	commercial raw materials, <i>Aquaculture</i> , 495, pp. 214-221. DOI: <u>https://doi.org/10.1016/j.aquaculture.2018.05.026</u> © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>
1	Critical variability exists in the digestible value of raw materials fed to black tiger shrimp, Penaeus
2	monodon: The characterisation and digestibility assessment of a series of research and commercial
3	raw materials
4	
5	
6	Brett Glencross ^{1,3} , David Blyth ² , Nick Wade ¹ and Stuart Arnold ²
7	
8	1. CSIRO Aquaculture, CSIRO Agriculture and Food, GPO Box 2583, Brisbane, QLD 4001,
9	Australia
10	2. CSIRO Aquaculture, CSIRO Agriculture and Food, North St, Woorim, QLD 4710, Australia
11	3. Institute of Aquaculture, University of Stirling, FK9 4LA Scotland, United Kingdom
12	
13	(p) +44-1786-467918
14	(e) B.D.Glencross@stir.ac.uk
15	
16	
17	Keywords : prawns, ingredients, digestibility, plant proteins, animal by-products, fishmeal
18	replacement
19	
20	Submitted to : Aquaculture
21	
22	
23	
24	
25	Highlights
26	- The digestibilities of each of 29 raw materials were determined for <i>Penaeus monodon</i> .
27	- Significant variability was observed in both diet and subsequent ingredient digestibilities.
28	- The combined variation in composition and digestibility was shown to magnify differences in
29	quality between raw materials.
30	- This data provides an improved basis from which to formulate shrimp diets on a digestible
31	nutrient basis.
32	

- 33 Abstract
- 34

35 The digestibility of a suite of raw materials was determined when fed to black tiger shrimp (Penaeus monodon) in a series of three experiments. A total of 29 commercial and research raw 36 materials were evaluated using the diet replacement digestibility method. Each of the reference and 37 test diets were fed to tanks of shrimp for one-week prior to commencing faecal collection. The 38 collected faecal samples were kept separate from any feed residue through using a discrete feeding 39 period, after which uneaten feed was removed before a separate faecal collecting period. The same 40 reference diet and soy protein concentrate diet were used across each of the three experiments and 41 42 demonstrated consistent digestibility using this method. Most raw materials demonstrated some utility for use in diets for shrimp, with digestible protein or energy values greater than 0.800. However, there 43 were some raw materials (e.g. Camelina meal) that provided very little nutritive value for shrimp. 44 45 This study presents data on the digestibility and digestible nutrient content of a wide variety of raw materials, providing a clear basis for progressing to formulating shrimp diets on a digestible protein 46 and energy basis, thereby optimising dietary formulation, maximising ingredient utilisation and 47

48 reducing impacts of uneaten feed.

49 **1.** Introduction

50 Progress in the use of raw materials, other than fishmeal and fish oils, in diets for shrimp has 51 resulted in significant advancements in the ability to utilize a range of different terrestrial derived grain and animal resources (Davis and Arnold, 2000; Davis et al., 2002; Alvarez et al., 2007; Cruz-52 53 Suarez et al., 2001; 2007; Smith et al., 2007; Luo et al., 2012; Carvalho et al., 2016). However, the 54 capacity to effectively utilize raw materials in diets for any aquaculture species, including shrimp, 55 relies on an ability to formulate diets to consistent digestible nutrient and digestible energy specifications (Glencross et al., 2007). Failure to formulate on an equivalent digestible nutrient and 56 energy basis can result in a misleading interpretation of the value of a raw material through a failure 57 of diet specifications, not a failure in the raw material per se. However, in many cases, the assessment 58 59 of alternative raw materials has occurred with excess nutrient supply masking any potential deficiencies through the formulation of diets to crude nutrient and gross energy specifications only 60 and as such the variability in the nutritional value of those alternatives is missed because of that over 61 supply of nutrients (Glencross et al., 2008). 62

Over the past twenty years there have been a suite of studies that have evaluated the 63 64 digestibility of specific raw materials (Merican and Shim, 1995; Brunsen et al., 1997; Glencross and 65 Smith, 1997; Smith et al., 2007, Cruz-Suarez et al., 2007; 2009; Yang et al., 2009; Carvalho et al., 66 2016). Most of these studies have focused on specific ingredients. However, very few studies have 67 examined the digestibility of a comprehensive suite of raw materials, with those that do focused on Litopenaeus vannamei (Lemos et al., 2009; Yang et al., 2009; Carvalho et al., 2016). In the study by 68 Lemos et al., 2009, the authors compared the digestibility of protein against the *in vitro* digestibility of 69 protein but did not report any of the other nutritional parameters (e.g. digestible dry matter, energy or 70 71 lipid). The study by Yang et al., 2009 assessed a range of plant and animal meals without assessing 72 their specific origin or the effects of post processing. Whereas the study by Carvalho et al., (2016) had 73 a focus on the use of various animal and vegetable meals but did also include an analysis of the effect 74 of inclusion level and reported variable effects of inclusion level across those raw materials studied. 75 Such databases on the digestible value of ingredients remain highly useful resources to underpin future formulation of both practical and research diets and form the basis of understanding the key 76 77 raw material attributes that affect nutritional quality of raw materials.

In the present study, a series of digestibility experiments were undertaken with black tiger shrimp (*Penaeus monodon*) to define the digestible nutrient and energy values of a suite of raw materials for use in shrimp diets. It was postulated that shrimp would exhibit different capacities to digest this range of different raw materials. We considered that the generation of this data is an essential step to improve the basis by which shrimp diets are formulated. The variation in chemical and digestible composition of the different raw materials is discussed, as are some of the key observational determinants of variability in digestibility values encountered in this study.

85 2. Materials and Methods

86 2.1 Raw material preparation

87 A suite of raw materials with potential for or currently being used in the shrimp feed sector were sourced from a commercial feed company (Ridley Aquafeeds, Narangba, QLD, Australia) and 88 89 raw material producers throughout Australia. A mixture of plant protein and rendered animal by-90 products were obtained. Some additional raw materials for use in research diets were also evaluated 91 (e.g. vitamin-free casein). Each of the raw materials was milled using a Retsch mill (ZM200 Centrifugal Mill; MEP Instruments, Brendale, QLD, Australia) with a 750 µm screen to create a 92 consistent flour from each product. After milling, all raw materials were held at -20°C pending diet 93 94 manufacture. Details and composition of all raw materials used in this study are presented in Tables 1 95 and 2.

96

97 2.2 Diet manufacture

98 A diet design strategy based on the diet-substitution ingredient digestibility method was used 99 as the basis for this study (as reviewed by Glencross et al., 2007). As the basis for this strategy a reference diet was developed using a formulation specification of 42% protein and 7% lipid which 100 101 was a mimic of the commercial feeds typically used in the Australian shrimp farming industry and which also acts as our industry equivalent performance benchmark (Glencross et al., 1999). A large 102 103 (100kg) batch of reference mash was prepared with a subsample pelleted to make the reference diet. Test diets were made by blending a sample of the test ingredient with a subsample of the reference 104 mash in a 30:70 ratio on an as is basis (Table 3). Each diet was prepared by mixing samples of the test 105 106 raw material and reference mash in an upright planetary mixer (Hobart, Sydney, NSW, Australia). Water was then added during the mixing to form a dough which was subsequently screw-pressed 107 (Dolly, La Monferrina, Castell'Alfero, Italy) through a 1.5mm die and cut to pellet lengths of about 108 109 6mm. The pellets were then steamed using a commercial steamer (Curtin & Son, Sydney, Australia) at 100°C for 3 minutes before being oven dried at 60°C for 24h. Diets were kept at -20°C when not 110 111 being fed.

112

113

2.3 Shrimp collection and trial management

Several hundred individuals (~3.0 g/shrimp, subsample weight of n=40) of black tiger shrimp
were collected from two commercial farm grow-out ponds (Truloff's Prawn Farm, Alberton, Qld
4207 and Melivan Pty Lt, Kurrimine Beach, Qld 4871) by cast-netting and transferred to a holding
tank (10,000 L) where they were held pending allocation to trial tanks. During the holding period (~7
days) they were fed a standard commercial grower diet (Prawn EnhanceTM, Ridley Aquafeeds,
Narangba, QLD, Australia).

For the faecal collection part of the study, five shrimp were allocated to each of 60 x 100 L
circular (60cm D x 45cm H) tanks in an indoor laboratory system. Each of the tanks of shrimp were

122 maintained with flow-through seawater at a rate of 1 L/min. The temperature (assessed daily) across

- all tanks was $28.9 \pm 1.0^{\circ}$ C and dissolved oxygen at 6.4 ± 0.14 mg/L over the experimental period.
- 124 Light was maintained on a 12 : 12 light : dark cycle for the duration of the study. All work undertaken
- 125 in the laboratory was done using red-light to ensure the shrimp were not disturbed. For each
- treatment, each tank was used as the replicate unit (n = 5 per treatment). Three sub-experiments with
- 127 up to 12 treatments were conducted consecutively. In each of these sub-experiments the reference diet
- 128 and the SPC diet used were the same to provide two cross-trial references.

129 To acclimate the shrimp to their diets they were fed a fixed ration (1.0 g/tank/d) of their respective treatment diet for one week prior to faecal collection commencing. During the faecal 130 collection period the shrimp were twice fed a ration (approx. 1.0g) 4 hours apart and allowed 30 131 minutes to consume the ration, before all uneaten food was siphoned to waste. Two hours after the 132 133 feed was first offered, all faeces were siphoned into a labelled bucket and allowed to settle briefly before the faeces were then transferred to a 10 mL centrifuge tube. The seawater was then decanted 134 and replaced with deionised water and the volume made up to 10 mL before centrifuging at 5000 rpm 135 for 30 sec. All fluid was then decanted and the tube capped and frozen. The frozen pellet was then 136 137 transferred to a sample vial for pooling and sample preparation. This process was conducted over a 138 14-day period for each sub-experiment to collected adequate sample for analysis. Faeces were not 139 collected from any tanks with animals that had molted. No shrimp mortalities occurred during the experiments. The methods used here were based on those reported previously (Glencross et al., 2002; 140 Smith and Tabrett, 2004; Smith et al., 2007; Glencross et al., 2013). 141

- 142
- 143

2.4 Chemical and digestibility analysis

144 All chemical analyses were carried out using methods consistent with AOAC (2005). Diet, raw material and faecal samples were analysed for dry matter, yttrium, ash, nitrogen, total lipids, and 145 146 gross energy content. Only raw materials were analysed for amino acids. Dry matter was calculated 147 by gravimetric analysis following oven drying at 105°C for 24 h (Contherm Thermotec2000; Thermofisher, Scoresby, VIC, Australia). Total yttrium concentrations were determined after mixed 148 149 acid digestion using an inductively coupled plasma atomic emission spectrophotometry (ICP-MS). 150 Protein levels were calculated from the determination of total nitrogen by CHNOS auto-analyser, 151 based on N x 6.25 (Leco Corp., St. Joseph, MI, USA). Amino acid composition of samples were 152 determined by an acid hydrolysis prior to separation via HPLC (Shimadzu Nexera X2 series UHPLC, 153 Shimadzu Corporation, Kyoto, Japan; coupled with a Shimadzu 8030 Mass Spectrometer). The acid 154 hydrolysis destroyed tryptophan making it unable to be determined using this method. Total lipid 155 content of the samples was determined gravimetrically following extraction of the lipids using the chloroform:methanol method. Gross ash content was determined gravimetrically following loss of 156 mass after combustion of a sample in a muffle furnace at 550°C for 12 h. Gross energy was 157 determined by adiabatic bomb calorimetry (Par Instrument Company, Moline, IL, USA). 158

Differences in the ratios of the parameters of dry matter, protein, lipids, carbohydrates or gross energy to yttrium, in the feed and faeces in each treatment were calculated to determine the apparent digestibility coefficient (ADC_{diet}) for each of the nutritional parameters examined in each diet based on the following formula:

163

$$ADC_{diet} = 1 - \left(\frac{Y_{diet} \times Parameter_{faeces}}{Y_{faeces} \times Parameter_{diet}} \right)$$

- 164 165
- 166where Y_{diet} and Y_{faeces} represent the yttrium content of the diet and faeces respectively, and167Parameter_{diet} and Parameter_{faeces} represent the nutritional parameter of concern (organic matter, protein168or energy) content of the diet and faeces respectively. The digestibility values for each of the test raw169materials in the test diets examined in this study were calculated according to the formulae:
- 170

171
172
$$Nutr.AD_{RM} = \frac{(AD_{test} \times Nutr_{test} - (AD_{basal} \times Nutr_{basal} \times 0.7))}{(0.3 \times Nutr_{RM})}$$

Where $Nutr.AD_{RM}$ is the digestibility of a given nutrient from the test raw material included in the test 173 174 diet at 30%. AD_{test} is the apparent digestibility of the test diet. AD_{basal} is the apparent digestibility of 175 the basal diet, which makes up 70% of the test diet. Nutr_{RM}, Nutr_{test} and Nutr_{basal} are the level of the 176 nutrient of interest in the raw material, test diet and basal diet respectively. All raw material inclusion 177 levels were also corrected for their respective dry matter contribution relative to the dry matter content of the basal mash (Bureau and Hua, 2006). Ingredients with less than 5% lipid or 10% carbohydrates 178 (CHO) were not assessed for lipid or CHO digestibilities due to an unacceptable error rate being 179 encountered below this level these nutrients in the raw materials. 180

Raw material digestibilities greater than 100% were not corrected because we consider they are potentially indicative of interactive effects between the diet and test raw material and should be stipulated as determined. However, for reasons of practicality, the total levels of digestible nutrients/energy were only calculated assuming a maximum digestibility of 100% or a minimum of 0% when multiplied against the respective nutrient parameter of that raw material.

186

187 2.5 Statistical analysis

All values are means and standard error of the mean, unless otherwise specified. No ANOVA 188 189 comparison of the digestibility values among all the raw materials was undertaken as this was considered largely pointless. For some specific comparisons an ANOVA was undertaken with a 190 Tukey's HSD post hoc test applied. For some simple comparisons (e.g. extruded versus raw feed 191 192 grains) a MANOVA analysis was undertaken with a Tukey's HSD post hoc test applied. To examine potential effects of composition on digestibility, correlation matrices between diet composition and 193 diet digestibility, and again between raw material composition and raw material digestibility were 194 195 undertaken using Microsoft Excel. Limits for all critical ranges were set at P < 0.05. Because of

- 196 nominal variance in the reference diet data across experiments, no standardisation of the inter-
- 197 experiment data was undertaken. Statistical analyses were conducted in the R-project statistical
- 198 environment, version 3.1.0 (R Core Team, 2014).
- 199

200 **3. Results**

201 3.1 Raw material characterisation

Across the 29 different raw materials examined in this study there was a substantial range in 202 the composition parameters observed (Tables 1 and 2). Concentrations of protein varied from 0.2% 203 204 DM in the pregelled starch to 93.4% DM in the blood meal. The concentrations of lipid were lowest in the pregelled starch and wheat gluten (<1% DM), though were also low (<2%) in field peas, faba 205 beans and blood meals. By contrast the lipid concentrations were highest in the Camelina meal 206 207 (29.3% DM) and krill meal (21.1% DM). The concentrations of ash were lowest in the pregelled starch and blood meal (~1.2% DM), though were also low (<2%) in wheat gluten, wheat flour and 208 corn gluten. By contrast the ash concentrations were highest in the meat and bone meals (24.6 and 209 27.7% DM) and the tuna by-product fish meal (21.9% DM). Carbohydrate (CHO) concentrations 210 were highest in the pregelled starch (98.6% DM), though were also high (>60%) in field peas, wheat 211 flour and faba beans. Several ingredients were devoid of any CHO (e.g. blood meal, Jack mackerel 212 meal, etc.). Energy densities were highest in the Camelina meal (26.3 MJ/kg DM) and lowest in the 213 faba beans and field peas (18.9 MJ/kg DM). Amino acid concentrations also varied substantially 214 215 among the different raw materials (Table 2). There was a strong relationship between the crude 216 protein and sum of amino acids across all raw materials ($R^2 = 0.973$).

217

218

3.2 Diet nutrient and energy digestibilities

Across the three experiments there was a low level of variability (CV% < 10%) among the 219 various digestibility values of the two common reference diets (the basal and SPC diets) (Table 4). 220 However, the extent of this variation was significant among the different experiments on the basal diet 221 222 for the CHO digestibility, and on the SPC diet for most parameters except lipid digestibility. The coefficients of variation (CV%) in the digestibility of these diets ranged from 0.8% for dry matter 223 digestibility of the basal diet to 9.2% for dry matter digestibility of the SPC diet across the three 224 225 experiments. Variation in the digestibility values for protein, lipid and energy of these two diets were otherwise between these two values observed for the dry matter digestibilities. Variation in the 226 227 ingredient digestibility values across the three experiments was somewhat larger with coefficients of variation ranging from 9.8% for protein digestibility to 29.9% for energy digestibility. No significant 228 229 effects of experiment were observed for any of the other parameters.

Diet digestibility values for the 29 test diets ranged according to the different parameters measured (Table 5). Dry matter digestibilities were on average 0.636 ± 0.106 (mean \pm SD), with a CV% of 16.6%. ADC values for dry matter digestibilities ranged from 0.251 (camelina meal) to 0.783 (Vitamin-free casein). Protein digestibilities were on average 0.765 ± 0.095 (mean \pm SD), with a CV% of 12.4%. ADC values for protein digestibilities ranged from 0.483 (hydrolysed feather meal) to 0.895 (wheat gluten). Lipid digestibilities were on average 0.790 ± 0.076 (mean \pm SD), with a CV% of 9.6%. ADC values for lipid digestibilities ranged from 0.559 (Blood meal) to 0.870 (Anchovetta

- fishmeal). Energy digestibilities were on average 0.704 ± 0.089 (mean \pm SD), with a CV% of 12.6%.
- ADC values for energy digestibilities ranged from 0.438 (camelina meal) to 0.826 (wheat gluten).
- 239 Carbohydrate digestibilities were on average 0.722 ± 0.091 (mean \pm SD), with a CV% of 12.5%.
- ADC values for carbohydrate digestibilities ranged from 0.423 (camelina meal) to 0.874 (blood meal).

Across the 30 different diets (including the basal diet) a correlation matrix examining 35 combinations was created to examine potential relationships between diet composition (dry matter, ash, protein, lipid, carbohydrate, protein+lipid and organic matter) and diet digestibilities for dry matter, protein, lipid, energy and carbohydrates. Several significant relationships were observed; Diet ADC-CHO vs. Diet Lipid (R =-0.487, P=0.006), Diet ADC-CHO vs. Diet DM (R =-0.430, P=0.018)

- and Diet ADC-Lipid vs. Diet Ash (R = 0.397, P=0.030).
- 247

248

3.2 Raw material nutrient and energy digestibilities

Consistent with the observations from the diet digestibilities there was also a substantial range 249 in the digestibilities of each of the parameters examined (dry matter, protein, lipid and energy) across 250 251 each of the raw materials studied (Table 5). Raw material dry matter digestibilities ranged from -0.818 252 (camelina meal) to 0.929 (dried fish solubles) across the different raw materials. Raw material protein 253 digestibilities ranged from -0.247 (camelina meal) to 1.347 (wheat gluten). Lipid digestibilities ranged 254 from -0.028 (raw field peas) to 1.693 (wheat flour) across the range of raw materials. CHO 255 digestibilities ranged from -0.527 (camelina) to 1.002 (extruded field peas) across the range of raw materials. Raw material energy digestibilities ranged from -0.109 (camelina meal) to 0.953 (vitamin-256 free casein). 257

The factorial arrangement of field pea/faba bean x extrusion/raw demonstrated some notable 258 259 effects. A significant effect of both grain type (P < 0.000) and processing (P = 0.001) on the digestibility of energy was observed, with improvements in energy digestibility occurring with the use of pre-260 261 extruded grains and peas being more digestible than faba beans. However, there was no interaction 262 effect (P=0.307). There was also a significant effect (P=0.003) of extrusion on the dry matter digestibility of faba beans, but not field peas and a significant difference between the two grain types 263 (P<0.000). No interaction effect was observed (P=0.152). There were no significant effects of grain 264 type, processing or interaction on protein digestibility. There was no effect of grain type on lipid 265 digestibility (P=0.678), or processing (P=0.244), but there was a significant interaction effect 266 267 (P=0.025). There was also an effect of grain type on carbohydrate digestibility (P<0.000), but not 268 processing (P=0.240) or interaction (P=0.351).

Across the 29 different raw materials a correlation matrix examining 32 combinations was created to examine potential relationships between raw material composition (dry matter, ash, protein, lipid, energy, carbohydrate, protein+lipid and organic matter) and raw material digestibilities for dry matter, protein, lipid and energy. No significant relationships were observed.

- 273 The digestible nutrient and energy contents of each of the tested ingredients is presented in
- 274 Table 6.

275 **4.** Discussion

276 To reduce reliance on fishmeal in shrimp diets, it has long been recognised that assessment of 277 alternative raw materials is one of the critical steps underpinning the optimal use of alternative raw materials (Gatlin et al., 2007). One of the foundational assessment strategies in evaluating raw 278 279 materials for any animal species is to measure the digestibility of nutrients and energy from the specific raw materials of interest (Glencross et al., 2007). In this regard, the present study was 280 undertaken to measure the digestible nutrient and energy values of a suite of raw materials for use in 281 282 shrimp diets. It was anticipated that there would be substantial differences among the various test raw materials on diet digestibility, which was observed in several instances. The generation of this data is 283 an essential step to improve the future basis to formulate shrimp diets. Not only does this data broaden 284 the range of raw materials available for use in shrimp diets by providing a better understanding of 285 286 their nutritional limitations, it also provides a basis from which to formulate diets on a digestible nutrient basis and so better design diets to meet the needs of shrimp. 287

288

289 4.1 Raw material characterisation

290 Although the focus of this study was to examine the effects of different raw materials on the 291 digestibilities of diets and subsequently, by calculation/inference, the raw materials being tested, the 292 large range of raw materials being assessed also offers the chance to examine the range in 293 composition of some key resources. This characterisation stage was extolled by Glencross et al. (2007) as an often-missed point of many similar such studies and the results in the present study, we 294 believe exemplify why this is an important part of any raw material assessment study. It can be seen 295 by examination of the three fishmeals, three poultry offal meals, two canola meals and two soybean 296 297 meals, that substantial differences exist subject to factors such as genotype, origin and processing variables. Simply describing a raw material as "soybean meal" or "fishmeal" without an 298 299 accompanying comprehensive chemical characterisation and identification of the products origin 300 substantially reduces the value of the data and limits the differentiation of good quality products from 301 inferior ones.

As anticipated, the extrusion of faba beans and field peas had no significant effect on their proximate chemical composition, supporting that any nutritional impacts are due to secondary changes in the composition of these raw materials. Another observation in this study was the strong relationship (R^2 = 0.973) between crude protein of sum of amino acids, supporting that sAA is an excellent proxy for protein.

307

308 4.2 Diet digestibilities

The across experiment variability (coefficient of variation) in digestibility values observed of the two common diets (the basal and SPC diets) used in each of the three experiments in this study, while still less than 10%, was still substantially larger than that observed in other species that

examined digestibilities across separate experiments using the same diets (Glencross et al., 2015;

313 2017). In these other studies, where faeces were collected using stripping techniques from a

314 carnivorous fish (Oncorhynchus mykiss), the coefficients of variation across dry matter, protein and

energy digestibility ranged from only 1.2 % to 2.3%. We suspect that this lower level of variability

316 may be linked to the use of a settlement-type faecal collection method in the present study with

317 shrimp. An assessment of the methodology associated with shrimp faecal collection methods by

Tabrett and Smith (2004) identified that the duration the faeces spent in the water post-defaecation

had an appreciable impact on the digestibility determination with these species, but also noted that it

was virtually impossible to remove the post-defecation solubilisation effect that results in over-estimation of ingredient digestibility.

322 The large data set of diet digestibilities was also used to explore for diet compositional factors 323 that may influence diet digestibility. Although three significant correlations were found across the 35 different diet compositional and digestibility combinations, only the one associated with the diet 324 carbohydrate digestibility and diet lipid content appears plausible. Earlier studies have shown that 325 higher lipid levels can negatively impact lipid digestibility in shrimp, so this link may extend to 326 327 impacting other nutrients (Glencross et al., 2002). However, it was noted in the present study that 328 there was no significant correlation between diet lipid level and lipid digestibility, so this weakens this 329 hypothesis. The general absence of clear correlations between diet proximate compositional 330 parameters and diet digestibility parameters infers that diet digestibility is largely affected by factors other than those ones examined. 331

332

333 4.3 Raw material digestibilities

334 The assessment of this suite of raw materials provided some clear indications on the nutritive value of a range of raw materials currently used in commercial shrimp diets and some novel 335 336 prospective raw materials under consideration. Notable were the poor digestibilities associated with 337 camelina meal which despite being reported as a suitable raw material for salmonids (Hixson et al., 2016), is clearly unsuitable for shrimp. Substantial variability in the digestibility could also be seen 338 339 among the three different fishmeals (jack mackerel, anchovetta and tuna by-product meal), and also 340 between the two soybean meals, with many of these differences significant. This later observation 341 contrasts that of Cruz-Suarez et al., (2009), who examined different processing effects on soybean and found little impact on protein digestibility. However, our observations are consistent with that of Zhou 342 343 et al (2014) who reported substantial differences in performance and digestibility associated with the 344 use of a range of different soybean meals used in diets for L. vannamei. These differences further 345 support the importance of specific ingredient characterisation, as clearly not all fishmeals or soybean meals are of equal nutritional value. 346

The use of different processing methods to produce meat and bone meals and poultry offal meals had mixed results. The use of lower temperatures to render meat and bone meals had a minor

benefit to protein, lipid and energy digestibilities. The use of fresher starting material in the
production of poultry offal meal had minor benefits to protein and lipid digestibility, but ironically not
to energy digestibility. Based on the present digestibility data, the nutritive value of blood meal to
shrimp is questionable, as is that of hydrolysed feather meal. These findings are consistent with those

- 353 presented by others using growth studies with shrimp (Dominy and Ako, 1988; Ricque-Marie et al.,
- 354 1998; Cheng et al., 2002; Forster et al., 2003; Suresh et al., 2011).

The examination of the effects of pre-extrusion on the nutritional value of both field peas and 355 faba beans demonstrated some important findings. There was no significant effect of extrusion on the 356 protein digestibility of either faba beans or field peas. However, some significant effects on the energy 357 and dry matter digestibilities were observed supporting the notion that with both faba beans and field 358 peas the main benefit of extrusion is from improving the nutritive value of the starch content of the 359 360 grain. We suspect that this is related to an improvement in the starch digestibility which can be inferred from effects on both the dry matter and energy digestibilities. Similar effects have also been 361 seen with several fish species (Booth et al., 2002; Davies and Gouviea, 2008). Inclusion of un-362 extruded field peas in diets for shrimp has been reported before, along with diet digestibility values 363 364 that indicate that when peas are used to replace soybean that there is a significant improvement in 365 both dry matter and protein digestibility (Bautista et al., 2003).

366 Across all the raw materials, a correlation matrix examining 32 combinations failed to find significant relationships between any of the raw material composition and raw material digestibility 367 parameters. This suggests that there are underlying factors driving the variation in digestibility, either 368 at a chemical classification level finer than the proximate analyses used in the present study, or as the 369 result of a combination of factors. One successful study using a similar approach to define the factors 370 371 affecting the digestibility of lupins used a greater number of samples (n=75) and had a greater degree of compositional characterisation and further relied on multivariate statistics to define those factors 372 373 responsible (Glencross et al., 2008b).

374

375 4.4 Conclusions

The findings of this study demonstrate that there is a wide range in the nutritive values of 376 377 various raw materials when fed to shrimp. Importantly, a generalisation of the comparative 378 digestibility of animal protein sources against vegetable protein sources cannot be made, as there are 379 excellent and poor digestibilities in either class of raw materials. The collation of the digestibility 380 values in this study we consider to be an important step-forward for the shrimp aquaculture industry 381 as it continues to seek independence from fishery resources. Additionally, such datasets provide an 382 important resource for future meta-analyses and the development of robust in vitro and in silico models to estimate raw material nutritional value (Lemos et al., 2004; 2007; 2009; Glencross et al., 383 2015). 384

387	Acknowledgements
388	This work was funded by CSIRO Agriculture and Food. We gratefully acknowledge Nicholas
389	Bourne, Susan Cheers, Natalie Habilay and Kinam Salee for trial maintenance and analytical sample
390	processing.
391	
392	
393	References
394	
395	AOAC (Association of Official Analytical Chemists). 2005. Official Methods of Analysis of the
396	Association of Official Analytical Chemists. 15th edition. Association of Official Analytical
397	Chemists. Washington, DC, USA.
398	
399	Alvarez, J. S., Hernández-Llamas, A., Galindo, J., Fraga, I., García, T., Villareal, H., 2007.
400	Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus
401	schmitti. Aquaculture Research 38, 689–695.
402	
403	Brunson, J.F., Romaire, R.P., Reigh, R.C. (1997) Apparent digestibility of selected ingredients in
404	diets for white shrimp Penaeus setiferus L. Aquaculture Nutrition 3, 9-16.
405	
406	Bautista, M.N., Eusebio, P.S., Welsh, T.P. (2003) Utilization of feed pea, Pisum sativum, meal as a
407	protein source in practical diets for juvenile tiger shrimp, Penaeus monodon. Aquaculture 225, 121-
408	131.
409	
410	Booth, M.A., Allan, G.L., Evans, A.J., Gleeson, V.P., (2002) Effects of steam pelleting or extrusion
411	on digestibility and performance of silver perch Bidyanus bidyanus. Aquaculture Research, 33, 1163-
412	1173.
413	
414	Bureau, D.P., Hua, K., (2006) Letter to the Editor of Aquaculture. Aquaculture 252,103-105.
415	
416	Carvalho, R.A., Ota, R.H., Kadry, V.O., Tacon, A.G., Lemos, D., (2016) Apparent digestibility of
417	protein, energy and amino acids of six protein sources included at three levels in diets for juvenile
418	white shrimp Litopenaeus vannamei reared in high performance conditions. Aquaculture 465, 223-
419	234.
420	
421	Cheng, Z.J., Behnke, K.C., Dominy, W.G. (2002b) Effect of feather meal on growth and body
422	composition of the juvenile Pacific white shrimp, Litopenaeus vannamei. Journal of Applied
423	Aquaculture 12, 57-69.

424

425	Cruz-Suarez, L.E., Ricque-Marie, D., Tapia-Salazar, M., McCallum, I.M., Hickling, D., 2001.
426	Assessment of differently processed feed pea (Pisum sativum) meals and canola meal (Brassica sp.) in
427	diets for blue shrimp (Litopenaeus stylirostris). Aquaculture 196, 87-101.
428	
429	Cruz-Suárez, L.E., Nieto-López, M., Guajardo-Barbosa, C., Tapia-Salazar, M., Scholz, U., Ricque-
430	Marie, D., 2007. Replacement of fish meal with poultry by-product meal in practical diets for
431	Litopenaeus vannamei, and digestibility of the tested ingredients and diets. Aquaculture 272, 466-476.
432	
433	Cruz-Suárez, L.E., Tapia-Salazar, M., Villarreal-Cavazos, D., Beltran-Rocha, J., Nieto-López, M.G.,
434	Lemme, A., Ricque-Marie, D. (2009) Apparent dry matter, energy, protein and amino acid
435	digestibility of four soybean ingredients in white shrimp Litopenaeus vannamei juveniles.
436	Aquaculture 292, 87-94.
437	
438	Davies, S.J., Gouveia, A., 2010. Response of common carp fry fed diets containing a pea seed meal
439	(Pisum sativum) subjected to different thermal processing methods. Aquaculture, 305, 117-123.
440	
441	Davis, D.A., Arnold, C.R., 2000. Replacement of fish meal in practical diets for the Pacific white
442	shrimp, Litopenaeus vannamei. Aquaculture 185, 291–298.
443	
444	Davis, D.A., Arnold, C.R., McCallum, I., 2002. Nutritional value of feed peas (Pisum sativum) in
445	practical diet formulations for Litopenaeus vannamei. Aquac. Nutr. 8, 87–94.
446	
447	Dominy, W.G., Ako, H. (1988) The utilization of blood meal as a protein ingredient in the diet of the
448	marine shrimp Penaeus vannamei. Aquaculture 70, 289-299.
449	
450	Francis, G., Makkar, H.P.S. and Becker, K. (2001) Anti-nutritional factors present in plant-derived
451	alternate fish feed ingredients and their effect in fish. Aquaculture 199, 197-227.
452	
453	Forster, I.P., Dominy, W.G., Obaldo, L.G., Tacon, A.G.J. (2003) Rendered meat and bone meals as
454	ingredients of diets for shrimp Litopenaeus vannamei (Boone, 1931). Aquaculture 219, 655-670.
455	
456	Gatlin, D.M., Barrows, F.T., Brown, P., Dabrowski, K., Gaylord, T.G., Hardy, R.W., Herman, E., Hu,
457	G., Krogdahl, Å., Nelson, R. and Overturf, K., (2007) Expanding the utilization of sustainable plant
458	products in aquafeeds: A review. Aquaculture Research 38, 551-579.
459	

460	Glencross, B.D. and Smith, D.M., (1997) A comparison of the utilisation of triacylglycerols, esterified
461	and free fatty acids by the prawn, Penaeus monodon. Aquaculture 159, 67-86.
462	
463	Glencross, B. and Smith, D.M., (2010) Raw material evaluation strategies for shrimp diets -
464	Optimizing raw material sustainability. In: The Shrimp Book (V. Alday and D.A. Davis, Eds.).
465	Nottingham University Press. pp 938.
466	
467	Glencross, B.D., Smith, D.M., Tonks, M.L., Tabrett, S.M., Williams, K.C., 1999. A reference diet for
468	nutritional studies of the prawn, Penaeus monodon. Aquaculture Nutrition 5, 33-40.
469	
470	Glencross, B.D., Smith, D.M., Thomas, M.R., Williams, K.C., 2002. The effects of dietary lipid
471	amount and fatty acid composition on the digestibility of lipids by the prawn, Penaeus monodon.
472	Aquaculture 205, 157-169.
473	
474	Glencross, B.D., Booth, M., Allan, G.L. 2007. A feed is only as good as its ingredients - A review of
475	ingredient evaluation for aquaculture feeds. Aquaculture Nutrition 13, $17 - 34$.
476	
477	Glencross, B.D., Hawkins, W.E., Evans, D., Rutherford, N., McCafferty, P., Dods, K., and Sipsas, S.
478	(2008a) Assessing the implications of variability in the digestible protein and energy value of lupin
479	kernel meals when fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 277, 251-262.
480	
481	Glencross, B.D., Hawkins, W.E., Evans, D., Rutherford, N., McCafferty, P., Dods, K., Karopoulos
482	M., Veitch, C., Sipsas, S., Buirchell, B. 2008b. Variability in the composition of lupin (Lupinus
483	angustifolius) meals influences their digestible nutrient and energy value when fed to rainbow trout
484	(Oncorhynchus mykiss). Aquaculture 277, 220-230.
485	
486	Glencross, B.D., Tabrett, S.J., Irvin, S., Wade, N., Smith, D.M., Coman, G.E., Preston, N.P., 2013. An
487	examination of the genotype by diet interaction effects in the Black Tiger shrimp, Penaeus monodon.
488	- why do selected shrimp grow faster? Aquaculture Nutrition 19, 128-138.
489	
490	Glencross, B.D., Bourne, N., Rutherford, N.R., Hawkins, W.E., Burridge, P., Dods, K., Sipsas, S.,
491	Sweetingham, M., 2015. Using NIRS to develop calibrations to predict the digestible protein and
492	energy value of a feed grain – the lupin case study. Aquaculture Nutrition 21, 54-62.
493	
494	Glencross, B.D., Bourne, N., Irvin, S., Blyth, D., 2017. Using near-infrared reflectance spectroscopy
495	to predict the digestible protein and digestible energy values of diets when fed to barramundi, Lates
496	calcarifer. Aquaculture Nutrition 23, 397-405.

497	
498	Hixson, S.M., Parrish, C.C., Wells, J.S., Winkowski, E.M., Anderson, D.M. and Bullerwell, C.N.,
499	2016. Inclusion of camelina meal as a protein source in diets for farmed salmonids. Aquaculture
500	Nutrition 22, 615-630.
501	
502	Lemos, D., Nunes, A.J.P. (2007) Prediction of culture performance of juvenile Litopenaeus vannamei
503	by in vitro (pH-stat) degree of feed protein hydrolysis with species-specific enzymes. Aquaculture
504	Nutrition 13, 1-11.
505	
506	Lemos, D., Ezquerra, J.M., Garcia-Carreño, F.M. (2000) Protein digestion in penaeid shrimp:
507	digestive proteinases, proteinase inhibitors and feed digestibility. Aquaculture 186, 89-105.
508	
509	Lemos, D., Navarrete del Toro, A., Córdova-Murueta, J.H., Garcia-Carreño, F. (2004) Testing feeds
510	and feed ingredients for juvenile pink shrimp Farfantepenaeus paulensis: in vitro determination of
511	protein digestibility and proteinase inhibition. Aquaculture 239, 307-321.
512	
513	Lemos, D., Lawrence, A.L., Siccardi, A.J. (2009) Prediction of apparent protein digestibility of
514	ingredients and diets by in vitro pH-stat degree of protein hydrolysis with species-specific enzymes
515	for juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture 295, 89-98.
516	
517	Luo, L., Wang, J., Pan, Q., Xue, M., Wang, Y., Wu, X., Li, P., (2012) Apparent digestibility
518	coefficient of poultry by-product meal (PBM) in diets of Penaeus monodon (Fabricius) and
519	Litopenaeus vannamei (Boone), and replacement of fishmeal with PBM in diets of P. monodon.
520	Aquaculture Research 43. 1223-1231.
521	
522	Merican, Z.O. and Shim, K.F. (1995) Apparent digestibility of lipid and fatty acids in residual lipids
523	of meals by adult Penaeus monodon. Aquaculture 133, 275-286.
524	
525	R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for
526	Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
527	
528	Ricque-Marie, D., Abdo-de La Parra, M.I., Cruz-Suarez, L.E., Cuzon, G., Cousin, M., Aquacop, Pike,
529	I.H. (1998) Raw material freshness, a quality criterion for fish meal fed to shrimp. Aquaculture 165,
530	95-109.
531	
532	Smith, D.M. and Tabrett, S.J. (2004) Accurate measurement of in vivo digestibility of shrimp feeds.
533	Aquaculture 232, 563-580.

535	Smith, D.M., Tabrett, S.J., Glencross, B.D., Irvin, S.J., Barclay, MC., 2007. Digestibility of lupin
536	kernel meals in feeds for the black tiger shrimp, Penaeus monodon. Aquaculture 264, 353-362.
537	
538	Suresh, V.A., Kumaraguru Vasagam, K.P., Nates, S. (2011) Attractability and palatability of protein
539	ingredients of aquatic and terrestrial animal origin, and their practical value for blue shrimp,
540	Litopenaeus stylirostris fed diets formulated with high levels of poultry by-product meal. Aquaculture
541	319, 132-140.
542	
543	Yang, Q., Zhou, X., Zhou, Q., Tan, B., Chi, S., Dong, X. (2009) Apparent digestibility of selected
544	feed ingredients for white shrimp Litopenaeus vannamei, Boone. Aquaculture Research 41, 78-86
545	

- 546 Zhou, Y.G., Davis, D.A. and Buentello, A., 2015. Use of new soybean varieties in practical diets for
- 547 the Pacific white shrimp, *Litopenaeus vannamei*. Aquaculture Nutrition 21, 635-643.

Ingredient	Source	Experiment	Dry Matter	Protein	Lipid	Ash	СНО	Energy
Blood meal	AJ Bush, Beaudesert, QLD, Australia	1	93.2	93.4	1.6	1.2	_	23.4
Dried Fish Solubles	Aquativ, Elven, France	2	93.5	71.8	13.9	14.2	0.1	22.4
Fishmeal (Anchoveta)	Ridley, Narangba, QLD, Australia	1	90.9	70.5	12.5	16.4	0.6	22.3
Fishmeal (Jack Mackerel)	Ridley, Narangba, QLD, Australia	3	92.7	74.3	11.4	15.5	-	21.6
Fishmeal (Tuna By-Product)	Ridley, Narangba, QLD, Australia	3	96.4	67.1	10.5	21.9	-	20.3
Krill meal	Akerbiomarine, Lysaker, Norway	3	94.9	64.4	21.1	11.8	-	24.5
Meat and bone meal 1 (Low temp)	CSF, Laverton, VIC, Australia	2	93.6	51.3	12.3	27.7	8.7	19.2
Meat and bone meal 2 (High temp)	CSF, Laverton, VIC, Australia	2	96.0	53.2	13.5	24.6	8.6	20.0
Hydrolysed feather meal	Camilleri, Maroota, NSW, Australia	-	94.8	82.3	7.3	5.3	-	22.6
Poultry offal meal (FAQ)	Camilleri, Maroota, NSW, Australia	3	94.7	69.7	16.6	15.1	_	23.3
Poultry offal meal (HQ)	CSF, Laverton, VIC, Australia	1	95.7	72.2	13.7	13.5	0.6	22.2
Poultry offal meal (LQ)	CSF, Laverton, VIC, Australia	1	96.5	65.9	15.0	14.6	4.5	22.6
Vitamin free casein	Sigma-Aldrich, Syndey, NSW, Australia	1	94.7	82.2	0.8	8.0	9.0	22.4
Camelina meal	Aus-Oils, Kojonup, WA, Australia	1	92.1	27.2	29.3	5.2	38.3	26.2
Canola meal - Expeller	Riverland Oilseeds, Pinjarra, WA, Australia	1	94.8	36.2	9.6	7.3	47.0	21.2
Canola meal – Solvent Extracted	Riverland Oilseeds, Footscray, VIC, Australia	1	89.6	37.5	6.6	8.4	47.5	20.9
Corn gluten	Arrow Commodities, Surrey Hills, NSW, Australia	2	92.3	65.1	6.0	1.6	27.3	23.7
Faba bean - extruded	Ridley, Narangba, QLD, Australia	2	96.3	29.9	1.5	3.3	65.3	18.9
Faba bean - raw	Ridley, Narangba, QLD, Australia	2	90.5	30.3	1.8	3.6	64.3	19.0
Field peas - extruded	Ridley, Narangba, QLD, Australia	2	96.0	25.2	1.4	3.1	70.3	18.9
Field peas - raw	Ridley, Narangba, QLD, Australia	2	90.6	24.9	2.1	3.3	69.7	19.0
Lupin kernel meal (cv. Coromup)	Coorow Seeds, Coorow, WA, Australia	3	91.8	46.0	8.2	4.1	33.6	21.0
Pregelled starch	Manildra, Auburn, NSW, Australia	3	85.6	0.2	0.0	1.2	98.6	20.5
Soybean meal (Hifeed)	Ridley, Narangba, QLD, Australia	3	92.5	48.5	11.8	8.2	31.5	23.4
Soybean meal (Trifecta)	Ridley, Narangba, QLD, Australia	3	92.1	69.3	2.6	4.3	23.8	21.7
Soy Protein Concentrate	Selecta, Araguari, Brazil	1, 2, 3	90.2	69.8	2.4	7.3	20.5	21.9
Soy Protein Isolate	ADM, Decatur, IL, United States	1	93.7	89.7	5.3	5.0	-	23.3
Wheat flour (Plain)	Manildra, Auburn, NSW, Australia	3	87.5	15.3	1.9	1.7	81.2	21.5
Wheat gluten	Manildra, Auburn, NSW, Australia	3	92.1	86.5	0.7	1.5	3.4	24.1

Table 1. Composition and origin of the experimental raw materials. Indicated also is which of the three sub-experiments each ingredient was evaluated in.

All values are percent dry basis. Except for Dry matter, which is on a percent as received basis and for Energy which is on a MJ/kg dry basis.

Ingredient	sAA	ALA	ARG	ASP	CYS	GLU	GLY	HIS	ISO	LEU	LYS	MET	PHE	PRO	SER	TAU	THR	TYR	VAL
	0.50				10		10				-					_		•••	•
Blood meal	850	68	41	54	10	76	49	35	51	140	70	12	69	41	32	6	36	23	38
Dried Fish Solubles	640	49	41	59	6	92	68	12	26	46	47	17	24	36	30	10	28	18	31
Fishmeal (Anchoveta)	703	29	40	43	9	73	33	27	49	100	50	44	46	41	26	8	30	26	28
Fishmeal (Jack Mackeral)	685	43	40	42	9	71	33	25	46	107	46	48	41	30	24	7	29	17	26
Fishmeal (Tuna By-Product)	661	26	38	45	6	70	34	21	50	126	46	46	39	24	23	3	26	12	25
Hydrolysed Feather Meal	822	39	56	54	44	89	65	6	38	67	18	5	40	82	94	2	38	25	60
Krill meal	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Meat and bone meal (Low temp)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Meat and bone meal (High temp)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Poultry offal meal (FAQ)	619	41	45	52	13	83	58	12	26	48	33	15	28	46	39	2	27	20	31
Poultry offal meal (HQ)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Poultry offal meal (LQ)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Vitamin free casein	814	1	31	41	4	29	67	27	67	133	71	79	73	38	42	0	35	35	41
Camelina meal	246	12	20	15	6	26	17	7	18	30	18	11	15	13	11	0	10	6	11
Canola meal – Expeller	312	16	21	25	9	60	16	9	14	25	12	7	15	23	16	0	16	11	18
Canola meal – Solvent Extracted	323	16	22	25	10	62	16	9	14	26	16	7	15	23	16	0	16	12	18
Corn gluten	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Faba bean - extruded	256	13	26	21	3	23	17	7	18	46	20	7	16	11	10	0	7	1	10
Faba bean - raw	248	12	24	23	3	20	18	6	19	45	19	6	15	11	11	0	8	0	9
Field peas - extruded	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Field peas - raw	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Lupin kernel meal (cv. Coromup)	390	17	44	31	5	34	35	12	31	50	29	4	23	16	18	0	14	12	13
Pregelled starch	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Soybean meal (Hifeed)	478	22	36	57	9	89	20	14	21	38	26	8	26	24	28	0	21	18	21
Soybean meal (Trifecta)	535	26	42	63	10	92	22	16	23	42	30	11	28	28	32	0	25	20	25
Soy Protein Concentrate	590	24	45	45	9	47	39	20	45	67	42	25	58	29	28	0	24	22	22
Soy Protein Isolate	855	35	68	103	13	172	35	22	38	68	46	12	47	43	50	1	34	30	38
Wheat flour (Plain)	104	4	4	4	3	8	15	3	8	8	8	5	8	12	5	0	3	2	4
Wheat gluten	800	21	26	26	19	297	27	15	27	55	12	14	41	99	42	0	22	26	30
C																			

Table 2.Amino acid compositions of the experimental raw materials

sAA : Sum of all amino acids. n/a : not assessed.

Ingredient	Reference	Test
Fishmeal (Anchoveta)	500.0	350.0
Wheat gluten	70.0	49.0
Wheat flour	399.3	279.5
Lecithin	10.0	7.0
Fish oil	15.0	10.5
Yttrium oxide	1.0	0.7
Astaxanthin	0.5	0.4
BanoxE	0.2	0.1
Cholesterol	1.0	0.7
Vitamin C	1.0	0.7
Vitamin and Mineral Premix	2.0	1.4
Test ingredient	-	300.0

Table 3.Formulations for the experimental diets

TOTAL	1000.0	1000.0
	A OULDEALED ETM	DECE 1

^e Cholesterol : MP Bio, Aurora, OH, USA. ^f Banox-ETM : BEC Feed Solutions, Carole Park, QLD, Australia. ^g Astaxanthin (10%) as Carophyll PinkTM and Stay CTM: DSM, Wagga Wagga, NSW, Australia. ^h Vitamin and mineral premix : Rabar, Beaudesert, QLD, Australia; includes (IU/kg or g/kg of premix): Vitamin A, 2.5MIU; Vitamin D3, 1.25 MIU; Vitamin E, 100 g; Vitamin K3, 10 g; Vitamin B1, 25 g; Vitamin B2, 20 g; Vitamin B3, 100 g; Vitamin B5, 100; Vitamin B6, 30 g; Vitamin B9, 5; Vitamin B12, 0.05 g; Biotin, 1 g; Vitamin C, 250 g; Banox-E, 13 g; ^hYttrium oxide: Stanford Materials, Aliso Viejo, CA, USA.

Table 4.Cross experiment statistics

		Ľ	Diet Digestibilit	ies		R	aw Material	Digestibilit	ies
	Dry Matter	Protein	Lipid	Energy	СНО	Dry Matter	Protein	Lipid	Energy
	Basal Diet								
Exp-1	0.696	0.774	0.842	0.778	0.914				
Exp-2	0.690	0.779	0.758	0.731	0.823				
Exp-3	0.701	0.810	0.788	0.749	0.794				
mean	0.696	0.788	0.796	0.753	0.844				
SEM	0.0005	0.0005	0.0033	0.0012	0.0017				
CV	0.8%	2.5%	5.3%	3.2%	7.4%				
ANOVA	p=0.740	p=0.055	p=0.104	p=0.146	p=0.001				
	Soy Protein C	Concentrate							
Exp-1	0.612	0.750	0.861	0.684	0.583	0.506	0.784	0.869	0.430
Exp-2	0.584	0.742	0.780	0.643	0.641	0.464	0.728	1.014	0.588
Exp-3	0.695	0.838	0.795	0.761	0.736	0.717	0.882	0.761	0.789
mean	0.630	0.777	0.812	0.696	0.654	0.562	0.798	0.881	0.602
SEM	0.0040	0.0018	0.0044	0.0028	0.0029	0.0270	0.0093	0.3968	0.0274
CV	9.2%	6.9%	5.3%	8.6%	11.8%	24.2%	9.8%	14.4%	29.9%
ANOVA	p=0.044	p=0.006	p=0.163	p=0.014	p=0.003	p=0.145	p=0.139	p=0.788	p=0.134

SEM = standard error of the mean; CV=coefficient of variation (standard deviation / mean *100).

Table 5Diet and raw material digestibility coefficients.

Diet	Diet Digestibility Coefficients					Raw N	Raw Material Digestibility Coefficients				
	Dry Matter	Protein	Lipid	Energy	СНО	Dry Matter	Protein	Lipid	Energy	СНО	
Basal	0.696	0.788	0.796	0.753	0.844						
Blood meal	0.547	0.541	0.559	0.569	0.874	0.387	0.452	-	0.389	-	
Dried Fish Solubles	0.774	0.846	0.777	0.812	0.852	0.929	0.795	0.225	0.953	-	
Fishmeal (Anchoveta)	0.659	0.789	0.734	0.709	0.749	0.587 ^x	0.837 ^x	0.673 ^x	0.651 ^x	-	
Fishmeal (Jack Mackerel)	0.586	0.765	0.870	0.730	0.664	0.486 ^y	0.815 ^x	1.114 ^z	0.530 ^y	-	
Fishmeal (Tuna By-Product)	0.556	0.745	0.843	0.685	0.639	0.355 ^z	0.735 ^y	0.952 ^y	0.521 ^y	-	
Hydrolysed Feather Meal	0.485	0.483	0.690	0.517	0.734	-0.005	0.071	0.568	0.061	-	
Krill meal	0.704	0.815	0.859	0.766	0.700	0.789	0.951	1.045	0.717	-	
Meat and bone meal (Low temp)	0.704	0.807	0.796	0.756	0.761	0.719 ^j	0.758 ^j	1.318 ^j	0.767 ^j	-	
Meat and bone meal (High temp)	0.706	0.823	0.814	0.731	0.749	0.717 ^j	0.715 ^j	0.919 ^k	0.710 ^k	-	
Poultry offal meal (FAQ)	0.625	0.756	0.867	0.726	0.734	0.578 ^m	0.724^{m}	0.961 ^m	0.666 ^m	-	
Poultry offal meal (HQ)	0.627	0.749	0.800	0.685	0.730	0.453 ⁿ	0.684^{m}	0.820 ⁿ	0.554 ⁿ	-	
Poultry offal meal (LQ)	0.628	0.714	0.783	0.680	0.786	0.473 ⁿ	0.583 ⁿ	0.791 ⁿ	0.552 ⁿ	-	
Vitamin free casein	0.783	0.873	0.810	0.818	0.811	0.940	0.906	-	0.977	-	
Camelina meal	0.251	0.577	0.633	0.438	0.423	-0.818	-0.247	0.540	-0.109	-0.527	
Canola meal – Expeller	0.555	0.752	0.722	0.620	0.596	0.394°	0.738°	0.616°	0.545°	0.296°	
Canola meal – Solvent Extracted	0.555	0.758	0.706	0.575	0.592	0.345 °	0.750°	0.716 ^p	0.265 ^p	0.236°	
Corn gluten	0.747	0.853	0.838	0.783	0.742	0.798	0.816	0.810	0.798	0.687	
Faba bean - extruded	0.732	0.835	0.807	0.754	0.813	0.843 ^a	0.736	0.635 ^a	0.783 ^a	0.747 ^a	
Faba bean - raw	0.709	0.813	0.794	0.717	0.734	0.758 ^b	0.575	0.878 ^{ab}	0.688 ^b	0.648 ^b	
Field peas - extruded	0.718	0.828	0.842	0.748	0.774	0.709 ^b	0.742	1.162 ^b	0.696 ^b	1.002 °	
Field peas - raw	0.646	0.838	0.747	0.655	0.713	0.491 °	0.795	-0.028 °	0.406 ^c	0.990°	
Lupin kernel meal (cv. Coromup)	0.566	0.748	0.862	0.699	0.628	0.322	0.770	0.953	0.556	0.083	
Pregelled starch	0.575	0.677	0.826	0.698	0.783	0.379	-	-	0.464	0.767	
Soybean meal (Hifeed)	0.674	0.811	0.859	0.759	0.709	0.784 ^r	0.983 ^r	0.609 ^r	0.731 ^r	0.410 ^r	
Soybean meal (Trifecta)	0.637	0.718	0.836	0.751	0.811	0.680 ^s	0.647 ^s	0.351 ^s	0.706 ^r	0.566 ^s	
Soy Protein Concentrate	0.630	0.777	0.812	0.696	0.654	0.562	0.798	0.881	0.602	0.663	
Soy Protein Isolate	0.695	0.838	0.710	0.755	0.745	0.774	0.877	0.551	0.892	-	
Wheat flour (Plain)	0.639	0.772	0.863	0.750	0.771	0.633	0.629	1.693	0.682	0.688	
Wheat gluten	0.733	0.895	0.849	0.826	0.683	0.830	1.347	0.730	0.883	-	
Pooled SEM	0.01	0.01	0.01	0.01	0.01	0.03	0.02	0.02	0.03	0.03	

Each data point is the mean (n=5). For the faba beans and field pea raw material digestibilities, the indicated different superscripts (a, b, c) imply a significant difference at P<0.05 from a MANOVA analysis. For the other superscripts comparisons are only made within the fishmeals (x, y, z), meat and bone meals (j, k), poultry meals (m, n), canola meals (o, p) or soybean meals (r, s), but not among the different meals.

	Dry Matter	Protein	Lipid	СНО	Energy
Blood meal	36.1	39.3	_	_	8.5
Dried Fish Solubles	86.9	50.0	2.7	_	18.6
Fishmeal (Anchoveta)	53.4	48.8	6.9	_	12.0
Fishmeal (Jack Mackeral)	45.0	40.0 56.1	10.6	_	10.6
Fishmeal (Tuna By-Product)	34.2	47.5	9.7	_	10.0
Hydrolysed Feather Meal	0.0	5.5	3.9	_	1.3
Krill meal	74.8	58.1	20.0	_	16.7
Meat and bone meal (Low temp)	67.3	34.1	10.8	_	12.9
Meat and bone meal (High temp)	68.9	35.1	11.5	-	13.1
Poultry offal meal (FAQ)	54.7	45.3	14.3	-	13.9
Poultry offal meal (HQ)	43.4	45.3	10.3	-	11.3
Poultry offal meal (LQ)	45.6	35.8	11.1	-	11.6
Vitamin free casein	89.0	66.8	-	_	19.6
Camelina meal	0.0	0.0	13.4	0.0	0.0
Canola meal – Expeller	30.9	22.6	3.8	9.2	4.4
Canola meal – Solvent Extracted	37.3	24.0	5.3	12.6	10.4
Corn gluten	73.6	45.3	4.1	16.0	16.1
Faba bean - extruded	81.2	20.4	0.9	45.3	13.7
Faba bean - raw	68.6	14.3	1.3	34.3	10.7
Field peas - extruded	68.1	17.2	1.3	65.0	12.2
Field peas - raw	44.5	16.3	0.0	56.9	6.3
Lupin kernel meal (cv. Coromup)	29.6	32.5	7.2	3.2	10.7
Pregelled starch	32.5	0.0	0.0	64.8	7.0
Soybean meal (Hifeed)	72.5	40.7	6.1	13.9	14.6
Soybean meal (Trifecta)	62.6	38.1	0.8	15.5	13.0
Soy Protein Concentrate	51.5	46.5	1.9	12.2	11.1
Soy Protein Isolate	72.5	69.1	2.6	-	18.2
Wheat flour (Plain)	55.4	7.3	1.5	50.3	11.2
Wheat gluten	76.4	79.7	4.5	-	19.6

Table 6Raw material digestible nutrient values (% as received). Based on raw material digestibility* x composition.

*where values were >100% they were rounded to 100. Where values <0 they were rounded to 0.