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Abstract. Many parametric spectral methods are based on the classical algorithm of the

French engineer G. de Prony for exponential analysis. A drawback of this method is that it can-

not take into consideration any discontinuities due to the starting and ending of the exponential

components at different instants.

We introduce a short-time Prony method that allows to extract the characteristics from such

a signal and we illustrate the new method on a number of power system signals. All parameters

in the signals can be extracted with high accuracy and we show how to monitor the occurrence

of the transients dynamically.
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1 INTRODUCTION

A transient is used to refer to any signal or wave that is short lived. Transient detection has
applications in many highly dynamic signals such as power line analysis, speech and image
processing, turbulent flow applications, to name just a few. In a power system signal, transients
are observed as short lived high-frequency oscillations superimposed on the voltages or currents
of the fundamental frequency which is 50/60 Hz, as well as exponential components. They can
be caused by lightnings, equipment faults, switching operations and so on.

Transient detection is a relatively common problem in many applications. They are often
sinusoidal in nature and a lot of research has gone into the automation of their detection. We
analyze how a sparsity based method can contribute to the power system analysis. A drawback
of the standard Prony method for exponential analysis, is that it does not take into consideration
the discontinuities due to the switching, in other words due to the exponential components to
start and end at different instants.

In Section 2 the standard Prony method is recalled, while in Section 3 a short-time version
of it is developed. The latter is applied successfully to a number of power signal simulations
in Section 4. We use a damped sinusoidal model that is related to the phenomena typically
observed at power system plants.

2 THE STANDARD PRONY METHOD

Let  i,!i, �i and �i respectively denote the damping, frequency, amplitude and phase in each
component of the signal

�(t) =

nX

i=1

↵i exp(�it), ↵i = �i exp(i �i), �i =  i + i 2⇡!i. (1)

Let us assume that the frequency content in (1) is limited by

|=(�i)/(2⇡)| = |!i| < ⌦/2, i = 1, . . . , n,

as required by the Shannon-Nyquist theorem, and let �(t) be sampled at the equidistant points
tj = j� for j = 0, 1, . . . , 2n� 1, . . . with �  1/⌦. In the sequel we denote

fj := �(tj), j = 0, 1, . . . , 2n� 1.

The aim now is to find n,�1, . . . ,�n,↵1, . . . ,↵n from the measurements f0, . . . , f2n�1, f2n, . . .
and the form (1) of the model for �(t). The inherent structure present in (1) allows to separate
the computation of the nonlinear parameters �i from that of the linear parameters ↵i, as already
dsicovered by the French engineer de Prony [7].

Let us define the Hankel matrices

H(r)
n :=

2

64
fr . . . fr+n�1
... . . . ...

fr+n�1 . . . fr+2n�2

3

75 , r � 0. (2)

It is known [3, p. 603] that
detH(r)

⌫ = 0, ⌫ > n, (3)
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and it is proved in [5] that, in the absence of noise,

detH(r)
n 6= 0,

detH(r)
⌫ = 0 only accidentally, ⌫ < n. (4)

From these statements the number of components n can be obtained as the (numerical) rank of
H

(r)
⌫ for ⌫ > n. In practice, when the signal �(t) is affected by noise, the numerical rank is

determined as the number of singular values of H(r)
⌫ that rise above the noise level. In (4) this

means that one finds n singular values clearly above the noise level and the remaining ⌫ � n at
or below the noise level.

We further denote
�i := exp(�i�), i = 1, . . . , n.

The �i can be retrieved [4] as the generalized eigenvalues of the problem

H(1)
n vi = �iH

(0)
n vi, i = 1, . . . , n (5)

where vi are the generalized right eigenvectors. Then from the values �i, the �i can uniquely be
retrieved because of the restriction |=(�i�)| < ⇡.

To conclude, one finds the ↵i from the interpolation conditions

nX

i=1

↵i exp(�itj) = fj, j = 0, . . . , 2n� 1, (6)

either by solving the system in the least squares sense in the presence of noise or by solving a
subset of n consecutive interpolation conditions in case of a noisefree �(t). Note that

exp(�itj) = �ji

and that the coefficient matrix of (6) is therefore a Vandermonde matrix.
We now present a reformulation of the exponential analysis problem using tools from rational

approximation theory [1].
With fj = �(tj) we define the noisefree

F (t) =

1X

j=0

fjt
j. (7)

Since

fj =

nX

i=1

↵i exp(j�i�) =

nX

i=1

↵i�
j
i ,

we can rewrite

F (t) =

nX

i=1

↵i

1� t�i
. (8)

So we see that F (t) is a rational function of degree n� 1 in the numerator and n in the denom-
inator, with poles 1/�i. From Padé approximation theory we know that the Padé approximant
rn�1,n(t) to F (t) of degree n� 1 in the numerator and n in the denominator, reconstructs F (t),
in other words

rn�1,n(t) = F (t).
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The partial fraction decomposition (8) is related to the Laplace transform of the exponential
model (1), which explains why this approach is known as the Padé-Laplace method. When the
signal �(t) is noisy, then the samples equal fj + ✏j instead of fj where ✏j denotes a noise term.
Let us denote the noisy series by

F (t) + ✏(t) =

1X

j=0

(fj + ✏j)t
j.

It is clear that the Padé approximant rn�1,n(t) does not reconstruct F (t)+✏(t) now as the latter is
not a rational function anymore. For a novel way to make use of the Padé-Laplace reformulation
in this situation, we refer the reader to [2].

3 A SHORT-TIME PRONY METHOD

When the model (1) changes dynamically across the time window used to collect the samples
fj , due to the fact that exponential components are switched on or off during the sampling,
then the standard Prony method or its Padé-Laplace reformulation cannot be applied. In this
section we adapt the model to allow for the components to start and/or end during the time of
observation, to

 (t) =

nX

i=1

↵i exp(�i(t)) (u(t� si)� u(t� ei)) , (9)

where si and ei are the start and end times of the i-th signal component and u(t) is the unit step
function. For ease of notation we still denote fj for the time sample at time tj = j�. From the
context it will always be clear whether fj comes from �(t) as in (1) or  (t) as in (9). We also
retain the notation �i = exp(�i�), i = 1, . . . , n.

We now combine the sampling of (9) with a window function w(j � r) that is only nonzero
in the time interval [r�, (r + 2⌫ � 1)�] with ⌫ � n(r) where n(r) denotes the number of
exponential components switched on somewhere in the course of the time interval [r�, (r +

2⌫ � 1)�]. Obviously n(r)  n. In our experiments we used the rectangular window function

w(j � r) =

(
1, r  j  r + 2⌫ � 1,

0, elsewhere.

The Hankel matrix H
(r)
⌫ as defined in (2), makes use of the samples fr, . . . , fr+2⌫�1 of (9). We

consider its (numerical) rank stable when it does not alter while increasing r to r + ⇢ with
⇢ > 0. Note that during the inspection of the (numerical) rank of the matrices H(r)

⌫ , . . . , H
(r+⇢)
⌫ ,

the early samples shift out of the matrix while they are being replaced by new samples. When
we observe that the (numerical) rank of H(r)

⌫ does not change in the time window [r�, (r +

⇢ + 2⌫ � 1)�], then the standard Prony method can be applied to extract the characteristics of
the n(r) components active in that time window. When the (numerical) rank of H(r)

⌫ fluctuates
while increasing r, we know that components are being switched on or off, and the extraction of
their characteristics using Prony’s method should be postponed to a stable time window because
the signal is not following a model of type (1) in the observed window.

The width of the time window here is related to the number n(r) of components in (9) that
are switched on in the considered time interval. A smaller time window allows more easily to
find stable intervals, while a larger time window allows to work with more components. This
is very similar to a similar conclusion for the short-time Fourier transform, where a narrow
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window gives good time resolution but poor frequency resolution and a wide window gives
better frequency resolution but poor time resolution.

Then some words on the numerical computation of the �i and ↵i in practice, from noise
corrupted samples fj . When the largest time window of stability for the computation of ⌫
generalized eigenvalues in total (comprising the n(r) active ones representing the signal space
and ⌫ � n(r) additional ones modeling the noise space), is [r�, (r + ⇢ + 2⌫ � 1)�], then the
�i = exp(�i�) present in that time window are computed in the least squares sense rather than
from (5),

H
(r+1)
⌫+b⇢/2c,⌫vi = �iH

(r)
⌫+b⇢/2c,⌫vi, i = 1, . . . , ⌫, (10)

where the subscript of the Hankel structured matrix now indicates its dimension. Several popu-
lar exponential analysis implementations that can be used for this purpose are given in [9, 8, 4].

To adapt the Padé-Laplace formulation to work with a window function, we consider

F (t� r�) =

n(r)X

i=1

↵i

1� (t� r�)�i
, tr  t  tr+⇢+2n(r)�1.

Since this time interval delivers enough samples fj for the computation of the Padé approximant
rn(r)�1,n(r)(t� r�), namely at least 2n(r), the reformulation still holds.

4 SIMULATION RESULTS

We describe some experiments that illustrate the use of the short-time Prony method. The
considered synthesized electric signals are taken from [6]. Since these are a linear combination
of switched cosine functions, more precisely

 (t) =

n/2X

i=1

�i cos(2⇡!i(t) + �i) exp( i(t� si)) (u(t� si)� u(t� ei)) , (11)

each term is represented by 2 exponential terms with complex conjugate values �i. The char-
acteristics of the test signals are given in Table 1. Besides the start and end moments si and ei
of each component in seconds, we also list the sample numbers Si and Ei at which the switch
occurs. All signals are monitored for a total time span of 128 samples, numbered from 0 to
127. The sampling rate is given by 1/� (in Hz) where � is the time step. Each signal is then
corrupted by 32 dB white Gaussian noise, which for some test signals is quite a lot more than
in [6]. After extracting the frequencies !i and damping factor  i, the computed coefficient
�i exp(� isi) needs to be corrected using the si obtained from the singular value plots, in order
to have the correct amplitude �i.

In Figure 1 the four test signals are graphed over the entire observation window. We remark
that all signals are dead at t = 127�, in other words f127 = 0. For each noise corrupted signal
we graph in Figure 2 the dynamic evolution of the numerical rank of a particular Hankel matrix
by displaying how the ⌫ singular values of H(r)

⌫ change when r is ranging from 0 to 129 � 2⌫

(the value of r is on the x-axis). We display respectively the singular values of H(r)
4 for  1(t),

H
(r)
6 for 2(t), H

(r)
6 for 3(t) and H

(r)
8 for 4(t), and this for 0  r  129�2⌫. Let us discuss

these graphs before turning to the reconstruction of the signal parameters.
In  1(t) the Hankel matrices H

(0)
4 to H

(30)
4 indicate a numerical rank of zero. Then there

is a switch from no components at all to one component at sample 37 which enters the Hankel
matrix H

(31)
4 for which neither statement (3) nor statement (4) hold. Nothing can be deduced
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n �i �i !i  i si Si ei Ei 1/�
 1(t) 1 1.000 �⇡/2 480 -0.080 0.0308 37 0.1059 127 1200
 2(t) 3 1.000 �⇡/2 60 0.000 0.0000 0 0.0308 37 1200

1.000 3⇡/4 60 0.000 0.0308 37 0.0625 75
1.000 �⇡/2 60 0.000 0.0625 75 0.1059 127

 3(t) 3 1.000 0 50 0.000 0.0000 0 0.0200 30 1500
0.250 ⇡/2 100 -0.100 0.0200 30 0.0533 80
0.100 38⇡/100 300 0.030 0.0447 67 0.0847 127

 4(t) 4 1.000 0 60 0.000 0.0000 0 0.0333 40 1200
0.500 ⇡/2 60 0.000 0.0333 40 0.0917 110
0.050 �37⇡/100 180 0.000 0.0417 50 0.0833 100
0.200 �⇡/2 360 -0.100 0.0500 60 0.1059 127

Table 1: Signal parameters for the four test signals.
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Figure 1: The signals  1(t) (top left),  2(t) (top right), 3(t) (bottom left),  4(t) (bottom right).
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Figure 2: The dynamic singular value plots for  1(t) (top left),  2(t) (top right),  3(t) (bottom left),  4(t)
(bottom right).

from the singular value behaviour to H
(36)
4 . From H

(37)
4 on only one component is present and

this for the remainder of the interval. The numerical rank is stable and equal to 2. The single
component can be identified from the signal samples fr, 37  r  126.

In  2(t) three different components show up, but consecutively: the switches happen at the
time samples indexed 37, 75 and 127. So the numerical rank of the observed Hankel matrix
is unstable while samples from different signals move out and in because the conclusions (3)
and (4) do not hold during the short time span of the instability. To be more precise: sample 37
enters H(r)

6 for r+10 = 37, sample 75 enters H(r)
6 for r+10 = 75 and sample 127 enters H(r)

6

for r + 10 = 127. So the numerical rank instability is observed for 27  r < 37, 65  r < 75

and at r = 117. Except for these unstable rank windows, the numerical rank equals 2. Each of
the components can be identified separately: the first from H

(r)
⌫ with 0  r and r+2⌫�2  36,

the second one from H
(r)
⌫ with 37  r and r+2⌫�2  74, the third one from H

(r)
⌫ with 75  r

and r + 2⌫ � 2  126.
The results for  3(t) and  4(t) are more interesting. In  3(t) the exponential model (1)

is interrupted from H
(20)
6 to H

(29)
6 for a first time. But the first exponential component can be

computed from the samples 0 to 29. Likewise the second component can be computed from the
samples 30 to 66. In H

(57)
6 sample 67 sneaks in. From H

(67)
6 to H

(69)
6 components two and three

strictly follow (1) but this window involving the samples 67 to 79 is barely enough to allow
their identification. However, exponential component three can be computed from the samples
80 to 126.

In  4(t) a similar situation arises, but now there is a sufficiently large window of stability,
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n �i �i !i  i

 1(t) 1 1.006 -1.565 479.99 -0.250
 2(t) 3 1.013 -1.570 60.05 -0.784

1.013 2.339 60.05 -0.764
1.016 -1.597 60.05 -0.735

 3(t) 3 1.004 0.015 50.02 -0.377
0.257 1.563 100.04 -2.347
0.117 1.224 299.92 -6.417

 4(t) 4 1.006 0.009 60.03 -0.391
0.503 1.557 60.04 -0.319
0.058 -1.613 181.08 10.250
0.202 -1.567 360.00 -0.519

Table 2: Reconstructed signal parameters for the four test signals.

namely from H
(60)
8 to H

(85)
8 when r + 14 = 99, to allow for the identification of the last three

components while they strictly adhere to model (1). The numerical rank is stable and equal to 6
in that window. The remaining first component can be identified from the samples 0 to 39 since
H

(r)
8 indicates a stable numerical rank of 2 for 0  r  25.
All reconstructions of ↵i and �i have been made from the largest stable time windows, as

mentioned in (10) and can be found in Table 2. The displayed values are an average of recon-
structions over a 100 different noise realizations. We remark that the damping factors  i are
more noise sensitive than the other parameters.

5 CONCLUSION

We have introduced a short-time Prony method that allows to extract the characteristics from
a signal in which the exponential components are switched on and off, a situation that the
standard Prony method is unable to deal with. The new method was illustrated on a number
of power system signals taken from [6]. All parameters in the sinusoidal model (9) could be
extracted with high accuracy and the occurrence of the transient could be monitored from the
dynamics of the singular values of particular Hankel matrices.
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analysis of fluorescence intensity decay. Biophys J., 56(1):79–93, 1989.

[2] A. Cuyt, W.-s. Lee, G. Lo Bianco, and M.-n. Tsai. How to pick up faint components in
exponential analysis. Technical report, Universiteit Antwerpen, 2016.

[3] P. Henrici. Applied and computational complex analysis I. John Wiley & Sons, New York,
1974.

[4] Y. Hua and T.K. Sarkar. Matrix pencil method for estimating parameters of exponen-
tially damped/undamped sinusoids in noise. IEEE Trans. Acoust. Speech Signal Process.,
38:814–824, 1990.

4320



Annie Cuyt, Wen-shin Lee and Min-nan Tsai

[5] E. Kaltofen, W.-s. Lee, and A.A. Lobo. Early termination in Ben-Or/Tiwari sparse in-
terpolation and a hybrid of Zippel’s algorithm. In Proceedings of the 2000 International

Symposium on Symbolic and Algebraic Computation, 192–201, ACM Press, New York,
NY, USA, 2000.

[6] L. Lovisolo, E.A.B. da Silva, M.A.M. Rodrigues, and P.S.R. Diniz. Efficient coherent
adaptive representations of monitored electric signals in power systems using damped
sinusoids. IEEE Trans. Signal Proc., 53(10):3831–3846, 2005.

[7] R. de Prony. Essai expérimental et analytique sur les lois de la dilatabilité des fluides
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