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INCREASING THE PERFORMANCE OF A MOBILE
AD HOC NETWORK USING A GAME-THEORETIC
APPROACH TO DRONE POSITIONING

In this paper, we describe a novel game-theoretic formulation of the optimal mobile
agents’ placement problem which arises in the context of Mobile Ad-hoc Networks
(MANETs). This problem is modelled as a sequential multistage game. The defini-
tions of both Nash equilibrium and cooperative solution are given. A modification
was proposed to ensure the existence of Nash equilibrium. A modelling environment
for the analysis of different strategies of the players was developed in MATLAB. The
programme generates various game situations and determines each players move by
solving respective optimisation problems. Using the developed environment, two spe-
cific game scenarios were considered in detail. The proposed novel algorithm was im-
plemented and tested using Network Simulator 3. The results show that the proposed
novel algorithm increases network performance by using the game theory principles
and techniques.
Keywords - MANET; Dynamic games; Multistage games; Drone placement; Graphs;
Nash equilibria, NS-3.

1 Introduction

Recently, there has been a growing interest in the qualitative analysis and performance op-
timisation of Mobile Ad hoc Networks (MANETs). A MANET is formed by a collection of
wireless nodes communicating directly with other wireless nodes within their transmission
range. To facilitate long distance communication, i.e. to nodes outside of their transmis-
sion range, other nodes will forward the packet towards the intended destination, thus these
intermediate nodes along the path take on the role of routers. A MANET can operate inde-
pendently of other networks and does not require a predefined infrastructure [1]. MANETs
play an increasingly important role in data communication networks and can be used for
many applications, such as disaster recovery after a natural catastrophe, for instance after
an earth quake. The quick deployment time of a MANET makes it an ideal solution for
search-and-rescue operations [2], [3] where the existing communications infrastructure has
been compromised or damaged. One of the biggest problems associated with the operation of
a MANET (and other wireless broadcast systems) is the need to share/use limited resources
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for the transmission of radio waves. Inappropriate use of the resources can cause a severe
degradation in network performance [4], another issue is the formation of communication
paths because of the mobility of each of the nodes within the network.

When the number of nodes wanting to transmit data increases, some of the routing paths
become congested and performance drops [5], [6]. The amount of data could also also large,
for example, in the case of video streaming [7]. In some cases obstacles on the ground (lakes,
buildings, etc.) can cause link breakages. To mitigate the congestion of a given link, or to
fix a link breakage, drones can be used as an intermediate node to facilitate the forwarding
of the traffic.

Recently, utilization of teams of Unmanned Aerial Vehicles (UAVs) became extremely pop-
ular because they allow to extend the operational scope and significantly reduce response
time [8]. Introducing mobile agents (drones) and finding the best possible locations for their
placement is the focus of this research. Recent research suggests forming networks of UAVs
using star topology, or uniform coverage [8], [9]. In most cases, the number of drones is
rather limited so they should be placed at strategic locations to maximally increase the
performance of the network [10]. Typically, research that discusses MANETs uses all avail-
able nodes to form one big communications network; however, there are situations when
there may be several groups of nodes which are deployed to solve their specific tasks. These
grouping of nodes may or may not be able to communicate with each other; the latter case
corresponds to the situation when the nodes from different groups use different frequency
ranges [11].

We address the described problem in a decentralized manner. That is, we assume that each
group of nodes has a single control centre which is in possession of a single drone. The goal
of the control centre is to strategically place the drone to maximise the performance of the
subnetwork formed by the nodes. We assume that the number of available drones doesn’t
allow full coverage of the restricted zone.

It turns out that Game theory lends itself perfectly well to addressing the described problem.
Game theory is a powerful tool to study situations of sharing limited resources, and it deals
with finding the best actions for individual decision makers (players) and for finding the best
available outcome [12], [13]. Using the game-theoretic methods one can explicitly design and
analyse strategic choices and model the decision-making process for the player per their own
interests. Much of the research conducted in the application of the game theory in the area of
MANETs is related to malicious or selfish node detection [14], [15], [16], [17], [18]. Existing
applications also includes looking for large communities in the networks [19], [20], [21],
and investigation of cooperative games for various network games [22], [23], [24]. In this
paper, we take a different approach and apply game theory to a special class of network
optimisation problem as described below. Note that there are several interesting results on
games theory applied to networks, (e.g., [25], [26], [27]); however, this particular problem
statement appears to be novel thus opening wide opportunities for further research.
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Figure 1: Example of node placement and Transmission Radius

MATLAB was used to code the game theory algorithm to determine the most strategic
locations of the players drone. Results show that our algorithm can determine several
possible strategic locations for the placement of the drones. In addition, we were interested
how these placements would increase the overall performance of the MANET, thus, Network
Simulator 3 (NS-3) was used to simulate a realistic network environment. This research
extends the published work in [28], [29].

The paper is structured as follows: in Section 2, we give a formal description of the considered
objects and introduce the mathematical notation that will be used thereafter. In Section 3 we
present the game-theoretic formulation of the drone placement problem. Section 4 contains
numerical examples which were coded in MATLAB, Section 5 discusses the implementation
of the simulation and an analysis of the results, while in Section 4 we draw conclusions and
outline the directions of future research.

2 Problem Statement

2.1 Two types of communication networks

We consider the set N = {1, ..., N} of N players, each player i ∈ N has a non-empty set
Mi = {1, ...,Mi} of agents. Each agent mj

i ∈ Mi, i ∈ N is characterized by a pair of
coordinates ( xji , yji ),M =

⋃
i∈NMi is the set of all agents.

We assume that the agents can be located at the vertices of a uniform tiling of a connected
subset of the Euclidean plane C ⊂ R2 , for example see Figure 1 (graph on the left) which
depicts the location of the agents at a moment in time for a given player. In practice,
one considers three kinds of uniform tiling: the triangular, the Cartesian (integer), and
the hexagonal tiling which are formed by unit equilateral triangles, squares, and hexagons.
Henceforth we will denote the set of all admissible coordinates byW ⊂ C . In the case of the
Cartesian grid, the coordinates of admissible points are the pairs of integer, i.e.,W ⊂ N2∩C.
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The agents form a communication network whose structure is determined by the spatial
alignment of agents and their transmission capabilities, Figure 1 depicts the agents’ trans-
mission radius as a gradient outer circle, the use of the gradient illustrates that the transmit-
ted signal attenuates with distance. The agent at (1, 1) is in range with agent at (2, 1) and
no other agent, however, the agent at position (3, 2) is in range of agents at positions (3, 1)
and (4, 2) . While the very nature of a MANET suggests a dynamic topology, we look at a
snapshot of the network at a given point in time. Thus, we assume that the communication
network formed by the respective agents does not change with time. In the following, we will
consider two types of communication structures: separate and joint use of communication
infrastructure. We denote these two types of communication networks by S (separate) and
J (joint). Below we consider these two cases in more detail.

S -network : The communication network consists of N disjoint graphs GSi =
(
VS
i , ESi

)
, i ∈

N , where the sets of vertices VS
i = {vki = (xki , y

k
i )}Mi

k=1 are the collections of the Cartesian
coordinates of agents of player i ; the sets of edges ESi = {ek,si =

(
vki , v

s
i

)
∈ VS

i × VS
i :

dist
(
vki , v

s
i

)
= 1} are the sets of all pairs of agents for player i , that are at a unit Euclidean

distance from each other. Note that the coordinate grid is such that the distance between
two neighbouring points is always equal to 1 . We assume that each graph GSi is connected,
i.e., there is a connected path between any two agents of a player. Note that there are no
connections (links) between the elements of different subgraphs, i.e., the agents of one player
do not participate in the transmission between the agents of another player, i.e., the agents
of the first player are transmitting at a range of frequencies different to that of player 2 .

J -network : This case corresponds to a single communication network whose commu-
nication structure is modelled by the graph GJ =

(
VJ , EJ

)
, where the set of vertices

VJ =
{
vki =

(
xki , y

k
i

)}
, i ∈ N , vki ∈ Mi is the collection of the Cartesian coordinates

of all agents; the set of edges EJ = {ek,s =
(
vki , v

s
j

)
∈ VJ × VJ : dist

(
vki , v

s
j

)
= 1} is the

set of all pairs of agents that are at a unit Euclidean distance from each other. As in the
previous case, we assume that the graph GJ is connected, i.e., there is a connected path
between any two agents.
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Figure 2: Example 1 with one lake and two players

Note that in both cases the coordinates of agents of two different players can coincide.
While in the case of the S-network this would mean that the graphs may overlap (they can
be considered to lie in different layers), for the J-network this would imply that there is no
direct connection between two agents located in the same point. This can be relaxed by
defining the set of edges to be the set of all pairs of agents at the distance less or equal to
1, i.e., ẼJ = {ek,s =

(
vki , v

s
j

)
∈ VJ × VJ : dist

(
vki , v

s
j

)
≤ 1} . Note, however, that this is not

important in the context of our research as we are interested in determining shortest paths
between different nodes, which obviously must contain only non-overlapping nodes.

Note also that the choice of the grid can influence the connectivity of the respective graphs
and the related characteristics. While any agent located on a hexagonal grid can have at
most adjoin 3 edges, for the triangular grid this number can be up to 6 .

2.2 Graph theoretic ingredients

Before proceeding to the game-theoretic formulation of the problem we present a couple of
facts from graph theory which will be used hereafter.

Let G = (V, E) be a graph and m be an agent. We define the union G̃ = G ∪ {m} to be a
new graph with an extended set of vertices Ṽ = V ∪ {m} and the accordingly adjusted set
of edges Ẽ . The union operation can be obviously extended to the case G ∪M , where M
is a set of agents M = {mi}ki=1 . Note that G̃ can be disconnected.

The location of the agents is determined by the application or the scenario, for example,
consider a search and rescue operation where a person was reported missing in an area
with lakes. The search operation might involve firstly coordinating the searching of the
circumference of the lake as depicted in Figure 2.
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The diameter of the graph [36] G, denoted by D (G) , is the maximum among all shortest
paths between the agents in the graph, D (G) = max

(vi,vj)∈V×V
d (vi, vj) , where d (vi, vj) is the

graph distance between two vertices vi and vj which is defined as the minimum length of the
paths connecting them. If no such path exists, d (vi, vj) = ∞ , in our scenario, see Figure
2, the maximum path among all shortest paths between the agents is between the agents
located at (1, 1) and (1, 5) , for convenience we have assigned S (source) and D (destination)
to illustrate a communications path.

Since each graph GSi is connected, for the integer grid the diameter can be roughly estimated
as:

2
(
b
√
Mic − 1

)
≤ D

(
GSi
)
≤Mi − 1.

Obviously, while the upper bound does not depend on the type of the grid, the lower bound
does. Namely, it is minimal for the triangular grid and maximal for the hexagonal one.

Furthermore, let V = {Vi} be a disjoint partition of the set of vertices V of the graph G ,
i.e., V =

⋃
i Vi and Vi

⋂
Vj = ∅ for all i, j ∈ N , i 6= j. We define the diameter of the graph

G with respect to the element Vi of the partition V as

D (G,Vi) = max
(vi,vj)∈Vi×Vi

d (vi, vj) .

That is to say, when computing D (G,Vi) we consider only the paths between the pairs of
vertices from Vi . However, the intermediate vertices in the respective paths are not required
to be in Vi .

2.3 Mobile agent: drone

Each player has a mobile agent (drone) qi at their disposal. The drone is placed at any
admissible point in W . While all the agents have fixed coordinates, the position of the
moving agent qi, i ∈ N can be changed during the game. The link between the moving
agent and another agent is defined similarly to the links between the stationary agents. The
moving agent qi can establish a link with any other moving agent qj and with any stationary
agent vpi , v

p
i ∈Mi, i ∈ N .

At the initial time, all drones are assumed to be located at some initial position q0. We
also assume that the Euclidean distance between q0 and the agents is greater than 1, i.e.,
dist

(
q0, vki

)
> 1 ∀i ∈ N , vki ∈ Mi . That is to say, the initial position of the drones is such

that they cannot establish communication with the agents of any other player.

Finally, we denote the set of all drones by Q = {qi}Ni=1 and the set of all drones except the
i th one by Q−i = Q\{qi} .
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3 Game Formulation

3.1 Optimisation problem

At each step the i th player aims at placing its moving agent qi such that it minimises the
diameter of the respective graph computed for all player’s agents. Note that the drones
themselves are not considered when computing the diameter of the graph as they are not
assumed to be the sources of any useful information, but merely transmit the information
packages between the agents. In this statement, we assume that each drone can be used by
the agents of any player. The set of admissible locations of the ith drone, W ∗i = W\Q, is
introduced to avoid the collision of two drones.

For any type of communication structure the i th player solves the following optimisation
problem:

q̄i = argmin
qi∈W∗

i

D(G∗i ,Vi), (1)

where G∗ is the extended graph: for the case of the S-network, G∗i = GSi ∪ Q−i ∪ {qi}, for
the J-network: G∗i = GJ ∪Q−i ∪ {qi} respectively.

Accordingly, the pay-off (utility) function of the i th player is defined as the difference
between the diameter of the respective graph before placing the drone and afterwards:

Hi (G, Q) = D (G,Vi)−D (G∗i ,Vi) ≥ 0, (2)

Note that the pay-off function is always nonnegative. We will modify this definition for the
multi-staged game in the subsequent section.

3.2 Game aims and strategic (normal) form

The idea of the game is that each of the players aims to place its moving agent such that
it minimises the maximal distance between the player’s agents while taking into account
the existing communications infrastructure. The degree by which the player minimises the
mentioned distance is captured by the pay-off function (2). Thus the goal of the player is to
maximise its pay-off function. The game finishes if none of the players can maximise further
the respective pay-off function.

The game is now formulated in normal form (see [30], [31]), i.e., the game is a triple

Γ = {N ,S, H},
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where N is the set of players; S =
∏

i∈N Si is a Cartesian product of strategy sets Si. The
set of available strategies for player i is Si ; H is the utility (pay-off) function for player i,
see (2).

The size of the action set of each player is limited from above: |Si| ≤ |W | − N + 1 . This
estimate shows that our game is discrete and finite. However, the above estimate can be
greatly improved. For instance, for the rectangular grid and S-network the number of all
meaningful actions satisfies

4b
√
Mi −N + 1c ≤ |Si| ≤ 2 (Mi + 1)

when computing the lower bound we considered the requirement that two drones cannot
occupy the same location.

3.3 Multistage Game

The formulated game is a game with perfect information. By the latter, we mean that all
the players have all the required information about the current and the previous network
states, and all the elements of the game are common knowledge. Furthermore, due to the
obvious restrictions we confine ourselves to the class of pure strategies.

There are two types of multistage games: simultaneous and sequential ones [30]. In a
simultaneous game, the players choose their actions simultaneously and without having
knowledge of the choices made by other players. In a sequential game, the players take their
decisions in a certain, a priori fixed order. Thus, the order in which players choose their
actions is a crucial parameter of the game. Intuitively, the player that is the last to decide
has an advantage of the others.

Below, we will mostly concentrate on the sequential version of the game. Let σ : N → N
be a bijective map (permutation of N ) defining the sequence of moves. We will refer to σ
as the move sequence. At each stage, the players make their choices per this sequence, i.e.,
first moves the player σ(1), then σ(2) and so forth. Each player places its drone in order
to minimise the diameter of the respective graph. Initially, all drones are in the starting
location Q0 = {q0, ..., q0} . When the i th player moves the set Q updates: Q = Q−i ∪{qi} ,
where qi is the solution of the respective optimisation problem (1). Note that the decisions
taken by subsequent players may change the pay-off function of the player that made its
move before. Therefore, the final value of the pay-off function is computed at the end of the
stage, when all players have made their moves.

3.4 Solutions and Equilibria

We are interested in two particular types of solutions to the considered game: a cooperative
solution and a Nash equilibrium solution. Below, we give a formal definition of these concepts
for the case of the S-network. All formulated results will hold, mutatis mutandis, for the
case of a J-network.
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Definition 3.1. The solution QNE = {qNE
i }i∈N is said to be the Nash equilibrium solution

if for any i ∈ N the following holds:

Hi

(
G, QNE

)
≥ Hi

(
G, QNE

−i
)

where QNE
−i = {qNE

j }j 6=i ∪ {qi} , qi ∈ W ∗i . This condition can be reformulated in terms of
graph diameters:

D
(
GSi ∪QNE ,Vi

)
≤ D

(
GSi ∪QNE

−i ,Vi
)
,

In plain words, this means that any player cannot improve its payoff function (i.e., decrease
the diameter of its graph) by unilaterally changing the position of its drone.
Definition 3.2. The solution QC is said to be the cooperative solution if it minimises
the sum of all individual payoff functions: QC = argmin

Q∈W∗

∑
i∈N D

(
GSi ∪Q,Vi

)
, where

W ∗ = W ∗1 ×W ∗2 × ...×W ∗N is the set of all admissible control actions.

Note that the cooperative solution always exists, as follows from the finiteness of the set of
actions. Obviously, it can be non-unique. The case of Nash equilibrium is, however, subtler.

While our dynamic game is represented in a strategic (normal) form, because of the presence
of sequential decision making, an alternative representation highlighting the sequence of the
moves can be used. The sequence of moves is thus represented in a game-tree form, which
is called an extensive form. It is known that every finite extensive-form game with perfect
information has a pure-strategy Nash equilibrium [32]. However, the existence of the Nash
equilibrium does not imply that the game has a finite extensive-form representation.

Figure 3: the case of a 3-bridge

That is to say, even the Nash equilibrium solution exists, it may happen that it cannot be
reached by any sequence of players’ moves. Such situation occurs when the Nash equilibrium
solution contains certain configuration of drones which we will call coherent structures. One
typical example of a coherent structure is shown in Figure 3 which depicts the case of a 3
-bridge connecting the agents of three different players (shown as a square, a triangle and
a cross). The respective mobile agents are encircled. The figure presents a fragment of
the total communication network, in this figure, Figure 3, three drones form a bridge, the
structure which cannot be reached without some extra coordination between players. When
the Nash equilibrium cannot be reached, the game will have a periodic solution. This is
similar to the situation observed in the theory of dynamic systems when a stable limit cycle
surrounds an equilibrium point.
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One approach to overcome this problem is to restrict the set of admissible players’ moves in
order to ensure that the resulting game-tree is finite. This achieved by adding an additional
restriction to the optimisation problem (1). Namely, the players are to be "benevolent", i.e.
when there are two equivalent alternatives, the i th player chooses the option which does
not decrease the pay-off functions of other players [32]. In our case this amounts to each
player moving their own mobile agents so that it does not increase the sub graph diameter
of another player. We have the following theorem.
Theorem 3.1. Let all the players be benevolent, i.e., the set of admissible moves be re-
stricted to the W ∗i = W\ {Qi−1 ∪W−i} , where W−i is the set of location that lead to the
decrease of the pay-offs of the other players. Then the game-tree is finite and a Nash equi-
librium exists. Note that the Nash equilibrium may not be unique. However, the question
of the Nash equilibrium uniqueness is beyond the scope of the paper.

The requirement that the players are to be benevolent is pretty natural as we consider a
search and rescue scenario which implies cooperation between different players. However,
there can be different scenarios in which the players compete with each other, for example,
the authors in [33] considers the use of drones as delivery systems of online goods and explain
that these are rapidly becoming a global norm, as corroborated by Amazon’s “Prime Air”
and Google’s “Project Wing” projects, in this work they explain that in this scenario there
would not likely be collaboration between the drones and that they would face cyber and
physical security challenges.

4 Numerical Examples

The simulation of the multi-staged game for the S-network has been implemented in MAT-
LAB for two players. For testing purposes the world was restricted by 5×7 and 8×8 rectan-
gular grids. A number of restricted areas were introduced, those which can be thought of as
obstacles which prevent player placing agents, i.e. where there might be a lake or building.
(See Figure 2 and Figure 4). Only mobile agents are allowed to be placed there. For each
player, the placement algorithm places a predefined number of nodes randomly on the grid
whilst ensuring a connected graph. Then the adjacency matrix A = [αij ] , i, j ∈ {1, ..,Mi}
was calculated such that:

αij =

{
1, d (Vi,Vj) = 1

0, otherwise.

A modified Dijkstra algorithm was used to calculate the lengths of the paths between the
agents for each player [34]. Note that the lengths were computed only for the nodes from
a given subset as described in Sec. 2.2. The length of the longest path was stored as the
player’s initial diameter. The code then evaluated if there was any competition for the
drones position by playing the first stage of the game. After a suitable number of game
situations were generated and stored, the game itself was played. The game consisted of a
compulsory first stage and then later stages run continuously until none of the players could
decrease their diameter.
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Strategy Drone 1 Drone 2 Diameters Payoff Payoff
Position Position Updated Stage 1 Stage 2

1 (6, 4) (7, 2) [14, 13] [2, 2] [2, 2]

2 (6, 4)→ (3,4) (3,3) [14→ 10, 13→ 9] [2, 2] [6, 6]

3 (6, 4)→ (4,4) (4,3) [14→ 10, 13→ 9] [2, 2] [6, 6]

4 (6, 4)→ (3,3) (3,4) [14→ 10, 13→ 9] [2, 2] [6, 6]

5 (6, 4)→ (4,3) (4,4) [14→ 10, 13→ 9] [2, 2] [6, 6]

6 (6, 4) (1, 3) [14, 13] [2, 2] [2, 2]

7 (6, 4) (2, 3) [14, 13] [2, 2] [2, 2]

8 (6, 4)→ (5,4) (5, 3) [14→ 12, 13→ 11] [2, 2] [4, 4]

9 (6, 4) (1, 4) [14, 13] [2, 2] [2, 2]

10 (6, 4) (2, 4) [14, 13] [2, 2] [2, 2]

11 (6, 4)→ (5,3) (5, 4) [14→ 10, 13→ 9] [2, 2] [4, 4]

Table 1: Example 1 strategies and payoffs.

We present two examples here, one is a game situation with one restricted area (lake),
the second illustrates the situation when one of the players finds a new position for their
drone which increases the diameter of another player. Players consider their own diameter
optimisation, however, sometimes the use of the second drone can be seen by us as a bridge
building process. We should emphasize that the game is non-cooperative, and the players
have no intention to build a bridge at any stage.

4.1 Example 1

Example 1 which is depicted on Figure 2 presents a situation when a bridge is not avail-
able at the first stage. The first player moves the drone to (6, 4) (see Table 1, iteration
1), this reduces the diameter for player 1, to 14, whilst also reducing the diameter for
player 2, to 13, which means the pay-off after stage 1 is [2, 2] . It also leaves the second
player with 11 options. However, at stage 2 opportunities for the better use of the, sec-
ond player’s drone for the first player are formed (see Table 1), i.e., two 2-bridges appear
((3, 3)− (3, 4) and (4, 3)− (4, 4)) (highlighted in bold in Table I). Each of the strategies re-
sult in pay-off [16− 10, 15− 9] = [6, 6] . The third 2 -bridge is also available ((5, 3)− (5, 4))
, but it only brings the payoff of [16− 12, 15− 11] = [4, 4] . For the rest of the strategies,
both players cannot improve achievements of the first stage.
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Strategy Drone 1 Drone 2 Diameters Payoff Payoff
Position Position Updated Stage 1 Stage 2

1 (6, 4) (4, 1) [13, 11] [2, 1] [2, 1]

2 (4, 6) (2, 2) [13, 11] [2, 1] [2, 1]

3 (4, 6) (5, 2) [13, 11] [2, 1] [2, 1]

4 (4, 6) (2, 3) [13, 11] [2, 1] [2, 1]

5 (4, 6) (2, 4) [13, 11] [2, 1] [2, 1]

6 (4, 6)→ (5, 4) (4, 4)→ (4, 6) [13→ 12→ 15, 11] [2, 1] [0, 1]

7 (4, 6) (2, 5) [13, 11] [2, 1] [2, 1]

8 (4, 6)→ (5,5) (4,5) [13→ 12, 11] [2, 1] [3, 1]

9 (4, 6)→ (5, 5) (4, 5)→ (4, 6) [13→ 12→ 15, 11] [2, 1] [0, 1]

10 (4, 6)→ (4,5) (5,5) [13, 11] [2, 1] [3, 1]

11 (4, 6)→ (4, 5) (5, 5)→ (4, 6) [13→ 12→ 15, 11] [2, 1] [0, 1]

12 (4, 6) (5, 8) [13, 11] ? [2, 1]

13 (4, 6) (6, 8) [13, 11] ? [2, 1]

Table 2: Example 2 strategies and payoffs.

4.2 Example 2

Example 2 has been generated randomly on the 8×8 field with three lakes (Figure 4) and it
illustrates the non-cooperative nature of this game. The initial diameters for the players are
15 and 12 correspondingly (see Table 2). The first player has the only minimising position
(4, 6) which brings 11 options for the second player. The pay-off function after stage 1 is
[15− 13, 12− 11] = [2, 1] for all 11 strategies. The next stage begins with the first player’s
attempt to minimise its diameter by using the second drone. Thus, some of the strategies
give multiple options and the total number of strategies becomes 13 (see Table 4).

The first 5 strategies do not allow any improvements (as well as strategies 7, 10 and 11) for
both players, thus make no changes to the drones’ positions. However, the 6− th strategy
(drone 1 at (4, 6), drone 2 at (4, 5)) gives an opportunity for the first player to use the
second drone as a 2-bridge ((4, 5), (5, 5)) which brings the diameter to 12 for both of the
players. Now the second player finds a better position for the second drone, namely (4, 6),
which bring the diameter down to 11, however that action increases the diameter of the
first player to 15. A very similar situation happens with strategies 6 and 10 (see Table 4).
Strategy 8, where the first drone was at (4, 6) and the second one at (4, 4) after the first
stage, allows the 2-bridge ((5, 4) − (4, 4)) to appear after second stage minimisation (see
Figure 4). Strategy number 9 is special, it allows two options for the position of the second
drone ((4, 5) and (4, 6)) after the first drone was moved to (5, 5). Both makes the diameter
of the second player 11. However, only the first option leaves the diameter of 12 for the first
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Figure 4: Example of the destruction of an optimal path the 9-th strategy from Table 4.
One of the possible implementations of Stage 2: initially drone 1 is at (4,6), drone 2 is at
(4,5); at the beginning of the stage 2 drone 1 goes to (5,5) to build a bridge, however, at
this time, drone 2 can leave (4,5) and take (4,6) instead (Example 2).
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player, the second option makes the diameter 15. Thus, two strategies lead to the bridge
formation and bring the maximal total network improvement, but at the same time, the two
strategies degrade the total payoff compared with the outcomes of the first stage.

4.3 Example 3

Example 3 Allowing some foreseeing for the first player would be a natural extension of the
game under consideration, since we look at the complete information games. Consider the
network built on a hexagonal grid, see Figure 5: the agents of the first player are depicted by
black circles, the agents of the second player are red circles. The green objects are obstacles,
say forests. The game formulation is very similar, apart from this time we will allow the
first player to consider the strategies, that do not decrease the diameter, but might allow to
build “a bridge” on the next stage of the game.

x

y

Figure 5: Example 3 topology
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Strategy Drone 1 Drone 2 Payoff Payoff
Position Position Stage 1 Stage 2

1 A N [1, 1] [1, 3]

2 B A [1, 0] [2, 1]

3 C A [2, 0] [3, 1]

4 D A [2, 0] [3, 1]

5 E A [1, 0] [2, 1]

6 F A [2, 0] [3, 1]

7 G A [2, 0] [3, 1]

8 H K [0, 0] [7,3]

9 I A [1, 0] [2, 1]

10 J A [1, 0] [2, 1]

11 K H [0, 0] [7,3]

12 L K [0, 0] [6, 3]

13 M K [0, 0] [6, 2]

Table 3: Example 3 strategies and payoffs.

x

y

H
M

LK

E

A

D

B

C F

G

I J

Figure 6: Possible strategies for the Player 1, Example 3

The set of strategies for the first player is {A,B,C,D,E, F,G,H, I, J,K,L,M} contains
four potential drone positions (see Figure 6), that are not changing the diameters, namely
{H,K,L,M} . Table 3 presents the resulting pay-off after the first stage of the game in the
fourth column. The latter strategies are highlighted in the Table.
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However, if we allow the first drone to be in either of H,K,L,M, the second drone might be
able to install a connection over the polygonal forest, building one of the “bridges”K−H,K−
M,K − L. Table 3 presents the resulting strategies for Example 3, the allowed positions
H,K,L,M, have brought significant improvement of connection (see the last column of
Table 3.

5 Network Simulator 3

We have clearly discussed the benefits of applying game theory for the placement of mobile
agents and we have used MATLAB to implement the solution, however, we are also interested
in the benefits that the strategic placements of the mobile agents would give in terms of
network performance. Thus, scenarios and strategies from Example 1 (see Figure 2, Table
1) were coded in C++ and simulated. Network Simulator 3 (NS-3) which is a discrete
network simulator used by many researchers [35] was used.

The aim was to compare the network performance for the strategies played in Example 1
above. The resulting strategies presented in Table 2 consist of six strategies with a bridge
being formed (strategies, 2, 3, 4, 5, 8, and 11 ), with the clear game theory winners (strategies
2, 3, 4 and 5 ).

The following experiment was designed: we run each strategy for player 2 for 100 seconds,
then the same scenario was run with no drones at all, this enabled us to compare the results.
Thus, we have a simulation running for 1100 seconds working through the 11 strategies that
considered the placement of the mobile agents, and for a further 100 seconds with all drones
removed (the drones were placed to positions where they could not communicate with the
other nodes, or with each other at simulation time, 1100 seconds).

Several callbacks (traces) were configured, two of which to captured packets transmitted and
received at the application layer, these were written to a vector and then written to disk as
a comma separated value file for analysis. The mobility was traced by capturing the time, x
and y positions of each node when the position of a node changed, this was written to disk
as a ASCII mobility file. Other data captured consisted of routing tables and a file for use
in Network Animator.

We measure network performance by the averaging the amount of successfully delivered
packets per unit of time. We envisaged that scenarios with bridges would perform better
than the rest of the scenarios.

5.1 Network Configuration

Table 4 gives the other configuration parameters used for the scenario and are discussed
subsequently. The simulation ran for 20 minutes to allow time for each scenario (each
placement of the drone), this also allowed for stabilisation time for the route discovery
process.
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Parameter Value

Transmission radius 105m
Geographical Area 700m×500m

Number
of Nodes

16 for Player 1
17 for Player 2

Simulation Time 1200 seconds
Source Node (Player 2) Node 0

Destination Node (Player 2) Node 15
Physical Mode DSSS at 11Mbps
Transfer Rate CBR at 11Mbps
Packet Size 64bits

Propagation Loss Model Friis Propagation Loss Model
Player 1 Channel Number 1
Player 2 Channel Number 6

Routing Protocol AODV
Transport Protocol UDP

Table 4: Network Configuration

The routing protocol chosen for this experiment was Ad Hoc On-Demand Distance Vector
(AODV) because this protocol establishes routes to destinations on demand, this kept the
routes fresh. In line with the MATLAB experiment we placed our nodes in locations akin
to the placements used in MATLAB, the transmission radius for the nodes was configured
so that it was limited to 105 m, we placed our nodes 100 m apart to correctly map with
MATLAB which gave a total geographical area of 700 m ×500 m, a visual representation
can be seen in Figure 2, Network Animator (NetAnim) was used to validate the placement
and transmission characteristics.

Traffic flows between node 0 and node 15 were configured, with node 0 being the source node
and node 15 being the destination (sink), represented by S2 (source) and D (destination)
on Figure 2. The User Datagram Protocol (UDP) transport protocol was used to transmit
a Constant Bit Rate (CBR) from the source at a rate of 11 Mbit/s.

The data used for the analysis consisted of the average received packet count for each of
the situations of drone placement so that we could measure the performance of the network
for each newly formed path based on the placement of the drone. In addition to this, the
analysis of hop counts at 90 second intervals, silence interval (times at which no data were
being received) and changes in topology were conducted.
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Figure 7: AODV Routing Table for Node 0 at 1190 seconds

In this research, we report on the network performance for player 2 only, however, results
for player 1 correlate with those of player 2.

During the running of the simulation we wanted to ensure that the paths between the
source and the destination were as expected, and that the data flowed through the correct
intermediate nodes and when applicable through the mobile agent, therefore, before and
after the placement of a mobile agent routing tables were written to disk so this could be
validated, see Figure 7.

5.2 Network Performance Analysis

The simulation allowed for the evaluation of twelve strategies, eleven of which map the
solutions in Example 1 (see Table 1). The twelfth scenario was added so that the network
performance could be evaluated without the use of drones (mobile agents). This was expected
to be the worst performing topology. The summary of results can be found in Table V (as
mentioned above, we are presenting player 2 results due to the limited space and the outcome
qualitatively being very similar).

Figure 8: Mean number of packets per second
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Drone 1 Drone 2 Resulting Number of Average Total Silence
Position Position Diameter hops rate Interval

(6, 4) (7, 2) 13 13 21.396 24

(3, 4) (3, 3) 9 7 28.447 15

(4, 4) (4, 3) 9 9 32.389 11

(3, 3) (3, 4) 9 7 32.568 6

(4, 3) (4, 4) 9 9 30.802 10

(6, 4) (1, 3) 13 13 19.968 24

(6, 4) (2, 3) 13 13 20.874 23

(5, 4) (5, 3) 11 11 26.609 13

(6, 4) (1, 4) 13 13 22.723 18

(6, 4) (2, 4) 13 13 25.907 11

(5, 3) (5, 4) 9 11 27.899 8

(10, 10) (8, 8) 15 15 16.768 15

Table 5: Example 1 simulations outcomes.

Table V presents the summary of the measurements for all twelve strategies (scenario) with
the visualisation shown in Figure 8.

The diameter was calculated as the longest of all the shortest paths between any two nodes on
the graph, while the number of hops was obtained from the AODV routing tables (see Figure
7) recorded every 100 seconds throughout the simulation. There was a slight discrepancy
due to the different algorithms calculating the most optimal route, however, the number of
hops is always taken between node 0 and node 15 (nodes S2 and D on Figure 2), whereas
the diameter could be longer for the other pair of nodes in the graph.

The total silence interval has been calculated as the number of seconds with no successful
communication between the source and the destination. The bridges of drones were built and
broken throughout the simulation, so we expected some delays in established communication.
For simplicity of analysis, we plotted the mean amount of successfully delivered packets per
second for each scenario on Figure 8. The latter numbers are treated as a measure of the
network performance. It is clear from Figure 8, that six scenarios where the drones were
placed such that the “bridges” were formed, are the best in terms of performance depicted
by green circles. One can even imagine a clear threshold line (say, 25 packets per second)
that separates them from the rest of the scenarios shown as a red horizontal line. The last
scenario with no drones included, performed the worst as expected (coloured red in Figure
8).
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6 Conclusion

A novel game-theoretic model of mobile agents’ placement on a mobile ad-hoc network was
considered and an example of a game played has been implemented in MATLAB. To test
if the scheme increased the performance of the network Network Simulator 3. The analysis
performed on the data derived from the simulation shows that the results are positive, and
that network performance clearly increased in the cases of mobile agents’ positions proposed
by the application of game theory.

The future research will include a detailed analysis of the observed phenomena and will
concentrate on the design of new classes of strategies, including cooperative ones, to allow
all players achieving the best possible outcomes. We will also consider more players and
the use of more mobile agents. We are also interested in adding some randomness, say, the
agents randomly are taken off the game with some a-priori given probability.

Introducing the cost of drone usage, would allow to include energy-efficiency. Drone’s
active time is currently quite limited, thus it is vital to limit its utilization time. Hence we
plan to consider the game which might finish at any random point in time [37].
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