

# Abstract

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

In recent decades, aquaculture nutrition research has made major strides in identifying alternatives to the use of traditional marine-origin resources. Feed manufacturers worldwide have used this information to replace increasing amounts of fish meal and fish oil in aquafeeds. However, reliance on marine resources remains an ongoing constraint, and the progress yielded by continued monodimensional research into alternative raw materials is becoming increasingly marginal. Feed formulation is not an exercise in identifying "substitutes" or "alternatives", but a process of identifying different combinations of "complementary" raw materials—including fish meal and oil and others—that collectively meet established nutrient requirements and other criteria for the aquafeed in question. Nutrient-based formulation is the day-to-day reality of formulating industrially compounded aquafeeds, but this approach is less formally and explicitly addressed in aquaculture research and training programs. Here, we (re)introduce these topics and explore the reasons that marine-origin ingredients have long been considered the 'gold standards' of aquafeed formulation. We highlight a number of ways in which this approach is inaccurate and constrains innovation before delving into the need to assess raw materials based on their influence on aquafeed manufacturing techniques. We conclude with brief commentary regarding the future funding and research landscape. Incremental progress may continue through the accumulation of small insights, but a more holistic research strategy—aligned with industry needs and focused on nutrient composition and ingredient complementarity—is what will spur future advancement in the aquaculture nutrition domain.

39

40

41

# **Keywords:**

Aquafeed; Fish Nutrition; Fish oil; Fish meal; Research and Development;

42

#### Introduction

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

For many decades, fish nutritionists have endeavored to develop aquaculture feed (aquafeed) formulations that support or enhance growth of cultured fish while controlling costs. Much of this effort has been focused on reducing reliance on limited marine resources. Whereas cultivation of herbivorous and omnivorous species has readily transitioned to feeds containing little-to-no fish meal or oil, such formulations have been more difficult to implement in feeding of carnivorous fish and crustaceans. Despite the various challenges, these efforts have been successful in a broad sense. Fish meal and oil inclusion rates have dropped steadily over the past 20 years (Tacon et al., 2011; Tacon and Metian 2015), and feed prices—while increasing—are not as volatile or high as they would be if the old formulations were sold today. Numerous researchers working largely independently in academia, public agencies, and the private sector have collectively made great strides in addressing the many constraints associated with optimal feeding in aquaculture. Nutritionists, including the authors, celebrate this success. Yet we may wonder what might have be achieved in aquaculture—or what is still possible—with greater emphasis on cohesive, collaborative, long-term partnerships between the public and private sectors, akin to the National Poultry Improvement Plan and associated activities that revolutionized poultry production in the mid-20th century (Boyd 2001).

60

61

62

63

64

65

66

67

One might also consider whether there are ways to better leverage limited research and development (R&D) investments to yield the maximum amount of applicable information. Incremental progress can continue through the accumulation of small successes, but transformational change in fish nutrition and the aquaculture industry may require an intentional realignment in approach. Here we (re)introduce a number of fundamental principles in fish meal/oil sparing and their continuing relevance in terms of addressing contemporary issues in aquaculture nutrition. None of these principles are likely to be 'new' to anyone who has spent considerable time

working in our field—again, we consider them fundamental to the discipline. Perhaps we are sometimes too close to the subject to see it fully; perhaps these fundamentals are sometimes forgotten in the haste to secure funding or the churn of instruction and student mentoring. We also offer a brief commentary on the influence of feed manufacturing techniques, traditional funding mechanisms for aquaculture research, and emerging considerations that are reshaping the ways in which feeds and ingredients are evaluated. Questions of bioavailability, experimental design, statistical analysis, and reporting standards are, of course, intrinsic to any discussion of nutrition research. Rather than belabor those matters here, we refer readers to the well-articulated arguments of others (Shearer 2000; Barrows et al., 2008; Bureau 2011; Salze et al., 2011).

#### Nutrient-based aquafeed formulation

Modern compounded aquafeeds are a sophisticated, engineered mix of ingredients (raw materials) used for their nutritional and physical properties. These include commodity meals, oils, and concentrates intended to satisfy demand for macronutrients and premixes and specialty products included as sources of minerals, vitamins, pigments, binding agents, etc. The nutritionist's task is to identify a mixture of ingredients that satisfy the intended species' dietary requirements and tolerances and can be manufactured to the desired pellet specifications. As discussed below, fish meal and oil can greatly simplify formulation because they possess so many uniquely desirable properties. That said, fish meal and oil are not requisite ingredients in any aquafeed, and feed formulation is not an exercise in identifying "needed levels" of any specific ingredients, "substitutes", or "alternatives". Rather, formulation is the process of identifying different combinations of "complementary" raw materials—including fish meal and oil and others—that collectively meet established criteria for the aquafeed in question.

Several key datasets are needed to support nutrient-based formulation. Complete compositional profiles are essential, but the most informative raw material 'dossiers' also include digestibility, palatability, utilization, and functionality data in at least one representative cultured species. Ideally, these datasets are generated using more than a single raw material batch or source so that product variability is also captured. Such information takes time and resources to generate, but the ultimate value of a prospective raw material cannot be accurately judged without it.

As most experienced aquaculture nutritionists are well aware, nutrient-based formulation is the day-to-day reality of formulating industrially compounded aquafeeds. That said, the nutrient-based approach is less formally and explicitly addressed in aquaculture research and training programs. We encourage students and early-career aquaculture nutritionists to be particularly mindful of the nuanced difference between the search for fish meal/oil alternatives and the development of more broadly applicable informative datasets that facilitate incorporation of novel ingredients or optimize use of existing ingredients in aquafeeds. Similarly, we advise researchers working in the raw materials sector to recognize their products aren't solely judged in terms of their similarity to marine-derived ingredients, but also how they compare to and complement other raw materials.

# Fish meal and fish oil: the 'gold standards' in aquafeed formulation

Fish meal (hereafter abbreviated as FM; a dry, high-protein powder derived from the rendering of whole fish, frames, or offal) and fish oil (hereafter abbreviated as FO, an oil extracted during the rendering of fish meal, typically rich in long chain polyunsaturated fatty acids [LC-PUFAs] of the omega-3 [n-3] series) are principally derived directly or indirectly (e.g., from seafood processing wastes or discards) from capture fisheries. Both ingredients have long been used in various types of

animal feeds, but have proven uniquely valuable in aquafeed formulation (Gatlin et al., 2007; Hardy 2010; Tacon and Metian 2008; Turchini et al., 2009).

FM and FO were originally used because they were, at the time, inexpensive and palatable sources of protein and lipid. Today, they are used most often because they are the most economical means of formulating nutrient-dense feeds containing nutrients not usually found in abundance outside of the marine environment. FM contains a considerable amount of highly digestible, well-balanced protein matching the amino acid requirements of aquatic livestock, an oil fraction rich in phospholipids and LC-PUFAs, and a purported "unknown growth factor" (most likely a cocktail of naturally-occurring amines and steroids; Hardy, 2010). FM is also highly palatable to cultured species, contains no antinutritional factors if properly produced and stored, and has limited carbohydrate and fiber content (Gatlin et al., 2007; Glencross et al., 2007; Hardy 2010). FO is a triglyceride-rich oil with a unique fatty acid composition, typically comprising roughly equal amounts of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and LC-PUFAs, particularly those in the n-3 series (Tocher 2015; Turchini et al., 2009). Because of their distinctive composition and other attributes, few if any raw materials match the feeding value of FM and FO in aquafeeds.

Despite the utility of FM and FO in aquafeed formulation, the incorporation of wild-caught fish in aquafeeds has attracted considerable criticism from scientists and the public, consumers and markets (Naylor et al., 2000; Cao et al., 2013; Jones et al., 2015). These criticisms are largely based on the seemingly illogical use of one type of fish to produce another. The accusation that the aquaculture industry consumes more fish (in the form of FM and FO) than it produces is incorrect (Byelashov and Griffin 2014) and nutritionists had been addressing the issue of over-reliance on marine-origin raw materials well before publication of the article that triggered the contemporary debate (Kaushik and Troell 2010). Nonetheless, use of FM and FO in aquafeeds continues to be a source of concern to many, and growing demand for FM and FO as raw materials has been identified

as a possible contributor to over-exploitation of capture fisheries and a global fisheries crisis (Naylor et al., 2000, 2009).

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

140

141

In reality, past claims that increasing demand from the aquafeed sector would result in greater exploitation of reduction fisheries have not borne out: global production of FM and FO has remained fundamentally static at about 5.5 and 1 million tons per year, respectively, over the last 30 years (FAO 2015). Reduction fisheries are some of the most carefully and aggressively managed in the world and may actually support modest growth in the future despite continued growth of the aquaculture industry (FAO 2014). What's more, by 2022, half of the FM and FO that is used is expected to come from improved capture and processing of seafood waste, and not purpose-driven reduction fisheries (FAO 2014). Nonetheless, use of FM and FO in aquafeeds is considered a 'black mark' in terms of ecological sustainability assessments and certifications. Although experts quickly recognized early applications of the "fish in, fish out" concept (Tacon and Metian, 2008) as deceptive and fundamentally flawed (Jackson 2009; Kaushik and Troell 2010), the simplicity of 'FIFO' scoring is appealing to lay audiences and FIFO-based criticism of aquaculture remains pervasive in the blogosphere and op-ed journalism (Byelashov and Griffin 2014). In response, fish farmers and feed producers are increasingly using reduced FM and FO feed formulations for marketing and public relations purposes. The unfortunate consequence of this strategy is that it reinforces a misinformed public perception. The 'feeding fish to fish' quandary is further complicated by concern over the socioeconomic prudence of transforming low-cost, potentially edible fish into highly priced seafood products intended for premium food markets (Tacon and Metian 2013, 2015).

161

162

163

164

Though the environmental and socio-political aspects are important parts of the debate over FM and FO use in aquafeeds, the most significant factor influencing FM and FO usage patterns is the rising cost of these raw materials. Strong and growing demand for FM and FO, coupled with a relatively

static supply and consistent growth in intensive aquaculture, have resulted in variable, but generally increasing prices (FAO 2014). There is considerable economic incentive to reduce utilization and dependence on FM and FO, and the combination of these and other incentives related to notions of sustainability, marketing, and consumers' expectations is a powerful one. After examining various factors related to the role of seafood in maintaining global food security through to 2050, Bene et al. (2015) argued that fisheries and aquaculture will continue to contribute positively to global food security, but only if some conditions are met, including reductions in FM and FO dependency.

#### Moving beyond the gold standards

The attributes of FM and FO make them immensely valuable feed resources, but they are not required, per se, in any aquafeed. Moreover, recent research has revealed that FM and FO are not the 'be-all, end-all' of raw materials for the aquafeed sector. Prior to the discovery of the importance of taurine in nutrition of marine carnivorous finfish (reviewed by Salze and Davis 2015), replacing FM with plant proteins seemed hopeless. Once this key constraint was identified, FM sparing was no longer an impossibility for these species and, in some cases, growth on reduced FM feeds has surpassed that associated with traditional formulations. Similarly, some combinations of lipids may be even better than FO in terms of n-3 LC-PUFA bioavailability and efficiency in different finfish species. Dubbed the "omega-3 sparing effect", lipid sources rich in SFAs and/or MUFAs appear to improve utilization of n-3 LC-PUFAs and, in effect, reduce dietary requirements for these nutrients (Rombenso et al., 2015; Bowzer et al., 2016; Emery et al., 2016). Likewise, providing crustaceans with the correct balance of n-3 and n-6 C<sub>18</sub> PUFA, eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), reduces fatty acid requirements, improves utilization of n-3 LC-PUFA, and can yield growth beyond that normally achieved when FO is the primary or only dietary lipid source (Glencross et al., 2002a, 2002b).

Despite these promising findings, the steady decline in FM and FO inclusion rates (Tacon and Metian 2008), and more than 60 years of other landmark achievements in aquaculture nutrition and aquafeed manufacturing (see Halver 1957; Gatlin et al., 2007; Glencross et al., 2007; Turchini et al., 2009; Hardy, 2010; Tocher 2015; Jobling 2016), the reality is that feeds containing little or no marine inputs do not routinely yield the same growth performance as traditional feeds in carnivorous species. Of those high-performing FM/FO-free formulations, not all are considered economically viable as they rely on specialized raw materials or costly supplements to replace the nutrients found in marine-origin resources and ensure feed attractability/palatability. Given that most of the 'low hanging fruit' in FM/FO sparing has already been picked, how can nutritionists and feed manufacturers continue to drive down the use of marine-derived resources and still produce feeds that are economical and yield acceptable growth?

To answer this question, it is instructive to examine how we have gotten to where we are at present. Although some researchers have investigated simultaneous sparing of FM and FO, most have focused exclusively on FM replacement/alternative protein sources or FO replacement/alternative lipid sources. Even though the protein and lipid 'divisions' of aquaculture nutrition have, generally speaking, worked independently from each other (likely because of the different knowledge, skills, and analytical approaches involved in these two fields of study), both shared the same conceptual and experimental approach. Nutritionists have intensively sought alternatives to FM and FO, testing various raw materials as direct substitutes to the marine-origin resources and using FM/FO-feeds as gold standards for the purposes of comparison. Nutritionists have been prolific in their use of approach: a search of the existing scientific literature using the search terms "alternative AND aquafeeds" reveals 7,390 articles/documents dealing with alternative protein and/or alternative lipid sources in aquaculture feeds; using the search terms "alternative AND aquaculture AND nutrition" returns more than 80,300 results (from Google Scholar database, retrieved on 9 January

2018). It is almost impossible to summarize this vast scientific literature; instead, in Table 1, a succinct summary of reviews dealing with different aspects of FM and/or FO replacement in aquafeeds is provided.

Although much of this work lacked the nutrient-based approach discussed herein, testing a wide range of potential alternatives has greatly expanded the portfolio of possible aquafeed ingredients and allowed FM/FO sparing to progress to its current place. That said, one could argue that this approach has reached (or will soon reach) the point of diminishing returns. Most raw materials that could feasibly serve as protein or lipid sources in aquafeeds have now been tested in at least one, if not more cultured aquatic species. The search for alternatives yielded substantial insight when so many raw materials had yet to be evaluated in aquafeeds. As the number of truly novel resources dwindles, testing raw materials as direct substitutes for FM/FO is less likely to yield advances beyond marginal, incremental progress. The staggering diversity of species, rearing systems, and culture conditions involved in aquaculture will always strain the resources available for R&D and force researchers to thinly spread investments and effort across a broad array of data gaps. Instead of 'doubling down' on the search for alternative raw materials, limited R&D resources may yield greater dividends if redirected to research questions more likely to 'move the needle'. New raw materials will periodically emerge and should be assessed, but focusing on alternative raw materials as direct substitutes for FM and FO is perhaps no longer the most strategic approach.

In some ways, direct comparison between various protein and lipid sources and the marine-origin gold standards FM and FO has always been flawed. Other than the marine-origin raw materials themselves, no single feedstuff has the precise composition, nutrient availability, and other characteristics of FM or FO. For example, some of the nutrients present in FM are also present in soybean meal, but the nutritional characteristics of these raw materials are not equivalent. Rather

than seeking alternatives that might directly replace FM or FO, researchers are much more likely to find greater success in identifying essential or beneficial attributes of aquafeeds and developing complementary raw materials accordingly. The concept of raw material complementation is not new. Rather, it is central to human evolution and history: the traditional food habits of many cultures with limited/no animal food consumption regularly pair the nutrients found in legumes and cereals to achieve nutritional balance that reflects nutrient requirements and energy demand (Young and Pellett, 1994). Evaluating raw materials in terms of their ability to complement rather than replace other raw materials is not just a semantic distinction, but a realignment that changes how the problem is understood, how potential solutions are conceived, and how both are addressed through research intended to help aquaculture use marine-origin resources more efficiently and judiciously. By expanding our thinking beyond alternatives and substitution values to include the concept of complementarity of raw materials, we are shifting our focus from ingredients to nutrients and making room for more promising research directions:

- What nutrients are truly essential vs. nonessential, and how do we resolve questions of whether a nutrient is conditionally essential or merely beneficial?
  - How does modified consumption of essential and nonessential nutrients affect the performance of cultured fish and shellfish?
  - How can different energy sources be used to satisfy independent demands for bioenergetic
     'fuel' vs. essential nutrients?
  - How do different raw materials complement each other and how can their properties be leveraged to maximize the value of limited FM/FO inclusion?
  - How can the attributes of raw materials (including compositional and physical characteristics) be used strategically, processed and/or blended, to optimize nutrient availability, utilization, palatability, etc., to satisfy nutrient requirements and optimize performance?

- How do the physical and nutritional qualities of raw materials affect feed manufacturing and pellet quality?
- What are the tolerances for nutrient density and variation in raw materials and do trade-offs between product refinement and processing costs offer opportunity for cost savings?
- How can innovation in feed <u>and</u> husbandry (e.g., feed management, breeding) be integrated
  as nutritional strategies better suited to resolve modern challenges in aquaculture?

Refocusing on nutrients and the way ingredients can complement each other will likely open numerous and as-yet untapped possibilities for improving the next generation of aquafeeds. Those who have adopted this approach have already proven the merits of doing so, as described in the sections below.

Lessons learned from nutrient-based research in FM sparing

Typically, FM replacement/alternative protein studies have primarily focused on protein digestibility and amino acid composition, particularly essential amino acid (EAA) content. However, a recent and important review on amino acid nutrition in animals (Wu et al., 2014) highlights the limitations of focusing only on EAA and the importance of considering other aspects of protein sources.

Nutritionally nonessential amino acids (NEAA) and conditionally essential amino acids (CEAA) are now known to contribute significantly to the health, growth and overall performance of cultured animals. All dietary amino acids, whether considered EAA, NEAA or CEAA have physiological importance, serving not only as building blocks for protein synthesis, but as precursors to various metabolites and as factors contributing to the regulation of gene expression, cell signaling, and overall metabolism (Wu et al., 2014). Similarly, in their review of recent developments in amino acid nutrition of fish, Li et al. (2009) concluded that continuing advances in amino acid nutrition technologies, including EAA, NEAA, and CEAA, will play a defining role in shaping the viability and sustainability of aquafeed formulation and manufacturing. The need to take a broader view of

aquaculture nutrition and expand our focus on essential nutrients was recently summarized by one of the field's pioneering scientists with the following elegant, if ironic statement: "non-essential dietary nutrients may in fact be so essential that the cell/body actually produces them" (Albert Tacon, pers. comm.).

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

290

291

292

293

Beyond questions of essentiality or nonessentiality, there is the matter of energetic costs: de novo synthesis of any nonessential nutrient uses energy that, in the context of aquaculture, would be better used to support somatic growth. As such, experts are beginning to question the assumption that NEAA are not relevant in terms of feed formulation or supporting maximal growth and optimal health (Kaushik and Seiliez 2010; Wu et al., 2014). Numerous discoveries that taurine, glutamine, glycine, proline and hydroxyproline promote growth and health of cultured aquatic species further underscore the importance of considering all dietary AA during feed formulation (Li et al., 2009). Table 2 provides a summary of some selected studies in which the substitution of dietary FM with different raw materials (in isolation and/or in combination) was tested in different commercially important aquaculture species. In most cases, it was shown that better results could be achieved by blends of raw materials, and/or balancing all AA, not just the first few limiting EAA. Clearly, all dietary AA are important to some extent (Wu 2014) and diets for aquatic animals must contain the proper balance of all AA (NEAA, CEAA and NEAA) to optimize growth, health and reproduction. This more holistic approach takes the "ideal protein concept" a step forward (Rollin et al., 2003). Balancing dietary levels of EAA, NEAA, and CEAA can be achieved through specific amino acid fortification or—better yet—by carefully blending raw materials according to their complementary characteristics and composition.

312

313

314

Glencross et al. (2007) commented on the importance and technical complexity of assessing interference in nutrient utilization resulting from incorporation of different raw materials. These

authors also highlighted the existence of clear needs to improve the understanding, and the possible quantification, of the nutritional and functional interactions among raw materials. "As the adoption of alternatives to fish meal increases, there will probably be increasingly complex interactions among feed ingredients. The nature of such ingredient interactions may also have important implications for the study of ingredient functionality" (Glencross et al., 2007). Given these observations and other lessons learned from nutrient-based research, it is unsurprising that Gatlin et al. (2007) stated that a combination of (plant-derived) feed ingredients, not a single alternative ingredient, will be required to successfully replace FM.

Lessons learned from nutrient-based research in FO sparing

Regarding lipids, there are also a series of recent studies that illustrate the value of focusing on nutrients, rather than raw materials (Table 3). Though none of these trials explicitly invoked the concept of complementarity, they suggest there is considerable potential for this approach.

Research evaluating how different lipid sources and fatty acids interact and how they can influence the efficiency of n-3 LC-PUFA utilization has proven more informative than studies in which FO is directly substituted with one alternative lipids or another. The discovery of the omega-3 sparing effect is a particularly compelling example (Trushenski 2009; Turchini et al. 2011; Codabaccus et al., 2012; Eroldogan et al., 2013; Salini et al., 2017).

Similar to EAA-driven research in FM replacement, much of the attention in FO replacement studies has focused on essential (or conditionally essential) fatty acids, particularly the n-3 LC-PUFA and n-6 LC-PUFAs found almost exclusively in marine-origin ingredients. DHA, EPA, and arachidonic acid (ARA, 20:4n-6) are inarguably important in the feeding of most if not all carnivorous fish (Bell and Sargent 2003; Tocher 2015), but, non-essential lipids also have nutritional importance. Turchini and

Francis (2009) suggested that the optimal dietary fatty acid composition for a growing fish would be a fatty acid composition that would minimize *in vivo* bio-conversion processes (to reduce unnecessary energetic costs), while simultaneously providing an efficient substrate for energy production. Their findings in Rainbow Trout support this 'ideal lipid concept', indicating that higher dietary inclusion of saturated fatty acids, monounsaturated fatty acids, and DHA improved performance, whereas excessive amounts of dietary polyunsaturated fatty acids, including EPA, were wasted (Turchini and Francis 2009).

Likewise, other nonessential lipids have been shown to play important nutritional roles. For example, cholesterol is well known as nonessential for teleosts; given its many physiological roles, cholesterol is highly regulated and biosynthesized efficiently if not provided in sufficient amounts with the diet. However, this happens at a significant metabolic cost (18 acetyl-CoA, 18 ATP, 16 NADPH and 4 O<sub>2</sub> molecules per molecule of cholesterol) and it has been suggested that aquafeeds not providing sufficient quantities of cholesterol (e.g., plant-based formulations) should be fortified with additional cholesterol to improve overall fish performance (Norambuena et al., 2013).

Accordingly, cholesterol is garnering additional interest from fish nutritionists (Leaver et al., 2008; Yun et al., 2012; Zhu et al., 2014; Guerra-Olvera and Viana 2015).

Individual dietary fatty acids, essential or otherwise, may trigger differential responses in regulation of gene transcription (Coccia et al., 2014; Kjaer et al., 2016). For example, in Rainbow Trout, fatty acid catabolism for energy production appears to be stimulated by stearic acid (18:0), oleic acid (18:1n-9), α-linolenic acid (18:3n-3), ARA and DHA and inhibited by palmitic acid (16:0), linoleic acid (18:2n-6) and EPA (Coccia et al., 2014). Consequently, catabolic processes and, in turn, retention and tissue deposition of n-3 LC-PUFA can be modulated by manipulating intake of these fatty acids in a species-specific manner (Turchini et al. 2011; Eroldogan et al., 2013; Gause and Trushenski 2013;

Trushenski et al., 2013; Emery et al., 2014; Francis et al., 2014). This research has encouraged investigation of previously underappreciated lipid sources, such as rendered animal fats (Trushenski and Lochmann 2009), in aquafeed formulation.

#### Future research horizons in aquaculture nutrition

The challenge of FM/FO replacement is more likely to be addressed with a strategy, not a single raw material. These alternative strategies will comprise a combination of technological and nutritional strategies (e.g., dietary supplementation with amino acids, palatants/attractants, exogenous enzymes; pre- and probiotics; further development of mechanical and biological raw material processing technologies, feed manufacturing technologies; genetic modification of crops; [Gatlin et al., 2007]) and innovation in selective breeding (Quinton et al., 2007; Gjedrem et al., 2012; Overturf et al., 2013), rearing systems, and so forth. For example, replacement of FM was achieved in Tiger Shrimp *Penaeus mondon* not by using an alternative raw material, but an alternative nutritional strategy, via the utilization of microbial biomass, complementing terrestrial protein sources (Glencross et al., 2014). In this case, the growth-stimulating properties of the microbial biomass combined with the blending of land animal proteins with vegetable proteins to balance the amino acid profile allowed all of the dietary FM and FO to be replaced without affecting production performance; in some cases, shrimp performed better on the FM/FO-free feeds.

A variety of oils containing the health-promoting and highly sought n-3 LC-PUFA (namely, EPA and DHA) have proven able to directly and completely replace FO in aquafeeds. Some are also derived from wild-caught marine organisms, such as krill, amphipods, copepods and mesopelagic species (Olsen et al., 2011). Of course, the promise of these raw materials is constrained by the same factors that incentivize reduced reliance on FO, so it is perhaps best to think of these ingredients as

supplements to the available FO supply. Other marine/aquatic derived alternative oils containing n-3 LC-PUFA are those derived from fisheries byproducts (i.e., seafood processing wastes or bycatch). Production of these raw materials is expanding (Rustad et al., 2011; Shepherd and Jackson 2013), and evaluations in aquafeeds show good potential (Fernandez Palacios et al., 1997; Turchini et al., 2003; Goncalves et al., 2012; Sevgili et al., 2012). These products also have the advantage of competitive pricing and, since they are mostly considered unacceptable or undesirable for direct human consumption, are not seen as aggravating the emerging issue of food vs. feed (Tacon and Metian 2009).

A series of novel non-marine oils containing n-3 LC-PUFA have been developed and are at different levels of commercialization and availability (Miller et al., 2011). The most promising of these novel n-3 LC-PUFA-containing oils are derived from microalgae/single-cell organisms (Miller et al. 2007; Ganuza et al., 2008; Hemaiswarya et al., 2011; Eryalcin et al., 2015; Sprague et al., 2015; Sarker et al., 2016) and genetically modified oilseed crops (Kitessa et al., 2014; Betancor et al., 2015, 2016). Although the overall content of n-3 LC-PUFA of these oils is comparable to or higher than that of FO, they typically contain more DHA and less EPA than traditional FO. These products are the focus of considerable, promising research (Vizcaino-Ochoa et al. 2010; Codabaccus et al., 2012; Trushenski et al. 2012; Betiku et al. 2016; Emery et al., 2016). These oils present a series of exciting opportunities for the sustainable expansion of the aquaculture sector, but also highlight a partial knowledge gap: the dearth of research addressing individual fatty acid requirements. Previous lipid nutrition research, relying primarily on traditional terrestrial and marine oils, assessed essential fatty acid requirements in terms of total n-3 or n-6 fatty acids. Now, evidence is mounting to suggest that the different n-3 LC-PUFA vary substantially in their nutritional value, n-6 LC-PUFA are also nutritionally important, and the functional differences between C<sub>18</sub> PUFA and LC-PUFA have not been adequately communicated (Glencross and Smith 2001; Koven et al.; Bell and Sargent 2003; Van Anholt et al.,

2004; Lund et al., 2007; Norambuena et al., 2015; Ding et al., 2018). Accordingly, a much greater effort into basic research to define individual requirements for key fatty acids—nutrients, rather than raw materials—and elucidate their specific roles in aquatic animal health and optimal performance is needed.

# More than nutrients and ingredients: the influence and constraints of manufacturing techniques and sources of support for aquaculture nutrition research

The preceding sections have made the case for greater focus on nutrients and the interactions between them in the context of aquafeeds. This also means considering the manufacturing techniques as well, since it is well-established that raw material processing and feed manufacturing can greatly influence the nutrient composition, digestibility and availability, as well as the physical properties and utilization of feeds (Hilton et al., 1981; Gadient and Fenster 1994; Booth et al., 2000; Ljokjel et al., 2002, 2004; Sorensen et al. 2002; Cheng and Hardy 2003; Barrows et al., 2007; Morken et al. 2011; Sorensen 2012). For example, Glencross et al. (2011) observed that digestibility varied substantially when raw materials were processed into aquafeeds using extrusion or pellet-pressing. More specifically, protein digestibility was strongly influenced by manufacturing technique, mostly likely due to the protein-to-protein interactions that occur during extrusion processing. Regrettably, the topic of manufacturing technology is not as frequently addressed as raw material composition, nutrient digestibility, marine ingredient sparing, and so forth. Some of the documented effects of raw materials and diet processing on diet characteristics and fish performance is summarized in Table 4.

Unfortunately, relatively few research labs have access to extrusion equipment comparable to that used in the preparation of industrially compounded aquafeeds. Consequently, most of the research conducted and published in aquaculture nutrition may not be considered directly relevant by feed

manufacturers. It is equally important to recognize that not all feed formulations can be effectively manufactured: not all combinations of raw materials can be effectively formed into a pellet with the desired physical characteristics, water stability, durability, or buoyancy profile required for any specific feed type. These factors may not be as evident or problematic in an experimental setting (e.g., defining the requirements for a specific nutrient) or in the manufacturing of steam-pelleted, sinking diets, but they are critical considerations for the commercial-scale manufacturing of extruded feeds. When testing new raw materials or formulations, nutrition researchers are encouraged to ask themselves or—better yet—ask extrusion scientists questions such as "Can this formulation actually be extruded?", "Can it be made to float or sink?", "Will it be durable enough to withstand shipping and on-farm distribution?", or "Will the feed extrusion process change the nutritional value of the raw materials?". Mindful of these needs, modern feed extrusion approaches for aquaculture have been adapted from other manufacturing sectors to accommodate some of these constraints, but they remain pertinent questions to consider (Sorensen 2012).

Regardless of whether research is conducted for the public good or for commercial gains, it requires financial support to be conducted. Extramural funding—provided by industry, government agencies, or other sources—drives innovation in all sectors, including aquaculture. Some nations have recognized aquaculture's potential and have provided research capacity, institutional support, enabling regulations, and various other incentives to encourage its development. In other countries, investment in aquaculture research, including fish nutrition, has been inconsistent and comparatively meager. Though there are a number of public entities that support aquaculture research, aquaculture investments in most countries are minor in comparison with investments in crop and terrestrial animal science or capture fisheries science (Jensen 2008). For example, the U.S. Department of Agriculture invested \$294 million in sustainable agriculture research in 2014, but only \$10 million of that was dedicated to aquaculture or seafood projects (DeLonge et al., 2016). The

funding climate is increasingly competitive and long-term support for foundational science in aquaculture is absent in many contexts. As a result, fish nutritionists must be creative in their approach to identifying sources of funding and blending projects together to advance their research programs and our understanding of feeds and feeding in aquaculture. In aquaculture nutrition, it is quite common to work with commodity groups or specialty ingredient manufacturers to rigorously evaluate the value of their products in aquafeeds. While a welcome and important source of R&D funding for fish nutritionists, the interests of these funding sources can be somewhat narrow: soybean groups want to fund soybean work, animal byproduct groups want to fund byproduct work, etc. This is quite understandable, but drives the unifactorial, single raw material, direct FM or FO replacement approach to fish nutrition. Companies looking to develop markets for their ingredients might do better to entertain research proposals to develop more holistic datasets related to their product—including data on how well their product 'works' with others. For example, in the case of alternative proteins, it's just as important to know how a new raw material measures up against other raw materials as it does against fish meal. Further, it is very helpful to know whether a new raw material interacts positively or negatively with others, particularly when subjected to the physical processes of feed manufacturing. Of course, it is primarily the investigators' responsibility to propose and conduct research that is integrative. Researchers may receive funding to test one raw material from company "A", another from company "B", and so forth; their work may prove more fruitful if, when possible, they worked with both companies to evaluate their products in conjunction, in various combinations, and in line with the other recommendations set forth herein.

483

484

485

486

487

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

Nutritionists and feed manufacturers are also encouraged to consider other 'down-stream' consequences of their efforts to spare FM and FO. What effect do these formulations have on performance criteria besides growth and survival (Francis et al., 2001; Sitjà-Bobadilla et al., 2005; Desai et al., 2012)? How does the composition of the diet influence the quality and nutritional value

of the edible tissues (Fry et al., 2016; Sprague et al., 2016)? How do consumers view the use of traditional vs. alternative ingredients (Mancuso et al., 2016; Popoff et al., 2017, Shepherd et al., 2017), raw materials derived from GMOs (Lucht 2015), and so on? Nutritionists are understandably preoccupied with the nutritional aspects of feed formulation, but these other questions also merit their attention.

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

488

489

490

491

492

#### Conclusion

Commercial aquafeed manufacturers formulate aquafeeds based on key limiting nutrients using commercial formulation databases and advanced computer software. More or less, the overall R&D sector is already using a nutrient-based approach. That said, we suggest that greater emphasis on nutrients, including those not considered strictly nutritionally essential, is required to encourage further evolution of the industry and efficiently move aquaculture nutrition beyond the incremental advances achieved in recent years. Of course, nutrients are delivered via raw materials, which cannot be forgotten nor overlooked. Raw materials must be consistent and economical, available in sufficient quantities, possess the needed nutrients, be free of contaminants and other undesirable factors, and be able to withstand a range of processing constraints. While a focus on nutrients should be paramount in the evaluation of new raw materials, we cannot forget these other practicalities. We encourage researchers to investigate the effects of feed manufacturing on raw material suitability and, when possible, to test ingredients in a more integrative, holistic and multifactorial fashion. This will likely require a greater degree of collaboration, between all stakeholders and various specialists. It is our hope that by rethinking or becoming reacquainted with the nutrient-based approach to aquaculture nutrition science, we can spur further innovation within our field and the aquaculture industry and, ultimately, help transform the use of marine-origin resources in aquaculture.

# References

| 513 | Adelizi, P. D., Rosati, R. R., Warner, K., Wu, Y. V., Muench, T. R., White, M. R., and Brown, P. B.       |
|-----|-----------------------------------------------------------------------------------------------------------|
| 514 | (1998). Evaluation of fish-meal free diets for rainbow trout, Oncorhynchus mykiss.                        |
| 515 | Aquaculture Nutrition, 4(4), 255-262. doi:10.1046/j.1365-2095.1998.00077.x                                |
| 516 | Amaya, E. A., Davis, D. A., and Rouse, D. B. (2007). Replacement of fish meal in practical diets for the  |
| 517 | Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions. Aquaculture,                    |
| 518 | 262(2-4), 393-401. doi:10.1016/j.aquaculture.2006.11.015                                                  |
| 519 | Barrows, F. T., Bellis, D., Krogdahl, A., Silverstein, J. T., Herman, E. M., Sealey, W. M., Gatlin, D. M  |
| 520 | (2008). Report of the Plant Products in Aquafeed Strategic Planning Workshop: An                          |
| 521 | Integrated, Interdisciplinary Research Roadmap for Increasing Utilization of Plant Feedstuffs             |
| 522 | in Diets for Carnivorous Fish. Reviews in Fisheries Science, 16(4), 449-455.                              |
| 523 | doi:10.1080/10641260802046734                                                                             |
| 524 | Barrows, F. T., Stone, D. A. J., and Hardy, R. W. (2007). The effects of extrusion conditions on the      |
| 525 | nutritional value of soybean meal for rainbow trout (Oncorhynchus mykiss). Aquaculture,                   |
| 526 | 265(1-4), 244-252. doi:10.1016/j.aquaculture.2007.01.017                                                  |
| 527 | Bell, J. G., and Sargent, J. R. (2003). Arachidonic acid in aquaculture feeds: current status and future  |
| 528 | opportunities. Aquaculture, 218(1-4), 491-499. doi:Doi 10.1016/S0044-8486(02)00370-8                      |
| 529 | Bell, J. G., Tocher, D. R., Henderson, R. J., Dick, J. R., and Crampton, V. O. (2003). Altered fatty acid |
| 530 | compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils              |
| 531 | can be partially restored by a subsequent fish oil finishing diet. Journal of Nutrition, 133(9),          |
| 532 | 2793-2801.                                                                                                |
| 533 | Bene, C., Barange, M., Subasinghe, R., Pinstrup-Andersen, P., Merino, G., Hemre, G. I., and Williams,     |
| 534 | M. (2015). Feeding 9 billion by 2050-Putting fish back on the menu. Food Security, 7(2), 261              |
| 535 | 274. doi:10.1007/s12571-015-0427-z                                                                        |

| 536 | Betancor, M. B., Sprague, M., Montero, D., Usher, S., Sayanova, O., Campbell, P. J., Tocher, D. R.       |
|-----|----------------------------------------------------------------------------------------------------------|
| 537 | (2016). Replacement of Marine Fish Oil with de novo Omega-3 Oils from Transgenic                         |
| 538 | Camelina sativa in Feeds for Gilthead Sea Bream (Sparus aurata L.). Lipids, 51(10), 1171-                |
| 539 | 1191. doi:10.1007/s11745-016-4191-4                                                                      |
| 540 | Betancor, M. B., Sprague, M., Usher, S., Sayanova, O., Campbell, P. J., Napier, J. A., and Tocher, D. R. |
| 541 | (2015). A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish           |
| 542 | oil as a source of eicosapentaenoic acid for fish. Scientific Reports, 5. doi:10.1038/srep08104          |
| 543 | Betiku, O. C., Barrows, F. T., Ross, C., and Sealey, W. M. (2016). The effect of total replacement of    |
| 544 | fish oil with DHA-Gold((R)) and plant oils on growth and fillet quality of rainbow trout                 |
| 545 | (Oncorhynchus mykiss) fed a plant-based diet. Aquaculture Nutrition, 22(1), 158-169.                     |
| 546 | doi:10.1111/anu.12234                                                                                    |
| 547 | Booth, M. A., Allan, G. L., and Warner-Smith, R. (2000). Effects of grinding, steam conditioning and     |
| 548 | extrusion of a practical diet on digestibility and weight gain of silver perch, Bidyanus                 |
| 549 | bidyanus. Aquaculture, 182(3-4), 287-299. doi:Doi 10.1016/S0044-8486(99)00261-6                          |
| 550 | Booth, M. A., Allan, G. L., Frances, J., and Parkinson, S. (2001). Replacement of fish meal in diets for |
| 551 | Australian silver perch, Bidyanus bidyanus IV. Effects of dehulling and protein concentration            |
| 552 | on digestibility of grain legumes. Aquaculture, 196(1-2), 67-85. doi:Doi 10.1016/S0044-                  |
| 553 | 8486(00)00578-0                                                                                          |
| 554 | Bowzer, J., Jackson, C., and Trushenski, J. (2016). Hybrid striped bass feeds based on fish oil, beef    |
| 555 | tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish               |
| 556 | oil sparing and demand for n-3 long-chain polyunsaturated fatty acids. Journal of Animal                 |
| 557 | Science, 94(3), 978-988. doi:10.2527/jas2015-9199                                                        |
| 558 | Boyd, W. (2001). Making meat - Science, technology, and American poultry production. Technology          |
| 559 | and Culture, 42(4), 631-664. doi:DOI 10.1353/tech.2001.0150                                              |

| 560 | Bureau, D. P. (2011). Better Defining Nutritional Requirements of Fish and The Nutritive Value of       |
|-----|---------------------------------------------------------------------------------------------------------|
| 561 | Feed Ingredients: Lessons From Integration of Experimental Data From a Wide Variety of                  |
| 562 | Sources. In L. E. Cruz-Suárez, D. Ricque-Marie, M. Tapia-Salazar, M. G. Nieto-López, D. A.              |
| 563 | Villarreal-Cavazos, J. Gamboa-Delgado, and L. Hernández-Hernández (Eds.), Avances en                    |
| 564 | Nutrición Acuícola XI - Memorias del Décimo Primer Simposio Internacional de Nutrición                  |
| 565 | Acuícola, 23-25 de Noviembre, San Nicolás de los Garza, N. L., México (pp. 1-11). Monterrey             |
| 566 | México: Universidad Autónoma de Nuevo León.                                                             |
| 567 | Burr, G. S., Wolters, W. R., Barrows, F. T., and Hardy, R. W. (2012). Replacing fish meal with blends o |
| 568 | alternative proteins on growth performance of rainbow trout (Oncorhynchus mykiss), and                  |
| 569 | early or late stage juvenile Atlantic salmon (Salmo salar). Aquaculture, 334, 110-116.                  |
| 570 | doi:10.1016/j.aquaculture.2011.12.044                                                                   |
| 571 | Byelashov, O. A., and Griffin, M. E. (2014). Fish In, Fish Out: Perception of Sustainability and        |
| 572 | Contribution to Public Health. Fisheries, 39(11), 531-535.                                              |
| 573 | doi:10.1080/03632415.2014.967765                                                                        |
| 574 | Cao, L., Diana, J. S., and Keoleian, G. A. (2013). Role of life cycle assessment in sustainable         |
| 575 | aquaculture. Reviews in Aquaculture, 5(2), 61-71. doi:10.1111/j.1753-5131.2012.01080.x                  |
| 576 | Cheng, Z. J. J., and Hardy, R. W. (2003). Effects of extrusion and expelling processing, and microbial  |
| 577 | phytase supplementation on apparent digestibility coefficients of nutrients in full-fat                 |
| 578 | soybeans for rainbow trout (Oncorhynchus mykiss). Aquaculture, 218(1-4), 501-514.                       |
| 579 | doi:10.1016/S0044-8486(02)00458-1                                                                       |
| 580 | Cheng, Z. J., and Hardy, R. W. (2003). Effects of extrusion processing of feed ingredients on apparent  |
| 581 | digestibility coefficients of nutrients for rainbow trout (Oncorhynchus mykiss). Aquaculture            |
| 582 | Nutrition, 9(2), 77-83.                                                                                 |

| 583 | Coccia, E., Varricchio, E., Vito, P., Turchini, G. M., Francis, D. S., and Paolucci, M. (2014). Fatty Acid- |
|-----|-------------------------------------------------------------------------------------------------------------|
| 584 | Specific Alterations in Leptin, PPAR alpha, and CPT-1 Gene Expression in the Rainbow Trout.                 |
| 585 | Lipids, 49(10), 1033-1046. doi:10.1007/s11745-014-3939-y                                                    |
| 586 | Codabaccus, B. M., Carter, C. G., Bridle, A. R., and Nichols, P. D. (2012). The "n-3 LC-PUFA sparing        |
| 587 | effect" of modified dietary n-3 LC-PUFA content and DHA to EPA ratio in Atlantic salmon                     |
| 588 | smolt. Aquaculture, 356, 135-140. doi:10.1016/j.aquaculture.2012.05.024                                     |
| 589 | DeLonge, M. S., Miles, A., and Carlisle, L. (2016). Investing in the transition to sustainable agriculture  |
| 590 | Environmental Science and Policy, 55, 266-273. doi:10.1016/j.envsci.2015.09.013                             |
| 591 | Desai, A.R., Links, M.G., Collins, S.A., Mansfield, G.S., Drew, M.D., Van Kessel, A.G., and Hill, J.E.      |
| 592 | (2012). Effects of plant-based diets on the distal gut microbiome of rainbow trout                          |
| 593 | (Oncorhynchus mykiss). Aquaculture, 350-353, 134-142.                                                       |
| 594 | Ding, Z. L., Zhou, J. B., Kong, Y. Q., Zhang, Y. X., Cao, F., Luo, N., and Ye, J. Y. (2018). Dietary        |
| 595 | arachidonic acid promotes growth, improves immunity, and regulates the expression of                        |
| 596 | immune-related signaling molecules in Macrobrachium nipponense (De Haan). Aquaculture,                      |
| 597 | 484, 112-119. doi:10.1016/j.aquaculture.2017.11.010                                                         |
| 598 | Draganovic, V., Van der Goot, A. J., Boom, R., and Jonkers, J. (2013). Wheat gluten in extruded fish        |
| 599 | feed: effects on morphology and on physical and functional properties. Aquaculture                          |
| 600 | Nutrition, 19(6), 845-859. doi:10.1111/anu.12029                                                            |
| 601 | Drew, M. D., Borgeson, T. L., and Thiessen, D. L. (2007). A review of processing of feed ingredients to     |
| 602 | enhance diet digestibility in finfish. Animal Feed Science and Technology, 138(2), 118-136.                 |
| 603 | doi:10.1016/j.anifeedsci.2007.06.019                                                                        |
| 604 | El-Sayed, A. F. M. (1999). Alternative dietary protein sources for farmed tilapia, Oreochromis spp.         |
| 605 | Aquaculture, 179(1-4), 149-168. doi:Doi 10.1016/S0044-8486(99)00159-3                                       |

| 606 | Emery, J. A., Norambuena, F., Trushenski, J., and Turchini, G. M. (2016). Uncoupling EPA and DHA in    |
|-----|--------------------------------------------------------------------------------------------------------|
| 607 | Fish Nutrition: Dietary Demand is Limited in Atlantic Salmon and Effectively Met by DHA                |
| 608 | Alone. Lipids, 51(4), 399-412. doi:10.1007/s11745-016-4136-y                                           |
| 609 | Emery, J. A., Smullen, R. P., and Turchini, G. M. (2014). Tallow in Atlantic salmon feed. Aquaculture, |
| 610 | 422, 98-108. doi:10.1016/j.aquaculture.2013.12.004                                                     |
| 611 | Enami, H. R. (2011). A Review of Using Canola/Rapeseed Meal in Aquaculture Feeding. Journal of         |
| 612 | Fisheries and Aquatic Science, 6, 22-36.                                                               |
| 613 | Eroldogan, T. O., Yilmaz, A. H., Turchini, G. M., Arslan, M., Sirkecioglu, N. A., Engin, K.,           |
| 614 | Mumogullarinda, P. (2013). Fatty acid metabolism in European sea bass (Dicentrarchus                   |
| 615 | labrax): effects of n-6 PUFA and MUFA in fish oil replaced diets. Fish Physiology and                  |
| 616 | Biochemistry, 39(4), 941-955. doi:10.1007/s10695-012-9753-7                                            |
| 617 | Eryalcin, K. M., Ganuza, E., Atalah, E., and Cruz, M. C. H. (2015). Nannochloropsis gaditana and       |
| 618 | Crypthecodinium cohnii, two microalgae as alternative sources of essential fatty acids in              |
| 619 | early weaning for gilthead seabream. Hidrobiologica, 25(2), 193-202.                                   |
| 620 | Espe, M., Lemme, A., Petri, A., and El-Mowafi, A. (2006). Can Atlantic salmon (Salmo salar) grow on    |
| 621 | diets devoid of fish meal? Aquaculture, 255(1-4), 255-262.                                             |
| 622 | doi:10.1016/j.aquaculture.2005.12.030                                                                  |
| 623 | FAO. (2014). The State of World Fisheries and Aquaculture 2014 (Vol. 2014). Rome, Italy: The Food      |
| 624 | and Agriculture organization of the United Nations.                                                    |
| 625 | FAO. (2015). FishstatJ - FAO Global Fishery and Aquaculture Statistics. from The Food and Agriculture  |
| 626 | Organization of the united Nations                                                                     |
| 627 | FernandezPalacios, H., Izquierdo, M., Robaina, L., Valencia, A., and Salhi, M. (1997). The effect of   |
| 628 | dietary protein and lipid from squid and fish meals on egg quality of broodstock for gilthead          |

| 629 | seabream (Sparus aurata). Aquaculture, 148(2-3), 233-246. doi:Doi 10.1016/S0044-                        |
|-----|---------------------------------------------------------------------------------------------------------|
| 630 | 8486(96)01312-9                                                                                         |
| 631 | Fox, C., Brown, J. H., and Briggs, M. (1994). The nutrition of prawns and shrimp in aquaculture - a     |
| 632 | review of recent research. In J. F. Muir and R. R. J. (Eds.), Recent Advances in Aquaculture,           |
| 633 | vol 5. (pp. 131-206). Oxford, UK: Blackwelll Science,.                                                  |
| 634 | Francis, D. S., Thanuthong, T., Senadheera, S. P. S. D., Paolucci, M., Coccia, E., De Silva, S. S., and |
| 635 | Turchini, G. M. (2014). n-3 LC-PUFA deposition efficiency and appetite-regulating hormones              |
| 636 | are modulated by the dietary lipid source during rainbow trout grow-out and finishing                   |
| 637 | periods. Fish Physiology and Biochemistry, 40(2), 577-593. doi:10.1007/s10695-013-9868-5                |
| 638 | Francis, G., Makkar, H. P. S., and Becker, K. (2001). Antinutritional factors present in plant-derived  |
| 639 | alternate fish feed ingredients and their effects in fish. Aquaculture, 199(3-4), 197-227.              |
| 640 | doi:Doi 10.1016/S0044-8486(01)00526-9                                                                   |
| 641 | Francis, G., Makkar, H.P.S., and Becker, K. (2001). Antinutritional factors present in plant-derived    |
| 642 | alternate fish feed ingredients and their effects in fish. Aquaculture, 199, 197-227.                   |
| 643 | Fry, J.P., Love, D.C., MacDonald, G.K., West, P.C., Engstrom, P.M., Nachman, K.E., and Lawrence, R.S.   |
| 644 | (2016). Environmental health impacts of feeding crops to farmed fish. Environment                       |
| 645 | International, 91, 201-214.                                                                             |
| 646 | Gadient, M., and Fenster, R. (1994). Stability of Ascorbic-Acid and Other Vitamins in Extruded Fish     |
| 647 | Feeds. Aquaculture, 124(1-4), 207-211. doi:Doi 10.1016/0044-8486(94)90379-4                             |
| 648 | Gamboa-Delgado, J., Rojas-Casas, M. G., Nieto-Lopez, M. G., and Cruz-Suarez, L. E. (2013).              |
| 649 | Simultaneous estimation of the nutritional contribution of fish meal, soy protein isolate and           |
| 650 | corn gluten to the growth of Pacific white shrimp (Litopenaeus vannamei) using dual stable              |
| 651 | isotope analysis. Aquaculture, 380, 33-40. doi:10.1016/j.aquaculture.2012.11.028                        |

| 652 | Ganga, R., Tibbetts, S. M., Wall, C. L., Plouffe, D. A., Bryenton, M. D., Peters, A. R., Lall, S. P.   |
|-----|--------------------------------------------------------------------------------------------------------|
| 653 | (2015). Influence of feeding a high plant protein diet on growth and nutrient utilization to           |
| 654 | combined 'all-fish' growth-hormone transgenic diploid and triploid Atlantic salmon (Salmo              |
| 655 | salar L.). Aquaculture, 446, 272-282. doi:10.1016/j.aquaculture.2015.05.010                            |
| 656 | Ganuza, E., Benitez-Santana, T., Atalah, E., Vega-Orellana, O., Ganga, R., and Izquierdo, M. S. (2008) |
| 657 | Crypthecodinium cohnii and Schizochytrium sp as potential substitutes to fisheries-derived             |
| 658 | oils from seabream (Sparus aurata) microdiets. Aquaculture, 277(1-2), 109-116.                         |
| 659 | doi:10.1016/j.aquaculture.2008.02.005                                                                  |
| 660 | Gatlin, D. M., Barrows, F. T., Brown, P., Dabrowski, K., Gaylord, T. G., Hardy, R. W., Wurtele, E.     |
| 661 | (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review.                |
| 662 | Aquaculture Research, 38(6), 551-579. doi:10.1111/j.1365-2109.2007.01704.x                             |
| 663 | Gause, B. R., and Trushenski, J. T. (2013). Sparing Fish Oil with Beef Tallow in Feeds for Rainbow     |
| 664 | Trout: Effects of Inclusion Rates and Finishing on Production Performance and Tissue Fatty             |
| 665 | Acid Composition. North American Journal of Aquaculture, 75(4), 495-511.                               |
| 666 | doi:10.1080/15222055.2013.811134                                                                       |
| 667 | Gjedrem, T., Robinson, N., and Rye, M. (2012). The importance of selective breeding in aquaculture     |
| 668 | to meet future demands for animal protein: a review. Aquaculture, 350-353, 117-129.                    |
| 669 | Glencross, B. D. (2001). Feeding lupins to fish: a review of the nutritional and biological value of   |
| 670 | lupins in aquaculture feeds. North Beach, WA, Australia: The Department of Fisheries,                  |
| 671 | Government of Western Australia.                                                                       |
| 672 | Glencross, B. D. (2009). Exploring the nutritional demand for essential fatty acids by aquaculture     |
| 673 | species. Reviews in Aquaculture, 1(2), 71-124. doi:10.1111/j.1753-5131.2009.01006.x                    |

| 674 | Glencross, B. D., and Smith, D. M. (2001). A study of the arachidonic acid requirements of the giant       |
|-----|------------------------------------------------------------------------------------------------------------|
| 675 | tiger prawn, Penaues monodon. Aquaculture Nutrition, 7(1), 59-69. doi:DOI 10.1046/j.1365-                  |
| 676 | 2095.2001.00168.x                                                                                          |
| 677 | Glencross, B. D., Booth, M., and Allan, G. L. (2007). A feed is only as good as its ingredients - a review |
| 678 | of ingredient evaluation strategies for aquaculture feeds. Aquaculture Nutrition, 13(1), 17-               |
| 679 | 34. doi:DOI 10.1111/j.1365-2095.2007.00450.x                                                               |
| 680 | Glencross, B. D., Smith, D. M., Thomas, M. R., and Williams, K. C. (2002a). The effect of dietary n-3      |
| 681 | and n-6 fatty acid balance on the growth of the prawn Penaeus monodon. Aquaculture                         |
| 682 | Nutrition, 8(1), 43-51. doi:DOI 10.1046/j.1365-2095.2002.00188.x                                           |
| 683 | Glencross, B. D., Smith, D. M., Thomas, M. R., and Williams, K. C. (2002b). Optimising the essential       |
| 684 | fatty acids in the diet for weight gain of the prawn, Penaeus monodon. Aquaculture, 204(1-                 |
| 685 | 2), 85-99. doi:Doi 10.1016/S0044-8486(01)00644-5                                                           |
| 686 | Glencross, B., Blyth, D., Irvin, S., Bourne, N., Campet, M., Boisot, P., and Wade, N. M. (2016). An        |
| 687 | evaluation of the complete replacement of both fish meal and fish oil in diets for juvenile                |
| 688 | Asian seabass, Lates calcarifer. Aquaculture, 451, 298-309.                                                |
| 689 | doi:10.1016/j.aquaculture.2015.09.012                                                                      |
| 690 | Glencross, B., Blyth, D., Tabrett, S., Bourne, N., Irvin, S., Anderson, M., Smullen, R. (2012). An         |
| 691 | assessment of cereal grains and other starch sources in diets for barramundi (Lates                        |
| 692 | calcarifer) - implications for nutritional and functional qualities of extruded feeds.                     |
| 693 | Aquaculture Nutrition, 18(4), 388-399. doi:10.1111/j.1365-2095.2011.00903.x                                |
| 694 | Glencross, B., Hawkins, W., and Curnow, J. (2004). Nutritional assessment of Australian canola             |
| 695 | meals. I. Evaluation of canola oil extraction method and meal processing conditions on the                 |
| 696 | digestible value of canola meals fed to the red seabream (Pagrus auratus, Paulin).                         |
| 697 | Aquaculture Research, 35(1), 15-24. doi:DOI 10.1111/j.1365-2109.2004.00974.x                               |

| 698 | Glencross, B., Hawkins, W., Evans, D., Rutherford, N., McCafferty, P., Dods, K., and Hauler, R. (2011). |
|-----|---------------------------------------------------------------------------------------------------------|
| 699 | A comparison of the effect of diet extrusion or screw-press pelleting on the digestibility of           |
| 700 | grain protein products when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture,                    |
| 701 | 312(1-4), 154-161. doi:10.1016/j.aquaculture.2010.12.025                                                |
| 702 | Glencross, B., Hawkins, W., Evans, D., Rutherford, N., McCafferty, P., Dods, K., Buirchell, B.          |
| 703 | (2008). Variability in the composition of lupin (Lupinus angustifolius) meals influences their          |
| 704 | digestible nutrient and energy value when fed to rainbow trout (Oncorhynchus mykiss).                   |
| 705 | Aquaculture, 277(3-4), 220-230. doi:10.1016/j.aquaculture.2008.02.038                                   |
| 706 | Glencross, B., Hawkins, W., Maas, R., Karopoulos, M., and Hauler, R. (2010). Evaluation of the          |
| 707 | influence of different species and cultivars of lupin kernel meal on the extrusion process,             |
| 708 | pellet properties and viscosity parameters of salmonid feeds. Aquaculture Nutrition, 16(1),             |
| 709 | 13-24. doi:10.1111/j.1365-2095.2008.00636.x                                                             |
| 710 | Glencross, B., Hawkins, W., Veitch, C., Dods, K., McCafferty, P., and Hauler, R. (2007). The influence  |
| 711 | of dehulling efficiency on the digestible value of lupin (Lupinus angustifolius) kernel meal            |
| 712 | when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 13(6), 462-470.                 |
| 713 | doi:DOI 10.1111/j.1365-2095.2007.00499.x                                                                |
| 714 | Glencross, B., Irvin, S., Arnold, S., Blyth, D., Bourne, N., and Preston, N. (2014). Effective use of   |
| 715 | microbial biomass products to facilitate the complete replacement of fishery resources in               |
| 716 | diets for the black tiger shrimp, Penaeus monodon. Aquaculture, 431, 12-19.                             |
| 717 | doi:10.1016/j.aquaculture.2014.02.033                                                                   |
| 718 | Glencross, B., Rutherford, N., and Jones, B. (2011). Evaluating options for fish meal replacement in    |
| 719 | diets for juvenile barramundi (Lates calcarifer). Aquaculture Nutrition, 17(3), E722-E732.              |
| 720 | doi:10.1111/j.1365-2095.2010.00834.x                                                                    |

| 721 | Gomes, E. F., Rema, P., and Kaushik, S. J. (1995). Replacement of Fish-Meal by Plant-Proteins in the        |
|-----|-------------------------------------------------------------------------------------------------------------|
| 722 | Diet of Rainbow-Trout (Oncorhynchus-Mykiss) - Digestibility and Growth-Performance.                         |
| 723 | Aquaculture, 130(2-3), 177-186. doi:Doi 10.1016/0044-8486(94)00211-6                                        |
| 724 | Gomez-Requeni, P., Mingarro, M., Calduch-Giner, J. A., Medale, F., Martin, S. A. M., Houlihan, D. F., .     |
| 725 | Perez-Sanchez, J. (2004). Protein growth performance, amino acid utilisation and                            |
| 726 | somatotropic axis responsiveness to fish meal replacement by plant protein sources in                       |
| 727 | gilthead sea bream (Sparus aurata). Aquaculture, 232(1-4), 493-510. doi:10.1016/S0044-                      |
| 728 | 8486(03)00532-5                                                                                             |
| 729 | Goncalves, L. U., Ferroli, F., and Viegas, E. M. M. (2012). Effect of the inclusion of fish residue oils in |
| 730 | diets on the fatty acid profile of muscles of males and females lambari (Astyanax                           |
| 731 | altiparanae). Revista Brasileira De Zootecnia-Brazilian Journal of Animal Science, 41(9), 1967-             |
| 732 | 1974.                                                                                                       |
| 733 | Guerra-Olvera, F. M., and Viana, M. T. (2015). Effect of dietary cholesterol content on growth and its      |
| 734 | accumulation in liver and muscle tissues of juvenile yellowtail kingfish (Seriola lalandi).                 |
| 735 | Ciencias Marinas, 41(2), 143-156. doi:10.7773/cm.v41i2.2514                                                 |
| 736 | Halver, J. E. (1957). Nutrition of Salmonoid Fishes .4. An Amino Acid Test Diet for Chinook Salmon.         |
| 737 | Journal of Nutrition, 62(2), 245-254.                                                                       |
| 738 | Hardy, R. W. (2000, 19-22 November 2000). New developments in aquatic feed ingredients, and                 |
| 739 | potential of enzyme supplements Paper presented at the Avances en Nutrición Acuícola V.                     |
| 740 | Memorias del V Simposium Internacional de Nutrición Acuícola. , Mérida, Yucatán, Mexico.                    |
| 741 | Hardy, R. W. (2010). Utilization of plant proteins in fish diets: effects of global demand and supplies     |
| 742 | of fish meal. Aquaculture Research, 41(5), 770-776. doi:10.1111/j.1365-2109.2009.02349.x                    |
| 743 | Hardy, R. W., and Barrows, F. T. (2002). Diet formulation and manufacture. In J. E. Halver and R. W.        |
| 744 | Hardy (Eds.), Fish Nutrition (3rd ed., pp. 505-600). New York, NY, USA: Academic Press.                     |

| /45 | Hardy, R. W., and Tacon, A. G. J. (2002). Fish meal: historical uses, production trends and future       |
|-----|----------------------------------------------------------------------------------------------------------|
| 746 | outlook for sustainable supplies In R. P. Stickney and J. P. McVey (Eds.), Responsible                   |
| 747 | Marine Aquaculture, (pp. 311-326). Wallingford, UK: CABI Publishing.                                     |
| 748 | Hasan, M. R. (2001). Nutrition and Feeding for Sustainable Aquaculture Development in the Third          |
| 749 | Millennium Paper presented at the Aquaculture in the Third Millennium. Technical                         |
| 750 | Proceedings of the Conference on Aquaculture in the Third Millennium, Bangkok, Thailand,                 |
| 751 | 20-25 February 2000.                                                                                     |
| 752 | Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V., and Anbazhagan, C. (2011). Microalgae: a           |
| 753 | sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology,                |
| 754 | 27(8), 1737-1746. doi:10.1007/s11274-010-0632-z                                                          |
| 755 | Henry, M., Gasco, L., Piccolo, G., and Fountoulaki, E. (2015). Review on the use of insects in the diet  |
| 756 | of farmed fish: past and present. Animal Feed Science and Technology, 203, 1-22.                         |
| 757 | Hertrampf, J. W., and Piedad-Pascual, F. (2000). Handbook on Ingredients for Aquaculture Feeds.          |
| 758 | Dordrecht, the Netherlands: Kluwer AcademicPublishers.                                                   |
| 759 | Hilton, J. W., Cho, C. Y., and Slinger, S. J. (1981). Effect of Extrusion Processing and Steam Pelleting |
| 760 | Diets on Pellet Durability, Pellet Water-Absorption, and the Physiological-Response of                   |
| 761 | Rainbow-Trout (Salmo-Gaird-Neri R). Aquaculture, 25(2-3), 185-194. doi:Doi 10.1016/0044-                 |
| 762 | 8486(81)90180-0                                                                                          |
| 763 | Izquierdo, M. S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L., and Rosenlund, G. (2003).       |
| 764 | Dietary lipid sources for seabream and seabass: growth performance, tissue composition                   |
| 765 | and flesh quality. Aquaculture Nutrition, 9(6), 397-407. doi:DOI 10.1046/j.1365-                         |
| 766 | 2095.2003.00270.x                                                                                        |
| 767 | Jackson, A. J. (2009). Fish in–fish out (FIFO) ratios explained. Aquaculture Europe, 34(3), 5-10.        |

768 Jensen, G. L. (2008). The evolutionary role of federal policies and actions to support the sustainable 769 development of aquaculture in the United States. In P. Leung, C. S. Lee, and P. J. O'Bryen 770 (Eds.), Species and System Selection for Sustainable Aquaculture (pp. 179-207). Hoboken, 771 New Jersey, USA: John Wiley and Sons. 772 Jobling, M. (2016). Fish nutrition research: past, present and future. Aquaculture International, 24, 773 767-786. 774 Jones, A. C., Mead, A., Kaiser, M. J., Austen, M. C. V., Adrian, A. W., Auchterlonie, N. A., . . . 775 Sutherland, W. J. (2015). Prioritization of knowledge needs for sustainable aquaculture: a 776 national and global perspective. Fish and Fisheries, 16(4), 668-683. doi:10.1111/faf.12086 777 Kaushik, S. J., and Seiliez, I. (2010). Protein and amino acid nutrition and metabolism in fish: current 778 knowledge and future needs. Aquaculture Research, 41(3), 322-332. doi:10.1111/j.1365-779 2109.2009.02174.x 780 Kaushik, S., and Troell, M. (2010). Taking the fish-in fish-out ratio a step further... Aquaculture 781 Europe, 35(1), 15-17. 782 Kitessa, S. M., Abeywardena, M., Wijesundera, C., and Nichols, P. D. (2014). DHA-Containing Oilseed: 783 A Timely Solution for the Sustainability Issues Surrounding Fish Oil Sources of the Health-784 Benefitting Long-Chain Omega-3 Oils. Nutrients, 6(5), 2035-2058. doi:10.3390/nu6052035 785 Kjaer, M. A., Ruyter, B., Berge, G. M., Sun, Y. J., and Ostbye, T. K. K. (2016). Regulation of the Omega-786 3 Fatty Acid Biosynthetic Pathway in Atlantic Salmon Hepatocytes. Plos One, 11(12). 787 doi:10.1371/journal.pone.0168230 788 Koven, W., Barr, Y., Lutzky, S., Ben-Atia, I., Weiss, R., Harel, M., . . . Tandler, A. (2001). The effect of 789 dietary arachidonic acid (20: 4n-6) on growth, survival and resistance to handling stress in 790 gilthead seabream (Sparus aurata) larvae. Aquaculture, 193(1-2), 107-122. doi:Doi 791 10.1016/S0044-8486(00)00479-8

| 792 | Krogdahl, A., Penn, M., Thorsen, J., Refstie, S., and Bakke, A. M. (2010). Important antinutrients in       |
|-----|-------------------------------------------------------------------------------------------------------------|
| 793 | plant feedstuffs for aquaculture: an update on recent findings regarding responses in                       |
| 794 | salmonids. Aquaculture Research, 41(3), 333-344. doi:10.1111/j.1365-2109.2009.02426.x                       |
| 795 | Leaver, M. J., Villeneuve, L. A. N., Obach, A., Jensen, L., Bron, J. E., Tocher, D. R., and Taggart, J. B.  |
| 796 | (2008). Functional genomics reveals increases in cholesterol biosynthetic genes and highly                  |
| 797 | unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in           |
| 798 | Atlantic salmon (Salmo salar). Bmc Genomics, 9. doi:10.1186/1471-2164-9-299                                 |
| 799 | Li, M. H. H., and Robinson, E. H. (2006). Use of cottonseed meal in aquatic animal diets: a review.         |
| 800 | North American Journal of Aquaculture, 68(1), 14-22. doi:10.1577/A05-028.1                                  |
| 801 | Li, P., Mai, K. S., Trushenski, J., and Wu, G. Y. (2009). New developments in fish amino acid nutrition:    |
| 802 | towards functional and environmentally oriented aquafeeds. Amino Acids, 37(1), 43-53.                       |
| 803 | doi:10.1007/s00726-008-0171-1                                                                               |
| 804 | Lim, C., Lee, C. S., and Webster, C. D. (2008). Alternative Protein Sources in Aquaculture Diets. Boca      |
| 805 | Raton, FL, USA: CRC Press.                                                                                  |
| 806 | Lin, S., Hsieh, F., and Huff, H. E. (1997). Effects of lipids and processing conditions on degree of starch |
| 807 | gelatinization of extruded dry pet food. Lwt-Food Science and Technology, 30(7), 754-761.                   |
| 808 | Ljokjel, K., Sorensen, M., Storebakken, T., and Skrede, A. (2004). Digestibility of protein, amino acids    |
| 809 | and starch in mink (Mustela vison) fed diets processed by different extrusion conditions.                   |
| 810 | Canadian Journal of Animal Science, 84(4), 673-680.                                                         |
| 811 | Lucht, J.M. (2015). Public acceptance of plant biotechnology and GM crops. Viruses, 7, 4254-4281.           |
| 812 | Lund, I., Steenfeldt, S. J., and Hansen, B. W. (2007). Effect of dietary arachidonic acid,                  |
| 813 | eicosapentaenoic acid and docosahexaenoic acid on survival, growth and pigmentation in                      |
| 814 | larvae of common sole (Solea solea L.). Aquaculture, 273(4), 532-544.                                       |
| 815 | doi:10.1016/j.aquaculture.2007.10.047                                                                       |

| 816 | Mancuso, T., Baldi, L., and Gasco, L. (2016). An empirical study on consumer acceptance of farmed       |
|-----|---------------------------------------------------------------------------------------------------------|
| 817 | fish fed on insect meals: the Italian case. Aquaculture International, 24, 1489-1507.                   |
| 818 | Messina, M., Piccolo, G., Tulli, F., Messina, C. M., Cardinaletti, G., and Tibaldi, E. (2013). Lipid    |
| 819 | composition and metabolism of European sea bass (Dicentrarchus labrax L.) fed diets                     |
| 820 | containing wheat gluten and legume meals as substitutes for fish meal. Aquaculture, 376, 6-             |
| 821 | 14. doi:10.1016/j.aquaculture.2012.11.005                                                               |
| 822 | Métallier, R., and Guillaume, J. (1999). Raw materials and additives used in fish foods In J.           |
| 823 | Guillaume, S. Kaushik, P. Bergot, and R. Métallier (Eds.), Nutrition and Feeding of Fish and            |
| 824 | Crustaceans (pp. 279-296). London, UK: Springer.                                                        |
| 825 | Miller, M. R., Nichols, P. D., and Carter, C. C. (2011). New Alterantive n-3 Long-Chain Polyunsaturated |
| 826 | Fatty Acid-Rich Oil Sources. In G. M. Turchini, W. K. Ng, and D. R. Tocher (Eds.), Fish oil             |
| 827 | Replacement and Alternative lipid Sources in Aquaculture Feeds (pp. 325-350). Boca raton,               |
| 828 | FL, USA: CRC Press, Taylor and Francis Group.                                                           |
| 829 | Miller, M. R., Nichols, P. D., and Carter, C. G. (2007). Replacement of fish oil with thraustochytrid   |
| 830 | Schizochytrium sp L oil in Atlantic salmon parr (Salmo salar L) diets. Comparative                      |
| 831 | Biochemistry and Physiology a-Molecular and Integrative Physiology, 148(2), 382-392.                    |
| 832 | doi:10.1016/j.cbpa.2007.05.018                                                                          |
| 833 | Miller, M. R., Nichols, P. D., and Carter, C. G. (2008). n-3 Oil sources for use in aquaculture -       |
| 834 | alternatives to the unsustainable harvest of wild fish. Nutrition Research Reviews, 21(2), 85-          |
| 835 | 96. doi:10.1017/S0954422408102414                                                                       |
| 836 | Morken, T., Kraugerud, O. F., Barrows, F. T., Sorensen, M., Storebakken, T., and Overland, M. (2011).   |
| 837 | Sodium diformate and extrusion temperature affect nutrient digestibility and physical                   |
| 838 | quality of diets with fish meal and barley protein concentrate for rainbow trout                        |

| 839 | (Oncorhynchus mykiss). Aquaculture, 317(1-4), 138-145.                                                    |
|-----|-----------------------------------------------------------------------------------------------------------|
| 840 | doi:10.1016/j.aquaculture.2011.04.020                                                                     |
| 841 | Mourente, G., Good, J. E., Thompson, K. D., and Bell, J. G. (2007). Effects of partial substitution of    |
| 842 | dietary fish oil with blends of vegetable oils, on blood leucocyte fatty acid compositions,               |
| 843 | immune function and histology in European sea bass (Dicentrarchus labrax L.). British                     |
| 844 | Journal of Nutrition, 98(4), 770-779. doi:10.1017/S000711450773461x                                       |
| 845 | Nasopoulou, C., and Zabetakis, I. (2012). Benefits of fish oil replacement by plant originated oils in    |
| 846 | compounded fish feeds. A review. Lwt-Food Science and Technology, 47(2), 217-224.                         |
| 847 | doi:10.1016/j.lwt.2012.01.018                                                                             |
| 848 | Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C. M., Clay, J., Troell, M   |
| 849 | (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017-1024. doi:Doi               |
| 850 | 10.1038/35016500                                                                                          |
| 851 | Naylor, R. L., Hardy, R. W., Bureau, D. P., Chiu, A., Elliott, M., Farrell, A. P., Nichols, P. D. (2009). |
| 852 | Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of                 |
| 853 | Sciences of the United States of America, 106(36), 15103-15110.                                           |
| 854 | doi:10.1073/pnas.0905235106                                                                               |
| 855 | Ngo, D. T., Pirozzi, I., and Glencross, B. (2015). Digestibility of canola meals in barramundi (Asian     |
| 856 | seabass; Lates calcarifer). Aquaculture, 435, 442-449.                                                    |
| 857 | doi:10.1016/j.aquaculture.2014.10.031                                                                     |
| 858 | Norambuena, F., Lewis, M., Hamid, N. K. A., Hermon, K., Donald, J. A., and Turchini, G. M. (2013).        |
| 859 | Fish Oil Replacement in Current Aquaculture Feed: Is Cholesterol a Hidden Treasure for Fish               |
| 860 | Nutrition? Plos One, 8(12). doi:10.1371/journal.pone.0081705                                              |

| 861 | Norambuena, F., Morais, S., Emery, J. A., and Turchini, G. M. (2015). Arachidonic Acid and                  |
|-----|-------------------------------------------------------------------------------------------------------------|
| 862 | Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water                           |
| 863 | Temperature. Plos One, 10(11). doi:10.1371/journal.pone.0143622                                             |
| 864 | NRC. (2011). Nutrient Requirements of Fish and Shrimp. Washington, D.C., USA: National Research             |
| 865 | Council of the National Academies; The National Academies Press.                                            |
| 866 | Oehme, M., Aas, T. S., Olsen, H. J., Sorensen, M., Hillestad, M., Li, Y., and Asgard, T. (2014). Effects of |
| 867 | dietary moisture content of extruded diets on physical feed quality and nutritional response                |
| 868 | in Atlantic salmon (Salmo salar). Aquaculture Nutrition, 20(4), 451-465.                                    |
| 869 | doi:10.1111/anu.12099                                                                                       |
| 870 | Olsen, R. E., Waagbo, R., Melle, W., Ringo, E., and Lall, S. P. (2011). Alterantive Marine resources. In    |
| 871 | G. M. Turchini, W. K. Ng, and D. R. Tocher (Eds.), Fish oil Replacement and Alternative lipid               |
| 872 | Sources in Aquaculture Feeds (pp. 267-324). Boca raton, FL, USA: CRC Press, Taylor and                      |
| 873 | Francis Group.                                                                                              |
| 874 | Olsen, R. L., and Hasan, M. R. (2012). A limited supply of fish meal: Impact on future increases in         |
| 875 | global aquaculture production. Trends in Food Science and Technology, 27(2), 120-128.                       |
| 876 | doi:10.1016/j.tifs.2012.06.003                                                                              |
| 877 | Opstvedt, J., Nygård, E., Samuelsen, T. A., Venturini, G., Luzzana, U., and Mundheim, H. (2003).            |
| 878 | Processing effects on protein quality of extruded fish feed. Journal of the Science of Food                 |
| 879 | and Agriculture, 83(8), 775-782. doi:10.1002/jsfa.1396                                                      |
| 880 | Oterhals, A., and Samuelsen, T. A. (2015). Plasticization effect of solubles in fish meal. Food Research    |
| 881 | International, 69, 313-321. doi:10.1016/j.foodres.2014.12.028                                               |
| 882 | Overturf, K., Barrows, F. T., and Hardy, R. W. (2013). Effect and interaction of rainbow trout strain       |
| 883 | (Oncorhynchus mykiss) and diet type on growth and nutrient retention. Aquaculture                           |
| 884 | Research, 44(4), 604-611. doi:10.1111/j.1365-2109.2011.03065.x                                              |

| 885 | Popoff, M., MacLeod, M., and Leschen, W. (2017). Attitude towards the use of insect-derived              |
|-----|----------------------------------------------------------------------------------------------------------|
| 886 | materials in Scottish salmon feeds. Journal of Insects as Food and Feed, 3, 131-138.                     |
| 887 | Quinton, C.D., Kause, A., Koskela, J., and Ritola, O. (2007). Breeding salmonids for feed efficiency in  |
| 888 | current fishmeal and future plant-based diet environments. Genetics Selection Evolution, 39              |
| 889 | 431-446.                                                                                                 |
| 890 | Rana, K. J., and Hasan, M. R. (2009). Impact of rising feed ingredient prices on aquafeeds and           |
| 891 | aquaculture production. Rome, Italy: FAO, Food and Agriculture Organization of the United                |
| 892 | Nations.                                                                                                 |
| 893 | Refstie, S., Storebakken, T., and Roem, A. J. (1998). Feed consumption and conversion in Atlantic        |
| 894 | salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with               |
| 895 | reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigens.                      |
| 896 | Aquaculture, 162(3-4), 301-312. doi:Doi 10.1016/S0044-8486(98)00222-1                                    |
| 897 | Rollin, X., Mambrini, M., Abboudi, T., Larondelle, Y., and Kaushik, S. J. (2003). The optimum dietary    |
| 898 | indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry. British               |
| 899 | Journal of Nutrition, 90(5), 865-876. doi:10.1079/Bjn2003973                                             |
| 900 | Rombenso, A. N., Trushenski, J. T., Jirsa, D., and Drawbridge, M. (2015). Successful fish oil sparing in |
| 901 | White Seabass feeds using saturated fatty acid-rich soybean oil and 22:6n-3 (DHA)                        |
| 902 | supplementation. Aquaculture, 448, 176-185. doi:10.1016/j.aquaculture.2015.05.041                        |
| 903 | Rustad, T., Storro, I., and Slizyte, R. (2011). Possibilities for the utilisation of marine by-products. |
| 904 | International Journal of Food Science and Technology, 46(10), 2001-2014.                                 |
| 905 | doi:10.1111/j.1365-2621.2011.02736.x                                                                     |
| 906 | Sales, J., and Glencross, B. (2011). A meta-analysis of the effects of dietary marine oil replacement    |
| 907 | with vegetable oils on growth, feed conversion and muscle fatty acid composition of fish                 |
| 908 | species. Aquaculture Nutrition, 17(2), E271-E287. doi:10.1111/j.1365-2095.2010.00761.x                   |

| 909 | Salini, M. J., Turchini, G. M., and Glencross, B. D. (2017). Effect of dietary saturated and            |
|-----|---------------------------------------------------------------------------------------------------------|
| 910 | monounsaturated fatty acids in juvenile barramundi Lates calcarifer. Aquaculture Nutrition,             |
| 911 | 23(2), 264-275. doi:10.1111/anu.12389                                                                   |
| 912 | Salze, G. P., and Davis, D. A. (2015). Taurine: a critical nutrient for future fish feeds. Aquaculture, |
| 913 | 437, 215-229. doi:10.1016/j.aquaculture.2014.12.006                                                     |
| 914 | Salze, G., McLean, E., Battle, P. R., Schwarz, M. H., and Craig, S. R. (2010). Use of soy protein       |
| 915 | concentrate and novel ingredients in the total elimination of fish meal and fish oil in diets for       |
| 916 | juvenile cobia, Rachycentron canadum. Aquaculture, 298(3-4), 294-299.                                   |
| 917 | doi:10.1016/j.aquaculture.2009.11.003                                                                   |
| 918 | Salze, G., Quinton, M., and Bureau, D. P. (2011). Challenges associated with carrying out a meta-       |
| 919 | analysis of essential amino acid requirements of fish. International Aquafeed Magazine,                 |
| 920 | September-October, 28-31.                                                                               |
| 921 | Samuelsen, T. A., and Oterhals, A. (2016). Water-soluble protein level in fish meal affects extrusion   |
| 922 | behaviour, phase transitions and physical quality of feed. Aquaculture Nutrition, 22(1), 120-           |
| 923 | 133. doi:10.1111/anu.12235                                                                              |
| 924 | Samuelsen, T. A., Mjos, S. A., and Oterhals, A. (2013). Impact of variability in fish meal              |
| 925 | physicochemical properties on the extrusion process, starch gelatinization and pellet                   |
| 926 | durability and hardness. Animal Feed Science and Technology, 179(1-4), 77-84.                           |
| 927 | doi:10.1016/j.anifeedsci.2012.10.009                                                                    |
| 928 | Samuelsen, T. A., Mjos, S. A., and Oterhals, A. (2014). Influence of type of raw material on fish meal  |
| 929 | physicochemical properties, the extrusion process, starch gelatinization and physical quality           |
| 930 | of fish feed. Aquaculture Nutrition, 20(4), 410-420. doi:10.1111/anu.12093                              |

| 931 | Sargent, J., Bell, G., McEvoy, L., Tocher, D., and Estevez, A. (1999). Recent developments in the       |
|-----|---------------------------------------------------------------------------------------------------------|
| 932 | essential fatty acid nutrition of fish. Aquaculture, 177(1-4), 191-199. doi:Doi 10.1016/S0044-          |
| 933 | 8486(99)00083-6                                                                                         |
| 934 | Sarker, P. K., Gamble, M. M., Kelson, S., and Kapuscinski, A. R. (2016). Nile tilapia (Oreochromis      |
| 935 | niloticus) show high digestibility of lipid and fatty acids from marine Schizochytrium sp and           |
| 936 | of protein and essential amino acids from freshwater Spirulina sp feed ingredients.                     |
| 937 | Aquaculture Nutrition, 22(1), 109-119. doi:10.1111/anu.12230                                            |
| 938 | Sevgili, H., Kurtoglu, A., Oikawa, M., Mefut, A., and Suyek, R. (2012). The Use of Farmed Salmon Oil    |
| 939 | to Replace Anchovy Oil in Diet of Turbot, Psetta maxima, Reared in Brackish Water. Journal              |
| 940 | of the World Aquaculture Society, 43(4), 560-570. doi:10.1111/j.1749-7345.2012.00582.x                  |
| 941 | Shearer, K. D. (2000). Experimental design, statistical analysis and modelling of dietary nutrient      |
| 942 | requirement studies for fish: a critical review. Aquaculture Nutrition, 6(2), 91-102.                   |
| 943 | Shepherd, C. J., and Jackson, A. J. (2013). Global fish meal and fish-oil supply: inputs, outputs and   |
| 944 | markets. Journal of Fish Biology, 83(4), 1046-1066. doi:10.1111/jfb.12224                               |
| 945 | Shepherd, C. J., Monroig, O., and Tocher, D. R. (2017). Future availability of raw materials for salmon |
| 946 | feeds and supply chain implications: The case of Scottish farmed salmon. Aquaculture, 467,              |
| 947 | 49-62. doi:10.1016/j.aquaculture.2016.08.021                                                            |
| 948 | Shepherd, J., Monroig, O., and Tocher, D.R. (2017). Future availability of raw materials for salmon     |
| 949 | feeds and supply chain implications: the case of Scottish farmed salmon. Aquaculture, 467,              |
| 950 | 49-62.                                                                                                  |
| 951 | Sitjà-Bobadilla, A., Peña-Llopis, S., Gómez-Requeni, P., Médale, F., Kaushik, S., and Pérez-Sánchez, J. |
| 952 | (2005). Effect of fish meal replacement by plant protein sources on non-specific defence                |
| 953 | mechanisms and oxidative stress in gilthead seabream (Sparus aurata). Aquaculture, 249,                 |
| 954 | 387-400.                                                                                                |

| 955 | Sookying, D., Davis, D. A., and da Silva, F. S. D. (2013). A review of the development and application      |
|-----|-------------------------------------------------------------------------------------------------------------|
| 956 | of soybean-based diets for Pacific white shrimp Litopenaeus vannamei. Aquaculture                           |
| 957 | Nutrition, 19(4), 441-448. doi:10.1111/anu.12050                                                            |
| 958 | Sorensen, M. (2012). A review of the effects of ingredient composition and processing conditions on         |
| 959 | the physical qualities of extruded high-energy fish feed as measured by prevailing methods.                 |
| 960 | Aquaculture Nutrition, 18(3), 233-248. doi:10.1111/j.1365-2095.2011.00924.x                                 |
| 961 | Sørensen, M. (2012). A review of the effects of ingredient composition and processing conditions on         |
| 962 | the physical qualities of extruded high-energy fish feed as measured by prevailing methods.                 |
| 963 | Aquaculture Nutrition, 18(3), 233-248.                                                                      |
| 964 | Sorensen, M., Ljokjel, K., Storebakken, T., Shearer, K. D., and Skrede, A. (2002). Apparent digestibility   |
| 965 | of protein, amino acids and energy in rainbow trout (Oncorhynchus mykiss) fed a fish meal                   |
| 966 | based diet extruded at different temperatures. Aquaculture, 211(1-4), 215-225. doi:Doi                      |
| 967 | 10.1016/S0044-8486(01)00887-0                                                                               |
| 968 | Sprague, M., Dick, J.R., and Tocher, D.R. (2016). Impact of sustainable feeds on omega-3 long-chain         |
| 969 | fatty acid levels in farmed Atlantic salmon, 2006-2015. Scientific Reports, 6, 21892.                       |
| 970 | Sprague, M., Walton, J., Campbell, P. J., Strachan, F., Dick, J. R., and Bell, J. G. (2015). Replacement of |
| 971 | fish oil with a DHA-rich algal meal derived from Schizochytrium sp on the fatty acid and                    |
| 972 | persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar, L.) post-           |
| 973 | smolts. Food Chemistry, 185, 413-421. doi:10.1016/j.foodchem.2015.03.150                                    |
| 974 | Storebakken, T., Zhang, Y. X., Kraugerud, O. F., Ma, J. J., Overland, M., Apper, E., and Feneuil, A.        |
| 975 | (2015). Restricted process water limits starch gelatinization, and reduces digestibility of                 |
| 976 | starch, lipid, and energy in extruded rainbow trout (Oncorhynchus mykiss) diets.                            |
| 977 | Aquaculture, 448, 203-206. doi:10.1016/j.aquaculture.2015.05.030                                            |

| 9/8  | Tacon, A. G. J. (1997). Feeding tomorrow's fish: keys for sustainability. CIHEAM - Options           |
|------|------------------------------------------------------------------------------------------------------|
| 979  | Mediterraneennes, 22, 11-34.                                                                         |
| 980  | Tacon, A. G. J., and Akiyama, D. M. (1997). Feed ingredients. In Crustacean Nutrition (pp. 411-472). |
| 981  | Baton Rouge, USA: World Aquaculture Society,.                                                        |
| 982  | Tacon, A. G. J., and Jackson, A. J. (1985). Utilisation of conventional and unconventional protein   |
| 983  | sources in practical fish feeds. In C. B. Cowey, A. M. Mackie, and J. G. Bell (Eds.), Nutrition      |
| 984  | and Feeding in Fish (pp. 119-145). London, UK: Academic Press.                                       |
| 985  | Tacon, A. G. J., and Metian, M. (2008). Global overview on the use of fish meal and fish oil in      |
| 986  | industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1-4),               |
| 987  | 146-158. doi:10.1016/j.aquaculture.2008.08.015                                                       |
| 988  | Tacon, A. G. J., and Metian, M. (2009). Fishing for Feed or Fishing for Food: Increasing Global      |
| 989  | Competition for Small Pelagic Forage Fish. Ambio, 38(6), 294-302.                                    |
| 990  | Tacon, A. G. J., and Metian, M. (2013). Fish Matters: Importance of Aquatic Foods in Human           |
| 991  | Nutrition and Global Food Supply. Reviews in Fisheries Science and Aquaculture, 21(1), 22-           |
| 992  | 38.                                                                                                  |
| 993  | Tacon, A. G. J., and Metian, M. (2015). Feed Matters: Satisfying the Feed Demand of Aquaculture.     |
| 994  | Reviews in Fisheries Science and Aquaculture, 23(1), 1-10.                                           |
| 995  | doi:10.1080/23308249.2014.987209                                                                     |
| 996  | Tacon, A. G. J., Hasan, M. R., and Metian, M. (2011). Demand and supply of feed ingredients for      |
| 997  | farmed fish and crustaceans. Rome, Italy: Food and Agriculture Organization of the United            |
| 998  | Nations.                                                                                             |
| 999  | Tocher, D. R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture |
| 1000 | Research, 41(5), 717-732. doi:10.1111/j.1365-2109.2008.02150.x                                       |

| 1001 | Tocher, D. R. (2015). Omega-3 long-chain polyunsaturated fatty acids and aquaculture in                   |
|------|-----------------------------------------------------------------------------------------------------------|
| 1002 | perspective. Aquaculture, 449, 94-107. doi:10.1016/j.aquaculture.2015.01.010                              |
| 1003 | Torrecillas, S., Robaina, L., Caballero, M. J., Montero, D., Calandra, G., Mompel, D., Izquierdo, M.      |
| 1004 | S. (2017). Combined replacement of fish meal and fish oil in European sea bass                            |
| 1005 | (Dicentrarchus labrax): Production performance, tissue composition and liver morphology.                  |
| 1006 | Aquaculture, 474, 101-112. doi:10.1016/j.aquaculture.2017.03.031                                          |
| 1007 | Torstensen, B. E., Bell, J. G., Rosenlund, G., Henderson, R. J., Graff, I. E., Tocher, D. R., Sargent, J. |
| 1008 | R. (2005). Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory              |
| 1009 | quality by replacing fish oil with a vegetable oil blend. Journal of Agricultural and Food                |
| 1010 | Chemistry, 53(26), 10166-10178. doi:10.1021/jf051308i                                                     |
| 1011 | Trushenski, J. T. (2009). Saturated Lipid Sources in Feeds for Sunshine Bass: Alterations in Production   |
| 1012 | Performance and Tissue Fatty Acid Composition. North American Journal of Aquaculture,                     |
| 1013 | 71(4), 363-373. doi:10.1577/A09-001.1                                                                     |
| 1014 | Trushenski, J. T., and Bowzer, J. C. (2013). Having Your Omega 3 Fatty Acids and Eating Them Too:         |
| 1015 | Strategies to Ensure and Improve the Long-Chain Polyunsaturated Fatty Acid Content of                     |
| 1016 | Farm-Raised Fish. In F. De Meester, R. R. Watson, and S. Zibadi (Eds.), Omega-6/3 Fatty                   |
| 1017 | Acids: Functions, Sustainability Strategies and Perspectives (pp. 319-339). Totowa, NJ:                   |
| 1018 | Humana Press.                                                                                             |
| 1019 | Trushenski, J. T., and Lochmann, R. T. (2009). Potential, implications, and solutions regarding the use   |
| 1020 | of rendered animal fats in aquafeeds. American Journal of Animal and Veterinary Sciences,                 |
| 1021 | 4(4), 108-128.                                                                                            |
| 1022 | Trushenski, J. T., Kasper, C. S., and Kohler, C. C. (2006). Challenges and opportunities in finfish       |
| 1023 | nutrition. North American Journal of Aquaculture, 68(2), 122-140. doi:Doi 10.1577/A05-                    |
| 1024 | 006.1                                                                                                     |

| 1025 | Trushenski, J., and Gause, B. (2013). Comparative Value of Fish Meal Alternatives as Protein Sources       |
|------|------------------------------------------------------------------------------------------------------------|
| 1026 | in Feeds for Hybrid Striped Bass. North American Journal of Aquaculture, 75(3), 329-341.                   |
| 1027 | doi:10.1080/15222055.2013.768574                                                                           |
| 1028 | Trushenski, J., Schwarz, M., Bergman, A., Rombenso, A., and Delbos, B. (2012). DHA is essential, EPA       |
| 1029 | appears largely expendable, in meeting the n-3 long-chain polyunsaturated fatty acid                       |
| 1030 | requirements of juvenile cobia Rachycentron canadum. Aquaculture, 326, 81-89.                              |
| 1031 | doi:10.1016/j.aquaculture.2011.11.033                                                                      |
| 1032 | Trushenski, J., Woitel, F., Schwarz, M., and Yamamoto, F. (2013). Saturated Fatty Acids Limit the          |
| 1033 | Effects of Replacing Fish Oil with Soybean Oil with or without Phospholipid Supplementation                |
| 1034 | in Feeds for Juvenile Cobia. North American Journal of Aquaculture, 75(2), 316-328.                        |
| 1035 | doi:10.1080/15222055.2012.713897                                                                           |
| 1036 | Turchini, G. M., and Francis, D. S. (2009). Fatty acid metabolism (desaturation, elongation and beta-      |
| 1037 | oxidation) in rainbow trout fed fish oil- or linseed oil-based diets. British Journal of Nutrition,        |
| 1038 | 102(1), 69-81. doi:10.1017/S0007114508137874                                                               |
| 1039 | Turchini, G. M., Francis, D. S., Senadheera, S. P. S. D., Thanuthong, T., and De Silva, S. S. (2011). Fish |
| 1040 | oil replacement with different vegetable oils in Murray cod: Evidence of an "omega-3                       |
| 1041 | sparing effect" by other dietary fatty acids. Aquaculture, 315(3-4), 250-259.                              |
| 1042 | doi:10.1016/j.aquaculture.2011.02.016                                                                      |
| 1043 | Turchini, G. M., Gunasekera, R. M., and De Silva, S. S. (2003). Effect of crude oil extracts from trout    |
| 1044 | offal as a replacement for fish oil in the diets of the Australian native fish Murray cod                  |
| 1045 | Maccullochella peelii peelii. Aquaculture Research, 34(9), 697-708. doi:DOI 10.1046/j.1365-                |
| 1046 | 2109.2003.00870.x                                                                                          |
| 1047 | Turchini, G. M., Ng, W. K., and Tocher, D. R. (2011). Fish oil replacement and alternative lipid sources   |
| 1048 | in aquaculture feeds. Boca Raton, FL, USA: CRC Press.                                                      |

| 1049 | Turchini, G. M., Torstensen, B. E., and Ng, W. K. (2009). Fish oil replacement in fintish nutrition.       |
|------|------------------------------------------------------------------------------------------------------------|
| 1050 | Reviews in Aquaculture, 1(1), 10-57. doi:10.1111/j.1753-5131.2008.01001.x                                  |
| 1051 | Usher, S., Haslam, R., Sayanova, O., Napier, J. A., Betancor, M. B., and Tocher, D. R. (2015). The         |
| 1052 | supply of fish oil to aquaculture: a role for transgenic oilseed crops? World Agriculture, 5(1),           |
| 1053 | 15-23.                                                                                                     |
| 1054 | Van Anholt, R. D., Spanings, E. A. T., Koven, W. M., Nixon, O., and Bonga, S. E. W. (2004). Arachidonic    |
| 1055 | acid reduces the stress response of gilthead seabream Sparus aurata L. Journal of                          |
| 1056 | Experimental Biology, 207(19), 3419-3430. doi:10.1242/jcb.01166                                            |
| 1057 | Vens-Cappell, B. (1984). The effects of extrusion and pelleting of feed for trout on the digestibility of  |
| 1058 | protein, amino acids and energy and on feed conversion. Aquacultural engineering, 3(1), 71-                |
| 1059 | 89.                                                                                                        |
| 1060 | Vizcaino-Ochoa, V., Lazo, J. P., Baron-Sevilla, B., and Drawbridge, M. A. (2010). The effect of dietary    |
| 1061 | docosahexaenoic acid (DHA) on growth, survival and pigmentation of California halibut                      |
| 1062 | Paralichthys californicus larvae (Ayres, 1810). Aquaculture, 302(3-4), 228-234.                            |
| 1063 | doi:10.1016/j.aquaculture.2010.02.022                                                                      |
| 1064 | Wu, G. Y. (2014). Dietary requirements of synthesizable amino acids by animals: a paradigm shift in        |
| 1065 | protein nutrition. Journal of Animal Science and Biotechnology, 5. doi:10.1186/2049-1891-5-                |
| 1066 | 34                                                                                                         |
| 1067 | Wu, G. Y., Bazer, F. W., Dai, Z. L., Li, D. F., Wang, J. J., and Wu, Z. L. (2014). Amino Acid Nutrition in |
| 1068 | Animals: Protein Synthesis and Beyond. Annual Review of Animal Biosciences, Vol 2, 2, 387-                 |
| 1069 | 417. doi:10.1146/annurev-animal-022513-114113                                                              |
| 1070 | Young, V. R., and Pellett, P. L. (1994). Plant-Proteins in Relation to Human Protein and Amino-Acid        |
| 1071 | Nutrition. American Journal of Clinical Nutrition, 59(5), 1203s-1212s.                                     |

| 10/2 | Yun, B. A., Al, Q. H., Mai, K. S., Xu, W., Qi, G. S., and Luo, Y. W. (2012). Synergistic effects of dietary |
|------|-------------------------------------------------------------------------------------------------------------|
| 1073 | cholesterol and taurine on growth performance and cholesterol metabolism in juvenile                        |
| 1074 | turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture, 324, 85-91.                     |
| 1075 | doi:10.1016/j.aquaculture.2011.10.012                                                                       |
| 1076 | Zhu, S., Chen, S., Hardy, R. W., and Barrows, F. T. (2001). Digestibility, growth and excretion response    |
| 1077 | of rainbow trout (Oncorhynchus mykiss Walbaum) to feeds of different ingredient particle                    |
| 1078 | sizes. Aquaculture Research, 32(11), 885-893. doi:DOI 10.1046/j.1365-2109.2001.00624.x                      |
| 1079 | Zhu, T. F., Ai, Q. H., Mai, K. S., Xu, W., Zhou, H. H., and Liufu, Z. G. (2014). Feed intake, growth        |
| 1080 | performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed                     |
| 1081 | defatted fish meal diets with graded levels of cholesterol. Aquaculture, 428, 290-296.                      |
| 1082 | doi:10.1016/j.aquaculture.2014.03.027                                                                       |
| 1083 |                                                                                                             |
| 1084 |                                                                                                             |

Table 1. A selection of some of the several available reviews dealing with different aspects of fish meal and/or fish oil replacement in aquafeeds. Within each category, references are sorted chronologically.

| Title                                                                                                                                                       | Publication type   | Reference                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------|
| General nutrition, feed formulation and manufacturing reviews                                                                                               |                    |                               |
| Utilization of conventional and unconventional protein sources in practical fish feeds                                                                      | Book chapter       | Tacon and Jackson 1985        |
| Feed ingredient                                                                                                                                             | Book chapter       | Tacon and Akiyama 1997        |
| Raw materials and additives used in fish foods                                                                                                              | Book chapter       | Métallier and Guillaume 1999  |
| Recent developments in the essential fatty acid nutrition of fish                                                                                           | Journal article    | Sargent et al., 1999          |
| Diet formulation and manufacture                                                                                                                            | Book chapter       | Hardy and Barrows 2002        |
| Challenges and opportunities in finfish nutrition                                                                                                           | Journal article    | Trushenski et al., 2006       |
| A review of processing of feed ingredients to enhance diet digestibility in finfish                                                                         | Journal article    | Drew et al., 2007             |
| A feed is only as good as its ingredients - a review of ingredient evaluation strategies for aquaculture                                                    | Journal article    | Glencross et al., 2007        |
| feeds                                                                                                                                                       |                    | ,                             |
| Exploring the nutritional demand for essential fatty acids by aquaculture species.                                                                          | Journal article    | Glencross 2009                |
| Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs                                                                 | Journal article    | Kaushik and Seiliez 2010      |
| Fatty acid requirements in ontogeny of marine and freshwater fish                                                                                           | Journal article    | Tocher 2010                   |
| Nutrient Requirements of Fish and Shrimp                                                                                                                    | Book               | NRC 2011                      |
| Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective                                                                               | Journal article    | Tocher 2015                   |
| Elsh word and all an artis and alternative to an alternative to a                                                                                           |                    |                               |
| Fish meal and oil sparing and alternative ingredient reviews                                                                                                | la consal a utiala | Catlin at al. 2007            |
| Expanding the utilization of sustainable plant products in aquafeeds: a review                                                                              | Journal article    | Gatlin et al., 2007           |
| n-3 oil sources for use in aquaculture - alternatives to the unsustainable harvest of wild fish                                                             | Journal article    | Miller et al., 2008           |
| Fish oil replacement in finfish nutrition                                                                                                                   | Journal article    | Turchini et al., 2009         |
| Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds                                                                                     | Book               | Turchini et al., 2011         |
| A meta-analysis of the effects of dietary marine oil replacement with vegetable oils on growth, feed                                                        | Journal article    | Sales and Glencross 2011      |
| conversion and muscle fatty acid composition of fish species                                                                                                | 1                  | N                             |
| Benefits of fish oil replacement by plant originated oils in compounded fish feeds, a review                                                                | Journal article    | Nasopoulou and Zabetakis 2012 |
| Having your omega-3 fatty acids and eating them too: strategies to ensure and improve the long-chain polyunsaturated fatty acid content of farm-raised fish | Book chapter       | Trushenski and Bowzer 2013    |
| Feed matters: satisfying the feed demand of aquaculture                                                                                                     | Journal article    | Tacon and Metian 2015         |
| Fish nutrition research: past, present, and future                                                                                                          | Journal article    | Jobling 2016                  |

| Ingredient-oriented reviews                                                                                                                                                                                                                                                       |                                                    |                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|
| Handbook on Ingredients for Aquaculture Feeds                                                                                                                                                                                                                                     | Book                                               | Hertrampf and Piedad-Pascual 2000                          |
| New development in aquatic feed ingredients, and potential of enzyme supplements                                                                                                                                                                                                  | Conference proceedings                             | Hardy 2000                                                 |
| Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish                                                                                                                                                                        | Journal article                                    | Francis et al., 2001                                       |
| Feeding lupins to fish: a review of the nutritional and biological value of lupins in aquaculture feeds                                                                                                                                                                           | Technical report                                   | Glencross 2001                                             |
| Use of cottonseed meal in aquatic animal diets: a review                                                                                                                                                                                                                          | Journal article                                    | Li and Robinson 2006                                       |
| Alternative Protein Sources in Aquaculture Diets                                                                                                                                                                                                                                  | Book                                               | Lim et al., 2008                                           |
| Potential, implications, and solutions regarding the use of rendered animal fats in aquafeeds                                                                                                                                                                                     | Journal article                                    | Trushenski and Lochmann 2009                               |
| Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids                                                                                                                                                        | Journal article                                    | Krogdahl et al., 2010                                      |
| A review of using canola/rapeseed meal in aquaculture feeding                                                                                                                                                                                                                     | Journal article                                    | Enami 2011                                                 |
| Microalgae: a sustainable feed sources for aquaculture                                                                                                                                                                                                                            | Journal article                                    | Hemaiswarya et al., 2011                                   |
| Review on the use of insects in the diet of farmed fish: past and present                                                                                                                                                                                                         | Journal article                                    | Henry et al., 2015                                         |
| The supply of fish oil to aquaculture: a role for transgenic oilseed crops?                                                                                                                                                                                                       | Journal article                                    | Usher et al., 2015                                         |
| The nutrition of prawns and shrimp in aquaculture - a review of recent research Alternative dietary protein sources for farmed tilapia, <i>Oreochromis</i> spp. A review of the development and application of soybean-based diets for Pacific white shrimp Litopenaenus vannamei | Book chapter<br>Journal article<br>Journal article | Fox et al., 1994<br>El-Sayed 1999<br>Sookying et al., 2013 |
| Market-, utilization-, and sustainability- oriented reviews                                                                                                                                                                                                                       |                                                    |                                                            |
| Feeding tomorrow's fish: keys for sustainability                                                                                                                                                                                                                                  | Journal article                                    | Tacon 1997                                                 |
| Nutrition and feeding for sustainable aquaculture development in the third millennium in: Aquaculture in the Third Millennium                                                                                                                                                     | Technical report                                   | Hasan 2001                                                 |
| Fish meal: historical uses, production trends and future outlook for sustainable supplies<br>Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and<br>future prospects                                                            | Book chapter<br>Journal article                    | Hardy and Tacon 2002<br>Tacon and Metian 2008              |
| Feeding aquaculture in an era of finite resources                                                                                                                                                                                                                                 | Journal article                                    | Naylor et al., 2009                                        |
| Impact of rising feed ingredient prices on aquafeeds and aquaculture production                                                                                                                                                                                                   | Technical report                                   | Rana and Hasan 2009                                        |
| Utilization of plant proteins in fish diets: effects of global demand and supplies of fish meal                                                                                                                                                                                   | Journal article                                    | Hardy 2010                                                 |
| Demand and supply of feed ingredients for farmed fish and crustaceans                                                                                                                                                                                                             | Technical report                                   | Tacon et al., 2011                                         |
| A limited supply of fish meal: impact on future increases in global aquaculture production                                                                                                                                                                                        | Journal article                                    | Olsen and Hasan 2012                                       |
| Global fish meal and fish-oil supply: inputs, outputs and markets                                                                                                                                                                                                                 | Journal article                                    | Shepherd and Jackson 2013                                  |
|                                                                                                                                                                                                                                                                                   |                                                    |                                                            |

|      | Future availability of raw materials for salmon feeds and supply chain implications: the case of | Journal article | Shepherd et al., 2017 |  |
|------|--------------------------------------------------------------------------------------------------|-----------------|-----------------------|--|
|      | Scottish farmed salmon                                                                           |                 |                       |  |
| 1087 |                                                                                                  |                 |                       |  |

Table 2. Summary of some selected studies in which the substitution of fish meal with different raw materials, in isolation and/or in combination was tested, in the diet for different commercially important aquaculture species. Entries are sorted alphabetically by common name, finfish first and then crustaceans. Asterisks indicate values are expressed as a percent (%) of the designated reference/control used in each experiment.

| Species     | Raw Materials            | Experiment Constraints and Observations                                                                                     | Gai | n*    | Inta | ke*   | FCR | *     | Reference    |
|-------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|-------|------|-------|-----|-------|--------------|
| Atlantic    | Soy concentrate (S),     | Diets formulated to equivalent crude protein and energy and                                                                 | FM: | : 100 | FM   | : 100 |     | : 100 | Ganga et     |
| Salmon      | Poultry Meal (P), Corn   | balanced for lysine, methionine and taurine.                                                                                | PP: | 113   | PP:  | 107   | PP: | 95    | al., 2015    |
| Salmo salar | Concentrate (C)          | <ul> <li>Fish meal inclusion in plant protein (PP) diet constrained to<br/>20%.</li> </ul>                                  |     |       |      |       |     |       |              |
|             |                          | <ul> <li>Diets fed to transgenic/non-transgenic and diploid/triploid<br/>fish.</li> </ul>                                   |     |       |      |       |     |       |              |
|             |                          | <ul> <li>Data presented is only for the non-transgenic diploid fish.</li> </ul>                                             |     |       |      |       |     |       |              |
|             |                          | <ul> <li>Replacement strategy (PP) fed fish sustained better</li> </ul>                                                     |     |       |      |       |     |       |              |
|             |                          | performance compared to a fish meal reference (FM).                                                                         |     |       |      |       |     |       |              |
|             |                          | <ul> <li>Growth was linked to a better feed intake and improved feed<br/>conversion associated with the PP diet.</li> </ul> |     |       |      |       |     |       |              |
| Atlantic    | Wheat gluten, Corn       | Diets were balanced for both crude protein and energy, as well                                                              | R:  | 100   | R:   | 100   | R:  | 100   | Espe et al., |
| Salmon      | Gluten, Soy Concentrate  | as being balanced for most amino acids.                                                                                     | FS: | 82    | FS:  | 81    | FS: | 98    | 2006         |
|             |                          | <ul> <li>No fish meal, only fish solubles (FS and SW) and hydrolysates</li> </ul>                                           | SW  | : 82  | SW   | : 84  | SW  | : 102 |              |
|             |                          | (SQ) included in any of the test diets.                                                                                     | SQ: | 87    | SQ:  | 86    | SQ: | 99    |              |
|             |                          | <ul> <li>Reference had 49% fish meal.</li> </ul>                                                                            |     |       |      |       |     |       |              |
|             |                          | <ul> <li>All alternative diets had poorer feed intake leading to poorer<br/>growth.</li> </ul>                              |     |       |      |       |     |       |              |
|             |                          | <ul> <li>Feed conversion was unaffected by replacement.</li> </ul>                                                          |     |       |      |       |     |       |              |
| Barramundi  | Lupin kernel Meals (L),  | Diets formulated to same digestible protein (DP) and digestible                                                             | F:  | 100   | F:   | 100   | F:  | 100   | Glencross    |
| Lates       | Wheat gluten (W),        | energy (DE) basis and balanced for amino acids according to                                                                 | L:  | 151   | L:   | 125   | L:  | 83    | et al., 2011 |
| calcarifer  | Poultry Meal (P), Canola | ideal protein concept.                                                                                                      | W:  | 116   | W:   | 111   | W:  | 95    |              |
|             | Meal (C), Blend (B) and  | <ul> <li>Fish meal minimum inclusion constrained to 15%.</li> </ul>                                                         | P:  | 128   | P:   | 126   | P:  | 89    |              |
|             | Fish meal (F) reference  | <ul> <li>Both single replacement and multiple replacement strategies</li> </ul>                                             | C:  | 158   | C:   | 127   | C:  | 80    |              |
|             |                          | sustained performance equivalent to a fish meal reference and that growth was largely linked to feed intake variability.    | В:  | 113   | В:   | 112   | B:  | 101   |              |
|             |                          | <ul> <li>In some cases, use of alternative raw materials stimulated<br/>enhanced feed intake.</li> </ul>                    |     |       |      |       |     |       |              |

| Barramundi    | Poultry Meal, Soybean | Diets formulated to same DP and DE basis and balanced for                          | 30%: 100 | 30%: 100 | 30%: 100  | Glencross    |
|---------------|-----------------------|------------------------------------------------------------------------------------|----------|----------|-----------|--------------|
|               | Meal                  | amino acids according to ideal protein concept.                                    | 20%: 93  | 20%: 89  | 20%: 97   | et al., 2016 |
|               |                       | • Fish meal inclusion constrained to 30%, 20%, 10% or 0%.                          | 10%: 94  | 10%: 92  | 10%: 98   |              |
|               |                       | Feed conversion was consistent across the 30% to 0% inclusion                      | 0%: 84   | 0%: 87   | 0%: 104   |              |
|               |                       | of fish meal.                                                                      |          |          |           |              |
|               |                       | Variation in growth was in response to a decline clearly linked                    |          |          |           |              |
|               |                       | to changes in feed intake.                                                         |          |          |           |              |
| European      | Blood Meal, Soy       | <ul> <li>Diets formulated to same crude protein and lipid basis and</li> </ul>     | 58%: 100 | 58%: 100 | 58%: 100  | Torrecillas  |
| Seabass       | Concentrate, Rapeseed | balanced for amino acids.                                                          | 20%: 96  | 20%: 93  | 20%: 98   | et al., 2017 |
| Dicentrarchus | Meal, Corn Gluten,    | • Fish meal inclusion constrained to 58%, 20%, 10%, 5% or 0%.                      | 10%: 86  | 10%: 91  | 10%: 106  |              |
| labrax        | Wheat Gluten          | <ul> <li>Some treatments were varied with either 6% or 3% fish oil</li> </ul>      | 5%: 81   | 5%: 87   | 5%: 107   |              |
|               |                       | addition. All data presented is with the 6% fish oil.                              | 0%: 51   | 0%: 67   | 0%: 131   |              |
|               |                       | <ul> <li>A deterioration in performance was largely linked to a decline</li> </ul> |          |          |           |              |
|               |                       | feed intake associated with the replacement strategy diet.                         |          |          |           |              |
| European      | Blood Meal, Soy       | <ul> <li>Diets formulated to same crude protein and lipid basis and</li> </ul>     | F: 100   | F: 100   | F: 100    | Messina et   |
| Seabass       | Concentrate, Rapeseed | balanced for amino acids.                                                          | W19: 99  | W19: 97  | W19: 98   | al., 2013    |
|               | Meal, Corn Gluten,    | <ul> <li>Fish meal inclusion constrained to 68% (F), 34% (W19) or 19%</li> </ul>   | W41: 95  | W41: 95  | W41: 100  |              |
|               | Wheat Gluten          | (W41, W+P, W+S).                                                                   | W+P: 99  | W+P: 102 | W+P: 103  |              |
|               |                       | <ul> <li>Growth unaffected by treatment, but a deterioration in FCR</li> </ul>     | W+S: 99  | W+S: 109 | W+S: 110  |              |
|               |                       | linked to an increase in feed intake associated with the                           |          |          |           |              |
|               |                       | replacement strategy in some diets.                                                |          |          |           |              |
| Gilthead      | Corn Gluten Meal,     | <ul> <li>Diets formulated to same crude protein and lipid basis and</li> </ul>     | F: 100   | F: 100   | F: 100    | Gomez-       |
| Seabream      | Wheat Gluten, Pea     | balanced for amino acids according to ideal protein concept.                       | P50: 93  | P50: 83  | P50: 89   | Requeni et   |
| Sparus aurata | Meal, Rapeseed Meal,  | • Fish meal inclusion constrained to 70%, 35%, 18% or 0%.                          | P75: 87  | P75: 75  | P75: 86   | al., 2004    |
|               | Lupin Meal            | <ul> <li>Growth decline with increasing FM replacement linked to a</li> </ul>      | P100: 73 | P100: 66 | P100: 90  |              |
|               |                       | decline in feed intake associated with the replacement                             |          |          |           |              |
|               |                       | strategy diet used.                                                                |          |          |           |              |
|               |                       | <ul> <li>FCR improved with increasing FM replacement, linked to a</li> </ul>       |          |          |           |              |
|               |                       | decline in feed intake.                                                            |          |          |           |              |
| Rainbow       | Lupin Meal, Faba Bean | Diets formulated to same crude protein and energy basis and                        | C0: 100  | C0: 100  | C0: 100   | Gomes et     |
| Trout         | Meal, Pea Meal, Maize | balanced for lysine and methionine only.                                           | C33: 101 | C33: 105 | C33: 105  | al., 1995)   |
| Oncorhynchus  | Gluten, Soy Meal,     | A blend of plant proteins used in each diet.                                       | C66: 101 | C66: 98  | C66: 97   |              |
| mykiss        | Colzapro, Meat Meal   | <ul> <li>Fish meal varied from 54%, 40%, 20% to 0% (C0 to C100</li> </ul>          | C100: 85 | C100: 86 | C100: 102 |              |
|               |                       | respectively).                                                                     |          |          |           |              |

|                                                                |                                                                                                                                                                                         | <ul> <li>Performance unaffected by alternative diets except at 0% fish meal inclusion, where the poorer feed intake led to a reduced growth.</li> <li>Feed conversion unaffected by fish meal replacement.</li> </ul>                                                                                                                                                                                                                 |                                                                                      |                                                                                       |                                                                                             |                                 |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------|
| Rainbow<br>Trout                                               | Peanut Meal (PM),<br>Soybean Meal (SB), Soy<br>Concentrate (SC), Soy<br>Flour (SF) Blood Meal<br>(BM)                                                                                   | <ul> <li>Diets formulated to same crude protein and energy basis and balanced for amino acids.</li> <li>No fish meal included in any of the test diets, with the treatment protein being the predominant protein in each respective diet.</li> <li>All alternative diets had poorer performance linked predominantly to lower feed intake leading to poorer feed conversion and growth.</li> </ul>                                    | CTL: 100<br>PM: 57<br>SB20: 67<br>SC1: 66<br>SC2: 57<br>SF: 86<br>SB40: 86<br>BM: 58 | CTL: 100<br>PM: 78<br>SB20: 85<br>SC1: 82<br>SC2: 78<br>SF: 98<br>SB40: 100<br>BM: 77 | CTL: 100<br>PM: 136<br>SB20: 127<br>SC1: 125<br>SC2: 137<br>SF: 115<br>SB40: 116<br>BM: 133 | Adelizi et<br>al., 1998         |
| Hybrid<br>Striped Bass<br>Morone<br>chrysops x M.<br>saxatilis | Grain Distillers Dried Yeast (G), Corn Gluten Meal (C), Distilers Dried Grains with Solubles (D), Poultry By-Product Meal (P), Soybean Meal (S), Soy (SC) Concentrate, Soy Isolate (SI) | <ul> <li>Diets formulated with inclusion of a single "test" ingredient to the same crude protein and energy basis and balanced for methionine.</li> <li>Fish meal kept constant (~10%) with inclusion of each of the single alternatives and compared to a reference with 30% fish meal.</li> <li>Some significant effects noted on consumer preference relative to ingredient use.</li> </ul>                                        | FM: 100<br>G: 75<br>C: 88<br>D: 85<br>P: 106<br>S: 95                                | FM: 100<br>G: 86<br>C: 92<br>D: 100<br>P: 94<br>S: 97                                 | FM: 100<br>G: 101<br>C: 99<br>D: 109<br>P: 91<br>S: 99                                      | Trushenski<br>and Gause<br>2013 |
| Giant Tiger<br>Prawn<br>Penaeus<br>monodon                     | Poultry Meal, Lupin<br>kernel Meal, Microbial<br>Biomass                                                                                                                                | <ul> <li>Diets formulated with 45% to 0% fish meal, but to same crude protein and energy basis and not balanced for amino acids.</li> <li>Clear decline in performance associated with decreasing fish meal inclusion linked to poorer conversion with a higher feed intake.</li> <li>Growth loss could be offset using a microbial biomass supplement.</li> <li>Effects of different environmental systems also observed.</li> </ul> | 45%: 100<br>20%: 95<br>15%: 91<br>10%: 79<br>5%: 84<br>0%: 82                        | 45%: 100<br>20%: 156<br>15%: 137<br>10%: 133<br>5%: 127<br>0%: 118                    | 45%: 100<br>20%: 159<br>15%: 146<br>10%: 139<br>5%: 134<br>0%: 114                          | Glencross<br>et al., 2014       |
| Whiteleg<br>Shrimp<br>Litopenaeus<br>vannamei                  | Poultry Meal, Soybean<br>Meal, Corn Gluten                                                                                                                                              | <ul> <li>Diets formulated to same crude protein and energy basis and not balanced for amino acids.</li> <li>Trial conducted in outdoor tanks mimicking pond system environment.</li> <li>Replacement of fish meal (9% to 0%) with combined alternatives had no impact on feed intake, feed conversion or growth.</li> </ul>                                                                                                           | 9%: 100<br>6%: 101<br>3%: 102<br>0%: 94                                              | 9%: 100<br>6%: 100<br>3%: 100<br>0%: 100                                              | 9%: 100<br>6%: 99<br>3%: 98<br>0%: 106                                                      | Amaya et<br>al. 2007)           |

| Whiteleg | Soybean Isolate, Corn | <ul> <li>Diets formulated to same crude protein and energy basis.</li> </ul>                                                                                                                                                       | 56%: 100                                  | N/A  | N/A  | Gamboa-                 |
|----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|------|-------------------------|
| Shrimp   | Gluten                | <ul> <li>Trial conducted in a recirculating aquaculture system environment.</li> <li>Replacement of fish meal (56% to 0%) with combined alternatives had no impact on feed intake, feed conversion, survival or growth.</li> </ul> | 28%: 101<br>18%: 104<br>14%: 82<br>0%: 35 | 14/7 | 14/1 | Delgado et<br>al., 2013 |
|          |                       | <ul> <li>Use of stable isotopes demonstrated differential contributions<br/>of the various raw materials</li> </ul>                                                                                                                |                                           |      |      |                         |

Table 3. Summary of some selected studies in which the advantages of using blends of oils, evidences of omega-3 sparing effect of different dietary fatty acid classes, and the importance of individual lipid nutrients (essential and non-essential) have been reported. (Within each category, entries are sorted per species, alphabetically; finfish first, and then crustaceans).

| Species                                        | Raw Materials /<br>Individual<br>nutrient                                           | Experiment Constraints and Observations                                                                                                                                                                                                                                                                                                                                                                                                | Outcomes                                                                                                                                                                                                                                                                                                                                                             | Reference                  |
|------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Lipid blends                                   |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                      |                            |
| Atlantic Salmon<br>Salmo salar                 | Fish oil (FO) Blend of vegetable oils (VO) (rapeseed 55%, palm 30% and linseed 15%) | <ul> <li>FO replaced at two levels (75 and 100%), extruded diets.</li> <li>Over entire production cycle.</li> <li>Output measured: fish performances, tissues' fatty acid composition, astaxanthin content, and final product sensorial qualities.</li> </ul>                                                                                                                                                                          | No statistically significant difference in performance, except for 100%VO outperforming control (FO) during seawater, winter period. Fatty acid composition of fish tissues modified and reflective of that of the diet.  No effects on pigmentation.  100% VO had less rancid and marine characteristics and was preferred over flesh from the other dietary groups | Torstensen et al.,<br>2005 |
| Atlantic Salmon                                | Fish oil (FO)<br>Rapeseed oil<br>(RO)<br>Linseed oil (LO)                           | <ul> <li>Isoenergetic and isoproteic extruded diets, fed over 50 weeks.</li> <li>9 experimental diets containing single oils or various blends of two vegetable oils at different inclusion, plus control (FO).</li> <li>Output measured: fish performances, tissues' chemical and fatty acid composition.</li> </ul>                                                                                                                  | Some differences in performance at 50 week being recorded, but likely due to constrains in feeding methodology. Fatty acid composition of fish tissues modified and reflective of that of the diet. Atlantic salmon can be raised on diets in which FO is replaced with different blends of vegetable oils for the entire seawater culture phase                     | Bell et al., 2003          |
| European<br>Seabass<br>Dicentrarchus<br>Iabrax | Fish oil (FO) Rapeseed oil (RO) Linseed oil (LO) Palm oil (PO)                      | <ul> <li>Isoenergetic and isoproteic extruded diets, fed to satiety.</li> <li>Control (FO) and two experimental diet containing 60% of different blends of the three vegetable oils.</li> <li>Output measured: fish performances, tissues' fatty acid composition, plasma prostaglandin, blood parameters (haematocrit, leucocytes erythrocytes), kidney macrophage activity, serum lysozyme activity, and tissue histology</li> </ul> | Normal immune function can be more successfully achieved when dietary FO is replaced by a blend of VO (with physiologically balanced fatty acid composition), compared to using a single oil.                                                                                                                                                                        | Mourente et al.,<br>2007)  |

| Gilthead<br>Seabream<br>Sparus aurata<br>European<br>Seabass | Fish oil (FO) Soybean oil (SO) Rapeseed oil (RO) Linseed oil (LO) Mixture (Mix) of SO, RO and LO | <ul> <li>Isoenergetic and isoproteic extruded diets, fed to satiety.</li> <li>Control 100% FO.</li> <li>Experimental diets 60% of FO replaced by one of the tested oil.</li> <li>Output measured: fish performances, fatty acid composition and final product sensorial qualities.</li> </ul>                               | No statistically significant difference in performance, but Mix resulted in numerical better values, even compared to FO. Fatty acid composition of fish tissues modified and reflective of that of the diet. No effects on smell, taste and texture of fish fillet, apart from stronger smell and taste recorded for fish fed SO.                            | Izquierdo et al.,<br>2003         |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Giant Tiger<br>Prawn Penaeus<br>monodon                      | Fish oil (FO) Several different marine oils, vegetable oils and purified fatty acids.            | <ul> <li>Several dietary treatments to assess various dietary fatty acid combinations</li> <li>Output measured: prawn performances, tissues' fatty acid composition,</li> </ul>                                                                                                                                             | The correct balance of dietary fatty acids, particularly C18 PUFA of the n-3 and n-6 series, coupled with the optimal ratio between EPA and DHA, resulted in lower requirement, and more efficient utilisation, of n-3 LC-PUFA; Proper oil blend results also in improved growth performances compared to prawn fed with FO as the main dietary lipid source. | Glencross et al.,<br>2002a, 2002b |
| Omega-3 sparin                                               | ng                                                                                               |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                               |                                   |
| Atlantic Salmon                                              | Fish oil (FO) Tuna oil (TO) Poultry oil (PoL) Rapeseed oil (RO)                                  | <ul> <li>Isoenergetic and isoproteic diets, fed to satiety.</li> <li>Control 100% FO, compared to different blends of the other oils</li> <li>Output measured: fish performances and fatty acid composition.</li> </ul>                                                                                                     | A DHA:EPA ratio higher than that commonly occurring in FO, resulted in more efficient deposition of n-3 LC-PUFA.  Blending FO with PoL increased the efficiency of n-3LC-PUFA retention/deposition compared to a diet based on FO only                                                                                                                        | Codabaccus et al.,<br>2012        |
| Barramundi<br>Lates calcarifer                               | Fish oil (FO)<br>Olive oil (OO)<br>Palm oil (PO)<br>Palm flake (PF)                              | <ul> <li>Isoenergetic and isoproteic diets, fed to satiety.</li> <li>Control 100% FO, and two experimental diets,<br/>SFA rich and one MUFA rich blending the<br/>different oils.</li> <li>Output measured: fish performances, fatty acid<br/>composition and apparent <i>in vivo</i> fatty acid<br/>metabolism.</li> </ul> | Either dietary SFA or MUFA can influence the in vivo metabolism of fatty acids and the final fatty acid composition of the whole fish Dietary MUFA and SFA are both equally efficient at sparing n-3 LC-PUFA from an oxidative fate.                                                                                                                          | Salini et al., 2017               |
| European<br>Seabass                                          | Fish oil (FO) Cottonseed oil (CSO) Canola oil (CO)                                               | <ul> <li>Isoenergetic and isoproteic diets, fed to satiety.</li> <li>Control 100% FO. Each oil tested in isolation at a 50/50 mix at 100% substitution.</li> <li>Output measured: fatty acid composition and apparent <i>in vivo</i> fatty acid metabolism.</li> </ul>                                                      | European sea bass was able to efficiently use n-6 PUFA for energy substrate, and this minimized the β-oxidation of n-3 LC-PUFA, and increased their deposition into body compartments.                                                                                                                                                                        | Eroldogan et al.,<br>2013         |

| Murray Cod<br>Maccullochella<br>peelii peelii                                     | Fish oil (FO) Linseed oil (LO) Olive oil (OO) Palm oil (PO) Sunflower oil (SFO) | <ul> <li>Isoenergetic and isoproteic diets, fed to satiety.</li> <li>Control 100% FO. Each oil tested at 100% substitution.</li> <li>Grow-out plus finishing on FO.</li> <li>Output measured: fish performances, fatty acid composition and apparent <i>in vivo</i> fatty acid metabolism.</li> </ul> | Not all alternative oils performed the same, and the actual overall fatty acid composition of the alternative oil used (i.e. SFA, MUFA, PUFA) had a remarkable effect on the final n-3 LC-PUFA content of the fish MUFA, and to a lesser extent SFA, showed an "omega-3 sparing effect", where their abundant availability in the diet decreased the catabolism of n-3 LC-PUFA and resulting in a greater flesh deposition rate. | Turchini et al., 2011                                                                                                                  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Hybrid Striped<br>Bass Morone<br>chrysops x M.<br>saxatilis                       | Fish oil (FO)<br>Coconut oil<br>(CCO)<br>Palm oil (PO)                          | <ul> <li>Isoenergetic and isoproteic diets, fed to satiety.</li> <li>Control 100% FO, and CCO and PO either tested at 50% or 100% substitution of FO.</li> <li>Output measured: fish performances and fatty acid composition.</li> </ul>                                                              | Dietary inclusion of abundant levels of SFA appeared to improve the retention of n-3 LC-PUFA in the tissues of the fish.                                                                                                                                                                                                                                                                                                         | Trushenski 2009                                                                                                                        |
| Individual (esse                                                                  | ential and non-esse                                                             | ntial) lipids                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |
| Atlantic Salmon Rainbow Trout Oncorhynchus mykiss                                 | Individual fatty<br>acid                                                        | Different studies, see references for details.                                                                                                                                                                                                                                                        | Individual dietary fatty acids trigger differential responses in regulation of gene transcription                                                                                                                                                                                                                                                                                                                                | Coccia et al., 2014;<br>Kjaer et al., 2016                                                                                             |
| Atlantic salmon  California Halibut Paralichthys californicus  Cobia Rachycentron | EPA (20:5n-3),<br>DHA (22:6n-3)<br>and EPA/DHA<br>ratio                         | Different studies, see references for details.                                                                                                                                                                                                                                                        | EPA and DHA have different nutritional roles and metabolic fates. DHA appears to be nutritionally more important and preferentially retained into fish tissues, whereas EPA seems to be more metabolically expendable.                                                                                                                                                                                                           | Betiku et al., 2016;<br>Codabaccus et al.,<br>2012; Emery et al.,<br>2016; Trushenski et<br>al., 2012; Vizcaino-<br>Ochoa et al., 2010 |
| canadum  Rainbow Trout                                                            |                                                                                 |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |
| Atlantic salmon                                                                   | ARA (20:4n-6)                                                                   | Different studies, see references for details.                                                                                                                                                                                                                                                        | Dietary ARA plays a series of important roles affecting fish performance, health and                                                                                                                                                                                                                                                                                                                                             | Ding et al., 2018;<br>Glencross and Smith                                                                                              |

| Gilthead<br>Seabream |             |                                                  | reproduction and its dietary availability should be considered in feed formulation.                 | 2001; Koven et al.,<br>2001; Lund et al.,<br>2007; Norambuena |
|----------------------|-------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Giant Tiger          |             |                                                  |                                                                                                     | et al., 2015; Van                                             |
| Prawn Penaeus        |             |                                                  |                                                                                                     | Anholt et al., 2004                                           |
| monodon              |             |                                                  |                                                                                                     |                                                               |
| Oriental River       |             |                                                  |                                                                                                     |                                                               |
| Shrimp               |             |                                                  |                                                                                                     |                                                               |
| Macrobrachium        |             |                                                  |                                                                                                     |                                                               |
| nipponense           |             |                                                  |                                                                                                     |                                                               |
| Atlantic Salmon      | Cholesterol | • Different studies, see references for details. | Though not essential, the availability of dietary cholesterol appears to have several physiological | Guerra-Olvera and Viana 2015; Leaver                          |
| Rainbow Trout        |             |                                                  | important effects, which ultimately may affect fish performance. Diets where FM and FO are          | et al., 2008;<br>Norambuena et al.,                           |
| Turbot               |             |                                                  | abundantly substituted with vegetable alternatives                                                  | 2013; Yun et al.,                                             |
| Scophthalmus         |             |                                                  | may be limited in their cholesterol availability.                                                   | 2012; Zhu et al.,                                             |
| maximus              |             |                                                  |                                                                                                     | 2014                                                          |
| Yellowtail           |             |                                                  |                                                                                                     |                                                               |
| Kingfish Seriola     |             |                                                  |                                                                                                     |                                                               |
| lalandi              |             |                                                  |                                                                                                     |                                                               |

Table 4. Influence of raw materials and diet processing on diet characteristics and fish performance.

| Parameter                   | Finding                                                                                                                                                                                                                                  | References                                                                           |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Raw materials processing    |                                                                                                                                                                                                                                          |                                                                                      |
| - Particle size             | <ul> <li>Reducing particle size had no effect on digestibility, but improved FCR</li> <li>Dehulling (removal) of grain seed coats increases their protein content AND also increases the</li> </ul>                                      | Zhu et al., 2001; Booth et al., 2001; Glencross et al.,                              |
| - Dehulling grain           | digestibility of that protein → some non-starch polysaccharides have a clear influence on nutrient absorption from vegetable proteins                                                                                                    | 2004, 2007, 2008; Ngo et al.<br>2015; Refstie et al. 1998,                           |
| - Solvent extraction        | <ul> <li>Solvent-extraction reduces the energy digestibility of canola meals</li> <li>Solvent-extraction reduces the energy digestibility of soybean meals</li> </ul>                                                                    | Barrows et al., 2007;<br>Opstvedt et al. 2003                                        |
| - Extrusion cooking         | <ul> <li>Pre-extrusion of soybean meal improved its digestibility</li> <li>Increased thermal cooking reduced digestibility of fish meals</li> </ul>                                                                                      |                                                                                      |
| - Thermal cooking           | - Increased thermal cooking reduced digestibility of canola meals                                                                                                                                                                        |                                                                                      |
| Diet processing type        |                                                                                                                                                                                                                                          |                                                                                      |
| - Pelleting cf. Extrusion   | <ul> <li>Extrusion improved the durability of pellets and digestibility of starch</li> <li>Extrusion improved the digestibility of energy</li> <li>Extrusion improved the digestibility of most nutrients in most ingredients</li> </ul> | Hilton et al., 1981; Vens-<br>Capell 1984; Cheng and<br>Hardy 2003; Glencross et al. |
|                             | - That dry matter and energy digestibilities correlate between pelleting and extrusion, but not nitrogen or sum amino acid digestibilities                                                                                               | 2011                                                                                 |
| Extrusion constraints       |                                                                                                                                                                                                                                          |                                                                                      |
| - Internal lipid levels     | - That lipid levels with the extrudate mash cannot exceed a certain level without interfering with gelatinisation/melt → poor pellet binding and low expansion.                                                                          | Lin et al., 1997; Sørensen,<br>2012;                                                 |
| - Soluble protein levels    | <ul> <li>Soluble protein content of the extrudate mash cause extrudate plasticisation</li> <li>Soluble protein content of the extrudate mash improves pellet durability</li> </ul>                                                       | Oterhals and Samuelsen, 2015;                                                        |
| - Certain ingredient levels | <ul> <li>Certain ingredients cause acute densification (e.g. wheat gluten)</li> <li>Certain ingredients cause acute expansion (e.g. tapioca)</li> </ul>                                                                                  | Samuelsen and Oterhals 2016; Draganovic et al.                                       |
| - Temperature               | <ul> <li>Certain fish meals improve pellet durability more than others</li> <li>Increasing temperatures (100°C, 125°C or 150°C) had no effect on nutrient digestibility</li> </ul>                                                       | 2013; Glencross et al., 2010, 2012; Samuelsen et al.                                 |
| - Inclusion of NaDiFormate  | <ul> <li>The use of high extrusion temperature (141 °C) improved nutrient digestibility</li> <li>Addition of NaDF increased the digestibility of most nutrients</li> </ul>                                                               | 2013, 2014; Sorensen et al.,<br>2002; Morken et al., 2011;                           |
| - Inclusion of water        | <ul> <li>There are critical thresholds for water retention in the extrudate → changes in pellet rheology<br/>and extrusion operating parameters</li> </ul>                                                                               | Oehme et al., 2014;<br>Storebakken et al., 2015                                      |
| - Screw configuration       | <ul> <li>Constrained water addition reduces starch gelatinization</li> <li>Screw configuration affects pellet durability</li> </ul>                                                                                                      |                                                                                      |