high-fat medium group and this was reversed by supplementing metformin 263 

to the culture medium (Fig. 3C).  264 

3.4. Expression of lipid metabolism-related genes 265 

Expression of the genes associated with lipid metabolism including PPARα, 266 

PPARβ, CPT I, AOX, PGC-1α, PGC-1β, ACC2, TFAM, FAS and SREBP-1C are 267 

presented in Fig. 4. The results showed that metformin supplementation significantly 268 
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up-regulated the expression of PPARα, CPT I, AOX, PGC-1α and TFAM compared to 269 

the high-fat medium group. An opposite trend was true in the case of ACC2 gene, where 270 

the high-fat medium treated group exhibited dramatically higher expression level of 271 

ACC2 than the other groups. Expression of FAS and SREBP-1C genes were down-272 

regulated in high-fat medium group and a further reduction was observed by metformin 273 

addition. Expression of other investigated genes including PPARβ and PGC-1β were 274 

unchanged.       275 

3.5. Mitochondrial status 276 

Activities of citrate synthase and mitochondrial complexes are presented in Fig. 5. 277 

Activities of mitochondrial complex I, II and III were significantly suppressed in high-278 

fat medium group compared to control. Metformin supplementation significantly 279 

increased activities of mitochondrial complex I and II, however, the values were still 280 

significantly lower than those of the control group. A similar increase was observed for 281 

complex III activity but the difference was not significant. However, citrate synthase 282 

activity was not significantly influenced. Mito-Tracker Green, a fluorescent molecular 283 

probe with high affinity for mitochondrial membranes, was used to identify 284 

mitochondria in living cells. As shown in Fig. 6, the fluorescence intensity in the high-285 

fat medium group was weaker than the other treatments. 286 

3.6. Oxidative status 287 

The results showed significant enhancement of ROS in the high-fat medium group 288 

and inclusion of metformin significantly reduced ROS concentration in cells incubated 289 

in high-fat medium (Fig. 7A). Likewise, significantly higher MDA concentration was 290 

detected in the high-fat treatment and an intermediary value was achieved with the 291 

metformin-treated group (Fig. 7B). High-fat medium showed significantly lower SOD 292 
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and GPX activities than control, and metformin addition resulted in significant 293 

enhancement of GPX activity and numeral increase of SOD activity (Fig. 7C, D).    294 

4. Discussion 295 

Metformin has long been used as an anti-diabetic drug capable of modulating 296 

muscle and liver metabolism and controlling hyperglycemia in mammals (Alengrin, 297 

1995; Lin et al., 2000; Panserat et al., 2009; Zhou et al., 2001). These functions have 298 

also been investigated in fish and the results have revealed the mammalian-like effects 299 

of metformin (Magnoni et al., 2012; Polakof et al., 2011a; Xu et al., 2018). It has been 300 

suggested that metformin exerts its therapeutic effects through activation of AMPK 301 

(Zou et al., 2004) which is linked to reduced glucose production and facilitated fatty 302 

acid oxidation in hepatocytes (Zhou et al., 2001). In addition, studies in humans showed 303 

that metformin can ameliorate liver dysfunction in patients with fatty liver (Garinis et 304 

al., 2010). Lipid accumulation has been reported in chronic metabolic diseases such as 305 

obesity and type 2 diabetes, and it has been demonstrated that AMPK activation inhibits 306 

excessive nutrient-induced hepatic lipid accumulation (Li et al., 2014). To our 307 

knowledge, this is the first report to evaluate the regulatory effects of metformin on 308 

lipid metabolism in fish with a particular emphasis on its efficacy in AMPK activation.  309 

The results achieved for TG and TC concentrations in hepatocytes demonstrated 310 

clearly that metformin could attenuate lipid accumulation in fish hepatocytes subjected 311 

to “high-fat” via supplementation with oleic acid. In agreement with our results, Xu et 312 

al. (2018) showed that metformin supplementation in both low and high carbohydrate 313 

diets for blunt snout bream resulted in reduced lipid accumulation in liver and adipose 314 

tissues and decreased plasma triglyceride concentration. The authors attributed these 315 

results to increased fatty acid oxidation and/or inhibited fatty acid synthesis through 316 

activation of AMPK that ultimately resulted in reduced lipid accumulation (Zang et al., 317 
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2004). Also, Kim et al. (2010) reported that metformin lowered liver TG and TC 318 

contents and prevented fat accumulation in liver of mice fed a high-fat diet. These 319 

authors suggested that such effects of metformin were mediated through AMPK 320 

activation, which eventually results in decreased expression of sterol regulatory 321 

element binding protein-1C (SREBP-1C) and fatty acid synthase (FAS). Similarly, in 322 

the current study metformin treatment down-regulated the expression of both SREBP-323 

1C and FAS genes. SREBPs play key roles in both lipogenesis and cholesterol 324 

homeostasis (Horton et al., 1998; Kim et al., 1998; Pai et al., 1998; Shimano et al., 325 

1996). It is believed that SREBP-1 is particularly involved in activation of the genes 326 

that control fatty acid metabolism and de novo lipogenesis (Horton et al., 1998; Pai et 327 

al., 1998). Furthermore, it has been suggested that modulation of FAS by SREBP-1c is 328 

dependent on upstream stimulatory factors (Griffin et al., 2007; Latasa et al., 2003; 329 

Yoshikawa et al., 2001). SREBP-1c is the key modulator of hepatic triglyceride 330 

synthesis, making it a target for the inhibition and/or therapy of steatosis in hepatocytes.  331 

AST and ALT levels are often used as indicators of liver disease including non-332 

alcoholic fatty liver (Krakoff et al., 2010). The results of a study on mice showed 333 

enhancement of serum AST and ALT activities following administration of a high-fat 334 

diet, and metformin supplementation suppressed the activity of both enzymes (Kim et 335 

al., 2013). Krakoff et al. (2010) used serum ALT activity as a marker for non-alcoholic 336 

fatty liver disease (NAFLD) in humans, and their results showed a significant reduction 337 

of ALT activity in metformin-treated patients. Furthermore, it has been reported that 338 

metformin lowered aminotransferases level and decreased liver fat content in mice with 339 

NAFLD (Lin et al., 2000). Likewise, in the current study, the high-fat medium group 340 

showed significantly higher AST and ALT activities than control, and treatment with 341 

metformin led to reduced activity of both enzymes although the difference was not 342 



16 
 

statistically significant in the case of ALT activity. 343 

The results of a recent in vivo study revealed the induction of AMPK 344 

phosphorylation by metformin administration in fish (Xu et al., 2018). It has been 345 

reported that metformin phosphorylates AMPK via stimulation of LKB1 kinase activity 346 

(Shaw et al., 2005). As such, the results of Western blot analysis in the present study 347 

showed clearly that metformin can up-regulate the expression of AMPK and P-AMPK 348 

proteins in hepatocytes. Similarly, Kim et al. (2010) showed that metformin enhanced 349 

AMPK and P-AMPK expression in mice compared to mice receiving a high-fat diet. 350 

However, some in vitro studies showed no significant alteration of AMPK 351 

phosphorylation in fish hepatocytes (Polakof et al., 2011b). These inconsistent results 352 

could be due to differences in the duration of treatment of hepatocytes with metformin; 353 

in the current study hepatocytes were treated with 200 µM metformin for 48 h while 354 

Polakof et al. (2011b) incubated the rainbow trout hepatocytes with metformin for 16 355 

h.  356 

It has been shown that there is a correlation between liver fatty acid oxidation and 357 

fatty liver (Smith et al., 2016); where enhancement of oxidation rate reduced fatty liver 358 

(Perry et al., 2015; Stefanovic-Racic et al., 2008) while suppressed oxidation facilitated 359 

development of fatty liver (Zhang et al., 2007). AMPK , as a cellular “energy sensor”, 360 

plays a key role in lipid metabolism (Hardie and Sakamoto, 2006). Once fatty acids are 361 

taken up across the plasma membrane and activated to fatty acyl-CoA, they are either 362 

directed towards oxidation or storage. At this stage, AMPK plays a role by determining 363 

the fate of the absorbed fatty acids as it is known to phosphorylate and inactivate acetyl-364 

CoA carboxylase (ACC) leading to reduced malonyl-CoA, which is an inhibitor of CPT 365 

I (McGarry et al., 1978; Saha and Ruderman, 2003). CPT I is considered as the 366 

mitochondrial gateway for fatty acid entry into the matrix, and is the main modulator 367 
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of hepatic mitochondrial β-oxidation flux (Bartlett and Eaton, 2004; Lu et al., 2016b). 368 

Attenuated β-oxidation capacity resulting from reduced catalytic efficiency of CPT I 369 

has been recognized as one of the main causes of fatty liver in fish (Lu et al., 2014b). 370 

Our previous research showed that reduction of fatty acid β-oxidation in blunt snout 371 

bream is closely linked to the occurrence of fatty liver (Lu et al., 2014b). In the current 372 

study, the metformin-treated group exhibited significantly higher AMPK protein 373 

expression level and β-oxidation capacity than the high-fat medium group indicating 374 

that metformin increased fatty acid oxidation in hepatocytes through AMPK activation. 375 

This notion was also supported by enhanced CPT I activity in the metformin-treated 376 

group over high-fat medium group.  377 

ACC has two different isoforms, ACC1 and ACC2, with the only difference 378 

between the two forms being the presence of an extra NH2-terminal extension of 146 379 

amino acids in ACC2, localizing the enzyme to mitochondria (Abu-Elheiga et al., 1995, 380 

2000). Such localization has been suggested to be related to the regulatory effects of 381 

ACC2 on fatty acid oxidation, as malonyl-CoA is produced in close proximity to CPT 382 

I (Iverson et al., 1990). The results of early experiments in mammals showed that 383 

AMPK inhibits ACC2 activity by phosphorylating at Ser-221 (Ahu-Fjheiga and Wakil, 384 

1997). It has been shown that ACC2 exhibits similar phosphorylation in fish and these 385 

serine residues are conserved (Cheng et al., 2011; He et al., 2014). Although in the 386 

current study malonyl-CoA content was not measured, the expression of ACC2 gene in 387 

liver was down-regulated by metformin indicating that inhibition of ACC2 by AMPK 388 

activation contributed to increased CPT I activity and fatty acid β-oxidation. Moreover, 389 

it has been reported that expression of CPT I mRNA is influenced by PPARs as CPT I 390 

has a PPAR responsive component (Rao and Reddy, 2001). All the mammalian isotypes 391 

of PPAR have also been recognized in several fish species although their function has 392 
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been shown to be different (Leaver et al., 2005). In fish, PPARα activates lipid 393 

catabolism through transcriptional control of target genes encoding enzymes involved 394 

in peroxisomal and mitochondrial β-oxidation mainly in the liver (Michung, 2009). Up-395 

regulation of PPARα was correlated with increased CPT I activity (Morais et al., 2007). 396 

Meanwhile, previous studies have revealed that AMPK activation is accompanied by 397 

increased PPARα expression (Baar, 2004; Lee et al., 2006). So, up-regulation of PPARα 398 

by AMPK activation in this study could be another contributing factor to enhanced CPT 399 

I activity and fatty acid β-oxidation. Lu et al. (2014b) reported the down-regulation of 400 

AOX gene expression in blunt snout bream following administration of a high-fat diet. 401 

AOX is believed to catalyze the first rate-limiting step in peroxisomal β-oxidation 402 

(Morais et al., 2007). The authors attributed the reduced AOX activity to the decreased 403 

peroxisomal β-oxidation. Likewise, in the current study both AOX gene expression and 404 

β-oxidation rate decreased in the high-fat medium group.   405 

In addition to CPT I activity, both quantity and quality of mitochondria are 406 

considered as critical factors in determining β-oxidation capacity (Du et al., 2006; 407 

Morash et al., 2008). There are several reports indicating that drastic decrease in 408 

mitochondrial protein content of liver as well as the impairment of mitochondria leads 409 

to reduced metabolic activity and oxidative capacity in fish (Du et al., 2006; Lu et al., 410 

2014b). In the present study, Mito-Tracker Green, which is a molecular probe with high 411 

affinity for mitochondrial membranes, was used to identify mitochondria in the living 412 

cells. The results demonstrated lower abundance of mitochondria in the high-fat 413 

medium group compared to the other groups. This is consistent with previous findings 414 

in fish that showed the administration of high-fat diets reduced mtDNA copies and 415 

mitochondrial protein (Liao et al., 2016; Lu et al., 2014a). Furthermore, our results 416 

indicated enhanced abundance of mitochondria following metformin supplementation. 417 
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This could be due the fact that AMPK is involved in mitochondrial biogenesis (Zong et 418 

al., 2002). In mammals, PGC-1α is considered as a key regulator of mitochondrial 419 

biogenesis through stimulating the expression of mitochondrial transcriptional factor A 420 

(TFAM) (Lehman et al., 2000; Puigserver et al., 1998; Wu et al., 1999). AMPK 421 

activation has been identified as a prerequisite for increased expression of PGC-1α 422 

(Zong et al., 2002). Accordingly, it could be suggested that AMPK activation by 423 

metformin in the present study up-regulated PGC-1α expression leading to subsequent 424 

enhancement of mitochondrial biogenesis. We found a notable increase in expression 425 

of complex I, II and III by metformin inclusion. Although the precise underlying 426 

mechanism is still unclear, we suggest that this could be associated with enhanced 427 

mitochondrial biogenesis as newly generated mitochondria exhibit improved biological 428 

function.  429 

There are numerous studies indicating that lipid accumulation in liver adversely 430 

affects liver function and induces oxidative stress in fish (Lu et al., 2016a). Since 431 

mitochondria are the main site of ROS formation, mitochondria dysfunction could be 432 

taken as one of the main causes of oxidative stress. Likewise, in the current study the 433 

high-fat medium group exhibited the highest concentrations of ROS and MDA and the 434 

lowest SOD and GPX activities, and metformin supplementation could reduce ROS 435 

and MDA concentrations and enhance GPX activity. It is believed that mitochondrial 436 

complex I is involved in scavenging ROS in the inner mitochondrial membrane (Bottje 437 

and Carstens, 2009), and that the lower activity of complex I results in over production 438 

of ROS (Lu et al., 2016a). Therefore, reduction of ROS and MDA concentrations by 439 

metformin in the present study could be attributed to enhanced complex I activity.         440 

In conclusion, the findings in the present study showed that metformin activated 441 

AMPK in hepatocytes of blunt snout bream, and this was accompanied by enhanced 442 
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fatty acid β-oxidation via AMPK/ACC2/CPT I and AMPK/PPARα/CPT I pathways. 443 

Furthermore, AMP activation up-regulated the expression of PGC-1α and TFAM, 444 

which are involved in mitochondrial biogenesis. Furthermore, metformin decreased 445 

hepatic ROS and MDA concentrations via enhancing mitochondrial complexes activity. 446 

Overall, activation of AMPK by metformin could attenuate lipid accumulation and 447 

oxidative stress in hepatocytes mainly due to elevation of fatty acid β-oxidation and 448 

mitochondrial function.  449 
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 765 
Fig.1. Concentrations of triglyceride (TG: A) and total cholesterol (TC: B), and 766 
activities of aspartate aminotransferase (AST: C) and alanine aminotransferase (ALT: 767 
D) in primary hepatocytes of blunt snout bream. Bars with different letters are 768 
significantly different (P < 0.05). 769 
  770 
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 771 
Fig.2. AMPK (A) and phospho-AMPK (B) expression levels as determined by Western 772 
blot in primary hepatocytes of blunt snout bream. Bars with different letters are 773 
significantly different (P < 0.05). 774 
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Fig.3. Mitochondrial (A) and peroxisomal (B) β-oxidation, and CPT I (C) activity in 818 
primary hepatocytes of blunt snout bream. Bars with different letters are significantly 819 
different (P < 0.05). 820 
  821 
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822 

Fig.4. Relative expression of lipid metabolism related genes in primary hepatocytes of 823 
blunt snout bream. Bars with different letters are significantly different (P < 0.05). 824 
  825 
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826 
Fig.5. Activities of citrate synthase (A) and mitochondrial complexes (I: B, II: C, III: 827 
D) in primary hepatocytes of blunt snout bream. Bars with different letters are 828 
significantly different (P < 0.05). 829 

830 
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  831 
Fig.6. Mitochondria abundance identified by Mito-Tracker Green in hepatocytes of 832 
blunt snout bream (A: control, B: high-fat, C: metformin). The fluorescence intensity 833 
is indicative of mitochondria abundance.    834 
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 835 
 836 

837 
Fig.7. Concentrations of reactive oxygen species (ROS: A) and malondialdehyde 838 
(MDA: B), and activities of superoxide dismutase (SOD: C) and glutathione peroxidase 839 
(GPX: D) in primary hepatocytes of blunt snout bream. Bars with different letters are 840 
significantly different (P < 0.05). 841 
  842 
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Table 1. Sequences of primers used for RT-PCR in this study. 843 

Target genes Forward primer sequence (5' to 3') Reverse primer sequence (5' to 3') Annealing temperature (°C) 
β-Actin CGGACAGGTCATCACCATTG CGCAAGACTCCATACCCAAGA 60 
PPARα GAGGAACCGAAACAAGTGCCAATA GCTCAGTCACCGTCTCAACC 60 
PPARβ GGACTCACTATGGCAGGCAGAA CACTGGCAGCGGTAGAAGACAT 60 
CPT I TACTTCCAAAGCGGTGAG AGAGGTATTGTCCGAGCC 60 
AOX GCTCAACCCTGGCATACT TCATCACACCCATTCGCT 60 
PGC-1α TGCCCTCGGTTCATTGTC GATTTCTGATTGGTCGCTGTA 60 
PGC-1β CTCTAAGGGTGAATCGCAACG  TCCTCCGCCACTTCCACAT 60 
ACC2 CGGAGTTATCAAGCCAAGAGC ACAGCAGTCGCCGCAAA 60 
TFAM CTTTGGTATCCAGGGAGCAGT GTTGAATCGCATCCAGTCGT 60 
FAS TTGTTCCTCATCCACCCC TGCCTCAAGCACTCCACG 60 
SREBP-1C AGAACAGAGGAGTGCGAGAT CCGCTGCCTAGTTTGATG 60 

PPARα: Peroxisome proliferator-activated receptor α 844 

PPARβ: Peroxisome proliferator-activated receptor β 845 

CPT I: Carnitine palmitoyltransferase I 846 

AOX :Acyl-Co A Oxidase 847 

PGC-1α: Peroxisome proliferators activated receptor γ coactivator-1 α 848 

PGC-1β: Peroxisome proliferators activated receptor γ coactivator-1 β 849 

ACC2: Acetyl CoA carboxylase 2 850 

TFAM: Mitochondrial transcription factor A 851 

FAS: Fatty acid synthesis 852 

SREBP-1C: sterol regulatory element binding protein-1C 853 
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