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Abstract 

The effects of low pH, AI, organic and phenolic acids on the growth of naturally occurring plant 

species were determined. The amelioration of Al toxicity by Si and organic acids was also 

investigated. 

Plants were grown from seeds in nutrient solutions simulating the ionic composition of soil solutions 

from five soil types ranging from acidic peat to calcareous soil. Soil solutions were extracted and 

analysed using centrifugation, with and without an immiscible displacent (1,1, I-trichloroethane), at 

both low (4000 rpm) and high speed (12000 rpm). 

Races of Holcus lanatus L. and Betula pendula Roth. from acidic soils (PM and SMM) grew better in 

low pH solutions (pH< 4.0). In acid-sensitive races Ca absorption was inhibited at low pH. 

Races of Bpendula from strongly to moderately acidic soils (PM, SMM, KP) were AI-tolerant and 

effectively excluded Al from shoots. Root elongation and leaf expansion were inhibited by all Al 

concentrations in races from calcareous soils (KR). 

Low concentrations of Al stimulated growth in some races of B.pendula (2 and 5 mg Al rl) and 

Anthoxanthum odoratum L. (1.3 and 2.7 mg Al rl). 

Al (25 and 35 mg rl) inhibited root and shoot growth in H.lanatus. Si (1500 and 2500 11M Si(OH)4) 

addition to nutrient solutions alleviated AI-damage and restored nutrient uptake to values similar to 

those in plants grown with neither Al or Si. The ameliorative effects of Si were possibly achieved 

through AIISi co-deposition in the root cell walls and maintenance of Golgi activity. Si at 1500 11M 

was beneficial but inhibited growth at 2500 11M. Al and hydroxyaluminosilicates at pH 5.6 were not 

toxic. 

Formic and tartaric acid ameliorated Al toxicity by reducing its availability. These organic acids on 

their own stimulated growth in H.lanatus and Deschampsiaflexuosa (L.) Trin. 

Phenolic acids stimulated growth of H.lanatus in acidic solutions (pH 4.0) but not near-neutral 

solutions, particularly in races from soils high in phenolics. Addition of plant residue to acidic peats 

increased the growth of races from calcareous and acidic mineral soils. 
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Chapter 1 

General Introduction 

The nature of soil acidity, together with its implications for plant growth, are discussed in this 

introduction. There are several causes of soil acidity. Soil parent materials may be acid and initially low 

in basic cations (granite, base-poor sands) (Fitter & Hay 1991, Frageria et al. 1990), or these elements 

may have been removed from the soil profile by leaching or harvesting of crops. More recently soils 

have acidified through anthropogenic effects including nitrogenous fertilisers and acid deposition. 

1.1 Soil acidification 

1.1.1 Endogenous soil acidifying factors 

Soil acidification is a slow process when only endogenous factors are operating (de Klein et al. 1997, 

Helyar & Porter 1989). Living soil organisms and plants respire producing C02, which dissolves in soil 

water to give carbonic acid, H2C03, which dissociates to HCOr and H+. The hydrogen ion does not 

exist as a free proton (H+) in solution but rather is combined with at least one molecule of water forming 

the oxonium or hydronium ion, H30+. For simplicity the H30+ ion will be referred to as the H+ ion. 

H+ ions are discharged from plant roots when cation uptake exceeds anion uptake, thus maintaining 

charge balance. In addition, both H+ ions and humic residues (organic and phenolic acids) are released 

as the products of plant litter and soil organic matter decomposition (Drever 1994, Drever & Stillings 

1997, Rowell 1988, Rowell 1995, Tan 1998, Thomas & Hargrove 1984). The mineralization of organic 

matter produces nitrate, sulphate, and phosphate. Production of N03- (discussed later) involves the 

nitrification ofNH4+ and concurrent production ofH+ ions. 

The phenolic and carboxylic acids of soil organic matter are not only sources of H+ ions but are also 

involved in soil pH buffering which is discussed later. Organic acids have been shown to reduce Al 

toxicity (Foy et al. 1990, Gerke 1994, Harper et al. 1995, Hue et al. 1986, Kerven et al. 1991,Ostatek­

Boczynski et al. 1995, Ownby & Popham 1989, Slattery & Morrison 1995, Suhayda & Haug 1986, 

Suthipradit et al. 1990) by chelating Al in non-toxic forms (Table 1.1). Evans & Kamprath (1970) found 

less exchangeable AI in organic soils compared with mineral soils despite the low pH of both. Phenolic 

acids have also been implicated in allelopathy (Rice 1984) and have been shown to be toxic to plants in 

mixtures of low concentrations (Vaughan et al. 1993). More recently, phenolic acids in plants were 



suggested to be adaptations to soil acidity (Northup et al. 1995). The effects of organic and phenolic 

acids on plant growth are investigated in Chapters 8 and 9. 

Weathering of primary minerals occurs via physical disintegration and chemical processes (Brady 1990) 

which is primarily governed by leaching soil water and its dissolved salts and acids (sources listed 

above) and climatic conditions. Hydrolysis, hydration, and oxidation reactions operate simultaneously 

converting primary minerals into secondary silicate minerals. Products of these reactions, basic cations 

(including Ca2+, Mg2+, Na+, and K+), can be leached out, remain in solution, or form part of the crystal 

lattice of new minerals (Nortcliff 1988). As the leaching of basic cations continues, they are replaced by 

acidic H+ and A13+ ions on their exchange sites (McLean & Brown 1984). The ratio of Al:Ca+Mg+K 

in the soil solution will increase parallel to the increased ratio on exchange sites (Rowell 1988). 

Weathering does not cease after secondary minerals are formed but continues to form more stable 

chemical states such as kaolinite and quartz, and under extreme weathering, oxides of aluminium (AI) 

and iron (Fe). The composition of primary minerals influences their susceptibility to weathering. In 

general acidic rocks show much less chemical change than more basic rocks (Nortcliff 1988). 

1.1.2 Exogenous soil acidifying factors 

1.1.2.1 Acid Rains 

Rain water is naturally acidic (pH 5.6) as a result of dissolved C02 and its dissociation. When 

impurities such as S02, NO, and N02, and their reaction products HN03, H2S04, S042-, and N03- , 

are present the acidity increases. Acid deposition became an increasingly important factor in soil 

acidification in Europe after the industrial revolution, and then more recently, with the expansion of 

livestock production and resulting ammonia emissions (Goulding & Blake 1998). Acid rain is a 

simplified term to describe all possible routes for the deposition of acidifying pollutants from the 

atmosphere (Marsden 1993). It has been implicated in most environmental damage in the northern 

hemisphere (De Graaf et al. 1997, Marsden 1993, Raubauch et al. 1998), particularly the decline of 

forests in Central Europe and North America (Hahn & Marschner 1998, Ingerslev 1997, Kreutzer & 

Weiss 1998, Matzner & Murach 1995). 

A decline in soil pH values has been found in several countries during this period. Ahokas (1997) 

compared topsoil pH measurements, of the southern coast of Finland, measured in 1995 with those of 

the mid 1930s. There was a mean decline of 0.57 ±O.l1 pH units which he attributed to long-distance air 

pollution carried via prevailing southwest winds. Pederson (1993) estimated that 40-65 % of total 

acidification in Danish forests was a result of air pollution. 
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Matzner & Murach (1995) summarised the effects of acid deposition: 

• increased rate of soil acidification 

• loss of base cations from exchange sites 

• decrease in soil pH 

• release of A13+ ions into the soil solution 

1.1.2.2 Nitrogen based fertilisers 

The regular use of ammonium-based fertilisers to supply N to crops has strong acidifYing influences on 

the soil (Adams 1984, Frageria et al. 1990, Rowell 1988). Ammonium-based fertilisers include 

anhydrous NH3, (NH2hCO (urea), NH4N03, and (NH4)2S04. The nitrification (or microbial 

oxidation) ofNH4+ to N03- occurs within a few weeks in agricultural soils via the following reactions: 

NH3 + 202 ~ H+ + N03- + H20 (nitrification of ammonia) 

(NH2hCO + 402 ~ 2N03- + 2H+ + C02 + H20 (nitrification of urea) 

NH4N03 + 202 ~ 2H+ + 2NOT + H20 (nitrification of ammonium nitrate) 

(NH4hS04 + 402 ~ 2N03- + 4H+ + 2H20 + S042- (nitrification of ammonium sulphate) 

Therefore the fertilisers themselves are not acid but they are acid-forming. The net reaction of 

ammoniacal N addition, nitrification, and subsequent uptake and assimilation ofN03- by plants would 

be neutral. However, N inputs are generally greater than those assimilated by biota and OH- ions, 

released in return for NOT uptake, do not completely neutralise generated acidity (Barak et al. 1997, 

Russell 1988). The leaching of NOT from the root zone causes permanent acidification by uncoupling 

the proton balancing system (Bouman et al. 1995). 

Soil acidification through exogenous factors is usually offset, in agricultural land, with the application of 

lime (de Klein et af. 1997), a practice which has been used for thousands of years. Current pollution 

however requires increasingly greater amounts of lime which, together with the intensification of 

agriculture, are not economically feasible (Goulding & Blake 1998). Lime addition is discussed in 

Chapter 4. 

1.2 The nature of soil acidity 

The inherent pH in any soil is a product of the interaction of several processes resulting in soil 

development. Consequently soil acidity involves more than just the pH of the soil solution. As soils 

become more acidic, according to the factors described above, there are associated changes in the soil 

solution: 
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• availability of essential plant nutrients, In particular Mo, P, Ca, and Mg, become limited to 

potentially deficient concentrations 

• solubilities ofrhizotoxic species including A13+ and Mn2+ are elevated 

• solubility and availability ofFe3+ is increased 

These manifestations of soil acidity may act (to a certain extent) independently but far more often act in 

conjunction to affect plant growth. It is therefore evident that establishing the mechanisms by which H+ 

ions, or indeed other rhizotoxic species such as A13+ ions, are directly toxic to plants is complex. The 

same challenge has faced researchers in the field of soil acidity for the past 30 years (Ritchie 1989). 

The effects of elevated H+, and AI3+ concentrations on plant growth are investigated in Chapters 4, 5, 6, 

and 7. 

1.2.1 Soil pH and its measurement 

The pH of a soil is an estimate of the acidity or alkalinity of the soil solution (Figure 1.1). An acid 

dissociates in water to H+ ions and an alkali dissociates to yield OH- ions. In other words pH measures 

the concentration (activity) of hydrogen ions, H+, and hydroxyl ions, OH-, in the soil solution (Brady 

1990). The soil solution is the water held within the soil pores at various tensions which depend upon 

both the pore size (micropores, mesopores, and macropores) and the amount of water present (Brady 

1990). 

The pH of a solution is defined as -log(H+), where (H+) is the activity of hydrogen ions in solution. In 

dilute solutions the activity is roughly equal to the concentration, [H+], in moll-I. Therefore pH is 

defined as: 

pH = -log[H+] 

(Brady 1990, Rowell 1995). Each unit change in pH represents a tenfold change in the activity of H+ 

and OH- ions. From the equation, 10-7 mol 1-1 [H+] is equivalent to pH 7 or neutrality. At pH 7 H+ 

ions are balanced by OH- ion. Above pH 7, OH- ions are in excess, and solutions are alkaline. Below 

pH 7, H+ ions dominate over OH- ions, and solutions are acidic. The range of pH in soil solutions is 

from about 3 to 10 (i.e. 10-3 to 10-10 mol H+ 1-1 )(Rowell 1995, Figure 1.1). 

A knowledge of soil pH is useful, and is frequently used to assess the extent of soil acidification, to 

estimate the susceptibility of soil to further acidification, and to evaluate the toxicity of elements to plant 

growth (Courchesne et al. 1995, Gillman 1991). For example, most plants grow best in slightly acid 

soils (pH 6-7, Figure 1.1) where the majority of plant nutrients are available in optimal concentrations 

(Tan 1998). However, pH is also an arbitrary unit since soil also involves exchangeable H+ as well as 

solution H+ (Rowell 1995, Thomas & Hargrove 1984). 
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The most common laboratory procedure adopted today, in the measurement of soil pH, involves a 

combined glass electrode and calomel electrode where the voltage difference between the two is 

measured by a millivoltmeter (pH meter). The two electrodes are first calibrated in buffer solutions of 

known pH (often pH values 4 and 7). ]n order to make electrical contact in the soil , a paste or 

suspension is prepared. Often an analysis of a I : 2.5 (g soil: ml distilled water) suspension is used 

(Allen 1989). 

The measured soi l pH is affected by the treatment of soil (drying/storage) between sampling and 

suspension preparation, and by the choice of solution used to prepare the suspension e.g. distilled water 

or electrolyte. 

Courchesne et al. (1995) determined the effects of air-drying on the pH of nine podzolic soil profiles in 

southern Quebec, Canada. Soil pH measurements were made in H20 (pHH20) and 0.01 M CaCl2 

(pHcac12) ' Drying generally resulted in so il acidification for all horizon types, and the pH change was 

greater and more consistent for H20 than CaCl2 (up to 0.5 and 0.25 pH units). The decrease in pH after 

a ir-drying was attributed to an increase in organic matter solubil ity (dissociation of carboxyl groups and 

phenolic groups) and extractable Al (and its subsequent hydrolysis). 

NEUTRALITY 

...--ACIDITY ---_____ __---- ALKALINIT¥----+ 
~ 

Very Strong Mod- Slight Slight Mod- Strong Very 
strong 

3 
.-. 

Extreme 
pH for 
acid peat 
so ils 

4 

erate 

5 6 
<II 

Range in pH 
common for humid 
region mineral so ils 

erate 

7 

<II ~ 

Range in pH common 
for arid region mineral 
so ils 

Extreme range in pH 
for most mineral so ils 

Figure 1.1. Soi l pH ranges (Brady 1990). 

strong 

Attained 
only by 
alkali 
mineral 
so ils 
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Addition of distilled water to soils containing predominantly 2: 1 and 1: 1 clays (negatively charged) 

decreases the concentration ofH+ ions in the soil solution and hence, in acid soils, causes an increase in 

the pH relative to the true soil solution in undisturbed soil (the dilution effect) (Gillman 1991, Rowell 

1988). A 2: 1 clay has two silica sheets (linked Si tetrahedral units) sandwiching one alumina sheet 

(linked Al octahedral units), and a 1: 1 clay has one Si sheet and one dioctahedral gibbsite sheet 

(02(OH)AI2(OH)3) (Brady 1990). 

In an attempt to avoid the "dilution effect" a dilute electrolyte solution (0.01 mol 1-1 CaCI2 or 0.1 

mol 1-1 KCI) is used to prepare the soil suspension. The dilution effect is counteracted since the added 

cation displaces H+ from the exchange sites into the solution, resulting in a soil pH about 0.5 units lower 

than that obtained with distilled water. However in acid soils, containing exchangeable monomeric 

AI3+, the addition of an electrolyte is reported to cause the displacement of AI, the hydrolysis of which 

results in a lowered pH also not representative of the undisturbed soil pH (Gillman 1991, Thomas & 

Hargrove 1984). The effectiveness of electrolytes in lowering soil pH values increases with the valence 

of the cation and electrolyte concentration (Black 1968, Thomas & Hargrove 1984). 

Other factors also affect the measured soil pH: the time of contact between soil and solution, the ratio of 

soil:distilled water, the position of the electrode in the suspension, and the temperature and partial 

pressure of C02 (Gillman 1991). The soil pH increases as the ratio of soil:water decreases, if the 

electrode is placed in the supernatant rather than settled sediment, and with a decrease in atmospheric 

C02 partial pressure. 

The effects of air-drying, water or CaCI2 suspensions, and CaCI2 concentration on the soil pH of a range 

of soil types are discussed further in Chapter 3. The method of pH measurement employed (ratio of 

soil:water, room temperature and C02 pressure, electrode position) was standardised to avoid any other 

effects. 

1.2.2 Types of soil acidity 

H+ ions are present in soils as adsorbed H+ ions by the clay complex or as free H+ in the soil solution. 

The former are exchangeable and constitute the potential, reserve or exchange acidity of soils. These 

dissociate into, and are in equilibrium with, the free H+ ions, or active acidity. Plant growth responds to 

the active acidity. 

The greater the soil cation exchange capacity (CEC) the greater the potential acidity, and the greater the 

resistance to change in soil pH (buffer capacity). In effect soils buffer H+ concentration through ion 

exchange of the clays, sesquioxides, and organic matter, thereby retaining an equilibrium between the 
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potential and active acidity (Daji 1970, Rowell 1995). Organic matter increases the CEC in soils and 

therefore the buffer capacity. Humic acids contain acidic functional groups, such as carboxyl and 

phenolic hydroxyl groups, that preferentially absorb H+ ions. Exchangeable AI in the soil also acts as an 

effective buffer and is discussed below. 

1.2.3 The chemistry of aluminium 

A knowledge of the behaviour of aluminium in acid soil solutions is essential in any rhizotoxic study. 

AI speciation is intricately linked to its bioavailability and therefore toxicity in biological systems 

(Birchall 1992). The toxic species are generally assumed to be the inorganic monomeric fraction of AI, 

A13+ and its derivatives (Table 1.1). Stable organo-AI (e.g. AI-citrate) and AI-F complexes are not 

considered phytotoxic (Fermindez-Sanjurjo et al. 1998, Table 1.1). 

Total soluble AI (AIr) is usually between 0.27-9.44 mg 1-1 in soil solutions, with concentrations >27.0 

mg 1-1 occurring in exceptional circumstances such as acid sulphate soils (Ritchie 1989). However AI 

does not solely exist in solutions as the free aqueous A13+ ion. Instead it undergoes a series of 

hydrolysis reactions (Table 1.1) dependent upon the concentration and type of ligands present, ionic 

strength, and pH of the solution (Chow 1992). The AI ions and their hydrolysis products are the primary 

sources of H+ ions in soils (pH< 6.0) for both active and potential acidity (Tan 1998). 

Martin (1986), using solutions of AI and pure water, described the species distribution of AI between 

pH's 3-8, where the only ligand present was hydroxide. He stated that, no matter what other ligands 

were present, an understanding of the state of A13+ in any aqueous system demands an awareness of the 

species that A13+ forms at different pH values with the components of water. 

In solutions more acidic than pH 5.0, A13+ existed almost solely as the octahedral hexahydrate, 

AI(H20 )63+, commonly abbreviated to AI3+. As the solution H+ concentration dropped and pH 

increased, A13+ underwent a series of successive deprotonations to yield AI(OH)2+ and AI(OH)2+. At 

neutrality, pH 7.0, AI(OH)3 precipitated, re-dissolving in more basic solutions still to form the 

tetrahedral aluminate, AI(OH)4-. Polynuclear species could also be present but their compositions were 

time dependent. These equilibria among mononuclear (monomeric) A13+ species in aqueous solutions 

are described by reactions 1-3 in Table 1.1 and Figure 1.2. A13+ can be seen to dominate at pH <5.0, a 

mixture of species are present from pH 5-6.2, and the tetrahydroxo AI(OH)4- species dominates at pH 

>6.2. According to Martin (1986), regardless of any other ligands present, the species distribution in 

Figure 1.2 prevails in aqueous solutions. 
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Table 1.1. Possible reactions of aluminium in the soil solutions. L, organic ligand e.g. citrate. 

Aluminium Reactions 

At'+ +H 20 
AI(OH)2+ + H20 

AI(OHh++2H 20 
At'+ + SO l-
Af+ + 2S0/ 
At'+ + F-

2A13+ +20H-
3A13+ +40H-

13A13+ + 28 OH-

AP+ + L 3-

----------------------------------------
AI, 

/OH + H2P04-~ 
AI 

AI, 
/OH + Si(OH) 4 

AI 
-----

AI(OH)2+ + H+ 
AI(OHh+ +H+ 
A I(OH) 4- + 2H + 

AI(S04t 
AI(S04)2-

AIP+ 

A~(OH)24+ 
AI3(OH)/+ 

7+ + AI130 4(OH)24 + 4H 

AIL 

Several different mineral phases are considered sources of soil AI: aluminosilicates of different degrees 

of crystallinity (e.g. kaolinite); gibbsite (AI(OH}J) or alternative AI-hydroxides which lack a crystalline 

structure (AI(OH)3 (aooorp"",.); and aluminosulphate minerals such as jurbanite (Fermindez-Sanjurjo et al. 

1998). The Al minerals closest to equilibrium with the soil solution composition are considered those 

which control the AI solubility and ultimately the amounts, equilibria, and distribution of monomeric Al 

species. Control of soil solution AI by alumino-sulphate minerals is not usual in natural soils but has 

been found in acid mine soils. According to Arp & Quimet (1986) total AI solubility increases in the 

order: kaolinite < gibbsite < AI(OHh (anlOlJl/lIIUS). We cannot however assume that the least-soluble AI­

containing mineral will be controlling the amount of A13+ in solution (Ritchie 1995). Helyar et al. 

(1993) showed soil solution AI activity was within the range of solubility of the main soil minerals 

present. 

Significant quantities of amorphous AI(OH)3 minerals are present in soils and these, rather than 

crystalline minerals (gibbsite), are most often regarded as the primary controls over AI solubility. In 

most soils of the Sor watershed in Galicia, northwest Spain, Fermindez-Sanjurjo et al. (1998) found Al 

solubility was controlled by amorphous AI-hydroxides. Similarly, Sjostrom (1994) showed AI solubility 

in the soils of Halland County, southwest Sweden were governed by amorphous AI-hydroxides. 

Aluminosilicate minerals (illite, smectite, and halloysite) did not exert a strong control on AI solubility. 
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The absolute amounts of soluble AI permitted by dissolution of gibbsite (crystalline phase of AI(OH))) 

compared with those predicted from a representative amorphous AI(OH)3 (non-crystalline) are shown in 

Figure 1.3. The solubility of Al with respect to amorphous AI(OH)3 is up to IOO-fold greater than 

solubility with respect to gibbsite. The solubility curve of AI(OH)3 (amorpl ..... , is described as representative 

since a wide range of amorphous AI-hydroxide minerals exist. The minimum solubility in both curves 

occurs at pH 6.2. 

10~----r-----~--~r---~------r---~~----r---~ 

O.Sr-

I 
c I 

~O.61 
u: I 
(1) I 
'0 OAr 
~ I 

I 
0.2 

2 9 
pH 

Figure 1.2. Distribution of soluble, mononuclear aluminium ion species in aqueous solutions 
(Martin 1986). 

Finally, the solubility of AI-minerals exert the main, but not exclusive, control over AI in natural 

solutions. AI distribution is also controlled by pH, organic acids (e.g. citric acid), metal ions, and 

inorganic ligands (e.g. F-, P043-, Table 1.1) (Arp & Quimet 1986, Helyar et al. 1993, Marsden 1993). 

AI in acid soil also acts as a pH buffer. Free AI3+, released by exchange of adsorbed AI on clay 

minerals into the soil solution, yields H+ upon hydrolysis. When these H+ ions are not readsorbed on 

the clay complex, but instead are neutralised (liming) or leached from the soil profile, the AI hydroxy 

ions are precipitated as insoluble AI(OH)). However, more H+ ions can be produced through further 

release of AI from exchange sites to replace that which was lost. The soil pH then remains unaffected 

(Kennedy 1986, Tan 1998). In this way exchangeable AI, like exchangeable H+, contribute to the soil 

potential acidity. 
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Figure 1.3. Negative logarithm of total molar concentration of aluminium allowed by AI(OH» 
solubility versus pH (Martin 1986). Lower curve represents true equilibrium solubility from gibbsite. 
Upper curve depicts representative solubility from amorphous AI(OH}J. A13+ is the predominant 
soluble aluminium species at pH < 5.0 and AI(OH)4- at pH >6.2, where the minimum solubility occurs 
for both curves. Between pH 5 and 6.2 there is a mixture of soluble species, as shown in Figure 1.2. 

1.3 The implications of soil acidity for plant growth 

1.3.1 H+ ion toxicity 

Early research attributed poor plant growth on acid soils to low pH and in particular to H+ ion activity. 

Amon & Johnson (1942) showed growth of lettuce, tomato, and Bermuda-grass, was completely 

inhibited in nutrient solution at pH 3.0. Proposed mechanisms of this growth inhibition included H+­

inhibition of nutrient absorption. In low pH nutrient solutions, absorption was inhibited and cations 

previously absorbed tended to leak out of plants into solutions. H+ was proposed to compete with 

cations at cation-selective sites on the plasma membrane. Further evidence for this was provided from 

growth experiments with increased Ca concentrations. Arnon & Johnson (1942) showed growth 

inhibition in lettuce at low pH was alleviated by increasing external Ca concentrations. Similarly, Rains 

et af. (1964) found uptake by barley roots of the radioisotope Rb (taken up via the same carrier site as K) 

at pH 3.9 was significantly greater in the presence of Ca than in its absence. It was concluded that Ca 

functioned in reducing injury by H+ ions to the selective nutrient absorption mechanism. 
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Subsequent research, contrary to Arnon & Johnson (1942), frequently showed plants grew well in 

nutrient solutions at pH values which were not tolerated in soils (Black 1968). Furthermore 

investigations ofthe pH of tissue fluids showed plant tissues were able to tolerate acidity greater or equal 

to that commonly found in acid soils. These observations indicated that H+ activity in most acid soils 

was not specifically toxic to plants (Black 1968). H+ ions are now considered to have a direct toxic 

effect when present in very high concentrations (pH< 4.0), such as in strongly acidic mine spoils (pH< 

3.0) or acid sulphate soils (Foy 1992, Tan 1998). In organic soils, such as acid peats (Figure l.l), where 

toxic concentrations of soluble Mn and AI are negligible, H+ activity is believed to be responsible for 

poor plant growth (Evans & Kamprath 1970). 

1.3.2 AI toxicity 

Evidence implicating AI as the primary growth-limiting factor in acid soils came from the following 

areas: 

• 
• 

the addition of AI, as low as 1 mg 1-1, to culture solutions reduced plant growth 

concentrations of Al in soil solutions of soils with pH values < 5.0 were frequently in the range in 

which Al toxicity was found in culture solutions 

• the Al concentration of displaced soil solutions, used as culture solutions for growing plants, were 

toxic (Vlamis 1953) 

Early ecological work was carried out by Rorison with naturally occurring species which differed in 

their affinity for acid and calcareous substrata. Species were selected on the basis of their relative 

frequency of occurrence over a range of surface soil pH's. Rorison (1960a) grew two calcicoles: 

Scabiosa columbaria and Asperula cynanchica and two calcifuges: Galium saxatile and Holcus mollis, 

on calcareous (pH 7.6) and acid (pH 4.8) soils with and without P, K, and Ca additions. Both calcicoles 

thrived on calcareous soils despite different physical properties but failed on the acid soil. The 

calcicoles responded positively to acid soil treated with Ca(OH)2. Rorison (I960a) suggested that the 

pH rise after Ca addition precipitated soluble Al rendering it non-toxic. Rorison (I960b) continued this 

work further by growing the same species in inorganic and soil water cultures to test the effect of pH, 

Ca, and AI. Water cultures confirmed that pH and a range of Ca concentrations were not the factors 

inhibiting the growth of Scabiosa and Asperula, and that the toxic factor excluding these two species 

from the acid soil was ionic AI. 

The calcifuge, Deschampsia jlexuosa, is normally restricted to acidic soils and was shown by Hackett 

(1965) to be tolerant of relatively high concentrations of AI, Mn, and NH4-N when their concentrations 

were varied singly in nutrient solution (Rorison 1985). Rorison (1985) compared its growth response to 

AI and N (NH4+-N or N03--N) with that of Bromopsis erecta which is normally restricted to habitats 
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with circum-neutral soils, and Holcus lanatus which was most common in soils of pH 5-6. NH4+-N is 

dominant in acid soils and NOr-N in calcareous soils. Deschampsia was tolerant of 2.7-5.4 mg 1-1 Al 

when N was supplied as NH4+-N. Holcus grew better in solutions with N03--N rather than NH4+-N. It 

showed classical symptoms of Al toxicity (reduced root and shoot growth, and stunted roots) in the 

presence ofNOr-N. 

Grime & Hodgson (1969) determined the Al concentration required to cause a 50 % inhibition of root 

growth in common grass species. The results showed a close correlation between the field distribution 

and Al sensitivity of the different species. Deschampsia flexuosa, Nardus stricta, and Holcus mollis 

were very resistant to Al (0.54-0.81 mg 1-1), and all three were common in acid soils. In contrast 

Sanguisorba minor, Centaurea nigra, Briza media, and Leontodon hispidus, species generally restricted 

to calcareous soils, were very sensitive to Al (0.14 mg 1-1). Furthermore both acid and calcareous races 

of wide-ranging species, such as Festuca ovina, showed considerable resistance to AI. 

Rorison (1958) also investigated the effects of Al on calcicolous legumes in acid soils. Medicago sativa 

and Onobrychis viciifolia were grown in water culture (which simulated soil solutions) at pH 4.5 with 

combinations of AI, Mn, and Ca, and their growth was contrasted with that of the calcifuge Ornithopus 

sativus. After four weeks growth in solutions with AI (50 mg 1-1) both Medicago and Onobrychis were 

dead. Onobrychis was strongly affected by Al but not by Mn, whereas both AI and Mn were toxic to 

Medicago. The yield of Ornithopus was unaffected by any of the treatments. Tap root and lateral 

elongation in the two calcicoles had ceased after only a few days in AI solutions. Further experiments 

with Onobrychis alone showed that under toxic conditions of AI (at least 40 mg 1-1) the inhibition of 

growth at pH 4.5 occurred simultaneously with a rapid uptake of AI into the young seedling root. 

Rorison (1958) suggested Al might inhibit cell division ~y antagonising active Fe uptake, thus depriving 

the nucleus of Fe necessary for cell division. The uptake of Fe was inhibited by Al in Onobrychis, the 

degree of inhibition varied according to AI concentration. In agreement, Clarkson & Sanderson (1969) 

believed cell division to be the primary effect of Al and went on to suggest that Al disturbed the mitotic 

cycle during DNA synthesis in the S period possibly by inhibition of nucleic acid synthesis. Both 

Naidoo et al. (1976) and Matsumoto et al. (1976b) proposed AI accumulated in the nuclei of snapbean, 

cotton, and pea, and bound to esteric P in nucleic acids. 

Clarkson (1966) found, in some plants, low concentrations of AI enhanced growth. The two grasses 

Agrostis curtisii and Agrostis capillaris, both calcifuges, grew better in solutions with Al at 

concentrations of 2.7-1 0.8 mg 1-1. Root lengths relative to those in solutions with no Al were between 

104-175 %. Grime & Hodgson (1969) suggested Al occupied metabolically inactive sites which would 

otherwise be occupied by Fe, and by displacing this Fe, Al prevented Fe deficiency. 
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Rorison (1958) showed aluminium in anionic form (aluminate, AI(OH)4- or AI02-), soluble in solution 

between pH 6.0-7.5, was taken up at a steady state by legumes but did not cause toxicity. Jones (1961) 

also found the aluminate anion was accumulated in large quantity by barley cultivars (cv. Herta and 

Sacaramento) from fly-ash deposits at high pH values (up to pH 9.1) with no apparent toxicity. In a 

more recent study, Tyler (1994) showed leaf AI concentrations of plants (Geranium sanguineum and 

Quercus robur) growing on limestone soils (about pH 8.0) are not very different from those found in 

plants on acid silicate soils, despite the significantly lower soil concentrations. Since the aluminate 

anion (AI(OH)4-) has some structural similarity to H2P04-IHP042-, Tyler suggested aluminate may be 

taken up by the same mechanism as phosphate. 

Davies & Snaydon (1971) found populations of Anthoxanthum odoratum from acid soils were more 

tolerant of high AI concentrations in culture solutions than populations from calcareous soils. Foy et al. 

(1978) associated AI tolerance with a plants' ability to resist AI-induced nutrient deficiency and contain 

lower concentrations of AI in roots or shoots. The roots of tolerant cultivars of wheat, barley, soybean, 

and snapbean contained less AI than sensitive cultivars (Foy et al. 1978). Tolerance of Rhododendron 

spp., Vaccinium oxycoccos, rice, rye, and alfalfa to AI correlated with lower concentrations of AI in the 

tops and entrapment of excess AI in the roots (Foy et al. 1978). AI tolerance of cultivars of wheat, 

barley, soybean, and snap bean was explained by the plants' ability to resist AI-induced Ca deficiency. 

Similarly, certain cultivars of wheat and tomato were P-efficient (Foy et al. 1978). Jones (1961) 

suggested that, oxalic and citric acid in roots of AI-tolerant species chelate AI, preventing AI-P 

precipitation and P deficiency. More recent research has shown a unique interaction between AI and Si 

suggesting a potential role for Si in reducing the bioavailability and hence toxicity of AI in biological 

systems (Birchall et al. 1996, Hodson & Evans 1995). This role of Si in ameliorating AI toxicity has 

been shown in animals (Birchall et al. 1996) but contradictory results have been found in higher plants 

(Hodson & Evans 1995). 

Recently, with the amplification of soil acidification, the importance of selecting for AI-tolerant crops 

and sustaining productivity has led to a wealth of studies using crop species, particularly wheat. The 

experiments included in this thesis used naturally-occurring species and races present in a range of soil 

environments (described in Chapter 2). The early studies (described above) used natural species but few 

studies used populations of the same species. Much research has focused on the amelioration of AI 

toxicity by elevated Ca concentrations (Kinraide et al. 1994), and to a lesser extent Mg. This has 

followed from the Ca-homeostasis hypothesis which suggests At disrupts membrane integrity by 

preventing Ca from binding to Ca membrane proteins. Examples of these studies include Kasran et al. 

(1995), Rengel & Robinson (1990), and Wheeler & Edmeades (1995), who found Ca prevented AI 

toxicity in groundnut (cv. Mat jam), ryegrass, and wheat. Less research has been carried out on the 
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amelioration of AI toxicity using Si as silicic acid (see above) and organic acids (Section 1.1.1) and this 

is discussed in Chapters 6, 7, and 8 of this thesis. 

A deficiency of many metal-toxicity studies, highlighted by Davies (1991), concerns the chemical 

background solution in which the metal is supplied. Hydroponics, or nutrient solutions, are widely 

used since they overcome the complexities of field soils. Hydroponics were defined by Jensen (1997) 

as a technology for growing plants in nutrient solutions with or without the use of an artificial 

medium to provide mechanical support. However many studies have tested AI toxicity while using 

background solutions of 0.5 M Ca(NOh which may in itself ameliorate the effects of AI and its 

concentrations is therefore critical in toxicity experiments (Rorison 1958). The nutrient solutions 

used here simulated the ionic composition of extracted soil solutions (Chapter 3), were monitored on 

a daily basis, and their speciation was predicted using the ionic speciation program, GEOCHEM. 

This was to ensure a good knowledge of the chemical conditions that the plants were actually 

experiencing rather than that desired (De Rijck & Schrevens 1997). 

1.4 Thesis aims 

The aims of this thesis were: 

• To gain more insight into the way chemical soil factors, associated with soil acidity, both organic 
and inorganic, influence plant growth. 

• To use seeds from populations of naturally occurring species which cover a range in habitat from 
acidic soils (organic and mineral) to calcareous soils. 

• To determine whether or not the growth responses of different populations to aspects of soil 
acidity are in accordance with their ecological distribution. 

• To investigate aspects of soil acidity using hydroponic nutrient solutions which simulate actual 
soil solutions. 

• To determine the effects of extraction method and centrifugation speed on the soil solution ionic 
composition and pH from fresh and air-dried soils. 

• To investigate the effects of high H+ concentrations in nutrient solutions with no added AI on the 
growth and root anatomy of Holcus lana/us L. and Betula pendula Roth. The reasons for selecting 
these study species are given in Chapter 2, Section 2.2. 

• To investigate the effects of increasing concentrations of A13+ on plant growth, root anatomy, and 
cell ultrastructure of Betula pendula Roth and Holcus lanatus L. 
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• To determine the toxicity of inorganic monomeric Al species present in solution at pH 5.6 to 
Holcus lanatus L. 

• To establish whether or not silicic acid ameliorates AI-induced growth inhibition in Holcus lanatus 
L. and Anthoxanthum odoratum L. 

• To determine whether or not silicic acid ameliorates growth by reducing Al bioavailability through 
production of hydroxyaluminosilicates. 

• To determine whether or not organic acids ameliorate AI-induced growth inhibition in Holcus 
lanatus L. 

• To investigate the growth response of Holcus lanatus L. and Deschampsia jlexuosa L. Trin. to 
organic acids and phenolic acids. 
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Chapter 2 

Study sites and species 

2.1 Study sites 

Soils and seeds were collected from five areas within Central Scotland in February and July 1995 on 

the dates given in Table 2.1: East Flanders Moss (NS 639973), Kippenrait Glen (NS 794994), 

Kinloch Rannoch (NN 717574), and Sheriffmuir (NN 830025 and NN 832025). Figure 2.1 shows site 

locations within Scotland. 

East Flanders Moss (FM) (6.1 km2
) is located in the Carse of Stirling, 16 km west of Stirling at the 

head of the Forth Valley (Figure 2.1). It is the largest single, intact raised bog in the British Isles. 

Drier areas of the bog are dominated by Calluna vulgaris, Erica tetralix, Vaccinium oxycoccos and 

Eriophorum vaginatum. Sphagna, especially Sphagnum magellanicum and Sphagnum papillosum are 

more frequent in wetter areas. Betula pendula and Betula pubescens are encroaching onto the moss 

from the margins. The acidic peat should be low in total Al concentration (AI complexed) and H+ 

ions the dominant growth-limiting factor. Samples for this thesis were collected from the south-west 

corner owned by Scottish Wildlife Trust (SWT). Access to the site was via East Polder farm. 

Kippenrait Glen (KP) lies 2 km north of Bridge of Allan, near Stirling at an altitude of about 100 m 

(Figure 2.1). The predominant geology of the Glen is Lower Old Red Sandstone, and the soil type is 

Brown Forest soil with patches of boulder clay (Soil Survey of Scotland 1982). Quercus robur and 

Acer pseudoplatanus are frequent in the mixed woodland canopy. The ground flora has abundant 

Mercurialis perennis, Oxalis acetosella, Pteridium aquilinum, and several grass species including 

Holcus lanatus, Anthoxanthurn odoraturn and Agrostis spp. 

The sample site at Kinloch Rannoch was near Lochan an Daim east of the village of Kinloch Rannoch 

(Figure 2.1). Soils and seeds were collected from the calcareous heath (KR), the soils of which are 

derived from the Loch Tay series of limestones. The vegetation is predominantly Cal/una vulgaris 

and Erica tetralix with several grasses including Holcus lanatus, Anthoxanthum odoratum, Agrostis 

spp. and Deschampsia flexuosa. Patches of Betula pendula surrounded the sample site. The nutrient 

status and near-neutral pH of KR soils imply plants do not suffer from acidity problems. 
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Samples were collected from both an area of blanket peat (SMB), and from the acid mineral soils 

(SMM) surrounding the peat on Sheriffmuir (Figure 2.1). Both areas had a south-westerly aspect at 

about 200-300 m and were grazed by sheep at low density. The blanket peat was dominated by 

Calluna vulgaris and Vaccinium oxycoccos with infrequent Erica tetralix. The mineral soil is 

classified as a Low-Gley soil (Soil Survey of Scotland 1982), derived from Old Red Sandstone 

sediments. The peat soil is classified as blanket peat (Soil Survey of Scotland 1982). The Al species 

distribution described in Chapter 1 would be expected in the acidic mineral soils. 

Table 2.1. Dates of seed and soil collection from study sites in 1995 and 1996. Samples were 
collected from Flanders Moss (FM), Sheriffmuir (SMB and SMM), Kippenrait Glen (KP), and 
Kinloch Rannoch (KR). 

Site Anthoxanthum Betula pendula Deschampsia Holcus lanatus L. Soil Samples 
odoratum L. Roth flexuosa L. Trio. 

1995 
FM 30 Iun 1 Sep 1 Aug 1 Aug 12 Feb/6 Jul 
5MB 30 Iun 1 Sep 1 Aug 1 Aug 12 Feb/6 Jul 
SMM 30 Iun 1 Sep 1 Aug 1 Aug 12 Feb/6 Iu1 
KP 30 Iun 5 Sep 5 Aug 5 Aug 13 Feb/6 Iu1 
KR 7 Iu1 25 Aug 3 Aug 3 Aug 15 Feb/7 luI 
1996 
FM 7 luI 5 Sep 10 Aug 10 Aug 
5MB 7 luI 5 Sep 10 Aug 10Aug 
SMM 7 luI 5 Sep 10 Aug 10 Aug 
KP 10 luI 10 Sep 12 Aug 12Aug 
KR 5 luI 7 SeE 15 Au~ 15 Au~ 

2.2 Study species 

Throughout this thesis British plant species (including the study species) will be referred to using 

Latin names, and agricultural crops using Common names. Both Latin and Common names are given 

in Appendix 1. 

The study species were selected to represent grasses and one woody species. Seeds were collected 

from populations which naturally occurred over the range of soil types from acid to calcareous. Seeds 

of the following species were collected in 1995/96 (Table 2.1), when present, from each of the five 

areas: Silver Birch (Betula pendula Roth), Sweet Vernal Grass (Anthoxanthum odoratum L.), Wavy 

Hair-grass (Deschampsiaflexuosa L. Trin), and Yorkshire-fog (Holcus lanatus L.). Betula pendula, a 

fast-growing deciduous tree, is widely distributed but most frequent and abundant below pH 5.0. 

Deschampsia flexuosa is slow-growing, and normally restricted to acidic soils. Holcus lanatus is a 

fast growing species represented in grasslands of widely differing soil pH (pH 4.5-8.0) but most 
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common in the intermediate range pH 5-6. Anthoxanthum odoratum is relatively slow-growing, and 

covers the full range of soil pH but is most common in the range pH 4.5-6.0. 
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Chapter 3 

Extraction and analysis of soil solutions 

3.1 Introduction 

The mineral nutrients are transported to the root surface via the soil solution and their supply is 

dependent on their concentration within this solution (Marschner 1995). Soil solution cations, if 

absorbed by plants are replenished from exchangeable cations held by the negatively charged surfaces 

on soil particles (Falkengren-Grerup et al. 1995, Rowell 1995). 

Soil solutions vary in composition with soil moisture and depth, pH, CEC, redox potential, organic 

matter content, microbial activity, leaching, cation uptake by plants and microorganisms, fertiliser 

application, and finally, the season of the year (Marschner 1995). Using lysimetry techniques Jones 

& Edwards (1993a) showed ion concentrations in soil solutions remained relatively constant through 

time. However using the same techniques Zabowski & Ugolini (1990) found peaks in ion 

concentrations in both the winter and summer months. 

A knowledge of the soil solution composition provides valuable information on the availability of 

both nutrients and toxic ions to plants (Giesler et al. 1996, Lorenz et al. 1994, del Catilho et al. 1996). 

The extraction techniques not only produce very small volumes of solution but need large amounts of 

soil. Moist soils contain on average between 10 and 30 % water, and the extraction techniques most 

commonly used only remove about 30 % of this. Therefore a 100 g soil sample gives only 3 - 10 ml 

of solution (Rowell 1995). Edmeades et al. (1985) believed about 20 ml of solution were required to 

carry out a full analysis, and provided the soil was sufficiently wet about 400 g of air-dried soil were 

required. Wolt & Graveel (1986) found that a vacuum displacement (using 75 g soil) and 

centrifugation (using 750 g soil) technique produced on average volumes of 3.1 - 7.4 ml and 12.7 -

49.0 ml soil solution. Soil collected from the field is not always sufficiently moist and often 

deionized water is added to the soil which is then extracted after a period of equilibration. Sometimes 

soils are air-dried and then rewet before extraction. The wetting methods influence the soil solution 

as will be discussed later. 

No single technique has been shown to produce a solution which is considered to be exactly the same 

as the in situ soil solution and the method and time of extraction, storage and preparation of soil 

samples, must be considered. The techniques range from laboratory extraction of soil samples, the 
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acquisition of solutions from the soil profile to the extraction of soil samples by lysimetry techniques 

(zero-tension or low-tension) (Giesler & Lundstrom 1993, Giesler et af. 1996, Jones & Edwards 

1993a). Lysimetry is attractive because not only is the solution sampled in situ and therefore might be 

expected to resemble the "real" soil solution but also temporal monitoring of solutions is possible 

(Zabowski & Ugolini 1990). However lysimetry techniques have been criticised because the 

solutions tend to be altered as they pass though the collecting ceramic cups (Jones & Edwards 1993b). 

They are also only effective for wet soils. 

3.1.1 Methods for soil solution extraction 

The most commonly used laboratory techniques involve extraction by: low-speed and high-speed 

centrifugation (Adams et af. 1980, Dahlgren 1993, Elkhatib et af. 1987, Giesler & Lundstrom 1993, 

Lorenz et af. 1994, Ross & Bartlett 1990); centrifugation using immiscible displacement (Adams et 

aL. 1980, Dahlgren 1993, Elkhatib et af. 1987, Kinniburgh & Miles 1983, Mubarak & Olsen 1976, 

Phillips & Bond 1989, Whelan & Barrow 1980); column displacement using compression, syringes, 

or solutions such as H20 or 0.5 % KCNS to push the soil out of the column (Adams et af. 1980, 

Dahlgren 1993, Lorenz et af. 1994, Ross & Bartlett 1990, Wendt 1992, Wolt & GraveeI 1986); or 

water (soil:water ratios of 1: 1 or 1 :2) with centrifugation and filtration (Dahlgren 1993). Smethurst et 

aL. (1997) using the last technique estimated the actual solute concentrations of the soil solution using 

a model which incorporated the change in water content and a different soil-liquid partition 

coefficient (Kd) of the soil for each solute. There were no significant differences in ionic 

composition of solutions where equilibration times were increased to 16 hours. 

3.1.2 Centrifugation of soils 

Extracting soil solutions by centrifugation was first described by Davies & Davies (1963). It is now 

probably the most popular technique used although it is slow: soils must be carefully weighed into 

centrifuge tubes and subsequent filtration of the extracted solutions can be very slow. However it is 

suitable for all soil types and samples can be re-used for further analyses. 

The time and the speed of centrifugation differ among researchers and the effect of varying either 

time or speed on the ionic composition of the extracted solutions is inconsistent. Neither time nor 

speed of centrifugation affected the concentration of cations in soil solutions extracted by Edmeades 

et al. (1985). Ross & Bartlett (1990) compared centrifugation of soils at 5000 rpm with 10000 rpm. 

They reported that the high-speed centrifugation increased concentrations of F, cr, and sol, but 

N03- was unaffected. Elkhatib et af. (1987) believed that the force and vacuum present in high-speed 

centrifugation may be the cause of changes in extracted soil solutions. However when Zabowski & 
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Ugolini (1990), and Edmeades et al. (1985) compared low and high-speed centrifugation there were 

no differences between the centrifuged solutions. The former authors used centrifugal speeds of 1000 

and 10000 rpm, and the latter used speeds of 2000 and 15000 rpm. 

3.1.3 Centrifugation of soils with immiscible liquids 

Displacing soil solutions using an immiscible displacent was first used by Mubarak & Olsen (1976). 

The displacent is usually an organic liquid, mostly a hydrocarbon. Since the displacent is insoluble 

and of a greater density than water the soil solution is displaced upward to where it can be collected 

for analysis. Sufficient displacent is added to prevent expelled solution from re-entering the soil 

when centrifuging stops. Any air which is present in macropores is either dispelled or dissolved in the 

displacent. Several immiscible liquids are commonly used: carbon tetrachloride (d=1.6 g mr\ 1.1,2 

trichloroethane (d=1.4 g mrl), trifluroethane (d=1.57 g mr\ 1,1,2 - trichloro - 1,2,2 - trifluroethane 

(d=1.58 g mr l), ethyl benzoylacetate (d=1.l2 g mrl), and perchloroethylene (d=1.62 g mrl). The 

major problem with this method is the toxic vapour from these organic liquids. They also attack most 

plastics. Trifluroethane and ethyl benzoyl acetate are less toxic and do not attack polypropylene 

centrifuge tubes but are very expensive. Perchloroethylene, suggested by Whelan & Barrow (1980), 

has low toxicity and is cheap but it requires nylon centrifuge tubes. 

Centrifuging soils however with or without an immiscible liquid is more rapid than column 

displacement (Walworth 1992) which is slow and depends upon the skilful packing of the column. 

Sandy soils are not suitable since they are difficult to pack tightly enough into the column (Walworth 

1992, Wendt 1992). However Adams et al. (1980) recovered more solution per gram of soil (except 

in sandy soils) using column displacement than with either centrifuge method. 

3.1.4 Effect of extraction method on solution composition 

Ross & Bartlett (1990) noted differences in cr, NO]-, sol, and Ae+, as well as significant increases 

in pH and F in solutions extracted by centrifugation compared with column displacement. They used 

a relative centrifugal force (rcf) of 9700 m S-2 (corresponding to toOOO rpm at the bottom of the 

sample) and pH was on average 0.7 units higher. The lower pH values found with column 

displacement were in the same range as soil pH's in H20 and CaCh. Elkhatib et al. (1987) also 

reported higher pH's in solutions extracted by high-speed centrifugation (48000 m S-2) compared with 

immiscible displacement. Dahlgren (1993) again reported increased pH's in centrifuged solutions. 

pH was on average from 0.5 to 3 units higher than in solutions extracted with either displacement 

solutions or vacuum displacement. Solute concentrations were ranked centrifugation > immiscible 

displacement> vacuum displacement. Similarly Wolt & Graveel (1986) found a general reduction in 
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major ion concentrations in solutions obtained by vacuum displacement compared with 

centrifugation. However both Adams et al. (1980) and Wolt & Graveel (1986) compared miscible 

displacement and vacuum displacement with centrifugation and found little difference between 

methods. The variation between soil solutions obtained by each method was not significantly 

different to invalidate either method for collecting unaltered soil solutions. It should be noted that 

they used low rcf of 1070 m S·2 or less. Elkhatib et al. (1987) found a discrepancy between estimated 

activity values for Al species after centrifugation and immiscible displacement. They suggested that 

centrifugation alone should be used when Al determination and speciation were of importance. 

3.1.5 Effect of storage on solution composition 

There has been much discussion on the storage, length of time of storage, and preparation of soil 

samples before extraction takes place. Solutions can be displaced from field moist soils, wetted-up 

field moist soils, field moist soils frozen and thawed, and re-wetted air-dried soils. Moist soils are 

more difficult than air-dried soils to homogenise for representative subsampling (Ure 1996). It is 

generally recommended to extract field moist soils within 24 h of collection (Edmeades et al. 1985, 

Jones & Edward 1993b, Ross & Bartlett 1990, Walworth 1992). Edmeades et al. (1985) showed 

differences in solutions after 1 day of soil storage at 4 °C in solutions displaced by centrifugation. 

N03", Ca2+, Mg2+, Na+, and to a lesser extent K+, increased in concentration. This effect of storage 

was thought to be due to an increased rate of net mineralization of organic N to N03-N thereby 

inducing an increase in cations to balance the charge. In agreement, Ross & Bartlett (1990) showed 

large increases in solution NO)' after 24 h storage at 3 °C. After 4 days storage, NO)' instead of sot 
was the dominant anion in solutions from all horizons. pH was more slowly affected by storage and 

started to decline after 7 days. 

Equilibration of wetted soil samples prior to extraction has also been shown to affect the ionic 

composition of solutions displaced. Jones & Edwards (1993b) added water to field moist samples and 

allowed a 24 h equilibration period. Solute concentrations were in general lower after equilibration. 

Walworth (1992) also found that the composition of soil solutions from rewetted soils did not 

approach that of field soils after incubation. sot and Ca2+ concentrations decreased and those of Na 

increased. 

Similar changes in the composition of solutions have been found in dried soils rewetted and extracted 

by vacuum displacement (Qian & Wolt 1990). Concentrations of Ca, Mg, K, Na, AI, N03, S04, 

together with EC and pH, were all shown to change. Jones & Edwards (1993) showed an increase in 

ion concentrations (especially sot, AI, Fe, and POl) upon rewetting of air-dried soil. They 

suggested that during drying A13+ may move from clay lattices to exchange sites and exchangeable K+ 
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to non-exchange sites. Air drying may also increase the solubility and oxidising ability of soil organic 

matter, with associated changes in the chemistry of Nand P. 

3.2 Aims 

• To analyse the ionic composition of soil solutions extracted from five soil types in February and 
July 1995. 

• To determine the effects of centrifugation with and without an immiscible liquid on the ionic 
composition of soil solutions. 

• To determine the effects of centrifugation speed on the ionic composition of soil solutions. 

• To determine the effects of air-drying on the ionic composition of soil solutions. 

• To determine the effects of air-drying, water and electrolyte suspensions on soil pH. 

• To compare soil pH values with soil solution pH values. 

3.3 Methods 

Soils were sampled from the five study sites FM, SMM, 5MB, KP, and KR which were described in 

Chapter 2. 

3.3.1 Soils sampled in February 1995 

Twenty soil samples, to a depth of 10 cm, were collected randomly from each site in February 1995 

(Chapter 2, Table 2.1). The soils were transported to the laboratory in sealed plastic bags. Ten 

samples were then stored at 5 °C in the same sealed bags (FR). The remaining ten samples were air­

dried at room temperature for seven days, ground using a pestle and mortar, and sieved through a 2-

mm mesh (AD). The air-dried soils were placed in trays and slowly saturated with deionized water 

over a period of two days. Trays were then covered in 'cling film' and left to drain under gravity for 

48 h. The macropores of soil (>50 11m) allow rapid drainage of water and once these pores are 

emptied drainage becomes very slow. The soil is then said to be at "field capacity". 

3.3.1.1 Centrifugation of soils (Cen) 

From each soil sample, subsamples of 25 g of fresh or rewetted air-dried soil were loosely packed into 

eight polypropylene 50 ml centrifuge tubes. Following the recommendations by Jones & Edwards 
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(1993) soil solutions from FR soils were extracted within 24 h of collection whenever possible in 

order to limit differences in solutions caused by the effects of storage. The soil was centrifuged for 

30 minutes at 4000 rpm in a MSE Bench Centrifuge. The extracted solutions were poured into a 

measuring cylinder and the total solution extracted per sample recorded. Solutions were filtered using 

Whatman No.42 (Elkhatib et al. 1987). del Castilho (1996) recommended membrane-filtration over 

super-centrifugation of solutions to remove colloidal material. The pH of the extracted soil solutions 

were determined immediately after extraction using a Coming Eel Model 7 pH meter. Solutions were 

then diluted to 50 ml with deionized water and frozen until further analysis. 

3.3.1.2 Centrifugation with an immiscible liquid (Imm) 

The immiscible liquid used was 1,1,1-trichloroethane (d=l.33 g mrl) which had to be used with 

Teflon centrifuge tubes (Teflon Sigma 50 ml Naglene, OakRidge) since it distorts polypropylene ones 

(Whelan & Barrow 1980). Subsamples of 25 g of fresh and rewetted soil were packed into eight 

centrifuge tubes. 20 ml of 1,1,1-trichloroethane (TCE) were added to reach the neck of the tube in a 

fume cupboard. This was necessary since the centrifuge tubes are liable to collapse during 

centrifugation if not full. Also, sufficient liquid had to he added to ensure that after centrifugation, 

the extracted solution was not in contact with the soil surface, which would have led to it being 

reabsorbed into the soil. The displaced soil solution was withdrawn from the surface of the displacent 

with an automatic pipette. Any displacent inadvertently taken up into the plastic tip of the pipette was 

easily discarded owing to the sharp water-displacent interface. The volumes of extracted soil 

solutions were recorded and pH measured immediately before dilution to 50 ml and freezing. 

3.3.2 Soils sampled in July 1995 

Twenty samples of soil, to a depth of 10 cm, were randomly collected from FM, 5MB, SMM, KP, and 

KR in July 1995 (Chapter 2, Table 2.1). The samples were transported to the laboratory in sealed 

plastic bags. As in February ten samples were air-dried and ten samples were stored at 5 °C and 

extracted within 24 h. Fresh and rewetted soils were extracted using centrifugation alone. Samples 

from FM, 5MB, and SMM were extracted with both low (4000 rpm) and high-speed (12000 rpm) 

centrifugation, those from KP and KR were extracted at high-speed only in a MSE High Speed 

Centrifuge. 

3.3.3 Analysis of soil solutions 

Concentrations of Ca and Mg were measured using a Varian AA-575 S atomic absorption 

spectrophotometer (AAS) with a nitrous oxide-acetylene flame. An air-acetylene flame was used to 

determine Na, K (flame emission) and Fe concentrations. Total Al and Si were measured with a Pye 

Unicam SP9 Atomic Absorption Spectrophotometer fitted with a Unicam GF90 furnace and FS90 
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furnace autosampler. Unicam 919 series atomic absorption software was used. Monomeric 

aluminium was determined with the short-term reaction Pyrocatechol violet (PC V) method after 

Kerven et al. (1989). Absorbance was measured after 60 s at 585 nm with a LKB Novaspec 

Spectrophotometer. Three ml of soil solution were filtered through a 0.22 ~M membrane filter, 0.50 

ml of iron interference reagent was added (100 mg 1, lO-phenanthroline and 500 mg ascorbic acid), 

followed by 0.20 ml of PCV reagent and 1.0 ml of hexamine buffer. 

The anions F, CI, S04, and N03 were measured using ion chromatography. A Dionex QIC analyser 

fitted with Dionex AI450 software connected to a Dionex ACI with a Dionex AS40 autosampler were 

used. The columns used were both 4 mm versions: Dionex IonPac AG4 guard column and Dionex 

IonPac AS4A analytical column. 

P and NH4 were measured on a Tecator FIAstar 5010 flow-injection auto-analyser. 

3.3.4 Soil pH 

The pH of both fresh and air-dried soil samples was measured in deionized water, 0.01 M CaCh, and 

0.002 M CaCJz. The procedure used 10 g of fresh or air-dried soil with 25 ml of liquid. Suspensions 

were stirred, left to sit for 1 h, re-stirred and the pH measured with a Coming Eel Model 7 pH meter. 
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3.4 Results 

3.4.1 Centrifugation with and without 1,1,2-trichloroethane 

3.4.1.1 Soil and soil solution pH 

Table 3.1 shows pH values for fresh (FR) and air-dried (AD) soils, and their extracted soil solutions, 

from samples collected in February 1995 from each of the five study sites. Soil pH was measured in 

H20, 0.01 M CaCh, and 0.002 M CaCho The highest pH values recorded were in KR soil samples. 

Soil solutions had a mean pH of 6.1 both FR and AD, and soil pH ranged from 5.5 - 6.2 depending on 

the method of measurement. The lowest pH values were found in the peaty soils PM and 5MB: soil 

solutions ranged from pH 3.3 - 3.6 in FM and averaged pH 3.6 in 5MB, and soil pH ranged from 2.5 -

4.1 (PM) and 2.8 - 4.2 (SMB) depending on the method of measurement. 

Soil solution pH values between sites were significantly different (Table 3.2). However there was no 

significant difference between pH values of solutions extracted from either FR or AD soil, or using 

Imm or Cen (Figure 3.1 and Table 3.2). 

Soil pH values measured in H20 or in a weak solution of CaCh (0.002 M) accurately reflected the pH 

of the extracted soil solution. Soil pHH,o and pHCaCI,(O.!x'2 M) were not significantly different from any 

equivalent soil solution pH in any soil type. pHcacl,(olll M) was significantly different from soil solution 

pH values (df = 195, T = 2.45, P < 0.05) in all sites and was consistently shown to be significantly 

lower than the extracted soil solution pH (Table 3.1). 
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Table 3.1. Mean pH values of extracted soil solutions (using centrifugation alone), and fresh (FR) 
and air-dried (AD) soils measured in H20, 0.01 M CaCh, and 0.002 M CaCh from Flanders Moss 
(FM), Sheriffmuir blanket peat (SMB), Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), and 
Kinloch Rannoch (KR). Ranges are given in parentheses. * denotes significantly different pH values 
between soils and solutions at the same site, E< 0.05. 

Site Fresh! Solution pH pHH,O pHCaCl, pHcacl, 
Air-dried (O.OIM) (O.OO2M) 

FM FR 3.6* 4.1 3.2* 3.5 
(3.2-4,0) (3.9-4.4) (3.0-3.3) (3.2-4.0) 

AD 3.3* 3.2 2.5* 2.9 
(3.1-3.5) (3.1-3.3) (2.4-2.6) (2.8-3.1) 

5MB FR 3.6* 4.2 3.2* 3.5 
(3.3-4.0) (4.0-4.3) (2.8-3.5) (3.1-3.7) 

AD 3.6* 3.3 2.8* 3.1 
(3.5-3.7) (3.2-3.4) (2.7-3.0) (2.9-3.3) 

SMM FR 4.3* 4.9 4.3* 4.7 
(3.6-5.7) (4.6-5.3) (4.0-4.9) (4.4-5.3) 

AD 4.3* 5.1 4.7* 4.8 
(3.8-4.6) (4.7-5.3) (4.2-5.0) (4.4-5.2) 

KP FR 5.3* 5.3 4.8* 5.1 
(5.1-5.3) (5.2-5.6) (4.7-5.2) (5.0-5.3) 

AD 5.4* 5.5 5.0* 5.3 
(5.2-5.8) (5.0-5.8) (4.6-5.4) (4.8-5.7) 

KR FR 6.1 * 6.0 5.5* 5.8 
(5.1-6.5) (5.2-6.6) (4.8-6.1) (4.9-6.3) 

AD 6.1* 6.2 5.6* 5.8 
(5.5-6.9) (5.7-6.8) (5.1-6.3) (5.2-6.3) 

Table 3.2. Statistical analyses for soil solution analyses extracted in February 1995 from Flanders 
Moss (FM), Sheriffmuir blanket peat (SMB), Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), 
and Kinloch Rannoch (KR) using centrifugation with and without 1,1, I-trichloroethane (TCE), and 
from fresh and air-dried soils. *, E< 0.05, **, E< 0.01, ***, E< 0.001, n.s, not si~nificant. 

Site (df=4) FRIAD (df=25) Imm/Cen (df=25) 
F ~ F ~ F I! 

Solution pH 617.86 *** 1.05 n.s 1.33 n.s 
Extracted volume 4.16 * 3.13 ** 3.13 ** 
Cations: 
NH4 78.82 *** 6.09 *** 1.71 n.s 
K 8.84 *** 3.23 ** 1.46 n.s 
Na 12.18 *** 0.91 n.s 2.44 * 
Ca 168.42 *** 1.29 n.s 0.47 n.s 
Mg 115.57 *** 2.23 * 0.66 n.s 
Fe 21.71 *** 1.93 n.s 1.97 * 
Anions: 
N03 154.11 *** 2.44 * 0.43 n.s 
CI 6.86 *** 0.45 n.s 0.56 n.s 
F 37.77 *** 5.05 *** 2.91 ** 
S04 80.79 *** 0.46 n.s 0.87 n.s 

3.4.1.2 Volume of extracted soil solution 

Figure 3.2 shows the mean volumes of soil solution extracted from fresh and rewetted air-dried soil 

from each site, using each of the two methods (Cen or Imm). There was a significant difference in 
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Figure 3.1. Mean pH values (± 95 % C.L.) of soil solutions from fresh (0) and rewetted air-dried 
(.) soils using centrifugation alone (Cen) and centrifugation with an immiscible liquid (Imm) from 
(a) Flanders Moss (FM), (b) Sheriffmuir blanket peat (SMB), (c) Sheriffmuir mineral soil (SMM), 
(d) Kippenrait Glen (KP), and (e) Kinloch Rannach (KR). 
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Figure 3.2. Mean total volumes (± 95 % c.L.) of extracted soil solutions from fresh (0) and 
rewetted air-dried (.) soils using centrifugation alone (Cen) and centrifugation with an immiscible 
liquid (Imm) from (a) Flanders Moss (FM), (b) Sheriffmuir blanket peat (SMB), (c) Sheriffmuir 
mineral soil (SMM), (d) Kippenrait Glen (KP), and (e) Kinloch Rannoch (KR). 
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the volumes of solution extracted between sites (Table 3.2). The lowest volumes were generally 

extracted from FM soil and the highest from KR. There was also a significant difference in volumes 

extracted from FR and AD soil (Table 3.2). More solution was extracted from AD soil compared with 

FR soil. 

The extraction method (Cen or Imm) also significantly affected the volume of solution obtained 

(Table 3.2). The volume of soil solution extracted was either significantly lower when using Imm or 

not significantly different. 

3.4.1.3 Ionic composition of soil solutions 

Table 3.3 gives the concentrations of cations analysed in the extracted soil solutions from February 

collections. Concentrations of all cations were significantly different between the five sites (Table 

3.2). Orders of increasing element concentrations between sites were not consistent between FR and 

AD soil, or between extraction methods. The highest concentrations of Ca were found in KR, and the 

lowest concentrations in 5MB and FM. The lowest concentrations of Mg were found in KP and KR, 

and the lowest levels of Na in KR. Na and K concentrations were highest in 5MB, and SMM or 

5MB, depending on the method of extraction. NH4 was highest in the peaty soils, FM and 5MB. Al 

was greatest in the acid mineral soil, SMM. 

There were significant differences in concentrations of NH4, K, and Mg between FR and AD soils, 

irrespective of the extraction technique (Table 3.2). Concentrations of these cations were 

significantly greater in soil solutions of AD soil. Differences of 46, nine, and three-fold were 

observed for NH4, Mg, and K. Al concentrations were also greater in solutions from AD soil 

compared with FR soil. 

Only the concentrations of Na and Fe were significantly by the extraction technique (Table 3.2). Na 

concentrations were significantly lower in solutions from FM, SMM, and KP AD soil extracted with 

TCE. Fe concentrations increased in solutions from both FR and AD soil after extraction with TCE. 

Table 3.4 shows the analyses of anions in February extracted soil solutions. Concentrations of NO), 

Cl, F, and S04 were significantly different between sites (Table 3.2). The limited data on P 

concentrations excluded this element from statistical analysis. N03 was highest in solutions extracted 

from SMM and lowest in those from FM. F was lowest in SMM solutions and highest in KR. The 

highest concentrations of CI and S04 were found in FM and KP (CI), and 5MB (S04) soil solutions, 

and the lowest of both in KR. 
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Table 3.3. Mean cation concentrations (± s.e) in soil solutions extracted from fresh (FR) or air-dried (AD) so il in February 1995 co llected from Flanders Moss 
(FM), Sheriffmuir blanket peat (SMB) , Sheriffmu ir mineral soil (SMM), Kippenrait Glen (KP), and Kinloch Rannoch (KR) using centrifugation alone (Cen) and 
centrifugation with an immiscible liquid (Imm). n.d, no data. 

Extraction NH4 K Na Ca Mg Fe ! AI 
Method mgrl --,..M --

FR AD FR AD FR AD FR AD FR AD FR AD FR AD 
FM 

Cen 5.91 19.70 6.47 14.27 7.78 9.24 1.86 35.70 0.64 2.47 0.31 0.08 133.93 235.73 
±3.46 ±2.18 ±2.36 ± 1.62 ±2.95 ±1.95 ±0.63 ±1O.5 ±O.l l ±0.36 ±O. IO ±0.03 ± 12.94 ±61.99 

Imm 2.95 29.21 2.86 8.83 8.30 8.09 13.5 13.00 0.22 1.96 1.39 0.10 n.d n.d 
±0.18 ±2.35 ±0.42 ± 1.96 ±2.06 ±2. 15 ±1.91 ±1.94 ±0.08 ±0.25 ±0. 17 ±0.03 

5MB 
Cen 11 .58 2 1.53 9.31 27.05 15.90 15 .60 3.08 25.46 0.94 2.54 0.36 1.79 166.42 231.16 

±3.29 ±4.07 ± 1.93 ±1.66 ± 12.7 ±3.92 ±0.74 ±4.08 ±0.3 \ ±O.4l ±0.1O ±0.63 ±31.72 ±32.48 
Imm 3.48 15.32 9.05 24.95 6.53 8.14 6.30 13.81 1.79 2.06 0.93 2.46 n.d n.d 

±1.94 ±1.20 ±4.5 1 ±4.92 ±2.53 ±1.00 ±5.57 ±2.80 ±0.20 ±0.75 ±0.08 ±0.26 
SMM 

Cen 2.70 2.50 10.8 1 13.76 3.93 5.23 9.41 30.07 2.87 7.30 1.43 1.21 378.80 460.61 
±1.25 ±0.87 ±2.0J ±2.35 ± 1.43 ±0.72 ±1.92 ±9.79 ±J .33 ±2.89 ±0.45 ±0.12 ±84.50 ±19.J3 

Imm 0.86 1.17 20.39 15.02 7.65 4.95 7.67 15.75 5.76 10.56 2.20 1.46 n.d n.d 
±0.48 ±0.26 ±6.83 ±4.88 ±1.52 ±0.80 ±3.69 ±2.61 ±2.27 ±5.60 ±0.22 ±0.05 

KP 
Cen 0 .14 6.43 10.88 20.07 15 .1.4 11.02 15 .74 7.14 0.35 l.03 0.80 0.63 n.d n.d 

±0.02 ±2.35 ±2.14 ±3. 17 ±10.5 ±3.95 ± 14.3 ±2.0 1 ±0.J2 ±0.22 ±0.72 ±0.41 
Imm 0.14 4.37 14.61 17.42 13 .72 6.83 6.94 17.27 1.2 1 0.57 5.31 1.32 n.d n.d 

±0.0 1 ±1.28 ±2.60 ±2.49 ± 13 .1 ± 1.42 ±l.50 ±6.66 ±0.98 ±0.36 ±1.88 ±0.92 

KR 
Cen 1.05 4.29 6.82 11 .30 3.66 4.55 27.2 1 92.71 0.95 0.52 2.68 0.41 n.d. n.d. 

±0.J7 ±1.71 ±2.82 ±2.43 ±l.3J ±0.67 ±9.12 ±16.7 ±0.77 ±0.17 ±1.48 ±0.13 
Imm 0.22 2.64 12.42 \6 .60 5.65 4.45 72.44 84.48 1.95 0.82 4.33 3.16 n.d n.d 

+0.08 ± 1.94 ±2.24 ±12.9 ±l.04 ±0.74 ±2 1.0 ±9.27 ±0.34 ±0.33 ±2.39 ± 1.22 
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Table 3.4. Mean concentrations of anions (± s.e) in oil solution extracted in February 1995 from 
Flanders Moss (FM), Sheriffmuir blanket peat (SMB), Sheriffmuir mineral soil (SMM), Kippenrait 
Glen (KP), and Kinloch Rannoch (KR) using centrifugation alone (Cen) and centrifugation with an 
immiscible liquid (Imm) . t, below detection level « O. 15 mg ( 1

). 

Extraction 
Method 

FM 
Cen 

Imm 

5MB 
Cen 

Imm 

SMM 
Cen 

Imm 

KP 
Cen 

Imm 

KR 
Cen 

Imm 

FR 

2.60 
±1.25 
0.42 

AD 

2.60 
±2.17 
0.31 

FR 

0.36 
±0.05 
0.16 

p 

AD 

2.12 
±0.84 
3.02 

E lement 
CI 

mgr' 
FR AD 

63.8 
±47.5 
54.2 

37.5 
±17.1 
35.8 

FR 

0.06 
±0.04 
0.76 

F 

AD 

0.10 
±0.10 
0.52 

FR 

53.4 
±37.5 
23.2 

AD 

65.5 
±46.6 
65.5 

±0.18 ±0.20 ±0.03 ±3.38 ±8.60 ±11.6 ±0.12 ±0.23 ±2.30 ±30.9 

3.43 
±2.60 
11.5 

0.42 
±0.31 
3.09 

5.13 
±0.74 
1.82 

3.91 
±1.46 
2.51 

33.6 
±16.4 
34.3 

22.8 
±23.8 
35.1 

0.22 
±0.08 
0.36 

0.10 
±0.07 
0.32 

87.8 
±52.9 
190.1 

81.2 
±40.3 
188.7 

±6.90 ±2.02 ±0.43 ±0.36 ±7.98 ±16.2 ±0.05 ±0.46 ±J.75 ±11I 

81.6 
±43.5 
131.4 

207.2 
±78.9 
191.4 

±32.6 ±95.0 

13.4 
±3.01 
27.8 

32.7 
±13.8 
8.20 

1.67 
±0.33 

t 

0.36 
±0.20 
0.55 

0.42 
±0.05 

t 

5.47 
±0.29 
3.38 

35.5 
±24.2 
40.0 

42.0 
±25.4 
18.8 

0.27 
±0.18 
0.09 

0.09 
±0.01 
0.08 

28.5 
±13.6 
34.1 

38.0 
±30.6 
121.1 

±JO.2 ±12.1 ±0.03 ±0.05 ±11.1 ±24.4 

34.8 
±1404 
52.9 

185.5 
±19.1 
22.9 

0.10 
±0.04 
0.10 

1.79 
±lo45 
3.29 

52.8 
±2.86 
116.3 

348.4 
±95.6 
28.2 

±1.89 ±4.77 ±0.19 ±0.08 ±29.3 ±1.58 ±0.05 ±1.25 ±78.3 ±9.56 

3.59 
±2.30 
30.21 
±6.89 

72.29 
±38.2 
34.57 
±13.0 

t 

t 

t 

t 

20.22 
±7.96 
27.57 
±7.53 

44.52 
±2304 
21.73 
±6.34 

0.11 
±0.03 
1.66 
±0.92 

0.34 
±0.53 
1.59 
±0.53 

2104 
±14.6 
23.2 
±11.8 

16.8 
±6.64 
17.1 
±7.78 

The oi l cond ition (FR or AD) only significantly affected the concentrations of NO) and F (Table 

3.2). In 5MB and KP (Imm) concentrations of NO) were ignificantly lower in AD soil compared 

with FR oil. Wherea in SMM (Cen), KP (Cen), and KR (Cen) concentrations were significantly 

greater (up to 50 fold). In KP concentrations of F were ignificantly greater in AD oil compared with 

FR irrelevant of the extraction method (33 fold). However in SMM (Cen), concentrations were 

significantly lower in AD soil (three-fold). 

F a lone was significantly affected by the extraction method (Table 3.2). Extraction with TCE resulted 

in increa ed concentrations (up to 15 fold). 
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3.4.2 Extraction using low- and high-speed centrifugation 

3.4.2.1 Soil solution pH 

Similar to February extractions, soil solution pH values were significantly different between sites 

(Table 3.5). Mean pH values were lowest in FM (pH 3.1), and 5MB (pH 3.7), followed by SMM (pH 

4.3), KP (pH 5.3), and KR (pH 6.3). The pH values of soil solutions extracted from fresh or re-wetted 

air-dried soil were not significantly different when using high-speed centrifugation. 

Table 3.5. Statistical analyses for soil solution analyses extracted in July 1995 from Flanders Moss 
(FM), Sheriffmuir blanket peat (SMB), and Sheriffmuir mineral soil (SMM) using centrifugation at 
low-(4000 rpm) and high-(l2000 rpm) speed, and from fresh (FR) and air-dried (AD) soils. * 
p<0.05, **, E<O.Ol, ***, E<O.OOl, n.s, not si~nificant. 

Site (df=2) FRIAD (df=l) High/Low (df=l) 
F ~ F ~ F ~ 

Solution pH 95.74 *** 4.42 ** 2.84 * 
Extracted volume 6.40 * 2.51 * 29.38 *** 
Cations: 
NH4 121.92 *** 0.81 n.s 0.59 n.s 
K 12.80 *** 2.67 * 0.67 n.s 
Na 1.19 n.s 10.07 *** 26.01 *** 
Ca 105.20 *** 0.22 n.s 1.19 n.s 
Mg 0.30 n.s 56.67 *** 58.83 *** 
Al 11.29 *** 307.03 *** 31.17 *** 
Fe 73.07 *** 5.88 * 8.16 ** 
Si 103.32 *** 212.61 *** 276.00 *** 
Anions: 
N03 149.70 *** 0.49 n.s 1.04 n.s 
p 58.66 *** 2.89 * 1.46 n.s 
CI 2.30 n.s 5.27 *** 1.58 n.s 
F 2.49 n.s 0.61 n.s 0.97 n.s 
S04 45.64 n.s 1.67 n.s 0.97 n.s 

Extracted soil solutions from FM, 5MB, and SMM using both low- and high-speed centrifugation 

were also compared. Both the centrifugation speed and the soil condition had a significant effect on 

the soil solution pH (Table 3.5 and Figure 3.3). Mean pH values were higher in solutions extracted 

using low-speed centrifugation with the exception of 5MB fresh soils. A difference of up to 0.5 pH 

units was found in solutions from FM air-dried soil (pH 3.2 vs. pH 3.7). 

3.4.2.2 Volume of extracted soil solution 

Figure 3.3 shows the volumes of extracted soil solutions from FM, 5MB, and SMM FR and AD soil 

using low- and high-speed centrifugation. There was a significant difference in the volume of 

solution extracted between sites (Table 3.5). Using high-speed centrifugation the largest volumes of 

solution were from SMM soil. There was less of a difference in volumes extracted using low-speed 

centrifugation. However in all cases significantly greater volumes of solution were extracted using 

high-speed 
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Figure 3.3. Mean total volumes and pH values (± 95 % C.L.) of extracted soil solutions from fresh 
(D) and rewetted air-dried (.) soils using high-speed (High) and low-speed (Low) centrifugation 
from (a) Flanders Moss (FM), (b) Sheriffmuir blanket peat (SMB), and (c) Sheriffmuir mineral soil 
(SMM). 
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centrifugation (Table 3.5). Differences of up to 29 ml were found (40.7 mI compared with 11.3 mI of 

solution extracted from SMM AD soil). 

Extracted volumes of soil solution were dependent upon soil condition and greater volumes of soil 

solution were obtained from AD soils (Figure 3.3 and Table 3.5). 

3.4.2.3 Ionic composition of soil solutions 

Table 3.6 gives the concentrations of cations analysed in the extracted soil solutions from July 

collections. Soil solutions were not extracted from either KP or KR using low-speed centrifugation. 

Concentrations of NH4, K, Ca, AI, Fe, and Si were significantly different between sites (Table 3.5). 

NH4 and K were highest in solutions from the peaty FM and 5MB soils, and lowest in KR solutions. 

In contrast Ca concentrations were greatest in solutions from KR and lowest in those from 5MB and 

FM soils. AI concentrations were greatest in the solutions extracted from the acid mineral soil SMM 

and lowest in the calcareous soils, KR. Fe was highest in KP and lowest in FM. Finally, Si 

concentrations were highest in solutions of KP, KR, and SMM soils, and lowest in those from 5MB. 

Concentrations of K, Na, Mg, AI, Fe, and Si were significantly greater in AD soil solutions compared 

with FR soil solutions (2-11 fold differences) (Table 3.5). 

The concentrations of Na, Mg, AI, Fe, and Si were also significantly affected by the speed of 

centrifugation. Centrifugation at high-speed increased ionic concentrations (3-10 fold increase). 

Table 3.7 shows the concentrations of anions in the soil solutions extracted from FR and AD soils 

using 

high- and low-speed centrifugation. Again there were no analyses for soils from KP and KR using 

low-speed centrifugation. Only N03 and P were significantly different between the 3 sites. N03 

concentrations were greatest in KR and lowest in FM solutions. P concentrations were highest in FM 

solutions. 

Concentrations of P and CI alone were significantly different between solutions extracted from either 

FR or AD soil (Table 3.5). Concentrations were greater in solutions from AD soil compared with FR 

soil and the difference was more pronounced in solutions extracted at high-speed. 

The concentration of anions was not significantly affected by the speed of centrifugation (Table 3.5). 
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Table 3.6. Mean concentrations of cations (± s.e) in soil solutions extracted in July 1995 from Flanders Moss (FM), Sheriffmuir bl anket peat (SMB), 
Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), and Kinloch Rannach (KR) using low-speed (Low) and hi gh-speed (High) centrifugation . n.d, no 
data. 

Extraction NH4 K Na Ca Mg 
Method mg r'-----------------

Fe AI Si 

FM 
Low 

High 

5MB 
Low 

High 

SMM 
Low 

High 

KP 
Low 

High 

KR 
Low 

High 

37 

----- JIM -----
FR AD FR AD FR AD FR AD FR AD FR AD FR AD FR AD 

28.53 14.14 4.74 8.03 7.36 8.94 4.29 3.30 1.61 
± 2.53 ± 2.93 ± 0.39 ± 0.39 ± 0.68 ± 0.82 ± 0.37 ± 0.54 ± 0. 12 
2.55 22.48 1.48 24.28 15.32 29.69 0.17 7.34 1.43 

1.97 0.53 0.21 
± 0.27 ± 0.04 ± 0.0 I 
6.53 0.34 0.45 

15.67 35.67 88.59 
± 1.66 ± 1.77 ± 7.47 
23 .63 136.80 998.75 

537.40 
± 56.27 
1653.59 

±0.30 ± 1.35 ±0.67 ±0.63 ± 2.L2 ±1I .5 ±0.02 ±3.53 ±0.27 ±0.91 ±0.09 ±0.14 ±9.3L ±2.95 ±50.14 ±162.65 

1.10 19.67 7.15 13.32 3.70 
± 0.05 ± 1.75 ± 0.47 ± 1.50 ± 0.25 
2.31 5.98 8.50 27.34 21.62 
± 0.40 ± 0.42 ± 3.78 ± 4.74 ± 7.78 

8.75 1.91 0.43 1.23 
± 0.62 ± 0.29 ± 0.06 ± 0. 19 
43.36 0.31 9.82 2.31 
±8.87 ±0.14 ±2.14 ±0.92 

1.85 
± 0.31 
5.54 
±1 .22 

1.99 0.81 
±0.41 ±0.03 
0.75 8.60 
±0.23 ±1.08 

107.30 50.35 88.97 
± 6.08 
25 .59 
± 6.80 

± 6.98 ± 5.44 
258.04 508.41 
±27.9 ±38.83 

637.91 
± 43 .89 
865.70 
±54.6J 

10. 10 17 .35 5.06 11.25 4.15 9.05 22.03 11.91 1.04 1.99 1.41 0.61 133.51 99.87 425 .74 1413.5 
± 2.16 ± 1.95 
2 .13 14.78 

± 0.88 ± 0.85 
7.29 13.78 

±0.24 ±0.33 ±0.94 ±1.60 ±0.17 ±0.22 ±0.08 ±0.04 ±6.82 ±7.22 ±9.41 ±S9.14 
15.71 30.83 0.43 9.31 2.42 4.35 0.69 0.96 26.13 780.19 1320.00 1743.34 

±0.09 ± 1.43 ±4.18 ±6.08 ±3 .26 ± 12.1 ±O.IO ±2.32 ± 1.26 ±0.30 ±0.54 ±0.28 ± 1.37 ±51.5 ±52.25 ±159.83 

n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

6.70 15 .62 8. 11 15.34 23.21 36.08 1.0 I 12.42 3. IS 4.96 2.52 3.42 48 .94 195.96 n.d 
± 0.97 ± 2.20 ± 1.19 ± 0.58 ± 3.95 ± 12.2 ± 0.33 ± 5.50 ±0.88 ±o.n ±0.40 ±0.46 ± L 1.1 ±69.2 

n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

1.58 8.08 6.67 10.29 16.05 38.52 0.88 43.80 1.71 2.20 1.37 0.55 29.96 n .06 n.d. 
+0.14 ±0.54 ±L.57 ±2.10 ±1.79 ±9.95 ±0.29 ±17.2 ±0.27 ±0.49 ±0.57 ±0.22 ±1.82 ±20.5 

n.d 

5731.33 
±1588.9 

n.d 

2178.81 
±345.37 



Table 3.7. Mean concentrations of an ions (± s.e) in soil solutions extracted in July 1995 from 
Flanders Moss (FM), Sheriffmuir blanket peat (SMB), Sheriffmuir mineral soil (SMM), Kippenrait 
Glen (KP), and Kinloch Rannach (KR) using low-speed (Low) and high-speed (High) centrifugation. 
n.d, no data. 

Element 
Extraction N03 P CI F S04 

Method mgr l 

FR AD FR AD FR AD FR AD FR AD 
FM 

Low 1.49 2.63 21.5 . 37.0 23.3 32.2 2.44 4.42 23.6 38.0 
± 0.17 ±0.13 ± 3.36 ± 5.94 ± 1.05 ±4.88 ± 0.61 ±0.93 ± 1.53 ± 3.84 

High 1.74 2.73 2.80 42.7 6.18 31.1 2.10 0.11 37.2 40.5 
±0.24 ±0.27 ± 0.49 ± 1.73 ±0.35 ± 5.18 ±0.64 ±O.OO ±3.60 ± 6.61 

5MB 
Low 0.21 1.89 11.6 22.4 15.4 26.8 1.46 3.51 23.9 49.7 

±0.05 ± 0.19 ± 1.30 ±1.87 ± 1.30 ± 1.87 ±0.30 ±0.12 ±3.96 ±4.55 
High 1.48 0.50 4.85 7.20 14.7 25.4 0.41 2.26 41.5 47.3 

±0.38 ±0.08 ± 0.44 ± 0.17 ±2.63 ±2.63 ±O.IO ±0.90 ±4.71 ± 5.30 
SMM 

Low 1.23 3.07 10.4 22.1 20.6 33.2 0.44 2.03 16.6 16.1 
±0.06 ±0.52 ± 1.73 ± 2.74 ± 1.81 ±4.92 ± 0.15 ± 0.45 ±2.02 ± 1.55 

High 12.1 3.22 1.64 5.87 10.3 27.4 4.32 0.53 15.8 39.8 
± 1.37 ± 0.14 ± 0.16 ± 0.40 ± 2.03 ±4.16 ±0.70 ±0.09 ± 2.12 ±4.39 

KP 
Low n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

High 4.71 44.9 5.28 9.28 17.1 29.1 7.90 1.16 37.8 61.1 
± 3.28 ± 1.52 ± 0.59 ± 0.49 ± 1.16 ± 5.67 ± 1.13 ± 0.12 ±4.65 ± 8.23 

KR 
Low n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

High 2.28 17.8 4.44 23.3 9.86 16.9 0.40 0.04 11.6 14.8 
±0.34 ±2.52 ± 1.75 ± 1.74 ± 2.16 ± 3.20 ± 0.17 ±0.01 ±0.94 ± 2.30 
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3.5 Discussion 

The effects of soil condition (FR or AD), extraction technique (Imm or Cen), and speed of 

centrifugation (Low and High) were compared. There were no differences in the soil solution pH 

values between FR or AD soils extracted at high-speed. Similarly no differences were found in the 

February samples extracted at low-speed. However pH values of july samples were higher in 

solutions from AD soils extracted at low-speed. Contrary to the findings of Dahlgren (1993) 

centrifugation with an immiscible displacent did not increase the soil solution pH. However the speed 

of centrifugation did influence solution pH. Contrary to Elkhatib et al. (1987), pH values were up to 

0.5 units higher in solutions extracted at low-speed. 

All soil solution pH values were most similar to the soil pHH,o or soil pH measured in a weak CaCh 

solution (0.002 M). Gillman (1991) found that soil pH measured in solutions of ionic strength 

appropriate to the soil most accurately reflected the soil solution pH. He suggested that soil pH could 

be standardised by using 0.002 M CaCh which had an ionic strength (0.006) close to the average ionic 

strength of the soil solutions from weathered soils in North America, pasture soils in New Zealand, 

and agricultural soils in West Australia. 

Whether soils were extracted at low- or high-speed, using an immiscible displacent or not, a greater 

volume of soil solution was acquired from AD soil samples. There was no difference in soil solution 

volumes between the two extraction techniques. However significantly greater volumes were 

obtained from all the soil types spun at high-speed. Contrary to expectation less solution was 

obtained from the boggy soil samples (FM or 5MB) compared with the mineral soils (SMM, KP, or 

KR). 

Whether samples were spun at low- or high-speed, or extracted with or without TCE, concentrations 

of cations were generally greater in solutions from AD soil samples. Results were not consistent 

among all soil types. NH4, K, Mg, and Al were all higher in concentration in solutions from AD soil 

extracted at low-speed. K, Na, Mg, Fe, and Si were also higher in AD extracted soil at high-speed. 

There were no clear differences in the concentrations of Cl, F, S04 or NO] between FR and AD at 

low-speed. At high-speed, solutions from AD soil had significantly greater concentrations of Cl. 

Jones & Edward (1993b) also found increased ion concentrations upon rewetting of air-dried soils. 

Orders of increasing ion concentrations between sites were not the same in solutions from both FR 

and AD soil samples. 
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The extraction technique had little effect on the ionic composition of the soil solution. Only Fe, Na, 

and F were significantly different between the extraction methods. For solutions from FR and AD 

soil, concentrations of F were greater when extracted with TCE. Na concentrations were lower in 

TCE extracted AD soil and higher in TCE extracted FR soil. Adams et al (1980) and Wolt & Graveel 

(1986) also found miscible displacement, vacuum displacemept, and centrifugation produced soil 

solutions of no difference. Dahlgren (1993) however extracted fresh-moist soil with immiscible 

displacement and the extracted solutions had lower solute concentrations compared with solutions 

extracted by centrifugation alone. Dahlgren used the displacent 1,1 ,2-trichloro-l ,2,2, triflouroethane 

at high-speed (20000 x g). 

The ionic composition of the extracted soil solutions were influenced to a certain extent by the speed 

of centrifugation. Concentrations of Na, Mg, AI, Fe, and Si were all greater in solutions extracted at 

high-speed. The speed of centrifugation had no significant effect on the concentration of anions. In 

contrast S04, F, and Cl concentrations were greater in solutions spun at 10000 rpm compared with 

5000 rpm by Ross & Bartlett (1990). Zabowski & Ugolini (1990), and Edmeades et al (1985) found 

no differences at all between solutions spun at 1000 rpm and 10000 rpm, and 2000 rpm and 15000 

rpm. 

The ionic composition of soil solutions were also dependent upon the time of soil sampling (February 

or July). An increase in soil temperature during the summer months should in tum increase microbial 

activity and decomposition of organic matter. In agreement, the concentration of NH4 in soil 

solutions extracted from SMM, KP, and KR, and P in all five soil solutions, increased between 

February and July by as much as ten-fold, but both N03 and S04 concentrations were reduced. 

Elements such as K, Ca, and Mg, are primarily released into the soil solution through the dissolution 

of soil minerals (aluminosilicates) which also increases with temperature. Concentrations of both Na 

and Mg were lower in July solutions extracted from the organic soils (FM and 5MB) but increased in 

SMM, KP, and KR soils. In contrast K and Ca concentrations were significantly reduced, by as much 

as 50 %, in July soil solutions from all five soil types. The observed reduction in exchangeable 

cations in organic soil solutions is not surprising since these soils are not rich in weatherable minerals. 

Furthermore the month of July falls midway through the growing season and reductions in N03, K, 

and Ca as a result of plant uptake is similarly expected. 

In summary there were few significant differences recorded in the soil solutions extracted using the 

different techniques and at the different centrifugal forces. However the differences in solutions from 

FR or AD soils were large and appear to be consistent amongst authors. It is recommended that soil 

solutions be extracted from fresh soil samples using centrifugation at a low-speed without an 
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immiscible displacent. Furthermore when using fresh soils, extraction should be within 24 h of 

collection. 

3.6 Conclusions 

• Soil solution pH values from fresh and rewetted air-dried soils were not significantly different. 

• Centrifugation with an immiscible displacent did not affect solution pH. 

• Soil solution pH values were greater using low-speed centrifugation. 

• Soil solution pH values more closely resembled conventional soil pH measurements made in H20 
or O.002M CaCho 

• Extraction of rewetted air-dried soils, and high-speed centrifugation, produced greater volumes of 
solution. 

• Soil solutions from rewetted air-dried soils had significantly greater ionic concentrations than 
those from FR soils. 

• Centrifugation with or without I, I, I-trichloroethane did not affect solution ionic compositions. 

• High-speed centrifugation increased the concentration of some cations in the soil solutions. 
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Chapter 4 

Differences in low pH tolerance by races of Anthoxanthum odoratum L., 
Holcus lanatus L., and Betula pendula Roth. 

4.1 Introduction 

4.1.1 Low pH and soil acidity 

Acid soils (pH <5.6) constitute about 1.17x 109 ha of non irrigated arable lands of the world (polle & 

Konzak 1990). Factors determining soil acidity were described in Chapter 1. Simultaneous chemical 

interactions occurring in acid mineral soils include: increased solubility of mineral elements, such as 

AI, Fe, and Mn, to potentially toxic concentrations, and reduced availability of essential nutrients such 

as p, Ca, Mg, and Mo. Hence the hydrogen ion (H+) activity, and direct H+ toxicity, is no longer 

considered as the growth limiting factor associated with acid soils of pH >4.0 but rather the toxicity or 

deficiency of these other elements (Adams 1984, Bell 1996, Foy 1992, Frageria et at. 1990, Kamprath 

1984). The conclusion reached by Wilkinson & Duncan (1989) that H+ toxicity was the major 

limiting factor of sorghum growth in the acid soils of Georgia (pH <4.8), was later contradicted by 

Shuman et at. (1990) who showed Al toxicity was primarily reducing sorghum growth in these soils 

(Foy 1992). Similarly, Osaki et at. (1997) found that the effect of pH on plant growth was less 

conspicuous than the effects of AI. However H+ toxicity may restrict the survival and activity of 

rhizobia and other soil microorganisms, and could be a significant growth-limiting factor in strongly 

acidic mine spoils (pH <3.0) or acid sulphate soils (Foy 1992). In organic soils where toxic 

concentrations of soluble Al and Mn are negligible, H+ activity may be responsible for poor plant 

growth. Evans & Kamprath (1970) showed a sharp reduction in corn growth in an organic soil with 

pH< 4.0 which they attributed to H+ toxicity. 

Excess W competes with other cations for root absorption sites, interfering with ion transport and 

uptake, and causing root membranes to become leaky. Prolonged exposure results in a diminished 

capacity for nutrient absorption and an increased nutrient, especially Ca, requirement by the plant 

(Foy 1992). Lund (1970) showed a higher Ca requirement by soybean taproots when grown in 

nutrient solution at pH 4.5 compared with those grown at pH 5.6 (Foy 1992). Hussain et at. (1954) 

showed a significant loss of K, Ca, P, and soluble N in barley roots after exposure to pH 3.0 (Foy 
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1992). Their subsequent abilities for K absorption were also reduced. Excess H+ ions have also been 

shown to decrease the uptake of Mg, Cu, Mn, and Zn (Foy 1992). 

Nutrient solutions or sand cultures offer a means of distinguishing the direct effects of excess H+ from 

the indirect effects mentioned above (Frageria et al. 1990). Both Amon & Johnston (1942) and Islam 

et af. (1980) showed reduced root growth in plants grown in culture solutions at pH< 4.0. Amon & 

Johnson (1942) showed W was toxic at pH 4.0 to tomato but not to Bermuda-grass. Islam et af. 

(1980) grew six species including cassava, French bean, wheat, and maize in nutrient solutions 

adjusted to pH's 3.3 to 8.5. All species produced maximal or near-maximal yields within the pH 

range 5.5-6.5. At pH< 4.0 lateral root development was suppressed and in some cases root tips were 

necrotic. The roots were a discoloured brown or dull grey. Minimal growth of sorghum occurred at 

pH 3.7 and growth increased with increasing pH values (Guerrier 1982). Yokota & Ojima (1995) 

found root elongation in alfalfa was inhibited after 20 h treatment in nutrient solutions at pH 4.0, with 

a loss in root surface cell viability after only 4 h. The tap roots of soybean (cv. Ransom) grown in 

solutions at pH< 4.6 had symptoms of H+ injury: roots were brownish, stunted, and had limited lateral 

growth (Sanzonowicz et al. 1998). Brunet (1994) grew two woodland grasses: Bromus benekenii and 

Hordelymus europaeus, characteristic of less acidic fertile soils, in solutions at pH's 3.9,4.0, and 4.3. 

There was a sharp decrease in root growth below pH 4.0. New roots were thickened and discoloured. 

Differences in tolerance to low pH between species or races has been shown in sunflower, soybean 

and subterranean clover. 90 % of maximum total dry matter yield was obtained by four sunflower 

cultivars at cultivar-specific solution pH's between 4.0-5.0. A medium pH of 3.5 was lethal to all four 

cultivars (Blarney et al. 1982). Handreck (1992) showed differential tolerance of low pH in ferns 

(Asplenium and Adiantum spp.). Ferns reputed to need alkaline growing media were intolerant of low 

pH values (pH <5.0). 

4.1.2 Soil acidity amendment through lime applications 

In most cultivated soils, periodic treatments with lime can correct for mineral element deficiencies or 

toxicities associated with low pH (Baligar et al. 1990a, Foy 1992). This use of liming materials to 

increase soil pH and root growth is an old and common practice (Frageria et af. 1995, Sharpley et af. 

1992). The obvious direct effects of lime addition are, an increase in both soil Ca concentration and 

pH, resulting in increased P and Mo availability, reduced exchangeable AI, and lower availability of 

Cu, Fe, Mn, and Zn (Frageria et af. 1990, McLean & Brown 1984, Stevens & Laughlin 1996). 

Therefore overliming may lead to micronutrient deficiencies. Liming also improves microbiological 

activities of acid soils, which in turn increases N fixation by legumes thus liberating N from 

incorporated organic materials (Frageria et af. 1995). The bulk of agricultural lime comes from 

43 



ground limestone but many other materials are now used: ground marl and chalk, slag from iron and 

steel making, flue dust from cement plants, refuse from sugar beet factories and paper mills (Thomas 

& Hargrove 1984). Linz-Donawitz slag, a by-product of the Fe and steel making industry, was 

successfully used as a liming agent by Besga et al. (1997). The soil pH and exchangeable Ca and Mg 

increased, while exchangeable Al decreased. 

Frageria et al. (1995) showed increased dry matter yields in both bean and corn when grown in a 

limed oxisol. Dry matter yields of perennial pasture and perennial ryegrass also increased after liming 

a clay soil (0-12 t ha-!) in County Antrim (Stevens & Laughlin 1996). Substantial increases in the 

grain yield of wheat were consistently obtained over a 12-year period after one single lime application 

(2.5 t ha-!). Yields increased by 79 % in an acid-sensitive (Oxley) wheat cultivar (Coventry et al. 

1997). Finally, low-level liming of an ultisol (increased soil pH from 4.76 to 4.95) increased shoot 

mass, shoot N uptake, number of nodules, and root mass of white clover inoculated with Rhizobium 

leguminosarum bv. trifolii (Staley & Morris 1998). 

In most soils however, conventional liming of the plough layer is insufficient to neutralise subsoil 

acidity (where root development is needed for greater resistance to drought and more effective use of 

subsoil nutrients), and mixing lime throughout the entire soil volume is not economically feasible 

(Barcelo et al. 1996, Foy 1992, Foy 1996, Sanzonowicz et al. 1998, Sharpley et al. 1992). The 

normal limit of lime incorporation using conventional farm machinery is about 10 cm. Liming an acid 

soil to a depth of 1 m neutralised AI, increased soluble Ca concentrations, stimulated root 

development in subsoils, and increased alfalfa yield by 50 % (Sumner et al. 1986). Incorporation of 

lime to 20 em compared with 10 em also increased yields of barley and wheat. However there was no 

further advantage in liming to a depth of 40 em (Scott et al. 1997). 

An alternative to liming, or indeed in combination with liming, is the use of acid-tolerant crops or 

cultivars which can improve productivity in acid agricultural soils (Dwivedi 1996, Foy 1996, Scott et 

al. 1997, Sharpley et al. 1992). Foy (1996) limed AI-toxic Tatum subsoil with 0.75 or 4 mg CaCO) 

kg-! soil to reach final soil pH values of 4.4 and 5.7. Relative shoot dry weights averaged 28.6 % for 

the acid-tolerant and 14.1 % for the acid-sensitive barley cultivars. The dry matter yields of rice and 

wheat were not much improved with the addition of 4 g kg-! lime. This was attributed to their acid 

soil tolerance (Frageria et al. 1995). Dwivedi (1996) compared the effects of liming an acid soil 

(lnceptisol) in the Himalayan region on the growth of different crops. Lime application decreased 

foliar concentrations of AI, Fe, and Mn, and increased grain yields, in all crops except buckwheat, 

rice, bean, horse gram, and amaranth which were all acid tolerant. 
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4.2 Aims 

• To investigate the effects of low pH on the growth of naturally occurring races of Holcus lanatus 
and Betula pendula. (The reasons for the choice in study species were given in Chapter 2, Section 
2.2.) 

• To investigate the possibility of differences between races in response to low pH. 

• To investigate the effects of low pH on nutrient absorption. 

• To investigate the effects of low pH on root cell anatomy and race-specific differences. 

• To determine whether or not lime addition improved yields of naturally occurring Anthoxall1hum 
odoratum and Holcus lanatus. 

4.3 Methods 

4.3.1 pH tolerance in nutrient solutions 

4.3.1.1 Experiment 1 

Seed material of Holcus lanatus was collected in August 1995 from FM and KP (Chapter 2, Table 

2.1). Seeds were stored in dry and dark conditions until the start of the experiment. Seeds were 

germinated in August 1995 in Petri dishes on seed test paper (Whatman Grade 181) with acid-washed 

sand in the Stirling University growth rooms. The Petri dishes were kept under a photoperiod of 16 h 

light and 8 h dark with a PAR of 200 Jlmol m-2 s-'. Temperature was 20°C during the day and 15°C 

during the night. Seeds germinated after 3-4 days. Seedlings were kept in Petri dishes for seven days 

following germination and watered with dilute culture solution (10 times dilution). They were then 

carefully threaded through thin glass tubes using deionised water. The glass tubes were suspended 

from the lids of 600-ml beakers into an initial culture solution identical in ionic composition to that 

described below but at pH 5.6. 

The composition of the culture solutions is shown in Table 4.1. Stock solutions of 100-strength of 

NH40H, Na2S04, NH4H2P04, KFeEDDHA, Ca(N03h4H20, CaCh.6H20, Mg(N03h.6H20, H3B03, 

KH2P04, and MES buffer, and lOoo-strength of MnS04.4HzO, ZnS04.7H20, CuS04.5HzO, and 

(NH4)bM07024.4H20 were made up and diluted appropriately. The culture solution was based on soil 

solution analyses of fresh and air-dried soils extracted from Flanders Moss (FM) samples in February 
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1995 by centrifugation (Table 4.2) and micronutrients were based on concentrations used by Johnston 

& Proctor (1981) (1/10 those of Hoagland & Amon 1950). MES buffer was used to keep the culture 

solution constant at pH 5.6 before treatments began. KFeEDDHA was used instead of NaFeEDTA 

following cautions by Chaney & Bell (1987) about the possible confounding effects of NaFeEDT A in 

micronutrient experiments. GEOCHEM predicted 63.8 % of Fe3
+ in solutions remained bound to 

EDDHA compared with 11.9 % using EDTA. Beakers were covered in tinfoil to prevent algal 

growth. Solutions were stirred daily and the pH corrected where necessary to 5.6 using 1M NaOH or 

1M HCl. Culture solutions were changed twice per week. 

After two weeks growth in the initial culture solution seedlings of similar size were separated into 

beakers each holding two seedlings. The plants were grown in culture solutions at pH 2.0, 3.0,4.0, 

5.0, and 5.6. There were ten replicate seedlings per treatment per site. Solutions were changed every 

three days. Solutions were buffered at pH 2.0 using NaCl, citric acid, and HCI; at pH 3.0 using Na 

citrate and citric acid; at Pl:l 5.0 and pH 5.6 using MES Buffer (Table 4.2). Nutrient solutions were 

stable at pH 4.0 without the addition of a buffer. 

Table 4.1. Chemicals and their rate of application used in culture solutions. *. 1000 !lM MES buffer 
is 2(N-morpholino)ethanesulphonic acid used to buffer solutions at pH 5.6 and at pH 5.0. **, Na 
citrate/citric acid used to buffer solutions at pH 3.0. *. NaCl/citric acid/HCI used to buffer solutions 
at pH 2.0. 
Chemical used 
NH40H 
Na2S04 

Ca(N03hAH20 
CaCh.6H20 
Mg(NO,h.6H20 
NH4H2P04 

KH2P04 

KFeEDDHA 
H,B03 

MnS04.4H20 
ZnS04.7H20 
CuS04.5H20 
(NH4)6M07024.4H20 
MES buffer 
Na citrate/citric acid 
NaCllcitric acidlHCI 

Concentration in culture solution (!lmol rl) 
776 
350 
74 
74 
58 
56 
22 
9.9 
4.6 
0.91 
0.076 
0.032 
0.0074 
1000 * 
1000/2000 * * 
610/300/82 * 

The number of roots and their lengths, the number of tillers and blades and their lengths. were 

recorded before seedlings were put into treatments and thereafter every five days until harvesting after 

15 days of treatment (14 Sep-29 Sep 1995). At harvest roots and shoots were separated, rinsed in 

deionised water, and dried in an oven at 60°C for 48 h and the dry weights recorded. Root: shoot 

ratios were determined. 
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Between 100 and 300 mg of oven-dried shoots and roots were digested in a sulphuric acid-hydrogen 

peroxide mixture (Allen 1989) in a block digester at 330 °C. Digested plant material was filtered 

through a No.44 Whatman filter paper and made up to 100 ml. Concentrations of Ca and Mg were 

measured using a Varian AA-575 S atomic absorption spectrophotometer with a nitrous oxide­

acetylene flame. An air-acetylene flame was used to determine K (flame emission) and Fe 

concentrations. 

P was measured on a Tecator FIAstar 5010 flow injection auto analyser using the stannous chloride­

ammonium molybdate method. 

Ten terminal 1 cm sections of roots from both KP and FM seedlings, and grown at each pH, were 

embedded in paraffin. Samples were fixed in FAA (13 ml formaldehyde: 5 ml glacial acetic acid: 200 

ml 50% ethanol). Root sections were then dehydrated with graded ethanol (diluted with deionised 

water) and embedded in wax. Cross-sections were cut using an ultramicrotome and stained with 

safran in and light green. All the sections were observed under an optical Zeiss light microscope. 

For electron microscopy terminal 10 mm root portions were embedded in Spurr's resin following the 

procedure outlined in Chapter 7, Section 7.3.2. 

Table 4.2. Concentrations (mg 1-1) of each ion analysed in soil solutions from Flanders Moss (FM) 
and compared with their equivalent concentration in culture solutions. FR, soil solutions extracted 
from fresh soil. AD, soil solutions extracted from rewetted air-dried soil. 

Element Soil FR Soil AD Added through Concentration in culture 
solution 

mg 1-1 

NH4 5.91 19.70 NH4H2P04, NH40H 15.16 

N03 2.60 2.60 Mg(N03h·6H20 , Ca(N°3h.4H20 16.40 

P04 0.36 2.12 KH2P04, NH4H2P04 7.35 
K 6.47 14.27 KH2P04, KFeEDDHA 6.75 

Na 7.78 9.24 Na2S04 15.95 

Ca 1.86 35.70 Ca(N03)2.4H20, CaC12·6H20 5.86 

Mg 0.64 2.47 Mg(N°3)2·6H20 1.41 

Fe 0.31 0.08 KFeEDDHA 0.54 

S04 53.36 65.47 Na2S04 33.89 

4.3.1.2 Experiment 2 

Seeds of Betula pendula were collected in August/September 1995 from SMM, KP, and KR (Chapter 

2, Table 2.1). The seeds were stored in the same conditions as those of Holcus lanatus. Seeds were 

germinated in 1 % agar (DIFCO Laboratories 1995) in March 1996 in the Stirling University gro\\<th 

rooms with the same photoperiod and temperature regime as in Experiment 1. The agar was poured 

into sterile Petri dishes in a hood. Seeds germinated after five days and were kept in agar for 1-2 

weeks 
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before being transferred into culture solution. At the first leaf stage they were removed from agar and 

carefully threaded through thin glass tubes with deionised water. The glass tubes were suspended from 

the lids of600-mI beakers in an initial culture solution (prepared as in Experiment 1) at pH 5.6 (Figure 

4.1). 

Figure 4.1 . Betula seedlings at initial transfer into solutions. Seedlings were transferred at the first 
leaf stage and suspended from glass tubes into "initial" nutrient solutions. 

After four weeks growth in culture solution at pH 5.6 seedlings of similar size were separated into 

beakers each holding two seedlings. At this stage seedlings had an average of 3-6 roots of 40-80 cm 

total length, and 7-11 leaves of 16-38 cm2 total area. The seedlings were grown in culture solutions at 

pH 3.0, 4.0, 5.0, and 5.6. There were five replicate seedlings per treatment per site. Solutions were 

changed every three days. 

The number of roots and their lengths, the number of leaves and their length and maximum breadth, and 

the height of the seedlings were recorded before seedlings were put into treatments and at harvest. To 

determine the leaf area expansion over the treatment period a relationship between actual leaf area and 

measured values of length and breadth was established. One hundred leaves, collected from separate 

birch seedlings, which were grown alongside experimental seedlings, were scanned and their areas 

measured using Nlli 5b Image. A regression equation between leaf area and leaf maximum breadth and 

length was then determined and used to estimate the leaf area of experimental seedlings before 

treatments began and at harvest. 
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Seedlings were harvested after four weeks growth in the +Al treatments (17 Apr-IS May 1996). 

Roots and shoots were separated, rinsed in deionised water, and dried in an oven at 60°C for 48 hand 

the dry weights of leaves and roots recorded. Root:shoot ratios were determined. 

Between 100 and 300 mg of oven-dried leaves and roots were digested and analysed for P, K. Ca, Mg. 

and Fe using the same digestion procedure and analytical techniques as in Experiment 1. 

4.3.2 Pot experiments 

Seeds of Holcus lanatus and Anthoxanthum odoratum were collected from FM, 5MB, SMM, KP, and 

KR in June/August 1996 (Chapter 2, Table 2.1), and were germinated in acid-washed sand on Seed 

Test Paper in July 1997 and September 1997. Seeds germinated after 3-4 days (Holcus) and 7 days 

(Anthoxanthum ). 

Ca(OH)2 was added to moistened. air-dried soil to raise the soil pHcacI2 to 5.6, at the following rates: 

13.16 g kg- 1 (FM), 9.4 g kg- 1(SMB), 2.73 g kg-l (SMM), and 3.99 g kg-l (KP) based on 

recommendations by Rowell (1995). The required Ca(OHh was added to polythene bags containing 

100 g samples of <2 mm air-dried soil. Deionised water was added to bring the soil to 40 % of its 

holding capacity. The soil was thoroughly mixed and left to equilibrate for two weeks in the bags 

which were loosely folded. The bags were occasionally shaken to ensure good aeration (Rowell 

1995). At the end of the incubation period the pH of each soil sample was measured. The limed soils 

had a pH of 5.6 ±O.I. Ca(OH)2 was not added to KR soil. 

Seedlings from each site were potted (78-mm pots) in limed and unlimed soil from each of the five 

sites. There were five replicates of H lanatus and ten of A. odoratum per treatment. 

After eight weeks growth seedlings were harvested. Holcus were harvested on 1 Sep 1997, and 

Anthoxanthum were harvested on 2 Nov 1997. Roots and shoots were separated, washed in deionised 

water, and dried in an oven at 60°C for 48 h and the dry weights recorded. 
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4.4 Results 

4.4.1 pH tolerance in Holcus lanatus 

4.4.1.1 Root elongation and number 

Figure 4.2 shows the rate of root elongation (RER) and increase in mean number of roots (per plant) 

over 15 days of growth at pH 2.0-5.0. pH had a significant effect on root growth (Table 4.3). Root 

elongation was significantly reduced in pH 2.0, 3.0, and 4.0 in Holcus originating from KP. After 5 

days in solution at pH 2.0 elongation was completely inhibited and did not resume. Elongation at pH 

3.0 was also severely reduced after only 5 days. In solutions at pH 4.0 there was a small increase 

between 5 and 10 days, thereafter elongation was inhibited. In contrast, rates of root elongation 

increased almost linearly with time in seedlings grown in solution at pH 5.0 and 5.6. There were no 

differences in root growth between these two pH values. 

There were significant differences in root elongation between sites (Table 4.3). Like KP seedlings, 

root elongation in FM races was reduced at pH 2.0 and 3.0, but at a lower rate than in KP races. 

However both pH 5.0 and pH 5.6 also had an inhibitive effect on root elongation. Rates of elongation 

slowly declined over the 15 days of treatment. In contrast, at pH 4.0 root elongation increased 

significantly with time and after 15 days rates were more than twice those at pH 5.6 (Figure 4.2). 

Solution pH also had a significant effect on root number (Table 4.3). Like root elongation, root 

numbers did not increase in KP seedlings at pH 2.0 and 4.0, and only slightly at pH 3.0 (Figure 4.2). 

In contrast root numbers increased in all three treatments in PM seedlings throughout the full 15 days 

of treatment. At both pH 5.0 and 5.6 root numbers increased with time in KP seedlings. There were 

only significant increases in root numbers of PM seedlings at pH 4.0. Numbers increased more than 

two-fold between the start and end of treatment (Figure 4.2). 

There were toxicity symptoms in the roots of seedlings from both sites grown at pH < 4.0, and these 

were more pronounced in KP seedlings (Figure 4.3). Root tips were swollen and black in Holcus 

from KP grown in solutions at pH 3.0. The same roots of FM plants were less swollen and only 

slightly discoloured. 
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Figure 4.2. Mean root elongation (cm da/, ± s.e) and increase in mean total root number (± s.e) in 
Holclis lanatus originating from Flanders Moss (FM) and Kippenrait Glen (KP). Seedlings were grown 
in nutrient solutions at pH 2.0 (+ ), 3.0 (_ ), 4.0 (A ), 5.0 (x), and 5.6 (0 ). Treatments began on day 5 
and lasted 10 days. 
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(a) 

(b) 

Figure 4.3. Roots of HolCtlS lanatus from Kippenrait Glen (KP) at pH 5.6 (a) are undamaged. 
Roots of Flanders Moss (FM) at pH 3.0 (b) have some tip necrosis but are healthier than those 
ofKP at the same pH (c) . 
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Figure 4.4. TEM micrographs of cortical cells of longitudinal root tip sections of Holcus lanatus 
grown in (a), (b), & (c) pH 3.0, and (d) pH 5.6 nutrient solutions. M = mitochondria, N = nucleus, P 

= plastid. 

4.4.1.2 Root anatomy and ultrastructure 

The differences in root anatomical traits between races of Holcus at each pH treatment are shown in 

Table 4.4. The outer cortical cells and epidermis of KP races were often disintegrated in roots treated 

at pH< 5.6. The root diameter, and number of cortical cells, of FM races did not change greatly 

between pH treatments, with the exception of pH 3.0 where diameter and whole-root area were 

substantially enlarged. At pH 3.0 there was also an increase in cortical cell number (about 30 cells 

more). In contrast the whole-root diameter and area of KP Holcus decreased when acidity increased 

beyond pH 5.0. Neither the diameter nor area of stelar tissue changed greatly in either of the two 

races. At pH 3.0 the stele was enlarged in FM races and it also occupied the lowest percentage of 

whole-root area. In KP seedlings the % area occupied by the stele increased with increasing acidity. 

The % area occupied by cortical cells was greater in FM Holcus compared with KP HoLcus irrelevant 

of pH. This area also remained consistent despite increasing H+ concentration in FM but decreased 

substantially in KP. 
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There were large differences in the cell ultrastructure of root cortical cells between plants grown at 

pH 3.0 and pH 5.6. The cells of roots grown at pH 5.6 retained the normal cellular structure with no 

disruption to the cytoplasm, nucleus, or nucleolus, and contained abundant E.R., Golgi bodies, and 

immature mitochondria (Figure 4.4). The only organelles which had remained intact in pH-3.0-

treated root cells were plastids. The cytoplasm was completely withdrawn from the cell wall 

indicating severe plasmolysis. The fine structure and integrity of nuclei, nucleoli, and cell membranes 

were lost in pH-3.0-treated roots. 

Table 4.3. Statistical analyses for root and shoot growth measurements, dry weights, and plant ionic 
compositions in Holcus lanatus originating from Flanders Moss (FM) and Kippenrait Glen (KP) and 
grown in solution at pH 2.0, 3.0, 4.0, 5.0, and 5.6. *, p<0.05; **, p<O.Ol; ***, p<O.OOI; n.s, not 
si~nificant. De~rees of freedom are: race 1, £H 4, and £H*race interaction 4. 

Measurement Race pH pH*race interaction 

F e F e F e 
Root growth 

Increase in total root length 23.91 *** 3.12 * 3.62 ** 
Increase in number of roots 6.34 * 5.78 *** 1.48 n.s 

Tops growth 
Increase in total shoot length 43.35 *** 8.01 *** 1.42 n.s. 
Increase in total tiller number 76.11 *** 7.74 *** 5.74 *** 
Increase in total blade number 124.2 *** 7.84 *** 2.62 * 

Dry weights 
Shoot 14.96 *** 0.50 n.s 4.07 ** 

Root 9.89 *** 8.17 ** 3.86 ** 

Total 15.68 *** 0.01 n.s 4.49 ** 
Root:shoot ratio 4.59 ** 30.32 *** 0.22 n.s 

Ionic composition 
Shoots 

p 23.30 *** 17.95 *** 6.90 *** 
K 4.84 * 5.94 *** 7.57 *** 
Ca 3.55 n.s 6.69 *** 0.98 n.s 
Mg 12.62 ** 7.85 *** 4.28 ** 
Fe 0.04 n.s 13.70 *** 4.67 ** 

Roots 
p 23.30 *** 33.73 *** 3.37 * 
K 27.92 *** 6.92 *** 1.71 n.s 
Ca 0.01 n.s 10.13 *** 2.37 n.s 
Mg 4.08 * 3.00 * 0.46 n.s 
Fe 0.00 n.s 7.42 *** 0.74 n.s 



Table 4.4. Mean root diameter and area, stele diameter and area, cortex area and number of cortical 
cells (± s.e) in Holcus lanatus, originating from Flanders Moss (FM) and Kippenrait Glen (KP), 
grown in nutrient solutions at pH 5.6, 5.0, 4.0, 3.0, and 2.0. The mean proportion of whole-root area 
occupied by vascular tissues and cortex are given in parentheses. t, no data available. Areas were 
estimated from diameter measurements. 
Treatment Root diameter Root area Stele diameter Stele area Cortex area Cortical cell 

(mm) mm1 (mm) mm1 mm1 number 

FM 
pH5.6 0.26 ±0.03 0.80 ±0.09 0.09 ±0.009 0.29±0.03(35.5) 0.52±0.07(64.5) 60.67 ±6.94 

pH5.0 0.29 ±0.02 0.90 ±0.07 0.09 ±0.004 0.28±0.01(31.4) 0.62±0.07(68.6) 60.33 ±7.99 

pH 4.0 0.23 ±0.02 0.72 ±0.08 0.09 ±0.001 0.28±0.03(38.6) 0.44±0.06( 61.5) t 

pH 3.0 0.37 ±0.02 1.16 ±0.08 0.11 ±0.003 0.34±0.01 (29.4) 0.82±0.08(70.6) 89.50 ±5.40 

pH 2.0 0.21 ±0.03 0.66 ±0.08 0.07 ±0.007 0.22±0.02(32.4) 0.45±0.06(67.6) 59.67 ±2.06 

KP 
pH5.6 0.23 ±0.02 0.72 ±0.05 0.09 ±0.006 0.28±0.02(38.9) 0.44±0.04(61.1) 79.33 ±2.33 

pH 5.0 0.27 ±0.03 0.86 ±0.09 0.11 ±0.006 0.35±0.02(40.3) 0.51 ±0.08(59. 7) t 

pH 4.0 0.19 ±0.07 0.59 ±0.04 0.08 ±0.004 0.26±0.01(43.4) 0.33±0.08(56.6) t 

pH 3.0 0.17 ±0.01 0.52 ±0.04 0.09 ±0.005 0.27±0.01 (51.2) 0.26±0.03(48.9) t 

pH 2.0 0.19 ±0.01 0.59 ±0.04 0.10 ±0.009 0.30±0.03(51.1 ) 0.29±0.04(48.9) t 

4.4.1.3 Shoot growth 

Rates of shoot elongation (SER, cm day"t) are shown in Figure 4.5. Shoot growth increased over the 

ten days treatment in seedlings from KP grown at both pH 5.0 and 5.6, and in FM at only pH 4.0. 

Shoot growth decreased with time in KP seedlings at pH 2.0, 3.0, and 4.0. SER only decreased at pH 

5.6 in FM seedlings and remained constant in other treatments. Effects of pH on shoot growth and 

differences between sites were statistically significant (Table 4.3). 

The shoots of plants grown at pH 5.6 or 5.0 were green, turgid, and healthy in appearance (Figure 

4.6). With increasing acidity the shoots became severely chlorotic and wilted. This was again far 

more pronounced in KP seedlings (Figures 4.6 c and d) compared with FM seedlings (Figure 4.6 e). 

Solution pH also had a significant effect on tiller production and number of blades with significant 

differences between the sites (Table 4.3). Both tiller and blade number increased throughout the 10 

days in seedlings of FM at all pH values, although only slightly at pH 2.0 and 3.0. In contrast 

increases were only seen in KP seedlings at pH 5.6 and 5.0 (Figure 4.5). 
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Figure 4.5. Mean shoot elongation (cm da{ ', ± s.e), and increase in total tiller and blade number C± 
s.e) in Holcus lanatus originating from Flanders Moss (FM) and Kippenrait Glen (KP). Seedling were 
grown in nutrient solutions at pH 2.0 C+), 3.0 (- ), 4.0 (A ), 5.0 (x), and 5.6 (0 ). Treatments began on 
day 5 and lasted 10 days. 
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Figure 4.6. Hoicus ianatus from (a) Kippenrait Glen (KP) and (b) Flanders Moss (FM) grown 
in nutrient solutions at pH 5.6. After 15 days growth at (c) pH 3.0 and (d) pH 2.0 KP seedlings 
wilted and leaves were extremely chlorotic. In contrast shoots of FM after the same growth 
period at pH 3.0 remained turgid with little chlorosis (e). 
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4.4.1.3 Plant tissue ionic composition 

Root K concentrations dropped in FM seedlings only between pH 3.0 and 2.0, while progressively 

decreasing in KP seedlings from pH 5.6 to 2.0 (Table 4.5). Differences between sites and pH values 

were significant (Table 4.3). There were no major trends in shoot K concentrations. Mg root and 

shoot concentrations decreased with increasing acidity (although not consistently), and to a greater 

extent in KP seedlings. Root Ca concentrations on the other hand increased with decreasing pH, 

especially in KP seedlings. Like Ca, Fe uptake by roots and translocation to shoots increased with 

increasing acidity (again not consistently). Differences in Ca, Mg, and Fe concentrations between pH 

values were significant (Table 4.3). KP seedlings had significantly greater concentrations of K and 

Mg in both the roots and shoots (Table 4.3). 

4.4.1.4 Plant dry weights 

Figure 4.7 shows mean total, shoot and root dry weights, and root:shoot ratios for Holcus lanatus 

from FM and KP at each of the five pH treatments. Both dry weights and root:shoot ratios were 

highest in KP seedlings at pH 5.6 and 5.0, and dry weights were lowest at pH 2.0. Root:shoot ratios 

increased again at pH 2.0. A similar pattern in root:shoot ratios was seen in FM but ratios were 

consistently greater, between 1.5 and two-fold, indicating a greater contribution to yield from roots 

than shoots. There were no significant differences in total, shoot, and root dry weights between 

Holcus grown at pH 4.0 and pH 5.6. Dry weights were highest at these two pH values. There were 

also no significant differences among dry weights of the remaining three treatments. 

4.4.2 pH tolerance in Betula pendula 

4.4.2.1 Root elongation and number 

pH had a significant effect on root elongation in Betula pendula and rates of elongation were 

significantly different between sites (Table 4.6). Differences in root growth and root number were 

least between pH values in seedlings originating from SMM (Figure 4.8). In contrast, there was a 

large and significant difference in both root elongation and root number between the low (pH 3.0 and 

4.0) and high pH values (pH 5.0 and 5.6) in seedlings originating from KP and KR. Overall, root 

elongation and root number were highest at pH 5.6 in SMM Betula, and at pH 5.0 in KP and KR 

seedlings. 

4.4.2.2 Leaf area expansion and number 

Figure 4.9 shows the mean total leaf area and number in Betula from each site grown at each of the 

four pH values. Leaf area and numbers were highest in SMM seedlings and increased with pH. 

However they were not significantly different between pH values 4.0, 5.0, and 5.6. Leaf area and 

numbers also increased with pH in both KP and KR and the differences between pH values were 

more pronounced. Increasing the solution pH from 4.0 to 5.0 caused a significant increase in leaf 

production and area in KP seedlings which thereafter did not change greatly. Whereas increasing pH 
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from 5.0 to 5.6 caused a further increase in leaf number and area in KR seedlings. Both numbers and 

area of leaves were consistently lowest in KR seedlings. Total leaf area was significantly different 

among sites, and pH significantly influenced both the leaf area and number (Table 4.6). 

Table 4.5. Mean ionic composition (mg g-I dry weight, ± s.e) of shoots and roots of Holcus lanatus 
grown in nutrient solutions at pH 5.6, 5.0, 4.0, 3.0, and 2.0. Holcus originated from Flanders Moss 
(FM) and Kil2l2enrait Glen (KP). 

Treatment p K Ca Mg Fe 
mgg -I 

Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root 

FM 
pH 5.6 3.82 4.]9 7.63 4.62 2.00 1.66 1.08 0.51 0.25 1.46 

±0.19 ±0.11 ±0.33 ±0.77 ±0.17 ±0.20 ±0.12 ±0.04 ±0.05 ±0.03 
pH 5.0 7.33 3.85 14.43 5.56 2.23 1.69 1.37 0.58 0.20 1.66 

±0.54 ±0.20 ±1.59 ±0.64 ±0.18 ±O.4J ±0.10 ±0.05 ±0.06 ±0.44 
pH 4_0 3.60 2_77 9_89 4.04 2-18 1.97 1.05 0.36 0.40 4.36 

±0.21 ±0.23 ±0.62 ±0_78 ±O.II ±0.45 ±0.16 ±0.04 ±0.08 ±0.64 
pH 3.0 3.64 2.28 9.54 4.88 1.87 2.89 0.96 0.32 0.52 3.18 

±0.08 ±0.09 ±0.59 ±0.27 ±0.04 ±0.21 ±0.04 ±0.03 ±0.04 ±1.07 
pH 2.0 3.73 1.02 8.0 1 1.95 2.41 4.72 0.98 0.48 0.55 1.36 

±0.23 ±0.14 ±0.20 ±0.24 ±O.IO ±1.09 ±0.04 ±0.18 ±0.06 ±0.33 

KP 
pH 5.6 3.93 6.24 9.74 12.56 2.18 1.79 0.96 0.76 0.04 1.04 

±0.50 ±0.26 ±0.71 ±1.96 ±O.J 1 ±0.08 ±0.09 ±0.09 ±0.01 ±0.45 
pH 5.0 3.81 3.81 10.45 8.95 2.34 1.79 1.01 0.63 0.23 1.07 

±0.41 ±0.57 ±0.12 ±1.84 ±0.31 ±0.09 ±0.07 ±0.12 ±0.06 ±0.31 
pH 4.0 2.99 3.68 12.34 6.48 2.18 3.94 0.89 0.57 0.68 5.03 

±0.18 ±O.56 ±1.l5 ±0.93 ±0.32 ±1.18 ±0.03 ±0.07 ±0.22 ±1 .27 
pH 3.0 2.36 3.61 9.60 8.48 1.94 0.26 0.67 0.38 0.52 1.93 

±0.11 ±0.19 ±0.37 ±2.83 ±O.ll ±0.12 ±0.05 ±0.03 ±0.06 ±0.72 
pH 2.0 4.07 2.81 13.40 4.61 3.03 5.37 1.21 0.48 0.37 2.39 

±0.24 ±0.35 ±0.43 ±0.39 ±0.08 ±0.59 ±0.05 ±0.04 ±0.02 +0.71 
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Figure 4.7. Mean total, shoot, and root dry weights (from left to right) (g, ± s.e), and rootshoot ratios 
(± s.e) of Holcus lanatus , originating from Flanders Moss (FM) and Kippenrait Glen (KP), when 
grown in nutrient solutions at pH 5.6 (D ), pH 5.0 (. ), pH 4.0 (D), pH 3.0 ( ), and pH 2.0 (D). 
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Table 4.6. Statistical analyses for root and shoot growth measurements, dry weights, and plant ionic 
compositions in Betula pendula originating from Sheriffmuir mineral soil (SMM), Kippenrait Glen 
(KP), and Kinloch Rannoch (KR) and grown in solutions at pH 3.0, 4.0, 5.0, and 5.6. *,p<0.05; **, 
p<O.OI; ***, p<O.OOI; n.s, not significant. Degrees of freedom are : race 2, pH 3, and pH*race 
interaction 6. 
Measurement Race pH pH*race interaction 

F l! F l! F ~ 
Root growth 

Root elongation rate 3.72 * 19.76 *** 4.19 *** 
Increase in number of roots 8.13 *** 34.78 *** 9.20 *** 

Tops growth 
Total leaf area 6.20 ** 14.78 *** 0.89 n.s 
Total leaf number 2.73 n.s 5.55 ** 2.55 * 

Dry weights 
Shoot 0.98 n.s 40.96 *** 2.73 * 
Root 0.59 n.s 26.59 *** 0.76 n.s 
Total 0.36 n.s 46.23 *** 2.78 * 
Rootshoot ratio 2.03 n.s 1.36 n.s 1.80 n.s 

Ionic composition 
Shoots 

P 0.16 n.s 12.13 *** 2.01 n.s 
K 4.25 ** 14.70 *** 1.32 n.s 
Ca 9.33 *** 24.80 *** 4.50 ** 
Mg 1.92 n.s 29.27 *** 1.90 n.s 
Fe 9.56 *** 22.40 *** 5.61 *** 

Roots 
P 6.10 ** 12.89 *** 16.34 *** 
K 6.72 ** 3.11 * 5.78 *** 
Ca 10.81 *** 4.85 ** 6.11 ** 
Mg 3.73 * 5.66 ** 1.46 n.s 
Fe 20.30 *** 15.82 *** 10.04 *** 

4.4.2.3 Birch dry weights 

Total, shoot, and root dry weights decreased with decreasing solution pH, pH having a significant 

effect on dry weights (Table 4.6). Unlike root elongation and leaf expansion there was a large 

difference in shoot dry weights between pH 5.0 and 5.6 in SMM seedlings (Figure 4.10). 

4.4.2.4 Foliar ionic composition 

The ionic composition of Betula leaves and roots is given in Table 4.7. pH had a significant effect on 

both root mineral uptake and translocation to shoots (Table 4.6). With the exception of shoot P and 

Mg, concentrations were significantly different between plants originating from the three sites (Table 

4.6). The uptake of P, K, Mg, and Fe by roots tended to increase with increasing acidity. This was 

most pronounced in SMM seedlings, and least in KP seedlings. Root Ca concentrations increased 

with increasing acidity in SMM seedlings but decreased in KP and KR races. Subsequent 

translocation of P, K, Ca, Mg, and Fe to the shoots was significantly increased with a decrease in pH. 

This was most pronounced in KR races. 
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Figure 4.8. Effects of increasing solution pH on the mean rates of root elongation (cm day"l, D, ± 

s.e) and increase in root number (-, ± s.e) of Betula pendula seedlings originating from 
Sheriffmuir (SMM), Kippenrait Glen (KP), and Kinloch Rannoch (KR). Seedlings were grown at 
pH 3.0, 4.0,5.0, and 5.6. 
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Figure 4.9. Mean total leaf area (± s.e) (D), and total leaf number (-, ± s.e) of Betula pendula seedlings 
after treatment at pH 3.0, 4.0, 5.0, and 5.6. Seedlings originated from (a) Sheriffmuir (SMM), (b) 
Kippenrait Glen (KP), and (c) Kinloch Rannoch (KR). 

4.4.3 Soil pH increase with Ca(OHh 

4.4.3.1 Anthoxanthum odoratum 

Figure 4.11 illustrates the dry weights of Anthoxanthum after growth in FM, 5MB, and KP soil with 

and without Ca(OHh· With the exception of KP soil, the addition of Ca(OHh increased the dry 

weight yield of AntllOxanthum originating from FM and KP. There was no significant difference in 
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Figure 4.10. Mean tota l, shoot, and root (± .e) (left to right) dry weights, and rootshoot ratios (± 
s .e) of Betula pendula originating from (a) Sheriffmuir (SMM), (b) Kippenrait Glen (KP), and (c) 
Kinloch Rannoch (KR) grown in nutrient solutions at pH 3.0 (-), 4.0 (0 ),5 .0 (- ), and 5.6 (D ). 

the yie lds of FM seedlings in limed vs. unlimed KP soil. Similarly KP seedlings grew equally well in 

KP soil whether Ca(OH)2 was added or not. Shoot dry yield was significantly greater in KP soil 

without Ca(OH)2 added. There was a large and significant increase in dry weight yields of 5MB 

seedlings grown in limed FM soil compared with unlimed. However there was no ignificant 

difference between yields of 5MB Anthoxanthum from 5MB soil with or without Ca(OHh Yields 

were al a greater in KP soil which had no added Ca(OH)2. The diffe rences in Anthoxanlhum among 
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Table 4.7. Mean ionic composition (mg g'! dry weight, ± s.e) of shoots and roots of BetuLa penduLa 
grown in nutrient solutions at pH 5.6, 5.0, 4.0, and 3.0. BetuLa originated from Sheriffmuir (SMM), 
KiEEenrait Glen (KP), and Kinloch Rannoch (KR). 

p K Ca Mg Fe 
Treatment mgg·1 

Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root 

SMM 
pH 5.6 0.76 1.13 3.21 2.27 1.89 1.97 0.60 0.32 0.05 0.28 

±O.ll ±0.1O ±0.41 ±0.17 ±0.34 ±O.40 ±0.01 ±0.01 ±O.OO ±0.02 
pH 5.0 2.10 1.35 4.11 3.36 2.42 4.36 0.94 0.50 0.12 0.24 

±0.25 ±0.31 ±0.77 ±0.57 ±0.29 ±0.14 ±0.1O ±0.05 ±0.01 ±0.03 
pH 4.0 2.59 7.15 6.15 5.08 3.50 3.08 3.53 0.49 0.22 1.20 

±0.51 ±0.14 ±1.74 ±0.07 ±0.83 ±0.05 ±0.93 ±O.OO ±0.03 ±0.08 
pH 3.0 3.06 4.29 7.62 4.08 4.99 5.83 2.49 0.66 0.24 0.92 

±0.24 ±1.07 ±0.67 ±0.3J ±0.60 ±1.70 ±0.22 ±0.05 ±0.04 ±0.31 

KP 
pH 5.6 0.51 1.78 2.88 3.03 1.20 2.17 0.73 0.43 0.08 0.21 

±0.02 ±0.29 ±0.24 ±0.54 ±0.33 ±0.23 ±O.OO ±0.05 ±0.01 ±0.04 
pH 5.0 1.65 3.04 3.67 3.12 2.46 3.05 1.02 0.48 0.12 0.19 

±0.67 ±0.62 ±0.85 ±0.69 ±0.41 ±0.66 ±0.13 ±0.09 ±0.03 ±0.03 
pH 4.0 3.84 2.93 6.90 2.86 2.64 1.47 2.31 0.39 0.17 0.15 

±1.43 ±0.41 ±1.40 ±0.5J ±0.26 ±0.12 ±0.29 ±0.09 ±0.01 ±0.01 
pH 3.0 2.43 2.09 6.51 3.82 2.26 0.71 1.68 0.48 0.12 0.19 

±0.31 ±0.23 ±0.92 ±0.24 ±0.28 ±0.08 ±0.29 ±0.05 ±0.02 ±0.04 

KR 
pH 5.6 1.86 2.89 3.46 2.76 1.58 4.79 0.66 0.33 0.11 0.20 

±0.12 ±0.15 ±0.18 ±0.13 ±0.30 ±0.67 ±0.03 ±0.03 ±O.OO ±0.01 
pH 5.0 1.56 2.37 4.14 3.35 2.11 3.78 0.71 0.45 0.07 0.15 

±0.09 ±0.36 ±0.28 ±0.46 ±0.22 ±0.24 ±O.03 ±0.03 ±0.01 ±0.02 
pH 4.0 4.02 1.70 9.30 1.29 3.66 1.09 2.37 0.26 0.28 0.17 

±0.31 ±0.42 ±1.05 ±0.37 ±0.10 ±0.25 ±0.14 ±O.ll ±0.05 ±0.01 
pH 3.0 1.74 3.49 12.27 3.16 5.97 2.75 2.76 0.47 0.42 1.01 

±0.26 ±0.30 ±2.97 ±0.27 ±0.61 ±0.50 ±0.43 ±0.06 ±0.08 ±0.17 

treatments are shown in Figure 4.12. FM Anthoxanthum grew better in unlimed FM soi l than either 

5MB or KP seedlings. Overall the addition of Ca(OH)2 significantly influenced shoot and root dry 

weight yields. Total and shoot dry weights were also significantly different between soil s, as was the 

interaction factor, soil *Ca*race (Table 4.8). 

4.4.3.2 Holcus lanatus 

Mean total, hoot, and root dry weight yields of Holcus originating from FM, 5MB, SMM, KP, and 

KR after growth in all five soil with or without Ca(OH)2 are graphed in Figure 4.13. Similar to 

Anthoxanthum both FM and 5MB seedlings had significantly greater yields when the organic soil , 

FM and 5MB, were limed (Table 4.8). Both FM and 5MB seedlings also grew better in KP soi l 

without any Ca(OH)2 addition, and growth in SMM oil was ei ther greater (SMB) or unaffected by 

Ca(OH)2 (FM). Growth of HoLcus originating from any of the five sites was very low in KR soil. 

Maximum growth in this oil was by KR races, and FM races did not grow at all in this soil. Addition 

of lime increased total yield of SMM HoLcus in FM, 5MB, and root yields in KP soil. Yields 
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however were greater in SMM soil without any addition of Ca(OHh, Both the root and shoot dry 

weight yields of KP Holcus improved when grown in the organic soils with added Ca(OHh. Yields 

of these same seedlings did not improve in either SMM or KP soil where Ca(OHh had been added. 

Finally, yields of KR seedlings were improved with the addition of Ca(OHh to FM, 5MB, and SMM 

soil, but not to KP soil. The differences between liming treatments are shown in Figure 4.14. The dry 

weight yields of Holcus were significantly different among the races and soil origins (Table 4.8). The 

soil*Ca*race interaction factor was also significant (Table 4.8). 

Table 4.8. Statistical analyses for total, root and shoot dry weight yields of Holcus lanatus and 
Anthoxanthum odoratum originating from Flanders Moss (FM), Sheriffmuir blanket peat (SMB), 
Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), and Kinloch Rannach (KR) and grown in 
limed and unlimed soils. *,p<0.05; **, p<O.OI; ***, p<O.OOI; n.s, not significant. Degrees of 
freedom for Holcus and Anthoxanthum (in parentheses) are: race 4(2) , soil type 3(2), Ca(OH)2 1 (l), 
and race*Ca*soil interaction 12 (4). 

Measurement Race Soil Ca Race*Ca*Soil 
interaction 
factor 

F p F P F P F P 
Holcus lanatus 

Dry weights 
Shoot 4.84 *** 14.98 *** 112.78 *** 1.38 n.s 
Root 8.34 *** 8.90 *** 20.20 *** 2.94 ** 
Total 8.52 *** 14.91 *** 69.82 *** 2.16 ** 

Anthoxanthum odoratum 
Dry weights 

Shoot 2.78 n.s 4.48 ** 43.90 *** 3.03 ** 

Root 1.06 n.s l.62 n.s 20.56 *** 1.39 n.s 
Total 2.37 n.s 3.80 ** 40.50 *** 2.84 ** 
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Figure 4.11 . Mean total, hoot, and root dry weights (left to right) (± .e) of Anthoxanthum odoratum 
originating from Flanders Moss (FM), Sheriffmuir blanket peat (SMB), and Kippenrait Glen (KP) after 
g rowth in FM, 5MB, or KP soil with ) or without (D ) Ca(OH)2 addition. 
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Figure 4.12. Anthoxanthum odoratum originating from Flanders Moss (FM), Kippenrait Glen (KP), and Sheriffinuir blanket peat (SMB) grown in FM 
soil (a) without and (b) with Ca(OH)z addition, and in 5MB soil (c) without and (d) with Ca(OH)z addition . 
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Figure 4.13. Mean total, hoot, and root ~ry ~eights (left to right) (± s.e) of Holcus lanalus 
originating from Flander Moss (F~), Shenffmulr blanket peat (SMB), Sheriffmuir mineral oil 
(SMM), Kippenrajt Glen (KP), and KIO.I~ch Rannoch (KR) after growth in FM, 5MB, SMM, KP soil 
with ) or without (D ) Ca(OH)2 addItIon . The plants were al 0 grown in the KR soil which was 
originally lime-rich and hence did not have a Ca(OH)2 addition treatment. 
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Figure 4.14. Holcus lanatus grown in soil from .FM, S~, ~, and SMM with and without Ca(OH)2 addition. 
(a), Holcus originating from FM .and KR grown m F~ soll WIthout Ca(O~~; ~), Holcus originating from KR 
grown in FM soil without and with .Ca(O~ (left to n&?t~; (~), Holcus ongmatmg from KP grown in FM soil 
without and with Ca(OH)2 (left to nght); (d), HolCllS ongmatmg from KR grown in 5MB soil without and with 
Ca(OH)2 (left to right) ; (e), Holerls originating. from FM ~0v.:n in KP sOil.with and without Ca(OH)2 (left to right); 
and (t), Holcus originating from SMM grown m SMM sOli WIthout and WIth Ca(OH)2 (left to right) . 
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4.5 Discussion 

Reduced growth with increasing acidity whether in soils, or nutrient solutions, is well documented 

(Amon & Johnson 1942, Blarney et al. 1982, Handreck 1992, Islam et al. 1980, Yokota & Ojima 

1995). Both root elongation rates (RER) and shoot elongation rates (SER) decreased in Holcus 

lanatus grown at pH 3.0 and 2.0 irrespective of origin (FM or KP). Both RER and leaf area 

expansion were also lowest at pH 3.0 in all Betula pendula races (SMM, KP, or KR). However there 

were clear and significant differences in the tolerance to low pH by the different races. Maximum 

growth of Holcus lanatus originating from Flanders Moss occurred at pH 4.0. Root and shoot growth 

decreased with pH< 4.0 or> 4.0. In direct contrast, Holcus originating from Kippenrait Glen showed 

maximum growth at higher solution pH values of 5.0 and 5.6. Since the fresh-soil pH values (CaCh) 

of FM were 3.5 and KP were 5.1 this is not surprising. Holcus lanatus from Flanders Moss is 

apparently adapted to growth at low pH. Sheriffmuir races of Betula pendula were more tolerant of 

low solution pH (3.0 and 4.0) than races from KP or KR again reflecting the different soil pH values 

of these sites. Large reductions in root elongation and leaf area were observed when pH was lowered 

from 5.0 to 4.0 in KR and KP races. Furthermore RER and leaf expansion in KR races decreased 

when pH was reduced from 5.6 to 5.0. KR soils have a fresh-soil pHcacl, of up to 6.3. Low pH 

tolerance of the Betula races was ranked SMM > KP > KR. 

Tolerance to low pH has also been shown in barley (Osaki et al. 1997), Bermuda-grass (Amon & 

Johnson 1942), cassava and ginger (Islam et al. 1980), maize (Poschenrieder et al. 1995), sorghum 

(Tan et al. 1993), and sunflower (Blarney et al. 1982). Out of six species (ginger, cassava, maize, 

wheat, French bean and tomato) Islam et al. (1980) found ginger and cassava were the most tolerant 

species to low pH. The mean relative yield (relative to yield at pH 5.5) of ginger at pH 3.3 was 

44.5%. However all species achieved best growth in the pH range 5.5 to 6.5. In contrast to tomato 

and lettuce where relative yields were reduced to < 35%, Bermuda-grass grew well at pH 4.0 (Amon 

& Johnson 1942). 

Blarney et al. (1982) and Poschenrieder et al. (1995) showed differences in tolerance to low pH 

between sunflower and maize cultivars but they did not show best growth at low pH. At pH 4.0 the 

sunflower cultivar Hysun 11 achieved 90% of best top yields compared with 70% achieved by Hysun 

32. Hysun 11 also showed the least increase in root yields when increasing solution pH from 4.0 to 

6.5. The maize cultivar BR201F was tolerant of H+ ions whereas the cultivars Ardour 250 and 

C525M were H+-sensitive. Root and coleoptile elongation were greater in BR201F at low pH. 

Demonstrations of tolerance differences among races of naturally occurring species are rare. 

Handreck (1992) did show that the ferns Asplenium trichomanes, Ceterach officinarum, and Phyllitis 
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scolopendrium, which are reputed to require alkaline-growing media, were intolerant of pH values 

<5.0. 

Tolerance differences between the Betula races were not seen in the root and top dry weights, which 

increased with increasing pH in all races at similar rates. However, dry weights were significantly 

greater at pH 4.0 in FM Holcus than at pH 5.0 or 3.0 or 2.0. Dry weights were highest at pH 5.6 but 

were not significantly different from those at pH 4.0. In contrast, the highest dry weights in KP races 

were at pH 5.6 and 5.0, and these were significantly different from, and about double those at pH < 

5.0. 

Root:shoot dry weight ratios in Holcus lanatus were lower at pH 3.0 and 4.0, increasing both as pH 

increased from 4.0 to 5.6, and as it decreased from 3.0 to 2.0. Raising the pH from 4.0 to 4.8 

increased the root weight ratios of all six species studied by Islam et al. (1980), indicating a greater 

response in root growth than shoot growth to increasing pH. 

A solution pH of 3.5 was lethal to 11 cultivars of subterranean clover (Kim et al. 1985), and to all 

four sunflower cultivars studied by Blarney et ai. (1982). Both pH 2.0 and 3.0 were lethal to Holcus 

races from KP but only pH 2.0 was lethal to FM races over the 15 days. At the end of the treatment 

FM Holcus grown at pH 3.0 were still alive and appeared healthy although growth rates were low. 

The drop in root and shoot elongation rates was less than in KP seedlings. However the severe 

plasmolysis and disintegration of fine cell structure at pH 3.0 indicated that the FM races were dying. 

Yokota & Ojima (1995) also found root elongation was irreversibly curtailed by 20 h treatment at pH 

4.0 in alfalfa. 

Signs of H+ injury in roots are well documented. Islam et al. (1980) investigated six species and 

found the roots of all grown at pH 3.3 were injured. Roots were thickened, discoloured brown or dull 

grey, and lateral root growth was inhibited. Root tips of French bean (cv. Redlands Pioneer) died in 

the solutions at pH 4.0. There were very distinct differences in the symptoms of H+ injury between 

FM and KP races of Holcus lanatus. At pH 3.0 root tips of KP seedlings were black in colour and 

dead, suggesting no further root cell division and extension was possible. The roots were brownish in 

colour, the root tips severely swollen, and new roots were stunted and discoloured. In contrast, root 

tips of FM were only slightly discoloured or swollen. However lateral root growth in both was 

absent. Laterals only appeared at pH 5.0 and 5.6. 

Many studies have reported reductions in ion transport at low pH, and after prolonged periods loss of 

previously absorbed solutes. Increasing solution pH increased concentrations of N, K, and Fe, and 

had no effect on Mg in sunflower tissues (Blarney et ai. 1982). Guerrier (1982) found increasing 
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acidity decreased K absorption in sorghum. All mineral elements, except N, were lower in barley at 

low pH (Osaki et al. 1997). An increase in pH from 3.3 to 5.5 strongly increased the concentrations 

of P, K, Ca, and Mg in the tops of species studied by Islam et al. (1980). The close correlation 

between the H-induced inhibition of root elongation and H-induced reduction in specific absorption 

rates (SAR) of P, Ca, Mg, B, and Fe in maize, led Poschenrieder et al. (1995) to conclude alterations 

in nutrient uptake play an important role in H+ ion toxicity. Moreover Schubert et al. (1990) proposed 

nutrient uptake in Broad Beans was altered by low pH as a result of a reduction in the plants ability to 

release H+ ions by ATPase activity. 

The nutrient analyses of Holcus corroborate the studies above. Root K concentrations, and both shoot 

and root Mg, decreased with increasing acidity. The root K concentrations only decreased 

significantly between pH 3.0 and pH 2.0 in the more tolerant PM seedlings. However, contrary to the 

studies above, both root Ca concentrations, shoot K concentrations, and shoot and root Fe 

concentrations, actually increased with increasing acidity. Shoot Ca concentrations were unaffected 

by pH. Islam et al. (1980) also found highest Fe concentrations at the lower pH (pH 4.0) and 

concentrations dropped with decreasing acidity. Kim et al. (1985) showed a depression in total P 

concentration of clover when the solution pH was increased from 4.0 to 4.5 or 5.0. 

The mineral concentrations of Betula leaves and roots suggest H+-induced reduction in growth was 

not a direct result of H+-inhibition of nutrient uptake. All minerals translocated to leaves and 

absorbed by roots increased with an increase in H+ concentration. That is with the exception of root 

Ca where concentrations decreased with pH in KP and KR seedlings. This suggests that there may be 

an ion-specific effect by H+ at the root cell surface. The tolerant seedlings from SMM were able to 

continue absorbing Ca at the roots. The H+-tolerant maize cultivar, BR20IF, had higher root Ca 

concentrations at low pH values compared with the H+-sensitive cultivar, HS7777 (Llugany et aL. 

1995). Llugany et aL. (1995) proposed this ability to maintain higher Ca levels at low pH contributed 

to H+ ion tolerance in this cultivar. 

H+ may specifically displace Ca2
+ from apoplastic binding sites and this may be of primary importance 

in growth inhibition. Addition of Ca to low pH solutions is known to alleviate H+ ion toxicity. 

Handreck (1992) found ferns requiring a 'basic' medium for growth were able to tolerate pH <5.0 

provided an adequate supply of Ca was available. Van et aL. (1992) found additional Ca2+ enabled the 

roots of Broad Bean to continue extruding W ions. Displacement of Ca2+, from the external surface 

of the plasma membrane, and inhibition of Ca-uptake by roots, are likely the initial effect of H+ ions 

progressing to a general inhibition of nutrient uptake. Holcus plants were beginning to show signs of 

a general reduction in nutrient uptake. They also appeared more damaged by high H+ concentrations 
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than did Betula. Betula, treated for 4 weeks, were more tolerant of low pH than Holcus, treated for 

only 10 days. 

Ciamporova et al. (1995) compared the structure of nodal roots of two wild acid-tolerant grasses: 

Deschampsiaj7exuosa and Nardus stricta. The grasses were grown in polluted acid soil (pH 3.4) and 

unpolluted soil (pH 5.2) in Central Slovakia. Heavy metals were not at toxic concentrations however 

the grasses were exposed to additional stress from toxic concentrations of AI and S04. The stress 

conditions resulted in a significant reduction of the whole-root area and central cylinder (stele). 

Whole-root area also decreased with increasing acidity in KP and also in FM with the exception of pH 

3.0. The stress conditions which induced a reduction in stelar tissue in the two wild grasses were not 

observed in Holcus. Stele area was increased in FM at pH 3.0 and unaffected in KP seedlings. 

However Deschampsia was found to be more tolerant of soil acidity than Nardus and Ciamporova et 

al. (1995) attributed this to the preservation of the cortex by Deschampsia. The cortex is vital for 

absorption, transport and accumulation of water and solutes. The proportion of tissue occupied by 

cortex was increased with increasing acidity in FM races but fell by about 10% in KP races. This may 

reflect a structural adaptation by FM races. 

Growth response to the addition of Ca(OHh were obvious in both Holcus lanatus and Anthoxanthum 

odoratum. However best growth by acid-tolerant races such as FM and 5MB did not occur as 

expected in unlimed soils. Yields of both 5MB and FM Holcus, and FM Allthoxanthum increased 

with Ca(OH)2 additions. However the growth of 5MB Allthoxanthum in the organic 5MB soil was 

unaffected by lime addition. It should also be noted that races of Holcus from FM were unable to 

grow in KR soil which has a pHcach of up to 6.3. Both FM and 5MB races of both species grew better 

in unlimed KP and SMM soil where pH values were < 5.0. Holcus races from KP required Ca(OHh 

additions to improve yields in the acidic organic soils, but not in the acidic mineral soil from SMM. 

Ca(OH)2 addition to SMM soil was necessary to improve KR yields. Races of both SMM and KP 

grew significantly better in their native soils without Ca(OHh addition. 

The lack of consistency between pH tolerance of races grown in nutrient solutions and those grown in 

pot experiments emphasises the difficulties in interpreting individual effects of low pH on plant 

growth. In the soil experiments factors other than high H+ concentrations are simultaneously affecting 

plant growth and may influence growth to a greater extent than H+ alone. 
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4.6 Conclusions 

• Races of Holcus lanatus from Flanders Moss were tolerant to low pH (pH <4.0). 

• Races of Holcus lanatus from Flanders Moss showed preferential root and shoot growth at pH 4.0. 

• Tolerance in Holcus lanatus was partly achieved by maintaining root cortex area. 

• Races of Betula pendula from Sheriffmuir were more tolerant to low pH (pH 3.0 and 4.0) than 
those from Kippenrait Glen and Kinloch Rannoch. 

• Races of Betula pendula from Kinloch Rannoch were least tolerant of pH 3.0-5.6. 

• Uptake of P, K, Mg, and Fe and translocation to shoots were unaffected by H+ in Betula pendula. 

• Uptake of Ca, by H+-sensitive races, was significantly reduced by high H+ concentrations. 

• Tolerance of low pH in both Holcus and Betula among races reflected the soil pH of their 

provenance. 

• Addition of Ca(OHh sometimes improved dry weight yields in Holcus lanatus and Anthoxanthum 

odoratum. 

• Apart from FM and 5MB, dry weights of races were greater in the soils of their natural origin with 

no Ca(OHh added. 
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ChapterS 

Response of Betula pendula Roth. to increasing concentrations of 

aluminium 

5.1 Introduction 

Aluminium toxicity is widely considered to be the most important growth-limiting factor for plants in 

most strongly acid soils (pH < 5.0), and primarily associated with the poor plant growth (especially 

root development) in these soils (Adams 1984, Blarney et al. 1986, Foy 1984, Horst 1995, Horst et al. 

1983, Kamprath 1984, Pegtet 1987, Ryan et al. 1992, Ryan & Kochian 1993, Sasaki et al. 1995, StaB 

& Horst 1995, Taylor 1988). Aluminium is believed to be toxic to plant growth at micromolar 

concentrations (Ryan et al. 1994), and primarily as monomeric Ae+ (Andersson 1988, Alva et al. 

1986, Barcelo et al. 1996, Kinraide 1993). Early ecological work, using naturally occurring plant 

species, investigating Al toxicity was discussed in Chapter 1. 

5.1.1 Al toxicity 

The reduction in crop productivity in acid soils has provoked great interest in determining the 

physiological and biochemical mechanisms through which Al is toxic (Carr & Ritchie 1993, Tan et al. 

1989). Consequently, extensive investigation into the effects of Al has primarily been carried out on 

crop species. Genetic variation between cultivars in Al tolerance has been found in most cultivated 

species. Ultimately the aim of this research is to breed AI-tolerant crop genotypes and increase yield 

in arable soils (Aniol 1996, Baligar et al. 1990, Barcelo et al. 1996). Crop species which have been 

widely used include: barley (Sasaki et al. 1995), bean (Malavolta et al. 1981, Massot et al. 1992), 

cowpea (Horst et al. 1983), maize (Barcelo et al. 1996), ryegrass (Nelson & Kiesling 1980, Rengel & 

Robinson 1990), sorghum (Blarney et al. 1986, Guerrier 1982, Malavolta et al. 1981, Tan et al. 1993), 

soybean (Kamprath 1984, Horst et al. 1992, StaB & Horst 1995, Spehar 1994) and finally, perhaps 

most frequently, wheat (Baligar et al. 1990, Huang et al. 1993, Kinraide 1988, Ryan & Kochian 1993, 

Ryan et ai. 1994, Wheeler 1994, Wheeler & Edmeades 1995, Wright et al. 1989). 

More recently however, the effects of acid rain and pollutants, suggested to account for the decreased 

vitality of forest ecosystems in Europe and North America, have led to the investigation of Al toxicity 

in naturally occurring species. Brunet (1994) investigated the interacting effects of pH, AI, and base 
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cations on the growth of the woodland grasses Bromus benekenii and Hordelymus europaeus. Both 

Godbold & Kettner (1991) and Godbold et al. (1995) studied the effects of Al on Picea abies and , 

finally, De Graaf et al. (1997) attributed the decline in Arnica montana, and Cirsium dissectum to 

increased soil acidification and Al solubility. 

5.1.2 Symptoms of AI toxicity 

Foy (1984) described the foliar symptoms of Al toxicity to either resemble those of P deficiency 

(overall stunting, small, dark green leaves and late maturity, purpling of stems, leaves, and leaf veins, 

and yellowing and death of leaf tips), or those of Ca deficiency (curling of young leaves, and collapse 

of growing parts or petioles), or Fe deficiency (interveinal chlorosis). He described the roots as being 

stubby, brown and brittle with thickened root tips and laterals. There was no fine branching of the 

root system, and root hair length and number were reduced in Trifolium repens (Care 1995). The 

appearance of Al toxicity symptoms in plants does not correlate well with a 'threshold' concentration 

of Al in solution or soils. 

Thickened, stunted roots, and chlorotic leaves, have frequently been shown. Examples include Arnica 

(40 and 80 mg Al r1, Pegtel 1987), sorghum and sunflower (0.17 and 0.38 mg Al r1, Blarney et al. 

1986), and wheat (0.14 mg Al r1, Kinraide 1988). The yellowing of leaves with necrotic tips has been 

reported in Arnica (Pegtel 1987, De Graaf et al. 1997). 

5.1.3 Effects of AI on root elongation 

The mechanism(s) resulting in the inhibition of plant growth remain unclear and there are many 

proposed physiological and biochemical effects of AI. This chapter primarily investigated the effects 

of Al on root elongation and possible interference with nutrient uptake in Betula pendula. 

The most easily recognised symptom, and rapid response of plants to Al toxicity, is the inhibition of 

root elongation (Barcelo et al. 1996, Ryan et al. 1994, StaB & Horst 1995, Taylor 1988). Al inhibits 

root elongation within hours (Horst 1995), while reductions in shoot growth occur later (Barcelo et al. 

1996). From this it followed that the retardation of root growth was the principal and primary site of 

Al toxicity (Foy 1984). The root apex in particular was believed to be the critical site for Al injury, 

and also the site of preferential Al accumulation (Horst 1995, Ryan et al. 1993). 

Numerous reports have shown AI-induced inhibition of root growth, using a wide range of Al 

concentrations. After 2 h of Al treatment (0.68 mg Al r1) in soybean, root elongation rate was 
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reduced to 50 % of controls (Horst et al. 1992). Exposure of Picea abies seedlings to 1.35, 5.40, or 

10.79 mg AI rl inhibited root growth within one day (Godbold & Kettner 1991). 

The inhibition of root elongation is thought to be the result of AI-induced inhibition of cell division or 

cell elongation in root tip meristems. Early studies by Clarkson (1965) suggested AI blocked the cell 

cycle during DNA synthesis thereby reducing mitotic activity in root apical meristems of onion. In 

agreement, later publications (Matsumoto et al. 1976b) showed AI-accumulation in nuclei as well as 

the inhibition of DNA synthesis by AI. Contrary to these early reports, recent studies have shown that 

AI-treated roots can recover and resume apical growth, suggesting that the effect of Al on the root 

meristem is not permanent. Horst et al. (1983) demonstrated the inhibition of cell division after short­

term (6 h) Al treatment in cowpea was partially restored within 18 h. Furthermore the radial mobility 

of AI in roots is low, with little Al entering the symplast from the apoplast, and this does not 

corroborate with the observed time-scales of root growth inhibition (Corrales et al. 1997, Delhaize et 

al. 1993a, Godbold et al. 1988, Hodson & Wilkins 1991, Marienfeld & Stelzer 1993). Meristem cell 

nuclei appear structurally stable, and changes in meristematic cell ultrastructure occur very slowly 

after AI exposure (Bennet & Breen 1991). 

Recent hypotheses of Al phytotoxicity are based on the rapid binding of Al to sensitive sites in the 

apoplast (Barcelo et at. 1996, Blarney et at. 1990, Blarney et at. 1993a, Horst 1995). Horst (1995) 

suggested that the competition for these binding sites determined the AI-induced inhibition of root 

elongation. Binding sites include the pectic matrix of the cell wall; cell-wall constituents such as 

enzymes, extensin, and xyloglucan; and phospholipids and carboxyl chains of proteins on the plasma 

membrane surface. Al may cross-link the carboxyl groups of the pectin fraction of cell walls causing 

a reduction in cell wall extensibility and elasticity (Barcelo et ai. 1996, Barcelo & Poschenrieder 

1990). Blarney et al. (1993b) showed Al bound to an artificial Ca pectate membrane and reduced 

water permeability. Gunst! et at. (1997) found Al (1.35 mg rl) decreased maize root cell wall 

elasticity and root hydraulic conductivity. 

5.1.4 Interference with nutrient uptake by Al 

A frequent consequence of Al injury is the reduction in the uptake of essential nutrients (Foy 1984, 

Taylor 1988). Al has been suggested to bind to the polar regions of phospholipids or proteins on the 

plasma membrane (Barcelo et ai. 1996). The resultant structural and functional alterations in the 

plasma membrane affect membrane permeability and transport processes which in the long-term 

severely limit nutrient acquisition (Ryan & Kochian 1993). Sasaki et al. (1995) postulated that the 

AI-induced depression in the plasma membrane H+-ATPase activity reduced K+ efflux in barley roots 

resulting in a disturbance of the membrane potential and subsequent ion transport. K+ net-efflux was 
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also reduced by increased Al concentrations (8.1 mg Al rl) in soybean cells in suspension culture 

(StaB & Horst 1995). Wagatsuma et al. (1995) also showed K leakage from the root tips of pea 

seedlings (cv. Kinusaya). A sensitive indication of AI-induced alteration of membrane properties is 

the induction of callose (l ,3-~-glucan) synthesis (Horst 1995). Binding of Al to the negative charges 

of the plasma membrane surface reduce fluidity and open stretch-activated Ca2+ channels. The 

resultant increase in the cytoplasmic Ca
2
+ concentration activates callose synthesis. Al concentration 

in the root tips, and AI-induced inhibition of root elongation, have been correlated with callose 

concentration in maize root tips (Barcelo et al. 1996). 

Despite evidence of reduced K+ efflux and induced callose synthesis, clear indicators of structural 

modifications to the plasma membrane, there is little evidence of major membrane injury at 

phytotoxic Al concentrations. Calba & J aillard (1997), Kinraide (1988), and Horst et al. (1992) found 

no disruption in the membrane functional integrity of wheat and soybean by AI. The proton pump in 

wheat was intact, the membrane was not leaky, and the ATP biosynthesis adequate for vigorous 

proton extrusion. Results showing enhanced K+ efflux were suggested to be the result of prolonged 

treatment and excessive Al concentrations (Horst et al. 1992). Kinraide (1993) found small 

hyperpolarisation of the root-ceIl-membrane electrical potential. No AI-induced reductions in root 

pressure and root cell turgor pressure were observed in a AI-sensitive maize variety indicating no 

general breakdown in membrane integrity, and ion pumping to the stele was maintained (Gunse et at. 

1997). 

Symptoms of prolonged Al stress resemble those of Ca deficiency and imply Al is particularly 

disruptive to the uptake of Ca2+. Numerous reports have shown AI-induced inhibition of Ca uptake 

and species adapted to soil acidity frequently show high Ca efficiency (Barcelo et at. 1996). Al has 

been suggested to block the Ca2+ channels of the root plasma membrane (in a similar fashion to La3+) 

which leads to a reduction in net Ca
2
+ uptake, cytoplasmic Ca

2
+ deficiency, and disturbance of Ca2+ 

homeostasis (Rengel et al. 1995, Ryan et al. 1994). Huang et al. (1993), Ryan & Kochian (1993), and 

Ryan et al. (1993) all showed evidence to support a reduction in Ca
2
+ uptake by Al but only in the 

localised area of the root apex. Ca was reduced to very low levels in the cortical cell walls of AI 

treated Picea abies roots (Hodson & Wilkins 1991). However as described above a prerequisite for 

callose formation, induced by AI, is an increase in cytosolic Ca
2
+ activity. When considering whole 

roots, Ryan et al. (1994), showed a severe inhibition of root growth in wheat at 0.07 mg Al rl with no 

concurrent reduction in Ca2+ uptake. Investigations with ion-selective microelectrodes or radioactive 

Ca tracers (Ca45) have recently been used to show root elongation is not directly coupled with Ca2+ 

uptake into the root and translocation to the shoot (Barcelo et al. 1996). Reduced Ca2+ influx as a 

primary mechanism of Al toxicity is considered unlikely (Horst 1995, Kinraide et al. 1994, Ryan et al. 
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1994) but the disruption in Ca homeostasis may play a role in the initial stages of AI-induced 

inhibition of root elongation. 

Al has been associated with decreased plant concentrations of Ca and Mg in French bean (Mas sot et 

at. 1992), ryegrass (Rengel & Robinson 1990), and sorghum, and reduced concentrations of K in non­

tolerant sorghum hybrids (Malavolta et at. 1981). K uptake increased with increasing Al 

concentration in AI-tolerant sorghum hybrids and similarly increased in sunflower at high Al (Blarney 

et at. 1986). However Al led to lower absorption of P04 in both hybrids. Wheeler (1994) found 

reductions in the shoot and root concentrations of N, P, K, Ca, Mg, and S with increasing Al in wheat. 

Tan et at. (1993) showed severe reductions in Mg uptake by Al in sorghum genotypes but little affect 

on Ca and P. In contrast the nutrient concentrations in the roots of Arnica montana, Calluna vulgaris, 

and Cirsium dissectum were not influenced by Al (De Graaf et al. 1997). Despite the reduction in 

growth in Arnica by AI, shoot Mg was not affected. 

5.1.5 Tolerance to AI 

Plant species and cultivars within species differ greatly in their tolerances to potentially toxic levels of 

Al (Foy 1984). Hypothesised mechanisms of Al tolerance basically stem from external mechanisms 

where Al entry across the membrane is limited and sensitive extracellular sites protected, and from 

internal mechanisms where Al is detoxified in the cytoplasm (Taylor 1995). The former include 

immobilisation of Al at the cell wall or low cell wall CEC; selective permeability of the plasma 

membrane; formation of plant-induced pH barriers in the rhizosphere or root apoplasm; exudation of 

chelator ligands; exudation of phosphate; and Al efflux. Internal resistance mechanisms include 

chelation in the cytosol (with Si or organic acids); compartmentation in vacuoles; evolution of AI­

tolerant enzymes; and elevated enzyme activity (Bennet & Breen 1991, Foy 1984, Jones 1961, 

Malavolta et al. 1981, Taylor 1988, Taylor 1991, Taylor 1995). However detoxification of AI in the 

cytoplasm is not considered to play an important role in AI tolerance (Barcelo et al. 1996). The 

interaction between AI toxicity and both Si and organic acids will be reviewed in Chapters 6 and 7. 

An increase in the pH of the immediate solution surrounding plant roots or rhizosphere decreases the 

toxicity of Al through the formation of AI(OHh.3H20 a sparingly soluble monomeric species, or the 

precipitation of AI(OHh.H2P04 (Foy 1984, see Chapter 1, Table 1.1). Both Miyasaka et al. (1989) 

and Taylor (1991) suggested plant-induced changes in rhizosphere pH were not major factors 

determining tolerance to AI. 

Blarney et al. (1990) proposed differential Al tolerance resulted from differences in root CEC. An AI­

tolerant cultivar of Lotus pedullculatus (cv. Grasslands Maku), with a low root CEC, absorbed less Al 
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from solution than did an AI-sensitive cultivar of Lotus corniculatus (cv. Maitland), with a high root 

CEC (Blarney et al. 1990). The differences in CEC were proposed to reflect differences in the degree 

of cell wall pectin methylation. AI-tolerant genotypes have roots with low CEC, and higher 

concentrations of Al are required to precipitate the relatively highly methylated pectins associated 

with low CEC. 

Tolerance is not consistently achieved through the exclusion of Al uptake by roots. That is AI­

tolerant cultivars do not always show lower root or shoot concentrations of AI. This is contrary to the 

evidence from Horst et al. (1983) who associated tolerant genotypes with lower Al uptake and Tan et 

al. (1989) who reported sensitive cultivars of rice accumulated more Al than resistant ones. Tolerance 

has often been shown in plants with high root or shoot Al concentrations. Plant tissues of Calluna 

vulgaris accumulated Al with increasing solution Al (up to 13.49 mg Al rl) despite no concurrent 

reduction in growth (De Graaf et al. 1997). Nevertheless Al does not generally accumulate in the tops 

of Al sensitive species (Foy 1984). The low mobility of Al in the plant cell would imply preferential 

retention of Al in plant roots (Bennet & Breen 1991). Al accumulating species such as tea or pine 

trees do have a high internal tolerance to AI. Matsumoto et al. (1976a) showed Al accumulated in the 

epidermal cells of old tea leaves which had thickened cell walls. Foliar concentrations of P, K, Ca, 

Mg, Fe, Mn, and Zn are no lower than concentrations in non-accumulating species (Foy 1984). 

Al tolerance has been associated with a greater uptake of K and Mg in potato cultivars, and with a 

greater Mg uptake in maize by Foy (1984). Rengel et al. (1995) suggested differential tolerance 

principally arose through differential blockage of Ca
2
+ channels and maintenance of calcium uptake. 

AI-tolerant wheat cultivars were able to resist Al inhibition of Ca
2
+ uptake (Huang et al. 1995, Ryan & 

Kochian 1993). Cultivars of barley, soybean, and snap bean were shown to resist AI-induced changes 

in Ca deficiency (Foy et al. 1978). 

Bennet & Breen (1991) suggested maintaining root growth in the presence of Al was dependent upon 

the activity of peripheral root cap cells. They found concomitant reductions in root growth with 

declines in root cap amyloplast cell numbers. Polysaccharide material produced in the Golgi bodies 

was distributed via the amyloplasts. This mucilage binds Al reducing any injury to root meristems. 

5.1.6 Beneficial effects of aluminium 

Despite not being an essential element for plant growth, Al in low concentrations occasionally 

stimulates plant growth (Foy 1984, Kinraide 1993, Taylor 1988). Al concentrations of 3 mg rl at pH 

4.5 were detrimental to the Sonora 63 wheat cultivar from Mexico but markedly beneficial to the 

BHl146 cultivar (Foy 1984). Similar stimulation in plant growth were shown in Arnica montana and 
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Deschampsia flexuosa at <5 mg Al rl (Pegtel 1987), in nine sorghum hybrids at 3 mg Al rl 
(Malavolta et al. 1981), and in Cirsium dissectum at 1.35 mg Al rl (De Graaf et al. 1997). Konishi et 

al. (1985) provided evidence showing both a promotion in P absorption and stimulation in growth by 

Al in tea. Al and K content in the roots and shoots, and N in the shoots, increased with increasing Al 

supply. Tan et al. (1989) showed increased uptake of P04, K, Ca, and Mg by rice at low Al levels. 

Foy et al. (1978) summarised proposed explanations for AI-enhanced growth at low Al 

concentrations. Explanations included: increased Fe solubility and availability in calcareous soils, 

prevention of internal Fe deficiency through displacement of Fe from inactive sites in calcicolous 

plants, prevention of P toxicity or promotion of P uptake, reduction in growth rate and prevention of 

Ca depletion, alteration of growth regulators, and finally, protection against CulMn toxicity. 

The most recent hypothesis to explain this stimulation in growth involves the alleviation of H+ ion 

toxicity by Ae+ (Kinraide 1993). The magnitude of growth enhancement increases with decreasing 

pH. Root growth was reduced in Picea abies by 2.70 and 10.79 mg Al rl at pH 4 and 5, but at pH 3.2 

only 10.79 rng Al rl significantly reduced growth (Godbold et al. 1995). 

5.2 Aims 

• To determine the effects of increasing Al concentrations (2-35 mg rl) on the growth of races of 
Betula pendula. (The reasons for the choice of study species were given in Chapter 2, Section 

2.2.) 

• To examine all aspects of growth: root elongation, root production, leaf expansion, and dry matter 
production in Al containing solutions. 

• To relate race-specific responses to Al to their natural soil types. 

• To determine the effects of Alan nutrient acquisition. 
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5.3 Methods 

Seeds of Betula pendula were collected in August/September 1995 from FM, SMM, KP, and KR 

(Chapter 2, Table 2.1). The seeds were stored in dry and dark conditions at room temperature until 

the start of the experiment. Seeds were germinated in 1 % agar (OIFCO Laboratories 1995) in 

Oecember 1995 following the methods in Chapter 4 (Section 4.3.1.2). At the first leaf stage they were 

transferred into an initial culture solution with no added Al and at pH 5.6 (Chapter 4, Section 4.3.1.2). 

The composition of the culture solutions is given in Chapter 4 (Table 4.1). Stock solutions of 100-

strength of NH40H, Na2S04, NH4H2P04, KFeEOOHA, Ca(NO,h4H20, CaC}z.6H20, 

Mg(NO,h.6H20 , H,B03, KH2P04, AI(N03h9H20, and MES buffer, and 1000-strength of 

MnS04.4H20, ZnS04.7H20 , CuS04.5H20, and (NH4)6M07024.4H20 were made up and diluted 

appropriately. Beakers were covered in tinfoil to prevent algal growth. Solutions were stirred daily 

and the pH corrected where necessary to 5.6 using 1M NaOH or 1M HC!. Culture solutions were 

changed twice per week. After four weeks growth in culture solution with no added aluminium 

seedlings of similar size were separated into beakers which each held 2 seedlings. At this stage 

seedlings were on average 5.88-8.64 cm in height, with three to five roots in total 40.42-73.30 em in 

length, and 10-17 leaves of 26.1-40.9 cm
2 

total area. Aluminium was then added to the culture 

solutions in the form AI(N03h9H20 and at the following concentrations: 0 mg rl (control), 2 mg 

rl(74 11M), 5 mg rl(185 11M), 10 mg rl(370 11M), 15 mg rl(555 11M), 25 mg rl(925 11M), and 35 mg 

rl(1295 11M) AI. The following abbreviations are used corresponding to the treatments 0 AI, 2 AI, 5 

AI, 10 AI, 15 AI, 25 AI, and 35 AI. Culture solutions were adjusted to pH 4.2 and corrected when 

necessary each day. There were between five and eight replicate seedlings per treatment per site 

depending on the number of seedlings available. Subsamples of 5 ml from each of six beakers, from 

each of the seven treatments, were withdrawn from fresh culture solution, and from solutions one, 

two, three, and four days old, during the first two weeks of treatments. Solutions were analysed to 

monitor nominal element concentrations using the same analytical techniques as those in Chapter 3. 

Thereafter solutions were changed after the first 5-ml extractions on day 3. 

The number of roots and their lengths, the number of leaves and their length and maximum breadth, 

the height of the seedlings, and the number of buds were recorded before seedlings were put into 

treatments and after treatments at harvesting. To determine the leaf area expansion over the treatment 

period a relationship between actual leaf area and measured values of length and breadth was 

established. One hundred leaves, collected from separate birch seedlings, which were grown 

alongside experimental seedlings, were scanned and their area were measured using NIH 5b Image. A 

regression equation between leaf area and leaf maximum breadth and length was then determined and 
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used to estimate the leaf area of experimental seedlings before treatments began and after harvesting 

(Area=(3.44(Length)+1.26(Breadth»-3.88, F=82.31, p<O.OOI). Both absolute growth (AGR=cm2 

7 days·l) and relative growth (RGR=cm2 cm·2 7 days·l) rates were then determined. Seedlings were 

harvested after 12 weeks growth in treatment (14 Jan-8 Apr 1996). Roots, stems, and shoots were 

separated, rinsed in deionised water, and dried in an oven at 60°C for 48 h and the dry weights of 

leaves, stems, and roots recorded. Root:shoot ratios were determined. Prior to drying the lateral root 

growth of seedlings was observed under the binocular microscope. The number and length of lateral 

roots were estimated from 10 cm lengths of primary root. 

Between 100 and 300 mg of oven-dried leaves and roots were digested in a sulphuric acid-hydrogen 

peroxide mixture (Allen 1989) in a block digester at 330°C and filtered through No.44 Whatman 

filter paper and made up to 100 mt. Concentrations of calcium and magnesium were measured using a 

Varian AA-575 S atomic absorption spectrophotometer with a nitrous oxide-acetylene flame. An air­

acetylene flame was used to determine sodium, potassium (flame emission) and iron concentrations. 

Total aluminium was measured with a Pye Unicam SP9 Atomic Absorption Spectrophotometer fitted 

with a Unicam GF90 furnace and FS90 furnace autosampler. Unicam 919 series atomic absorption 

software was used. P was measured on a Tecator FIAstar 5010 flow injection auto-analyser using the 

stannous chloride-ammonium molybdate method. 
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5.4 Results 

5.4.1 Number and elongation of roots 

5.4.1.1 Root elongation 

There was no significant difference in the length of the longest roots between plants at the beginning 

of the experiment. The mean increase in the longest root length was also not significantly different 

between plants from either different origins or Al treatments (Table 5.1). 

The mean rates of root elongation (RER, cm day"l) are shown in Figure 5.1. RER were significantly 

affected by the origin of the plants and also by the Al treatment (Table 5.l). In plants originating 

from both PM and KP root elongation was greater at the lower AI concentrations, 2 and 5 Al 

(especially 5 AI), and lowest at 35 AI. 35 Al induced a 50 % and 80 % reduction in root elongation 

relative to control plants (RRE) and 5 Al stimulated RRE by 60 % and 40 % in plants from FM and 

KP (Figure 5.1 and Table 5.2). Root elongation was significantly reduced at all Al concentrations 

(compared with controls) in KR races (by up to 80 %). However, in the presence of AI, elongation 

was greatest at 35 AI. Root elongation of SMM races was only reduced at the lower Al 

concentrations (2 and 5 AI). RRE was greatest at 25 Al (> 1 00 % increase compared to control 

plants). RRE was significantly correlated (negatively) with shoot AI. As shoot Al concentrations 

increased, RRE decreased. There was no significant correlation with root AI. 

5.4.1.2 Number of root s 

Figure 5.2 shows the mean increase in the number of roots between the start of treatment and 

harvesting. The effects of Alan the root number were similar to the effects on elongation. The 

increase in root number was not significantly different between the plant origins but root numbers 

were significantly affected by Al concentration (Table 5.1). At lower Al treatments. Al stimulated 

root production over the experimental period in plants from FM (2. 5, and 10 AI), and KP (2 and 5 

AI). However in the same races increasing the Al concentration led to a significant decrease in the 

number of roots (about 60 % reduction, Table 5.2). Like root elongation, root numbers were 

reduced by all concentrations of Al in seedlings from KR. Al promoted root production in seedlings 

from SMM in all but the highest Al concentration where root numbers were reduced by about 50 % 

(Figure 5.2 and Table 5.2). 
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Table 5.1. General linear models for root, shoot, and dry weight growth measurements in races of 
Betula pendula from Flanders Moss (FM), Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), 
and Kinloch Rannoch (KR), and grown in 0 AI, 2 AI, 5 AI, 10 AI, 15 AI, 25 AI, and 35 AI. *, p<0.05; 
**, p<O.Ol; ***, p<O.OOl; n.s, not significant. Degrees of freedom are: race 3, Al 6, race*AI 
interaction 18. 
Measurement Race Al Race* AI interaction 

F ~ F ~ F ~ 
Root growth 

Elongation of longest root 0.86 n.s 1.48 n.s 1.84 * 
Root elongation rate 3.46 * 2.74 ** 1.66 n.s 
Relative RER 21.35 *** 3.79 ** 10.59 *** 
Increase in number of roots 1.29 n.s 3.49 ** 2.03 ** 

Leaf expansion 
Total leaf area 5.86 *** 5.91 *** 2.13 *** 
% total area = <1 cm

2 9.07 *** 12.15 *** 3.59 *** 
% total area =1-2 cm 

2 8.01 *** 6.30 *** 3.48 *** 
% total area =2-5 cm

2 4.71 ** 4.00 ** 2.58 ** 
% total area =>5 cm

2 11.69 *** 9.22 *** 2.24 ** 
Absolute growth rate, AGR 5.86 *** 5.91 *** 2.13 *** 
Relative growth rate, RGR 3.46 * 2.74 * 1.66 n.s 

Leaf & bud number 
Total number of leaves 12.00 *** 31.31 *** 6.38 *** 

2 9.87 *** 14.56 *** 1.45 % total number=< 1 cm * 
% total number=I-2 cm

2 15.33 *** 9.10 *** 5.36 *** 
2 11.19 *** 13.24 *** 5.18 % total number=2-5 cm *** 

% total number=>5 cm 
2 26.51 *** 14.88 *** 6.02 *** 

Bud production 6.13 *** 12.88 *** 5.99 *** 
Seedling height 

Height increase 15.92 *** 10.39 *** 4.75 *** 
Dry weights 

Shoot 9.21 *** 10.54 *** 3.60 *** 

Root 4.60 ** 3.54 ** 3.25 *** 

Stem 6.40 *** 11.45 *** 1.66 n.s 

Total 2.82 * 10.04 *** 1.98 * 

Rootshoot ratio 4.86 ** 3.71 ** 2.93 *** 

Relative root yield 36.96 *** 5.35 *** 5.30 *** 
Relative shoot yield 13.28 *** 13.39 *** 4.44 *** 

Ionic composition 
Shoots 

p 1.81 n.s 2.03 n.s 2.74 ** 
K 29.71 *** 10.55 *** 12.26 *** 
Na 6.53 *** 13.75 *** 3.81 *** 
Ca 5.29 ** 13.10 *** 1.25 n.s 
Mg 3.49 ** 16.29 *** 3.20 *** 
Al 5.46 ** 11.57 *** 3.96 *** 
Fe 0.84 n.s 4.23 ** 1.73 n.s 

Roots 
P 2.50 n.s 1.05 n.s 0.99 n.s 
K 2.20 n.s 7.01 *** 2.96 *** 
Na 9.69 *** 18.31 *** 2.99 *** 
Ca 1.74 n.s 3.44 ** 2.58 ** 
Mg 0.33 n.s 51.79 *** 0.37 n.s 
AI 1.21 n.s 8.68 *** 3.45 *** 
Fe 3.56 ** 33.91 *** 3.92 *** 
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Figure 5.1. Mean rates of root elongation (cm day" I , ± s.e.) of Betula pendula from (a) Flanders 
Moss (FM), (b) Sheriffmuir (SMM), (c) Kippenrai_~ Glen (KP), and (d) Kinloch Rannoch (KR), 
grown in ° (contro}), 2, 5, 10, 15,25, and 35 mg All at pH 4.2. 
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5.4.1.1 Lateral root growth 

The average number (per cm primary root) of lateral roots did not differ greatly between the sites or 

between treatments - numbers ranged from 5-7 cm·1 primary root. The average length of lateral roots 

did not appear to vary much either between the races FM, SMM, or KP. On average laterals were 

about 50 mm long. Length of laterals increased at 2 and 5 AI in seedlings from these sites: at 2 and 5 

AI laterals were about 80 and 60 mm in length. It was also observed that at the highest AI 

concentrations, 25 and 35 AI, the mean length of laterals in KR races were reduced to about 22 and 

19 mm in length. Root tips were discoloured and swollen in these seedlings (Figure 5.3). Statistical 

analyses of these results was not possible owing to lack of replication. 

Table 5.2. The mean relative rates of root elongation (RER), increase in total number of roots (TNR), 
increase in total leaf number (TLN), increase in total number of buds (TNB), and increase in height 
(Ht), in Betula pendula treated with 0 (control), 2, 5, 10, 15,25, and 35 mg AI rl. All treatments were 
kept constant at pH 4.2. Values are percentages relative to control plants (100 %). Races originated 
in (a) Flanders Moss (FM), (b) Sheriffmuir mineral soil (SMM), (c) Kippenrait Glen (KP), and (d) 
Kinloch Rannoch (KR). 

Relative growth Treatment 
~%) Control 2AI 5 AI 10 AI 15 AI 25 AI 35 AI 

(a) 
RER 100 122 158 67.5 54.2 46.6 45.4 
TNR 100 98.7 119 87.0 35.6 26.3 39.5 
TLN 100 267 259 143 298 442 231 
TNB 100 132 165 96.0 228 258 62.7 

Ht 100 95.2 112 117 124 119 51.9 
(b) 

RER 100 51.8 59.3 132 153 223 108 
TNR 100 102 83.3 139 153 134 41.7 
TLN 100 220 190 333 222 335 366 
TNB 100 145 113 134 106 188 173 

Ht 100 295 91.2 112 169 244 174 
(c) 

RER 100 108 144 56.0 99.7 46.6 16.5 
TNR 100 115 107 42.7 54.5 38.5 28.2 
TLN 100 163 88.7 202 251 329 184 
TNB 100 182 80.7 134 122 161 45.8 

Ht 100 140 55.9 125 191 63.7 29.7 
(d) 

RER 100 62.1 44.5 47.8 49.9 15.4 78.1 
TNR 100 63.3 80.0 53.3 60.0 72.2 95.8 
TLN 100 141 144 184 200 192 308 
TNB 100 69.5 44.9 72.3 93.0 92.1 64.9 

Ht 100 186 108 148 76.1 53.0 17.9 

5.4.2 Leaf area and number 

There were no signs of Al toxicity in the leaves of seedlings from FM, SMM, or KP. However the 

leaves of seedlings from KR were slightly chlorotic at the highest Al concentration, 35 Al (Figure 

5.4). 
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5.4.2.1 Total leaf area 

Before seedlings were treated with Al there were no significant differences in total leaf area between 

individuals or sites. However after treatments there were significant differences between both sites 

and AI concentrations (Table 5.1 and Figure 5.5). At all Al concentrations in PM, SMM, and KR 

races the mean total leaf area was significantly greater than the control plants. This increase in leaf 

area with Al was lowest in plants from KR. With the exception of SMM, leaf area was lowest at 35 

Al (although still greater than controls). Leaf area was significantly increased at the lowest 2 AI, and 

greater 10, 15, and 25 Al concentrations in plants from KP. 

5.4.2.2 Leaf area according to size categories 

Figure 5.6 depicts the proportion of total leaf area which consisted of leaves in the following size 

categories: <lcm2
, 1-2 cm\ 2-5 cm2

, and >5 cm2
• The increase in leaf area in each category over the 

experimental period was significantly different between races and Al treatments (Table 5.1). An 

increase in Al led to a concurrent increase and decrease in the % of total leaf area comprising leaves 

<2 cm2 and leaves >5 cm2
• This was particularly reflected in KR races. At 35 Al only 4 % of the total 

leaf area represented leaves >5 cm2 in area compared with 39 % at 2 AI. Whereas at 35 AI, 31 % of 

total leaf area comprised leaves of <2 cm2 compared with 12 % at 2 AI. In seedlings from FM, SMM, 

and especially KP, the % leaf area comprising larger leaves (>5 cm2
) was significantly increased at 

the lower Al treatment (2 AI) compared with controls (Figure 5.6). 

5.4.2.3 Leaf expansion 

Leaf expansion calculated as the absolute growth rate (AGR=cm2 7 day"l) and relative growth rate 

(RGR=cm2 cm-2 7 dal) are graphed in Figure 5.7. The AI concentration and plant origin both 

significantly affected AGR and RGR (Table 5.1). 

5.4.2.4 Absolute growth rate 

In PM, SMM, and KR races, absolute growth was significantly enhanced in the presence of AI. In 

both FM and KR AGR was lowest at 35 AI but still greater than control plants. In KP, AGR was 

greatest at 2 AI and lower than control plants at 35 AI but not significantly. There was a significant 

negative correlation between AGR and shoot AI but no correlation with root AI. 

5.4.2.5 Relative growth rate 

Relative growth rate (RGR) was unusually high at 2 Al (PM), 15 Al (KP), and 10 Al (KR) but 

standard deviations were very large at these points. 

In PM, SMM, and KR, Al enhanced relative growth rates (RGR). Only in FM and KR did this growth 

decrease at 35 AI. In SMM, RGR increased with increasing Al concentration and was highest at the 

highest AI treatments, 25 and 35 mg r1. In KP, RGR was significantly lower than controls at the two 

highest concentrations, otherwise AI stimulated growth. There was no correlation between RGR and 

either shoot or root AI. 
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Figure 5.3. Roots of Betula seedlings originating from Kinloch Rannoch (KR) after treatment with 
(a)/(b) 35 mg Al rl and (c) without Al (controls). Arrows indicate thickened, discoloured root tips of 
AI-treated roots. 
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(b) 

Figure 5.4. Betula pendula originating from ~landers ~oss (FM) (a, c, .d, and e), Sheriffinuir mineral soil 
(SMM) (b), and Kin1~h Rannoch (KR) (f) 'ol Birch seedlmgs wer~ grown m (a) control, (b) 2 mg 1"1 AI, (c) 5 
mg r l AI, (d) 10 mg r AI, and (e,f) 25 mg I AI. Leaf area was mcreased at low levels of AI and reduced at 

high levels. 
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5.4.2.6 Total lear number 

Figure 5.8 shows the change in total leaf number with increasing Al concentration. Both Al treatment 

and plant origin significantly affected total leaf number (Table 5.1). 

Leaf number was significantly increased in the presence of Al at all Al concentrations and in all races 

(Table 5.2). In both SMM and KR races leaf number increased with increasing AI concentration until 

35 AI. In PM and KP races (with the exception of 10 and 5 AI) an increase in Al concentration 

resulted in a greater number of leaves until 25 AI. At 35 Al the number of leaves was significantly 

less but stilI greater than controls. 

5.4.2.7 Proportion of leaves in size categories 

Figure 5.9 shows the change in the proportion of the total number of leaves contributing to the leaf 

size categories: <l cm2
, 1-2 cm2

, 2-5 cm
2

, and >5 cm
2

• The percentage of total numbers in these 

categories follows a similar pattern to the proportion of leaf area, and is likewise significantly affected 

by both site and treatment (Table 5.1). 

In all races an increase in Al concentration led to a significant increase in the number of leaves of 

small area «2 cm2
). The largest AI-induced production of small leaves occurred in KR races (37 % at 

o Al to 56 % at 35 AI), and the least in SMM races (33% to 36%). Along with an increase in the 

number of small leaves was an AI-induced reduction in the number of leaves >5 cm2
• With the 

exception of seedlings from SMM the proportion of larger leaves significantly decreased with 

increasing AI. This was again most accentuated in plants from KR. The proportion of leaves >5 cm2 

was reduced from 31 % (0 AI) to 10 % (35 AI). In KP and KR the proportion of large leaves was 

significantly increased at low Al concentrations (2 and 5 AI). At 2 AI, 44 % and 19 % of leaves from 

KP and KR were >5 cm2 in area compared with 31 % and 9 % at 0 AI. In SMM races higher Al 

concentrations did not reduce the number of larger leaves. At 25 AI, 51 % of leaves were >5 cm2 in 

area compared with 24 % at 0 AI. 

5.4.2.8 Production of buds 

Figure 5.10 shows the mean increase in the total number of buds over the experimental period. Both 

plant origin and treatment significantly affected bud production (Table 5.1). Generally PM, SMM, 

and KP races produced a greater number of buds in the presence of Al (Table 5.2). However at the 

highest AI concentration (35 AI) bud production in races from KP and PM were significantly reduced 

(by about 30 - 50 % of controls, Table 5.2). AI, at all concentrations, reduced bud production in KR 

races. 
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Figure 5.10. Mean (~ s.e.).increase in the to.tal nu~ber of buds in Betula pendula from (a) Flanders 
Moss (FM), (b) ShenffmUlr (SMM), (c) Klppenr~~t Glen (KP), and (d) Kinloch Rannoch (KR), 
grown in 0 (control), 2, 5, 10, 15,25, and 35 mg All at pH 4.2. 
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5.4.3 Seedling height 

The growth of seedlings in terms of incremental height over the experimental period was significantly 

affected by plant origin and treatment (Figure 5.11 and Table 5.1). Seedlings from FM (not 

significant) and SMM increased in height to a greater extent with Al than without AI. At 35 Al height 

was significantly reduced in FM seedlings (seedlings were about 4 cm shorter). Seedlings from SMM 

at 2 Al were significantly stimulated in growth by Al and about 3 times taller than controls. There 

was no reduction in height at 35 Al in SMM races: seedlings were 1.5-2 times taller than controls 

(Table 5.2). In both KP and KR races the heights of seedlings were greater than controls when grown 

at low Al concentrations (2-15 AI) and (2-10 AI). At higher concentrations heights were reduced by 

about 40 % (Table 5.2). 

5.4.4 Dry weights 

5.4.4.1 Total, shoot, stem, and root dry weights 

Figure 5.12 shows the determined dry weights of seedlings at harvest. Both the plant origin and 

treatment affected all dry weights (Table 5.1). 

At all Al concentrations seedlings from FM, SMM, and KR had greater mean shoot dry weights 

compared with controls. Mean shoot dry weights were overall greater in FM seedlings. The largest 

shoot dry weights in FM and SMM races were at 25 Al (significantly higher than controls). Shoot dry 

weights were significantly greater than controls in plants from KP only at 10, 15, and 25 AI. 

Similar to shoot dry weight, root dry weights of seedlings from SMM, were greater in the presence of 

AI. In contrast root dry weights were significantly greater in seedlings from FM when exposed to 

higher Al concentrations (15-35 AI), and lower at 2 and 5 AI. Root dry weights were significantly 

greater after exposure to 25 and 35 Al in KP, and did not vary much in KR seedlings. 

Stem dry weights increased significantly in FM races at the higher 15 and 25 Al concentrations, and 

in SMM at 10-25 AI. 

In FM, SMM, and KR (slightly) total dry weights were greater in the presence of Al than in its 

absence. Dry weights were highest at 25 Al in FM, SMM, and KP. There was little difference in 

total dry weights between treatments in KR races. 
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Figure 5.11. Mean (± s.e.) incr.ease in .height (em) of Betula pe~dula from (a) Flanders Moss (FM). 
(b) Sheriffmuir (SMM). (c) Klppenrmt ?Ien (KP). and Cd) Kmloch Rannoch (KR). grown in 0 
(control). 2. 5. to. 15.25, and 35 mg Al r at pH 4.2. 
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Figure 5.12. Total P ), shoot (D ), root ( - ), and stem ) dry weights of Betula pendula 
from Flanders Mos (FM), Sheriffmuir (SMM), Kippenrait Glen (KP), and Kinloch 
Rannoch (KR) grown in 0 (control), 2, 5, 10, 15,25, and 35 mg Al rl at pH 4.2. 
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5.4.4.2 Root:shoot ratio 

Figure 5.13 shows the mean rootshoot dry weight ratios of seedlings in each treatment. Ratios were 

significantly different between sites and AI treatments (Table 5.1). A larger ratio depicts a greater 

contribution from roots towards plant dry weight. 

At all Al concentrations the ratio was reduced in FM and KR races. That is the contribution from 

shoots was greater than roots. In SMM and KP, ratios were only significantly reduced at the higher 

Al treatments: 10,25 and 35 Al in SMM, and 10, 15, and 25 Al in KP. 

5.4.4.3 Relative root (RRY) and shoot (RSY) yields 

Figure 5.14 shows the relative root and shoot yields in seedlings at all treatments from each site 

(relative to control yields, 100%). Table 5.1 shows that both plant origin and Al concentration 

significantly affected yields. 

RRY increased with increasing Al concentration up to 25 Al in seedlings from FM. At 15 and 25 Al 

root yields were increased by up to 16 % relative to controls. RRY never dropped below 50 % of 

controls (51.6 % at 5 AI). All Al concentrations stimulated root production in SMM, RRY were 

always> 100 % and greatest at 2 Al (173 %). In plants from KP and KR root yield was enhanced by 

Al (>100 %) at the lower (2 and 5 AI) and higher concentrations (25 and 35 AI). RRY never 

decreased below 50 % of controls at any site in any treatment. 

Greatest RSY were in FM, SMM, and KR seedlings. At all Al concentrations shoot yields were 

greater than control plants. Up to 200 % enhanced shoot growth. The only reduction in RSY was in 

seedlings from KP at 2, 5, and 35 AI: RSY were about 50 % (at 2 and 5 AI) and 88 % at 35 AI. There 

was a significant negative correlation between RRY and shoot AI. There was no correlation between 

RRY and root AI, or between RSY and either root or shoot AI. 

5.4.5 Chemical analyses of foliage 

Table 5.3 shows the chemical analyses of the shoots and roots of seedlings. Solution Al concentration 

significantly affected the uptake of AI, K, Na, Ca, Mg, and Fe by the roots and their translocation to 

the shoots (Table 5.1). Plants from different origins reacted differently to the Al treatments. There 

were significant differences between sites in the uptake of K and Fe by the roots, and K, Na, Ca, Mg, 

and Al translocation to the shoots (Table 5.1). Uptake of P was not significantly influenced by either 

Al concentration or plant origin in either roots or shoots (Table 5.1). 
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Figure 5.13. Mean root:~hoot r~tios (± s.e.) of Betula l!endula from (a) Flanders Moss (FM), (b) 
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Figure 5.14. Mean (± .e.) relative r~ot (~RY) and shoot ~RSY) yields (%) of Betula pendula 
from (a) Flanders Mos (FM), (b) ShenffmUlr (SMM), (c) Klppenrait Glen (KP), and (d) Kinloch 
Rannoch (KR), grown in ° (control), 2, 5, 10, 15,25, and 35 mg AI r' at pH 4.2. 100 % relative 
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Al concentrations in roots tended to be highest at the lower AI solution concentrations (2, 5, 10 AI). 

At higher solution concentrations (15-35 AI) uptake increased slightly with an increase in AI. Roots 

of KR seedlings absorbed the greatest concentrations of AI. The shoots of SMM seedlings contained 

the lowest concentrations of AI, and KP the highest. With increasing solution Al concentration, Al 

uptake to shoots increased until 25 AI. 

The concentrations of root and shoot Na were significantly greater in the presence of AI compared 

with controls. Shoot Na was highest at the lowest Al treatments (2 and 5 AI) in FM, SMM, and KR 

seedlings. Shoots of KR seedlings contained the most Na. Root Na concentrations tended to increase 

with increasing AI concentration. 

In the presence of AI, K concentrations in the shoots were significantly higher than controls, 

especially at the highest Al treatments (15, 25, and 35 AI). In contrast Al significantly inhibited 

uptake of K by roots (up to 25 % reduction). The reduction in K uptake was lowest in seedlings from 

KP and KR. Al also inhibited the transport of both Ca and Mg to shoots at the higher Al treatments 

(10-35 AI). The reduction in shoot Ca concentration was rarely more than 0.5 mg g.l. At 2 and 5 Al 

(except SMM), Al enhanced Mg uptake by roots. Thereafter, Al inhibited uptake of Mg and this 

increased with an increase in AI concentration. Ca uptake by the roots was generally stimulated at all 

Al concentrations, but particularly 2 and 5 AI. Al also severely reduced Fe concentrations in both 

shoots and roots in seedlings from all origins except KR. This reduction increased with increasing AI 

concentration. 

5.4.6 Ionic composition of nutrient solutions 

Concentrations of N03, Ca, Mg, Na, Fe, and S04 in nutrient solutions did not change significantly 

with time. The greatest drop in Ca and Mg concentrations was 0.83 (16 %) and 0.27 (24 %) mg rl in 

4 days. The nominal AI, P, and K concentrations did however decrease significantly through time. 

After 4 days P and K concentrations were reduced by 8.70 (63.5 %) and 2.93 (70.5 %) mg rl. The 

solutions were however changed at the start of day 3 so P and K concentrations had dropped by less 

than 35 and 50 % prior to changing. Table 5.4 shows the change in concentrations of total Al and 

monomeric Al with time in the nutrient solutions. Prior to solution changing (on day 3) nominal total 

Al concentrations of 2, 5,10,15,25, and 35 mg rl actually contained 1.01,4.20,7.81,12.0,18.6, and 

29.9 mg rl. The average I.AllIlln, in these solutions was 48.0, 128,255,377, 778, and 999 ~. 
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Table 5.3. Mean ionic composi ti on (mg g-f oven-dried plant material, ± s.e) of Betu{a penc{u{a roots and snoots (rom Handers Moss (FM), .S'heri((muir mineral so il 
(SMM), Kippenrait Glen (KP), and Kinloch Rannoch (KR) treatep with 2, 5, LO, 15, 25, and 35 mg Al rl. Control seedlings were grown at pH 4.2 with no added 
aluminium. 

Treatment 

FM 
Control 

2AI 

SAl 

10AI 

15 AI 

25 AI 

35 AI 

SMM 
Control 

2AI 

5 AI 

10AI 

15AI 

25 AI 

35 AI 

KP 
Control 

2AI 

SAl 

10AI 

15 AI 

25 AI 

35 AI 

KR 
Control 

2AI 

SAl 

10AI 

15 AI 

25 AI 

35 AI 

to7 

P K Na Ca L-- Mg ~ Al c=. Fe 
mgg'-------------------------------------------------

Shoot Root Shoot Root 

1.55 ±0.S3 

3.04 ±0.53 

1.3 1 ±O. ll 

2.89 :to.22 

1.28 ±0.22 

1.69 ±O.OI 

1.37 ±0.08 

1.58 :to. 10 

1.89 :to.28 

1.1 6 :to.02 

1.11 :to.25 

1.J4 :to.25 

1.30:tO.05 

2.1 1 :to.OI 

L52±0.15 

1.52 ±0.02 

2.00 ±0.09 

1.39 ±0. 14 

2.54±0.75 

1.60±0.32 

1.21 :to.34 

I.S2 :to. 13 

1.80:tO.43 

1.52:tO.07 

2.76 :to.60 

1.61 :to.26 

1.39:tO.16 

1.60:tO.14 

5.94 :to.o5 

3.68 :to.34 

4 .07 ±0.95 

5.02 ±1.32 

4 .67 ±D. 50 

4.22 ±D.M 

4.67 ±D.27 

5. 18±D.93 

7.94 ±3.37 

5.00 ±D.OI 

5.80:tO.68 

3.25 :to.2 1 

5.2 1 ±D.l 8 

5.23 ± 1.47 

6.0 1 ± 1.09 

11.48±1.20 

6.69 ± IA I 

8.62 ±D.74 

6 .10 ±0.56 

6.34 ±D.75 

9.23 ±D.98 

6.51 ±0.9 1 

6.51 ±1.36 

5.25 ±0.93 

7049 ±0.50 

5.95 ±O. II 

5.78 ±0.3 1 

10.72±OAO 

3.34 ±0.76 6.05 ±0.57 

4 .85 :to. 10 5.60 ±0.06 

11.67±3.54 0.72 ±O. I 0 

5 .7 1 ±2.07 5.58 ±1.02 

4 .73 :to.79 I 6.67 :tOA6 

4.47 :to.73 7.09 ± 1.l 0 

0.65 :to.29 I 6.44 ± 1.61 

H9:tO.03 

3.95 ±l.02 

3.66 ± l.02 

2.20 :to. 12 

4.8S :to.54 

2.94 :tOA6 

5.56 :to.83 

6045 :to.89 

5.78 ±0.60 

0.37 ±0.06 

4.69 ±2.25 

8. 14± 1.l3 

7.97 ±1.36 

11.44±0.78 

12.39±2.4 

5 .29 ±1.35 

3.53 ±0.89 

4 .68 ± 1.l 0 

3.65 ±0.59 

2.99 ±D.24 

3.95 ±0.47 

10.65 ±0.30 

4 .44 ± 1.27 

6.46 ± I.S4 

3.90 ±0.22 

4.57 ±OA6 

2.44 ±O. IS 

5.76 :to.28 

5.48 ±0.78 

4.3 1 ± 1.48 

2.34 ±0.29 

5.16 ± 1.26 

3.27 ±0.07 

3.54 ±0.54 

4.50 ±0.52 

5.15 ± 1.I 0 

3.75 ±0.28 

3. 13 ±0.03 

3. 19 :to.39 

3.16 :to. 3 I 

2.15 ±0.06 

3.66 ±0.56 

Shoot Root Shoot Root Shoot Root Shoot Root Shoot - Root 

0 .13 ±O.06 

0.30 :to.08 

0 .61 :to.23 

0. 14 :to.OI 

0 .20:tO.02 

0 .12:tO.02 

0 .19:tO.04 

0 .10 ±0.03 

0 .59 ±0.02 

O. 16 :tO.OI 

0 .17 :to.O I 

0.50±O.13 

0 .09 ±0.02 

0 .15 ±O.O I 

0 : I 6±<>.03 

0.20:tO.01 

0.71 :to. 16 

0.16:tO.05 

2.05 :to.92 

1.62:tO.18 

0.SO:tO.05 

0.09±0.01 

0.35 :to.04 

8.39 ±0.34 

6.67 :to.51 

lo60 ±0.48 

0.43 :to. IS 

1.97 ±0.59 

3.33 ±0.82 

4.22 ±1.49 

4.89 ±I.I 2 

5.78 ± 1.25 

4. 18 ±0.32 

4.29 ±0.22 

5.05 ±1.69 

2.73 :to.66 

3.90:tO.7 1 

3.55 :to.80 

5.08 :to. 15 

7.67 ± 1.02 

4.08 :to.45 

7.07 :to.31 

1.86 :to.32 

6.20±0.74 

5.88 ±1.21 

3.67 ±O.74 

3.97 :to.25 

1.97 ±0.20 

2.35 ±0.43 

1:57±<>:36 

3.44:tO.72 

3.45 ± 1.40 

2.92:tO.44 

8.78 :to.09 

2.24:tO.16 

5.61 :to.84 

2.02 ±0.2 1 

2.98 ±0.25 

2.31 ±0.28 

1.6 1 ±0.27 

1.33 ±0.26 

1.04 ±0.04 

1.78 ±O. IO 

2.3 1 ±0.36 

2.57 ±0.32 

1.79 ±0.18 

2.00 ±0.09 

1.94 ±0.35 

1.00 ±0.04 

1.46 ±0.05 

1.48 :to. 13 

2.20 ±0.08 

2. 14 ±0.85 

0.93 ±0.03 

0.99 ±0.19 

1.33 ±O.09 

1.60 ±O.25 

1.98 ±0. 18 

2.90 ±0. 18 

2.40 ±0. 17 

I .S8 ±0.27 

1.73 ±0.13 

1.6 1 ±0.22 

1.79 :to.OS 

1.80 ±0.02 

1.99 ±0. 12 

2.55 ±0. 12 

1.57 ±0. 18 

1.88 ±0.24 

1.78 ±0 .12 

2.16 ±0.26 

1.95 ±0.29 

1.26 ±0.07 

2.6 1 ±0.5 1 

1.23 ±0.05 

1.63 ±0.13 

2.39 ±0. 14 

3.4 1 ±O. IO 

2.03 ±O. IO 

3.29 ±0. 17 

2.06±0.52 

2.20±0.38 

2.48 ±0.9 1 

1.78 ±0.37 

2.48 ±0. 14 

1.33 ±0.26 

2.82 ±0.40 

2.3 1 ±0.20 

2.34 ±0.27 

2.26 ±OAO 

2.03 ±0.50 

2.04 ±0. 15 

0.80:tO. IS 

2.01 :tOA6 

1.03 :to. 17 

0.92:tO.03 

0.53 :to. I I 

0 .41 :to.06 

0.58 :to. I I 

1.5 1 ±0. 15 

1.06 ±0. 13 

0 .64 ±O.l5 

0.91 :to.07 

0 .75 ±0.09 

0 .32 :to.04 

0.55 ±0.05 

0.74:tO. 13 

0.89 :to.05 

0.97 :to.28 

0.73 :to.03 

0.21 :to. IO 

0.63 :to.02 

0.50:tO.04 

0.98 ±<l.1 I 

1.20±0.24 

1.00 ±O.ll 

1.16 ±0.18 

0.63 ±0.09 

0.61 ±O.17 

0.55 ±0.03 

0.64 :to. 13 

0.48 :to. 16 

0.20 ±0.05 

0.47 ±D. IO 

0.06 :to.02 

0.04 :to.O I 

0.05 ±o.o l 

0 .62 ±O. IO 

0.37 :to.OI 

0.19 ±0.05 

0.40±O.06 

0.08 ±0.0 1 

0.05 ±0.01 

0.09 ±0.02 

0.69 :to.03 

0.54:tO.04 

0.13 :to.07 

OAO:tO.06 

0.07 :to.oo 

0.06 :to.02 

0.15 :to.02 

0.66 ±0. 12 

0.45 ±0.04 

0.16 ±0.04 

0.47 :to.07 

0.11 ±0.04 

0.04 ±0.02 

0.09 ±0.06 

0.00 ±O.OO 

0.18 ±0.07 

0.04 ±0.0 1 

0.27 ±0.03 

0. 11 ±0.06 

0.05 ±O.OO 

0.26 ±0.05 

0.00 ±O.OO 

0.07 ±0.02 

0.16 ±0.02 

0. 10 ±0.0 1 

0. 12 ±0.0 1 

0.04 ±0.0 1 

0.13 ±0.0 1 

0.00 ±O.OO 

0.08 ±0.0 1 

0. 11 ±0.02 

0.26 ±0.07 

0.24 ±0.06 

0.38 ±0.1 0 

0. 17 :to.06 

0.00 ±O.OO 

0. 15 ±O.OO 

0. 11 ±0.0 1 

0.12 ±0.0 1 

O. IS ±0.04 

0.25 ±0.05 

0. 14 ±0.02 

0.00 ±O.OO 

0 .59 ±O. II 

0 .15 ±0.02 

0.19 ±0.06 

0.19 :to.03 

0.37 ±0.09 

0.35 ±0.03 

0.00 ±O.OO 

1.05 ±0.06 

0.27 ±O. II 

0 .27 ±0.05 

0.26 ±0.06 

0.24 ±0.02 

0.3 1 ±0.03 

0.00 ±O.OO 

0.29 ±0.05 

0.31 ±0.08 

1.40 ±0.63 

0.23 ±0.06 

0.33 ±0.05 

0.3 1 ±0.06 

0.00 ±O.OO 

0.38 ±O.II 

0.66 ±0.02 

0.67 ±0.06 

0.23 ±0.02 

0.29 ±0.08 

0.33 ±0.06 

0.20 :to.05 

0. 19 :to.OI 

0.13 ±0.02 

0.15 :to.OI 

0. 16 ±0.04 

0. 10 :to.oo 

0.12 :to.02 

0.33 :to. 12 

0.12 :to.OO 

0.11 :to.03 

0.15 :to.O I 

0.12 :to.OO 

O. IO :tO.OI 

0.11 :to.OI 

0.13 :to.03 

0.07 :to.03 

0.15 ±0.03 

0.16 :to.03 

0.13 :to.02 

0.17 :to.04 

0.14 :to.03 

0.27 :to.02 

0.13 :to.OO 

0.17 :to.03 

0.10 :to.OI 

0.22 :to.03 

0.13 :to.OI 

0.14 ±D.OI 

1.85 ±O.n 
0.52 :to. l6 

O.04±O.O I 

O.20:tO.04 

0. 10 ±O.03 

0.08 :to. 0 I 

O. IO:tO.OO 

1.23 ±O.26 

0.50±0.27 

0. 11 ±O.OO 

0.22 ±0.02 

0.13 ±0.03 

O. IO±O.O I 

0. 12:tO.OO 

0.75 :to.23 

0.24:tO. 12 

0.16 :tO.03 

0049 :to. IS 

0. 13 :to.06 

0.14:tO.03 

0.13 ±0.03 

1.05 ±O.l9 

0.24 :to.OS 

0.45 :to.05 

1.1 8 :to.l2 

0. 11 ±0.03 

0.08:tO.02 

0. 15 ±O.O I 



Table 5.4. Changes in the concentration of total Al and monomeric Al (LAI .... ,) with time in the 
nutrient culture solutions: 2 AI, 5 AI, 10 AI, 15 AI, 25 AI, and 35 AI. Solutions were analysed 
immediately after preparation (0), and one (1), two (2), three (3), and four (4) days later during the 
first two weeks of experimental treatments. 

Solution Nutrient Solution 

age 2AI 5 Al lOAI 15 Al 25 Al 35 Al 
(days) 
Total Al 
0 1.14±0.04 4.57±0.24 8.37±0.15 12.2±0.17 18.8±0.21 30.9±0.31 

1 1.01±0.03 4.l3±O.l6 7.77±0.1l 11.9±0.17 18.7±0.04 30.4±0.19 

2 0.89±0.03 3.89±0.05 7.29±0.07 11.7±0.18 18.3±0.09 28.3±0.23 

3 0.82±0.03 3.82±0.03 7.13±0.01 11.2±0.07 17.5±0.1O 26.2±0.20 

4 0.80±O.01 3.82±0.03 7.00±0.01 1O.8±0.14 15.4±0.O6 24.8±O.13 

LAI.,.,.o 
993±6.55 0 

1 
2 
3 
4 

60.3±1.07 157±4.51 302±4.28 469±5.19 1358±59.8 
50.3±0.67 124±5.99 264±3.94 370±3.l6 712±7.28 968±1O.9 
33.5±1.61 102±4.24 198±1.56 291±2.87 628±3.94 669±7.78 
24.1±1.78 86.9±2.51 146±3.10 197±3.13 312±7.60 272±8.36 
3.29+0.53 60.3±O.98 lO4±3.13 92.9±3.59 203±4.36 1 66±9.33 

5.5 Discussion 

Birch is regarded as an Al tolerant plant (Clegg & Gobran 1995). Seedlings of Betula pendula grown 

in Ingestad's solution culture with optimal P supply did not show any effect of Al on growth until Al 

concentrations were greater than 3 mM (80.9 mg r1). The birch seedlings in this study which 

originated from SMM, FM, and KP were also tolerant of Al (up to 35 mg Al r1). The highest 

concentrations of Al actually stimulated growth in seedlings from SMM but reduced growth in FM 

and KP. However seedlings from KR were AI-sensitive and growth was reduced at all the Al 

concentrations used (2-35 mg r1). 

Low concentrations of Al (2 and 5 AI) enhanced growth in seedlings from FM and KP. Root 

elongation and root number were significantly increased relative to control plants at 2 and 5 AI. 

Uptake of Ca was stimulated by low Al concentrations, and translocation of both Ca and Mg to the 

shoots was enhanced at low Al treatments. Despite this increased growth at low Al concentrations, Al 

concentrations in the roots was also highest at these concentrations. Enhanced growth at low 

concentrations of Al has also been shown in wheat cultivars by Foy (1984), in Arnica montana and 

Deschampsia flexuosa by Pegtel (1987) and in tea by Konishi et al. (1985). Similar to this study, 

although different nutrients, Konishi et al. (1985) showed stimulation in P absorption. 
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Growth was reduced at the higher Al concentrations (15-35 AI) in FM and KP seedlings. Root 

elongation, root number, and relative growth rate were reduced. However root elongation, number, 

and relative growth rate increased with increasing Al concentration in SMM plants. Relative growth 

rate was highest at 35 AI. In contrast RER, root number, and RGR, were significantly reduced at all 

Al concentrations in KR plants. 

The presence of Al stimulated absolute growth rate, leaf production and total leaf area. However the 

way in which leaf area was affected differed between the tolerant seedlings and the sensitive ones of 

KR. In PM, SMM, and KR seedlings, even at the highest concentration, total leaf area was increased 

in the presence of AI. Total leaf area was increased at most Al concentrations in KP seedlings. The 

lowest increase in total leaf area occurred in KR seedlings. In the sensitive seedlings of KR Al 

induced the production of many leaves of small area «2 cm2
). Al also induced higher numbers of 

smaller leaves in seedlings from FM and KP but to a lesser extent than in those from KR. At lower Al 

concentrations, in FM and KP seedlings, Al induced the production of large leaves (>5 cm\ This 

effect of Al was not apparent in SMM seedlings where there was no reduction in the number of leaves 

>5 cm2 in area at the higher Al concentrations. Konishi et al. (1985) also observed the development 

of very large leaves in tea plants grown in nutrient solutions with up to 172.7 mg Al rl. However they 

did not quantify leaf area. 

Seedlings were significantly taller in FM and SMM plants in the presence of AI. Whereas in KP and 

KR height only increased at low Al concentrations. Van Praag & Weissen (1985) also showed Al 

reduced the stem height of Picea abies and Fagus sylvatica. 

Shoot dry weights and RSY increased in the presence of Al in all races. Root dry weights and RRY 

also increased with Al but only in SMM, FM, and KP races. There was no AI-induced increase in 

root dry weights in KR plants. The measurement of growth used in assessing the Al affect on growth 

determines the results obtained. KR seedlings were sensitive to Al but this was not obvious in all 

aspects of their growth. Shoot dry weight increased in the presence of Al in KR seedlings implying 

enhanced growth but this was due to an increase in the production of small leaves. Also root dry 

weights did not change with Al and this was due to the change in the root system from a fine­

branching, thin diameter root system to one with stunted thickened laterals. Although KR seedlings 

were the most sensitive to AI, there was never greater than a 50 % reduction in either RRY or RSY at 

any Al concentration. Relative growth rates (g g.1 day"l) were not significantly reduced at 1 mM (27 

mg r1) Al in Betula seedlings grown in nutrient solution by G6ransson & Eldhuset (1995), significant 

reductions were only seen at concentrations greater than 3 roM (81 mg r
1
). The races of birch used 

here were more sensitive to AI. These authors did not investigate the effects of Al on Betula at 

concentrations <1 roM (27 mg rl). 
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Root Al concentrations were highest at the lower Al treatments 2 and 5 Al despite the enhanced 

growth. Between 10 and 35 mg Al r', Al uptake by the roots, and transport to the shoots, increased 

with increasing Al concentration. However the concentrations of Al in the shoots were, even at the 

highest Al treatment, very low (never above 0.38 mg r'). In fact they were lower than concentrations 

of Al in the shoots of field birch (Appendix 2). Malavolta et al. (1981) found Al toxicity in sorghum 

was associated with 0.64 mg g-' of Al in lower leaves and 1.22 mg g-' in upper leaves (Foy 1984). At 

the higher Al treatments, 10-25 AI, concentrations of shoot Al were greatest in SMM seedlings. This 

contradicts evidence of Massot et al. (1992) where sensitive bean cultivars accumulated greater 

concentrations of Al in the shoots. In contrast the roots of both SMM and KR plants had the highest 

concentrations of Al which implies SMM seedling tolerance to Al arises through internal 

detoxification mechanisms, and KR seedling sensitivity is related to a lack of these internal exclusion 

mechanisms. However the AI contents were measured in whole roots and AI uptake along the root 

axis is non-uniform. Godbold et al. (1995) found the Al content of roots was concentrated at the root 

tips. The use of x-ray microanalysis could also have given an indication as to where the Al was 

located in the roots. Godbold et al. (1995) found the AI was mostly in the root cortex cell walls of 

Picea abies. It would have been interesting to see if there was a difference in the distribution of any 

absorbed Al between the most tolerant seedlings from SMM and the least tolerant from KR. However 

X-ray microanalysis is at its least sensitive in the area of the x-ray spectrum containing the AI peak 

(Hodson & Wilkins 1991). Observations on the root cell ultrastructure would have shown if Al 

induced any disruption in the Golgi apparatus or amyloplast numbers and hence reduced production 

of excreted polysaccharide materials. There may have been differences between the races in mucilage 

production, suggested to have protective functions against Al toxicity, which correlated with their 

degree of Al tolerance. 

With the exception of 2 and 5 AI, Al did significantly affect nutrient uptake: K, Mg, and Fe uptake 

by roots was reduced by AI. Ca, Mg, and Fe transport to the shoots was similarly reduced in the 

presence of AI. This corroborates with evidence from Massot et al. (1992), Malavolta et al. (1981), 

Rengel & Robinson (1990), and Wheeler (1994) where Al toxicity was manifested by a reduction in 

nutrient uptake. However Ca uptake by the roots was actually greater in the presence of Al than in its 

absence despite a reduced growth at the higher Al treatments in PM and KP, and at all treatments in 

KR. This contradicts hypotheses of Al blocking Ca channels, and thereby disrupting ion flow and 

membrane permeability. Na uptake was also stimulated in the presence of AI, at all concentrations, in 

both the roots and shoots, and K in the shoots alone. K uptake was also stimulated by Al in AI­

tolerant hybrids of wheat and in sunflower (Blarney et al. 1986). Processes other than disturbances in 

ion uptake were causing the depression in growth. The work of Goransson & Eldhuset (1995), who 

showed that the mechanisms for Ca and Mg uptake by Betula pendula seedlings (grown in nutrient 

solution) still functioned in the presence of Al concentrations as high as 1 mM (27 mg r') for several 
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weeks, corroborates with this study. They highlighted the importance of considering the uptake of 

nutrients in relation to the plant requirements. Ericsson & Ingestad (1988) demonstrated that the 

internal concentration of P required for a constant maximal relative growth rate (g g-I day"l) was 60 % 

of what was found when plants were grown in nutrient solutions with a free P supply (Goransson & 

Eldhuset 1995). Although a direct comparison is not possible owing to differences in plant ages, 

concentrations of shoot Na, K, and Fe were no different from concentrations in field plants 

(Appendix 2). Ca and Mg were significantly lower than field plants (about 20 %) but the actual 

difference between control plants and Al treated plants, although sometimes significant, was no more 

than 0.40 mg rl. To fully assess whether or not the diminished uptake of nutrients by Al was reducing 

growth, a knowledge of the seedlings ionic compositions at maximal growth rates would be necessary. 

The concentrations of P, K, and Al in the culture solutions decreased significantly with time. Within 

3 days P had dropped to about 8 - 9 mg rl. However P uptake by plants in the presence of Al was not 

significantly different from controls at any AI concentration or in any site, and also generally higher 

than field values (Appendix 2). Furthermore P concentrations never dropped below the range found 

within the soil solutions. Culture solutions were changed at the start of day 3 so that retained Al 

concentrations were never below about 70 % of nominal concentrations. The decline in nominal 

concentrations of P and AI is frequently attributed to the formation of hydroxy-phosphate precipitates 

(Wheeler 1994). 

Goransson & Eldhuset (1995) only saw symptoms of AI toxicity in birch seedlings when solution AI 

concentrations were 3-6 mM (80.9-161.9 mg rl) and root tissue Al concentrations exceeded 4.5 mg g.1 

d.w:l. At these concentrations root tips, and laterals, were swollen and discoloured. In this study 

symptoms of toxicity in both the roots and shoots of KR birch seedlings were visible at the lower Al 

concentration of 35 mg rl. Also the roots only contained 0.33 mg g-I Al when these symptoms were 

apparent. In an earlier study, Goransson & Eldhuset (1991) found Pinus sylvestris was more sensitive 

to Al than Picea abies, and symptoms of toxicity were visible at 5.4 mg Al rl. Betula appear to be 

more AI-tolerant than Pinus but less tolerant than Picea. 

The races of Betula pendula differed significantly in their tolerance to AI. The races were ranked in 

increasing order of Al tolerance as : KR<KP<FM<SMM. The results favoured the interpretation that 

growth damage occurred because of AI-induced changes in cell replication and root growth rather 

than disturbances in nutrient uptake. The differential tolerance of Al by the races also follows the 

pattern of Al concentrations in the soils from where the plants originated (Chapter 3). SMM soils 

have the highest concentrations of total Al and monomeric Al and KR the lowest. 
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5.6 Conclusions 

• Races of Betula pendula were ranked in their tolerance to AI: SMM> FM> KP> KR. 

• Differential tolerance of Al by birch races was correlated with AI concentrations of their natural 

soils. 

• Low AI concentrations (nominal concentrations of 2 and 5 mg rl, and actual concentrations of 1.0 
and 4.2 mg rl) enhanced growth in FM and KP races. Root elongation and number, and leaf 
expansion were greater at these Al concentrations than in control solutions with no AI. Ca uptake 
by roots, and translocation of Ca and Mg to shoots, were similarly increased. 

• Higher Al concentrations (nominal concentrations of 15-35 mg rl, and actual concentrations of 
12.0-29.9 mg rl) reduced growth in FM and KP seedlings. 

• All treatment concentrations of AI reduced growth of KR seedlings and stimulated production of 
leaves <2 cm2 in area. Symptoms of Al toxicity were visible in KR plants at 35 AI. 

• Root elongation, root numbers, and relative growth rate increased with an increase in Al 

concentration in SMM plants. 

• Root and shoot tissue Al concentrations were highest in SMM plants. 

• AI, at higher concentrations (>5 mg rl) altered nutrient acquisition by plants in all races. 
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Chapter 6 

AIISi interactions in Anthoxanthum odoratum L. and Holeus lanatus L. 

6.1 Introduction 

6.1.1 Speciation of silicon and aluminium 

Silicon and aluminium are the second and third most abundant elements after oxygen in the Earth's 

crust. Silicon exists as silica and silicates, especially in aluminosilicates of rocks and soil minerals. It 

is liberated very slowly during weathering as monosilicic acid, Si(OH)4, which is available for plant 

uptake (Baylis et al. 1994, Birchall 1990, Birchall 1992, Hodson & Evans 1995). Aluminosilicate 

minerals weather at different rates: highly weathered soils such as oxisols and ultisols can be quite 

low in soluble Si, and organic soils (histosols) may be even lower (Hodson & Evans 1995). Jones & 

Handreck (1969) found concentrations of Si(OH)4 varied from 116 ~M to 1115 ~ in soil solutions. 

Monosilicic acid, Si(OH)4, has a solubility in water about 2000 ~M at 25°C with a pH<7.5. The 

solubility is similar from pH 2-9 but rises at pH> 9 owing to silicate anion formation: Si(OHhO" (pKal 

9.82125 °C) and Si(OHhO/" (pKa2 11.84/25 0c) (Hodson & Evans 1995, Raven 1983). 

The speciation of Al is more complex than that of Si (Chapter 1, Section 1.2.3): the octahedral 

hexahydrate [AI(HzO)6]3+, abbreviated as A13+, exists only in very acidic solutions. The aluminium 

species: [AI(H20)s(OH)]2+ or AIOH2+ and [AI(HzOMOHht or AI(OH)t appear at the more basic 

pH's. Minimum solubility occurs at pH 6.5 with the precipitation of aluminium hydroxides 

(AI(OH)3), and at more basic pH's (about pH 8) still the solubility again rises with the formation of 

the tetrahedral aluminate anion, Al(OH)4" CArp & Quimet 1986, Baylis et al. 1994, Birchall 1990, 

Martin 1986). 

6.1.2 Silicon as a beneficial element 

Silicon is regarded as a beneficial element for many plants, especially rice. Si deficiency is known as 

a major limiting factor for rice growth (Ma & Takahashi 1991, Miyake & Takahashi 1978, Wang et 

al. 1994) and rice shoots typically contain >5 % Si on a dry weight basis (Wallace 1993). Silicon 

applications, usually as Ca or Na silicates or basic slag, have been shown to increase P uptake by 

crops and to reduce P fixation in soils (Galvez et al. 1987). The beneficial effect of Si on rice was 
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suggested by Ma & Takahashi (1991) to be the result of a higher PlMn ratio within the plant and not 

an increased P availability in the soil. Symptoms of Si deficiency have been reported in tomato 

plants: retarded growth, increased transpiration rate (> -30 %), failure of pollination and fruit 

production, wilting of branches and leaves, and necrosis in leaves and branch tips (Aller et al. 1990). 

Silicon was shown to be beneficial to animals (Carlisle 1972, Schwartz & Milne 1972). Rats and 

chicks were fed silicon-deficient diets which reduced weight gains and induced changes in the 

formation and structure of collagenous connective tissue and bone. 

Silicon has often been shown to improve the growth of plants under the stress of Mn toxicity (Barcelo 

et al. 1993, Epstein 1994). Horst & Marschner (1978) showed Si improved the growth of cowpea 

when exposed to high Mn. Alleviation of Mn toxicity symptoms in maize were not due to a Si­

induced decrease in Mn uptake, but to an increased tolerance of high Mn concentrations in the plant 

tissues (Barcelo et al. 1993). In agreement, Williams & Vlamis (1957) found Si prevented the 

formation of necrotic spots of high Mn concentrations in barley leaves without reducing the overall 

Mn concentration in the tops. Silicon has similarly been shown to alleviate Mn toxicities in beans, 

lettuce, potato, rice, rye, ryegrass, sugarcane, and tomato (Galvez et al. 1987, Lewin & Reimann 

1969, Okuda & Takahashi 1965, Peaslee & Frink 1969). 

The essentiality of Si is still not accepted (Ma et al. 1997) except for growth in diatoms where Si­

starvation studies imply that it is essential for DNA and chlorophyll synthesis (Exley et al. 1993). 

Epstein (1994) considers Si to be greatly undervalued in plant nutrition studies since plants are 

naturally exposed to Si in soil solutions and growing them without Si in hydroponic cultures produces 

plants which he feels are "in important aspects experimental artefacts". 

6.1.3 Aluminium/silicon interactions 

More recently, studies have shown a unique interaction between Si and AI. Birchall et al. (1989) 

when studying Al toxicity in Atlantic salmon fry (Safmo safar L.) showed a marked increase in the 

survival, and reduction in gill damage, of fry in the presence of Si. There was also a significant 

reduction in the uptake of AI: fish only absorbed 0.4 ~M (0.01 mg) Al per gram dry mass in treatment 

with 7 ~M (0.19 mg rl) Al and 93 ~M Si, compared with >2 IlM (>0.05 mg) Al in treatments with 7 

IlM Al (0.19 mg rl) and only 0.6 ~ Si. Birchall et al. (1989) suggested that Al in the presence of Si 

was unavailable for binding at the gill epithelial sites or for systemic absorption due to the formation 

of AI-Si complexes known as hydroxyaluminosilcate (HAS) species and later work suggested that Si 

played a major role in the rejection of Al by biological systems (Birchall 1990, Hodson & Evans 

1995). The reaction of silicic acid with Al to form HAS species reduced the biological availability, 

and hence toxicity, of AI. Since these first demonstrations in fish, this unique bioinorganic chemistry 

114 



between Al and Si, has also been confirmed in man. It is now established that gastro-intestinal 

absorption of Al is greatly reduced in the presence of Si(OH)4, and that the intake of dietary Si(OH)4 

influences the excretion of Al via the kidneys implying an involvement in Al homeostasis (Bellia et 

al. 1994, Birchall et al. 1996). Most recently, silicic acid has been connected with the possible 

association between Al and the occurrence of Alzheimer's disease (Birchall 1992, Birchall et al. 

1996). 

Birchall (1992) has suggested that in non-plant systems "the role of silicon (as silicic acid) is to aid 

the exclusion of Al from organisms". The question of whether or not this is a general mechanism of 

Si, and is also true of plants, has been the basis of recent research. 

6.1.4 Examples of AVSi interactions in plants 

The work which has been carried out on AIISi interactions in higher plants has often shown both 

alleviative effects of Si, and no or little alleviation (Hammond et al. 1995). Silicon amelioration of Al 

toxicity has been shown in barley, com, sorghum, soybean, and teosinte. In contrast Si did not have 

any ameliorative effects in cotton, pea, and rice (Hodson & Evans 1995). Contradictory results have 

been found in wheat when grown with Al and Si. 

Hammond et al. (1995) grew barley (cv. Bronze) in nutrient solutions (at pH 4.5) with Al (0-1.35 

mg rl) and Si (0-2800 JlM). The presence of Si increased total dry weights in all Al treatments and 

prevented AI-induced inhibition of root elongation. Root length was equal to that of control plants 

when grown in 25 J1M (0.68 mg rl ) Al with 2000 JlM Si. Si also restored Ca concentrations in roots 

and shoots to those approaching those in control plants, and Al uptake by roots was significantly 

reduced. At 2800 JlM Si, Al was not detectable in plants of either 25 JlM (0.68 mg rl) or 50 JlM (1.35 

mg rl) Al treatments. The inhibition of root elongation by 20 JlM (0.54 mg rl)Al (at pH 4.3) in com 

(cv. golden cross bantam) was alleviated by the addition of silicic acid. Increasing the Si(OH)4 

concentration from 500 J1M to 2000 JlM increased the alleviative effect (Ma et al. 1997). Both 

Galvez et al. (1987) and Hodson & Sangster (1993) showed ameliorative effects of Si in sorghum 

grown in the presence of Al (in solutions at pH's 4.5 and 4.0). The latter authors found root growth 

inhibition by Al (0-2.70 mg rl) was reduced by adding Si (0-2800 J1M), and the root:shoot dry weight 

ratios were equal to control plant ratios (grown with no AI). However total dry weights were not 

increased with Si. Like Hammond et al. 1995, they found Ca concentrations in cortical cell walls 

were higher in the presence of Si. Galvez et al. (1987) using a higher concentration of AI, up to 296 

JlM (8.10 mg rl), found a similar ameliorative effect by Si (0-3600 JlM) on root elongation. Si 

restored the root growth of two cultivars to 50% and 30% and increased the root:shoot ratios to those 

of the controls. The ameliorative effect of Si on root elongation in soybean was dependent upon the 
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pH of the growth medium. Greater concentrations of Si were required for amelioration at lower pH 

values (pH 4.0) where Al was more toxic (Baylis et al. 1994). Finally, Barcelo et al. (1993) showed 

Si concentrations as low as 4 J.lM were sufficient to ameliorate depressions in root and shoot length. 

Si prevented growth inhibition at [AI]ID>OO concentrations as high as 35 J.lM (0.94 mg rl) at pH 4.0. In 

agreement with Hammond et al. (1995), they found plants grown in both Al and Si had lower tissue 

concentrations of AI. Root Si concentrations increased with increasing Al concentrations in solutions 

(0-3.24 mg r l). Likewise Si concentrations in root cortical cell walls of AI-tolerant Picea abies 

increased after treatment with Al (6000~) (Hodson & Wilkins 1991). 

Okuda & Takahashi (1965), MJ. Hodson & A.G. Sangster (unpublished), and K.E. Hammond & MJ. 

Hodson (unpublished) were unable to detect any amelioration of Al toxicity (in solutions at pH's 5.5, 

4.5, and 4.5) by Si in rice, wheat, or pea (Hodson & Evans 1995). Similarly, Li et al. (1989) showed 

no effect of Si, ranging from 0-2800 J.lM, on the toxicity of Al (2.70 mg rl) to cotton growth. 

However they did show a slight decrease in [AI] with the addition of Si. In contrast to the 

unpublished results of Hammond & Hodson, Cocker et al. (1998) found Si did ameliorate AI-induced 

reductions in root growth in both tolerant and sensitive-AI cultivars of wheat (cv. Atlas 66 and Scout 

66). 2000 J.lM Si significantly ameliorated the toxic effects of 100 J.lM (2.70 mg rl) Al in Atlas 66 (at 

pH's < 5.0). Only 5 J.lM Si was required to prevent any toxic effects of 1.5 J.lM (0.04 mg rl) Al in 

Scout 66. However the presence of Si did not reduce Al uptake by roots. 

6.1.5 Plant uptake of Si and Al 

Silicon is taken up by plants as Si(OH)4, suggesting Si(OH)4 is the species which crosses the plant 

membrane. Once inside the plant, transport of Si(OH)4 is almost entirely confined to the xylem. 

Xylem concentrations of Si are frequently very high suggesting polymeric forms of Si are present 

and/or chelation with organic complexes is occurring (Hodson & Evans 1995). The high values of 

pKal and pKa2 of Si(OH)4 relative to the pH of the plant cell cytoplasm (usually 7.0-7.4), vacuoles « 

pH 6), and of apoplastic compartments such as the xylem and cell walls «pH 7), were suggested by 

Raven (1983) to make it highly unlikely that a significant fraction of Si(OH)4 in plants is present as 

h "S·O 2-" anions suc as 1 3 • 

Most of the Si(OH)4 taken up by higher plants is eventually deposited as solid amorphous silica 

(Si02.xH20), called phytoliths or "plant stones". Once deposition has occurred no remobilization has 

been observed (Birchall et al. 1996, Hodson & Evans 1995, Raven 1983). 
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Hodson & Evans (1995) identified four main groups of higher plants with respect to Al and Si uptake 

and transport : 

1) Al accumulators (mostly arborescent dicotyledons) 
2) Si accumulators (including wetland and dryland grasses, and fern allies such as Equisetum sp.) 
3) Moderate amounts of both Al and Si transported to shoots (including gymnosperms and some 
arborescent dicotyledons) 
4) Herbaceous dicotyledons which largely exclude both Al and Si from the shoots. 

The accumulation of very high amounts of both Si and Al in plant tissues appears to be mutually 

exclusive. Dryland grasses have between 1-3 % dry weight as silica which appears to be 

approximately the silica that would be expected on the basis of passive uptake (Hodson & Evans 

1995). 

6.1.6 Mechanisms of silicon alleviation of Al toxicity 

Hodson & Evans (1995) proposed four possible mechanisms of amelioration of AI-damage by Si: 

solution effects, co-deposition of AlISi in the plant, effects in cytoplasm and on enzyme activity, and 

finally, possible indirect effects of silicon. Wallace (1993) also suggested silicon-induced alteration 

of the plant cation-anion balance as an explanation for Si alleviation of Al toxicity in Gramineae. 

6.1.6.1 Solution effects 

It has frequently been suggested that Si(OH)4 reduces the total concentration of soluble and available 

toxic Al ([AI]"" .. ,). Ma et al. (1997) showed an alleviative effect by Si on Al toxicity in corn, and 

suggested this was the result of a decrease in toxic concentrations of Ae+ through the formation of AI­

Si complexes: nominal concentrations of 20 J.lM (0.54 mg }'1) Al were reduced to about 15 (0.42 mg r 
I), 10 (0.27 mg rl), and 5 J.lM (0.14 mg rl) Al with the addition of 500, 1000, and 2000 J.lM Si. 

However the studies of Barcelo et ai. (1993) and Cocker et ai. (1998) found amelioration by Si was 

not only the result of these solution effects (described above) but also due to a Si-induced reduction in 

the internal toxicity of AI. Plants grown with or without Si, differed significantly in growth despite 

the similar [AI]"""", concentrations in solution (Barcelo et ai. 1993). Li et ai. (1989) found 

concentrations of reactive Al (measured using the Aluminon colorimetric method) did not decline 

measurably in solutions with 50 (1.35) or 100 J.lM (2.70 mg r1) AI, and only by 6-15 % in solutions 

with 200 J.1M (3.24 mg r1) AI. 

The formation of HAS species as a mechanism of Si amelioration, involves the reaction of silicic acid 

with basic Al species from [AI(H20)50H]2+ to [AI(OH)4r. These are precursors which lead to the 

formation of amorphous solids such as protoimogolite, allophanes and crystalline, tubular solid 

imogolite, (HOhAlz03.SiOH (Birchall 1990, Birchall et al. 1996). The formation of solids is slow, 

but it is the early formation of sub-colloidal species which are believed to influence the bioavailability 

of AI. 100 J.lM Si has been shown to be required for the formation of stable HAS species which 
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mostly have a Si:AI ratio of 0.5. Exley & Birchall (1992) showed the formation of HAS species in 

solutions of low total Al concentration (0.27 mg rl) and formation increased with pH and higher Si 

concentrations (up to 500 11M). Both Baylis et al. (1994) and Birchall & Chappell (1988) believed the 

formation of HAS species began from pH 4.0 and upwards. However at these lower pH's the species 

were unstable hence liberating Al into solution. Farmer (1986) also showed soluble AI-Si complexes 

with typical AI/Si ratios of 2.2 to 3.5 in synthetic solutions at pH 3.5 to 4.5. The stability of HAS 

species with respect to competition from other ligands such as carboxylate or phosphate is only 

significant at pH 6.5 and above (Exley & Birchall 1992). 

In those studies of AlISi interaction described above (Section 6.1.4) it is unlikely that HAS formation 

is playing an important role in Si amelioration of Al toxicity since they were mainly carried out at pH 

4.5. However HAS formation could be important in the rhizosphere where a boundary layer of near 

neutral pH may exist. 

Lumsdon & Farmer (1995) recently cast doubt on the role of HAS species in ameliorating Al toxicity 

(Exley et al. 1997). They determined a solubility expression to describe the formation of a 

protoimogolite sol the precursors to which are similar, if not identical, to the HAS species described 

by Exley & Birchall (1992). This equilibrium expression precludes the presence of HAS species in 

acidic waters. Exley et al. (1997), however, provided further support for the HAS hypothesis by 

showing that Al when present as HAS species was not toxic to fish. They did recognise that at pH's 

lower than 5.2 the HAS species formed would not be sufficiently stable towards dissolution. 

These interactions of hydroxyl Al with silicic acid are unique. No such interactions occur between 

Si(OH)4 and Ca2+ or Mg2+ at less than pH 9.0 and it seems likely that formation of HAS species, and 

hence reduction in bioavailable AI, plays an important role in the amelioration of Al toxicity by Si. 

However it is also likely that HAS formation is not the only mechanism through which Si achieves 

such alleviation. 

6.1.6.2 Co-precipitation of AI and Si in plants 

Chemical analyses of phytoliths and microanalysis have shown AlISi deposition does occur in plants. 

Godde et al. (1988) found both Si and Al colocalized in the needles of Picea abies. Hodson & 

Wilkins (1991) similarly found colocalization of Al and Si but in the root cortical cell walls of Picea. 

Al was not detectable inside the endodermis. Si deposition increased with increasing Al 

concentration in treatments. Hodson & Sangster (1993) suggested deposits of AI/Si in the outer 

tangential walls of sorghum roots, were a mechanism for lowering the amount of Al penetrating 

further into the root cortex. The principal locations of Al in the root do not appear to change greatly 

in the presence of Si, but the amounts of Al deposited at these sites can increase dramatically. In 
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agreement with Hodson & Sangster (1993), Barcelo et at. (1993) believed the formation of 

aluminosilicate compounds in root cortex cell walls could inhibit uptake of Al into the protoplast. 

6.1.6.3 Cation-anion balance 

When large amounts of anionic Si (as silicates) participate in the cation-anion balance to add to an 

excess of anion uptake by plant roots, equivalent amounts of hydroxyl ions are expelled from roots, 

thereby increasing the rhizosphere pH, and hence decreasing uptake of Al and Fe (Wallace 1993). 

6.1.6.4 Effects in the cytoplasm, on enzyme activity, and indirect effects 

After entering the cell, aluminium becomes associated with nuclei and mitochondria as well as 

remaining in the cytosol. The majority of this Al is complexed, either with P-containing compounds 

or with proteins. Si cytoplasmic concentrations are expected to be much lower than Al (Hodson & 

Evans 1995). 

Hodson & Evans (1995) suggested that Si may ameliorate Al toxicity indirectly through effects on Ca 

uptake and transport. As described in Chapter 5, Al has frequently been shown to inhibit Ca uptake 

and transport, and is implicated in Ca homeostasis. The presence of Si along with Al in the media has 

been found to increase Ca in the root cortical cell walls by Hodson & Sangster (1993), and enhance 

Ca uptake and transport to the shoots (Hammond et at. 1995). 

The reports published to date on the AVSi interactions in higher plants tended to use young seedlings 

(generally younger than 10 days), short growth periods (usually a maximum of 20-21 days), different 

plant ages and development stages, different nutrient media, and plants with different initial Si states. 

Hammond et al. (1995), Hodson & Sangster (1993), and Li et al. (1989) used nutrient media with 

background solutions of 0.5M Ca(N03)2. Under these conditions experiments must be limited in time 

to prevent nutrient deficiency limiting growth, the interactions of AlISi with other nutrients cannot be 

addressed, and Ca itself has frequently been shown to ameliorate Al toxicity. Soluble Si exists as 

monosilicic acid over the pH range 2-9, however most studies (Barcelo et al. 1993, Baylis et at. 1994, 

Galvez et al. 1987, Hammond et at. 1995, Li et al. 1989) add Si as K or Na silicates which may also 

affect the interpretation of results. These factors may all contribute towards the inconsistency 

between reports. 
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6.2. Objectives 

• To determine whether or not silicic acid ameliorates AI-induced growth reduction in 
Anthoxanthum odoratum L. or Holcus lanatus L. (The reasons for the choice of study species 
were given in Chapter 2, Section 2.2.) 

• To assess any differences in amelioration between different races and relate these to their natural 

distribution. 

• To investigate if, at a single AI concentration, ameliorative effects increase with greater 
concentrations of Si. 

• To establish whether the concentration of Si required increases with increasing Al concentration. 

• To investigate whether or not silicic acid prevents AI toxicity by production of 
hydroxyaluminosilicates which are not in a biologically available form for plant uptake. 

• To investigate nutrient uptake by plants in the presence of Al with or without Si. 
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6.3 Methods 

Seeds of Anthoxanthum odoratum and Holcus lanatus were collected in June 1995 and August 1996 

from FM, SMM, KP, and KR (Chapter 2, Table 2.1). The seeds were stored in dry and dark 

conditions at room temperature until the start of the experiment. Seeds were germinated on acid­

washed sand on filter paper in May 1996 (A.odoratum) and August 1996 (H.lanatus) in the Stirling 

University growth rooms. The Petri dishes were kept under a photoperiod of 16 h light and 8 h dark 

with a PAR of 200 Ilmol m-2 
S-I. Temperature was 20°C during the day and 15°C during the night. 

Seeds germinated after seven days (Anthoxanthum) and 3-4 days (Holcus) and were watered with 

dilute culture solution (ten times dilution) for about seven days before being transferred into full 

strength culture solution. At this stage they were removed from Petri dishes and carefully threaded 

through thin glass tubes with deionised water. The glass tubes were suspended from the lids of 600-

ml beakers (Figure 6.1) in an initial culture solution with no added Al or Si and at pH 5.6 (Chapter 4, 

Section 4.3.1.1). 

The composition of the culture solutions was the same as that used in Chapter 4 (Tables 4.1 and 4.2). 

Stock solutions of lOO-strength of N~OH, Na2S04, NH4H2P04, KFeEDDHA, Ca(NOJhAH20, 

CaCIz.6H20, Mg(N03)2.6H20, H3B03, KH2P04, AI(N03h.9H20, and MES buffer, and 1000-strength 

of MnS04.4H20, ZnS04.7H20, CuS04.5H20 , and (NH4)6M07024.4H20 were made up and diluted 

appropriately. Beakers were covered in tinfoil to prevent algal growth and arranged in a randomised 

block design (Figure 6.1). Solutions were stirred daily and their pH adjusted where necessary to pH 

5.6 (initial solution) and pH 4.2 (treatment solutions) using 1M NaOH or 1M HCl. Culture solutions 

were changed twice per week. 

6.3.1 Experiment 1 

The effects of aluminium and silicic acid on the growth of Anthoxanthum odoratum originating from 

FM, 5MB, and KR were determined. Aluminium was added to the culture solutions in the form 

AI(N03)3.9H20 at the following concentrations: 1.3 mg rl (50 J..lM) and 2.7 mg rl (100 J..lM) AI. 

Silicic acid was added from a stock solution which was prepared by passing sodium silicate solution 

through a column packed with Amberjet 1200H (H+ form) to give nominal silicic acid concentrations 

([Si(OH)4]n) of 500 and 1000 J..lM in the nutrient solutions. Al and Si(OH)4 were added in the 

following combinations: 0 mg rl Al + 0 J..LM Si(OH)4 (control), 1.3 mg r' AI, 2.7 mg rl AI, 1.3 mg rl 

Al + 500 J..lM Si(OH)4, 1.3 mg rl Al + 1000 J.1M Si(OH)4, 2.7 mg 1'1 Al + 500 J..lM Si(OH)4, 2.7 mg 1'1 

Al + 1000 J..lM Si(OHk The following abbreviations are used corresponding to the treatments: 

control, 1.3AI, 2.7AI, 1.3AI 500Si, 1.3AI 1000Si, 2.7AI 500Si, and 2.7AI 1000Si. Culture solutions 
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were kept at pH 4.2. There were 10 replicate seedlings per treatment per site. Solutions were 

changed every three days. 

The number of roots and their lengths, and the number of blades and tillers and their lengths, were 

recorded before seedlings were put into treatments, on the day treatments began and thereafter at 

seven day intervals until harvesting. 

Seedlings were harvested after 21 days growth in +AIISi treatments (1 Jun-22 Jun 1996). Roots and 

shoots were separated, rinsed in deionised water, and dried in an oven at 60°C for 48 h and the dry 

weights recorded. Rootshoot ratios were determined. 

Between 100 and 300 mg of oven-dried leaves and roots were digested in a sulphuric acid-hydrogen 

peroxide mixture (Allen 1989) in a block digester at 330°C. Digested plant material was filtered 

through No. 44 Whatman filter paper and made up to 100 m!. Concentrations of Ca and Mg were 

measured using a Varian AA-575 atomic absorption spectrophotometer with a nitrous oxide-acetylene 

flame. An air-acetylene flame was used to determine K (flame emission) and Fe concentrations. 

Total Al ([Alh) was measured with a Pye Unicam SP9 Atomic Absorption Spectrophotometer fitted 

with a Unicam GF90 furnace and FS90 furnace autosampler. Unicam 919 series atomic absorption 

software was used. Total Si was not analysed because of the unavailability of the equipment. P was 

measured on a Tecator FIAstar 5010 flow injection auto-analyser using the stannous chloride­

ammonium molybdate method. 

6.3.2 Experiment 2 

The effects of aluminium and silicic acid on the growth of Holcus lanatus originating from FM, 5MB, 

SMM, KP and KR were determined. Aluminium was added to the culture solutions in the form 

AI(N03)3.9H20 and at the following concentrations: 25 mg r1 and 35 mg r1 AI. Silicic acid was 

prepared in the same way as Experiment 1 to give nominal silicic acid concentrations ([Si(OH)4]n) of 

1500 and 2500 IlM in the nutrient solutions. Al and Si(OH)4 were added in the following 

combinations: 0 mg r1 Al + 0 IlM Si(OH)4 (contro!), 25 mg r1 AI, 35 mg r1 AI, 25 mg r1 Al + 1500 

IlM Si(OH)4, 25 mg r1 Al + 2500 IlM Si(OH)4, 35 mg r1 Al + 1500 IlM Si(OH)4, 35 mg r1 Al + 

2500 IlM Si(OH)4, 1500 f.lM Si(OH)4, and 2500 f.lM Si(OH)4. The following abbreviations are used 

corresponding to the treatments: control, 25AI, 35AI, 25Al 1500Si, 25AI 2500Si, 35AI 1500Si, 35AI 

2500Si, 1500Si, and 2500Si. Culture solutions were kept at pH 4.2. There were 5 replicate seedlings 

per treatment per site. Solutions were changed every three days. 

122 



Subsamples of 5 rnl from each of six beakers, from each of the seven treatments, were withdrawn 

from fresh culture solution, and from solutions one, two, three, and four days old during the first two 

weeks of experimental treatments. Solutions were analysed to monitor nominal element 

concentrations using the same analytical techniques as those in Chapter 3. Thereafter solutions were 

changed after the first 5-ml extractions on day three. Separate subsamples, collected in the same 

manner, were filtered through a series of pore sizes: No.1 Whatman, 5 IlM, and 0.2 IlM. Viskin 

tubing (Medicell) was used as a dialysis membrane. This had a pore size of 2.4 nm and Molecular 

Weight Cut Off of 12-14000 which should only allow very small species of Al to pass from the 

nutrient solutions outside the tubing into the ultrapure water inside. Tubing lengths of 10 cm were cut 

and heated (not greater than 50°C) in a dilute EDTA solution (0.01 M) for 1 h. Tubing was then 

washed in ultrapure water and immersed in 5% v/v HN03 which was agitated using magnetic stirrers 

for at least 24 h. The tubing was once more thoroughly washed and immersed in ultrapure water for a 

further 12 h. This step was repeated until the water surrounding the tubing had a conductivity <2 JlS 

cm-1• 2.5 rnl of ultrapure water was added to each dialysis bag. The tubing was secured using clips 

and immersed in nutrient solution (extracted subsamples) for 24 h. Al and Si permeating the filter 

papers and dialysis tubing were analysed using a Pye Unicam SP9 Atomic Absorption 

Spectrophotometer fitted with a Unicam GF90 furnace and FS90 furnace autosampler, and expressed 

as the mole fraction of the total AIISi concentration in the nutrient solution. 

The concentrations of ([Ae+]) and activities of ({Ae+}) free A13+ in the nutrient solutions (with or 

without Si) were calculated by GEOCHEM (Sposito & Mattigold 1980). The concentration of 

monomeric Al species in the nutrient solutions, [AI]"",.", was also determined by the 60 s Pyrocatechol 

violet method as described by Kerven et al. (1989). 

Measurements of root and shoot growth were the same as those taken in Experiment 1 but at four 

week intervals. At harvest, prior to drying, the lateral root growth of seedlings was observed under a 

binocular microscope. The number and length of lateral roots were estimated from 10 cm lengths of 

primary root. Leaf area was determined, from scanned images of photocopied leaves, using NIH 

Image 5h. 

Roots and shoots were harvested in the same manner as Experiment 1 after 16 weeks growth (14 Sep 

1996-4 Jan 1997), and their dry weights recorded. The proportion of dead foliage was also 

determined. Digestion of plant material and analyses were the same as in Experiment 1. However 

total Si was also determined using a Pye Unicam SP9 AAS fitted with a Unicam GF90 furnace and 

FS90 furnace autosampler. 
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6.3.3 Experiment 3 

Alongside experiment 2, the effects of 35 mg rl 
AI and 35 mg rl AI with 2500 ~M Si in solution at pH 

5.6 on the growth of Holcus lanatus originating from FM, 5MB, KP, and KR were determined. These 

corresponded to the treatments 35AIpID.6 and 35AI 2500SipH.1.6. The buffer MES (1 000 ~M) was used to 

maintain solution pH. 

Subsamples of 5 ml were also withdrawn from these treatments and analysed in the same manner as 

Experiment 2. Measurements of roots and shoots were recorded as above, and lateral root g rowth and 

leaf area measured prior to harvesting and foliar analysis. 

Figure 6.1. Seedlings of Holcus lanatus were threaded through glass tubes and 
suspended from the lids of beakers (a). Beakers were covered in tinfoil to prevent algal 
growth and arranged in a randomised block design (b). 
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6.4 Results 

6.4.1 AIISi interactions in Anthoxanthum odoratum (Experiment 1) 

6.4.1.1 Root elongation and number 

Al had a significant effect on total root lengths but not root numbers (Table 6.1). Root growth was 

inhibited in 5MB seedlings but no amelioration was achieved with the addition of silicic acid (Figure 

6.2). In FM and KR, 1.3 and 2.7 Al (FM) and 1.3 Al (KR), improved root growth and increased root 

numbers greater than that of control plants (0 mg Al r1). The addition of 500 and 1000 I-IM Si 

increased both root length and numbers still further (Figure 6.2). Root numbers and lengths were not 

significantly different between sites. However the AI*Si interaction factor was significant (Table 

6.1). 

6.4.1.2 Shoot growth and blade number 

Neither total shoot length, tiller nor blade number were significantly adversely affected by Al (Table 

6.1). Similar to root elongation, Al increased shoot growth and blade number in FM and KR (Figure 

6.3). The addition of Si enhanced shoot growth in FM seedlings. There was a reduction in the total 

shoot length of 5MB seedlings in the presence of Al (no reduction in blade number) but the overall 

effect of Al was not significant (Table 6.1). The addition of 1000 J-IM Si to solutions of 1.3 mg Al r1 

increased shoot lengths to those of control 5MB plants (Figure 6.3). 

6.4.1.3 Plant dry weights 

Total, shoot, and root dry weights were significantly greater in 5MB seedlings (Table 6.1 and Figure 

6.4). Dry weights were significantly lower in Al treated plants compared with control plants in 5MB 

Anthoxanthum. Addition of Si increased total and shoot dry weights but not significantly. There were 

no significant differences between dry weights of Al and AI+Si treated plants from FM or KR (Figure 

6.4) and therefore no overall significant effect of either Al or Si (Table 6.1). Dry weights of shoots 

and roots of Anthoxanthum from FM and KR grown in Al and AI+Si solutions were up to twice those 

of control plants. Dry weights increased further with greater Si addition in FM seedlings. There were 

no significant differences between rootshoot ratios between treatments in any of the three sites 

(Figure 6.4 and Table 6.1). 

6.4.1.4 Plant ionic composition 

Al significantly reduced uptake of K, Mg, and Fe but not in all three races (Table 6.1 and Table 6.2). 

Transport of P and Ca to shoots was also significantly reduced in the presence of AI. The addition of 

Si increased shoot P concentrations of 5MB races to concentrations of control plants. There were 

significant differences between sites in Al uptake by roots and transport to shoots (Table 6.1). 5MB 

plants absorbed the most Al and KR races the least. AI uptake increased with an increase in solution 
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Al concentration, particularly in 5MB races. Al was transported to the shoots of both FM and 5MB 

races but was not detected in the shoots of KR Anthoxanthum. Si reduced translocation of Al to the 

shoots in both FM and 5MB races. 

6.4.2 AIISi interactions in Holcus lanatus at pH 4.2 

6.4.2.1 Root elongation and number 

Figure 6.5 shows the increase in total root lengths at four-week intervals. Between 0 and 4 weeks, 

before treatments started, there was little difference in root growth between plants. Root elongation 

was significantly affected by Al and Si between 4 and 12 weeks, but not significantly different 

between sites (Table 6.3). Al reduced root elongation, the reduction increasing with Al concentration. 

Total root lengths at harvest were between 30-50 % of control plants (Table 6.4). The addition of 

1500 and 2500 J.lM Si(OH)4 to nutrient solutions with Al improved root elongation. Total root lengths 

were significantly greater in all AI+Si solutions compared with AI-Si solutions. In general, the greater 

the concentration of Si the greater the amelioration of AI-inhibited root growth. This was especially 

pronounced in Holcus originating from KR. Relative total root lengths in AI+Si treated plants were 

generally> 80%. The AI*Si interaction factor was significant at p<O.OOI (Table 6.3). 

Al also caused a significant reduction in the number of roots in Holcus seedlings (Figure 6.6 and 

Table 6.3). Total root numbers were significantly different between sites (Table 6.3). Relative root 

numbers were 44.4 % (25 AI) and 51.7 % (35 AI) in KR seedlings which were most affected. 

Relative total root numbers were never <60 % in FM seedlings (Table 6.4). The addition of Si 

significantly increased root numbers. This was least apparent in KR seedlings where only the highest 

Si concentration, 2500 J.lM, in combination with the lowest Al concentration of 25 mg rl, prevented a 

reduction in root number. 

6.4.2.2 Lateral root growth 

Figure 6.7 shows the mean numbers of lateral roots per cm primary root, and the mean length of 

laterals (rum). Laterals were significantly reduced in length and number in the presence of Al (Table 

6.3). They became stunted and swollen (Figure 6.8). With the addition of Si(OH)4Iength of laterals 

increased up to four-fold and numbers were significantly greater compared with AI-treated roots. 

This was least apparent in roots treated with 35AI and 1500Si. 
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Table 6.1. Statistical analyses for root and shoot growth measurements, dry weights, and plant ionic 
compositions in Anthoxanthum odoratum originating from Flanders Moss (FM), Sheriffmuir blanket 
peat (SMB), and Kinloch Rannoch (KR), and grown in 0 AI, 1.3 AI, 2.7 AI, 1.3 AI 500 Si, 1.3 AI 
1000 Si, 2.7 Al 500 Si, and 2.7 AI 1000 Si at pH 4.2. *,p<0.05; **, p<O.OI; ***, p<O.OOI; n.s, not 
si~nificant. De~rees offreedom are: site 2, AI 2, Si 2, and AI*Si interaction 4. 

Measurement Site AI Si AI*Si 
interaction 

F ~ F ~ F ~ F ~ 
Root growth 

Increase in total root length 0.82 n.s 3.80 * 1.38 n.s 3.34 * 
Increase in number of roots 0.55 n.s 2.52 n.s 2.31 n.s 3.70 * 

Tops growth 
Increase in total shoot length 2.37 n.s 1.69 n.s 1.58 n.s 1.18 n.s 
Increase in total tiller number 2.26 n.s 0.67 n.s 1.57 n.s 1.05 n.s 
Increase in total blade number 2.36 n.s 0.56 n.s 1.05 n.s 0.17 n.s 

Dry weights 
Shoot 8.52 *** 0.58 n.s 0.74 n.s 1.27 n.s 

Root 10.87 *** 0.44 n.s 0.27 n.s 0.45 n.s 

Total 9.49 *** 0.54 n.s 0.62 n.s 1.02 n.s 

Root:shoot ratio 2.19 n.s 4.87 ** 0.43 n.s 0.77 n.s 

Ionic composition 
Shoot p 1.73 n.s 31.26 *** 8.41 *** 3.78 ** 

K 2.03 n.s 26.13 n.s 0.35 n.s 1.26 n.s 
Ca 18.59 *** 9.56 *** 0.88 n.s 2.01 n.s 
Mg 13.56 n.s 18.71 n.s 0.82 n.s 3.86 ** 
AI 126.8 *** 215.8 *** 4.91 ** 15.53 *** 
Fe 35.62 *** 3.78 * 3.96 * 5.87 *** 

Root P 0.70 n.s 14.56 *** 0.97 n.s 1.07 n.s 
K 3.17 * 24.05 *** 2.64 n.s 1.97 n.s 
Ca 15.55 *** 2.13 n.s 0.91 n.s 2.43 n.s 
Mg 6.40 ** 19.82 *** 2.09 n.s 0.99 n.s 
AI 16.17 *** 86.57 *** 0.40 n.s 2.49 * 
Fe 14.83 *** 7.91 *** 7.10 *** 6.78 *** 
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Table 6.2. Mean ionic composition (mg gol, ± s.e) of shoots and roots of Anthoxanthum odoratum 
originating from Flanders Moss (FM), Sheriffmuir blanket peat (SMB), and Sheriffmuir mineral soil 
(SMM) grown in combinations of AI and Si. t, below detection level (4.2 flg mrl) . 

Treatment P K Ca Mg AI Fe 
mg gol --------------

FM 
Control 

I.3AI 

2.7AI 

Shoot Root hoot Root Shoot Root Shoot Root Shoot Root Shoot Root 

8.96 12.10 29.99 39.55 5.91 9.70 L.38 1.15 t t 0.36 7.25 
±0.73 ±0.97 ±0.58 ±2.45 
8.39 13.49 43.08 42.00 

±0.26 ±0.79 ±2.45 ±6.08 
7.97 10.06 42.83 31.63 

±2.09 ± 1.63 ±0.05 ±0.18 ±0.08 
2.41 6.68 1.15 1.13 3.45 9.76 0.52 

±0.43 ±0.44 ±0.04 ±0.23 ±0.96 ±2.26 ±O.O I 
3.07 11 .38 2.05 0.56 20.21 10.38 1.53 

±2.09 
6.86 

±0.79 
1.43 

±0.86 ± 1.25 ±5.86 ±2.67 ±0.74 ±2.74 ±0.64 ±0.25 ±3.81 ±0.91 ±0.16 ±0.08 
1.3AI + 500Si 8.78 12.29 48.28 38.40 2.98 6.74 1.23 0.84 4.24 9.32 0.37 1.28 

I.3AI + 1000Si 

±0.43 ±1.l9 ±1.99 ±3.09 ±0.41 
5.83 9.94 38.64 41.78 3.81 

± 1.68 ±O. 10 ±0.07 ±0.66 ±2.62 ±O. IO ±0.32 
6.99 0.77 1.16 2.89 13.50 0.39 3.46 

±0.23 ±0.62 ± 1.69 ±3.70 ± 1.36 ±0.66 ±O.IO ±0.07 ±0.69 ±0.89 ±0.08 ± 1.33 
2.7 Al + 500Si 4.56 5.74 39.98 25.40 2.00 5.87 0.77 0.66 2.33 4.31 0.33 0.41 

±0.26 ±0.68 ±3.89 ±3.07 ±0.13 ±0.89 ±0.08 ±0.06 ±0.54 ±1.58 ±0.06 ±0.07 
2.7AI + 1000Si 7.35 9.89 36.52 28.25 1.97 6.32 1.10 1.28 2.74 7.62 0.28 0.43 

±0.69 ± 1.76 ±2.95 ±5.68 ±0.28 ± 1.20 ±0.09 ±0.18 ±0.94 ± 1.22 ±O.O I ±O.I I 

5MB 
Control 

I .3AI 

2.7AI 

I.3AI + 500Si 

1.3AI + 1000Si 

2.7AI + 500Si 

2.7AI + I000Si 

KR 
Control 

1.3AI 

2.7AI 

1.3AI + 500Si 

l.3AI + 1000Si 

2.7AI + 500Si 

2.7AI + 1000Si 

8.11 12.65 40.53 49.63 2.13 4.29 1.08 1.82 t t 0.39 4.6 1 
± 1.88 ±2.72 ±0.04 ±0.30 ±0.13 ±0.26 ±0.01 ±0.48 
38.96 42.48 2.46 5.69 0.94 1.14 1.97 7.78 0.25 3.62 

±0.42 ±O.47 
7.82 11.90 

±0.60 ±0.99 
4.92 17.25 

±3.18 ±4.19 ±0.20 ±0.41 ±O.II ±0.35 ±0.12 ± 1.50 ±0.02 ± 1.07 
31.20 35.22 2.90 8.28 0.87 1.41 5.75 20.32 0.29 6.44 

±0.65 ±5.78 ±3.02 ±5.46 ±0.40 ±0.92 ±O. II ±0.59 ± 1.58 ±3.39 
8.26 13.86 38.05 43.88 2.38 7.47 0.99 1.85 2.81 15.26 

±0.33 ± 1.42 ±2.36 ±3.43 ±0.17 ± 1.46 ±0.07 ±0.12 ±0.74 ±3.68 
6.08 8.73 39.34 42.01 2.61 5.33 0.69 0.73 l.07 7.04 

±0.50 ±O.49 ±4.53 ± 1.97 ±O .. 14 ±0.63 ±0.09 ±0.13 ±0.13 ± 1.03 
6.90 7.32 47.68 28 .07 3.33 5.66 0.42 0.80 2.16 11.94 

±0.01 
0.29 

±0.01 
0.27 

±0.02 
0.42 

±0.06 
0.62 

±0.22 

±2.4 1 
1.27 

±0.07 
4.65 

±0.30 
2.98 

±0.44 ±0.99 ± 1.89 ±3.43 ±0.97 ± 1.12 ±0.18 ±0.15 ±0.60 ± 1.16 
8.47 10.09 40.51 31.88 2.38 8.24 1.02 1.23 2.87 12.88 

±0.56 ±0.53 ±4.88 ±2.67 ±0.21 ±2.64 ±0. 19 ±0.13 ±0.44 ±2.54 

±0.79 
6.21 

± 1.83 

9.21 12.30 41.73 44.52 2.51 5.48 1.24 1.58 
±0.92 ±1.63 ±2.72 ±5.68 ±0.27 ±0.63 ±0.05 ±0.20 
7.88 10.82 33.58 35.10 1.63 5.31 0.76 0.98 

±0.62 ±0.72 ±4.52 ±3.66 ±O.II 
6.93 10.31 26.83 22.94 3.22 

±0.98 ±0.04 ±0.14 
4.84 0.69 1.17 

±I.l8 
7.79 

±0.34 
4.99 
±0.38 
5.62 

±0.32 
7.80 

+0.58 

±2.62 ±5.14 ±4.61 
9.96 29.65 29.54 

±0.60 ±0.79 ±O.IO ±0.26 
2.16 3.38 0.61 0.76 

±1.58 ±2.14 ±5.04 ±0.31 
5.16 33.63 22.76 1.87 

±0.75 ±0.05 ±O.I I 
4.30 0.60 0.49 

±0.88 ±3.26 ±4.09 ±0. 15 ±0.91 ±0.07 ±0. 14 
8.65 31.25 35.44 2.0 I 3.66 0.46 0.72 

±0.37 ± 1.91 ±4.15 
11.87 38.95 44.63 

±0.23 ±0.18 ±0.08 ±O.IO 
1.94 5.17 0.87 1.11 

+0.27 ±0.88 ±4.16 ±0.28 ±0.62 ±0.23 +0.11 

t 

t 

t 

1.30 
±0.15 
1.50 

±0.15 
t 

t 

t 0.48 7.16 
±0.04 ±0.89 

7.44 0.50 14.46 
±1.44 ±0.05 ±2.63 
5.34 0.61 4.11 

±0.95 ±0.02 ±0.94 
3.81 0.50 2.66 

± LlI ±0.03 ±0.64 
7.46 0.42 6.41 

± 1.15 ±0.02 ±0.64 
6.74 0.48 5.38 

±0.68 ±0.01 ±1.47 
6.05 0.44 6.80 

+0.66 +0.02 + 1.67 

6 .4 .2.3 Shoot growth 

Al s ignificantly reduced total hoot lengths relative to control plant but the overall effect of AI, 

including AI+Si treatment, was not significant (Figure 6 .9 and Table 6.3). The shoots became 

chlorotic and died. Figures 6.10(a) and (b) contra t Holcus grown in control and Al solutions. 
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Figure 6.5. Increase in m~an total root length (± s.e) in ~olcu~ lan~tus originating from (a) Flander 
Moss (FM), (b) Sheriffmulr blanket peat (SMB), (c) ShenffmUlr mmeral soil (SMM), (d) Kippenrait 
Glen (KP), and (e) Kinloch Rannach (KR) grown in control (+ ), 25AI (. ), 35AI (A ), 25AI 1500 i 
(+), 25AI 2500Si (e ), 3~AI 1500Si (0 ), 35AI 2500Si (x) nutrient solutions at pH 4.2. ------, Al 
treatments. , AI+SI treatments. ,controls. Treatments began after 4 weeks and lasted 

8 weeks. 
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Figure 6.6. Increase in mean . total . number of roots (± s.e) in Hol~us l~llatus originating from (a) 
Flanders Moss (PM), (b) ShenffmUir blanket peat (SMB), (c) Shenffmutr mineral oil (SMM), Cd) 
Kippenrait Glen (KP), and (e). Kinloch Rannoch. (KR) grown in c~ntrol ( . ), 25Al (. ), 35Al (A ), 
25Al 1500Si C+ ), 25AI 2500St ce), 35AI 1500St CO), 35Al 2500S t (x) nutrient solutions at pH 4.2. 

, Al treatments. , AI+Si treatments . - - - - ,controls. Treatments began after 4 weeks 

and lasted 8 weeks. 
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Figure 6.8. Lateral root growth in Holcus lanatus treated with (a) 35 mg AI r1 at pH 4.2, (b) 35 mg 
r1 AI + 1500 J.lM Si at pH 4.2, (c) 35 mg r1 AI + 2500 J.lM Si at pH 4.2, and (d) 35 mg r1 Al at pH 
5.6. Arrows indicate stunted and thickened laterals in roots of plants grown in Al at pH 4.2. 
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Figure 6.9. Increase .in m~an total shoot length (± .e) in ,!oLcu~ la/~atus ori~inating from (a) Flanders 
Moss (FM), (b) ShenffmUir blanket peat (SMB), (~) ShenffmUir minerai sOIl (SMM), (d) Kippenrait 
Glen (KP), and (e) Kinloch Rannoch CKR) grown In control C+ ), 25AI C- ), 35Al C~), 25Al 1500Si 
(+ ) 25AI 2500Si ce), 35Al 1500Si (0 ), 35AI 2500Si (x) nutrient solutions at pH 4.2. ------, Al 
tre~tments. _, AI+Si treatments. - - - - ,controls. Treatments began after 4 weeks and lasted 8 

weeks. 
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(a) __ CONTrol. c.::. __ _ 

Figure 6.10. Holcus lanatus grown. in (a~ control,. (b) 35 mg AI. r\ (c) 25 mg AI r1 + 2500 ~M Si, 
(d) 1500 ~M Si, and (e) 2500 ~M Sl nutnent soluttons. AIl nutnent solutions were kept at pH 4.2. 
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Although greater, total shoot lengths in plants grown in Al with the lower Si concentration (1500 JIM) 

were not significantly different from shoot lengths in Al treatments alone. However the increased 

shoot lengths in plants of Al + 2500 11M Si treatments were significantly greater than in Al alone 

(Figure 6.9). Relative total shoot lengths were as high as 108 % (25 Al 2500 Si, SMM) (Table 6.4). 

The AI*Si interaction factor was significant at the p<O.OOl level. Total shoot lengths were 

significantly different among sites (Table 6.3). Shoot length increased with Si to a greater extent in 

SMM and FM seedlings. The improvement in shoot growth with the addition of 2500 11M Si to AI­

containing nutrient solutions, relative to that in 25 AI, is shown in Figures 6.10 (b) and (c). 

Al also significantly reduced tiller number (Figure 6.11 and Table 6.3). Tiller production was not 

affected by Al in SMM seedlings until after eight weeks growth. However the addition of Si, whether 

1500 or 2500 JIM, did not significantly improve the vegetative growth of seedlings (Table 6.3). Tiller 

number was only increased to that of the controls in KR seedlings grown in 35Al 2500Si and 25Al 

1500Si solutions. Relative tiller numbers (relative to controls, 100 %) in these plants were 76.7 % 

and 82.2 %. 

Al reduced blade numbers but not always significantly (Figure 6.12 and Table 6.3). Si significantly 

increased blade numbers to control levels in FM (35A12500Si), 5MB (25A11500Si and 25AI 

2500Si), and SMM (25AI2500Si, 35AI 1500Si, and 35AI2500Si). 
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Table 6.3. Statistical analyses for root and shoot growth masurements, dry weights, and plant ionic 
compositions in Holcus lanatus originating from Flanders Moss (FM), Sheriffmuir blanket peat 
(SMB), Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), and Kinloch Rannach (KR), and 
grown in OAl, 25Al, 35AI, 25A11500Si, 25Al2500Si, 35A11500Si, 35AI 2500Si, 1500Si, and 2500Si 
at pH 4.2. *,p<0.05; **, p<O.OI; ***, p<O.OOI; n.s, not significant. Degrees of freedom are: site 4, 
Al 2, Si 2, and AI*Si interaction 4. 

Measurement Site AI Si AI*Si 
interaction 

F e F e F e F e 
Root growth 

Increase in total root length 0.53 n.s 4.85 ** 6.85 *** 61.04 *** 
Increase in number of roots 3.61 ** 12.38 *** 9.07 *** 33.23 *** 
Length lateral roots 6.33 ** 1.28 n.s 3.57 * 

Number lateral roots 11.49 *** 23.76 *** 8.62 *** 
Tops growth 

Increase in total shoot length 5.91 *** 0.11 n.s 17.06 *** 86.61 *** 
Increase in total tiller number 17.93 *** 7.74 *** 2.54 n.s 22.25 *** 
Increase in total blade number 0.12 n.s 0.28 n.s 4.54 * 19.61 *** 
Leaf Area (PM only) 9.34 *** 20.35 *** 1.51 n.s 

Dry weights 
Shoot 0.25 n.s 0.92 n.s 11.07 *** 13.36 *** 

Root 1.63 n.s 7.94 *** 3.09 * 1.25 n.s 

Total 0.38 n.s 1.73 n.s 9.80 *** 11.41 *** 

Root:shoot ratio 1.31 n.s to.35 *** to.76 *** to.79 *** 

Dead shoot 0.80 n.s 27.84 *** 6.35 ** 5.27 ** 
Ionic composition 

Shoot p 2.10 n.s 276.3 *** 0.40 n.s 11.30 *** 
K 9.52 *** 20.97 *** 8.37 *** 12.58 *** 
Ca 1.91 n.s 20.34 *** 13.29 *** 8.93 *** 
Mg 3.63 * 181.2 *** 2.30 n.s 11.12 *** 
Al 23.28 *** to3.7 *** to.71 *** 8.34 *** 
Fe 4.59 ** 3.13 * 9.89 *** 6.57 *** 

Root P 2.83 * 3.82 * 49.65 *** 16.51 *** 
K 14.11 *** 12.98 *** 39.38 *** 8.88 *** 

Ca 5.35 *** 3.61 * 0.94 n.s 2.15 n.s 

Mg 11.08 *** 169.0 *** 5.21 ** 6.51 *** 
Al 14.15 *** 76.00 *** 1.44 n.s 10.86 * 
Fe 13.05 *** 96.82 *** 1.71 n.s 3.38 * 
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Figure 6.7. Mean length (mm) (0) and number (per cm primary root) (-) of lateral roots (± s.e) of 
Holcus lanatus grown in nutrient solutions containing combinations of Al and Si(OHk (a) 
Nutrient solutions were adjusted to pH 4.2 (experiment 2), and (b) at pH 4.2 or pH 5.6 (experiment 
3). Solutions adjusted to pH 5.6 are indicated by *. 
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Table 6.4. The mean relative total length of roots (TLR), total number of roots (TNR), total length of 
shoots (TSL), total number of blades (TNB), and total number of tillers (TNT) in Holcus ianatus 
treated with combinations of Al and Si. All treatments were adjusted to pH 4.2. Seedlings originated 
from (a) Flanders Moss (FM), (b) Sheriffmuir blanket peat (SMB), (c) Sheriffmuir mineral soil 
(SMM), (d) Kippenrait Glen (KP), and (e) Kinloch Rannoch (KR). Values are percentages relative to 

control plants (100 %). n.d, no data. 

Relative growth Treatment 

(%) Control 25 AI 35 AI 25/1500 25/2500 35/1500 35/2500 150() 250() 

(a) 
66.3 TRL 100 54.6 39.4 81.5 72.8 72.2 105 64.7 

TNR 100 62.7 62.1 75.4 82.1 90.6 83.5 83.1 6l.l 

TSL 100 38.1 32.8 47.9 84.6 75.7 92.8 73.4 30.9 

TNB 100 36.8 35.1 52.0 79.1 74.5 106 36.1 39.4 

TNT 100 4l.l 40.2 27.0 36.8 41.2 51.0 24.5 24.5 

(b) 
98.0 TRL 100 43.4 38.4 81.1 79.7 83.0 103 39.4 

TNR 100 59.1 45.7 112 117 69.6 69.6 101 44.8 

TSL 100 41.9 24.7 64.6 92.1 60.8 52.9 61.2 30.3 

TNB 100 46.6 35.6 91.1 104 72.0 54.6 71.6 40.7 

TNT 100 35.0 28.2 53.9 57.3 45.2 29.6 45.6 34.0 

(c) 
TRL 100 39.5 46.6 n.d 99.0 59.5 79.1 n.d 38.2 

TNR 100 64.3 47.2 n.d 81.9 117 96.0 n.d 61.9 

TSL 100 34.4 31.6 n.d 108 76.1 92.9 n.d 60.5 

TNB 100 38.5 35.9 n.d 116 96.6 81.3 n.d 96.7 

TNT 100 28.5 30.6 n.d 73.6 60.3 61.1 n.d 42.8 

(d) 
41.6 37.5 84.1 81.7 TRL 100 73.1 88.7 82.1 46.7 

TNR 100 48.4 46.0 110 112 66.8 93.9 78.2 74.8 

TSL 100 28.6 26.1 54.9 80.4 57.7 74.8 50.1 49.0 

TNB 100 52.6 39.4 57.5 112 75.6 78.2 36.8 57.5 

TNT 100 37.5 22.5 82.2 46.1 28.3 76.7 55.8 86.8 

(e) 
38.5 33.4 58.3 86.4 55.3 TRL 100 85.1 84.4 27.4 

TNR 100 51.7 44.4 70.4 108 49.5 61.9 109 37.2 

TSL 100 41.4 30.7 42.7 90.3 51.9 90.4 84.8 44.3 

TNB 100 49.5 31.1 50.8 85.0 51.2 77.6 50.2 33.9 

TNT 100 38.3 20.0 22.3 32.3 19.7 60.7 38.3 35.8 
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Figure 6.11 . Increase in mea~ total. number of tillers (± s.e) in Ho~cus L~l!atus originating from (a) 
Flanders Moss (PM), (b) ShenffmUlr blanket peat (SMB), (c) ShenffmUlr mjneral so il (SMM), (d) 
Kippenrait Glen (KP), and (e~ Kinloch Rannoc~ (KR) grown in c~ntro l C. ), 25AI C. ), 35AI CA.), 
25AI 1500Si (+), 25AI 2500S1 (e ), 35AI 1500S1 (0 ), 35AI 2500S1 (x) nutrient solutions at pH 4.2. 
________ , Al treatments . __ , AI+Si treatments. - - - - , control . Treatment began after 4 week and 

lasted 8 week . 
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Figure 6.12. Increase in mean. total, number of blades (± s.e) in Ho~cus lanatus originating from (a) 
Flanders Moss (FM), (b) ShenffmUJr blanket peat (SMB), (c) Shenffmuir mineral soi l (SMM), (d) 
Kippenrait Glen (KP), an~ Ce) Kinloch Ranno~h (KR) grown in co~trol (.), .25AI (-), 35AI (A ), 25AI 
1500Si (+), 25AI 2500S1 ce), 3.5AI 1500S1 CO ), 35AI 2500S1 (x) nutrIent olutions at pH 4.2. 
______ Al treatments. __ , AI+SI treatments. - - - - ,controls. Treatments began after 4 weeks and , 
lasted 8 weeks. 
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6.4.2.4 Leaf area 

Figure 6.13 (a) shows the mean leaf area of blades from Holcus originating from FM. Al ignificantly 

reduced leaf area (Table 6.3). Leaf area was reduced from about 8 cm2 in control to 2-4 cm2 in Al 

treated pl ants. The addition of Si increased leaf area. The leaf area of Holcus grown in solutions with 

Si alone was also significantly greater than in control s. 
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Figure 6.13. Mean leaf area (± .e) of Holcus lanatus originating from Flanders Moss 
(PM) grown in nutrient solutions containing combinations of Al and Si(OHk Nutrient 
solutions were held at pH 4.2 in experiment 1 (a), and at pH 4.2 (D) or pH 5.6 (.) in 

experiment 3 (b) . 

6.4.2.5 Plant dry weights 

Total and shoot dry weight were lower in Al treated seedlings (Figure 6.14) . However the overall 

effect of Alan total, shoot, and root dry weights was not ignificant (Table 6.3) . Addition of Si 

generally increased total, shoot, and root dry weights but dry we ights did not increa e with an increa e 

in Si concentration. There were significant differences in root:shoot ratios (Table 6.3) . A mall but 

consistent increase in ratio in Holcus treated with either Al or AI+Si was evident (Figure 6.14). The 

hi ghes t ratios were in plants grown in 25AI 2500Si . 
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Figure 6.14. Mean total .(~ ), ~hoot p), and root ) dry weights (± . ~), and root:shoot ratios (_ , ± 
s.e) of Holcus lanatus ~ngtnatIng from ~a) Fla~der Moss (FM), (b) Sh.enffmuir bl anket peat (SMB), (c) 
Sheriffmuir mineral sot! (SMM), (d) Klppenralt Glen (KP), and (e) KInloch Rannoch (KR). eedlings 
were grown in (1) control, (2).25 AI, (3) 35 AI, .(4). 25AI 1500Si, (5) 25AI 2500Si, (6) 35AI 1500S i, and 
(7) 35AI 2500Si nutrient solutIOns. The letter C IndIcates control plants. 
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Total dry weights and shoot dry weights were not statistically different after Al treatment. However 

the proportion of shoot dry weight consisting of dead matter at the time of harvest was significantly 

different (Figure 6.15 and Table 6.3). A greater proportion of the shoots of plants grown in +AI 

solutions was dead but the addition of Si significantly reduced this (Table 6.3). 

6.4.2.6 Plant ionic composition 

Al and Si significantly affected the uptake by plant roots and subsequent translocation of nutrients to 

shoots (Tables 6.5 a & b and Table 6.3). AI increased root uptake of P (especially in FM and 5MB), 

and K (especially at 35AI in 5MB and KR). In contrast, AI generally decreased uptake of Ca, Mg, 

and Fe. Root Mg and Fe concentrations were up to five-fold less than controls. The presence of Al 

furthermore, reduced translocation of all nutrients to the shoots. Shoot Fe and Mg concentrations 

were up to ten-fold less than controls. 

The addition of Si to the growth medium restored P, K, and ea concentrations to those of controls. 

Furthermore Si increased root concentrations of Mg and Fe but not to control concentrations. 

Translocation of P, Ca, and Mg to shoots was also increased by Si but not to control concentrations. 

K and Fe shoot concentrations were increased by Si to those of controls. 

Uptake of Al by roots and translocation to shoots increased with increasing solution Al 

concentrations, especially in Holcus from FM, 5MB, and SMM. The addition of Si increased AI 

absorption (least of all in KR). Up to four times as much Al was taken up by roots in Al+Si solutions. 

However Si tended to reduce Al translocation to shoots, but this was only consistent in KR races. 

6.4.3 Effects of Si per se 

6.4.3.1 Root elongation and number 

Si(OH)4 in nutrient solutions on its own significantly affected root lengths (Table 6.3) and Si at 2500 

11M significantly reduced total root lengths compared with controls (Figure 6.16). This was most 

pronounced in seedlings of KR where total root length was 27.4 % of controls, and least evident in 

FM seedlings where total root lengths were 64.7 % of controls (Table 6.4). In contrast, the addition 

of 1500 11M Si showed no inhibitory effects and root elongation was actually enhanced in seedlings 

from FM and 5MB at this concentration (Figure 6.16). 

Similarly Si per se significantly affected total root numbers (Table 6.3). The highest concentration 

reduced root numbers in seedlings from 5MB and KR to 44.8 % and 37.2 % of control plants (Figure 

6.17 and Table 6.4). 
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Figure 6.15. Mean percentage dead shoot matter ~± s.e! in .Ho/cus /~natus originating from Flanders 
Moss (FM), Sheriffmuir blanket peat (SMB), ShenffmUJr rruneral soli (SMM), Kippenrait Glen (KP), 
and Kinloch Rannoch (KR). See?lings were grow~ in (1) cont:ol, (2) 25Al , (3) 35AI, (4) 25Al 1500Si, 
(5) 25Al 2500Si, (6) 35Al 1500SI, (7) 35Al 2500SI , (8) ]500SI, and (9) 2500Si nutrient solutions. 
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Table 6.Sa. Mean ionic composition (mg gol dry weight, ± s.e) of shoots and roots of Holcus lanatus, originating from Flanders Moss (FM), Sheriffmuir blanket 
peat (SMB), and Sheriff11111jrmineral soil (SMM), grown in combinations of Al and Si. t, below detectionlirnit (AI, 4.2 flg mrl ; Si, 25 flg mr!). n.d, no data. 

Treatment P K Ca Mg Al Fe Si 

FM 
Control 
25 Al 
35 AI 
25 Al + 1500 Si 
25 Al + 2500 Si 
35 Al + 1500 Si 
35 Al + 2500 Si 
1500 
2500 
5MB 
Control 
25 Al 
35 Al 
25 Al + 1500 Si 
25 AI + 2500 Si 
35 AI + 1500 Si 
35 AI + 2500 Si 
1500 
2500 
SMM 
Control 

25 Al 
35 Al 
25 Al + 1500 Si 
25 AI + 2500 Si 
35 Al + 1500 Si 
35 Al + 2500 Si 
1500 
2500 
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mg g ! -------------------------------------------------------
Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root 

6.8S±0.26 
0.93±O.l2 
0.80±0.06 
0.97±O.OS 
1.36±0.23 
1.30±O.12 
1.37±0.18 
2.65±O.93 
2.95±O.92 

1.25±O.24 
3.35±0.55 

13 .71 ±O.22 
2.3 1±0.35 

2.88±0.18 
2.42±0.88 

3.88±O.40 4.42± 1.12 3.59±0.29 
1.98±O.38 7.51 ±O.38 4.59±O.57 
1.57±0.3S 4.63± 1.13 II .03±2.52 
I.S2±0.21 8.26± 1.07 4.39±0.66 
1.92±0.38 8. 16±1.72 3.41±0.24 
2.ll±0.08 4.64±0.74 4.03±0.S7 
2.09±O.30 IO.04±1.56 2.24±0.S3 

S.22±0.7S 2. 44±0.19 
1.08±0.1O 4.29±0.7S 
1.l1±O. IS 4.16±0.36 

12.S0±O.75 8.13±O.75 
3.44±O.36 11.80±O.88 
6.96±O.98 13.09±2.87 

1.93±0.29 
1.3S±O.19 
l.38±O.09 
1.09±0.07 

2.12±O.14 
1.59±0.12 
1.87±0.03 
2.18±O.19 

7.39±0.81 7.13±1.70 

4.60±0.44 2.9S±0.48 
2.62±O.90 2.27±0.38 

7 .57± 1.05 4.32±0.89 
8.86±1.37 5.l6±0.60 
6.79±0.50 4.68±O.68 
8.17±1.73 2.68±0.76 
7.86±O.62 5.5 I ±0.73 

4.53±0.49 
1.04±O.19 
1.01±O.15 

n.d 

1.8S±O.22 
1. 27±0.12 
1.28±O.04 

n.d 

4.78±O.2S 

2.7S±O.12 8.66±0.48 
2.90±O.83 4.82±0.64 
S.4S±1.09 9.47±1.40 

n.d 

1.78±O.01 
1.9S±O.03 
1.32±O.09 

n.d 

4.3S±O.98 

n.d 

9.S7±1.07 
7.71±0.95 
1O.91±1.67 

n.d 
13.90±1.I9 

4.33±0.49 
1O.27±L32 
S.92±OA6 

n.d 

3.84±0.82 
3.66±0.35 
5.42±0.85 

n.d 
4.21±O.09 

3.00±O.22 I.SI±O.19 l.07±O.IS 0.22±O.OO t t O.IS±O.OS 
1.33±0.13 1.35±O.32 0.08±0.04 0.11 ±0.04 0.32±0.20 3.4S±O.S3 0.03±0.OI 
1.60±0. IS 
1.4S±0.18 
O.9I±O.IS 

2.18±0.S7 0.04±0.02 0.06±0.02 
l.S0±O.14 0.62±O.08 O.OS±O.02 
1.74±O.26 0.22±O.07 0.09±0.0 I 

1.32±O. IS 1.37±O.34 0.39±0.07 0.04±0.0 I 
1.21±0.2 I l.S9±O.20 0.30±0.04 0.06±0.01 
1.69±0.26 O.93±0.04 0.84±0.19 0.48±O.04 
2.39±0.23 L. \O±O.06 O.9S±0.12 0.2S±0.OS 

2.04±O.26 2.14±O.06 1.21±O.2 1 
l.32±O.31 t.74±0. I 6 O.OS±O.03 

0.28±O.02 
O.OS±O.OI 

t.t4±O.12 
2.l1±OA9 
1.6S±0. ll 
1.39±O.34 
1.1 I ±O. 17 

t.63±O.12 O.37±O.03 O.06±O.02 
2.30±O.06 0.38±O.IO O.06±O.02 
2.56±0.52 0.4S±O.11 0.03±0.0 I 
t.77±O.OS O.39±0.10 0.08±0.0 I 
t.S6±O.16 O.33±O.04 0.02±O.0 I 

2.IO±O.22 3.04±0.46 1.13±O.16 0.44±O.08 
1.29±O.27 1.41±0.17 0.66±O.04 O.2S±O.03 

0.3S::t0.04 0.42±0.07 0.06±0.02 
0.13±0.04 O.39±0.12 O.14±0.03 
O.32±O.06 O.97±0.25 0.16±0.02 
0.03±0.01 
0.S7±0. II 

t 
t 

t 

O.12±0.02 
0.64±0.03 

t 
t 

t 

0.2 I ±O.OS 
0.14±0.02 
0.l7±O.03 
O.22±O.06 

0.17±0.01 
O.12±0.OO O.26±O.J I 0.11±0.01 
O.31±O.02 
O. \O±O.03 
0.12±0.03 
O.05±0.OI 
O.05±0.02 

t 
t 

0.37±O.OS O.20±O.04 
1.20±0.19 0.30±O.OS 
0.72±0.1O 0.16±O.0 I 
OA2±0.16 0.17±0.02 
0.70±O.17 0.24±O.03 

t 0.04±O.02 
t O.lS±O.O\ 

3.16±0.27 
2.4I±O.22 
1.I0±O.3l 

1.50±O.19 
2.52±0.62 
2.43±O.29 

1.37±O.14 OAO±O.05 t t 0.12±O.OI 
0.36±0.0 1 0.S3±O.03 0.IS±O.06 0.11±O.OI O.26±O.06 
0.31±0.OS 0.07±O.02 O.22±O.05 O.50±0.14 0.06±O.01 

1.33±0.21 t t 
0.19±0.02 t t 
0.26±O.06 t t 
0.04±0.0 I O.17±0.03 0.23±0.OS 
0.2 1 ±0.07 0.31 ±O.04 O.65±O.13 
0.07±0.02 0.08±0.03 O.18±O.04 
0.09±0.01 0.l8±0.06 0.66±O.02 
0.12±0.02 
0.22±0.04 

0.80±0.16 
0.20±0.04 
0.3 1 ±0.07 

n.d 
n.d 

t 
t 
t 

n.d 
n.d 

t 
t 
t 

O.13±0.01 O.06±0.01 0.99±0.OS 
O.IS±O.O\ O.20±O.02 0.S6±O.07 
0.14±0.03 0.12±0.04 O.35±0.OS 
0.11 ±0.02 0.OS±0.02 O.37±0.14 
O.77±O.OS 
0.24±0.OS 

1.2S±0.04 
0.10±0.03 
0.08±0.02 

n.d 

n.d 

t 
t 
t 

n.d 

n.d 

t 
t 
t 

n.d 
1.l1±0.12 
1.20±0.I7 
1. 29±O.OS 

n.d 

1.8S±O.24 
1.69±O.13 
1.76±O.19 

n.d 

O.29±0.0 1 
0.35±O.OS 
O.41±0.02 

n.d 
0.13±0.01 
0.07±0.02 
O.05±O.OI 

n.d n.d n.d n.d n.d n.d 

n.d 
1.54±O.26 

n.d 
2.l5±O.7S 

n.d 

1.14±0.01 
n.d 

OAI±O.09 

O.89±0.22 O.25±O.03 O. lO±O.OO 0. 12±O.0\ O.35±O.01 0.44±O.03 
O.07±O.01 0.28±O.07 O.17±O.02 O.09±0.02 0.3 1 ±O.04 0.S9±0.01 
O.34±O.02 0.62±O.1O 0.20±O.0 I 0.2S±0.04 O.07±0.02 0.36±0.02 

n.d 

t 
n.d 

t 
n.d 

0.04±O.03 

n.d 

1.82±0.64 
n.d 

n.d 
n.d 

n.d 



Table 6.Sb. Mean ionic composition (mg g,t dry weight, ± s.e) of shoots and roots of HolcLls lanatLls, originating from Kippenrait Glen (KP) and Kinloch Rannoch 
(KR), ~rown in combinations of Al and Si . t, below detection limit (AI, 4.2 ~~ mrl; Si, 25 ~~ mrl). n.d, no data. 
Treatment P K Ca Mg AI Fe Si 

,I 
mgg 

Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root 

KP 
Control 4.52±O.48 4.IS±O.58 9.68±2.02 3.14±O.78 2.62±O.33 1.S9±O.16 O.99±O.19 O.17±O.O2 t t O.2 1±O.O2 0.46±0.26 t t 
25 Al 0.81±O.24 3.42±O.54 5.27±0.91 2.97±0.24 1.38±0.10 I.OO±O.03 O.30±0.03 O.O I±O.OO 0.16±O.O6 0.20±0.07 0.05±O.03 0.03±0.OO t t 
35 Al 1.32±O.IS 4.SO±O.61 3.32±O.52 6.58±0.90 l.44±O.IS 0.71±0.11 O.SS±O. IO O.04±O.OO O.lS±O.04 O.27±O.OI O.04±O.OI 0.03±O.OI t t 
25 Al + 1500 Si t.74±O.2S 2.1O±O.OO 9.11±1.37 1.60±0.23 2.06±O.32 3.19±O.1I O.S6±O.12 O.09±0.OI O.OS±O.OO l.21±0.12 O.22±O.OI O.IO±O.OI O.3I±O.03 0.SI±0.03 

25 Al + 2500 Si 0.99±O.11 1.80±O. 14 9.40±0.79 3.S3±0.5S t .S9±O. 12 l.S9±0.4S O.34±0.OS O.25±0.O2 0.29±O.07 0.S4±O.IO O.16±O.02 O.O9±O.O4 O.16±0.O2 O.47±O.OI 

35 Al + 1500 Si 1.33±O.06 1.97±0.1 1 IO.73±o.51 S.36±0.44 1.27±O.ll 1.34±0.02 O.4I±0.04 O.O5±0.O2 0.24±O.04 O.41±O.14 O.19±O.O4 O.15±O.03 0.II±O.02 O.4S±O.04 

35 Al + 2500 Si 0.97±O.05 1.30±0.08 9.21 ±1.88 3.96±0.S I 1.06±O.24 l.SI±0.43 O.32±0.OI 0.05±0.OO 0.O3±0.01 O.3S±O. 10 O.19±O.04 O.OS±O.OI O.4S±O.OS 0.3 I ±O.OO 

1500 3.6 1±O.I 3 2.91±0.23 6.42±0.S7 4.00±0.S9 1.01±0.19 l.lS±0.03 0.67±0.O7 0.19±0.OI t t 0.09±O.O3 O.IS±O.03 n.d n.d 

2500 3.90±0.SI 3.3S±O.21 9.60±1.28 4. 19±0.79 1.09±O.09 1.SS±0.3 1 0.72±0.10 0.25±0.O4 t t O.16±O.O3 O.4I±0.19 n.d n.d 

KR 
Control 3.27±O.14 3.30±0.46 6. 18±0.44 3.51±O.03 1.35±O.12 1.65±O.O6 O.68±0.O9 0.46±0.OI t t 0.21±O.O2 1.94±O.23 t t 
25 Al 1.47±O.33 4.27±0.23 4.00±1.40 8.50±1.77 1.12±O.14 1.46±0.27 O.O2±O.O2 O.19±O.O4 0.23±O.03 O.13±O.03 0.06±O.O3 O. IS±0.02 t t 
35 AI l.39±O.JS 4.41±0.70 7.74±1.10 14.5±O.92 1.3S±O.2S 2.02±0.36 O.45±O.OS O.25±O.O3 0.39±O. 1O O.51±O.05 O.19±O.03 O.09±O.05 t t 
25 Al + 1500 Si 1.39±0.15 2.40±O.35 9.76±1.30 S.89±0.98 1.65±O.11 2.10±0.26 O.S3±0.08 0.06±0.02 0.O6±O.01 O.42±0.11 O.14±0.02 O.O6±O.02 0.05±0.02 0.80±0.22 

25 AI + 2500 Si 1.41±0. IO 1.83±0.2S S.04±1.38 1.47±O.36 1.74±O.26 2.03±O.41 O.60±0.17 0.O6±0.02 O.04±O.OI O.3S±O.07 0.27±0.03 O.28±O.02 0.16±0.04 O.54±0.03 

35 AI + 1500 Si 1.14±0.04 1.90±0.13 8.73±1.42 2.24±0.50 1.67±0.16 1.91±O.26 0.39±0.O8 O.04±O.Ol O.O7±O.01 O.14±0.Ol O.20±O.OS O.14±O.OI O.16±O.04 O.34±O.IO 

35 AI + 2500 Si 1. 86±0.03 1.47±0.23 7.03±0.26 1.88±0.53 L.21±0.04 1.47±O.21 O.39±O.OS O.03±O.OI O.O3±O.Ol O.OS±O.03 O.IS±0.03 O.17±O.04 0.O7±O.03 O.22±0.O2 

1500 1.98±O.3 1 2.64±0.2S 4.21±O.4S 2.11±0.28 l.S2±O.27 I.4S±O.04 0.66±0.11 0.3S±0. 10 t t O.17±O.04 1.53±0.41 n.d n.d 

2500 2.8S±0.20 2.71±0.37 S.84±0.68 S.19±O.70 0.84±O.O9 1.20±0.OS 0.43±0.O7 0.32±0.06 t O.14±0.O6 1.66±0.21 n.d n.d 
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Figure 6.16. Increase in m~an to.tal root length (± s.e) in HoL~us l~nat~s originating from (a) 
Flanders Moss (FM), (b) ShenffmUlr blanket peat (SMB), (c) ShenffmUlr mmeral oil (SMM), (d) 
Kippenrait Glen (KP): and (e) .Kinloch Rannach (KR) grown in control (+ ), 1500 f.lM Si (£.), and 
2500 f.lM Si C. ) nutnent solutIOns. at pH 4.2. ~reatments began after 4 weeks and lasted 8 weeks. 
SMM seedlings were not treated wIth 1500 ~ SICOHk ____ , controls. , Si treatments. 
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Figure 6.17 . Increase in mea~ tota~ number of roots (± s.e) in Hol.cus l~natus origi nating from (a) 
Flanders Moss (FM), (b) ShenffmUir blanket peat (SMB), (c) ShenffmUir mineral soi l (SMM), (d) 
Kippenrait Glen (KP)? and (e) .Kinloch Rannach (KR) grown in control (+ ), 1500 11M Si (.6.), and 
2500 11M Si (. ) nutnent solutIOn . at pH 4.2. T~eatments began after 4 weeks and lasted 8 week . 
SMM seedlings were not treated wIth J 500 ~ SI(OHk - - - - ,controls. _ _ , Si treatments. 
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6.4.3.2 Shoot growth 

Similar to root elongation, 2500 ~M Si significantly inhibited shoot growth (Table 6.3). Total shoot 

lengths were greatly reduced compared with controls (Figure 6.18 and Table 6.4). Shoots became 

chlorotic and died (Figure 6.l0(e». The lower Si concentration of 1500 ~M also reduced shoot 

lengths, especially in KP seedlings where relative shoot lengths were 50.1 % (Table 6.4). However 

no such reduction in shoot growth was seen in KR seedlings (relative shoot lengths of 84.8 %) and 

Figure 6.l0(d) shows the healthy appearance of Holcus tops growing in 1500 ~ Si. 

With some exceptions, both concentrations of Si reduced vegetative reproduction in terms of tiller 

production and blade number. Relative tiller numbers were as low as 24.5 % (Table 6.4) (Figures 

6.19 and 6.20). 

6.4.3.3 Plant dry weights 

There were no consistent patterns in dry weights between Si treated plants and controls (Figure 6.21). 

Differences between treatments were not significant. The lower Si concentration increased root dry 

weights and rootshoot ratios relative to control plants. in all plants except those of SMM 

6.4.3.4 Plant ionic composition 

The presence of silicic acid increased P uptake by roots beyond that in controls in FM, 5MB and 

SMM races. K, Ca, and Mg uptake was inconsistent but generally greater or equal to controls. Fe 

uptake however was reduced by Si (Table 6.5 a and 6.5 b). 

6.4.4 AVSi interaction at pH 4.2 and pH 5.6 in Holcus lanatus (Experiment 3) 

6.4.4.1 Root elongation and number 

During the initial four weeks in treatment, neither 35AI alone nor 35Al with 2500Si at pH 5.6, 

inhibited root growth. Root lengths were no different from control plants. In contrast 35Al in 

solution at pH 4.2 had an immediate inhibitory effect on root elongation. After 4 weeks treatment Al 

at pH 5.6 did reduce root elongation but not greatly (Figure 6.22). In fact Al actually stimulated root 

growth in KR seedlings far beyond controls. Relative total root lengths at harvest were between 66.8 

% and 138 % (Table 6.7). AI+Si did not significantly inhibit root growth at either pH 4.2 or pH 5.6. 

Root lengths tended to be larger in AI+Si at pH 4.2 compared with pH 5.6. The lowest relative root 

length in either of these two treatments was 66.0 %. Total root lengths were significantly affected by 

pH, Si, and the pH*Si interaction factor was significant p<O.OOl (Table 6.6). 
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Figure 6.21 . Mean total .(~ ), ~hoot (0), and root ( . ) dry weight (± s.~), and root: hoot ratio (_ , ± 
s.e) of HolcLls lanatus ~nglO atlOg from ~a) Fl a~ders Moss (PM), (b) Sh.enffmuir blanket peat (SMB), ( ) 
Sheri ffmu ir mineral od (SMM) (d) Kip~enra1t Glen (KP), a~d (e) Kinloch Rannoch (KR). eedling 
were grown in (I) control, (2) 1500 11M SI , and (3) 2500 11M 1 nutrient solutions. The letter indicate 

contro l p lan ts. 
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Figure 6.22. Increase in mean total root length (em) in Holcus lanatLls originating from (a) Flanders 
Moss (FM), (b) Sheriffmuir blanket peat (SMB), (c) Kippenrait Glen (KP), and (d) Kinloch Rannoch 
(KR). Seedlings were grown in control (+ ), 35AI pH 4.2 (-), 35AI 2500Si pH 4.2 (.&.), 35AI pH 5.6 
(x), and 35AI 2500Si pH 5.6 (0 ). - - - - ,controls. .. .. .. .. .... . , pH 4.2 treatments. __ , pH 5.6 
treatments. Treatment started after 4 weeks growth in control solutions and lasted 8 week . 

The differences in AlISi interactions between pH's were less pronounced in terms of root number 

(Figure 6.23) . pH still had a significant effect on the total root number but there was no overall 

sign ificant effect of Si (Table 6.6). The pH*Si interaction factor remained significant at p<O.OO I. 

Figure 6.7 and Figure 6.8 shows the lateral root growth observed in Holcus grown in 35AI in solutions 

at pH 5.6. There were no stunted lateral nor any reduction in lateral numbers and pH had a 

s ignificant effect on lateral length (Table 6.6). 
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Figure 6.23. Increase in mean total number of roots in Holcus lanatus originating from (a) Flanders 
Moss (FM), (b) Sheriffmuir blanket peat (SMB), (c) Kippenrait Glen (KP), and (d) Kinloch Rannach 
(KR). Seedlings were grown in control (+ ), 35AI pH 4 .2 (- ), 35AI 2500Si pH 4.2 (A.), 35Al pH 5.6 
(x), and 35AI2500Si pH 5.6 (0). -----, controls . ............ , pH 4.2 treatment. __ , pH 5.6 
treatments. Treatments started after 4 weeks growth in control solutions and lasted 8 weeks. 

6.4.4.2 Shoot growth 

A similar pattern to root growth occurred in shoot growth (Figure 6.24). Total shoot lengths were 

substantially reduced by AI in solution at pH 4.2. At pH 5.6, AI was significantly less toxic and shoot 

lengths increased . Relative total root numbers in these solutions were never below 50.4 % and a 

much as 80.0 % (Table 6.7). Likewise AI+Si at either pH 4.2 or pH 5.6 did not inhibit shoot growth . 

This was most pronounced in Holcus from 5MB. Shoot lengths in Al rlU6 and AI+Si treatments were 

no different. pH and Si both had a statistically significant effect on hoot growth and the pH*Si 

interaction factor was significant p<O.OO 1 (Table 6.6). 
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Table 6.6. Statistical analyses for root and shoot growth measurements, dry weights, and plant ionic 
compositions in Holcus lanatus originating from Flanders Moss (PM), Sheriffmuir blanket peat 
(SMB), Kippenrait Glen (KP), and Kinloch Rannoch (KR), and grown in 35AI and 35AI 2500Si 
nutrient solutions at either pH 4.2 or pH 5.6. * ,p<0.05; **, p<O.O 1; * **, p<O.OO 1; n.s, not significant. 
Des;rees offreedom are: site 3, EH I, Si I, and EH*Si interaction 1. 

Measurement Site pH Si pH*Si 
interaction 

F ~ F ~ F ~ F ~ 
Root growth 

Increase in total root length 25.98 *** 72.82 *** 8.33 ** 108.11 *** 

Increase in number of roots 3.80 * 14.94 *** 1.91 n.s 43.05 *** 

Length of lateral roots 11.23 *** 7.70 ** 6.47 *** 

Number of lateral roots 1.01 n.s 1.67 n.s 0.07 n.s 

Tops growth 
Increase in total shoot length 3.01 * 10.16 ** 51.99 *** 37.00 *** 

Increase in total tiller number 3.67 * 0.78 n.s 7.26 ** 11.83 *** 

Increase in total blade number 2.71 n.s 5.53 * 0.35 n.s 15.57 *** 

Leaf Area (PM only) 46.79 *** 8.62 ** 3.28 n.s 

Dry weights 

Shoot 1.24 n.s 15.23 *** 3.21 n.s 1.41 n.s 

Root 3.99 * 40.14 *** 1.58 n.s 1.92 n.s 

Total 0.53 n.s 21.38 *** 1.74 n.s 0.59 n.s 

Root:shoot ratio 7.74 *** 14.88 *** 12.38 *** 9.34 ** 

Ionic composition 

Shoot p 2.27 n.s 0.87 n.s 12.27 *** 4.02 n.s 

K 1.36 n.s 0.19 n.s 0.33 n.s 14.80 *** 

Ca 4.58 ** 18.86 *** 15.31 *** 3.09 n.s 

Mg 6.40 *** 33.61 *** 24.93 *** 21.90 *** 

Al 3.51 * 31.88 *** 0.15 n.s 25.81 *** 

Fe 6.73 *** 11.65 ** 20.89 *** 1.68 n.s 

Si 10.32 *** 1.78 n.s 279.5 *** 1.78 n.s 

Root p 1.26 n.s 59.96 *** 29.49 *** 33.78 *** 

K 4.81 ** 179.8 *** 18.88 *** 23.23 n.s 

Ca 2.20 n.s 19.73 *** 0.01 n.s 0.10 n.s 

Mg 15.60 *** 10.24 ** 0.07 n.s 39.94 *** 

Al 6.82 *** 0.29 n.s 0.03 n.s 0.91 n.s 

Fe 2.76 n.s 89.37 *** 0.02 n.s 6.15 * 

Si 18.87 *** 5.04 * 337.8 *** 5.04 * 
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Table 6.7. The mean relative total length or roots (TLR), total number of roots (TNR), total length of 
shoots (TSL), total number of blades (TNB), and total number of tillers (TNT) in Holcus lanatus 
treated with 35 mgr) Al and 35 mgr) Al with 2500 ~M Si in solutions at pH 4.2 or pH 5.6. Holcus 
originated from (a) Flanders Moss (FM), (b) Sheriffmuir blanket peat (SMB), (c) Kippenrait Glen 
(KP), and (d) Kinloch Rannach (KR). Values are percentages relative to control plants (100 %). n.d, 
no data. 
Relative growth Treatment 

(%) ControlpH4.2 35 AI pH 4.2 35/2500pH4.2 35 AI pH 5.6 35/2500pHs.6 

(a) 
TRL 100 39.4 72.2 70.2 65.6 

TNR 100 62.1 83.5 63.6 70.1 

TSL 100 32.8 92.8 65.9 60.2 
TNB 100 35.1 106 68.1 57.0 
TNT 100 40.2 51.0 52.9 35.3 

(b) 
TRL 100 38.4 83.0 67.1 72.9 
TNR 100 45.7 69.6 69.2 64.2 

TSL 100 24.7 52.9 80.0 72.4 

TNB 100 35.6 54.6 94.3 95.7 

TNT 100 28.2 29.6 61.2 79.1 

(e) 
37.5 88.7 66.8 TRL 100 80.7 

TNR 100 46.0 93.9 74.3 81.1 

TSL 100 26.1 74.8 52.7 50.5 

TNB 100 39.4 78.2 71.1 69.6 

TNT 100 22.5 76.7 33.7 26.7 

(d) 
TRL 100 33.4 85.1 139 71.3 
TNR 100 44.4 61.9 97.7 58.6 

TSL 100 30.7 90.4 50.4 71.3 

TNB 100 31.1 77.6 92.3 67.6 

TNT 100 20.0 60.7 43.0 43.7 
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Figure 6.24. Increa e in mean total length of shoots in Holcus lanatus originating from (a) Flanders 
Moss (FM), Cb) Sheriffmuir blanket peat (SMB), (c) Kippenrait Glen (KP), and (d) Kin loch Rannoch 
(KR). Seedlings were grown in control C+ ), 35Al pH 4.2 C- ), 35AI 2500Si pH 4.2 (A), 35AI pH 5.6 
Cx), and 35AI 2500Si pH 5.6 CO ). - - - - - ,controls . .. ... .. .... , pH 4.2 treatments. __ , pH 5.6 
treatments. Treatments started after 4 weeks growth in control solutions and lasted 8 weeks. 

Si addition did not significantly improve vegetative growth of seedlings. Figure 6.25 shows very little 

difference in tiller numbers between AI and Al+Si treatments at either pH level, and pH did not 

s ignificantly effect tiller number (Table 6.6). AI in solution at pH 5.6 wa only less toxic to 

seedlings from 5MB and, to ales er extent, KR. 35AI 2500Si in solution at pH 4.2 reduced tiller 

production to a lesser extent than at pH 5.6. 
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Figure 6.25. Increase in mean total number of tillers in Holcus lanatus originating from (a) F landers 
Moss (FM), (b) Sheriffmuir blanket peat (SMB), (c) Kippenrait Glen (KP), and (d) Kinloch Rannoch 
(KR). Seedli ngs were grown in control (+ ), 35AI pH 4.2 C- ), 35AI 2500Si pH 4.2 (.&.), 35AI pH 5.6 
(x), and 35AI 2500Si pH 5.6 (0 ). - - - - - ,control s ...... ........ , pH 4.2 treatments. __ , pH 5.6 
treatments. Treatments started after 4 weeks growth in control solutions and la ted 8 week . 

The previous pattern of no Al toxicity in solutions at pH 5.6 was again evident in bl ade numbers 

(Figure 6.26). There were al 0 no differences between AI in solution at pH 5.6 and Al in solution 

with 2500 IlM Si at either pH 4 .2 or pH 5.6. Hence Si did not significantly affect bl ade numbers but 

pH had a significant affect (Table 6.6). Like root elongation , bl ade numbers were greater than those 

of controls in KR plant at 35AlpH~.6 . 

Leaf area was significantly greater 111 Holcus grown in either 35AI or 35AI 2500Si at pH 5.6 

compared with pH 4.2. Figure 6.13 hows the mean leaf area in Holcus originating from FM. 
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Figure 6.26. Increase in mean total number of blades in Holcus Lanatus originating from (a) Flanders 
Moss (FM), (b) Sheriffmuir blanket peat (SMB), (c) Kippenrait Glen (KP), and (d) Kinloch Rannoch 
(KR). Seedlings were grown in control (+), 35AI pH 4.2 (. ), 35AI 2500Si pH 4.2 (A ), 35AI pH 5.6 
(x) , and 35AI 2500Si pH 5.6 (0 ). - - - - , controls . .... ....... . ' pH 4.2 treatments. , pH 5.6 

treatments. 

6.4.4.3 Plant dry weights 

Total, shoot, and root dry weights were generally higher in either 35AI or 35AI 2500Si at pH 5.6 

(particularly the latter) but thi s was not consistent among sites (Figure 6.27 and Table 6.6). 

Root: shoot ratios of KP and KR seedlings were significantly greater in AI solutions at pH 5.6 

compared with pH 4.2. 

6.4.4.4 Plant ionic composition 

P, K, Ca, Mg, and Fe uptake by roots in 35AI solutions was significantly lower at pH 5.6 than at pH 

4 .2 (Tables 6.5, 6.6 and 6.8) . Likewise K and Ca uptake in 35AI 2500Si were lower at pH 5.6. 

Nutrient uptake by roots in solutions of 35AlpHs.6, 35AI 2500Si pH 42, and 35AI 2500Sip,1S.6 did not differ 

greatly. Translocation of P to shoots increased in 35AI solutions at pH 5.6 in FM and 5MB races, but 
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Figure 6.27. Mean total (D ), shoot (D), and root ( ) dry weights (± s.e), and root:shoot ratios (- , ± 
s.e) of Holcus lanatus originati ng from (a) Flanders Moss (FM), (b) Sheriffmuir blanket peat (SMB), (c) 
J(jppenrait Glen (KP), and (d) J(jnloch. Ran~och (KR~. Seedlings were grown in ( I) 35 AI , (2) 35AI 
2500Si, (3) 35AI, and (4) 35AI 2500S1 nutnent olutlOns at pH 4.2 or pH 5.6. *, indicates nutrient 

olutions at pH 4.2. 
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Table 6.8 . Mean ionic composition (mg g-I dry weight, ± s.e) of shoots and roots of Holcus lanatus, originating from Flanders Moss (FM), Sheriffmuir blanket peat 
(SMB), Kieeenrait Glen (KP), and Kinloch Rannoch (KR), ~rown in combinations of Al and Si at EH 4.2 and EH 5.6. t, below detection level « 25 ~~ mr\ 

Treatment P K Ca Mg AI Fe Si 
Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root 

FM 
35AI p11 4.2 O.80±O.O6 3.88±O.40 4.42± 1.1 2 3.S9±O.29 1.60±O.IS 2. I 8±O.S7 O.04±O.O2 O.O6±O.O2 O.3S±O.04 O.42±O.O7 O.O6±O.O2 O.26±O.O6 t t 
35AlpflS.6 1.I4±O.12 1.83±O.O9 S.62±O.69 1.12±O.16 1.80±O.OS 1.OS±O.OS O.60±O.O7 O.03±O.O I O.I1±O.OO O.83±O.O9 O.O6±O.OO O.OI±O.OO t t 
35AI 2500Si pH 4.2 1.37±O. 18 1.92±O.38 8. 16±1.72 3.41±O.24 1.21±O.21 I.S9±O.20 O.30±O.O4 O.06±O.OI O.S7±O.11 O.64±O.03 O.14±O.02 O.09±O.OI O.IS±O.06 O.66±O.O2 

35AI 2500Si p1H .6 I. 24±O.10 1.56±O. IS S.70±O.17 1.04±O.29 1.48±O.26 O.67±O.O4 O.SO±O.02 O.02±O.OI O.34±O.O2 O.39±O.O9 O.04±O.O2 O.O2±O.OO O.33±O.04 O.49±O.OS 

5MB 
35AI pH 4.2 I. ll ±O.lS 4.16±O.36 6.96±O.98 13.09±2.87 1.14±O.O6 1.63±O.12 O.37±O.O3 O.O6±O.O2 O.31±O.O2 O.36±O.OS O.20±O.O4 O.31±O.O7 t t 
35AlpHs.6 1.46±O.21 2.43±O.37 6.8 1±O.97 1.42±O.36 1.17±O.O9 O.68±O.13 O.S7±O.OS O.O I±O.OO O.24±O.OI O.33±O.O2 O.O3±O.OO O.OO±O.OO t t 
35Al 2500S i pH 4.2 1.09±O.O7 2.18±O.19 6.79±O.SI 4.68±O.68 1.l 1±O.17 1.86±O.16 O.33±O.O4 O.02±O.OI O.OS±O.02 O.70±O.l7 O.24±O.O3 O. I I±O.02 O.OS±O.02 O.33±O.14 

35Al 2500S i p1lS.6 l.OO±O.lI 2.29±O.64 5.19±O.S2 I.05±O.03 1.39±O.OI 1.31±O. IS O.36±O.O4 O.O2±O.OO O.O7±O.OO O.32±O.OO O.O3±O.OO O.O l±O.OO O.23±O.O3 O.20±O.O3 

KP 
35AI pH 4.2 J.32±O.JS 4.S0±O.6\ 3 .32±O.S2 6.S8±O.90 1.44±O.!S O.71±O. J! O.SS±O.JO O.O4±O.OO O.!S±O.04 O.26±O.OI O.04±O.OI O.03±O.OI t t 
35AlpH s .6 O.S4±O.OS 2.32±O.11 8.30±O.80 I.S7±O.30 2.74±O.O4 1.47±O.O3 1.37±O. 16 O.04±O.O3 O.73±O.18 O.22±O.O2 O.20±O.O6 O.02±O.OI t t 
35Al 2500S i pH 4.2 O.97±O.O5 !.30±O.OS 9.21±1. 88 3.96±O.S! 1.06±O.24 I.SJ±O.43 O.32±O.OI O.OS±O.OO O.03±O.O I O.35±O. l O O.19±O.O4 O.OS±O.Ol O.4S±O.OS O.3J±O.OO 

35Al 2500Si pH S.6 2.56±O.87 1.29±O. 17 S.4S±O.17 2.24±O.3S 1.73±O.31 O.84±O.O8 O.23±O.O6 O.3S±O.OS O.S4±O.Ol O.32±O.O9 O.O6±O.O2 O.O6±O.O2 O.16±O.O2 O.38±O.OI 

KR 
35Al pH4.2 1.39±O.18 4.41±O.70 7.74± I. IO 14.SS±o.92 1.3S±O.2S 2.02±O.36 O.4S±O.08 O.25±O.O3 O.39±O.1O O.5S±O.OS O.19±O.O3 O.09±O.OS t t 
35AlpH M O.98±O.O3 2.02±O.46 8.46± 1.09 1.36±O.35 2.47±O.55 1.1O±O.26 1.20±O.41 O.O2±O.OO O.73±O.O9 O.44±O.l! O. 17±O.O I O.O I±O.OO t t 
35AI 2500Si pH 4.2 1.86±O.O3 1.47±O.23 7.03±O.26 1.88±O.53 1.21 ±O.04 1.47±O.21 O.39±O.O5 O.03±O.O I O.03±O.OI O.O8±O.O3 O. 18±O.O3 O. 17±O.O4 O.O7±O.03 O.22±O.O2 

35Al 2500Si pH S.6 1.81±O.O6 2.01±O.OS 6.38±O.63 1.73±O.S5 1. 13±O.O8 1.6S±O.05 O.50±O.O4 O.O2±O.OO O.O7±O.Ol O.6S±O.19 O.O2±O.OO O.04±O.OI O.21±O.O4 O.JS±O.OO 
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decreased in KP and KR races. K, Ca, and Mg shoot concentrations were greater in 35AlpH ~.6 solutions 

compared with 35AlpH 4.2. Shoot Fe concentrations were greatly reduced in 35AI 2500SipH S.6 compared 

with 35AI 2500SipH 42 treatments. 

Al uptake by roots in AI+Si solutions at pH 5.6 was generally lower than at pH 4.2, particularly in FM 

and 5MB. Al translocation to shoots in 35AI solutions was greatly increased at pH 5.6 in KP and KR 

races. 

6.4.5 AIISi speciation in nutrient solutions 

6.4.5.1 Nutrient solutions at pH 4.2. 

Tables 6.9 and 6.10 gives the total concentrations of Al ([AI]TOT) and Si ([SihOT) analysed in nutrient 

solutions filtered through 5 IlM and 0.45 IlM filter paper, and that passing through the dialysis 

membrane. The solutions were analysed immediately after preparation (0), and one (1), two (2), three 

(3), and four (4) days thereafter. 

The measured concentration of monomeric Al species ([AI]" ... ,) decreased with time in all solutions 

irrelevant of Si addition. Solutions were changed on day 3 when [AI]"."", was about 50 % of that in the 

original solution. [AI]"."", was reduced a little more in the presence of Si. 

[AlhOT (5 JlM) also decreased with time. There was less of a difference between [AlhOT in +Al and 

AI+Si solutions, with the exception of 35AI 2500Si where [Alhar was reduced to 25 % of the original 

solution. Most of the Al passed through a 0.45 JlM filter, ranging from 56 to 100 % (but more often 

80-100 %). However only 7-36 % of this Al passed through a dialysis membrane. 

[SihoT (5 JlM) like Al decreased with time. More Si passed the 0.45 IlM filter in 25AI solutions 

compared with 35AI solutions. Between 26 and 96 % of Si passed through 0.45 IlM pore in Si 

solutions with no added AI. The majority of Si, 70-94 %, was small enough to permeate the dialysis 

membrane. 

6.4.5.2 Nutrient solutions at pH 5.6 

There was a large reduction in [AI]"."", at pH 5.6 compared with pH 4.2 (about a 20-fold difference) 

but little change with time. [Alhar (5 IlM ) was about 60 % of those at pH 4.2, and the majority passed 

through 0.45 JlM. Between 81-94 % of AI species were also small enough to pass through the dialysis 

membrane. 
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At pH 5.6 the reduction in [SihOT (5 11M) was less pronounced than at pH 4.2. However with time the 

proportion passing through 0.45 11M was greatly reduced (from 79 to 26 %). 83.0 % of Si passed 

through the dialysis tubing. 

Table 6.9. Total Al concentration ([AI hOT) in nutrient solutions (up to four days old) passing through 
filters of 5 11M, 0.45 11M, and a dialysis membrane. Total monomeric Al ([AI]"."",) was measured 
using the Pyrocatechol Violet colorimetric method. Predicted Al activity ({ AI}) after GEOCHEM-
PC. The mole fraction of the [AlhoT concentration passing through 0.45 11M or dialysis membranes is 

~iven in Earentheses. 
Nutrient Solution {AI }GEOCHEM [AI]~ [AI]'m [AIlI'tIT IAlh'llT 

Solution 
Age (JIM) (JIM) 5 flM (mg rl) 0.45 flM (rug rl) Dialysis memhrane 

(dars) (mg rl2 
25AI 0 300 482±6.88 18.8±0.38 17.7±0.38(0.94) 1.25±O.72(0.07) 

1 345±3.20 16.8±1.02 14.9±0.98(0.89) 

2 307±4.23 11.0±0.32 8.78±0.32(0.80) 

3 107±3.81 1O.3±0.15 7.76±0.15(0.76) 
4 98.4±2.09 7.57±0.47 6.88±0.47(0.91 ) 

35AI 0 408 719±11.27 30.6±0.28 25.4± 1.54(0.83) 6.59±0.05(0.22) 
1 491±4.96 28.8±0.13 25.1 ±0.32(0.87) 

2 357±9.50 27.8±0.18 24.5±0.18(0.88) 

3 131±6.48 26.2±0.20 23.9±0.20(0.91) 

4 85.6±3.23 24.6±0.37 20.2±0.44(0.82) 

25A11500Si 0 300 406±17.33 20.2±1.28 19.8±1.14(0.98) 5.43±O.O4(O.27) 

1 329±2.11 20.2±0.10 19.5±0.28(0.97) 
2 292±6.78 20.0±0.23 19.8±0.2S(0.99) 
3 131±6.48 4.08±0.47 3.98±0.46(0.98) 
4 79.6±2.S7 2.96±0.24 3.03±0.03( 1.03) 

25A12500Si 0 300 462±7.03 26.4±1.02 26.0± 1.09(0.99) 3.51±O.04(O.13) 
1 299±4.95 24.0±0.03 23.8±0.02(0.99) 

2 296±4.23 17.7±1.34 17 .6± 1.30( 1.00) 

3 117±4.09 14.9±0.20 14.8±O.l9(0.99) 

4 76.9±4.01 14.0±0.24 13.8±0.17(0.98) 

35A11500Si 0 408 nO±I1.27 36.1±1.02 34.4± 1.07(0.95) 13.0± 1.48(0.36) 
1 424±25.36 27.8±0.15 26.7±0.38(0.96) 

2 304±4.23 21.8±0.14 20.5±0.29(0.94 ) 

3 266±9.l1 18.3±0.18 16.7±0.1O(0.91) 

4 217±9.80 14.4±0.20 11.9±0.34(0.83) 

35A12500Si 0 408 696±25.77 33.9±0.49 31.0±0.48(0.92) 5.20±0.35(0.IS) 

1 395±23.25 18.6±0.30 18.9±0.15(1.0I) 

2 313±40.73 1O.7±0.29 10.5±0.28(0.99) 

3 329±19.45 8.04±O.51 5.23±0.15(0.65) 

4 219±10.86 8.70±0.51 4.90±0.21 (0.56) 

35AI rH~. 0 41 24.S±0.29 16.2±0.39 15.2±0.18(0.94 ) 15.3±0.14(0.94 ) 

1 23.2±1.67 15.8±0.14 15.3±0.12(0.97) 

2 18.8±1.59 16.7±O.1O 14.1 ±0.25(0.85) 

3 21.1±0.63 15.0±O.31 13.2±0.16(0.88) 

4 19.7±0.17 11.5± 1.42 1 0.8±0.33(0.94) 

35Al 2500Si pH5.6 0 41 36.2±3.31 33.9±0.06 32.5±0.58(0.96) 27 .6±0.28(0.81 ) 
1 26.0±1.31 22.2±0.17 20.8±0.23(0.94 ) 

2 20.5±0.61 21.9±0.65 18.1±0.38(0.83) 

3 19.8±0.79 21.8±O.52 17.3±035(0.80) 

4 21.9+ 1.41 19.9±0.20 16.6±O.O9(O.83) 
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Table 6.10. Total Si concentration ([SihOT) in nutrient solutions (up to four days old) passing through 
filters of 5 J..IM, 0.45 J..IM, and a dialysis membrane. The mole fraction of the [Si]TOT concentration 
passing through 0.45 JJM or dialysis membrane is given in parentheses. 

Nutrient Solution [SilrnT [SilrllT 
Solution Age 5 IlM (f.lM) 0.45 IlM (f.lM) 

25A11500Si 

25A12500Si 

35A11500Si 

35A12500Si 

1500Si 

2500Si 

35Al 2500Si pH5.6 

(days) 
o 
1 
2 
3 
4 
o 
1 
2 
3 
4 
o 
1 
2 
3 
4 
0 

1 
2 

3 
4 
0 
1 
2 
3 
4 
0 
1 
2 
3 
4 
0 

1 

2 
3 
4 

SOl±25.6 
757±51.J 
72S±78.1 
702±27.5 
684±36.4 
2222±97.9 
1730±289 
1384±71.1 
812±55.6 
880±70.9 
1571±35.9 
1483±36.3 
1624±192 

1515±215.3 
1731±153 
2751±165 
2498±129 
1477±11.7 

1067±1O8 
1495±29.5 
2195±7.66 
1660±10.2 
1253±15.3 
I058±5.11 
971±19.4 
3648±106 

2182±15.3 
1928±12.9 
1748±7.22 
1531±54.2 
3102±76.6 

3118±67.8 
2704±51.1 

2262±135 
2321±106 

905±29.5(1.J3) 
757±5l.J (1.00) 
713±25.6(0.98) 
657±6.64(0.94) 

675±45.4(0.99) 
2089±42. 9(0. 94) 
1328±116(0.77) 
1132±69.3(0.82) 
750± 70.8(0.92) 
812±57.9(0.92) 
1524±106(0.97) 
905±193(0.61) 
188±26.7(0.12) 
1 12±31.8(0.07) 
79.2±15.6(0.05) 
1790± 118(0.65) 

1 052± 78.1 (0.42) 
993± 128(0.68) 

713±25.6(0.67) 
1 052± 78.1 (0.70) 
1876±61.9(0.79) 
1645±32.0(0.51) 
1193±4.19(0.36) 
975±14.4(0.34) 
898± 1.47(0.26) 

2297± 1 0.1 (0.63) 
1979±12.1(0.91) 
1664± 78.1 (0.86) 
1683±60.7(0.96) 
1297±10.2(0.85) 
2439±51.1 (0.79) 
1600±231(0.51) 
967± 19.1 (0.36) 

779± 1 2.4(0.34) 
607±35.4(0.26) 

[Sihur 
Dialysis membrane (f.lM) 

542±26.5(0.68) 

2077±107(0.94) 

1200±135(0.76) 

1111±102(0.40) 

1686±27 .0(0. 77) 

2556±3 I 2(0.70) 

2565± 172(0.83) 
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6.S Discussion 

Aluminium only inhibited the growth, and reduced the dry weights, of Anthoxanthum originating from 

Sheriffmuir blanket peat (SMB). The AI-induced inhibition of root elongation in these seedlings was 

not reversed with the addition of Si. However the reduction in shoot growth by Al was ameliorated 

with the addition of 1 000 ~M Si(OHk Addition of Si also increased both the total and shoot dry 

weights and reduced Al uptake and transport to shoots. In contrast, these low concentrations of Al 

(1.3 and 2.7 mg r') were actually beneficial to the growth of Anthoxanthum originating from Flanders 

Moss (PM) and Kinloch Rannoch (KR). Root and shoot growth were both increased in the presence 

of AI, and dry weights were up to two-fold higher than control plants. The addition of 500 and 1000 

~M Si stimulated growth further. With the exception of root uptake of Fe by KR races, Al did not 

have any effects on nutrition. P, K, Mg, and Fe uptake in these plants (KR) was reduced and 

translocation to the shoots sometimes impaired. Fe uptake at 1.3 mg r' AI, in KR races, was double 

that of control plants. This result supports the hypothesis of Grime & Hodgson (1969) who proposed 

low concentrations of Al competed with Fe for root binding sites, thereby releasing more Fe for 

uptake. 

The findings of this study contradicted those of Davies & Snaydon (1972) who found a high 

correlation among races of Anthoxanthum odoratum, AI-tolerance and their natural soils. They found 

that high concentrations of Al in culture solutions had less effect upon root growth in races from acid 

soils compared with those from calcareous soils. The 5MB races, of this study, originating from acid 

soils, were more affected than KR races from calcareous soils. It should be noted that Davies & 

Snaydon (1972) used tillers collected from their natural sites and therefore already adapted to the soil 

conditions. Furthermore, PM and 5MB races originate from acid soils but these are peats and 

naturally low in Al (Chapter 3). 

The higher concentrations of Al used in Experiment 2 (25 and 35 mg r' AI) significantly inhibited all 

aspects of growth in Holcus lanatus. Silicon addition to the nutrient solutions, as 1500 and 2500 ~M 

Si(OH)4, was shown to unequivocally alleviate the effects of Al toxicity. Amelioration tended to 

increase with increasing Si concentration but this was less consistently observed. These results are in 

agreement with those of Barcelo et af. (1993), Cocker et al. (1998), Galvez & Clark (1991 b), Galvez 

et af. (1987), Hammond et af. (1995), Hodson & Sangster (1993), and Ma et al. (1997) who also 

showed amelioration of Al toxicity using Si. Furthermore Ma et af. (1997) found the alleviative effect 

of Si increased with increasing Si concentrations. 
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The symptoms of AI toxicity observed were thickening of root tips, reduced lateral root growth (in 

terms of number), and thickened stunted lateral roots. The shoots were chlorotic and the majority 

died. These symptoms have been consistently reported in the literature. The lateral roots of AI­

treated coffee were also thicker, shorter, and fewer in number compared with control plants (Pavan & 

Bingham 1982). With the addition of Si visual symptoms of AI stress were absent. 

The most frequent symptom of AI-damage, also observed here, is the inhibition of root elongation. 

Root elongation was restored to a maximum of 99.0 % and a minimum of 55.3 % with Si addition. Si 

restored root growth of two sorghum cultivars to 50 % and 30 % in studies by Galvez et aL. (1987), 

the least tolerant cultivar showing the lowest relative root growth. Relative root and shoot growth (in 

terms of length and numbers of roots, shoots, blades and tillers) were generally lowest in Holcus 

originating from KR. Measured concentrations of soil solution AI ([AlhOT) were lowest at this site 

where soil pH's were up to pHH20 6.2. At these pH's the solubility of AI is at its lowest and aluminate 

is predominant (pH> 6.2). 

Shoot growth in Al+Si treatments was frequently greater than control plants but tiller production was 

not always significantly enhanced in the presence of Si. This was again especially evident in KR 

seedlings but not characteristic of SMM seedlings which responded best to Si. The soil pH of SMM 

suggests the dominant AI form present is Ae+. This race is therefore naturally exposed to the toxic 

forms of monomeric AI. Furthermore these results are compatible with studies such as Galvez et al. 

(1987) where the least AI-tolerant crop cultivars showed the least response to Al+Si solutions. In this 

study the race, KR, which experiences the lowest AI concentrations (in non-toxic forms) also showed 

the least amelioration by Si. 

Dry weights of barley seedlings were increased when grown in solutions containing both AI and Si 

(Hammond et al. 1995). Si did not have a significant effect on the dry weights of Holcus lanatus. 

However there were trends of increasing total and shoot dry weights in AI+Si treatments. This was 

particularly evident in SMM Holcus. Root dry weights were not significantly different between 

control, or AI, or AI+Si treatments. Hodson & Sangster (1993) also found Si did not increase dry 

weights. However both Hodson & Sangster (1993), and Galvez et al. (1987) found lower root:shoot 

dry weight ratios in AI-treated sorghum. Ratios were increased in the presence of Si. The root:shoot 

ratios of Holcus lanatus were not reduced in the presence of AI and were often higher than control 

plants. The addition of Si did not significantly change ratios. 

The addition of Si to Al nutrient solutions was found by both Hammond et al. (1995) and Hodson & 

Sangster (1993) to increase Ca concentrations in roots and shoots to control concentrations. Ca 

uptake by roots of Holcus was reduced by AI in all races except SMM. Absorption and subsequent 
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translocation to the shoots was increased in Al+Si treatments to control concentrations. SMM races 

experience toxic concentrations of Al in their natural distribution and are therefore likely to be more 

tolerant of AI-induced inhibition of Ca uptake. Ryan et ai. (1994) provided evidence contrary to the 

common hypothesis that AC+ inhibits root growth by reducing Ca2+ uptake. They found treatment of 

wheat (cv. Scout 66) with 2.64 flM (0.07 mg rl) Al at pH 4.5 severely inhibited root growth without 

affecting Ca2+ uptake. P and K concentrations in Hoicus roots were actually greater in AI-treated 

plants. Marienfeld & Stelzer (1993) and Rengel & Robinson (1990) also showed K-uptake and 

transport into the stele (Marienfeld & Stelzer 1993) of oat and ryegrass roots was not affected by AI­

stress. However the concentrations of both these nutrients translocated to Hoicus shoots was greater 

in AI+Si treated plants. Pavan & Bingham (1982) suggested the AI-reduced transport of P to coffee 

tops arose through precipitation of P on the root surface or in the root cells rendering it immobile. It 

is likely that P was precipitated in the root (surface or cell walls) of Holcus, especially since actual 

root P concentrations were greater than those of Al+Si-treated and control plant roots. Both Barcel6 

et al. (1993) and Cocker et al. (1998) showed reduced Al uptake in plant tissue after growth in AI+Si 

solutions. Root Si concentrations increased with increasing Al concentrations in the solutions. Si 

concentrations in the root and shoot tissues of Holcus lanatus from FM increased with an increase in 

either Si or Al concentrations in nutrient solutions. There were no consistent differences in the other 

four races. Al uptake and translocation to shoots increased with an increase in solution Al 

concentration in all five races. Concentrations of Al in the roots of AI+Si treated Holcus lanatus were 

surprisingly higher than in AI-treated plants. However translocation to the shoots was lower 

(although not consistently) implying Al is detoxified at the roots and prevented from reaching the 

shoots. This was particularly evident in 5MB and KR races. The AI/Si analyses of roots suggest Al 

is precipitated as aluminosilicates, probably in the root cortical cell walls. 

Hodson & Sangster (1993), and Hodson & Wilkins (1991) provided evidence, using X-ray 

microanalysis, to show AI-Si co-deposition in outer cell walls of the root epidermis of sorghum and 

Picea abies. Only one study to date, Godde et ai. (1988), has investigated similar co-deposition in 

plant tops. Al has been shown to be deposited in leaf cell walls of tropical tree AI-accumulators 

(Cuenca et al. 1991). Furthermore, Galvez & Clark (1991) showed Al transported to sorghum shoots 

increased in the presence of Si but growth was not inhibited. Co-deposition as a means of 

detoxification in roots seems likely, and this, together with the potential deposition in plant shoots, 

warrants further study. 

The alleviation of Al toxicity did not appear to be due to a Si-induced reduction in Al uptake by 

Holcus roots but to a greater tolerance of Al in the plant tissues. Barcel6 et al. (1993) also suggested 

the alleviation of Mn toxicity through Si addition was not achieved by lower Mn uptake, but by 

greater tolerance of high Mn concentrations in the plant tissues. The [AI]",,,,,, measured in AI+Si 
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solutions did not decline significantly. Nominal concentrations of 25 and 35 mg rt Al ([AlhoT 5 IlM) 

were only reduced to 60-90 % of original solutions. GEOCHEM did not predict a reduction in the 

free activity of Al in AI+Si solutions. Between 74 and 76 % of Al was predicted to be present as a 

free metal. There was no evidence of hydroxyaluminosilicate production in AI+Si solutions from the 

dialysis analysis. Molar proportions of AI, in AI+Si solutions, passing through the dialysis membrane 

ranged from 0.13-0.36 and were no different from proportions in solutions of Al alone (0.07-0.22). It 

should be noted however that the solutions were not stable and dialysis analysis was only carried out 

in initial solutions (0 days). HAS formation may have increased with time. The results emphasise the 

necessity for constant monitoring of solutions. 

These results contradict those of Barcelo et al. (1993) who found Si reduced [AI]" ... , by about 50 %. 

The [AI] .... , in 25AI (averaged over three days before solution change), 378 IlM, was only reduced to 

342 1lM and 285 IlM in 25AI and 1500Si and 25Al and 2500Si. [AI]" .... , in 35Al, 522 IlM, was reduced 

to 482 IlM and 468 IlM. These corresponded to reductions of 10 %, 25 %, 8 %, and 10 %. AI was 

therefore still in an available and toxic form for plant uptake, and the formation of HAS species was 

insignificant. At pH 4.2 HAS formation would not be expected to contribute significantly to the 

availability of AI. 

A recent study, Corrales et al. (1997), was able to distinguish the ameliorative effects of Si on Al­

induced inhibition of maize growth from AlISi interactions in nutrient solutions by pretreating plants 

with 1000 IlM Si for 72 h (+Si) prior to Al exposure for 24 h in nutrient solutions with no added Si. 

These plants, +Si, showed greater RER compared with plants not pretreated with Si (-Si). The 

ameliorative effect was a result of reduced Al uptake in +Si plants and not a consequence of 

decreased Al availability in the solutions. 

Silicon at lower concentrations was beneficial to the growth of Holcus lanatus. Relative root 

elongation and root numbers were frequently greater than controls. Hammond et al. (1995) also 

found Si alone, at 2000 IlM, increased both root length and dry weight in barley. 700 IlM Si 

improved root growth by 69-87 % in Coker 315, DPL90, and McNair cotton cultivars (Li et al. 1989). 

Contrary to Marschner et al. (1990), Si supply increased root and shoot maize dry weights and 

increased both root and shoot P concentrations (Corrales et al. 1997). P uptake, and translocation to 

shoots, was increased in FM, 5MB, and SMM races of Holcus by Si. However high Si concentrations 

of 2500 IlM significantly reduced growth in Holcus. These Si-induced reductions in growth were 

often more extreme than AI-induced reductions (25 AI). Seedlings originating from KP and SMM 

were least affected by 2500 IlM Si(OH)4. Seedlings from the organic soils, FM and 5MB, and from 

KR were most affected. Analysed Si concentrations were least in the soil solutions from these sites 

(Chapter 3). Hammond et al. (1995) found reduced root concentrations of Ca in barley seedlings 
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grown with 2800 11M Si per se. Similar reductions in Ca were not evident in Holcus lanatus at high 

Si concentrations (2500 11M). Dry matter yields were lower than control plants in seedlings from two 

of the five sites (PM and 5MB). Analysed Si concentrations in soil solutions from these two sites 

were also at their lowest. Similarly, Galvez et al. (1987) found Si concentrations of 2670-3560 11M 

reduced shoot yields. 

Aluminium (35AI) was not toxic to Holcus growth when in solution at pH 5.6. At this pH the 

dominant species of monomeric Al expected are AI(OH)2+ and AI(OHh+ and the actual measured 

[AI], .... , were greatly reduced compared with solutions at pH 4.2. GEOCHEM also predicted that at 

pH 5.6 70.2 % of Al was complexed by OH compared to only 8 % at pH 4.2. AI, in solution at pH 

5.6, greatly stimulated root elongation in Holcus whose provenance was KR. However there were 

reductions in shoot elongation although these were less severe than with Al in solution at pH 4.2. 

These monomeric species are therefore not as toxic as Ae+ but do show some toxicity to Holcus 

lanatus. There were no reductions in dry weights of plants grown in solution with Al at pH 5.6 

compared with control plants. Pavan & Bingham (1982) showed AI-induced reductions in the growth 

of coffee seedlings. The regression equation they obtained for shoot growth plotted against 

GEOCHEM-caIculated activity for Ae+ had a greater correlation coefficient than regressions of shoot 

+ OH2+·· B &P 1+ growth against AIS04 or AL actiVIty. renes earson (1973) also found AI- activity to be 

the best index of Al toxicity for com and sorghum. Kinraide (1991) however, believed Ae+ on its 

own has only been shown to be toxic to wheat cultivars in an earlier experiment by Kinraide & Parker 

(1989). Red clover, lettuce, and turnip were not sensitive to Ae+ but were sensitive to mononuclear 

hydroxy-AI. Amelioration of Ae+ toxicity by protons, was suggested by Kinraide (1991) to possibly 

account for the apparent toxicity of mononuclear hydroxy Al species. 

The Al uptake by roots increased significantly at the higher pH in Holcus. Godbold et al. (1995) also 

showed Al uptake by Picea abies increased with pH from 4.0 to 5.0 and this was mainly due to 

greater concentrations in root cortex cell walls. 

The results of the dialysis analyses of 35AI 2500Si solutions at pH 5.6 show hydroxyaluminosilicates 

were formed in these solutions and were also not toxic to the growth of Holcus lanatus. Exley et al. 

(1997) showed HAS species were not toxic to Salrno salar at pH 5.5. 
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6.6 Conclusions 

• Al inhibited the growth of 5MB races of Anthoxanthum, but stimulated growth in FM and KR 
races. 

• Despite enhanced growth, nutrient acquisition was reduced in AI-treated Anthoxanthum. 

• Fe uptake alone was stimulated by AI in KR races of Anthoxanthum. 

• Silicic acid, at both concentrations, ameliorated Al toxicity in Holcus lanatus. Root lengths, shoot 
lengths, laterals, leaf area, and dry weights were increased in AI+Si-treated plants compared with 
AI-treated plants. 

• Amelioration by Si increased with an increase in silicic acid concentration. 

• Si restored nutrient uptake and translocation to shoots to that in control plants. 

• Alleviation of Al toxicity was not the result of a reduction in AI uptake, nor was it the result of the 
formation of HAS species in the nutrient solutions. 

• At 1500 flM, Si enhanced growth in Holcus, particularly in races which also originated from the 
most Si-rich soils. 

• At 2500 IJM, Si inhibited growth in Holcus, particularly in FM and 5MB races which also 
originated from those soils with the least Si. 

• Al was not toxic to Holcus in solutions at pH 5.6. Root elongation was stimulated by Al in KR 
races at this pH. 

• Hydroxyaluminosilicate species, formed at pH 5.6, were not toxic to Holcus. 
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Chapter 7 

Changes in the root cell anatomy and ultrastructure of Holcus lanatus L. 
grown with AI and Si 

7.1 Introduction 

The majority of proposals regarding the initial site of action by Al implicate changes in the root 

elongation rate. Clarkson (1965, 1969) believed a reduction in root elongation was the most obvious 

consequence of Al treatment. Furthermore he suggested Al action involved a blockage of the cell 

cycle during DNA synthesis and reduced mitotic activity in root apical meristems. Later publications, 

such as Matsumoto et al. (l976b), showed AI-accumulation in nuclei as well as inhibition of DNA 

synthesis, and furthermore, they suggested Al bound to nucleic acids. 

However recent studies have shown that AI-treated roots can recover and resume apical growth, 

suggesting that the effect of Al on the root meristem is not permanent, and more likely to be a result 

of apoplastic rather than symplastic Al (Horst 1995). Observed meristem cell nuclei appear 

structurally stable, and changes in meristematic cell ultrastructure occur very slowly after Al exposure 

(Bennet & Breen 1991). 

Al uptake was shown by Bennet et al. (1985) to initially occur in peripheral root cap cells and only 

very slowly reached the remaining cells of the root apex. Cap mucilages have been found to have a 

very high affinity for binding Al (Horst et al. 1982). The slow movement of AI within plant cells is 

generally agreed, and substantiated by chemical analyses of roots and shoots implying that the 

primary site of Al action must coincide with the site of Al uptake (root cap). 

Peripheral cap cells secrete mucilaginous, polysaccharide materials to the cell exterior. Their 

secretory function is reflected in their ultrastructure (e.g. Golgi body, secretory vesicles, amyloplasts). 

Recent publications have shown ultrastructural changes in these cells after Al exposure. Exposing 

AI-sensitive Danthonia linkii to AI, resulted in a reduction in secretory vesicle size (in peripheral cap 

cells), Golgi body number, and amyloplast size (in central cap cells) of root cap cells. These changes 

were reflected in the lower volume of mucilage produced by the root tips (Crawford & Wilkens 

1997). A similar reduction in mucilage production was observed by Puthota et al. (1991) in the AI­

sensitive wheat cultivar Victory. Mucilage polysaccharide accumulated between the plasmalemma 
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and cell wall, and its transport to the cell exterior was inhibited. After only 4 h exposure to AI, Golgi 

body volume was less than 20% of plants grown without AI. AI inhibited the development of the 

Golgi apparatus function in cells of the quiescent centre in decapped maize roots (Bennet et al. 1985). 

Within 6 h of exposure the numbers of secretory vesicles, Golgi bodies and cisternae per dictyosomal 

stack were reduced. AI-treated roots also failed to regenerate a root cap, unlike maize treated with no 

AI. 

The evidence above implies Al is inhibiting cell division and root elongation rates indirectly via a 

primary effect on root cap function. Bennet & Breen (1991) described a new theory implicating a 

stimulus-response coupling with AI toxicity. Common environmental signals, such as gravity and 

light, induce changes in plant root growth rates. These adaptive responses can include both growth 

stimulation or growth retardation. All such stimuli investigated to date have apparently shown signal 

perception in the root cap. The signal is then translated into a growth response after its transduction 

between interacting cell populations (Bennet & Breen 1991). They proposed that AI could equally 

act as one such environmental stimulus. Furthermore they suggested a possible connection in 

stimulus-response mechanisms between the activity of the root cap (signal strength) and possible 

tolerance mechanisms. Al tolerance perhaps reflects a plant's ability to maintain the activity of the 

root cap and cap secretion in the presence of AI. Johnson & Bennet (1990) found Al tolerance 

coincided with an unusually high level of root cap activity in Aristida junciformis (Bennet & Breen 

1991). 

7.2 Aims 

• To determine the location of Al within the root cells of Holcus using hematoxylin staining and 
compare Al localization in AI-treated and AI+Si-treated roots. 

• To investigate ultrastructural changes in the root tips of Holcus lanatus after exposure to AI. 

• To investigate any differences in cell ultrastructure between AI-treated and AI+Si-treated roots of 
Holcus and discuss possible mechanisms of Si alleviation of Al toxicity regarding cell 
ultrastructure and root caps. 
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7.3 Methods 

Root anatomy and ultrastructure were investigated in Holcus lanatus, originating from FM, treated 

with solutions of Al and Si as described in Chapter 6. 

7.3.1 Light microscopy 

For light microscopy the end I5-nun portions of five main roots from one plant in each treatment were 

cut. After removing the terminal 5 nun, the root sections were fixed in 2 % gluteraldehyde in 0.1 M 

sodium cacodylate buffer (pH 7.2) and kept at room temperature for 2 h. The root segments were 

vacuum infiltrated and placed in a fridge overnight. They were then drained and dehydrated with 

graded ethanol and embedded in JB4 Resin. Cross-sections (7 nm thick) were cut using an 

ultramicrotome and stained with hematoxylin. 

Also for light microscopy terminal to-mm root sections were fixed in FAA (13 ml formaldehyde: 5 

ml glacial acetic acid: 200 rn1 50 % aqueous ethanol) and embedded in paraffin wax (Paraplast 

Embedding Media) following dehydration with graded ethanol. Thin cross-sections (7 nm) were cut 

using a ultramicrotome and stained with Safranin and Light Green. Several measurements were 

recorded from each prepared slide: diameter of root, number of cortical cells, diameter of central 

stele, width of epidermis. 

7.3.2 Electron microscopy 

For electron microscopy terminal 10 mm root portions were embedded in Spurr's resin. Roots were 

excised and fixed in 2.5 % gluteraldehyde in 100 mM sodium cacodylate buffer at pH 7.2 for 2 h at 

room temperature. Root tips were then washed in three changes of the buffer for 10 min each, and 

post-fixed in 1 % osmium tetroxide in 100 mM buffer for 2 h at room temperature (in a fume 

cupboard). Root tips were washed in buffer, en-bloc stained in 2 % uranyl acetate (in 30 % acetone) 

for 1 h, and dehydrated in a graded acetone series consisting of 40 min in each of 60, 90, and 100 % 

acetone (diluted with deionised water). This was followed by 1 h in 100 % anhydrous acetone. The 

samples were infiltrated overnight in a mixture of 100% acetone and Spurr's low-viscosity resin (I: I), 

followed by 100 % Spurr's resin overnight on a rotary mixer. Root tips were trimmed back to the 

terminal 2-mm portion and these tips embedded in flat Beem capsules with fresh Spurr's resin and 

polymerised for 48 h at 60 DC. Ultra-thin longitudinal sections of root tips were cut using a Reichert 

Ultracut E Ultramicrotome and diamond knife (about 90 nm thick), stretched using xylene vapours, 

collected on 200 mesh copper grids, and stained with 8 % uranyl acetate in distilled water for 20 min 

176 



and Reynolds lead citrate for 7 min. They were observed under a Philips 301 transmission electron 

microscope (TEM) and micrographs taken. 

7.3.3 Hematoxylin staining 

Five plants per treatment were randomly chosen for hematoxylin staining of root tips after Polle et af. 

(1978). The staining solution consisted of 2 g hematoxylin and 0.2 g of NaI03 dissolved in one litre 

of deionised water. The plants were rinsed and transferred from nutrient solutions into deionised 

water for 30-60 min. The roots were subsequently dipped in staining solution for 15 min. After 

staining, the seedlings were washed in flowing deionised water for 1 min and photographed. 

The distribution of Al in the root tissue zones (approximately 0.5-1 cm from the tip) was also 

observed in cross-sections cut from the JB4 embedded root portions. Sections were stained with 

hematoxylin, mounted with DPX mountant and observed under a optical Zeiss microscope. 

7.4 Results 

7.4.1 Hematoxylin staining 

Root tips of Hofcus seedlings treated with 25 and 35 mg rl Al stained a dark purple after immersion 

in hematoxylin. Al acts as a binding agent of hematein, an oxidised component of the hematoxylin 

solution. The stainable region of the root tip coincides with the region of root elongation. Where no 

staining occurs root cells are expected to elongate normally (polle et al. 1990). With increasing Si 

concentration in the nutrient solution +AI (25 or 35AI), the extent of staining diminished (Figure 7.1). 

Staining of root cross-sections showed similar patterns. There was no staining in control sections 

(Figure 7.2 d). Staining was evident within the outer cortical cells and on the outer root surface in 

roots treated with Al (Figures 7.2 a and b). There was some staining on the root outer surface of roots 

grown in 35AI 2500Si (Figure 7.2 c) revealing the presence of Al deposits on the root surface of both 

Al and AI+Si treated plants. 

7.4.2 Root anatomy 

Table 7.1 gives the mean root diameter, stele diameter and number of cortical cells in Hoiclis grown 

in Al and AI+Si solutions. Both root diameters and stele diameters were greater in AI-treated roots 
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3511500 

lSAl 

Figure 7.1 . Hematoxylin staining of roots of Holcus lanatus treated with (a)/(b) 35 mg AI r\ 35 
mg Al r1 + 1500 ~M Si, 35 mg AI 1'1 + 2500 ~M Si, and with (c)/(d) 25 mg Al rt, 25 mg Al r1 + 
1500 J-lM Si, and 25 mg AI 1'1 + 2500 ~M Si. 

Figure 7.2 . Hematoxylin staining of root cross-sections from Holcus lanatus after treatment in 
(a)/(b) 35 mg AI rt, (c) 35 mg AI rl + 2500 ~M Si, and (d) control nutrient solutions. 
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reflecting the swollen nature of their root tips. The number of cortical cells in AI-treated roots was 

also greatly increased. 

Table 7.1. Mean root diameter and area, stele diameter and area, cortex area and number of root 
cortical cells (± s.e) in Holcus lanatus root cross-sections embedded in paraffin. Seedlings were 
grown in 25AI, 35AI, 25AI 1500Si, 25AI 2500Si, 35AI 1500Si, and 35AI 2500Si nutrient solutions. 
The mean proportion of whole-root area occupied by vascular tissues and cortex are given in 
parentheses. Areas were estimated from diameter measurements. 
Treatment Root diameter Root area Stele diameter Stele area 

OAI 
25AI 
35AI 
25Al1500Si 
25Al2500Si 
35Al1500Si 
35A12500Si 

(mm) (mm2
) (mm) (mml) 

0.22 :1:0.01 0.70 ±D.04 0.09 ±D.OI 0.25±D.02(36.6) 

0.31 ±0.01 0.98 :1:0.04 0.1 1:1:0.01 0.35±0.02(35.6) 

0.31 ±0.02 0.98 ±O.OS 0.12 ±0.01 0.37±0.02(39. I) 

0.27 ±0.02 0.86 :1:0.07 0.10 :1:0.01 0.32±0.02(39.6) 

0.21 ±0.01 0.65 ±O.OS 0.08 :1:0.01 0.24±0.02(37.8) 

0.22 :1:0.01 0.70 ±0.03 0.09 ±D.OI 0.28±0.01(40.1) 

0.29 ±D.02 0.91 ±0.08 0.10 ±0.01 0.30±0.03(33.5) 

7.4.3 Root cap cell ultrastructure 

Cortex area 
(mml) 

0.45±0.02(63.4) 

0.64±0.03(64.4) 

0.61±0.04(60.9) 

0.S3±0.OS(60.4) 

0.41 ±0.04( 62.2) 

0.42±0.02(S9.9) 

0.60±O.05(66.6) 

Cortical cell 
number 
80 ±2.4S 

108 ±3.64 

98 ±S.S7 

87 ± 1.53 

65 :1:5.19 

78 ±2.00 

96 ±1O.2 

Figures 7.3 and 7.4 show several Transmission Electron Microscope (TEM) micrographs of 

longitudinal sections through the root tips of Holcus lanatus grown in control, 35AI, and 25AI 2500Si 

nutrient solutions. Immature cells were highly vacuolated irrespective of treatment (Figures 7.3 and 

7.4). Vacuolation increased towards the outer cortical cells (Figures 7.3 d and e). The extent and 

increase of vacuolation however appeared to be greater in Al treated roots. Figure 7.3 c shows 

vacuoles almost enveloping the cell nucleus and occupying the majority of the cytoplasm. No 

obvious reductions in E.R., Goigi bodies, or mitochondria were visible in Al treated roots (Figures 7.3 

band f, compared with Figures 6.4 f and g). Neither nuclei nor cell walls appeared to be dismptcd. 

However very few amyloplasts were observed in Al treated roots but these were abundant in both 

AI+Si treated and control roots (Figure 7.4 b, c and e). What appeared to be secretory cells on the 

root cap (Figure 7.4 h) were also absent in Al treated roots. 
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Figure 7.3. TEM microgra~hs showin~ cortex cells on a longitudinal root tip section of HoLcus 
lanatus treated with 35 mg I AI. The Immature cortex cells, (a)-(e) were heavily vacuolated with 
vacuoles often enveloping the nucleus (c). Vacuolation increased in the outer cortex cells, (d) and (e), 
to a greater extent in AI treated roots comp~red with contr~l s. Mitochondria and Golgi bodies (f) were 
still abundant in Al treated root . G = GoIgl body, V = vesIcle. 
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Figure 7.4. TEM rnicrogra~hs showing cortex cells of Holcus lana~us grown in control and 25 mg AI rl + 
2500 ~M Si nutrient solutIOns. Both (a) control and (d) Al+SI-treated roots were very vacuolated. 
Plastids were abundant i~ control ~ell s, (b) and (c), ~nd frequent in the cells of AI+Si treated roots (e) . 
ER Golgi bodies and ITIltochondna were abundant In both (f) control and (g) AI/Si treated root cells. 
Se;retory ceIls were present in ~e outer r?ot cap of ceIls of both t~eatments (h). ER = Endoplasmic 
reticulum, G = Golgi body, M = mltochondnon, N = nucleus, P = plasttd, V = vesicle, W = celI wall. 
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7.5 Discussion 

The association between hematoxylin and Al has frequently been used to identify the location of Al 

within plant tissues. Root tips of AI-treated Holcus stained a dark purple, while those of AI+Si­

treated Holcus barely stained at all. Likewise root cross-sections of AI-treated plants exhibited 

considerable staining, predominantly associated with the epidermal cell wall, with little staining 

within the cortical cells. Intracellular staining was however not apparent in AI+Si-treated roots, 

where Al was mainly found on the outer surface of the root. The patterns of hematoxylin staining in 

Holcus were in agreement with patterns found in maize (Corrales et al. 1997) and in wheat (Kinraide 

1988). Corrales et al. (1997) also found hematoxylin staining in epidermal and outer cortex cells of 

AI-treated maize, and AI deposits on the root surface of maize roots pretreated with Si. Further 

staining was also visible in the cell walls of root endodermal cells of AI-treated maize. Kinraide 

(1988) found no intracellular staining in root cap and epidermal cells of AI-treated wheat (cv. Tyler). 

The only cells which stained intracellularly were those of the quiescent centre. The significance of 

the quiescent centre will be discussed later. In contrast, Wagatsuma et al. (1995) found staining of 

AI-treated pea roots was only localised to the epidermis when plants were grown in high salt nutrient 

solutions. If grown in low salt solution, almost all the cortical cells stained. 

In a recent publication, Bennet (1997) warned scientists of the use of hematoxylin as a universal stain 

for AI. He showed staining patterns between AI-tolerant and AI-sensitive plants did not always 

correlate with differences in Al uptake, and the roots of AI-stressed pea plants did not consistently 

respond to hematoxylin despite Al being present at the time of staining. He also found that some 

roots not treated with Al also responded positively to hematoxylin. Control Holcus (0 AI) did not 

however show any positive staining in this study. However the whole root Al contents contradicted 

the hematoxylin staining pattern of AI+Si-treated plants. The Al concentration measured implied Al 

was taken up by the roots but the hematoxylin staining implied Al was mainly present as deposits on 

the root surface. The Al concentrations may only reflect Al deposits attached to the root surface 

which were digested along with the roots. Combining the use of hematoxylin staining, ionic 

composition analysis, and x-ray microanalysis (EDXA) analysis may be useful in confirming the 

exact location of Al within root cells. 

Despite the limitations of EDXA (discussed in Chapter 5) in identifying Al deposits, the technique 

may be more sensitive than hematoxylin at lower concentrations of AI. EDXA has been used to show 

the Al distribution in the roots of Pinus strobus, oat, Picea rubens, and wheat. 
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Al preferentially accumulated in the cell walls of root cortical tissue of an AI-sensitive wheat cultivar 

(Carazinho x Egret) (Delhaize et al. 1993a) and electron dense globular deposits were observed 

between the cell wall and cell membrane of the epidermal cells of the AI-sensitive Wagrigal cultivar 

(Wheeler et al. 1992). Only after prolonged exposure was Al detected within the cells (Delhaize et al. 

1993a). Similarly Al was predominantly localised in the walls of peripheral cortex cells of oat 

(Marienfeld & Stelzer 1993, Marienfeld et al. 1995). A steep decreasing [AI]-gradient was observed 

from the rhizoderrnis towards the stele. Intracellular Al concentrations were always low and no 

enhanced Al concentrations were ever detected in the cell nuclei. 

The results of both hematoxylin staining and EDXA generally imply the plasma membrane acts as an 

effective barrier against AI-influx into cells. Influx only seems to occur after prolonged exposure. 

The inhibition of root elongation and reduction in mitotic activity appear more likely to be indirect 

effects of AI, contrary to the suggestion that they were the direct result of intracellular Al binding to 

DNA and inhibition of DNA-synthesis (Matsumoto et al. 1976b). Minocha et al. (1992) actually 

found increased DNA-synthesis during the first few hours of Al treatment (Marienfeld & Stelzer 

1993). Furthermore the reduction in root elongation and mitotic activity observed in oat seedl ings 

exposed to Al did not coincide with any detection of intracellular [AI]. However the minimum 

detection limits of EDXA are themselves high (2-3 mM) and the presence of intracellular Al can 

therefore not be entirely excluded (Horst 1995). 

Ultrastructural investigations showed that the meristematic tissues of the AI-treated Holcus roots 

showed increased vacuolation compared with control and AI+Si treated roots. The cells however 

remained intact and there were no obvious alterations in the ultrastructure. There was no visible 

alteration of nuclear fine structure. Nuclei contained large nucleoli in control, AI, and AI+Si treated 

roots. The fine structure of the mitochondria and presence of the E.R. and Golgi bodies also appeared 

unaltered in AI-treated roots. Similar results were found in ultrastructural investigations in AI-treated 

oat roots by Marienfeld et al. (1995), and in Pinus strobus seedlings by Schier & McQuattie (1995). 

Cortical cells were vacuolated and vacuolation proceeded from the inner cortex to the rhizodermis in 

both control and AI-treated oats but vacuolation was more advanced in AI-treated oats, as it was in AI­

treated Holcus. Increasing Al concentration from 12.5 to 100 mg rl resulted in more and larger 

vacuoles in Picea abies meristem cells (Hecht-Buchholz et al. 1987). Marienfeld et al. (1995) also 

found no alteration in the nuclear fine structure, or in numbers of mitochondria, E.R , or plastids. In 

this study the numbers of plastids in Holcus lanatus were greatly reduced in AI-treated plants but not 

in control or AI+Si treated plants. 

If Al were binding to DNA and inhibiting its synthesis Marienfeld et al. (1995) suggested that this 

binding would not specifically inhibit DNA synthesis but should block general nuclear functions. 
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However both their TEM observations, and the TEM observations in this study, provided no evidence 

for this. There did not appear to be any ultrastructural deviations in nuclei from AI-treated roots from 

control roots. 

The increased vacuolation, observed by Marienfeld et al. (1995) and in this study, also did not appear 

to be a means of detoxification. Vacuoles tended to be located close to nuclei suggesting no 

pinocytotic function and no precipitations or fibrillar material within the vacuoles were visible. In 

contrast element distribution studies of Schlegel et al. (1992) in Picea rubens showed high 

concentrations of Al (l09 mM) in vacuoles of root cortical cells. Wheeler et al. (1992) showed 

electron dense deposits in vacuoles of wheat roots exposed to Al which they suggested may contain 

AI. No deposits however were observed in vacuoles of Holcus treated with AI. 

Marienfeld et al. (1995) suggested that the increased vacuolation was unlikely to be a direct effect of 

Al but rather an effect of growth retardation. Similar increased vacuolation was described by Barlow 

& Adam (1989) for cold-stressed plants (Marienfeld et al. 1995). 

Crawford & Wilkens (1997) investigated ultrastructural changes in the root cap cells of two AI­

tolerant native Australian grasses: Danthonia linkii and Microlaena stipoides. This study was more 

advanced in that they used image analysis in order to quantify ultrastructural changes. Lower Al 

concentrations (1-2 mg rl) produced larger root cap cells and high Al concentrations (5-10 mg rl) 

produced smaller cells. No change in root cap cell size was observed in Holcus but no quantitative 

measurements were made. The more AI-tolerant grass, Microlaena, contained 90 % more Golgi 

bodies and had 50 % larger amyloplasts than Danthonia. Although Golgi bodies were observed in AI­

treated Holcus again no quantitative assessment was made. However practically no amyloplasts were 

observed in AI-treated roots whereas amyloplasts were abundant in both control and AI+Si treated 

roots. The size of amyloplasts in Al treated roots that were present was not determined. The number 

of mitochondria in Danthonia was not affected by AI. There did not appear to be any reduction in 

mitochondria number in Holcus. 

Crawford & Wilkens (1997) also found that the size of secretory vesicles in peripheral cap cells of 

Danthonia were significantly smaller after exposure to 5 and 10 mg rl AI. Secretory vesicles in the 

more AI-tolerant Microlaena were on the other hand unaffected. Secretory vesicles are produced by 

Golgi bodies. This suggested that production and export of mucilage was dramatically reduced in 

Danthonia. Microlaena produced mucilage in considerably greater quantities than Danthonia. It was 

also observed in Holcus lanatus that peripheral cap cells did not appear to have any secretory vesicles 

in AI-treated roots. This was not the case in either control or AI+Si treated roots. 
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The ultrastructural observations and hematoxylin staining of root cortical cells imply the entry of Al 

into the symplast and subsequent impairment of cellular functions were not the primary effects of Al 

toxicity. However it appears that greater concentrations of Al were able to enter the symplast and be 

translocated to shoots compared with AI+Si treated roots. This contradicts the findings of other 

researchers such as Wagatsuma et al. (1995) who found Al accumulated in large amounts in the 

younger and outer cells of pea roots and cell destruction was extensive in these regions. Wagatsuma 

et al. (1995) also observed that the plasma membrane was destroyed, a feature which was not 

observed in the TEM micrographs of Holcus lanatus. 

Ultrastructural studies have frequently and successfully been used to investigate Al phytotoxicity but 

not apparently to investigate silicon's amelioration of Al toxicity. The investigations here suggest 

that the production of mucilage could be involved in the mechanisms of overcoming Al toxicity by Si. 

Similar suggestions were made to explain increased AI tolerance by Crawford & Wilkens (1997). 

Unfortunately mucilage production by Holcus roots was not quantified. However the only significant 

differences in cell ultrastructure between AI- and AI+Si-treated Holcus were an increase in 

vacuolation, a reduction in amyloplasts, and an absence of secretory vesicles in the peripheral cap 

cells of AI-treated roots. Secretory vesicles are produced by Golgi bodies and quantification of Golgi 

numbers may have provided further evidence implicating mucilage production in Si protection. 

Bennet & Breen (1991) have suggested that maintenance of root growth in the presence of AI is 

dependent upon the activity of peripheral root cap cells. They found reductions in root growth 

alongside reductions in amyloplast number which also distribute polysaccharide material produced by 

Golgi bodies. Further investigations with quantitative analysis are required to fully elucidate the 

mechanisms through which Si alleviates Al toxicity. 

Ryan et al. (1993) showed AI-induced inhibition of root elongation was neither increased nor 

decreased after the removal of the root cap, contradicting theories involving root cap cell activity and 

Al tolerance. The cells of the quiescent centre respond to the removal of the root cap by entering 

mitosis and regenerating a new cap, and were shown by Kinraide (1988) and Galsomies et al. (1992) 

to stain intracellularly with hematoxylin. Ryan et al. (1993) made no reference to whether or not root 

caps regenerated. Bennet et al. (1985) did however show that AI-treated roots failed to regenerate a 

new root cap. The cells of the quiescent centre and their role in AI-toxicity deserve further attention. 

Whether or not root caps regenerate in the presence of AI+Si also requires further investigation, as 

does the potential role of Si in protecting the quiescent centre cells and allowing root cap 

regeneration. 
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7.6 Conclusions 

• Root tips of AI-treated Holcus stained a dark purple in hematoxylin, and the staining decreased in 
AI+Si-treated plants. 

• Al was primarily located in the peripheral cortical cell walls of roots. Al precipitates on root outer 
surfaces were found in AI+Si-treated Holcus. 

• AI-treated roots were swollen and contained a larger number of cortical cells. The proportion of 
whole-root area occupied by stele and cortex did not change among treatments. 

• The fine structure of nuclei, nucleoli, plasma membranes, and cellular constituents were not 

affected by AI. 

• Vacuolation was greater in AI-treated Holcus. 

• Root cap cells of AI-treated roots had fewer amyloplasts and no visible secretory vesicles. 

• Root cap cells of AI+Si-treated roots did not lack amyloplasts or secretory vesicles. 

186 



ChapterS 

Organic acids reduce aluminium toxicity in Holcus lanatus L. and stimulate 
growth in Deschampsia flexuosa (L.) Trin. 

8.1 Introduction 

Organic acids have been shown by several authors to detoxify aluminium (Foy et al. 1990, Gerke 

1994, Harper et ai. 1995, Kerven et al. 1991, Ostatek-Boczynski et al. 1995, Ownby & Popham t989, 

Slattery & Morrison 1995, Suhayda & Haug 1986, Suthipradit et al. 1990). As earty as 1933, Mattson 

recognised that plants growing in soils high in organic matter did not exhibit symptoms of Al toxicity 

at the same pH that soils low in organic matter did (Hargrove & Thomas 1981). Later both Evans & 

Kamprath (1970) and Thomas (1975) found less exchangeable Al in organic soils compared with 

mineral soils despite the low pH of organic soils (Hargrove & Thomas 1981). The effect increased 

with decreasing soil pH (Thomas 1975). 

In a similar manner to the suggested detoxification of Al by hydroxyaluminosilicates, organic acids 

are thought to chelate soluble, phytotoxic Al (AI3
+ and hydroxy-AI ions) and render it biologically 

unavailable. Low molecular weight, short chain aliphatic and aromatic (discussed in Chapter 1) 

organic acids are common components of soil solutions and released into the solution through 

microbial decomposition of organic matter or exudation from plant roots (Hue & Amien 1989, 

Ostatek-Boczynski et al. 1995). Complexes between organic ligands and AI, formed at low pH, vary 

in strength (Ostatek-Boczynski et al. 1995). The high molecular weight fulvic and humic acids form 

far more stable complexes than the low molecular weight carboxylic acids (Harper et al. 1995). 

Fulvic and humic acids are less susceptible to microbial degradation than the low molecular weight 

acids and can therefore provide a more permanent amelioration of Al toxicity (Harper et al. 1995). 

The ameliorative effect of organic acids has been shown by investigators both in acid soils and in 

nutrient solutions. Hargrove & Thomas (1981) grew barley (cv. Kearney) in an acid fragipan soil 

from western Kentucky with added peat. Plant growth was better, and exchangeable Al lower, at any 

given pH with increasing amounts of organic matter. Hue & Amien (1989) added ground shoot 

material of cowpea, Leucaena, or guinea grass at 0, 5, 10 & 20 g kg-) to an acid Ultisol (pHII,O 4.0, 50 

% Al saturation). They grew an AI-sensitive tree legume, Sesbania cochinchinensis, for four weeks in 

each treatment. .organic matter additions increased biomass production. Cowpea and Leucaena were 
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more effective than guinea grass in ameliorating Al toxicity. They suggested that the detoxification of 

Al occurred via two paths: first the reduction in soluble Al resulting from an increase in soil pH after 

manure additions, and secondly, the complexation of the remaining soluble AI by organic ligands, 

particularly low molecular weight organic acids. The same reasoning was proposed by Bessho & Bell 

(1992) who found applications of organic matter (ground barley and tree legume) prevented AI 

toxicity in mungbean. 

There was no reduction in dry matter production of ryegrass grown in nutrient solutions with 20 or 

200 mg Al r1 as AI citrate or oxalate (Muchovej et al.1988). Similarly Kerven et aL. (1991) showed 

no inhibition in root elongation of mungbean (cv. Berken) when seedlings were grown with citrate, L­

malate, and oxalate in AI solutions. 

Both Harper et af. (1995) and Tan & Binger (1986) investigated Al detoxification in maize using the 

high molecular weight humic and fulvic acids. Harper et al. (1995) added both fulvic and humic acids 

(extracted from Eucalyptus leaves) at three nominal concentrations: 40, 120, and 360 mg C r1 to 

solutions with 0.8 mg Al r1 (30 JIM). In all treatments with both organic acid and AI, relative root 

length was significantly greater than that in treatments with Al alone. Monomeric Al was totally 

complexed by organic acids. Dry weights increased and plants appeared green and healthy in 

appearance when grown with Al and humic acid (Tan & Binger 1986). Addition of humic acid also 

reduced Al uptake by shoots and suppressed reductions in leaf P concentrations. 

Differences in the complexing ability of organic ligands have been frequently shown. Bruckert 

(1970) classified short-chain carboxylic acids into three groups of AI complexers: strong complexers 

(such as citric, oxalic, and tartaric acids), moderate complexers (such as malic, malonic, and salicylic 

acids), and finally, weak complexers (such as succinic, lactic, formic, acetic, and phthallic acids). 

Hue et al. (1986) showed a positive correlation between the ability of these acids to detoxify AI and 

the relative position of OHICOOH groups on their main C chain. Positions which favoured the 

formation of stable 5-or 6- bond ring structures with Al were common to the strong Al complexers. 

These acids had either 2 pairs of OHICOOH attached to two adjacent carbons (citric and tartaric) or 

two COOHs directly connected (oxalic). The formation of complexes of Ae+ with hydroxy 

carboxylic acids, and their stability constants, was reviewed by Motekaitis & Martell (1984). Hue et 

al. (1986) found relative root growth of cotton seedlings, grown in solutions with both Al and organic 

chelates, followed Bruckert's classification. Within the strong complexers, the alleviative effect of 

the acids increased in the order: citric> oxalic> tartaric. Cotton roots grew normally in solutions 

with 0.5 mg Al r1 (18.5 JIM AI) provided 50 JIM citric acid was also added. Slightly less effective 

were oxalic and tartaric acid: cotton grown in solutions with 0.25 mg Al r1 (9.25 JIM AI) with 50 JIM 
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of either oxalic or tartaric acid had relative root lengths of 101 and 93% (relative to plants grown with 

no Al or organic acids). In contrast, the weak AI complexer, succinic acid, had virtually no protective 

effect in solutions with concentrations of AI> 0.10 mg rl (3.7 11M). The results of Ostatek-Boczynski 

et al. (1995) agreed with those of Hue et at. (1986). Root growth of mung-bean was unaffected by Al 

in solutions with nominal Al concentrations of 0.14 and 0.54 mg rl (5 and 20 11M) as AI citrate (molar 

ratio 1: 1), and was only marginally reduced by AI oxalate at the same concentration. Both citrate, and 

to a lesser extent succinate, were able to stimulate regrowth of wheat after 5 h treatment in AI 

solutions (Ownby & Popham 1989). However malate was found to be ineffective despite being 

considered a moderate Al detoxifier. 

Several investigators have also shown a correlation between organic acids and differential AI 

tolerance (Foy et at. 1990, Galvez et at. 1991, Klimashevskii & Chernysheva 1980, Pellet et al. 1995). 

One possible mechanism of Al tolerance may be the chelation of AI, either in the cytoplasm by 

internal organic ligands, or in the rhizosphere by root exuded organic ligands. Foy et al. (1987) found 

Al stress induced by 1.5 and 3.0 mg Al rl (55 and 110 11M at pH 4.5) reduced concentrations of citric, 

succinic, and total organic acids in the roots of AI-sensitive "Kearney" barley but not the AI-tolerant 

"Dayton". AI tolerance was associated with an ability to maintain normal concentrations of organic 

acids in the presence of Al (Foy et at. 1990). Similar results were found in AI-tolerant sorghum 

cultivars by Cambraia et al. (1983) and Galvez et al. (1991), and in maize hybrids by Suhayda & 

Haug (1986). The tolerant cultivars of both crops accumulated significantly higher concentrations of 

t-aconitic and malic acids than AI-sensitive cultivars. 

More recently however Foy et al. (1990) grew five wheat cultivars, representing a range in AI 

tolerance, in nutrient solutions containing 0 or 2 mg rl AI. The cultivar roots and shoots were 

analysed for organic acids. Al treatment reduced concentrations of c-aconitic but increased fumaric 

and malic acid concentrations in the plant tops. Similarly c-aconitic concentrations were reduced in 

wheat roots, while concentrations of fumaric, malic, succinic, and total organic acids were increased. 

However differential Al tolerances were neither consistently correlated with differences in foliar acid 

concentrations, nor with changes in these concentrations under Al stress. Suthipradit et al. (1990) 

also found contradictory results to the authors above. Oxalic and malic acids were compared with 

fulvic acid as Al detoxifiers in soybean, cowpea, and green gram. Concentrations were within the 

mid-range of reported values for acid soil solutions. There was no inhibition of growth in any of the 

three crops when grown in Al with fulvic acid. However neither oxalic or malic acid (both known as 

strong Al complexers) had any ameliorative effect of Al toxicity at 50 11M. A far greater proportion 

of Al remained in the monomeric form in solutions with these two acids. 
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Few investigations have looked at the effects of organic ligands per se on plant growth. 

Concentrations of fulvic and humic acids in the range 25-250 mg C rl have been shown to stimulate 

root elongation (Harper et af. 1995). Root elongation of maize was increased by 30 % by humic acid 

at 40 mg C rl, and by 36 % by fulvic acid at 120 mg C rl (Harper et al. 1995). However there are few 

records of the effects of individual carboxylic acids on plant growth. 

8.2 Aims 

• To analyse soil solutions (from five soil types) for organic acid content and prepare nutrient 
solutions based on these measurements. 

• To investigate the amelioration of Al toxicity in the presence of organic acids in Hoicus ianatus. 
(The reasons for the choice of study species were given in Chapter 2, Section 2.2). 

• To determine the effectiveness of different organic acids in ameliorating Al toxicity. 

• To determine whether or not amelioration is concentration dependent. 

• To investigate the effects of organic acids, with no added AI, on the growth of Holcus lallatus and 
Deschampsia flexuosa. 

8.3 Methods 

8.3.1 Soil solution analysis of carboxylic acids 

Fresh soils, collected from all five sites, were centrifuged according to the methods in Chapter 3. The 

collected solution was immediately filtered through a 0.45 /lM membrane filter prior to HPLC 

analysis. To concentrate samples for HPLC analysis subsamples of 2 ml of soil solutions were freeze­

dried and redissolved in 0.5 ml of sulphuric acid. 

Fourteen commonly occurring organic acids were determined using high performance liquid 

chromatography (HPLC). Detection was by a ACS Model 750/14 Mass Detector at 214 nm. Solvent 

delivery was via a Waters M-45 HPLC pump, controlled by a Waters 680 Automated Gradient 

Controller. All solvents were filtered through an 0.45 /lM membrane filter and degassed prior to use. 

Quantification of peaks was achieved using a Shimadzu C-6RA recording integrator. The analytical 

column was a OA-2000 Aromatic Acids Column, with the dimensions 0.65 x 10 cm. The mobile 

phase used was 0.025 M H2S04 at a constant flow rate of 0.3 ml min-I. Organic acids were 
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quantitatively identified by comparing the retention times and peak areas of soil-solution 

chromatograms with those of HPLC-grade chemical standards. The organic acids isolated, in order of 

elution, were: oxalic, citric, tartaric, malonic, lactic, formic, acetic, propionic, malic, fumaric, glutaric, 

glycolic, phthalic, and succinic acid. 

8.3.2 AVorganic acid interaction in nutrient solutions 

Seeds of Holcus lanatus were collected in August 1996 from PM, 5MB, SMM, KP, and KR (Chapter 

2, Table 2.1). The seeds were stored in dry and dark conditions at room temperature until the start of 

the experiment. Seeds were germinated on acid-washed sand on filter paper in January 1997 in the 

Stirling University growth rooms. The Petri dishes were kept under a photoperiod of 16 h light and 8 

h dark with a PAR of 200 J1mol m·2 
S·I. Temperature was 20 °C during the day and 15°C during the 

night. Seeds germinated after three to four days and were watered with dilute culture solution 

(diluted 10 times) for about seven days before being transferred into full strength culture solution. At 

this stage they were removed from Petri dishes and carefully threaded through thin glass tubes with 

deionised water. The glass tubes were suspended from the lids of 6oo-ml beakers in an initial culture 

solution with no added Al or organic acids and at pH 5.6 (Chapter 4, Section 4.3.1.1). 

The composition of the culture solutions was the same as that used in Chapter 4 (Tables 4.1 and 4.2). 

stock solutions of loo-strength of NH40H, Na2S04. NH4H2P04. KFeEDDHA, Ca(N03h.4HzO, 

CaC}z.6H20, Mg(N03h.6H20, H3B03• KH2P04. AI(N03h9H20, and MES buffer, and 1000-strength 

of MnS04.4H20, ZnS04.7HzO, CuS04.5H20, and (NH4)6M07024.4H20 were made up and diluted 

appropriately. Beakers were covered in tinfoil to prevent algal growth and arranged in a randomised 

block design. Solutions were stirred daily and pH's corrected where necessary to pH 5.6 (initial 

solution) and pH 4.2 (treatment solutions) using 1M NaOH or 1M HC!. Culture solutions were 

changed twice per week in initial solutions. 

8.3.2.1 Experiment 1 

The effects of one strong Al complexer, tartaric acid, and one weak complexer, formic acid (Hue et al. 

1986) on the growth of Holcus lanatus were determined. Aluminium was added to the culture 

solutions at 35 mg rl Al in the form AI(N03)3.9H20 and organic acids were added at 100 and 1000 

IlM in the following combinations: a mg rl Al + a /-lM organic acids (control), 35 mg rl AI, 35 mg rl 

Al + 100 J.lM formic acid, 35 mg rl Al + 1000 /-lM formic acid, 35 mg rl Al + 100 J.lM tartaric acid, 

and 35 mg rl Al + 1000 /-lM tartaric acid. The following abbreviations are used corresponding to the 

treatments: control, 35AI, 35AI 100F, 35AI 1000F, 35AI lOOT, and 35AI looOT. Culture solutions 

were kept at pH 4.2. There were five replicate seedlings per treatment per site. Solutions were 

changed every 2 days to minimise microbial breakdown (Kerven et al. 1991). 
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The number of roots and their lengths, and the number of blades and tillers and their lengths, were 

recorded on the day treatments began and at harvest. Seedlings were harvested after 28 days growth 

in +Al/organic acid treatments (l Feb-28 Feb). Roots and shoots were separated, rinsed in deionised 

water, and dried in an oven at 60°C for 48 h and the dry weights of shoots and roots recorded. 

Root:shoot ratios were determined. 

Prior to drying, leaf area of ten blades per treatment, per site, were determined. Leaves were 

photocopied, and the photocopy scanned. Area was determined from the scanned image using NIH 

Image 5b. 

Between 100 and 300 mg of oven-dried leaves and roots were digested in a sulphuric acid-hydrogen 

peroxide mixture (Allen 1989) in a block digester at 330°C. Digested plant material was filtered 

through No. 44 Whatman filter paper and made up to 100 mt Concentrations of Ca and Mg were 

measured using a Varian AA-575 atomic absorption spectrophotometer with a nitrous oxide-acetylene 

flame. An air-acetylene flame was used to determine K (flame emission) and Fe concentrations. 

Total Al ([Alh) was measured with a Pye Unicam SP9 Atomic Absorption Spectrophotometer fitted 

with a Unicam GF90 furnace and FS90 furnace autosampler. Unicam 919 series atomic absorption 

software was used. P was measured on a Tecator FIAstar 5010 flow injection auto-analyser using the 

stannous chloride-ammonium molybdate method. 

Solutions were analysed to monitor nominal element concentrations using the same analytical 

techniques as those in Chapter 3. Subsamples of 5 ml from each of six beakers, from each of the six 

treatments, were withdrawn from fresh culture solutions, and from solutions one, two, three, and four 

days old. Thereafter solutions were changed every two days. 

The concentrations of ([Ae+]) and activities of ({Ae+}) free Ae+ in the nutrient solutions with and 

without organic acids were calculated by GEOCHEM (Sposito & Mattigold 1980). The concentration 

of monomeric Al species in the nutrient solutions, [AI]n ... " was also determined by the 60 s 

Pyrocatechol violet method as described by Kerven et ai. (1989). 

8.3.2.2 Experiment 2 

The effects of organic acids alone on the growth of Deschampsiaflexuosa originating from SMM, and 

Holcus lanatus originating from FM, 5MB, SMM, KP and KR were determined. Deschampsia was 

grown in control (no added acids), 100 fJM succinic acid, 1000 fJM succinic acid, 100 fJM formic 

acid, and 1000 fJM formic acid nutrient solutions. The following abbreviations are used 

corresponding to the treatments: looS, looOS, 100F, and 1000F. Holcus were grown in control, 1000 

F, and 1000 fJM tartaric acid (1000 T). Culture solutions were adjusted to pH 4.2. There were five 

replicate seedlings per treatment per site. Solutions were changed every 3 days. 
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Measurements of root and shoot growth were the same as those taken in Experiment 1. Roots and 

shoots were harvested in the same manner as Experiment 1 after 28 days growth, and their dry 

weights recorded. Prior to drying, the leaf area of ten blades per treatment, per site of origin, were 

determined from scanned images using NIH Image 5b on leaf photocopies. 

8.4 Results 

8.4.1 Organic acids in soil solutions 

Table 8.1 lists the organic acids present in the soil solutions and their estimated concentrations. Soil 

solutions of calcareous soils, KR, predominantly consisted of glycolic acid which was also present in 

acid soils but did not dominate the acid spectrum in these soils. The organic soils, and brown forest 

soils of KP, comprised a greater number of organic acids than either KR or SMM soils. Acetic, 

formic, glycolic, and succinic acids dominated FM and 5MB soil solutions. SMM soils were high in 

acetic and glycolic acids. Total organic acid concentrations decreased in the following order: FM> 

KP> 5MB> KR> SMM. Concentrations increased about 20-fold between FM and SMM soils. 

8.4.2 AI detoxification by organic acids 

8.4.2.1 Root elongation and number 

The addition of organic acids significantly improved the growth of Holcus compared with AI-treated 

plants. Root elongation rates (RER) and numbers were significantly greater in these treatments than 

in AI-treated plants (Figures 8.1 and 8.2). This was particularly pronounced in FM races where RER 

in Al+organic acid-treated plants was about twice that of AI-treated plants. Organic acids were least 

effective in SMM races. The type of acid, formic or tartaric, did not significantly affect RER (Table 

8.2), both were equally effective in ameliorating Al toxicity. Amelioration was however, significantly 

greater at higher concentrations of acid (Table 8.2). Relative RER were generally equal to control 

plants at these higher concentrations (Table 8.3). Root numbers were also increased in the presence 

of organic acids but, with the exception of FM, they were not increased to control numbers (Figure 

8.2). Relative root numbers ranged from 27.9 % in SMM races to 107 % in FM races (Table 8.3). 

Tartaric acid was more effective in preventing AI-induced reduction in root numbers, as was the 

higher concentration of both acids (Table 8.2). 
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Table 8.1. Organic acid composition and concentration (IlM) of soil solutions extracted from 
Flanders Moss (FM), Sheriffmuir blanket peat (SMB), Sheriffmuir mineral (SMM), Kippenrait Glen 
(KP), and Kinloch Rannoch (KR). ND, below detection limit. Percentage of total organic acids 
(listed in order of elution) is given in parentheses. 

Organic Acid FM 5MB 
Oxalic acid 1694.9 (2.2%) 48.99 (0.2%) 
Citric acid ND 664.6 (2.5%) 
Tartaric acid 263.0 (0.4%) 872.0 (3.3%) 
Malonic acid 6449.4 (8.5%) 1420 (5.3%) 
Lactic acid 2244.2 (3.0%) ND 
Formic acid 3496.1 (4.6%) 5003.7 (18.8%) 
Acetic acid 19135.8 (25.1 %) ND 
Propionic acid 75.6 (0.1%) 159.0 (0.6%) 
Malic acid 271.0 (0.4%) ND 
Fumaric acid 13.0 (0.1 %) ND 
Glutaric acid 119.0 (0.2%) ND 
Glycolic acid 14446.2 (19.0%) 4706.3 (17.7%) 
Phthalic acid 14.2 (0.1 %) 21.9 (0.1 %) 
Succinic acid 27934.2 (36.7%) 13700 (51.5%) 
TOTAL 76156.7 26596.5 

8.4.2.2 Shoot elongation, tiller and blade number 

SMM 
NO 
ND 
NO 
687.8 (18.1 %) 
ND 
ND 
919.0 (24.2%) 
NO 
NO 
150.7 (4.0%) 
ND 
2000.0 (52.7%) 
41.1 (1.1%) 
NO 
3798.7 

KP 
NO 
NO 
ND 
82.5 (0.1 %) 
ND 
5088.3 (8.7%) 
52044.9 (89.2%) 
6.0 (0.1%) 
607.4 (1.0%) 
ND 
ND 
496.9 (0.9%) 
3.5 (0.1%) 
NO 
58329.5 

KR 
NO 
NO 
ND 
1244.7 (17.1% 
ND 
93.4 (1.3%) 
NO 
NO 
759 (10.4%) 
3.3 (0.1 %) 
NO 
5143.0 (70.7% 
NO 
34.0 (0.5%) 
7277.4 

Shoot elongation rates (SER), like RER, were significantly increased in AI+organic acid solutions 

(Figure 8.3). The extent of amelioration was less than in the case of RER, relative SER were at most 

88.8 % (Table 8.3). Tartaric acid was more effective than formic acid but amelioration was 

independent of acid concentration (Table 8.2). Figure 8.4 shows the improved shoot growth in the 

presence of At. 

Vegetative growth of seedlings, in terms of tiller and blade number, was significantly better in 

Al+organic acid-treated plants than in AI-treated plants (Figure 8.5). Tiller numbers of FM and 5MB 

races grown with organic acids were equal to control plants in all sites. Relative numbers in these two 

races ranged from 75.7 to 164 % (Table 8.3). Only 1000 IlM tartaric acid prevented an AI-induced 

reduction in tiller production in SMM races (Table 8.3). Blade numbers were most increased in 5MB, 

SMM, and KR races. There were no significant differences between the type or concentration of acid 

(Table 8.2). 

Leaf area was significantly increased in the presence of tartaric acid at any concentration and formic 

acid at 1 000 ~ (Figure 8.6 and Table 8.2). 

8.4.2.3 Plant dry weights 

The addition of organic acids to nutrient solutions significantly increased dry weights, particularly in 

PM, KP, and KR races (Figure 8.7). Tartaric acid increased total and root dry weights significantly 

more than formic acid (Table 8.2) as did higher acid concentrations. Al increased root:shoot ratios 

compared with control plants. Organic acids reduced ratios, particularly in SMM, KP, and KR. 
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Formic acid, and lower acid concentrations of 100 11M, reduced ratios significantly more than either 

tartaric acid or 1000 11M solutions (Table 8.2). 

Table 8.2. Statistical analyses for root and shoot growth measurements, dry weights, and plant ionic 
compositions in Holcus lanatus originating from Flanders Moss (FM), Sheriffmuir blanket peat 
(SMB), Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), and Kinloch Rannoch (KR), and 
grown in 0 AI, 35 AI, 35 Al 100F, 35 Al 1000 F, 35 Al 100 T, 35 Al 1000 T. *, p<0.05; **, p<O.OI; 
***, p<O.OOI; n.s, not significant. Degrees of freedom are: site 4, organic acid (formic or tartaric) I, 
acid concentration (l00 11M or 1000~) 1, and acid*concentration interaction 1. 

Measurement Site Organic Acid Concentration Acid*Concentration 
interaction 

F ~ F ~ F ~ F ~ 
Root growth 

Root elongation rate 2.79 * 1.46 n.s 63.38 *** 0.55 n.s 

Increase in number of roots 15.60 *** 4.43 * 9.24 ** 0.22 n.s 

Tops growth 
Shoot elongation rate 8.42 *** 9.34 ** 0.09 n.s 0.35 n.s 

Increase in total tiller number 15.78 *** 0.10 n.s 0.29 n.s 4.39 ** 

Increase in total blade number 22.06 *** 0.50 n.s 0.22 n.s 5.27 * 

Leaf Area (FM only) 9.36 ** 9.10 ** 14.75 *** 

Dry weights 

Shoot 3.37 * 0.64 n.s 8.30 ** 13.55 *** 

Root 6.31 *** 61.97 *** 142.2 *** 0.04 n.s 

Total 5.41 *** 8.85 ** 36.13 *** 10.61 ** 

Root:shoot ratio 0.87 n.s 27.99 *** 38.22 *** 4.81 * 

Ionic composition 

Shoot p 6.87 *** 7.87 ** 27.50 *** 27.28 *** 

K 11.44 *** 1.09 n.s 0.91 n.s 1.45 n.s 

Ca 1.70 n.s 0.26 n.s 27.70 *** 12.94 *** 

Mg 1.49 n.s 22.64 *** 89.07 *** 48.79 *** 

Al 20.54 *** 0.13 n.s 1.04 n.s 29.08 *** 

Fe 4.80 ** 0.32 n.s 5.31 * 2.27 n.s 
p 5.78 *** 0.61 n.s 0.62 n.s 0.21 n.s Root 
K 3.46 * 1.31 n.s 0.25 n.s 5.33 * 

Ca 4.74 ** 9.81 ** 4.12 *** 4.85 * 

Mg 6.15 *** 0.58 n.s 0.01 n.s 3.53 n.s 

Al 3.41 * 4.39 * 14.77 *** 7.31 ** 

Fe 15.94 *** 0.30 n.s 3.25 n.s 23.36 *** 
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Figure 8.1. Mean rates of root e longation (cm day" 1 ,± s.e) in Holcus LQnQtus L grown in ntrol (D ), 
35 mg r l Al (. ), 100 11M formic acid + 35 mg r l AI , 1000 11M formic acid + 35 mg 1'1 AI , 100 11M 
tartaric acid + 35 mg 1" AI, 1000 11M tartaric ac id + 35 mg 1" AI, 1000 11M formi c ac id, and 1000 11 M 
ta rtaric ac id nutrient solution . Holcus originated from (a) Flanders Mos (FM), (b) h riffmuir 
blanket peat (SMB), (c) Sheriffmuir mineral oil (SMM), (d) Kippenrait Glen (KP), and (e) Kinl h 
Rannoch (KR). 0 , treatments including formic ac id. , treatment including tartari ac id . 
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Figure 8.2. Mean increase in total root number (± s.e) in Holcus lanatus L grown in ontr I (D), 5 
mg r l AI (_ ), 100 11M formic acid + 35 mg rl AI, 1000 11M formic ac id + 35 mg 1"1 AI , 100 11M 
tartaric acid + 35 mg rl AI , 1000 11M tartaric acid + 35 mg rl AI, 1000 11M formic ac id , and 1000 11M 
tartaric acid nutrient solutions. Holcus originated from (a) Fland rs Mo s (PM), (b) h riffmuir 
blanket peat (SMB), (c) Sheriffmuir mineral soil (SMM), (d) Kippenrait Glen (KP), and ( ) Kinl h 
Rannoch (KR). 0 , treatments including formic acid. , treatments including tartaric acid. 

I 7 



50 50 

40 40 

30 30 

20 20 

10 10 

0 0 

~ 
:;: ... f- .... f-

~ :;: .... ... f- f- ... f-

'" 
0 0 0 0 

'" 
0 0 8 0 8 0 0 ~ 0 0 0 0 

0 
., 

0 ~ ~ 0 
., 

0 
0 0 
0 ~ e 

(a) 0 
in 

in (b) 0 
'" in ., ., in ., in ., ., ., 

50 50 

40 40 

30 30 

20 20 

10 10 

0 0 

~ '" f- f- f-

~ 
:;: ... .... f- "- f-

'" 0 0 0 

'" 
0 0 0 8 0 

0 0 0 e 0 0 0 
0 ~ ~ 0 '" 0 0 ~ ~ 

(c) 0 in in (d) 0 in 
'" (") in in ., 

'" (") 

~ 
50 

-0 

E 40 
u 

'--' 
c 30 0 
.~ 

«l 
b.() 

20 c 
0 

"0 
0 10 
0 
.c 
tI) 

0 

~ 
:;:: ... ... f- ... f-

'" 
0 0 0 0 0 ..., 0 0 0 0 0 

0 0 0 ~ ~ (e) 0 in 

'" in in ..., 
'" 

Trealrrent 
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Figure 8.5. Mean in~rease in total tiller ~d bl~de number _~± s.e) in Holcus lanatus L gr wn in 
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Table 8.3. The mean relative root elongation rates (RER), total number of roots (TNR), shoot 
elongation rates (SER), total number of blades (TNB), and total number of tillers (TNT) in /loll' liS 

lanatus treated with combinations of Al and organic acids. Seedlings originated from (a) Flanders 
Moss (FM), (b) Sheriffmuir blanket peat (SMB), (c) Sheriffmuir mineral soil (SMM). (d) Kippenrait 
Glen, and (e) Kinloch Rannoch (KR). All treatments were kept constant at pH 4.2. Values are 
percentages relative to control plants (100 %). n.d, no data. 

Relative growth Treatment 
(%) Control 35 AI 35AI 35AI 35AI 35AI 10001<' IOOOT 

100F lOOOF lOOT 1000T 
(a) 
RER 100 37.2 68.2 100 73.3 98.4 221 IHO 
TNR 100 51.9 98.6 108 99.0 98.6 123 124 
SER 100 21.2 55.8 49.0 61.2 53.1 105 93.6 
TNB 100 &.11 49.6 35.5 46.0 56.4 101 77.5 
TNT 100 5&.9 164 80.8 98.6 103 276 2H8 
(b) 
RER 100 17.7 56.7 101 44.6 90.8 332 254 
TNR 100 34.6 56.5 89.4 60.5 74.1 180 143 
SER 100 20.& 59.8 71.8 63.0 66.9 126 110 
TNB 100 20.& 70.7 60.1 67.6 65.4 164 120 
TNT 100 40.5 94.6 7&.4 92.3 75.7 230 140 
(c) 
RER 100 12.7 59.4 51.6 25.7 126 n.d 220 

TNR 100 22.6 58.4 32.7 27.9 88.5 n.d 120 

SER 100 26.7 61.2 46.8 69.6 84.3 n.d 131 
TNB 100 31.8 93.2 79.6 70.5 90.9 n.d 1M 
TNT 100 45.0 85.0 65.0 60.0 85.0 n.d 205 
(d) 

21.0 26.4 122 54.8 RER 100 116 226 206 
TNR 100 19.1 30.4 58.1 63.0 76.0 105 102 
SER 100 29.2 42.8 58.3 88.8 63.9 \03 82.6 

TNB 100 19.3 54.5 40.1 59.4 59.5 93.2 64.4 

TNT 100 43.1 37.3 39.2 58.8 68.6 154 150 

(e) 
100 33.9 71.6 107 102 108 RER 190 17M 

TNR 100 52.1 66.3 70.5 83.1 78.1 87.8 82.3 

SER 100 34.5 63.5 64.1 76.9 78.3 69.8 59.0 

TNB 100 22.9 85.4 70.8 56.3 63.2 69.4 104 

TNT 100 40.5 66.7 78.6 42.9 57.1 115 DI 

8.4.2.4 Plant ionic composition 

Table 8.4 gives the root and shoot ionic compositions. Al significantly increased the uptake of K. P 

and sometimes Ca by the plant roots (about three-fold increase). The addition of organic acids to AI 

solutions significantly increased P and Ca (in SMM) uptake still further (Table 8.2). In contrast K 

uptake was reduced to control concentrations. Al significantly decreased root concentrations of Fe 

and Mg. particularly in KR (where Fe was reduced by >90 %). The addition of organic acids did not 

increase the concentrations of either of these nutrients. The presence of organic acids in AI solutions 

significantly reduced Al root concentrations. Tartaric acid was more effective in reducing AI 

concentrations in FM and 5MB, conversely formic acid was more effective in SMM. KP. and KR 

(Table 8.2). An increase in formic acid concentration reduced Al concentrations further still. 
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Figure 8.6. Mean leaf area (cm2
, ± s.e) in Holcus lanatus originating from landers M ss FM) 

grown in control , 35 mg r1 Al (35AI), 35 mg r1 AI + 100 11M formic acid (35AI 100 , 5 mg r1 1+ 
1000 11M formic acid (35AI 1000F), 35 mg r1 AI + 100 11M tartaric ac id (35A I lOOT) , 5 m r1 A I + 
1000 11M tartaric acid (35AI I OOOT) , 1000 11M formic acid ( I OOOF) , and 1000 11M tartaric acid 

(1000T) nutrient solutions. 

AI significantly reduced the transport of P, K (not SMM, KP, or KR), Mg (not in M), and ant in 

FM and KR) to plant shoots. In SMM, KP, and KR race, Al increa ed K tran port to h ts, and in 

all races increased Fe translocation . The addition of organic acids increa ed sho I Fe ncenlrali ns 

till further, particularly in KR (up to four-fold increase). The addition of organic a id I ndcd t 

increase or decrease the translocation of other nutrient to match control concentrations. nlrary I 

root uptake of AI, organic acids increa ed Al tran location to shoots but only in M race. 1n MB , 

SMM, KP, and KR, organic acids, with the exception of 35AI 1000T, decrea ed sh 

concentrations. Translocation of Al to shoots was not ignificantly different b tween ac id . 

8.4.2.5 Al speciation in nutrient solutions 

The analysed [AI]".,.., in Al and AI+organic acid olution of increa ing age are li sted in Tabl 

Solutions, with the exception of 35AI 1000T, were relatively table. There wa a dramati r du Ii n 

in [AI] mono in the presence of organic acid. Tartaric acid reduced Al concentration to a rater xt nt 

than formic acid. 

Table 8.5. Concentrations of [AI] • ..., (11 M) in Al (35AI) and AI+organic ac id (35AI 100 
1000F, 35AI lOOT, 35AI 1000T) nutrient olution, mea ured u ing the Pyrocat h I 
colorimetric method. Concentrations are given for initial olution (0), and olutions ampl d n 
tWO (2), three (3), and four (4) da later durin the fir t two week of ex erimental treatment. 

Age of nutrient [Al]mono (,..M) 
solution (days) 35Al 3SAIIOOF 3SAIIOOOF 

o 609±12.5 47 .8±0.00 38.3±0.73 

2 
3 
4 

606±20.1 37.7±2.30 41.5±2.44 
568±17.9 44.8±0.17 44.2±3.66 
511±60.6 40.9±0.12 47.8±0.00 
562±9.15 39.5±0.50 47.8±0.00 

3SAIIOOT 
3 .7±0. 12 
38.6±0.29 
40. ±0.24 
40. ±0.2 
39.7+0.37 
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laMe ({.~. Uean (ome compos((oa (lug g -~cr WC{gti(, :t s.c/ o( sfioo(s twa roors O(' /i0!cIIJ falfa"I(,.!; originating trom Flanders Moss (FM). S(zcntfrnuir Mankcl peal (SMB J. 
Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), and Kinloch Rannoch (KR), grown in combinations of Al and formic (100 and 1000 11M) or tartaric acid (100 and 1000 11M). 
The ionic comEosition of control E\ants was taken from EXEeriment 2, ChaEter 6, Section 6.3 .2 . 

Treatment p K Ca Mg Al Fe 
mgg- I 

Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root 
FM 
Control 6.8S±0.26 1.2S±0.24 13.7 1±0.22 2.8S±0. 18 3.00±0.22 l.Sl±0.19 1.07±0.15 0.22±0.01 O.OI±O.OO 0.02±0.01 0.18±0.05 1.33±0.21 
35 Al 1.40±0.03 3.59±0.07 12.64±0.64 4AI±0.50 5.76±0.13 1.57±0.19 1.33±0. 14 0.1O±0.06 O.21±0.OS 2.13±0.25 0.2S±O.02 0.60±0.19 
35 Al + 100 F I .SO±OA7 3.S9±O.73 11 .26±O.65 2.75±OAI 3A9±0.11 1.73±0.09 0.7S±0.03 O.IO±O.02 0.80±0. IS 1.3S±0.07 0.37±0.12 0.35±0.01 
35 AI + 1000F 1.92±0.1O S.87±0.19 17.07±3.13 2.26±0.03 5.12±0.19 1.12±0.03 L.05±0. 11 0.03±0.01 0.39±0.12 0.66±0.07 0.29±0.04 0.27±0.09 
35 AI + 100 T 4.63±0. IS 7.28±0.16 12.66±0.63 2.SI±0.21 2.94±OA6 1.5S±0.06 0.62±0.13 0.O3±0.01 O.OS±0.03 0.35±0.00 O.4I±O.OS 0.33±0.09 
35 AI + 1000 T 1.24±0. 13 5.74±0.01 17.77±0.3S 3.26±0.06 4.92±0.02 2.11±0.01 2.1O±O.04 O.O6±O.01 O.73±0.07 OAO±0.02 0.27±O.01 0.SO±0.05 
5MB 
Control 5.22±0.75 2.44±0.19 12.S0±0.75 8.13±0.75 2.04±0.26 2.14±0.06 L.21±0.21 0.28±0.02 0.01±0.00 0.01±0.01 0.17±0.01 0.SO±0.16 
35 Al I.S4±0.16 2.82±0.93 6.93±1.91 S.92±0.58 1.91±0.17 2.15±0.03 0.17±0.02 0.22±0.07 0.44±0.04 1.64±0.23 0.35±0.11 OA6±0. l S 
35 Al + 100 F 1.13±O.06 6.39±O.01 lOAO±I.56 3.97±0.90 1.S5±0.09 2.26±0.lS 0.30±0.00 0.08±0.03 0.25±0.Ol 1.05±OA7 0.16±0.02 0.36±0.13 
35 Al + 1000 F O.44±O. ll 3A9±0.04 8.7S±0.91 3.26±O.0 1 2.SS±0.34 2.9S±O.26 0.62±0.00 0.01±0.00 0.01±0.00 0.05±0.03 0.13±0.02 0.11±0.02 
35AI+ lOOT 1.90±OAO 3.99±0.10 9.66±1.83 3.34±O.24 l.36±0.17 2.76±0.07 0.30±0.0 1 O.O I±O.OO 0.14±0.04 0.30±0.10 0.IS±0.04 0. 13±0.02 
35 AI + 1000 T 0.74±0.Ll 5.23±0.92 7.17±1.38 4.26±1.09 6.79±1.65 SA9±3.14 1.8S±0.33 0.21±0.04 0.06±0.01 OA6±0.09 0.30±0.1O 0.21±0.06 
SMM 
Control 4.53±0.49 2.7S±0.12 8.66±0.48 4.33±0.49 3.16±0.27 1.50±0.O9 1.37±0.14 0.40±O.05 O.OO±O.OO O.Ol±O.OO 0.12±0.01 1.25±0.04 
35 AI 1.85±0.38 3.52±0. 19 14.15±OA7 7.67±1.42 3.90±0.S9 2.5S±0.09 0.66±0.lS 0.05±O.02 0.2S±0.04 O.96±0.15 0.18±0.OO 0.30±0.1 I 
3S Al + 100 F I. 68±O. 10 6.3S±0.06 11.28±0.32 4.36±1.52 5.80±1.81 2.65±0.OS I.OO±0.34 0.O8±0.02 0.06±0.02 0.32±0.1O 0.29±0.1O 0.62±O.08 
35 AI + 1000 F 1.83±0.12 9.00±0.2S l3 .33±O.39 4.06±O.32 2.61±O.22 1.96±O.06 O.68±0.O7 0.10±0.03 O.28±0.04 O.28±0.OI 0.22±0.02 0.29±0.0 1 
35 AI + 100 T 3.34±O.1O 7.16±O.OS 16A5±0.94 4 .61±0.06 2.60±O.72 5A2±O.02 O.32±0.01 0.06±0.01 0.62±0.07 0.48±0.10 OA2±0.04 0.22±0.03 
35 AI + 1000 T 0.76±O. 12 4.02±O.OS 7.54±l.O3 3.66±0.24 3.64±0.32 3.12±0.IS 1.47±0.17 0.03±O.01 0.1O±0.05 0.63±O.07 0.15±0.02 0.17±O.01 
KP 
Control 4.52±OA8 4.15±0.58 9.68±2.02 3.14±0.78 2.62±0.33 1.59±0.16 0.99±0. 19 0.17±0.02 O.OO±O.OO O.Ol±O.OO 0.21±0.02 OA6±0.26 
35 AI 3.97±O.23 4.76±0.12 21.75±0.15 10.01±0.26 2.18±O.13 1.71±O.IS O.38±0.04 0.24±0.O2 0.17±0.02 L.37±0.06 0.33±0.02 1.73±0.11 
35 AI + 100 F 1.2S±O.07 4A2±OAO 13.30±0.22 S .OO±O.65 2.19±0.23 2.35±O.IS OA2±0.OI 0. ll±O.05 0.22±0.08 0.33±0.03 0.29±0.03 0.35±0.02 
35 AI + 1000 F 0.SI±O.02 2.38±0.19 8.52±0.26 5.02±0.04 4.05±OA8 3.lO±O.1O 0.92±0.06 O.lO±O.OI O.lO±O.OO O.03±O.01 0.1O±0.03 0.17±0.03 
35 AI + 100 T 2.12±0.1O 4.1S±0.48 Il .84±0.73 2.00±0.43 1.09±0.05 1.37±0.OO 0.26±0.02 0.15±O.02 0.03±0.01 1.S3±0.20 0.14±0.00 OA9±0.04 

35 AI + 1000 T 0.90±0.12 6.58±l.l0 1O.27±1.22 4.22±OAI 4.56±OAO 4AS±0.58 1.86±0.12 0.02±0.01 0.4S±0.06 0.S7±0.IS 0.20±0.01 0.22±0.03 

KR 
Control 3.27±0.14 3.30±O.46 6.18±0.44 3.51±0.03 l.35±0.12 1.65±O.06 0.68±0.09 0.46±0.01 O.OO±O.OO O.Ol±O.Ol 0.2 1±0.02 1.94±0.23 
35 AI 2.58±0.36 4.23±0.14 9Al±3.38 3.70±1.09 3.25±O.55 2.40±O.19 0.56±0.07 0.01±0.00 0.25±0.04 0.75±O.13 0.09±0.03 0.06±0.01 
35 AI + 100 F 1.62±0.19 5.48±0.47 11.77±1.03 5.00±0.04 I. 72±O.l4 2.20±0.02 0.37±0.03 0.03±0.OI O.32±O.O4 O.22±O.O5 O.30±O.O4 O.12±O.02 
35 AI + 1000 F 2.77±1.81 5.00±O.78 II.06±1.64 2.64±O.43 3.24±0.35 J.73±0.Sl 0.74±0.13 0.O6±0.03 O.O5±0.02 0.29±0.09 0.19±0.00 0.20±0.04 

35 AI + 100 T 5.48±O.79 5.65±0.74 7.86±0.94 3.91±O.29 1.80±O.35 1.91±O.07 0.28±0.08 O.Ol±O.OO 0.10±0.05 O.44±O.O5 O.17±O.OI 0.14±O.01 
35 AI + 1000 T O.81±O.O4 4.70±1.26 9.51±1.04 3.44±0.81 4.90±0.32 3.1D±O.78 2.30±OAO 0.02±O.OI 0.22±O.08 O.70±0.12 0.28±O.07 0.28±O.O5 
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8.4.3 Growth stimulation by organic acids 

8.4.3.1 Deschampsia flexuosa 

Succinic and formic acid significantly increased RER, and this increase was greater at higher 

concentrations (Figure 8.8). SER was also significantly improved in the presence of organic acids 

(particular by formic acid). Formic acid, but not succinic acid, increased tiller and blade number 

compared with control plants. Figure 8.9 shows the improved growth of plant in the pre ence of 

these organic acids. 

Both organic acids significantly increased total, shoot, and root dry weights, and root:shoot ratios 

compared with control dry weight and ratios. Both acids were equally effective and at both 100 /-1M 

and 1000 !-1M (Figure 8.10). 

Concentrations of Ca in Deschampsia roots and translocation to shoots was significantly greater in 

solutions with organic acids than in control solution. The presence of organic acids did not 

significantly change the concentrations of any other nutrients (Table 8.6). 

Table 8.6. Mean shoot and root ionic compositions (mg g-t ± s.e) of Deschampsia flexuosa 
originating from Sheriffmuir mineral soil (SM~) gr~wn in control, 100 /-1 M succi nic ac id ( 100 S), 
1000 /-1 M succinic acid ( 1000 S), 100 /-1 M fortruc aCid (lOa F), and 1000 /-1 M formic acid ( 1000 F) 

nutrient solutions. 
p K Ca Mg Fe 

-\ 

Treatment mgg 
Shoot Root hoot Root Shoot Root Shoot Root hoot Root 

- Control 4.25 5.16 16.09 9.27 2.55 1.32 1.14 0.68 0.41 1.46 

±0.93 ±O.44 ±4.46 ±2.53 ±O.73 ±0.22 ±0.30 ±O. IO ±0.13 ±0.52 

100S 3.87 4.47 11.31 5.82 2.96 2.82 1.34 0.98 0.23 1.30 

±O.OO ±0.52 ±1.56 ±0.54 ±0.29 ±0.42 ±0.17 ±O.37 ±O.05 ±0.09 

1000 S 3.82 4.13 12.31 7.03 4.88 2.24 1.54 0.80 0.2 1 0.98 

±O.lO ±O.36 ±0.45 ±1.30 ±O.37 ±0.06 ±0.08 ±0.04 ±0.07 ±0.J9 

lOaF 3_25 4.56 10.67 5.98 5.99 1.52 1.15 0.57 0.19 0.91 

±0.08 ±0.10 ±0.29 ±0.36 ±O.02 ±0.29 ±0.03 ±0.02 ±0.04 ±0.03 

1000 F 3.45 4.38 8.30 6.73 6.96 1.09 1.26 0.47 0.33 0.65 

+0.18 +0.70 +0.57 ±1.20 ±1.03 +0.15 +0.06 +0.10 +0. 11 ±0.19 

8.4.3.1 Holcus lanatus 

With the exception of KR, RER and root numbers were significantly greater in the presence of formic 

and tartaric acid (Figure 8.1 and Table 8.7). This was particularly pronounced in FM and MB and 

least in KP. A similar pattern wa een in SER and blade numbers (Figures 8.3 and 8.5). Formic ac id 

increased blade numbers to a greater extent in FM and 5MB, while tartaric ac id was more effective in 

SMM and KR Total and root dry weights were significantly greater after organic ac id add ition , 

particularly in FM, 5MB, and SMM. Formic acid increa ed dry weights more than tartaric acid. 
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Tartaric and formic acid significantly increased root uptake of K (up to 2.5-fold), Fe (up to two-fold), 

Ca (up to five-fold), Mg (up to five-fold), and P (up to three-fold) (Tables 8.7 and 8.8). Organic acids 

also significantly increased translocation of Fe (up to two to three-fold greater than control plants), Ca 

(up to four-fold), and Mg (up to two-fold). This improvement in plant nutrition was not consistent 

among the sites, increased nutrient uptake was in general least evident in KR races and most 

pronounced in FM and 5MB races. 

Table 8.7. Statistical analyses for root and shoot growth measurements, dry weights, and plant ionic 
compositions in Holcus lanatus originating from Flanders Moss (FM), Sheriffmuir blanket peat 
(SMB), Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), and Kinloch Rannach (KR), and 
grown in three treatments: control, lO00T, and 1000F. *, p<0.05; **, p<O.Ol; ***, p<O.OOl; n.s, not 
significant. De~rees of freedom are: site 4, treatment 2, and site*treatment interaction 8. 

Measurement Site Treatment site*treatment 
interaction 

F l! F l! F l! 
Root growth 

Root elongation rate 13.74 *** 101.07 *** 6.69 *** 
Increase in number of roots 1.62 n.s 12.17 *** 4.91 *** 

Tops growth 
Shoot elongation rate 25.01 *** 5.51 ** 3.07 * 
Increase in total tiller number 16.26 *** 23.39 *** 1.52 n.s 
Increase in total blade number 20.30 *** 1.97 n.s 2.55 * 

Dry weights 
Shoot 6.76 *** 2.50 n.s 3.00 ** 

Root 43.50 *** 117.21 *** 14.24 *** 

Total 15.37 *** 14.09 *** 5.35 *** 
Root:shoot ratio 5.95 *** 83.47 *** 5.49 *** 

Ionic composition 
Shoot P 9.03 *** 0.76 n.s 5.52 *** 

K 171.84 *** 10.44 *** 2.93 * 
Ca 3.12 * 37.31 *** 4.36 *** 
Mg 12.91 *** 15.43 *** 16.99 *** 
Fe 39.13 *** 6.71 ** 9.15 *** 

Root P 22.15 *** 91.16 *** 26.64 *** 
K 11.44 *** 30.75 *** 4.79 *** 
Ca 7.18 *** 152.68 *** 43.83 *** 
Mg 29.35 *** 137.69 *** 97.82 *** 
Fe 4.21 ** 5.91 ** 9.32 *** 
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Table 8.8. Mean ionic composition (mg g.l, ± s.e) of shoots and root of Holcus lanatus originating 

from Flanders Moss (PM), Sheriffmuir blanket peat (SMB), Sheriffmuir mineral soil (SMM), 
Kippenrait Glen (KP), and Kinloch Rannach (KR) grown in control, 1000 f.1M form ic acid or 1000 

~ tartaric acid. 

Treatment p K Ca Mg Fe 
·1 mgg 

Shoot Root Shoot Root Shoot Root Shoot Root Shoot Root 

FM 
Control 6.45 1.25 15.25 2.88 3.17 1.51 1.23 0.22 0.16 1.34 

±0.45 ±0.24 ±1.55 ±0.18 ±0.23 ±0.19 ±0.19 ±0.01 ±0.O4 ±0.2 1 

lOOOF 7.84 4.32 13.74 4.07 4.21 2.89 3.88 0.24 0.40 0.39 
±0.38 ±0.11 ±0.47 ±0.04 ±0.20 ±0.04 ±0.07 ±0.02 ±0.03 ±0.04 

1000T 4.19 5.40 11.66 7.17 4.24 9.93 1.65 0.99 0.40 2.3 1 
±0.47 ±0.06 ±0.49 ±0.1O ±0.15 ±0.25 ±0.20 ±0.0 1 ±0.01 ±O. IB 

5MB 
Control 4.21 2.62 9.56 5.85 2.13 2.07 0.29 0.32 0.14 1.17 

±0.74 ±0.26 ±1.90 ±1.98 ±0.33 ±0.1O ±0.01 ±0.04 ±0.02 ±0.45 

1000 F 2.13 9.88 3.06 9.70 8.04 10.86 0.07 1.46 0.08 1.46 
±0.07 ±0.07 ±O. ll ±0.34 ±0.30 ±0.17 ±O.OO ±0.06 ±0.01 ±0. 12 

1000 T 3.75 5.40 5.07 9.03 6.56 3.23 0.07 0.2 1 0. 11 0.25 
±0.12 ±0.64 ±0.08 ±0.27 ±0.29 ±0.16 ±O.OO ±0.02 ±0.02 ±0.O6 

SMM 
Control 4.53 2.75 8.66 4.33 3.16 1.50 1.37 0040 0.12 1.25 

±0.49 ±0.12 ±0.48 ±0.48 ±0.27 ±0.09 ±0. 14 ±0.05 ±0.01 ±0.04 

lOOOF n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

lOOOT 3.79 2.76 9.39 4.95 5.84 2.83 1.72 0.38 0.15 0.55 
±0.12 ±0.05 ±0.35 ±0.03 ±0.09 ±O. ll ±0.05 ±0.01 ±O.OO ±0.06 

KP 
2.38 Control 3.87 3.62 8.72 3.75 1.40 0.86 0.20 0. 19 0.79 

±0.74 ±0.77 ±1.72 ±0.95 ±0.33 ±0.25 ±0. 18 ±0.03 ±0.03 ±0.43 

WOOF 3.44 4.59 4.79 8.09 6.44 4.35 1.36 0.37 0.10 0.37 

±0.37 ±0.61 ±0.87 ±1.25 ±1.28 ±0.31 ±0. 16 ±0.07 ±0.01 ±0.O5 

lOOOT 4.66 5.85 9.74 10.67 7.55 6.88 1.90 0.78 0.14 0.76 

±O.09 ±0.74 ±0.15 ±0.25 ±0.26 ±L.66 ±0.06 ±0.02 ±0.01 ±0.16 

KR 
6.18 3.51 0.08 Control 3.27 3.31 1.35 1.65 0.68 0.46 1.94 

±0.14 ±0.45 ±OA4 ±0.03 ±0.12 ±0.06 ±0.09 ±0.0 1 ±0.01 ±0.23 

lOOOF 5.33 3.02 6.36 5.74 6.81 5.32 1.28 0.47 0.14 0.64 
±1 .77 ±0.66 ±1.85 ±0.94 ±1.37 ±0.90 ±0.2 1 ±O. II ±0.04 ±O.IO 

IOOOT 6.44 2.80 8.65 5.31 11.58 3.39 1.97 0.3 1 0.18 0.75 

+1.23 +0.05 +0.87 ±0.S2 +3.02 ±0.20 +0.33 +0.03 +0.03 ±0. 13 
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8.5 Discussion 

Both formic and tartaric acids fully prevented AI-induced reductions in root elongation rates provided 

the acids were supplied at the higher concentrations (1000 JlM). Furthermore root elongation in these 

treatments was frequently greater than in control plants (grown without Al or organic acids). Only in 

the case of SMM races was formic acid at 1000 JlM unable to prevent inhibition of root elongation. 

This race occurs on soils very low in total organic acids. The lower concentrations of organic acids 

were only effective in PM and KR races of Holcus. A similar pattern was found in root numbers and 

shoot elongation rates. However, with the exception of PM races, relative root numbers and SER 

were rarely greater than 90 % of control plants. Both concentrations of acid were equally effective in 

maintaining tiller and blade production. Tartaric acid was slightly more effective in maintaining root 

production and shoot elongation than formic acid. This is in agreement with the results of Hue et al. 

(1986) who found tartaric acid was a strong chelator of Al and formic acid a weak chelator. This 

difference was further emphasised by the lower concentrations of monomeric AI in the presence of 

tartaric acid rather than formic acid. However it should be noted that the differences between the two 

acids were small. Furthermore no significant differences between RER under the two acids were 

found. Other authors, such as Hue et al. (1986) and Ownby & Popham (1989), have found weak 

complexers and even moderate complexers to be totally ineffective in Al amelioration. The same was 

not the case in this study. Contrary to the measured concentrations of monomeric AI, GEOCHEM did 

not predict a reduction in the free activity or concentration of Al in the presence of either formic or 

tartaric acid. 

Few studies of AI/organic acid interactions have investigated the ionic composition of plants grown in 

nutrient solutions with both Al and organic acids. The addition of formic and tartaric acids did not 

increase root concentrations of Fe and Mg, the absorption of which was inhibited by AI. However the 

organic acids restored translocation of nutrients to shoots to that in control plants. In all races except 

PM, amelioration by organic acids was achieved through a reduction in Al concentrations in roots and 

subsequent translocation of Al to the shoots. In PM however translocation of Al to plant tops 

increased in the presence of organic acids. In this race amelioration was most likely achieved through 

intemal complexation between Al and organic acids. Muchovej et al. (1988) also found ryegrass 

accumulated Al as AI-citrate complexes. 

Few studies have investigated the effects on plant growth of organic acids in nutrient solutions 

without AI. Both succinic and formic acids enhanced root and shoot elongation in Deschampsia 

originating from SMM. Root numbers, and tiller and blade numbers were also increased beyond 

numbers in control plants (no organic acids). Formic acid was particularly effective. Furthermore 

210 



these organic acids enhanced Ca uptake and translocation to the shoots. Both the organic acids, 

formic and tartaric acid, at 1000 11M stimulated RER and root production in Holcus races from FM, 

5MB, SMM, and KP. Growth was no different from control plants in KR races. Formic acid is only 

present at concentrations less than 100 11M, and tartaric acid is absent, in KR soils. In contrast both 

acids were isolated in high concentrations from the organic soils FM and 5MB: about 200-900 11M 

tartaric acid and 3000-5000 11M formic acid. The organic acids also stimulated nutrient absorption by 

roots and translocation to shoots. Higher tissue nutrient concentrations were also found in KR races. 

Contradictory results were found by Lynch (1980): root extension in barley was reduced by up to 26 

% in the presence of acetic, citric, formic, lactic, propionic, and succinic acids in nutrient solution at 

pH 5.5. However Lynch (1980) used high concentrations of 5 M organic acids which are not 

representative of soil concentrations. 

The results indicate that the organic acids facilitate nutrient uptake, and thereby increase plant growth. 

This may allow plants growing in acidic organic soils to maintain growth under adverse conditions. 

The organic soils, FM and 5MB, contained the highest concentrations of organic acids, and in 

accordance growth stimulation was highest in races originating from these sites. Furthermore the 

amelioration of Al toxicity by organic acids was most effective in these races. 

Unfortunately no quantification of root organic exudates in Holcus was made. Several researchers 

have shown AI-stimulated release of organic acids from plant roots and furthermore have associated 

this with Al tolerance (Delhaize et al. 1993b, Klimashevskii & Chemysheva 1980, Suhayda & Haug 

1986). These studies have not included naturally occurring species, an area which deserves further 

investigation. 

8.6 Conclusions 

• The organic acids, formic and tartaric acid, effectively prevented AI-damage in Holcus lallatus. 
RER, SER, root, tiller, and blade numbers were almost equal to those of control plants. 

• The stronger AI-chelator, tartaric acid, was slightly more effective than the weak-chelator, formic 

acid. 

• Amelioration was achieved through substantial reductions in toxic monomeric AI, and likely 
formation of organo-AI complexes. 

• Al uptake by roots and transport to shoots was inhibited in the presence of organic acids. 

• Organic acids increased nutrient transport to shoots to that in control plants. 

• Succinic and formic acids, and tartaric and formic acids per se, enhanced growth in Deschampsia 
flexuosa and Holcus lanatus. 

• Organic acids per se enhanced nutrient absorption by roots and increased transport to shoots. 
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Chapter 9 

Phenolic compounds and their effect on the growth of Holcus lanatus L. 

9.1 Introduction 

"Phenolic" or "polyphenol" is defined chemically as a substance possessing an aromatic ring which 

bears a hydroxyl substituent, including functional derivatives such as esters, methyl esters, and 

glycosides (Harborne 1989, Kuiters 1990). Phenolic acids occur widely in soils (Whitehead et al. 

1983) at concentrations of 10 to 1000 IlM (Kuiters & Sarink 1987). They arise mainly via 

decomposition of plant materials, although some may be synthesised by soil microorganisms, and are 

mainly confined to the organic A horizons (Kuiters & Sarink 1986, Whitehead et al. 1981). Once in 

the soil, phenolics are subject to further decomposition as part of the process of humus formation 

(humification). The identification of phenolic compounds, particularly monomeric phenolic acids, in 

both soils and plant residues implicated their involvement in allelopathic effects between competing 

plant species (Whitehead et al. 1982). Indeed phenolic substances, in particular benzoic and cinnamic 

acid derivatives, are the most frequently alleged substances (allelochemicals) involved in allelopathy 

(Blum 1996, Vaughan & Ord 1990) with soil concentrations and concentrations in the dominant plant 

species often correlating (Kuiters & Sarink 1986, Vaughan & Ord 1991b, Whitehead et al. 1982). 

Benzoic acid derivatives include vanillic, syringic, p-hydroxybenzoic, and protocatechuic acids. 

Cinnamic acid derivatives include ferulic, sinapic, p-coumaric, and caffeic acids. 

Rice (1984) defined the term allelopathy, first coined by Molisch (1937), as the mechanism by which 

one plant or microbial species influences the germination, growth and development of a different 

species through the production of chemical compounds (secondary metabolites) released into the 

environment. Besides phenolic acids, other potential allelochemicals include organic acids, 

hydroxamic acids and volatiles (Blum et al. 1992). 

Although phenolic acids polymerise into the more complex humus compounds such as humic and 

fulvic acids they are continually present in the soil solution with some seasonal fluctuation (Kuiters 

1989) and can significantly inhibit germination and subsequent seedling growth (Baziramakenga et al. 

1995). At concentrations between 100 and 1000 IlM many phenolics are toxic to plants (Whitehead et 

of. 1981) since their relatively simple molecular structure allows them to be easily taken up by plant 

roots. More recent studies have shown their adverse influence on plant growth at lower 
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concentrations (1 to 50 JlM) particularly where culture media were dilute and hence more similar to 

soil solutions (Vaughan & Ord 1991a, Vaughan et al. 1993). 

Concentrations of 1 and 100 JlM gallic and protocatechuic acids reduced root and shoot lengths of the 

legumes Lens esculenta and Rhynchosia minima but their germination was not inhibited until the 

concentrations reached 10000 JlM (Nandakumar & Rangaswamy 1985). Kuiters & Sarink (1987) 

grew several herbaceous woodland species in nutrient solutions with mixtures of seven commonly 

occurring phenolic acids at concentrations of 100, 1000, and 10000 JlM at pH 5.5. There were 

significant reductions in the growth and chlorophyll concentrations of Silene dioica at the highest 

phenolic acid concentration. Subsequently Kuiters (1989) also showed high concentrations of 

phenolic acid mixtures (10000 JlM) inhibited primary root length, number and length of secondary 

roots, and dry weights in Deschampsia flexuosa and Senecio sylvaticus. Root growth was also 

inhibited in pea, again at high concentrations (1000 JlM) of monomeric phenolic acid mixtures 

(Vaughan & Ord 1990). Concentrations as low as 1 JlM also suppressed root growth as long as the N 

content of solutions was limiting. The root and shoot biomass of Ipomoea lacunosa were reduced by 

52 and 26 % when grown with 5000 JlM ferulic acid (Liebl & Worsham 1983). Ferulic, along with 

vanillic and p-coumaric, also inhibited leaf expansion in cucumber (Blum et al. 1989, Lehman et al. 

1994). In agreement with Nandakumar & Rangaswamy (1985), Blum et al. (1992) found no 

germination inhibition in clover by phenolic acids in mixtures or individually at 0 to 2000 JlM. 

However mixtures of phenolic acids did reduce radicle and hypocotyllength. The shoot lengths, fresh 

weight, and transpiration rates of Broad bean (cv. Alfred) were only affected by very high salicylic 

acid concentrations (3500 IlM) which would rarely be extracted from field soils (Manthe et at. 1992). 

However low concentrations (1 ~) did result in stomatal closure. 

Inhibition of germination requires unrealistic high concentrations of phenolic acids, rarely present in 

soils (Rudiger & Lohaus 1987). Benzoic and salicylic acids decreased seed germination of barley to 

60% but only at a concentration of 5 M (Lynch 1980). Moreover phenolic acids tend to affect 

germination with respect to the time taken rather than the number of seeds germinating (Kuiters 

1990). 

Rice (1984) outlined the possible mechanisms through which allelochemicals, such as phenolics, 

inhibited plant growth. These included effects on the following: mineral uptake, cell division and 

elongation, gibberellin- or indoleacetic acid (IAA)-induced growth, photosynthesis, respiration, 

stomatal opening, protein synthesis, lipid and organic acid metabolism, and enzyme activity. Glass 

(1974) found p-hydroxybenzoic acid at concentrations of 25 mM inhibited K uptake in excised barley 

roots. Similarly, the phenolic acids, salicylic and ferulic acid (5000 J.lM at pH 4.0), both inhibited 

J(+(86Rb+) absorption in excised oat root tissue (Harper & Balke 1981). Salicylic acid, at 500 IlM and 
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pH 4.5, induced leakage of organic compounds and electrolytes from the cell (Harper & Balke 1981). 

Similarly Kuiters & Sarink (1987) showed significant reductions. K and P uptake by roots, and Na, 

Ca and Mg translocation to the shoots, were reduced by phenolic acids (10000 IlM at pH 5.5) on 

herbaceous woodland species. P uptake by cucumber was inhibited by ferulic, p-coumaric, and 

vanillic acids at concentrations of 2270, 3000, and 6730 IlM at pH 5.5 (Lyu et al. 1990). 

Baziramakenga et al. (1995) suggested that a reduction in soybean nutrient absorption by intact 

soybeans with benzoic and cinnamic acids was a consequence of reduced membrane integrity, which 

was in turn a result of decreased sulfuydryl groups essential to plasma-membrane transport proteins 

and lipid peroxidation. Depletion of sulfhydryl groups could therefore result in the inactivation of 

such transport enzymes. The leakage of electrolytes from treated soybean increased with time. The 

ions, P04- and S042
-, were lost at a tenth of the rate of K+ and Cr. 

Contrasting results were found by Vaughan & Ord (1991a) on the uptake of radioactively-labelled 

ions by excised pea root tips grown in solutions with p-coumaric, vanillic, and hydroxybenzoic acids. 

The lowest phenolic concentrations (100 !lM) had no effect on the Ca and Na root concentrations and 

the highest concentrations (1000 !lM) actually enhanced the uptake of both cations. Uptake of Ca, 

Mg, and Na, was also stimulated in the roots of Silene dioica at 100 ~ (Kuiters & Sarink 1987). 

The effects of phenolic acids on plant growth are dependent upon the specific acid(s), and their 

concentration. Cinnamic acids are generally more inhibitory than their corresponding benzoic acid 

derivatives, and monohydroxy phenols more inhibitory than dihydroxy compounds. Blum (1996) 

found the relative toxicities of phenolic acids to cucumber seedlings were: ferulic and sinapic acid> 

p-coumaric acid> vanillic and syringic acid> caffeic acid and p-hydroxybenzoic acid> protocatechuic 

acid. p-coumaric, ferulic, and salicylic acids were the most effective inhibitors of Deschampsia 

flexuosa and Chamerion angustifolium growth (Kuiters 1989), and vanillic, caffeic, and syringic acids 

the least toxic. Ferulic, sinapic, and p-coumaric acids are cinnamic acid derivatives. At 

concentrations of 500 11M, the order of decreasing toxicity to pea seedlings was ferulic> p-coumaric> 

vanillic> p-hydroxybenzoic acid (Vaughan & Ord 1990). 

Recent evidence has however shown that the concentrations of individual phenolic acids extracted 

from field soils are more often than not below concentrations reported to have phytotoxic effects 

(Blum 1996, Blum et af. 1992). Laboratory bioassays suggest the action of single phenolic acids is 

not representative of mixtures of acids, which occur in field soils. Results show field concentrations 

of acid mixtures cause inhibitory effects despite individual concentrations being lower than their 

inhibitory concentrations (Blum et al. 1989, Blum 1996). A 30% reduction in absolute leaf expansion 

of cucumber required 0.23 !lmol g-l of ferulic acid but required only 0.05 I1mol g.l when 0.06, 0.17, 

and 0.04 !lmol g-I p-coumaric, p-hydroxybenzoic, and vanillic acids were also present (Blum 1996). 
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The effects of mixtures of phenolic acids on plant growth can be antagonistic, synergistic, or additive 

when compared to the combined effects of the individual compounds (Blum 1996, Lyu et al. 1990). 

Recently Northup et ai. (1995) introduced an alternative theory suggesting a potential role for 

phenolics in plants as an adaptation to soil acidity. They suggested that phenolic-rich foliage may 

benefit the producers. To date polyphenol-rich vegetation in acidic soils has been assumed to act as a 

herbivore deterrent whereby less foliage is lost to herbivory (Lege et al. 1995, Siqueira et al. 1991). 

Nicolai (1988) found higher polyphenol concentrations in beech growing in acidic soils compared 

with less acidic soils, and Muller et al. (1987) showed tannins increased in both dogwood and red 

maple along a gradient of increasing acidity (Northup et al. 1995). Northup et al.(l995) investigated 

the interaction between the phenolic content of Pygmy forests near Mendocino, California, and soil 

acidity. They found significant differences in foliar condensed tannin and phenolic concentrations 

within different species, and these concentrations were inversely related to soil pH. Vegetation, such 

as the Pygmy forest, with a high phenolic content leads to an accumulation of leaf-litter and a mor 

humus layer. NorthUp et ai. (1995) postulated that this humus layer could provide an alternative 

medium for root growth and nutrient cycling when mineral soil conditions were unfavourable. 

Litterfall N could be retained in a form (complexed with litterfall proteins) that was difficult for other 

organisms to utilise providing a competitive advantage for polyphenol-rich vegetation. Phenolic acids 

could also potentially compete with P04 for sorption sites on clay surfaces or even release "fixed" P 

thereby increasing its availability for plant uptake. Hydroxybenzene acids can form strong complexes 

with AI, Fe, and Mn, which usually precipitate P04 in acid soils. Chelating phenolics would therefore 

simultaneously improve P04 availability and detoxify AI. Kuiters & Sarink (1987) showed that low 

concentrations of phenolics (l 11M) stimulated production of shoot and root biomass in Deschampsia 

flexuoSa, Milium effusum, and Silene dioica. These studies all point towards a potential positive role 

of phenolic acids in ameliorating acid soil infertility and minimising nutrient loss within these soils. 

The capacity to produce polyphenol-rich foliage would allow species to sustain their productivity, 

whereas the ability to produce lower concentrations in less acidic soils would allow a greater 

proportion of their photosynthate to go towards growth (NorthUp et ai. 1995). 

9.2 Aims 

• To quantify foliar concentrations of 11 commonly occurring phenolic acids using high 
performance liquid chromatography in races of Betula pendula, Callulla vulgaris, Erica tetra/ix, 
and Hoicus iallatus. 

• To quantify concentrations of the same phenolic acids in five soil types from FM, 5MB, SMM, 
J{P, and KR. 
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• To establish any correlation between phenolic acid contents of dominant plant species and soils. 

• To identify the most common phenolic acids present in the soils of all five study sites, prepare 
culture solutions reflecting any differences in phenolic acid composition between soils, and 
measure the growth of Holcus lanatus in these solutions. (The reasons for the choice of study 
species were given in Chapter 2, Section 2.2). 

• To assess the potential role of phenolics in plants as adaptations to soil acidity. 

• To investigate the effects on growth of Holcus lanatus in soils incubated with dried plant material 
of Betula, Calluna, Erica, and Holcus. 

9.3 Methods 

9.3.1 Total phenolics 

Foliage was collected from Betula pendula, Calluna vulgaria, Erica tetra/ix, and Holcus lanatus, 

when present, from the five study sites: PM, KP, KR, 5MB, and SMM in August 1996. Foliage was 

air-dried for 2 weeks before grinding. Sub-samples (100 mg) of ground foliage were extracted for 24 

h in 50 % aqueous methanol following Northup et al. (1995). Extracts were filtered through No. 41 

Whatman filter paper and made up to 100 ml for analysis. 

Subsamples of 25 g of soil from each of the five sites were extracted with 0.25 M citrate following 

Blum (1997). 25 g soil was added to 250 ml conical flasks and extracted for 2.5 h with 100 ml citrate 

at pH 7.0. EDT A extracts were not used to determine total phenolics since citrate, unlike EDTA, does 

not interfere with the Folin & Ciocalteau's reagent (Blum 1997). 

Total phenolics were measured using Folin-Ciocalteau Phenol Reagent following recommendations 

by Box (1983). Values obtained using this reagent represent relative available total phenolic acids 

rather than absolute total phenolic acids because the reagent reacts with other substances besides 

phenolic acids such as cyclic amino acids (Blum 1997). The reagent was stored in a dark bottle at 4 

0e. 1.5 m1 Na2C03 (200 g rl) and 0.5 ml Folin-Ciocalteau phenol reagent were added to 10 ml sample 

(soil or plant extract) in that order. After 60 min at room temperature, the absorbance was measured 

at 750 nm against deionised water (blank). Absorbance data were obtained using a LKB Novaspcc 

Spectrophotometer. The use of Na2C03 instead of I M NaOH prevented the formation of a haze 

which was also found by Box (1983). Tannic acid was used as a standard and the concentration of 

total phenolics expressed as mg tannic acid equivalents (TAE) per g dry weight soil/plant material. 
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9.3.2 Monomeric phenolic acids 

Soil and plant samples (as above) were extracted using 0.25 M EDTA (pH 7) after Blum et al. 1994. 

The extracts were concentrated in a rotating vacuum evaporator at 30°C to 2-5 m!. Subsamples of 50 

~l were then injected into the HPLC. 

Phenolic acids were separated using a LDC Analytical HPLC system consisting of a ConstaMetric 

4100 solvent delivery system with LDC Membrane Degasser, SpectraSYSTEM SN4000, and a 

SpectraSYSTEM UV3000 absorbance detector set at 254 nm. A 5-IlM particle Bondapak CIS column 

(3.9 mm x 150 mm) was used to isolate the acids which were identified and quantified, based on 

retention times of standards, using TherrnoSeparation Products SpectraSystem software PC 1 000. 

Solvent A consisted of 97.25 % water: 2 % methanol: 0.5 % acetic acid: 0.25 % ethyl acetate. 

Solvent B consisted of 80 % methanol: 17 % water: 2 % acetic acid: 1 % ethyl acetate. The phenolic 

acids isolated were: gallic, protocatechuic, p-hydroxybenzoic, vanillic, caffeic, syringic, p-coumaric, 

salicylic, benzoic, ferulic, and sinapic acids. The 11 acids (listed in elution order) were separated 

within a 70-minute period using the solvent gradient described in Table 9.1. 

Table 9.1. Solvent gradient system program used to separate phenolic acids from soil and plant 

extracts. 
Minutes 

initial 
4.2 

11.5 
13.0 
17.0 
40.0 
50.0 
60.0 
70.0 

Flow (ml min· l
) 

1.3 
1.3 
0.5 
1.5 
1.0 
1.0 
1.0 
1.0 
1.0 

9.3.3 Addition of ground foliage to soils 

Solvents (%) 
A B 

94.0 6.0 
100.0 0 
92.5 7.5 
91.0 9.0 
85.5 14.5 
66.0 34.0 
o 100.0 
o 100.0 

92.0 8.0 

A mixture of ground shoot material of Betula pendula, Calluna vulgaris, and Erica tetralix (7:2: 1) 

was added to soil from FM, SMM, and KR at the following rates: 0, 0.5, and 1.0 g organic mixture 

100 got soil. After air-drying the organic material was milled to powder using a stainless-steel grinder 

and incubated with soil in plastic bags at 90 % field capacity for two weeks. Soil was brought to field 

capacity (90 %) with deionised water and stored in open ended plastic bags which allowed adequate 

aeration (Bessho & Bell 1992). 
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Holcus lanatus seeds were genninated in wet filter paper with acid-washed sand and transferred into 

treatment soils seven days after gennination. Holcus originating from FM, SMM, and KR, were 

grown in 78-mm pots with soil from each of the three sites, and each of the three treatments. There 

were five replicates per treatment. 

9.3.4 Growth of Holcus lanatus in nutrient solutions 

Seeds of Holcus lanatus from FM and KR, collected in August 1996, were germinated on acid­

washed sand on filter paper in October 1997 in the Stirling University growth rooms. The conditions 

were the same as those in Chapter 8. Seedlings were transferred after about 10 days into an initial 

culture solution with no added phenolics and at pH 5.6 (Chapter 4, Section 4.3.1.1). Seedlings were 

grown in this initial culture solution for two weeks and then transferred into experimental solutions 

(described below). 

Phenolic acids were added to nutrient solutions in three equimolar mixtures and at each of two pH 

values. The mixtures were based on the monomeric phenolic acids analysed in the extracted soils 

from all five sites (Section 9.2.2) and pH values were chosen to reflect average pH of the soil 

solutions in PM and KR (Chapter 3) : pH 4.0 and pH 6.5. Mixture 1 comprised benzoic, ferulic and 

sinapic acids at 50 11M; mixture 2 comprised gallic, protocatechuic, p-hydroxybenzoic, and vanillic 

acids at 50 11M; and mixture 3 comprised all seven phenolics at 50 11M. The three phenolics in 

mixture 1 were absent from KR and KP soils, but present in the acidic soils of FM, 5MB, and SMM. 

Acids in mixture 2 were generally present in both non-acidic (KR) and acidic (FM, 5MB, SMM) 

soils. Culture solutions were adjusted to pH 4.0 and 6.5 using 1 M NaOH or 1 M HC!. There were 

four replicate seedlings per treatment. Solutions were changed every other day to minimise microbial 

degradation of the phenolic acids (Kuiters et al. 1987). 

The number of roots and their lengths, the number of blades and tillers and their lengths, were 

recorded on the day treatments began, 1 Nov 1997, and at harvest, 21 days later on 22 Nov 1997. 
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9.4 Results 

9.4.1 Soil total phenols and water-soluble phenolic acids 

Tables 9.2 and 9.3 list the total phenols measured using Folin Ciocalteau's reagent (FC), and 

monomeric phenolic acids identified and quantified using HPLC. Total phenols (FC) and total 

monomeric phenolics (HPLC) were not correlated. With the exception of FM, total phenols were 

highest in the acid soils, particularly 5MB, and lowest in the calcareous soil, KR (Table 9.2). The 

same trend was seen in total amounts of phenolic acids (HPLC) (Table 9.3), FM, 5MB, and SMM 

soils had the highest total concentrations, and KR the lowest. The distribution of individual phenolic 

acids in the soils varied with soil type (Table 9.3). Acid soils contained benzoic, ferulic, and sinapic 

acids which were completely absent from KP and KR. These acids comprised about 50 and 90 % of 

PM and SMM soils. Syringic acid represented 68 % of KR phenolics and was absent from all other 

soils. 

9.4.2 Plant total phenols and monomeric phenolic acids 

Tables 9.4 and 9.5 list the total phenol contents of plant material from Folin CiocaIteau's reagent 

(FC), and monomeric phenolic acids from HPLC. Calluna vulgaris was the most phenolic rich (FC), 

particularly in PM races. Erica tetralix from different provenances contained similar total phenol 

concentrations, and Betula pendula was most phenol-rich in KR and then FM. The grass, Holcus 

lanatus, contained very low amounts of total phenol, the highest concentrations were found in KR 

races (Table 9.4). With the exception of Holcus the total monomeric phenolic acids, determined using 

HPLC, were highest in the tissues of acidic races (Table 9.5). This was particularly pronounced in 

Erica tetralix: PM races contained eight times as much total phenolics as KR races (Table 9.5). In 

other species the difference was about two fold between the acidic and calcareous races. Syringic and 

ferulic acids dominated the phenolic spectrum of Betula from FM, SMM, and KP. These acids 

represented far lower proportions in KR races, which conversely had a substantially greater 

proportion of salicylic acid. Both FM and KR races of Erica were high in syringic acid but FM races 

were equally high in ferulic acid. The phenolic acids, vanillic and ferulic, comprised a greater 

proportion of total phenolics in FM Calluna than in KR Calluna, which was dominated by syringic 

acid. The most notable difference in Holcus phenolic composition was a substantially larger 

proportion of p-coumaric acid in acidic races compared with KP and KR. 
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Table 9.2. Concentrations of total phenols (Tannic acid equivalents mg g-I dry wt) in soils collected 
from Flanders Moss (FM), Sheriffmuir blanket peat (SMB), Sheriffmuir mineral soil (SMM), 
Kippenrait Glen (KP), and Kinloch Rannoch (KR). 
Site Total phenols (TAE mg g.l) 
~ om 
5MB 0.31 
SMM 0.19 
KP 0.15 
KR 0.05 

Table 9.3. Water-soluble phenolic acids (ng g-I dry wt) in soils from Flanders Moss (FM), 
Sheriffmuir blanket peat (SMB), Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), and Kinloch 
Rannoch (KR). The percentages of each compound in the total spectrum are given in parentheses. 
Phenolic acids are listed in order of increasing retention time. ND= below detection level. 
Phenolic compound FM 5MB SMM KP KR 
Gallic acid 0.12(18.8) 0.54(70.1) 0.09(12.2) 0.13(74.0) 0.01(9.4) 
Protocatechuic acid 0.06(9.4) NO NO NO NO 
p_hydroxybenzoic acid 0.13(20.3) 0.04(5.2) NO NO 0.01(7.5) 
vanillic acid NO 0.10(13.0) NO 0.05(25.1) 0.02(12.2) 
caffeic acid NO NO NO NO NO 
syringic acid NO NO NO NO 0.09(68.3) 
p-coumaric acid NO NO NO NO NO 
salicylic acid NO NO NO NO NO 
benzoic acid 0.12(18.8) NO 0.04(5.4) NO NO 
ferulic acid NO 0.07(9.1) 0.54(73.0) NO NO 
sinapic acid 0.21(32.8) 0.02(2.6) 0.07(9.5) NO NO 
TOTAL 0.64 0.77 0.74 0.18 0.13 

Table 9.4. Concentrations of total phenols (mg tannic acid equivalents g-I dry weight) in leaf matter 
of Betula pendula L., Calluna vulgaris L., Erica tetralix L., and Holcus lanatus L. originating from 
Flanders Moss (FM), Sheriffmuir blanket peat (SMB), Sheriffmuir mineral soil (SMM), Kippenrait 
Glen (KP), and Kinloch Rannoch (KR). The gaps in the data are because three of the species do not 

occur at all the sites. 

Site 
-PM 

5MB 
SMM 
KP 
KR 

Holcus lanatus L. 
0.13 
0.19 
0.16 
0.08 
0.31 

Total phenols (TAE mg g.l) 
Erica tetralix L. Calluna vulgaris L. 

3.26 7.19 
4.31 

3.83 6.64 

Betula pelldula L. 
3.37 

2.74 
1.94 
4.14 
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Table 9.5. Water-soluble phenolic acids (flg g"l dry wt) in leaf matter of Betula pendula (a), CaLluna 
vulgaris, Erica tetralix, and Holcus lanatus originating from Flanders Moss (FM), Sheriffmuir 
blanket peat (SMB), Sheriffmuir mineral soil (SMM), Kippenrait Glen (KP), and Kinloch Rannoch 
(KR). The percentages of each compound in the total spectrum of water-soluble phenolics are g iven 
in parentheses. Phenolic acids are listed in order of increasing retention time. ND= below detection 

level. 
Phenolic compound Betula pendula L. 

FM SMM KP KR 
Gallic acid ND ND ND ND 
protocatechuic acid 0.\6(2.0) 0.02(0.2) 0.32(6.3) 0.01(0.2) 

p-hydroxybenzoic acid 0.02(0.2) 0.0\(0.\) 0.05(0.9) 0.24(3.7) 

vanillic acid 0.\ O( 1.3) 1.36(10.5) 0.08(1 .6) 0.09(1.4 ) 

caffeic acid 0.26(3.3) 0.47(3.7) 0.14(2.7) 0.61(9.4) 

syringic acid 5.51(68.7) 5.36(41.3) 2.62(50.9) 1.23( 19.0) 

p-coumaric acid ND 0.65(5.0) ND 0.17(2.6) 

salicylic acid 0.42(5.2) 1.\3(8.7) ND 1.59(24.6) 

benzoic acid 0.39(4.9) 1.13(8.7) 0.26(5.0) 1.16(17.9) 

ferulic acid 1.15(14.3) 2.74(21.1) 1.67(32.5) 1.37(21.2) 

sinapic acid 0.01(0.1) 0.10(0.8) 0.01(0.2) ND 
TOTAL 8.02 12.97 5.14 6.47 

Phenolic compound Calluna vulgaris L. Erica /.etralix L. 
FM 5MB KR FM KR 

Gallic acid ND ND ND 0.05(0.1) 0.07( 1.6) 

Protocatechuic acid 0.30(1.4) 0.3\ (\.5) 0.05(0.3) 0.01«0.1) 0.09( 1.9) 

p-hydroxybenzoic acid 0.23(1.1) 0.02(0.1) 0.02(0.1) 0.01«0.1) ND 
vanillic acid 7.68(35.4) 0.48(2.4) 0.16(1.1) 0.27(0.8) 0.22(5.0) 

caffeic acid 0.30(1.4) 1.44(7.1) 0.18( 1.2) 0.55(1 .6) 0.16(3 .7) 

syringic acid 5.70(26.3) 13.76(67.3) 10.06(70.3) 12.67(37.0) 3.09(69.9) 

p-coumaric acid 1.05(4.8) 1.22(6.0) 0.86(6.0) 1.24(3.6) ND 
salicylic acid ND 1.92(9.4) I .93( I 3.5) 3.98( 11.6) 0.20(4.4) 

benzoic acid 0.88(4.0) 1.29(6.3) 0.70(4.9) 3.64( 10.6) 0.28(6.3) 

ferulic acid 4.96(22.8) ND ND 10.90(31 .8) 0.30(6.8) 

sinapic acid 0.62(2.8) ND 0.38(2.6) 0.93(2.7) 0.02(0.4) 

TOTAL 21.71 20.45 14.32 34.26 4.42 

- Phenolic compound Holcus lallatlts L. 
FM 5MB SMM KP KR 

- Gallic acid ND ND ND 0.06(0.4) 0.33(2.9) 

Protocatechuic acid O. I 8(3.9) 0.24(2.4) 0.40(2.4) 0.26( 1.7) 0.22( 1.9) 

p_hydroxybenzoic acid 0.0\(0.2) 0.05(0.5) 0.22( 1.3) 0.01«0.1) 0.01(0.1 ) 

vanillic acid 0.07(1.5) 0.71(7 .1) 0.06(0.3) 0.08(0.5) 0.30(2.6) 

caffeic acid 0.05(1.0) 0.14(1.4) 0.06(0.4) ND 0.03(0.2) 

syringic acid 0.68(15. I) 2.13(21.3) 0.01(0.1) 8.01 (52.2) 3.10(27.1) 

p-coumaric acid 0.38(8.4) 1.50( \5.0) 8.82(52.9) 0.12(0.8) 0.03(0.2) 

salicylic acid 0.47(10.5) 0.84(8.4) 0.37(2.2) 0.65(4.2) 1.23( I 0.7) 

benzoic acid 1.86(41.1) 1.73(17.2) 6.25(37.5) 0.3 I (2.0) 2.26( 19.7) 

ferulic acid 0.79(17.6) 2.65(26.4) 0.23( 1.4) 5.83(37.9) 3.93(34.4) 

sinapic acid 0.04(0.8) 0.04(0.4) 0.24(1.5) 0.03(0.2) 0.02(0.2) 

TOTAL 4.52 10.03 16.67 15.36 11.44 
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Table 9.6. Water-soluble phenolic acids (Jlg g-l dry wt) in mixture of ground dried plant material 
added to FM, SMM, and KR soil. The percentages of each compound in the total spectrum are also 
given. Phenolic acids are listed in order of increasing retention time. ND- below detection level. 
Phenolic compound Concentration (Ilg g-l) % 

Gallic acid ND ND 
Protocatechuic acid 0.26 1.4 
p-hydroxybenzoic acid 0.01 0.1 
vanillic acid 0.45 2.4 
caffeic acid 1.74 9.4 
syringic acid 11.50 62.3 
p-coumaric acid 0.65 3.5 
salicylic acid 1.92 10.4 
benzoic acid 0.89 4.8 
ferulic acid 0.78 4.2 
sinapic acid 0.26 1.4 
TOTAL 18.46 100 

9.4.3 Addition of dried plant material 

The phenolic acid composition of the ground material added to soils is listed in Table 9.6. The 

majority (60 %) was represented by syringic acid. The addition of plant material (litter addition) to 

the soils significantly affected both the dry weights, and root:shoot dry weight ratios, of Holcus. 

Furthermore the response of plants differed significantly between soil types, plant races, and litter 

additions (Table 9.7). The race*soil*litter addition interaction factor was significant at p<O.OOl. 

With the exception of one treatment (discussed below) there was an approximate ten-fold reduction in 

dry weight (d.w) with addition of 0.5 g plant material 100 g-l soil, and 100-fold reduction with 

addition of 1.0 g plant material 100 g-l soil (Table 9.8 and Figure 9.1). The percentage reduction in 

dry weights with the addition of plant material are given in parentheses. The roots of plants became 

stunted and discoloured, with many branched and stunted lateral roots, after litter additions (Figure 

9.2). 

Growth of KR and SMM races was stimulated with the lower rate of addition when grown in FM soil, 

and only in FM soil. Shoot and root dry weights of KR races were more than two fold greater than 

control plants (no litter addition). Root d.w of SMM plants were about 50 % greater than controls. 

D.w of FM races did not change greatly between control plants and plants grown in FM soil with 0.5 

g litter addition 100 g-l soil. 

There was no stimulation in growth at the higher litter addition rate (1.0 g 100 g-l soil), or in either 

KR or SMM soil with any litter addition. The reduction in growth, after 1.0 g litter addition 100 i 1 

soil, was consistently lowest in FM soil in all three races. Moreover the largest reduction in d.w after 

plant addition occurred in all three races when grown in KR soil. 
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After litter addition, irrelevant of soil type, the root:shoot ratios of all races were significantly 

increased, and generally increased with an increase in litter addition (Table 9.7). The lowest increase 

in ratios occurred in all races when grown in FM soil. FM races had significantly lower root:shoot 

ratios in all soil types and at all rates of litter addition. 

Table 9.6. Statistical analyses of plant dry weights, and root:shoot ratios, of Holcus originating from 
PM, SMM, and KR (race), grown in soil from FM, SMM, and KR (soil type) with additions of plant 
material at 0, 0.5, and 1.0 g l00g'\ soil (plant addition). Degrees of freedom are: race 2, soil type 2, 
plant addition 2, and interaction factor 8. ***, p<O.OOI; **, p<O.OI; *, p<0.05; n.s, not significant. 
Dry weight Race Soil type Plant addition Race*Soil*Addition 

interaction 
F P F P F P F P 

Total dry weight 3.21 * 192.80 *** 629.26 *** 7.91 *** 
Shoot dry weight 4.29 * 159.23 *** 404.46 *** 10.11 *** 
Root dry weight 3.19 * 264.96 *** 535.93 *** 7.84 *** 
Root:shoot ratio 3.43 * 119.28 *** 33.18 *** 2.34 * 

9.4.4 Growth of Holcus in hydroponic solutions 

Root elongation rate (RER) was not significantly affected by phenolic acid additions or nutrient 

solution pH. However the pH*phenolic mixture interaction factor was significant at p<O.OI, and the 

response of the two races to phenolic acids differed significantly (Table 9.9). In FM races RER's 

were greater at pH 4.0, with or without phenolic acids, compared with pH 6.5. Conversely RER's 

were greater in all treatments at pH 6.5 than at pH 4.0 in KR races. Furthermore at pH 4.0, RER's 

were greatest, in both races, in mixture 3 (Figure 9.3). 

The mean increase in total root numbers were significantly greater in FM than KR irrelevant of 

treatment (Table 9.9 and Figure 9.3). The pH*phenolic mixture interaction factor was significant at 

p< 0.00 1. Total root numbers significantly decreased in KR seedlings, at pH 4.0, in the presence of 

phenolic acids. Root numbers were unaffected in KR races at pH 6.5, and in FM plants at either pH. 

Shoot elongation rate (SER) was significantly greater in PM races, particularly at pH 4.0 (Table 9.9 

and Figure 9.4). Shoot growth was enhanced in mixtures 2 and 3 in this race, and unaffected by 

treatment at pH 6.5. There was no similar stimulation in shoot growth in KR plants where SER was 

depressed in mixtures 2 & 3 at pH 6.5. 

Tiller and blade numbers increased in FM plants, at pH 4.0, with phenolic acids (mixture 2 and 3) 

(Figure 9.4). In contrast numbers decreased in KR races, especially in mixture 3. Growth was 

unaffected at pH 6.5 in either race. 
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Figure 9.1. Reduced growth of (a) Flanders Moss (FM), (b) Sheriffinuir mineral soil (SMM), and (c) 
Kinloch Rannoch (KR) races of Holcus lanatus grown with increasing amounts oflitter addition: 0 g 100 
g-l, 0.5 g 100 got. and 1.0 g organic mixture 100 g-'soil. 
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Table 9.9. Statistical analyses of root elongation rate (RER), shoot elongation rate (SER), and increase in 
total root number (fRN), tiller number (TNTiU), and blade number (TNB), of Holcus originating from FM 
and KR (race), grown in nutrient solution with mixtures of phenolic acids (mixture) at pH 4.0 and 6.5 (PH) . 
Degrees of freedom are: race 1, mixture 3, pH 1, and interaction factor 3. ***, p<O.OOI; **, p<O.OI; *, 
p<0.05; n.s, not significant. 

Race Mixture 

F p F 

RER 4.04 * 1.03 

SER 14.60 *** 2.32 

TRN 123.74 *** 2.30 

TNTill 122.21 *** 0.39 

TNB 31 .22 *** 0.15 

pH 

P F P 
n.s 0.16 n.s 
n.s 8.81 ** 
n.s 12.32 *** 
n.s 4.12 * 
n.s 9.28 ** 

pH*mixture 
interaction 
F p 
5.32 ** 
6.98 *** 
2.38 n.s 
0.89 n.s 
4.50 ** 

Figure 9.2. Roots ofKin1och Rannoch (KR~ races of.Hol~us lanatus after growth in s~il with 1.0 g 100 
gol litter addition . Roots were stunted and thickened WIth thIckened laterals, also stunted ill length . 
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Figure 9.3. Mean root elongation rates (em day"\ ± s.e) and increase in total root number (± s.e) in 
Holcus lanatus originating from Flanders Moss (FM) and Kin loch Rannoch (KR). e dlings were 
grown in nutrient solutions with and without phenolic ac id mixtures at pH 4.0 (D ) and pH 6.5 (CD. 
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Figure 9.4. Mean shoot elongation rates (cm da/, ± .e), increase in tota l tiller numb r (± s. ), and 
increase in total number of blades (±s.e) in HoLcus Lanatus originating fr m Flander M ss ( M) 
and Kinloch Rannoch (KR). Seedli ngs were grown in nutrient solutions with and without ph n Ii 
acid mixtures at pH 4.0 (D ) and pH 6.5 ( D ). 

227 



Table 9.S. Mean shoot and root dry weights (± s.e), and rootshoot ratios (± s.e), of Holcus lanatus originating from Flanders Moss (FM), Sheriffmuir (SMM), and 
Kinloch Rannach (KR) grown in soil with added plant material. Plants were grown in each of three soi ls collected from FM, SMM, and KR. Additions were at the 
following rates: control (0 g pl ant material 100 g-! soil) , 0 .5 g 100 got, and 1.0 g 100 got. The percentage reduction in dry weights after organic additions are given in 
parentheses. 

Shoot dry weight (g) Root dry weight (g) Root:shoot ratio 
control O.5g lOOg·t 1.Og lOOg-t control O_5g lOOg-t 1.0g lOOg-1 control O.5g lOOg-1 1.Og lOOg-1 

Flanders Moss 
FM 0.043±0.OL 0.037±0.01 0.004±0.00 0.017±0.00 0.014±0.00 0.004±0.00 0.39±0.06 0.19±0.06 0.93±0.07 

(100%) (87.3%) (9.0%) (100%) (83.5%) (20.7%) 
SMM 0.1S0±0.02 0 .002±0.00 0.002±0.00 0.160±0.03 0.004±0.00 0.003±0.00 1.05±0.08 1.88±0.32 2.43±0.63 

(100%) (\.3%) ( \.0%) (100%) (2.2%) (2.2%) 
KR 0.323±0.04 0.035±0.01 0.001±0.02 0.387±0.05 0.062±0.01 0.001±0.00 1.20±0.07 1.93±0.39 1.1O±0.21 

(100%) (10.8%) (0.4%) (100%) ( 16.0%) (0.4%) 
Sheriffmuir 

FM 0.052±0.01 0.055±0.01 0.004±0.00 0.011±0.00 0.0 I 6±0.00 0.006±0.00 0.21±0.03 0.32±0.07 1.40±0.13 
(100%) (106.0%) (8 .0%) (100%) (151.7%) (53.8%) 

SMM 0.064±0.01 0.002±0.00 0.001±0.00 0.074±0.01 0.003±0.00 0.002±0.00 L.23±0.19 2.03±0.12 2.58±0.74 
(100%) (2.4%) (1.6%) (100%) (4.2%) (3 .1%) 

KR 0.647±0.07 0.044±0.02 0.004±0.00 0.647±0.07 0.044±0.02 0.012±0.00 1.18±0.03 2.1 2±0.6 1 3.04±0.13 
(100%) (6.8%) (1.5%) (100%) (8 .8%) (1.5%) 

Kinloch Rannoch 
FM 0.030±0.01 0 .073±0.04 0.005±0.00 O.O1O±O.OO 0.030±0.01 O.OOS±O.OO 0.Sl±0.2S 0.S4±0.lS 0.89±0.09 

(100%) (247.S %) (18.0%) (100%) (284.7%) (4S.3%) 
SMM 0.133±0.01 0.002±0.00 0.001±0.00 0.113±0.02 0.006±0.00 0.004±0.00 0.86±0.18 2.S4±0.48 2.7S±0.42 

(100%) (1.7%) (1.1 %) (100%) (5.3%) (3.4%) 
KR 0.466±0.04 0.004±0.00 0.002±0.00 0.S54±0.05 0.011±0.00 0.003±0.00 1. 19±0.OS 3.18±O.62 1.43±O.2S 

(100%) (0.8%) (0.4%) ( 100%) (2.0%) (0.5%) 
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9.5 Discussion 

The phenolic acids of acidic soil races of Betula pendula were dominated by syringic and ferulic 

acids. In contrast in KR races the phenolic acids were represented by a more even mixture of 

syringic, salicylic, benzoic, and ferulic acids. The phenolic composition in Calluna vulgaris and 

Erica tetralix was dominated by syringic acid in both acidic and non-acidic races. However ferulic 

acid was notably higher in acidic races. 

The soils of FM, 5MB, SMM, KP, and KR, were represented by eight phenolic acids: gallic, 

protocatechuic, p-hydroxybenzoic, syringic, benzoic, ferulic, and sinapic acids. The latter three were 

confined to the acidic soils, both the organic (FM and 5MB) and the mineral (SMM). Conversely, 

syringic acid dominated the calcareous KR soil and was absent from the acidic soils and brown forest 

soils of KP. 

The species: Betula pendula, Cal/una vulgaris, Erica tetralix influenced the total amounts of phenolic 

acids extracted from the soils by HPLC. Plant and soil concentrations were positively correlated at p< 

0.05 (Betula and Calluna), and p< 0.01 (Erica). Races naturally occurring on the organic soils, FM or 

5MB, and on the acidic mineral soil (SMM), contained greater amounts of phenolic acids (HPLC), as 

did their respective soils. Concentrations in KR races were the lowest measured, in accordance with 

the low concentrations extracted from KR soils, and were about five-fold lower than acidic soils. In 

agreement with these findings. Whitehead et al. (1982) showed four graminaceous species and eight 

dicotyledenous species markedly influenced the amounts of phenolic compounds extracted from the 

supporting soils. Similarly Kuiters & Denneman (1987) found differences in water-soluble phenol 

concentrations in soils were partly explained by differences in the phenolic litter properties of the 

dominant tree species. 

There was less consistency between individual acids identified and quantified in plants and soils. The 

phenolic spectrum of Erica tetralix, originating in KR, was dominated by syringic acid (69.9 %). 

Likewise the phenolic acid extracted from KR soil were mainly syringic acid (68.3 %). Ferulic acid 

(73.0 %) made up the majority of phenolics extracted from SMM soil, and was the second highest 

acid in Betula pendula from this site. 

The total amount of phenolics, measured using FC, and the total concentration of monomeric 

phenolics, measured using HPLC, were not correlated. Values based on FC were about 10
6 

fold 

greater than total concentrations obtained from HPLC. Contrary to these results Blum et al. (1991) 

found positive correlations between HPLC and FC measurements. However a number of organic 
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substances, not necessarily possessing a phenolic hydroxyl group, together with inorganic substances 

are known to reduce the FC reagent (Box 1993). This is likely to account for differences in values 

obtained between methods. Furthermore Blum et al. (1991) did not recommend the use of the FC 

method to estimate absolute concentrations of phenolic acids in soil extracts. 

The most widely accepted theory to explain predominance of polyphenol-rich vegetation in forests on 

acidic soils is based on the assumption that greater phenolic concentrations reduce herbivory (Northup 

et at. 1995). Recent evidence has cast doubt on this theory: within individual tree species on a range 

of soils, higher concentrations of phenolics did not reduce herbivory in Quercus or Fagus sylvlIticlI 

(Glyphis & Puttick 1989, Balsberg Pahlson 1989). Moreover the results of these studies provide 

further evidence towards the hypothesis, suggested by Northup et af. (1995), which suggests 

polyphenol-rich vegetation is an adaptive response to soil acidity. Siqueira et al. 1991 also showed 

phenolic acids facilitated nutrient uptake, particularly Fe, under acidic conditions. 

Addition of organic mixtures to soil from KR and SMM severely reduced the growth of I/o/ells 

lanatus originating from PM, SMM, and most of all KR. In agreement with Vaughan & Ord (l99Ib) 

the root morphology and architecture were modified, and increases in fresh weight inhibited, by the 

phenolics. However growth was not reduced in PM races, and stimulated in KR and SMM races, 

when grown in PM soil amended with the lower rate of organic addition. The organic mixture was 

predominantly represented by syringic acid (62.4 %), a benzoic acid derivative. Benzoic acids have 

usually been shown to be less inhibitory than cinnamic acids (Kuiters & Sarink 1986). Einhellig t,t al. 

(1985) also showed negative effects on the growth of sorghum after amending soil with three weed 

residues. The degree of growth reduction was correlated with the quantity of dried residue added. 

The same was found in Holcus lanatus. 

Although differences were not significant, root elongation rates of both KR and FM races of flo/ellS 

were higher than control plants in nutrient solutions with a mixture of 7 phenolic acids at pH 4.0. 

This was not the case at pH 6.5. Shoot elongation rates, tiller and blade numbers were also increased 

in PM races. Moreover root numbers, tiller and blade numbers, were reduced in KR races in nutrient 

solutions with phenolic acids at pH 4.0. The absence of growth inhibition in FM races at pH 4.0 or 

6.5 is in accordance with the higher concentration of phenolic acids present in the organic FM soil. 

The life-time of phenolics in this soils will be more prolonged as a result of lower microbial activity. 

In contrast most phenolics will be rapidly metabolised by microorganisms in KR soil leading to a 

rapid removal of these acids from the soil. Moreover in KR soil phenolics are likely to be present in 

the dissociated, less toxic state. 
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The pKa values for simple phenolic acids are about 4.5. Therefore phenolic acids in the nutrient 

solutions at pH 4.0 are predicted to be in a undissociated form which is more lipid soluble and easily 

taken up at the root membrane (Kuiters 1990). This explains why growth inhibition in KR races only 

occurred in solutions at pH 4.0. 

9.6 Conclusions 

• The total amount of monomeric phenolic acids extracted from the races of dominant species in 
FM, 5MB, SMM, and KR influenced the concentrations in respective soils. 

• Individual monomeric phenolic acids extracted from either plants or soils were not consistently 
correlated. 

• Total phenolics measured using Falin Ciocalteau's reagent and HPLC were not correlated. 

• Organic additions to FM, SMM, and KR soils inhibited growth of all three races of l/oleLis imlllflis 
except at the lower rate of addition in FM soil. In this soil, organic residues stimulated the dry 
matter production of KR and SMM races. 

• Phenolic acids, in hydroponic solutions, did not inhibit growth of FM races of I/olcu.~ iallaflts, at 
either pH 4.0 or pH 6.5. 

• Growth was sometimes increased in both FM and KR races in acidic solutions with added phenolic 

acids. 

• Growth of KR races was sometimes reduced in the presence of phenolic acids but only at pH 4.0. 
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Chapter 10 

General Discussion 

10.1 Tolerance to low pH in Holcus lanatus and Betula pendula 

10.1.1 Holcus lanatus 

Increasing acidity, with pH < 4.0, inhibited root elongation, root production, shoot elongation, and 

tiller production in races of Holcus from both FM and KP. Inhibition of growth was most pronounccd 

in KP races which did not tolerate pH < 5.0. KP races showed symptoms of toxicity which were 

absent or far less severe in FM races (stunted, swollen and discoloured roots, and rapid wilting and 

death of shoots). 

According to Rorison (1986) races most tolerant of soil acidity maintain a stable root:shoot ratio 

much better than potentially faster growing plants which are intolerant of acidic conditions. There 

was less variation in root:shoot dry weight quotients between pH values in FM races compared with 

KP races. 

In KP races, increasing the H+ concentration led to a sudden wilting of shoots and their subsequent 

death. Gunse et al. (1997) found a high H+ concentration significantly reduced the hydraulic 

conductivity of root cells of H+-sensitive maize varieties (Ardour 250) but not of H+-tolerant varieties 

(BR 201F). Plasmolysis of the cortical cells presumably contributed to reduced watcr uptake. 

Wilting and death of shoots in FM Holcus was far less pronounced than in KP races. Furthermore the 

proportion of root tissue occupied by cortex increased with increasing acidity in FM races but 

decreased in KP races. Ciamporova et al. (1995) proposed that the preservation of cortex tissue, 

essential for absorption and transport of water and nutrients, reflected structural adaptations to acid-

stress. 

10.1.2 Betula pendula 

Rates of root elongation, root production, and leaf expansion in both KP and particularly KR races of 

Betula were severely inhibited by pH< 5.0. This reflects the slightly acidic and calcareous nature of 
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their natural soils. Growth in SMM races was not adversely affected by decreasing solution pH from 

5.6 to 3.0. 

Rorison (1986) suggested that plants most capable of surviving acidic environments tendcd to have 

inherently slow rates of growth and low nutrient requirements. SMM races of Bl,tula maintained a 

steady low rate of root elongation, 2.5-3.5 cm day' I , which did not change markedly with a change in 

acidity. In contrast RER of KP and KR races varied from 2.0-5.0 and 3.0-6.0 em day"1 at pH > 5.0, 

and then dropped substantially to about 0.5 em day"1 as the pH decreased. 

10.2 Effects of Al on Anthoxanthum odoratum, Betula pendula, and lIolells lanatlls 

10.2.1 pH 4.2 culture solutions 

10.2.1.1 Anthoxanthum odoratum 

Aluminium at low concentrations, 1.3 mg rl, stimulated growth in races of AntllOXlllltlrltm Oc/OrCItltlll 

from FM and KR but was inhibitory to 5MB races. The higher concentration of 2.7 mg rl also 

stimulated growth in FM but not KR races. Similar positive growth responses to Al in nutrient 

solutions have frequently been shown in crops (Foy et al. 1978) including: rice (3 mg r l
), tropical 

legumes (0.5 mg rl), eucalyptus (l mg r\ tea (27 mg rl), sugar beet (l mg rl), corn (3.5 mg r l), and 

wheat (3 mg rl). 

Al has been proposed to displace Fe from metabolically inactive sites increasing Fe uptake. and to 

promote P uptake by blocking negative charges on cell wall sites (Foy et al. 1978). Fe uptake was not 

increased in FM races but was increased in KR at the lower concentration of 1.3 mg 1.1. At this 

concentration roots contained twice as much iron as plants which received no AI. In both FM and KR 

races Fe translocation to the shoots was increased in the presence of Al - this was not the case in 5MB 

plants. 

Al uptake by roots was lowest in KR races, and translocation to the shoots was inhibited. 

10.2.1.1 Holeus lanatus 

Aluminium (at nominal concentrations of 25 and 35 mg rl and [AI]".,.., concentrations of 378 and 522 

11M) significantly reduced root elongation, primary and lateral root numbers. shoot elongation. tiller 

production, and leaf area of all races of Holcus lanatus. Inhibition of growth increased with an 

increase in nominal Al concentration. This AI-induced reduction in growth was to a certain extcnt 

correlated with the natural distribution of races of Holcus. Relative root and shoot growth was 
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generally lowest in KR races. A more detailed measurement of growth at daily (or hourly) intervals 

would most likely have revealed bigger differences in growth among races. 

Root uptake of P and K increased in AI-treated plants. In contrast Al inhibited root uptake of Ca, Mg, 

and Fe, and translocation of all nutrients to plant tops. The effect of AI differed between Ho/cus 

races. The increases in root P concentrations were greatest in races from the acid peats: FM and 

5MB, and least in that from KP. The increase in root K concentrations were most pronounced in 

5MB and KR races, and least pronounced in those from FM. SMM races were generally least 

effected by AI-induced reductions in nutrient absorption and translocation to the shoots. 

Tolerance to AI has been related to a plant's ability to use P and Ca efficiently in the presence of AI 

(Andersson 1988, Barcelo et al. 1996, Foy & Brown 1964, Foy et al. 1978, Jones 1961). The two 

races SMM and KR were most effective in transporting P and Ca from roots to shoots in the presence 

of AI, and the races from FM, 5MB, and KP were least effective. To a certain extent this is explained 

by their natural distribution. SMM races are found in acidic soils with the highest concentrations of 

AI. FM and 5MB races are from acidic soils but these are low in AI and the Al present is more than 

likely complexed by organic matter and therefore non-toxic. KP soils are slightly acidic and at this 

pH should contain optimum levels of plant nutrients. That these three races should not be tolerant of 

Al is therefore expected. 

The concentrations of Ca in the shoots of Holcus lanatus collected from the field were highest in the 

KP, and particularly, KR races. Similarly the highest P concentrations were found in KP races but the 

lowest in KR races. As expected concentrations of these two nutrients did not vary greatly between 

the three races from acidic (FM, 5MB, SMM), either organic or mineral, soils. 

Quellette & Dessureaux (1958) found AI-tolerant races of alfalfa contained more Ca and less Al in 

their shoots than those that were AI-sensitive (Davies & Snaydon 1972). This was also true of SMM 

races of Holcus lanatus. 

At the lower Al concentration (25 mg rl AI) FM and 5MB races accumulated the most Al in their 

roots. This is in agreement with Delhaize et al. (1993a) who showed sensitive root apices of wheat 

accumulated more AI. FM roots contained up to 30 times more AI. However at the higher solution 

Al concentration, 35 mg rl AI, the races KR and SMM contained the highest Al concentrations. 

Greater Al precipitation in roots, in SMM races, may reflect greater Al tolerance. Differences in Al 

accumulation between different parts of the root system (apices, mature zones) were not quantified in 

this study. 
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Foy (1996) found shoot Al concentrations in barley were greater in AI-sensitive cultivars than AI­

tolerant cultivars. Generally the shoots of FM, 5MB, and KR races accumulated the most Al in their 

shoots. This would be expected from their native soils. 

10.2.1.2 Betula pendula 

AI, at low concentrations (nominal concentrations of 2 and 5 mg rl and [Al].",,,,,, concentrations of 48 

and 127.5 ~M), sometimes stimulated root elongation, root numbers, lateral root lengths and numbers, 

leaf expansion, relative and absolute growth rates and seedling height. At high concentrations 

(nominal concentrations of 15-35 mg rl and [AI] Jt>.>ltO concentrations of 376.6 and 998.5 ~M) Al often 

inhibited growth. The effects of Al were dependent upon the race and reflected their natural origin. 

The tolerance to Al between races was of the order SMM>FM>KP>KR. 

Al was beneficial to, and stimulated growth, at lower concentrations, in races from FM and KP. Root 

elongation was stimulated by up to 58 % and total leaf area was up to three-fold greater. Furthermore 

this increase in leaf area was a result of an increase in the number of larger leaves (> 5 cm\ At the 

highest concentration Al reduced root elongation, root production, relative growth rates, and seedling 

height. Like the lower Al concentrations total leaf area was also increased. However this was a result 

of an increase in the number of small leaves « 2 cm
2
). 

AI, at all concentrations, damaged the growth of KR races, reflecting the calcareous, near neutral, 

soils of its natural origin. Root elongation, root number, lateral root lengths and numbers, and 

seedling height were all reduced in the presence of AI. However total leaf area was increased at all Al 

concentrations but this was primarily a result of an increase in the production of small leaves, < 2 cm2 

in area. Janhunen et al. (1995) similarly showed a reduction in the size, and increase in the density of 

needles of Pinus sylvestris and Picea abies after treatment with high concentrations of Al (150 mg r l
). 

At the highest Al concentration there were visible symptoms of Al toxicity in KR plants. This was 

not the case in any of the other three races. Root tips were swollen, discoloured and necrotic. Lateral 

roots were stunted, swollen and discoloured. The leaves of these birch were slightly chlorotic. 

The growth of SMM races was not adversely affected by Al at any of the experimental concentrations 

used. Root elongation was greater at the higher concentrations, root production was increased by all 

but the highest concentration, leaf area was increased at all concentrations with no reduction in leaf 

expansion (i.e. no reduction in leaves >5 cm2 in area), and relative growth rates and seedling height 

increased with increasing Al concentration. 

Contrary to Holcus lanatus, the uptake and subsequent translocation of P to plant tops was unaffected 

by Al (at any concentration) in all races, even KR. This P-efficiency in the presence of Al reflects the 
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tolerant nature of Betula to AI. Root absorption of Ca was also not reduced by Al in any race, and 

was generally higher in the KP and KR races reflecting their greater requirement for Ca. Subsequent 

translocation to the shoots was slightly reduced by Al concentrations> 10 mg r' but not severely. The 

plants retained their ability to translocate Ca in the presence of AI. Al did however reduce the uptake 

by roots of K, Mg, and Fe, and translocation of Mg and Fe to shoots, in all races. 

Root Al concentrations were up to 15 times higher than shoot concentrations. Therefore, in 

agreement with Corrales et at. (1997), Kinraide (1988), Delhaize et al. (1993a), and Marienfeld et al. 

(1995), Al was preferentially located in the roots, and although no histological techniques were used 

to determine the location within the roots, the literature would suggest it accumulates in cortical cell 

walls. This suggests Betula tolerates Al by excluding it from the symplast. Other proposed 

mechanisms of Al tolerance include complexation of Al by root organic exudates or precipitation of 

Al through an increase in rhizosphere pH. Al was not chelated around the roots of Betula grown in 

rhizoboxes with agar containing aluminon (data not given). Aluminon complexes Al and the agar 

turns from pink to clear (Dinkelaker et al. 1993). Also there was no significant increase in nutrient 

solution pH, however only the pH of the bulk solution was measured, and not that of the rhizosphere 

in particular. 

The Al concentrations in shoots of SMM races were lower than the other three races. This implies the 

most tolerant race is also the most efficient at preventing Al uptake into the symplast. Root 

elongation was significantly correlated with shoot Al concentration. However Al concentrations were 

lower than those found in field plants (Chapter 2, Table 2.2). 

In agreement with Rorison (1986), the number and lengths of lateral roots in the AI-tolerant Betula 

race, SMM, were no different from seedlings grown in 0 mg Al r' reflecting the effective distribution 

of dry matter between laterals and root hairs in the presence of AI. In contrast the lateral roots of KR 

seedlings were swollen, stunted and fewer in number. Rates of root elongation of the SMM race in 

nutrient solution with no added Al were about half that of KR races. 

Howeler & Cadavid (1976) found the stimulus in growth by low Al concentrations in rice was greater 

in AI-tolerant cultivars than in AI-sensitive cultivars. The beneficial effect of 2 and 5 mg )"' Al on 

root elongation in PM and KP races was not seen in SMM races which were the most AI-tolerant. 

However the stimulus was greater in PM races which were more AI-tolerant than KP races. Fe uptake 

was not increased in these races at low Al concentrations, and P uptake was only increased in KP 

races at 5 mg Al )"'. 
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Kinraide (1988) proposed Ae+ amelioration of H+ toxicity explained the beneficial effect seen at low 

concentrations of AI. He suggested Ae+ reduced cell-surface activity of the toxic cation, and, 

simultaneously, the toxic cation reduced the activity of the ameliorative cation which, at lower 

concentrations than the toxic cation, could itself be toxic. At pH 4.2 root elongation of KP races of 

Betula would not be optimum. RER increased substantially by increasing solution pH from 4.0 to 5.0. 

In contrast RER in SMM races did not change significantly over the pH range 3.0-5.6. AI, at 2 and 5 

mg 1'1, could therefore have ameliorated the adverse effects of H+ ions on the KP races in the same 

manner as that described by Kinraide (1988). This would also explain the lack of stimulation seen in 

SMM races which were not inhibited by H+ ions. 

10.2.2 pH 5.6 nutrient solutions 

Al in solution was significantly less toxic at pH 5.6 compared with pH 4.2. Monomeric Al was 

greatly reduced at pH 5.6 explaining the reduced toxicity. The monomeric AI species present at this 

pH would also be different from those dominant at pH 4.2 (Al(OH)2+ and Al(OH)/ compared with 

Ae+). This implies the hydroxy-monomers are far less toxic, and actually stimulated growth in KR 

races. This race accumulates the most Al in the field, and the same Al species are likely to be present 

from the pH of KR soil solutions (pH range 5.1-6.5). Foy et al. (1978) suggested that Al increases the 

Fe availability in calcareous soils or in slightly acid nutrient solutions, and prevents internal Fe 

deficiency. However uptake of Fe was not significantly improved at pH 5.6. Mg, Ca, and K 

translocation to shoots was improved at pH 5.6, particularly in KP and KR races which naturally grow 

in soils of higher pH than either PM or 5MB. Furthermore, P did not appear to be precipitated (with 

AI) in the plant roots, of any race, at pH 5.6. Al was translocated to the shoots in far greater 

quantities than at pH 5.6, particularly in KP and KR races. 

10.3 Amelioration of Al toxicity by Si and organic acids 

10.3.1 AIISi interactions 

Si, as silicic acid, effectively ameliorated Al toxicity: root and shoot lengths, lateral root and blade 

numbers, and leaf area were significantly improved provided AI was present with Si. Plant 

performance was dependent upon Si concentration, increasing the concentration from 1500 to 2500 

JlM increased amelioration of AI-toxicity. In general, races of Holcus from FM and 5MB showed the 

least improvement and KP and SMM races showed the greatest improvement in growth. This reflects 

the Si concentrations measured in the soil solutions: concentrations in SMM and KP soil were far 
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greater than in FM and 5MB soil. Si, although not completely, restored nutrient uptake and 

translocation to shoots to that of control plants. In the presence of Si, Al uptake by roots was 

significantly increased but translocation to shoots was reduced. This implies Si can effectively 

prevent Al from entering the symplast and probably forms alumino-silicate precipitates. The cross­

sections stained with hematoxylin showed Al precipitates on the outer surface of the root which were 

not present in AI-treated roots. 

Si did not ameliorate Al toxicity through HAS formation (as proposed by Birchall et al. 1996). The 

results of dialysis did not show formation of HAS at pH 4.2. Furthermore monomeric Al was reduced 

but not sufficiently to explain the amelioration. It is therefore likely that Si increased the internal 

tolerance of Al and this may have been a result of AIISi co-precipitation or maintenance of Golgi 

activity (discussed below). 

HAS species were formed in nutrient solutions at pH 5.6 and, in agreement with Exley et al. 1997, 

they were not found to be toxic. 

At the lower concentration, 1500 ~M, Si without Al promoted growth in Holcus. Root elongation, 

root production, and plant dry weights were increased beyond that in plants grown with no added Si. 

Si increased root uptake of P, and sometimes K, Ca, and Mg. In contrast, Si at the higher 

concentration of 2500 ~M inhibited growth, and this was particularly pronounced in the races from 

the acid peats, FM and 5MB. Again reflecting the lower Si concentrations measured in soil solutions 

extracted from these soils. The toxicity of Si at higher concentrations is of importance in soils where 

Al concentrations are low. 

10.3.2 AI/Organic acid interactions 

The addition of organic acids to solutions containing Al prevented AI-induced reductions in the 

growth of Holcus. Root elongation, root numbers, shoot elongation, tiller and blade numbers, dry 

weights and leaf area were almost equal to those of plants grown without both Al and organic acids 

(controls). This was particularly pronounced in FM races, and least pronounced in SMM races. 

These differences among the races reflect the organic acid contents of their native soils: total 

concentrations of measured organic acids were highest in FM and lowest in SMM. The stronger Al 

complexer, tartaric acid, was more effective in preventing Al damage than formic acid which is 

reported to form weak complexes with Al (Hue et at. 1986). The organic acids improved 

translocation of nutrients to shoots which was inhibited by AI. Contrary to Si, organic acids were 

effective in reducing both root uptake and subsequent transport to shoots of AI. This was achieved 

through a dramatic reduction in the concentrations of monomeric AI, and likely formation of organic-
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Al complexes. Monomeric Al was reduced below 50 J..lM which at pH 4.2 was not toxic to all the 

Holcus lanatus races (data not given). 

10.4 Effects of organic and phenolic acids on Deschampsiajlexuosa and lIolcus lanatus 

10.4.1 Organic acids 

Organic acids alone stimulated the growth of Deschampsia flexuosa and Holcus lanatus. Ratcs of 

root and shoot elongation and root numbers were increased beyond rates in control plants (grown with 

no added organic acids). Vegetative reproduction was also stimulated via an increase in tillcr 

production. This stimulation in growth. in Holcus lanatus, was particularly pronounced in FM and 

5MB races, reflecting the high concentrations of organic acids which these races experience in their 

native soils. Enhanced growth was achieved through an increase in nutrient uptake and subsequent 

transport to shoots. Similarly, reflecting their ecological distribution, nutrient uptake was most 

enhanced in FM and 5MB races and least in KR races. The soil solutions of KR contained the lowest 

total concentration of organic acids. 

10.4.2 Phenolic acids 

Phenolic acids in the acidic peaty soils appear to contribute to the plants adaptation to low pH. In 

agreement with the recent hypothesis of Northup et al. (1995), phenolic acids in nutrient solutions 

enhanced growth of FM races of Holcus under acidic conditions (pH 4.0), but reduced the growth of 

KR races. The same phenolic acids did not stimulate growth at pH 6.5. In their native soils, phenolic 

acids of KR are likely to be dissociated and not readily available for plant uptake and therefore not 

toxic. In contrast in the acidic organic soils of FM these phenolics are undissociated and their life­

time enhanced due a lower microbial activity. Despite their available form for root absorption they 

were not toxic to the PM race. Addition of organic matter to soil inhibited Holcus growth except in 

the organic FM soil where the organic residues stimulated the growth of 5MM and KR races allowing 

them to survive the sub-optimal conditions of this soil. 
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10.5 Future research 

Both Al and H+ ions not only affected root lengths and rates of elongation but also changed root 

morphology and root system architecture. The roots became stubby, stunted, swollen, and brittle with 

bent, brown tips. As a result of the injury to the plant roots the ability of the plant to absorb water 

(and nutrients) diminishes. The shoots then become chlorotic, wilt and die. Barcel6 & Poschenrieder 

(1990) highlighted the frequent correlation between drought tolerance and metal resistance in plants 

adapted to metalliferous soils. Despite this coincidence in plant adaptations very little attention has 

been given to water relations in either Al or H+-stressed plants. 

This reduction in the root system volume may not be the only reason for these induced water 

deficiencies in plants. A reduction in cell wall elasticity and plasma membrane permeability could 

account for the reduction in water stress tolerance. Zhao et al. (1987) and Gunse et al. (1997) found 

reductions in root cortical cell membrane permeability in Red Oak and maize, and reductions in cell 

wall elasticity and extensibility (maize), in the presence of AI. Si prevented shoot wilting and 

presumably maintained water relations in Holcus lanatus. However cell wall or plasma membrane 

hydraulic properties in AI+Si-treated plants have not to date been investigated. The ultrastructural 

investigations in Holcus lanatus showed secretory vesicles and amyloplasts were absent or greatly 

reduced in AI-treated plants implying the Golgi activity was affected. Cell wall synthesis would 

therefore also be affected. The Golgi activity in AI+Si-treated plants did not appear to be adversely 

affected by AI. This area also requires further investigation along with the accurate quantification of 

changes occurring in the cell ultrastructure and subsequent implications in cell wall mechanical 

properties (elasticity and extensibility). 

The shoots of Holcus grown in pH 2.0 and 3.0 wilted within 1 day of treatment, and this was far more 

pronounced in the H+-sensitive KP race which did not recover than in the H+-tolerant FM race. This 

loss in turgor, together with plasmolysis of cortical cells, indicates severe water stress. Wilting was 

more pronounced and faster in Holcus grown at low pH than in Holcus grown in +AI solutions. 

Furthermore there was no observed plasmolysis of root cortical cells in AI-treated plants despite the 

longer treatment period. The effects of Al and H+ ions on plant water relations appear to differ. 

Gunse et al. (1997) using pressure-probe techniques showed H+ toxicity affected the whole-root 

conductivity (Lpr) to a greater extent than the hydraulic conductivity of root cells (Lpc) in a 11+­

sensitive cultivar of maize (Ardour 250). In contrast, Al reduced Lpc more than LPr in an AI-sensitive 

cultivar (BR20lF). This new technique will allow further research into the race-specific responses of 

whole root and root cell water relations to low pH. The PM races were tolerant of low pH and 
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maintained turgor and presumably water uptake and transport. Determining whether or not this was 

related to differences in FM and KP root and root cell hydraulic conductivity would be of interest. 

10.6 Extrapolation of studies using nutrient solutions to the field 

Nutrient solutions allow the researcher to present a known concentration of nutrients and/or toxins to 

plants. Furthermore the pH can be easily maintained, the nutrient concentrations at the actual root 

surface can be controlled, the solution can easily be sampled and pH or nutrients adjusted, sterile 

conditions can be used. and the plants can be removed and measured without injury (Rorison 1969). 

However it is difficult to extrapolate the results of measurements on plant individuals in a 

greenhouse/growth room to the behaviour of the same species growing under natural conditions. 

Nutrient solutions do not reproduce the seasonal changes of the environment, spatial variation in 

nutrients/toxins, competition between individuals of the same or other species, soil compaction, 

mycorrhizal infection, or soil organic matter and decomposing leaf litter. These factors probably 

account for the discrepancies between results of solution culture and plant performance in soil pot 

experiments or in the field. The growth response of Holcus lanatus in nutrient solutions of decreasing 

pH did not correlate well with responses to limed and unlimed soil. In an attempt to minimise these 

effects it is necessary to study the effects of soil acidity in culture solutions which reflect the ionic 

environment of plants under field conditions. Investigations of AI-toxicity, such as Davies & 

Snaydon 1972. Hammond et ai. 1995, Hodson & Sangster 1993, Li et al. 1989, Killraide 1993, 

Kinraide et al. 1994, Ryan et al. 1993, 1994, have frequently used background solutions of Ca(NO.,h 

which does not reflect the natural soil solution. 

A comparison of foliar element concentrations of the study species in nutrient solutions with those 

collected from the field (Appendix 2) showed minor differences. Concentrations of K, Mg, and Fe in 

Holcus races grown in solution were very close to concentrations found in field races. Ca 

concentrations of KP and KR races were about 30 % of field concentrations. However this was 

expected as Ca concentrations in nutrient solutions were based on PM soil concentrations which were 

substantially lower than in these two sites. P concentrations in all Holcus races were usually abollt 

two-fold greater in solution than in field plants. There was a high correlation in shoot ionic 

composition between plants from the field and those grown in solution in both Desclwmpsia and 

Anthoxanthum. There was more variation between the element concentrations in field and solution 

grown Betula. In all races P, K and Fe were similar between the field and solution plants. ea and Mg 

were however up to 60 % lower in solution grown plants than field plants. It should be noted that 

field specimens were collected from mature birch. The close correlation achieved between solution 
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grown plants and field specimens adds to the advantages of using nutrient solutions when determining 

the effects of ion toxicity and reinforces faith in their relevance. 

Although the same 35AI treatment reduced the growth of Holcus in different experiments involving 

nutrient solutions (with AI and silicic acid (Chapter 6), with AI and organic acids (Chapter 8) there 

were some significant differences in the ionic composition of the plants and in race-specific growth 

response in the two experiments. The P and Mg concentrations of both roots and shoots, and the Ca, 

AI, and Fe concentrations of shoots, were consistent between experiments but root concentrations of 

AI and Fe were significantly greater in the second experiment. Moreover 35AI inhibited root 

elongation to a greater extent in 5MB, SMM, and KP races in the second experiment compared with 

the first. It is important to consider the large variation in plant response when using nutrient solutions 

despite maintaining constant conditions. 

The responses to low pH, AI, silicic acid, organic acids, and phenolic acids, by the different races 

could be accurately predicted from their field ionic compositions, and from the ionic composition of 

their natural soil environments. However under natural conditions these races will periodically he 

exposed to extreme conditions which tend to be ignored in solution cultures. That is the chemical 

composition of soil solutions varies greatly with time and this may be a result of season, temperature, 

rainfall and soil water content, decomposition and nitrification rates, or element uptake by plants and 

microorganisms. Soil solution concentrations of H and AI ions may during one year differ tenfold 

(Falkengren-Grerup 1994), and may be between two and six-fold greater during dry periods than 

under average moisture conditions (Joslin & Wolfe 1992). In a recent study, Quist (1995) highlighted 

the importance of such episodic events on plant growth. He determined the effect of episodes of 

different length (one or two weeks) and concentrations of H+ (pH 3.8-4.5) and AI~+ (0-70 f.IM) on the 

growth of three forest-floor species: Galium odoratum, Lamium galeobdololl, and Poa 1I£'/llOrali.\'. 

Species occurring in less acidic soils, Galium and Lamium, were more sensitive to acid episodes, and 

did not always recover from them, compared with Poa which was found at a lower soil pH. The 

plasticity of the response to these toxicities by the species should be considered alongside its 

tolerance. Plants which are adapted to low pH or high Al concentrations should also be able to 

recover from episodes where these toxicities become even greater. 

The probability of plants being exposed to episodes of elevated concentrations of H+ and AI~+ ions has 

recently increased as a result of acid rain which is discussed below. 
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10.7 Implications of increasing soil acidification 

Recent research has shown an increase in soil acidification through anthropogenic effects (Barak et al. 

1997, Bouman et al. 1995, Hahn & Marschner 1998, Hartemink 1998, Kiss 1993, Kreutzer & Weiss 

1998, Ingerslev 1997, Nouri & Reddy 1995, Raubauch et al. 1998, Ukrainetz et al. 1996). Chemical 

changes in the soil, associated with acid precipitation and the nitrification of ammoniacal fertilizers, 

include increases in the soil solution concentration of Ae+, Mn2+, Pb2+, and Cd2+, reductions in soil 

solution pH, and an enhanced loss of base cations through leaching (Matzner & Murach 1995). 

Recent European initiatives have been taken to reduce emissions of S02, NOx, and NH.I (Ahokas 

1997). Nevertheless acid deposition continues to increase although the main component is now 

considered to be nitrogen rather than sulphur (Goulding & Blake 1998, Matschonat & Vogt 1997, 

Matzner & Murach 1995). Alewell et ai. (1997) investigated the soil solution response to 

experimentally reduced acid deposition in a Picea abies stand in Soiling, Germany. They found the 

reversibility of soil acidification would be delayed for decades owing to desorption of previously 

stored S04, accompanied by cation leaching and Al release. In contrast experimental reduction of 

N0 3 deposition resulted in an immediate increase in soil pH. 

As discussed in Chapter 1, soils can buffer H+ ion input through ion exchange of clays, scsquioxidcs, 

and organic matter. Kiss (1993) estimated the total exogenous input of H+ ions to soils (from 

atmospheric deposition, N-fertilizers, and superphosphate) as 6.18-7.30 kg H+ hU'1 year", which 

accounts for 35.6-29.0 % of the total H+ input in soils (from both exogenous and endogenous 

sources). The soil buffer capacity is only effective for as long as the potential acidity can release 

exchangeable Al and H. Therefore with continued and amplified acidification the buffering capacity 

of the soils may be reduced or lost and the toxic effects of an increased AI~+ concentration can be 

expected. 

The extent to which soils can be acidified by atmospheric input is highly variable and will essentially 

depend on the soil type, geology, and the quantity of drainage water. The soils of FM and 5MB arc 

rich in organic matter and primarily buffered through pH-dependent ion exchange with weak organic 

acids. The weathering of minerals is unimportant in these soils. An increase in acidity will reduce 

the cation exchange capacity, as a result of a decline in exchange sites (organic acids become 

undissociated as the pH drops), and therefore reduce the buffer capacity. The total exchangeable 

acidity of these soils is dominated by H+ with little exchangeable Ae+ and therefore unable to 

assimilate incoming H+ ions. Microbially-mediated reduction of NO]', Fe20], Mn02, and So.t' will 

remove some of these protons. The mineral, SMM, soils are effectively buffered by AI-hydrolysis 
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reactions and exchange of Al and hydroxy-AI from the clay fraction (permanent charge component of 

the cation exchange capacity). However increasing amounts of Al and free H+ ions will be exported 

from the soil to the drainage water. The pH of a mineral soil rarely falls below pH 4.0. The buffer 

capacity of a strongly acid mineral soil with 1 % clay is about 100-150 kg H+ ha·1 yeac"l. The 

calcareous, KR, and base-rich, KP, soils will be buffered so long as the exchangeable cations last, and 

Ca is released through dissolution of the limestone (CaC03) bedrock. The buffer capacity of a near­

neutral soil with 1 % CaC03 is 150 kg H+ ha·1 yeac" 1 , substantially greater than the current exogenous 

H+ input. The prevention of Al toxicity by Si will be an important factor in siliceous rich soils such as 

SMM and KP. 

The impact of a pH-reduction in these soils depends on the initial pH of the soil. In the case of KR, a 

reduction in pH of 0.5 units will only reduce the soil pH to about 6.0 with almost no damaging effect 

on plant growth. While an equivalent pH reduction in FM soil will reduce the soil pH to 3.0 with 

likely serious effects. Holcus from FM grown at pH 3.0 survived much better than KP seedlings but 

the observed plasmolysis of the cortical cells did indicate serious damage. 

Recent studies, including the present study, have shown naturally occurring species, and particularly 

trees, have a substantially higher AI-tolerance than agricultural crop species (Clegg & Gobran 1995, 

Godbold & Kettner 1991, Godbold et al. 1988, Goransson & Eldhuset 1995, Hecht-Buchholz et at. 
1987, lanhunen et al. 1995). Crops tend to be sensitive at Al concentrations < 50 11M (1.35 mg rl). 

In contrast, at these concentrations, Al stimulated growth in Anthoxanthum, Holcus (data not given), 

and Betula. The effects of soil acidification, through anthropogenic means, will have a more 

significant influence on nutrient acquisition (rather than root elongation) and could lead to nutrient 

imbalances in these plants. 

In conclusion, acid soils can be divided into two main groups: organic and mineral soils, and the 

division occurs at a soil pH of about 4.0 (measured using H20 or a weak CaCh solution such as 0.002 

M). Plants growing in acid peats are adapted to high H+ concentrations but not Al and growth is 

enhanced by both organic and phenolic acids. In contrast acid mineral soils are dominated by 

exchangeable Ae+ and plants are therefore tolerant of Al and but not necessarily low pH. The 

response to these factors by different races of Holcus and Betula in this study was in accordance with 

their natural distribution and soil environments. FM races of Holcus were able to continue growing in 

pH values less than 4.0 but were intolerant of high AI concentrations. SMM races of B£,tuiu and 

Holcus were least inhibited by AI. Si, in the form of silicic acid (Si(OH)4), ameliorated AI toxicity,; 

and this was most pronounced in those races who were naturally exposed to high concentrations of Si 

(SMM and KP). At high concentrations, Si per se, inhibited plant growth and this was most 

pronounced in those races who were found in soils of low Si concentration (FM and 5MB). Finally, 
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phenolic acids in solutions at low pH (despite being in a undissociated and potentially toxic form) 

enhanced the growth of races originating from acidic organic soils (naturally phenolic-rich) but 

inhibited growth of non-acidic races such as KR. 
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Appendix 1. Common and Latin names for species referred to throughout thesis. 

Common name Latin name 
Alfalfa Medicago sativa L. 
Amaranth Amaranthus retroflexus L. 
Arnica Arnica montana L. 
Azalea Rhododendron spp. L. 
Barley Hordeum vulgare L. 
Beech Fagus sylvatica L. 
Bermuda-grass Cynodon dactylon L. Pers. 
Bloody Crane's-bill Geranium sanguineum L. 
Bracken Pteridium aquilinum L. Kuhn 
Bristle Bent Agrostis curtisii Kerguelen 
Broad Bean Vicia faba L. 
Buckwheat Fagopyrum esculentum Moench 
Canola Brassica campestris L. 
Cassava Manihot esculenta Crantz 
Coffee Coffea arabica L. 
Common Bent Agrostis capillaris L. 
Common Bird's-foot-trefoil Lotus corniculatus L. 
Common Figwort Scrophularia nodosa L. 
Common Knapweed Centaurea nigra L. 
Cotton Gossypium hirsutum L. 
Cowpea Vigna unguiculata L. 
Cranberry Vaccinium oxycoccos L. 
Creeping soft-grass Holcus moWs L. 
Creeping Bent Agrostis stolonifera L. 
Crimson Clover Trifolium incarnatum L. 
Cross-leaved Heath Erica tetralix L. 
Cucumber Cucumis sativus L. 
Dog's Mercury Mercurialis perennis L. 
Dogwood Comus florida L. 
Downy Birch Betula pubescens Ehrh. 
Fodder Burnet Sanguisorba minor Scop. 
French Bean Phaseolus vulgaris L. 
Ginger Zingiber officinale Roscoe 
Greater Bird's-foot-trefoil Lotus pedunculatus Car. 
Groundnut Arachis hypogaea L. 
Guinea Grass Panicum maximum L. 
Hare's-tail Cottongrass Eriophorum vaginatum L. 
Hart's-tongue Phyllitis scolopendrium L. Newman 
Heath-grass Danthonia linkii Kunth 
Heath Bedstraw Galium saxatile L. 
Heath Groundsel Senecio sylvaticus L. 
Heather Calluna vulgaris L. Hull 
J(errnes oak Quercus coccifera L. 
Lesser Hairy-brome Bromus benekenii Lange Trimen 
Lettuce Lactuca sativa L. 
Leucaena Leucaena leucocephala L. 
Lucerne Medicago sativa L. 
Loblolly pine Pinus taeda L. 
Maidenhair Spleenwort Asplenium trichomanes L. 

~~~a~iz~e~ ______________________________ ~Z~ea~m~a~y~s~L~. __________________________ __ 
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Appendix 1 (continued). Common and Latin names for species referred to throughout thesis. 

Common name 
Mat-grass 
Meadow Thistle 
Morning glory 
Mung-bean 
Norway Spruce 
Oat 
Onion 
Pea 
Pedunculate Oak 
Potato 
Quaking-grass 
Red Campion 
Red Maple 
Red Oak 
Red Spruce 
Rice 
Rosebay Willow herb 
Rough Hawkbit 
Rustyback 
Rye 
Ryegrass 
Sainfoin 
Scots Pine 
Serradella 
Sheep's-fescue 
Silver Birch 
Small scabious 
Sorghum 
Soybean 
Squinancywort 
Subterranean Clover 
Sugarcane 
Sunflower 
Sweet Vernal Grass 
Sycamore 
Tea 
Teosinte 
Tomato 
Upright Brome 
Wavy Hair-grass 
Weeping-grass 
Weymouth Pine 
Wheat 
White Clover 
Wood Barley 
Wood Meadow-grass 
Wood Millet 
Woodruff 
Wood-sorrel 
Yellow Archangel 
Yorkshire-fog 

Latin name 
Nardus stricta L. 
Cirsium dissectum L. Hill 
Ipomoea lacunosa L. 
Vigna radiata L. Wilczek 
Picea abies L. Karst 
A vena sativa L. 
Allium cepa L. 
Pisum sativum L. 
Ouercus robur L. 
Solanum tuberosum L. 
Briza media L. 
Silene dioica L. Clairv 
Acer rubrum L. 
Quercus rubra L. 
Picea rubens Sarg 
Oryza sativa L. 
Chamerion angustifolium L. Scop 
Leontodon hispidus L. 
Ceterach officinarum Willd. 
Secale cereale L. 
Lolium multiflorum Lam 
Onobrychis viciifolia Scop. 
Pinus sylvestris L. 
Ornithopus sativus Brot. 
Festuca ovina L. 
Betula pendula Roth. 
Scabiosa columba ria L. 
Sorghum bicolor L. Moench 
Glycine max L. Merill 
Asperula cynanchica L. 
Trifolium subterraneum L. 
Saccharum officina rum L. 
Helianthus annuus L. 
Anthoxanthum odoratum L. 
Acer pseudoplatanus L. 
Camellia sinensis L. 
Zea mays L. ssp. mexicana 
Lycopersicon esculentum Miller 
Bromopsis erecta Hudson Fourr. 
Deschampsiaflexuosa L. Trin 
Microlaena stipoides Labill R. Br. 
Pinus strobus L. 
Triticum aestivum L. 
Trifolium repens L. 
Hordelymus europaeus All. 
Poa nemoralis L. 
Milium effusum L. 
Galium odoratum L. Scop 
Oxalis acetosella L. 
Lamium galeobdolon (L.) L. 
Holcus lanatus L. 
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Appendix 2. Element composition of leaves and blades (mg g'. dry weight) collected from the study 
species in the field. Bulked samples were collected in July-September 1995, air-dried and ground 
prior to analysis. Samples were collected from the sites: Flanders Moss (FM), Sheriffmuir (SMM and 
5MB), Kippenrait Glen (KP) and Kinloch Rannoch (KR). 

Site P K Ca Mg Na Al Fe 
mgg'· 

Betula pendula Roth. 
PM 2.46 7.65 8.02 2.63 0.47 0.40 0.27 

SMM 2.06 6.26 9.48 2.03 0.30 0.19 0.07 
KP 2.58 9.20 9.53 1.84 0.23 0.24 0.10 
KR 1.73 6.68 9.43 2.27 0.15 0.47 0.22 

Anthoxanthum odoratum L. 
FM 3.43 22.11 1.50 1.32 0.56 0.14 0.09 

5MB 3.59 24.96 1.42 0.83 0.17 0.34 0.15 
SMM 2.33 20.63 2.34 0.88 0.57 0.26 0.04 

KP 3.31 23.18 2.99 1.20 0.87 0.23 0.08 
KR 1.21 17.38 3.56 0.58 0.29 0.49 0.28 

Deschampsiaflexuosa (L.) Trin 
PM 1.76 14.23 1.84 1.15 0.10 0.10 0.05 

5MB 1.42 13.49 1.55 0.61 0.14 0.18 0.12 
SMM 1.43 10.07 2.47 0.95 0.08 0.21 0.34 

KP 1.76 12.80 1.97 1.00 0.11 0.22 0.15 
KR 1.57 15.59 6.43 0.68 0.17 0.23 0.12 

Holcus lanatus L. 
FM 1.76 12.16 2.46 1.23 0.12 0.12 0.13 

5MB 1.46 14.11 2.23 0.71 1.58 0.23 0.28 
SMM 1.23 12.22 2.94 0.82 1.48 0.28 0.25 

KP 2.09 13.39 3.47 1.14 0.29 0.32 0.15 
KR 0.89 14.55 4.31 0.45 1.85 0.30 0.15 
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