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Lukas Hüppe, Mathias Teschke

Correspondence
shaefker@awi.de (N.S.H.),
bmeyer@awi.de (B.M.),
mteschke@awi.de (M.T.)

In Brief

H€afker et al. describe endogenous

rhythms in diel vertical migration in the

ecologically important copepod Calanus

finmarchicus. These behavioral rhythms

correspond with rhythms in metabolic

activity and clock gene expression.

Together, the results strongly suggest

that diel vertical migration is affected by

an endogenous circadian clock.

https://core.ac.uk/display/199407637?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:shaefker@awi.de
mailto:bmeyer@awi.de
mailto:mteschke@awi.de
http://dx.doi.org/10.1016/j.cub.2017.06.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2017.06.025&domain=pdf


Current Biology

Report
Circadian Clock Involvement
in Zooplankton Diel Vertical Migration
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SUMMARY

Biological clocks are a ubiquitous ancient and adap-
tive mechanism enabling organisms to anticipate
environmental cycles and to regulate behavioral and
physiological processes accordingly [1]. Although
terrestrial circadian clocks are well understood,
knowledge of clocks in marine organisms is still
very limited [2–5]. This is particularly true for abun-
dant species displaying large-scale rhythms like diel
vertical migration (DVM) that contribute significantly
to shaping their respective ecosystems [6]. Here
we describe exogenous cycles and endogenous
rhythms associated with DVM of the ecologically
important andhighly abundant planktic copepodCal-
anus finmarchicus. In the laboratory, C. finmarchicus
shows circadian rhythms of DVM, metabolism, and
most core circadian clock genes (clock, period1,
period2, timeless, cryptochrome2, and clockwork
orange). Most of these genes also cycle in animals
assessed in thewild, though expression is less rhyth-
mic at depth (50–140 m) relative to shallow-caught
animals (0–50 m). Further, peak expressions of clock
genes generally occurred at either sunset or sunrise,
coinciding with peak migration times. Including one
of the first field investigations of clock genes in a ma-
rine species [5, 7], this studycouples clock genemea-
surements with laboratory and field data on DVM.
While the mechanistic connection remains elusive,
our results imply a high degree of causality between
clock gene expression and one of the planet’s largest
daily migrations of biomass. We thus suggest that
circadian clocks increase zooplankton fitness by
optimizing the temporal trade-off between feeding
and predator avoidance, especially when environ-
mental drivers are weak or absent [8].

RESULTS AND DISCUSSION

Diel vertical migration (DVM) in one of the most abundant and

ecologically important marine copepods, Calanus finmarchicus,
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is paralleled by endogenous circadian rhythmicity at behavioral,

physiological, and molecular levels. In the laboratory, copepods

collected from an actively migrating field population showed

endogenous rhythms of swimming, respiration, and core circa-

dian clock gene oscillations under constant darkness. In the

field, most clock gene oscillations mimicked laboratory findings,

with some genes becoming less rhythmic in animals collected

from depth. Peaks of gene expression follow sunset/sunrise,

the periods of greatest vertical migrations over the solar day.

Our data indicate that circadian timekeeping is an important

component of DVM and particularly adaptive at maintaining

migratory rhythmicity in habitats where the principle exogenous

driver of DVM, light, is limited.

DVM of marine zooplankton is one of the most profound coor-

dinated movements of organisms on the planet. It contributes

fundamentally to ecological interactions in both marine and

freshwater habitats [9] and to global biogeochemical cycles

[10]. DVM also structures predator-prey interactions, since

increased predation risk from visually hunting predators drives

zooplankton to depths during the day, while at night they return

to the surface to feed [8]. Current mechanistic knowledge of

DVM suggests that diel light changes are themain environmental

cue of migration behavior [11]. However, paradoxically, DVM

still occurs in deepwater habitats and at high latitudes during

the winter where light is limited, suggesting alternative control

mechanisms [12–15].

In terrestrial organisms, endogenous temporal synchroniza-

tion is achieved by a circadian clock cellular machinery involving

an intricate network of gene/protein feedback loops that create a

cycle of �24-hr length [16]. The clock is primarily entrained by

light to ensure synchronization with the environment, and it is a

potent tool of rhythm regulation controlling diel activity patterns

[17]. However, studies addressing the role of molecular clock

mechanisms in marine organisms are scarce [2–4, 6], primarily

due to the non-model nature of most marine species and a

lack of genetic resources. Furthermore, marine organisms are

often difficult to maintain in the laboratory, and sampling them

in the field is often expensive and labor intensive. However, un-

derstandingmarine clock mechanisms, especially in key ecolog-

ical species, is crucial to predicting how the rhythmic life of

these organisms may be affected by changes in environmental

conditions [18].

Copepods occupy a central position in marine pelagic food

webs, providing an important energy source for their predators
ors. Published by Elsevier Ltd.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Backscatter Profile at Bonawe Deep, Loch Etive, in May 2015

DVM rhythms had periods (t) of 23.9 and 24.0 hr at 25 and 90 m, respectively (TSA Cosinor analysis, May 4–11). Color bars indicate local sunrise/sunset; 28-hr

field sampling is indicated by white box. The sharp backscatter change at �38 m is a measuring artifact caused by the two acoustic profilers. Sampling site and

water column characteristics are detailed in Figures S1 and S2, respectively.
[19]. C. finmarchicus accumulates large lipid reserves [20] and

is the main link between phytoplankton and higher trophic

levels in the North Atlantic, thereby sustaining one of the world’s

most productive fisheries [21]. It is well recognized that

C. finmarchicus undergoes DVM [22], and recently published

transcriptomic resources [23, 24] make it an ideal model to

examine the molecular clock machinery.

Vertical Migration in the Field
To determine DVM of copepods in their natural environment, an

acoustic mooring was deployed in Loch Etive in the Bonawe

deep (�145 m), UK (56�450N, 5�180W; Figure S1). Acoustic

Doppler current profilers (ADCPs) generated backscatter

profiles as sound-scattering layers representing the vertical dis-

tribution of zooplankton biomass. The ADCP-generated data

indicated clear DVM behavior of zooplankton, with near 24-hr

periodicity during the field campaign (May 2015) (Figure 1). The

main scattering layer was located in the upper 40-m depth

at night, whereas during daytime this was typically between

40- and 80-m depth. The timing of the upward and downward

migrations coincided closely with the time of local sunset (8:12

p.m.) and sunrise (4:24 a.m.).

C. finmarchicus is the dominant zooplankton species in Loch

Etive [25]. As such, the recorded DVM signals were assumed

to primarily reflect the vertical migration of C. finmarchicus.

This assumption was supported by net catches (data not shown)

that established a high abundance of these animals in the water

column during ADCP recordings.

Phenotypic Rhythmicity
DVM behavior and respiration were determined in

C. finmarchicus collected from Loch Etive to investigate if the cy-

clic migrations observed in the field also persist under entrained

and constant laboratory conditions. The animals were exposed

to a simulated light-dark (LD) photoperiod (LD 16:8 hr) mimicking

field conditions, followed by constant darkness (DD). The cope-
pods exhibited 24-hr cycling in DVM under LD and near 24-hr

rhythms under DD conditions, with clear downward movement

in the subjective morning (Figure 2A; Table S1). These data

clearly suggest an endogenous circadian regulation of DVM

behavior. The rapid evening ascent and morning descent under

LD, with light triggering a direct negative phototactic response,

contrasted with themore gradual depth change and lower ampli-

tude rhythm under DD, which dampened over time. Endogenous

DVM rhythms have previously been described for zooplankton

species, and several of these studies also reported lower ampli-

tude DVM rhythms under DD [26, 27]. While some of these

studies found more robust endogenous rhythms of zooplankton

DVM than detailed here, direct comparisons are not appropriate,

as DVMs differ between species and life stages [22]. Neverthe-

less, the persistence of DVM in copepods under constant dark-

ness strongly suggests circadian clock involvement.

Swimming during vertical migration requires energy and is,

therefore, accompanied by increased metabolic activity [28].

Respiration experiments revealed that oxygen consumption un-

der LD increased in C. finmarchicus during the late afternoon/

early night, a pattern repeated over the subsequent 2 days under

DD (Figure 2B; Table S1). While the peak respiration in the sec-

ond night between the 2 DD days was phase delayed by �8 hr

toward the late night, peak respiration was once again in phase

by the last night of the experiment, suggesting that the endoge-

nous rhythm was still running on time. The delay initially

observed under DD could be related to the transition from LD

to constant darkness, constituting aftereffects suggested to

reflect an adaption of the endogenous rhythm to unnatural

changes in light regime [29].

The evening increase in respiration matches the time when the

copepods undertake the energy demanding migration toward

the surface [28], whereas the decrease in respiration toward sun-

rise may reflect passive copepod sinking or reduced energy

costs for downward migration facilitated through negative buoy-

ancy [30]. Of relevance here is that respiration increases before
Current Biology 27, 2194–2201, July 24, 2017 2195



Figure 2. DVM and Respiration Rhythms in the Laboratory

(A) DVM. Depth ofC. finmarchicus copepodid 5 (CV) stages in 90-cm DVM columns is shown. Data are derived from video recordings. Mean values (n = 4) ± SEM

are shown.

(B) Respiration. Mean values (n = 6) for each time point are shown. Due to the high sampling rate (5min), error bars were removed for the sake of clarity. Color bars

indicate (subjective) day and night. For both phenotypes, the first day with natural light/dark cycle (LD, photoperiod = 16 hr) and the two following days in constant

darkness (DD) were analyzed separately, as indicated by the dashed gray line. Asterisks (*) indicate significant 24-hr rhythmicity. Sinusoidal curves (red) were

fitted to illustrate the partially damped but still highly significant rhythms. For exact p values, see Table S1.
the time of upward migration, indicating an endogenously regu-

lated anticipatory process. Rudjakov [12] hypothesized that

DVMmay actually be a result of an endogenous rhythm of meta-

bolic activity that initiates upward migration around sunset, fol-

lowed by passive sinking around sunrise. Overall, these data

reveal that C. finmarchicus possesses an endogenous rhythm

of metabolic activity that matches DVM swimming behavior

and is in line with previous findings [31].

Clock Gene Expression
To investigate the expression of clock genes under controlled

conditions, copepods were collected in Loch Etive, and, as for

DVM and respiration experiments, they were transferred to the

laboratory where they were exposed to LD and DD conditions.

Only core clock genes that interact via gene/protein feedback

loops to create endogenous circadian rhythms were investi-

gated [16]. The results indicated strong 24-hr rhythmicity in

the following six of eight core clock genes: clock (clk), period1
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(per1), period2 (per2), timeless (tim), cryptochrome2 (cry2), and

clockwork orange (cwo). The two remaining core genes cycle

(cyc) and vrille (vri) showed weak rhythmicity (Figures 3A–3H;

Table S2). Times of peak gene expression were closely associ-

ated with the time of sunset or sunrise, and they generally

matched expression patterns of terrestrial model species

[32, 33]. Rhythmic gene expression persisted under DD, confirm-

ing the endogenous nature of the clock in C. finmarchicus.

The presence and rhythmic expression of a mammalian type

cry2 gene, which peaks in the evening, indicates a clock mech-

anism similar to the ancestral clock model known from the

monarch butterfly Danaus plexippus, where cry2 acts as a tran-

scriptional repressor [33]. Laboratory studies in this insect found

rhythmic cry2 expression to peak in the early day, as with the

Antarctic krill Euphausia superba, the water flea Daphnia pulex,

and the marine annelid Platynereis dumerilii [3, 6, 33, 34].

In contrast, C. finmarchicus cry2 expression in the laboratory

peaked at sunset (Figure 3F).



Figure 3. Diel Expression Patterns of Core Clock

Genes in the Laboratory and in the Field

Expression patterns were recorded in C. finmarchicus CV

stages and the investigated genes were as follows: clock (clk),

cycle (cyc), period1 (per1), period2 (per2), timeless (tim),

cryptochrome2 (cry2), clockwork orange (cwo), and vrille (vri).

Color bars indicate (subjective) day and night.

(A–H) In the laboratory experiments, rhythm analysis of the

clock genes clock (clk, A), cycle (cyc, B), period1 (per1, C),

period2 (per2, D), timeless (tim, E), cyrptochrome2 (cry2, F),

clockwork orange (cwo, G), and vrille (vri, H) was done sepa-

rately for LD (photoperiod = 16 hr) and DD intervals, as

described in Figure 2. Per time point, n = 10 replicates were

pooled from two identical experimental runs.

(I–P) In the field, samples from 5–50 m (shallow) and 50–140 m

(deep) were investigated for the same clock genes (photope-

riod = 16 hr). n = 5 replicates per time point.

Both laboratory and field data were analyzed for rhythmic

expression using the R-package RAIN. Asterisks (*) indicate

significant 24-hr rhythmicity. Mean values ± SEM are shown.

Color bars indicate (subjective) day and night. For exact

p values, see Table S2.
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In addition to the core clock genes, expression was also

measured in a suite of genes associated with the modifica-

tion and localization of core clock proteins (doubletime2,

widerborst1, twins, casein kinase II a, and shaggy) or light

entrainment (cryptochrome1) [35]. In accordance with previous

findings, none of these clock-associated genes showed consis-

tent circadian expression (Table S2) [35].

To investigate the functioning of a circadian clock in the field,

we conducted a 28-hr sampling campaign at Bonawe deep.

Clock gene expression of C. finmarchicus was measured in

two depth layers (5–50 m and 50–140 m). Generally, the expres-

sion patterns of the clock genes resembled those recorded in the

laboratory (Figures 3I–3O). However, gene rhythms were less

overt in the field and the number of rhythmic genes was reduced,

especially in copepods from the deeper layer (Table S2). Tem-

perature changes and food availability can entrain clock activity

[36, 37], and it is possible that the vertical migration through

layers of different temperature and phytoplankton concentration

(Figure S2) may have affected clock gene expression and re-

sulted inmore labile rhythmswhen compared with laboratory ex-

periments. Further, the overall reduced rhythmicity at 50–140 m

could reflect the physiological state of the copepods. At the time

of the sampling, animals in the deep layer may already have

started transitioning to seasonal diapause, a phase of inactivity

in deep waters characterized by metabolic downregulation and

without any known diel activity cycle [25, 38]. Data collected later

in the year (not shown) suggest that cyclic clock gene expression

ceases during diapause. It is also noteworthy that themore labile

gene rhythms at 50- to 140-mdepthweremirrored by theweaker

DVM signal acoustically recorded in this layer in Loch Etive (Fig-

ure 1), further suggesting a coupling between clock and DVM.

Nevertheless, the existence of clock gene cycles in animals

in the deeper layer shows that circadian clocks can operate un-

der very low light intensities, providing an explanation for the ob-

servations of diel migrations in meso-/bathypelagic habitats [13]

and at high latitudes during winter months [14, 15].

In summary, circadian clock gene expression in

C. finmarchicus demonstrates pronounced rhythms that are

well suited for evoking the observed rhythms in DVM and respi-

ration. Expression patterns mostly persist in the field, strongly

suggesting that the copepod possesses an endogenous clock

that is also functioning under natural conditions.

Ecological Implications
The adaptive significance of a circadian clock underpinning DVM

in C. finmarchicus and other vertically migrating organisms is

clear. Primarily the clock would provide a mechanism for the co-

pepods to anticipate the day/night cycle, thereby temporally ad-

justing behavioral functions, physiology, and gene expression

accordingly. However, circadian clocks have also been impli-

cated in the sensitivity to predator cues and avoidance behavior

[39]. Copepods and many other planktic organisms are prey to

visual predators during the day [40]. The circadian clock would

provide a mechanism for anticipating sunrise to return to deep,

dark waters before sufficient light enables visual predation. For

example, the sea urchin Centrostephanus coronatus shows an

endogenous cycle in nocturnal foraging, which is closely tuned

to the resting times of its predator, a diurnally active fish [41],

increasing the urchin’s chance of survival and also maximizing
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the time it can spend foraging. Circadian clock involvement in

vertical swimming may also explain midnight sinking behavior,

which is characterized by a descent to intermediate depth in

the middle of the night followed by a second upward migration

closely before sunrise [12, 27]. This behavior has been sug-

gested to be an avoidance response to larger vertically migrating

predators, which ascend later and descend earlier [42]. While

predation risk can usually not be sensed until the predator is pre-

sent, circadian clocks are highly suitable for controlling crepus-

cular activity patterns [12], and they could thus explain the

two upward migrations at sunset and sunrise characteristic of

midnight sinking.

Circadian clocks would also be adaptive for maintaining DVM

rhythms in photoperiodically extreme environments, such as

high latitudes during the polar night and the meso-/bathypelagic

zone. In both these habitats, light as an entrainment cue is only

temporarily available and/or extremely weak, and food levels

are relatively constant over the course of the day [43, 44]. Indeed,

DVM occurrence in polar night habitats and the synchronized

evening ascent of animals from the aphotic depths beyond

1,000 m support the hypothesis that DVM is underpinned by a

circadian clock [13–15]. Interestingly, a recent study found that

vertical migration shifted from diel (24-hr) to lunar day (24.8-hr)

cycles under the influence of the full moon during the darkest

part of the Arctic polar night [15]. This may indicate that, during

the polar night, strong lunar light can either override endogenous

rhythmicity or can act as an entrainment cue, lengthening the

period of a circadian clock underlying the vertical migration

pattern.

Furthermore, C. finmarchicus digestive enzymes are prob-

ably produced before feeding to speed up digestion, thereby

increasing the overall amount of food that can be consumed

and digested while being at the surface for a limited time [31].

A similar preparatorymechanism could be involved in the endog-

enous and light-entrained feeding rhythms in the copepod

Acartia tonsa [45], as too the clock-controlled anticipatory

enzyme production in the shrimp Palaemon squilla [46].

Circadian clocks have the capacity to regulate seasonal rhyth-

micity by measuring photoperiod [47]. This can be achieved by

a light-sensitive phase at the transition between day and night,

which is associated with clock gene peak activity (external coin-

cidence model [48]). The presence or absence of light during

this critical phase of the day/night cycle provides information

about the photoperiod and, hence, season. Alternatively, peaks

in clock gene activity might shift over the season following either

sunset or sunrise, and the phase difference between these peaks

would provide another measure of photoperiodic time measure-

ment (internal coincidence model [29]). The seasonal life cycle

of many insects is affected by photoperiod [47], as too are

various aspects of copepod biology, including diapause, repro-

duction, activity, and feeding [49]. As with many of its congeners,

C. finmarchicus undergoes seasonal diapause fueled by its large

lipid reserves [20], where lipid content, food availability, and

temperature are considered important regulators of this resting

phase [50]. However, a clear understanding of the mechanisms

initiating and terminating Calanus diapause is still missing, lead-

ing to the tantalizing suggestion that this critical life history tran-

sition may be underpinned by a circadian clock as an integral

part in the timing of C. finmarchicus’ annual cycle.



Conclusions
Our results provide a detailed description of clock gene

expression in an ecologically important marine species com-

bined with measurements of DVM and metabolic activity.

C. finmarchicus shows robust clock gene cycling in the

wild and endogenous 24-hr oscillations in the laboratory. The

persistence of circadian rhythms in DVM and respiration under

constant conditions suggests circadian clock involvement in

the regulation of these processes. So far, the mechanistic link

between clock rhythmicity and phenology remains elusive,

where functional analyses of the clock machinery and its output

pathways are now required. DVM has previously been shown

to occur in the high Arctic during the polar night, in the aphotic

depths beyond 1,000 m, and spontaneously as midnight

sinking, all of which contradict the assumption of DVM being

driven by purely exogenous cues. Given the ecological benefits

offered by endogenous timekeeping, it seems likely that circa-

dian clocks are extant in the regulation of vertical migration

patterns. Furthermore, investigations of clock systems and

DVM in marine phytoplankton and cyanobacteria [5, 51] have

led to the suggestion that circadian DVM could exist even in

these primordial organisms [52]. Our study provides a basis

for better understanding the mechanisms of DVM and also

for exploring the adaptive advantages of ancestral clock sys-

tems, which are hypothesized to have originated in the aquatic

environment [53].
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

RNAlater� Ambion Cat#AM7021

RNeasy� Mini kit QIAGEN Cat#74104

TURBO DNA-freeTM Kit Ambion Cat#AM1907

RevertAid H Minus Reverse Transcriptase Invitrogen Cat#EP0452

Taqman� low-density array card (custom designed) Applied Biosystems N/A

Deposited Data

Raw and analyzed data this paper https://doi.pangaea.de/10.1594/PANGAEA.875739

Oligonucleotides

Taqman� primers/probes this paper N/A

Software and Algorithms

TSA Cosinor 6.3 package Expert Soft Tech N/A

R package ‘‘RAIN’’ [54] http://journals.sagepub.com/doi/10.1177/0748730414553029
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents, including the video material of the DVM experiment, the sequences of

custom Taqman� probes/primers, and the RAIN rhythm analysis script, should be directed to and will be fulfilled by the lead author,

Sören H€afker (shaefker@awi.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal work was conducted in accordance with local legislation. All investigations were performed on CV life stages of the

copepod Calanus finmarchicus (Gunnerus, 1770). Copepods were collected at the sampling site Bonawe deep in Loch Etive, Scot-

land (Figure S1) and laboratory experiments were performed at the Scottish Association for Marine Science (SAMS) at in situ tem-

perature (10�C). During the transfer to the laboratory (max. 1.5 hr) the copepods were kept dark and at in situ temperature. For

the laboratory experiments filtered and UV-treated seawater was used that was pumped in from below a beach next to the institute.

The water was adjusted to a salinity of 27.5 by adding Milli-Q water to match the conditions at the sampling site in �50 m depth.

Laboratory copepods were exposed to an in situ photoperiod of 16 hr with a gradual change in light intensity and spectral

compositions to simulate the natural conditions at Bonawe deep in a depth of�50 m. From 4:00 (sunrise) on light intensity increased

to�5.5 Lux at noonmeasured right above thewater surface. During this time color temperature shifted from initial 15460 K to 13780 K

at noon. The decrease in the afternoon mirrored the morning increase resulting in complete darkness at 20:00 (sunset). To create

these light conditions, a programmable LED-system was used (Mitras Lightbar oceanic blue / ProfiLux 3.1T control unit, both

GHL Advanced Technology GmbH, Germany).

METHOD DETAILS

Study site characteristics
Loch Etive is a sea loch at thewestern coast of Scotland, UK (56�450N, 5�180W). It is connected to the open ocean by a sill with a width

of 200 m and �7 m water depth and has another sill with �13 m depth further up the loch [55]. Beyond the second sill there is the

upper main basin with the deepest point of the loch (Bonawe deep, �145 m) where all samplings were done (Figure S1). The

sills limit the water exchange leading hypoxic conditions in the deeper layers of the upper basin. Turnover events occur during

the strongest spring tides in spring/autumn, but are irregular and only happen every few years [55].

During the sampling of the 28 hr field time series at Bonawe deep (6th/7th May 2015) the water column parameters salinity, tem-

perature, oxygen concentration and Chlorophyll a (Chl a) fluorescence were recorded by a conductivity-temperature-depth (CTD)

profiler (SBE 19plus V2 SeaCAT Profiler, Sea-Bird Electronics, USA). The water column was characterized by an approx. 5 m thick

surface layer with a low salinity % 20 psu (Figure S2). From 5 m on salinity gradually increased to 27 at �50 m and showed only a

minor increase below this depth. Temperature from the surface to 26 m depth ranged between 8.3�C and 8.9�C. Below 26 m tem-

perature sharply rose to a maximum of 12.2�C at 50 m depth before gradually decreasing to 10.4�C at 90 m and below (Figure S2).
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The deeper layers of Bonawe deep were hypoxic during the sampling. From the surface to 26 m depth oxygen concentrations

wasR 8.5 mg O2*L
-1 before sharply decreasing to 3.6 mg O2*L

-1 at 40-43m depth (Figure S2). Oxygen concentration then continued

to gradually decreased to values % 1.6 mg O2*L
-1 in �80 m depth and below. Chl a fluorescence was high in the upper 10 m

(4-16 mg*m-3), showed a second, much smaller maximum at �25 m and then quickly diminished with depth (Figure S2). The condi-

tions were similar in spring 2016 when animals for laboratory experiments on DVM and respiration were collected (data not shown).

Vertical migration in the field
A mooring was deployed close to Bonawe deep (depth: �135 m) in March 2015 (Figure S1). The mooring was equipped with two

acoustic Doppler current profilers (ADCPs) pointing upward at 120 m and 45 m depth. The RDI 300 kHz ADCPs have been employed

successfully in making biological observation of zooplankton migrations [14, 15]. ADCP data were checked for quality using the RDI

correlation index (a measure of signal to noise ratio) and absolute volume backscatter (Sv, measured in decibels, dB) was derived

from echo intensity following the method described in Deines [56] with derived acoustic mean volume backscattering strength

(MVBS). Acoustic data were analyzed via population mean TSA Cosinor analysis for backscatter rhythmicity in 25 m an 90 m depth

(time series analysis [TSA] Cosinor 6.3 package). For the period 4th to 11th May 2015 significant backscatter rhythmicity could be

detected in both, the shallow (45 m, t = 23.9 hr, % model fit = 49.6) and the deep layer (125 m, t = 24.0 hr, % model fit = 33.3). Tests

on tidal (�12 hr) and lunar (24.8 hr) rhythms did not produce any significant rhythmicity.

Field time series
Samples were collected at Bonawe deep on the 6th/7th May 2015 starting at 11:00 and continuing in 4 hr intervals until 15:00 of the

next day, resulting in a total of eight time points over a period of 28 hr. At each time point a WP2-net (200 mmmesh size, Hydro-Bios

GmbH, Germany) was towed vertically through the water column to collect animals from 5-50 m depth and 50-140 m depth, respec-

tively. Generally, the upper 5 m of the water column were excluded to avoid hypoosmotic stress for the copepods. Upon retrieval of

the net, the sample was immediately (within 1 min) transferred into RNAlater� stabilizing solution (Ambion, UK) for later gene expres-

sion analysis (see below). A possible sample contamination by the congener species C. helgolandicus is unlikely due to its limited

tolerance to low salinities and the brackish conditions in the loch [25].

DVM experiment
To investigate the diel vertical migration (DVM) behavior, copepods were incubated in four so-called DVM-columns made out of

acrylic glass (10*8*90 cm lxwxh, 7.2 L). Animals were collected on the 3rd June 2016, sorted, and per column 50 C. finmarchicus

CV stages were incubated for a total of three days (LD-DD-DD, photoperiod = 16 hr). The columns were vertically divided into six

15 cm increments and each layer was filmed with a surveillance cameras equipped with filters excluding visible light (SK-

B140XP/SO, Sunkwang Electronics, South Korea). Infrared lights were used to illuminate the columns without disturbing the animals.

Copepod abundance per layer was then counted by three different persons from the recorded video material at 1 hr intervals. For

every column, there was a certain fraction of copepods which was inactive and never left the bottom layer of the column. These an-

imals were excluded from statistical analysis by determining the lowest number of copepods in the bottom layer over the course of

the experiment for each column, respectively. This number was then defined as zero for the respective column.

Copepods were not fed during the DVM experiments to avoid particle accumulation at the bottom, which could have affected ver-

tical distribution. At the end of the experiment a vertical oxygen profile was recorded using an oxygen tipping probe (PreSens GmbH,

Germany). There was a weak (< 6%), gradual decrease in oxygen from 9.27 mgO2*L
-1 near the surface to 8.75 mgO2*L

-1 close to the

bottom.

Respiration experiment
Copepods collected on the 23rd June 2016 and sorted for C. finmarchicus CV stages were distributed to six glass bottles (305 mL)

with filtered (0.2 mm) and UV-treated seawater which had been air-equilibrated for >1 hr (10 animals per bottles). Two additional

bottles without animals served as controls. Bottles were closed tightly without any air bubbles inside and incubated for three

days (LD-DD-DD, photoperiod = 16 hr). Oxygen content was measured using oxygen-sensitive sensor spots and monitoring equip-

ment (OXY-4, PreSens GmbH, Germany). A moving average over 12 hr was calculated to remove the trend of gradually decreasing

oxygen within the bottles and to reveal underlying rhythmic oscillations. A simple inverse correlation between oxygen content and

animal oxygen consumption was assumed. As the moving average is based on comparing O2-levels between time points, the result-

ing relative change in oxygen consumption is dimensionless. Data were binned to 1 hr intervals for rhythm analysis (see below).

Gene expression experiment
Copepods were collected on the 22ndMay 2015 in 10-60mdepth. In the laboratory the animals were evenly distributed to 19 buckets

filled with 20 L seawater. At midnight the sampling started by pouring the animals from the first, randomly chosen bucket through a

sieve and fixing them in RNAlater�. Every 4 hr another bucket was sampled accordingly resulting in a total of 19 time points over a

period of three days (72 hr). On the first experimental day (0-24 hr) the animals were exposed to a natural light/dark regime (LD, see

above) while theywere kept in constant darkness (DD) on the second and third day (24-72 hr). Copepodswere fedwith phytoplankton

(Shellfish Diet 1800, ReedMariculture, USA) in 4 hr intervals. A constant food concentration of�200 mgC*L-1 wasmaintained to avoid
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starvation effects while not introducing a new Zeitgeber. The experiment was repeated in the same way (LD-DD-DD) with copepods

collected on the 29th May 2015 and the data of both runs was pooled.

Gene expression analysis
Gene sequences were taken from an Illumina transcriptome of C. finmarchicus [23]. Core clock and associated genes had been

previously annotated by Christie et al. [57]. Housekeeping genes were newly annotated from the respective transcriptome. All

gene annotations were verified via blastn against NCBI database (see Table S2 for accession numbers). They were then investigated

for common protein domains via blastx and were checked for palindromic sequences and repeats via Oligoanalyzer 3.1 (http://eu.

idtdna.com/calc/analyzer) and RepeatMasker 3.0 (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker). Binding regions for

probes and primers were placed in sequence intersects that were specific for the respective genes (checked via blastn).

To measured gene expression, copepods were sorted in cooled RNAlater� (4�C) using dissecting microscopes. C. finmarchicus

CV stages were pooled in groups of 15 copepods and RNAwas extracted using the RNeasy�Mini kit (Quiagen, Netherlands). b-mer-

captoethanol was added to the lysis buffer (0.14 M) as recommended for lipid-rich samples. DNA residues were removed with the

TURBO DNA-free kit (Life Technologies, USA) and RNA was checked for concentration and purity (Nanodrop 2000 Spectrophotom-

eter, Thermo Fisher Scientific, USA) as well as possible degradation (2100 Bioanalyzer / RNA 6000 Nano Kit, Agilent Technologies,

USA). RNAwas then converted to cDNA using RevertAid HMinus Reverse Transcriptase (Invitrogen GmbH, Germany). Gene expres-

sion was analyzed by real-time quantitative PCR (ViiATM 7, Applied Biosystems, USA) using custom-designed Taqman� low-density

array-cards (Applied Biosystems, USA). The list of investigated genes included eight core clock genes, five clock-associated genes,

one gene involved in clock entrainment via light, and 3 housekeeping genes (see Table S2). Gene expression levels were normalized

against the geometric mean of the housekeeping genes elongation factor 1 a, RNA polymerase and actin using the 2�DDCT-method

developed by Livak and Schmittgen [58]. Housekeeping genes were chosen based on expression stability over the 24 hr cycle,

expression level relative to other investigated genes and the findings of previous studies [59]. For both experimental runs, five rep-

licates were analyzed per time point. As there were no visible differences between the first and the second run, the datasets were

pooled and treated as one resulting in n = 10 replicates per time point. For the 28 hr field time series, n = 5 replicates were analyzed

per time point and depth. Shallow and deep samples were normalized against housekeeping genes together to ensure comparability

of expression levels between depths.

QUANTIFICATION AND STATISTICAL ANALYSIS

Datasets of DVM, respiration and gene expression were investigated for 24 hr rhythmicity in RStudio (version 0.99.442 [60],) using the

RAIN-package. RAIN was specifically designed to detect (circadian) rhythms in biological datasets independent of waveform by

using a non-parametric approach [54]. For the 28 hr field time series from May 2015, each depth (shallow/deep, n = 5, respectively)

was analyzed separately as one dataset. In the laboratory experiments (n = 10), the first 24 hr interval (LD) was analyzed separately

from the following 48 hr interval (DD). The time point at midnight between the two intervals (LD/DD) was used in both analyses. Due to

the limited computing capacity of RAIN and the large amount of data from the DVM (n = 4) and respiration experiments (n = 6), the

mean values were used to analyses rhythmicity for the 48 hr DD interval of these experiments. Thus, to increase the confidence in the

obtained results, each DD day in the DVM and respiration experiment was also analyzed individually using the respective replicates

(see Table S1).

For the analyses of DVM and respiration data, an a of 0.05was used (Table S1). For the gene expression analyses, a p value < 0.001

was considered significant to account for the testing of multiple genes (Table S2). Graphs were created with SigmaPlot (v. 12.5).

DATA AND SOFTWARE AVAILABILITY

The mRNA sequences of the investigated genes can be found via the accession numbers summarized in Table S2. For the video

material of the DVM experiment, the sequences of custom Taqman� probes/primers and the RAIN rhythm analysis script, please

contact the lead author (shaefker@awi.de). Data of the DVM experiment (abundance counts), the respiration experiment (moving

averages), and the gene expression data of the laboratory experiment and the field time series (raw CT-values) are accessible via

PANGAEA (https://doi.org/10.1594/PANGAEA.875739).
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