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Abstract  

Omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation has recently been proposed 

as an ergogenic aid for athletes. This claim is primarily based on mechanistic evidence that n-

3PUFA’s exert anti-inflammatory properties and act to change the functional capacity of the 

muscle cell by modifying the membrane fluidity of proteins and lipids within the cell 

membrane. In this review, we critically evaluate the scientific literature that examines the 

efficacy of n-3PUFA supplementation to improve athlete performance within the context of 

promoting muscle adaptation, energy metabolism, muscle recovery and injury prevention (e.g. 

muscle loss during immobilisation, concussion). These findings have applications to athletes 

competing in strength/power-, endurance- and team-, based sports. Based on available 

information, there is promising scientific evidence that n-3PUFA supplementation may 

improve endurance capacity by reducing the oxygen cost of exercise. Moreover, several studies 

report a benefit of n-3PUFA supplementation in promoting recovery from eccentric-based 

muscle damaging exercise. In contrast, there is insufficient evidence from studies in athletic 

populations to support the claim that n-3PUFA supplementation facilitates muscle growth 

during resistance training or preserves muscle mass during catabolic scenarios such as energy 

restriction or immobilisation. Moving forward, there remains ample scope to investigate 

context-specific applications of n-3PUFA supplementation for sport performance. 

  



 

 

Introduction 

Long chain n-3 polyunsaturated fatty acids (n-3PUFA) continue to receive considerable 

research attention as a potential ergogenic aid in the context of enhancing sport performance. 

Fish oil primarily consists of the n-3PUFA’s eicosapentaenoic acid (EPA), docosahexaenoic 

acid (DHA), whilst another n-3PUFA, α-linolenic acid (ALA), is derived from plant oils such 

as flaxseed and soybean oil. ALA is an 18 carbon chain fatty acid with 3 double bonds (18:3), 

whereas EPA is a 20 carbon chain fatty acid with 5 double bonds (20:5) and DHA is a 22 

carbon chain fatty acid with 6 double bonds (22:6). Fatty acids comprise of a hydrocarbon 

chain with a methyl group and carboxyl group at opposing ends. Humans do not possess an 

enzyme called omega-3 desaturase that initiates the addition of another double bond to the 15th 

carbon chain. Therefore, n-3PUFA are classified as essential fatty acids because they must be 

provided in the diet to initiate the formation of EPA and DHA. The conversion of EPA and 

DHA from ALA occurs via several reaction steps. However, the complete conversion of ALA 

to DHA is less than 3% in males and 10% in females. This inefficient conversion rate is partly 

attributed to the production of omega-6 PUFA since there is competition for the desaturase and 

elongase phase and the typical western diet contains a higher intake of omega-6 fatty acids than 

omega-3 fatty acids (Burdge, Jones and Wootton, 2002; Burdge and Wootton, 2002).  

The most common dietary source of n-3PUFA is oily fish. Mackerel contains 

approximately 3.2g of n-3PUFA per 100g serving and is considered the fish type most rich in 

n-3PUFA (Sprague, Dick & Tocher, 2016) (Table 1). Other types of fish that contain an 

abundance of n-3PUFA include salmon, sardines and tuna. Alternative fish sources of n-

3PUFA include walnuts, chia seeds and egg yolks. Indeed, nuts and seeds are common sources 

of n-3PUFA consumed by vegan athletes in order to meet daily n-3PUFA needs (Rogerson, 

2017). Currently, the optimal dose of n-3PUFA for athletes or the general population is not 

definitely known. However, the World Health Organization indicate that individuals should 



 

 

aim to consume 1-2 servings of oily fish per week, equivalent to 200-500mg of n-3PUFA per 

day (World Health Organisation, 2003). In comparison, the recent (2003-2008) National Health 

and Nutrition Health Survey revealed an average EPA and DHA intake of ~200 mg/day 

(Papanikolaou et al., 2014). Taken together, these data suggest that most individuals fail to 

meet daily n-3PUFA intake guidelines, however it is unclear whether athletes currently meet 

these guidelines. 

It is estimated that 85% of elite athletes use at least one dietary supplement as a potential 

ergogenic aid (Maughan, Depiesse and Geyer, 2007). Of these supplements, n-3PUFA is one 

of the most popular (Shaw, Slater and Burke, 2016). Dietary n-3PUFA supplementation has 

been proposed to be advantageous for athletes mainly due to its anti-inflammatory properties 

(Li et al., 2005). Dietary n-3PUFA supplementation has been shown to inhibit the 

cyclooxygenase-2 (COX-2) pathway (Lim et al., 2009;) which is known to stimulate 

inflammation. The incorporation of n-3PUFA’s into cell membranes with supplementation also 

alters cell membrane fluidity (Calder et al., 1994), thus modifying protein activities and cell 

function (Murphy, 1990). Taken together, this mechanistic information suggests that n-3PUFA 

supplementation has the potential to play a role in improving training adaptation, exercise 

recovery, and subsequent performance across athlete populations, including strength-, 

endurance- and team-based sport athletes.  

 



 

 

Table 1 – Omega-3 (n-3) polyunsaturated fatty acid content of various commonly consumed food sources  

Food Type g EPA + DHA per 

100g serving 

Typical Serving Size Number of servings to 

equal 1 mackerel fillet 

Mackerel 3.2 81g (1 fillet) - 

Sardines  1.9 130g (1 fillet) 1.1 

Farmed Salmon 1.4 94g (1 fillet) 2 

Wild Salmon 0.7 94g (1 fillet) 3.9 

Canned Tuna 0.2 112g (1 can drained) 11.6 

Cod Loin 0.2 140g (1 loin) 9.3 

Tuna Steak 0.1 120g (1 steak) 21.6 

Macroalgue Fed Lamb 0.05 125g 41.5 

Chicken 0.02 145g (1 breast) 89.4 

Lamb 

 

Pork 

 

Beef 

0.01 

 

0.01 

 

0.01 

125g 

 

100g (1 loin) 

 

125g 

207.4 

 

259.2 

 

207.4 

DHA = Docosahexaenoic acid; EPA = Eicosapentaenoic acid. Adapted from Sprague, Dick & Tocher (2016)



 

 

The potential health benefits of n-3PUFA’s were originally based on findings from 

epidemiological studies. The dietary intake of Inuit’s living in Greenland was rich in oily fish, 

with ~40% of their diet consisting of fat, and ~20% of PUFA (both n-3 and n-6) (Bang, 

Dyerberg and Sinclair, 1980). In comparison to a Danish diet, Inuits ingested higher amounts 

of n-3PUFA and reported a lower incidence rate of cardiovascular disease (CVD). The high fat 

content of the Inuit’s diet and lower incidence of CVD was attributed to the high proportion of 

n-3PUFA in their diet. More recent research suggests that n-3PUFA supplementation may 

lower risk factors associated with CVD (Zucker et al., 1988; Bhathena et al., 1991). However, 

findings from meta-analyses reveal that the effects of n-3PUFA supplementation on CVD are 

unclear (Hooper et al., 2006; Marik and Varon, 2009; Djoussé et al., 2012). Given these health 

benefits, recently there has been growing interest in the application of n-3PUFA in the context 

of athlete performance, specifically in the context of training adaptation, exercise recovery, 

injury prevention and illness.   

 

Strength/power-based Athletes 

Previous research has investigated the influence of n-3PUFA supplementation on acute 

measurements of muscle protein synthesis (MPS) and chronic measurements of changes in 

muscle mass and neuromuscular function. This line of research is based on the idea that n-

3PUFA ingestion sensitises skeletal muscle to the main anabolic stimuli, namely resistance 

exercise training and protein ingestion. The primary metabolic driver of muscle hypertrophy is 

an increased stimulation of MPS in response to exercise and nutrition (Biolo et al., 1997). Early 

proof-of-concept studies demonstrated that dietary n-3PUFA supplementation potentiated the 

response of MPS to amino acid provision, administered intravenously as a 

hyperaminoacidemic/hyperinsulinemic clamp (Smith et al., 2011a; Smith et al., 2011b) in 



 

 

young (Smith et al., 2011b) and older (Smith et al., 2011a) adults. Although no changes in basal 

rates of MPS were observed following 8 weeks of n-3PUFA supplementation, postprandial 

rates of MPS and the phosphorylation status of anabolic signalling proteins within the 

mechanistic target of rapamycin complex (mTORC) pathway were potentiated after n-3PUFA 

supplementation. Consistent with this observation, research from our laboratory demonstrated 

an increase in skeletal muscle omega-3 lipid content and stimulation of focal adhesion kinase 

(FAK) ―a key signalling protein that regulates MPS― following four weeks of 5g/day n-

3PUFA supplementation in active males (McGlory et al., 2014). The incorporation of n-3PUFA 

into a muscle cell membrane has been shown to alter the cell’s integrity, disrupting the fluidity 

of proteins and lipids within the cell membrane (Calder et al., 1994). Such structural changes 

in membrane composition have been proposed to provide a mechanistic explanation for 

improvements in cell function with n-3PUFA ingestion (Murphy, 1990).  

Our research also suggests that a minimum supplementation period of 2 weeks is 

required to observe an increased incorporation of n-3PUFA into the muscle cell (McGlory et 

al., 2014), or specifically into the cell membrane. Whereas the incorporation of n-3PUFA into 

the muscle cell continued to increase after 4 weeks of supplementation, no plateau was 

observed in this study. These data suggest that > 4 weeks of n-3PUFA supplementation is 

required to maximise muscle incorporation of n-3PUFA. However, a systematic study is 

warranted to confirm this assertion. As a note of caution, it also should be highlighted that n-

3PUFA muscle cell concentration, rather than muscle cell membrane concentration was 

measured in this study (McGlory et al., 2014). Therefore, it is assumed that the incorporation 

of n-3PUFA into the muscle cell also translated to the membrane.  

There is mechanistic evidence from in vitro studies using muscle cell lines that EPA, 

rather than DHA, is the primary anabolic component of n-3PUFA (Kamolrat and Gray, 2013). 

In this study, the incubation of C2C12 myotubules with EPA resulted in increased rates of MPS 



 

 

and decreased rates of muscle protein breakdown (MPB). In contrast, incubation with DHA 

elicited no changes in MPS or MPB. Utilising a physiologically relevant research design, we 

recently investigated the influence of 8 weeks of n-3PUFA supplementation (5g/day) on the 

response of MPS to ingesting 30 g of whey protein with and without resistance exercise in 

resistance-trained young men (McGlory, et al., 2016). In contrast to previous proof-of-concept 

studies (Smith et al., 2011a; Smith et al., 2011b), no differences in MPS and anabolic signalling 

were observed between n-3PUFA and placebo (coconut oil) conditions. Our previous research 

suggests that ~20g of whey protein stimulates a maximal response of MPS following leg-only 

resistance exercise (Witard et al., 2014). Thus, it is conceivable that the 30g dose of whey 

protein administered in McGlory et al., (2016) saturated the muscle protein synthetic 

machinery, meaning that n-3PUFA supplementation could then not provide an additional 

stimulus for MPS. Therefore, further research is needed to investigate whether the addition of 

n-3PUFA to a sub-optimal dose of protein would further stimulate MPS following resistance 

exercise compared to a protein dose alone.  

While MPS is the gold standard acute marker of muscle growth, a handful of chronic 

intervention studies have directly measured changes in muscle growth or strength in response 

to a period of n-3PUFA supplementation. In a recent study, older adults underwent 6 months 

of either n-3PUFA (3.36 g/day EPA + DHA) or corn oil supplementation (Smith et al., 2015). 

Thigh muscle volume, handgrip strength and 1-RM strength all increased in the n-3PUFA 

group, where no changes were detected in placebo. However, there were no differences in body 

mass or body fat between the two conditions. Interestingly, only the thigh was measured for 

muscle volume. Given that thigh muscle volume increased it was assumed that muscle mass 

was increased at the whole body level. Interestingly, no studies have measured the response of 

muscle growth or strength in response to n-3PUFA supplementation in young adults or athletic 

populations. Further studies should be designed to examine the responsiveness of muscle 



 

 

strength and volume to a chronic (12 wk- 6 mo) period of n-3PUFA supplementation in 

power/strength-based athletes.  

The first study to measure muscle strength following a period of n-3PUFA 

supplementation observed an increase in peak torque with 90 or 150 days of n-3PUFA 

supplementation at a dose of 2g/day (Rodacki et al., 2012). Similarly, training-induced 

improvements in neuromuscular function, such as muscle activation and electromechanical 

delay in various muscles including the bicep femoris and vastus lateralis, were enhanced with 

n-3PUFA vs the training only group (Rodacki et al., 2012). Since DHA is abundant within 

brain neurons (Kim, Huang and Spector, 2014), improvements in neuronal adaptation with n-

3PUFA supplementation may indicate that neural pathways are modified. However, given that 

participants in this study were older females, caution should be applied when interpreting these 

results for athletes. Taken together, these data support a potential anabolic role for n-3PUFA 

ingestion in the context of preserving muscle mass in older adult populations. However, based 

on current information, there is limited information available to support an anabolic role of n-

3PUFA for muscle growth in athletes.  

 

Endurance-based Athletes 

An important aspect of endurance exercise performance and training adaptation is the 

capacity to utilize substrates efficiently and maximise available energy from adenosine 

triphosphate (ATP) stores. The mitochondrial content of the cell aids regulation of ATP 

resynthesis. A key regulator of mitochondrial biogenesis, defined as the process of increasing 

mitochondrial volume, is Peroxisome proliferator-activated receptor-gamma coactivator 

(PGC-1α). Previous studies in rodents have shown dietary n-3PUFA supplementation to 

increase expression of PGC-1α (Hancock et al., 2008) and increase mitochondrial biogenesis 



 

 

(Turner et al., 2007). However, studies investigating n-3PUFA supplementation and 

mitochondrial biogenesis in humans are limited. Currently, only one study has examined 

mitochondrial biogenesis with n-3PUFA supplementation and reported that EPA 

supplementation stimulated mitochondrial biogenesis in obese individuals (Laiglesia et al., 

2016). Based on findings from animal studies, it is possible that n-3PUFA supplementation 

may increase mitochondrial biogenesis leading to improved endurance performance as 

mediated via the PGC-1α pathway. However, human studies in athletes are warranted in order 

to examine this theory.  

 Dietary intake of n-3PUFA also are known to alter membrane fatty acid composition 

in skeletal (Andersson et al., 2002) and myocardial (Charnock et al., 1992) muscle tissue. These 

changes in membrane composition can lead to changes in insulin sensitivity (Borkman et al., 

1993) via a yet to be determined mechanism. However, a pre-clinical rodent study 

demonstrated that the addition of n-3PUFA to a high fat diet increased the protein expression 

of Glucose transporter type-4 (GLUT4; Lanza et al., 2013). GLUT4 is present only in skeletal 

muscle and adipose tissue and plays a key role in transporting extracellular glucose into cells 

that are insulin sensitive (Huang and Czech, 2007). In humans, n-3PUFA supplementation also 

has been shown to improve insulin sensitivity in skeletal muscle (Borkman et al., 1989). Thus, 

in theory, an increase in GLUT4 expression with n-3PUFA supplementation may play a key 

role in improving tissue insulin sensitivity and thus endurance performance.  

Dietary n-3PUFA supplementation also has been shown to reduce oxygen consumption 

(Peoples et al., 2008; Kawabata et al., 2014), heart rate (Peoples et al., 2008) and perceived 

exertion (Kawabata et al., 2014) during endurance exercise. The mechanism that underpins the 

improved oxygen efficiency with n-3PUFA supplementation is unclear, and paradoxically n-

3PUFA supplementation has been shown to initiate an increase in resting metabolic rate (Logan 

and Spriet, 2015). Although speculative, the increase in resting metabolic rate with n-3PUFA 



 

 

ingestion may primarily be due to the increased incorporation of DHA into the cell membrane 

that has been shown to lead to an increase in Ca2+ ATPase and Na+/K+ ATPase activity that 

requires more ATP utilization (Hulbert et al., 2005). A potential mechanism that may underpin 

an alteration in the oxygen cost of exercise is through an increase in insulin sensitivity. 

Intuitively, an increase in insulin sensitivity leads to greater muscle glycogen resynthesis and 

the subsequent potential to increase carbohydrate oxidation rates and decrease fat oxidation 

rates (Watt et al., 2002). During endurance exercise, a shift in substrate utilization from fat to 

carbohydrate would reduce the volume of oxygen used to meet demands for ATP resynthesis, 

and in turn improve the calculated exercise efficiency (Cole et al., 2014).  

At present, a limited number of studies have examined the influence of n-3PUFA 

ingestion on markers of energy metabolism and performance in endurance-trained individuals 

(Table 2). In trained cyclists with low habitual n-3PUFA intake, eight weeks of high or low 

dose DHA-rich n-3PUFA supplementation resulted in a reduced oxygen cost during a cycling 

time trial compared to a soy bean placebo condition (Hingley et al., 2017). However, the 

observed increase in omega-3 index and reduction in oxygen cost did not translate into a 

performance advantage, with no improvements in time trial completion time, mean power 

during the time trial and quadriceps strength. Further research in endurance athletes is 

warranted to examine the impact of n-3PUFA supplementation on oxygen kinetics during 

exercise when oxygen availability is limited, e.g. competition and training at high altitude.  

Previous research also has shown that n-3PUFA supplementation has the potential to 

lower heart rate and blood pressure during exercise. In elite Australian Rules footballers, 5 

weeks of DHA rich n-3PUFA (1.56 g/day DHA and 0.36g/day EPA) supplementation 

significantly lowered heart rate during steady state submaximal exercise, however peak heart 

rate did not change compared to a sunflower oil placebo condition (Buckley et al., 2008). 

Interestingly, diastolic blood pressure increased after 5 weeks of sunflower oil supplementation 



 

 

but did not change in the n-3PUFA group. Previous research demonstrates that DHA rather 

than EPA is the active lipid component of n-3PUFA’s in reducing blood pressure and heart rate 

in humans (Mori et al., 1999). As a logical follow study, healthy males demonstrated a 

reduction in heart rate during a bout of steady state cycling with DHA rich n-3PUFA 

supplementation (Macartney et al., 2014). However, during repeated sprints there were no 

differences in heart rate between conditions. Taken together, these data suggest that whereas 

the provision of DHA rich n-3PUFAs results in a decreased heart rate response during 

submaximal exercise, at higher exercise intensities n-3PUFA supplementation has no impact 

on the heart rate response. The mechanism responsible for the modulation of heart rate by n-

3PUFA supplementation is thought to involve multiple physiological processes including the 

regulation of systolic and diastolic left ventricular function, sympathetic activity and vagal tone 

(Mozaffarian, Gottdiener & Siscovick, 2006; O’Keefe et al., 2006). For instance, n-3PUFA 

supplementation is known to increase stroke volume by increasing the amount of blood ejected 

from the heart with each contraction, this increase in stroke volume results in a decrease in 

heart rate. However, further research is needed in order to fully understand the mechanisms by 

which n-3PUFA supplementation lowers heart rate. 

Although not universally accepted, endurance athletes are often considered more 

susceptible to developing an upper respiratory tract infection (URTI) that can disrupt training 

and competitive performance (Peters & Bateman, 1983). Dietary n-3PUFA supplementation 

has been shown to upregulate the signalling network between cells involved in immune 

function, resulting in the stimulation of CD4 and CD8 lymphocyte production, thus improving 

the ability of immune cells to destroy foreign pathogens (de Lourdes Nahhas Rodacki et al., 

2015). In this regard, a recent study examined the influence of adding n-3PUFA to other 

nutrients (1.1 g/day of n-3PUFA, 10 μg/day Vitamin D and 8 g/day of whey protein isolate) 

vs. a carbohydrate placebo control on markers of immune function in young active males and 



 

 

females that continued their habitual training over a 16 week period (Da Boit et al., 2015). 

Although no differences in markers of immune function were observed between groups, the 

frequency and duration of URTI symptoms was reduced in the n-3PUFA group. However, it 

should be noted that diagnosis of URTIs was self reported and not clinically diagnosed by a 

doctor. Moreover, based on these findings alone, it is impossible to differentiate between the 

effects of n-3PUFA, vitamin D, whey protein or the combination of all the ingredients in 

observed reduction in symptoms days.  



 

 

Table 2 –Studies investigating the influence of omega-3 (n-3) polyunsaturated fatty acid supplementation on endurance capacity and 

performance  

Authors Participants Supplement Dose Supplementation Period Exercise Observations 

Bortolotti et al. 

(2007) 

Sedentary males 

 (n=8) 

7.2g/d FO vs. PLA 14 days prior to exercise 30 min cycling 

(50% VO2max) 

→ energy efficiency 

→ VO2max 

Buckley et al. 

(2009) 

Elite Australian 

Rules League 

Footballers (n=25) 

1.92g/d n-3PUFA vs. 

SO 

5 weeks prior to exercise Steady-state submaximal 

running 

↓ heart rate 

↓ blood pressure 

→ performance 

→ recovery 

Hingley et al. 

(2017) 

Trained cyclists + 

runners (n=26) 

700mg/d n-3PUFA vs. 

SBO 

8 weeks prior to exercise Cycling sprints  5 min 

time trial 

↓ oxygen cost 

→ performance 

Kawabata et al. 

(2014) 

Recreational team-

sport males (n =20) 

3.6g/day FO vs. PLA 8 weeks prior to exercise VO2max test and steady 

state cycling tests 

→ VO2max 

↓ Oxygen consumption 

↓ Rate of perceived exertion 

Macartney et al 

(2014) 

Healthy males 

(n=39) 

700mg/d n-3PUFA vs. 

SBO 

8 weeks prior to exercise Maximal cycling sprints 

and 5 min time trial 

↓ Submaximal and recovery 

heart rate 

→ Peak heart rate 

Ninio et al 

(2008) 

Sedentary 

overweight adults 

(n=75) 

1.92g/day n-3PUFA 

vs. SO 

12 weeks prior to exercise Graded submaximal test ↓ Resting and submaximal 

heart rate 

↑ heart rate variability 

Oostenbrug et 

al (1997) 

Trained cyclists 

(n=24) 

6g/d FO + Vitamin E 

vs. 6 g/g FO vs. PLA 

3 weeks prior to exercise Wmax and endurance 

cycling tests 

→ time to exhaustion 

→ VO2max 

→ maximal power 

Peoples et al 

(2008) 

Trained cyclists 

(n=20) 

3.2 g/d n-3PUFA vs. 

OO 

8 weeks prior to exercise Submaximal 

exercise tests (55% of 

peak workload) 

↓ Peak and submaximal 

heart rate 

↓ Oxygen consumption 

Rontoyanni et 

al (2012) 

Healthy males 

(n=22) 

4.7 g/d DHA vs. 4.7 

g/d EPA vs. SO 

Single dose 12 min multi-stage test → cardiac output 

↓ Systemic vascular 

resistance 

Zebrowska et 

al (2015) 

Trained cyclists 

(n=13) 

1.3g/d n-3PUFA vs. 

PLA 

3 weeks prior to exercise VO2max test ↑ VO2max 

↑ endothelial function 

n-3PUFA = omega-3 polyunsaturated fatty acid; DHA = Docosahexanoic acid; EPA = Eicosapentaenoic acid; PLA = Placebo; FO = Fish oil; OO = Olive oil; SO = 

Sunflower Oil; SBO = Soy Bean Oil. 



 

 

Team-based Athletes 

The initial 96 hours following exercise is commonly defined as the acute exercise 

recovery period (Pereira Panza et al., 2015). This period is considered crucial in optimising 

athlete performance, particularly during situations such as fixture congestion for team sport 

athletes. Repeated eccentric-based muscle contractions are known to cause damage to skeletal 

muscle fibres (Nedelec et al., 2012). Muscle damaging exercise has been shown to 

subsequently impair sport-specific performance (Eston et al., 1996). There is biological 

rationale behind the notion that n-3PUFA has the potential to promote recovery from muscle 

damaging exercise. In theory, n-3PUFA have the potential to protect the muscle from damaging 

exercise by increasing the structural integrity of the muscle cell membrane. Alternatively, n-

3PUFA have the potential to accelerate the recovery process. In this regard, dietary n-3PUFA 

exhibit anti-inflammatory properties via several pathways. These pathways include inhibition 

of the COX-2 pathway (Li et al., 2005), the synthesis of lipoxins and resolvins that both exhibit 

anti-inflammatory functions (Janakiram, Mohammed and Rao, 2011) and also by reducing 

chemotaxis of neutrophils and reduce generation of leukotrienes, a family of inflammatory 

mediators produced by leukocytes (Lee et al., 1985). Therefore, it is intuitive that n-3PUFA 

supplementation could improve recovery following muscle damaging exercise either by 

preserving muscle membrane integrity of reducing inflammation.  

A series of experimental studies have examined the influence of n-3PUFA ingestion on 

recovery from muscle damaging exercise and have revealed mixed results (Tsuchiya et al., 

2016; Gray et al., 2014) (Table 3). A recent study examined the impact of acute 

supplementation with a high (15:1 ratio of EPA to DHA) or low (15:1 ratio of EPA to DHA) 

dose of n-3PUFA on exercise recovery (Jakeman et al., 2017). The authors reported that the 

group consuming the high dose of n-3PUFA observed an attenuated decrement in squat jump 

performance. However, no differences in markers of muscle soreness and putative blood 



 

 

markers of muscle damage (e.g. creakine kinase (CK)) and inflammation (interleukin-6) were 

observed between conditions. These data suggest that the high ratio of EPA to DHA may be 

the key factor in helping to maintain performance following acute supplementation and muscle 

damaging exercise. However, it is difficult to interpret these data given that at least 2 weeks is 

required for incorporation of omega-3 into muscle tissue. Therefore, any physiological effect 

of n-3PUFA in this study must have been systemic (Jakeman et al., 2017).  

Another recent study measured the impact of medium term (21 days prior to muscle 

damage) n-3PUFA supplementation on indices of recovery following muscle damaging 

exercise in females (McKinley-Barnard et al., 2018). Participants consumed either 4.2 g/day of 

n-3PUFA or a placebo supplement consisting of safflower oil for 21 days before undergoing a 

bout of intense eccentric exercise. Supplementation of n-3PUFA failed to attenuate muscle 

soreness and inflammation measured 24 hours following exercise compared to the placebo 

condition. Unfortunately, this study did not collect measurements of exercise recovery 48, 72 

or 96 hours post-exercise and therefore may have missed important information regarding the 

effectiveness of n-3PUFA ingestion in promoting acute exercise recovery.  

Whilst this body of work (Table 3) provides proof-of-concept for the potential role of 

n-3PUFA ingestion in accelerating recovery from muscle damaging exercise, the direct 

application of these results to team-based athletes should be considered with caution for several 

reasons. First, these studies are typically performed in untrained participants in which a high 

degree of muscle damage is likely after unaccustomed exercise. Hence, it may be argued that 

the application of results is more appropriate in the context of improving compliance of 

previously sedentary population to a new exercise routine, rather than the elite team-sport 

athlete with the goal of complete recovery prior to the next match. Second, the ecological 

validity of the muscle damage protocol used in this study is not directly relevant to sporting 



 

 

movements. Finally, the sensitivity and specificity of endpoint measurements to team sport 

athletes is weak.   

To address these limitations, we recently recruited competitive soccer players to ingest 

a combined n-3PUFA (2.8 g/day) and whey protein (30 g/day) supplement beverage over a 6 

week period prior to performing an intense exercise bout (Philpott et al., 2018). In the 72 hours 

following the muscle damaging exercise, the soccer players in the n-3PUFA plus protein group 

reported reduced levels of muscle soreness. The n-3PUFA group also experienced a reduction 

in plasma creatine kinase concentrations as a putative blood marker of muscle damage, 

compared to the whey protein beverage only, or the carbohydrate placebo beverage. As such, 

these data imply that n-3PUFA supplementation protected the muscle cell from the muscle 

damage protocol and therefore soccer players experienced less damage during exercise. 

However, there was no influence of n-3PUFA ingestion on soccer performance tests such as 

the yoyo intermittent recovery test or the Loughborough soccer passing test, which arguably 

offer greater application for recovery in the team sport athlete. To better understand the impact 

of n-3PUFA on recovery this study needs to be replicated in a real life football situation, using 

a simulated soccer match. 

Our recent research also has observed that four weeks of n-3PUFA supplementation in 

soccer players resulted in improved anaerobic endurance running capacity while maintaining 

their habitual training schedule (Gravina et al., 2017). Over 4 weeks of training, soccer players 

experienced an increase of 203m in the Yo-Yo level 1 test following ingestion of 0.1 g/kg/day 

of n-3PUFA, compared to only a 62 m improvement in the placebo group. However, 

adaptations in power, speed and maximal knee extensor strength were not influenced by the 

omega-3 supplementation. Therefore, it is possible that n-3PUFA supplementation may 

improve high intensity running capacity in soccer players, but further research is needed to 

investigate different athlete populations. 



 

 

Table 3 – Studies investigating the influence of omega-3 (n-3) polyunsaturated fatty acid supplementation on indices of recovery following 

exercise-induced muscle damage  

Authors Participants Supplement Dose Supplementation Period Muscle 

Function 

Muscle 

Soreness 

Muscle 

Damage 

Markers (CK, 

Mb etc.)  

Corder et al. 

(2016) 

Healthy females 

(n=27) 

3g/d DHA vs. PLA 7 days prior and 2 days after 

exercise 

 
DHA < PLA DHA = PLA 

DiLorenzo et 

al. (2014) 

 Untrained males 

(n=41) 

2g/d DHA vs. PLA 28 days prior to exercise DHA = PLA DHA = PLA DHA < PLA 

Gray et al. 

(2014) 

Males (n=20) 3g/d FO vs. 3g/d OO 6 weeks prior to exercise FO = OO FO = OO FO < OO 

Jakeman et al. 

(2017) 

Healthy active 

males (n=27) 

800mg/10kg/BM EPA 

vs. 250mg/10kg/BM 

EPA vs. PLA 

Single dose High EPA < 

Low EPA, 

PLA 

High EPA = 

Low EPA, 

PLA 

High EPA = 

Low EPA, PLA 

Jouris et al. 

(2011) 

Healthy males (n 

=11) 

2g/day EPA + 2g/day 

DHA vs. PLA 

7 days prior to exercise 
 

FO < PLA 
 

Lembke et al 

(2014) 

Healthy males and 

females (n=63) 

2.7g/day FO vs. PLA 30 days prior to exercise 
  

FO < PLA 

McKinley-

Barnard et al 

(2018) 

Healthy active 

females (n=22) 

4.2 g/day n-3PUFA 

vs. PLA 

21 days prior to exercise  FO = PLA FO = PLA 

Philpott et al 

(2018) 

Male soccer players 

(n=30) 

2.2 g/day FO + PRO + 

CHO vs. PRO + CHO 

vs. CHO 

42 days prior to exercise and 

2 days following exercise 

FO = PRO, 

CHO 

FO < PRO, 

CHO 

FO = PRO, 

CHO 

Tartibian et al 

(2011) 

Untrained  

males (n=45) 

1.8g/day FO vs. PLA 30 days prior and 2 days 

following exercise. 

  
FO < PLA 

Tsuchiya et al 

(2016) 

Healthy  

males (n=24) 

2.4g/day n-3PUFA vs. 

CO 

56 days prior and 5 days 

following exercise. 

n-3PUFA > 

CO 

n-3PUFA < 

CO 

n-3PUFA < CO 

DHA = Docosahexaenoic acid; EPA = Eicosapentaenoic acid; PLA = Placebo; n-3PUFA = n-3PUFA; OO = Olive oil; FO = Fish oil; CHO = 

Carbohydrate; PRO = Protein; CO = Corn Oil.  



 

 

Special Considerations 

Energy Restriction 

Athletes competing in weight category sports often undergo periods of energy restriction. 

Periods of sustained energy restriction are often accompanied by the loss of muscle mass 

(Mettler, Mitchell & Tipton, 2010; Weinheimer, Sands & Campbell, 2010) due, primarily, to 

a reduction in basal rates of MPS (Pasiakos et al., 2010) rather than an increase in MPB 

(Longland et al., 2016). Within clinical studies (e.g. cancer patients), n-3PUFA 

supplementation has been shown to attenuate the loss of muscle mass (Murphy et al., 2011). 

Within an athletic setting, a recent study from our laboratory examined the influence of n-

3PUFA supplementation during 2 weeks of energy restriction on lean and fat mass loss in 

resistance-trained athletes (Philpott et al., unpublished). Athletes underwent 2 weeks of 40% 

calorie restriction with the nutritional composition of 50% carbohydrate, 35% fat and 15% 

protein. Half of the participants (n=10) supplemented with an n-3PUFA beverage on a twice 

daily basis, and the other participants supplemented with a carbohydrate placebo beverage 

while continuing with their habitual training programme. Following the 2 weeks of 

supplementation, participants lost similar amounts of body mass, muscle mass and fat mass 

independent of which supplement beverage was consumed. While these initial data do not 

support the use of n-3PUFA ingestion during periods of energy restriction, future studies 

should examine the effects of n-3PUFA supplementation on the attenuation of muscle mass 

over a longer period of energy restriction in athletes. 

Immobilisation 

Serious injury in athletes can result in limb immobilisation. The muscle atrophy 

associated with periods of immobilisation is due, at least in part, to an attenuated response of 

MPS to ingested protein (Wall 2013); a concept known as anabolic resistance. Pre-clinical 



 

 

studies have used a rodent model to investigate the influence of n-3PUFA supplementation on 

muscle mass. This work demonstrated that rats consuming a diet consisting of 2% corn oil and 

5% cod liver oil retained myosin heavy chain content and inhibited the COX-2 pathway as an 

inflammatory marker following a 10 day period hind-limb immobilisation compared to rats 

consuming a diet consisting of 7% corn oil alone (You, et al., 2010a). However, when the hind 

limbs of the rats were remobilized for 13 days following the 10 day hind-limb immobilization 

(You et al., 2010b) the fish oil group experienced an impaired recovery of myosin heavy chain 

content compared to the corn oil group. Moreover, following remobilisation the 

phosphorylation status of mTORC-associated anabolic signalling proteins were increased with 

corn oil compared to n-3PUFA during the early stages of remobilisation (3 days). Taken 

together, these data indicate that n-3PUFA ingestion is effective in retaining muscle mass 

during the immobilisation period. However, n-3PUFA may not influence, and even possibly 

inhibits, the recovery process during the remobilisation phase (You et al., 2010b). Follow up 

human research is warranted in order to examine the impact of n-3PUFA supplementation 

during periods of immobilisation and remobilisation following injury.  

Concussion 

The diagnosis and treatment of concussion is currently a hot topic in Sport Nutrition. 

DHA is abundant in the plasma membranes of the brain which is involved in neuronal 

signalling (Fontani et al., 2005). Early research examining the effects of n-3PUFA 

supplementation on recovery from concussion has been conducted primarily in rat models. One 

of the earliest studies elicited mild traumatic brain injury to rats before conducting the Morris 

Water Maze test to assess performance on consecutive days 10-14 after the traumatic brain 

injury (TBI) (Wang et al., 2013). Rats either consumed a diet consisting of 6% n-3PUFA or a 

diet of 6% soybean oil before and during the recovery phase of brain injury. Rats that consumed 

the n-3PUFA diet managed to complete the maze faster than the placebo group during TBI 



 

 

recovery Due to ethical reasons, studying recovery from concussion in humans is challenging. 

However, a recent study did examine the effect of n-3PUFA supplementation over a full season 

in American football players. These data revealed n-3PUFA ingestion (2, 4 or 6 g/day) 

decreased concentrations of serum neurofilament light, a biomarker of head trauma (Oliver et 

al., 2016). However, more research is required to determine the effectiveness of n-3PUFA in 

the treatment of TBI and concussion in contact sport athletes. 

Bleeding  

EPA is known to replace arachidonic acid in the phospholipid layer of platelet cell 

membranes following n-3PUFA ingestion (Lorenz et al., 1983). As a consequence, platelet 

aggregation may be reduced due to a reduction in levels of thromboxane A within the plasma. 

Platelets mediate the wound healing process via blood clotting. Thus, in theory a decrease in 

platelet aggregation may increase bleeding time. Consistent with this notion, a recent study 

also suggests that n-3PUFA supplementation may reduce platelet aggregation in healthy 

individuals and therefore increase bleeding time following surgery or lacerations (McEwen et 

al., 2013). However, human studies examining the influence of n-3PUFA supplementation on 

bleeding time and severity have generally shown mixed results. A recent systematic review 

found no difference in bleeding risk with n-3PUFA supplementation in different populations, 

including athletes (Begtrup, Krag & Hvas, 2017). However, the interpretation of this systematic 

review may be influenced by variations in the dose and duration of n-3PUFA supplementation 

between studies. Overall, although n-3PUFA supplementation may reduce platelet aggregation 

there appears to be no effect on bleeding rates following surgery. Therefore, unless athletes are 

ingesting a high dose of n-3PUFA, concerns over bruising and bleeding following an injury 

during sport appear unfounded. 

 



 

 

Current issues in omega-3 and sport performance research 

As with all nutritional supplements, more research is needed to examine the effects of 

n-3PUFA on athletic performance. Current issues regarding n-3PUFA supplementation on 

sport performance are four-fold. First, it is currently unknown the duration of time in which n-

3PUFA concentrations in muscle and blood return to baseline after cessation of 

supplementation. This information would be useful in the design of crossover studies that 

investigate the impact of n-3PUFA ingestion on a chosen marker of sport performance.   

Second, significant variation exists with regards to the dose and duration of n-3PUFA 

supplementation employed between studies. As discussed previously, at least two weeks of n-

3PUFA supplementation is sufficient to detect an increase in n-3PUFA concentration within 

the muscle lipid pool, but it is not yet known how many weeks is required to maximise this 

response. Moreover, the optimum dose of n-3PUFA to reduce inflammation, maximise the 

incorporation of EPA and DHA into the muscle membrane and improve various aspects of 

sport performance remains unknown.  

Third, research examining the effects of fish oil derived n-3PUFA on athletic 

performance have utilised a range of placebos, including safflower oil, corn oil and coconut 

oil. Corn oil and safflower oil both contain high amounts of omega-6, so when used as a placebo 

these oils actually alter the omega 3 to omega 6 ratio. To date, the most appropriate placebo 

appears to be coconut oil which does not contain any omega-6 or omega-3. However, there is 

evidence that the short chain saturated fats in coconut oil may have an impact on metabolism 

(Eyres et al., 2016). Therefore, the most appropriate fish oil placebo for all research testing has 

yet to be established.  

Finally, the ratio of EPA to DHA present within the n-3PUFA supplement should be 

considered when interpreting the findings from research into the applications of n-3PUFA 

ingestion for sport performance. Current research has used multiple different ratios of EPA to 



 

 

DHA whether that is 1:1, EPA rich or DHA rich supplementation. Given that EPA and DHA 

exhibit their own active properties and act independently, caution should be applied when 

interpreting n-3PUFA supplementation research with different ratios of EPA to DHA. 

 

Practical applications and conclusion 

The applications of n-3PUFA supplementation for sport performance are relevant to 

athletes from strength, endurance and team based sports, with recommendations tailored to the 

specific performance goals of the athlete (table 4). Based on currently available scientific 

evidence, there is potential for n-3PUFA supplementation to improve muscle adaptation, 

energy metabolism, muscle recovery and injury prevention. As such, n-3PUFA 

supplementation for athletes may yet prove to be effective, and at the very least not detrimental, 

for performance, except potentially following immobilisation. However, more research is 

needed to further investigate some of the promising applications of n-3PUFA supplementation 

on skeletal muscle mass retention, and growth, as well as in recovery from concussion in 

athletic populations. 

 

 

 

 

 

 

 

 

 





 

 

Table 4 – Practical applications of omega-3 polyunsaturated fatty acid supplementation for athletic performance  

Athlete/context Strength of Evidence* Practical Application 

Strength/power-based 

Athletes 

3 

 

2 

 Dietary n-3PUFA supplementation switches on mTORC-related signalling 

proteins involved in stimulating muscle protein synthesis. 

 However, preliminary evidence suggests that ingesting sufficient dietary protein 

negates any additive effect of n-3PUFA supplementation on muscle protein 

synthesis.  

Endurance-based 

Athletes 

3 

 

 

2 

 Dietary n-3PUFA supplementation appears to increase oxygen efficiency during 

endurance exercise. However, whether this physiological response translates to a 

performance improvement remains unclear. 

 Current evidence linking n-3PUFA supplementation with a reduced incidence of 

URTI in endurance-based athletes is only preliminary at present and warrants 

follow up study.  

Team-based Athletes 3 

 

 

2 

 

 The role of dietary n-3PUFA supplementation in the day-to-day recovery of team-

sport athletes for reducing muscle soreness and attenuating the decline in muscle 

function is promising and warrants follow up study.  

 The role of dietary n-3PUFA supplementation in promoting adaptation to training 

in team-based athletes is promising and warrants follow up study. 

Energy Restriction 2  Dietary n-3PUFA supplementation does not appear to benefit the retention of 

muscle mass during periods of energy restriction.   

Immobilisation 2  There is preliminary evidence, albeit in rodent models, that n-3PUFA 

supplementation may attenuate the loss of muscle mass during limb 

immobilisation. 

Concussion 2  There is preliminary evidence that n-3PUFA supplementation exerts a protective 

effect during concussion-related injury.  

Bleeding 4  Dietary n-3PUFA supplementation does not impact bleeding rates following 

minor wounds or surgery. 

* Strength of evidence grading: 5 - very strong, 4 - strong, 3 - medium, 2 - weak, 1 - very weak. 

n-3PUFA = omega-3 polyunsaturated fatty acid; mTORC = mechanistic target of rapamycin; URTI = upper respiratory tract infection. 
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