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ABSTRACT 

Pink-footed and Greylag geese winter in Britain and can cause damage to crops, 

resulting in a conflict with agriculture. An understanding of where geese are likely to 

feed would help to target suitable areas for goose management plans, aimed at 

relieving such conflict. The aim of this project was to create models to predict the 

feeding distribution of both Pink-footed and Greylag geese. Two separate approaches 

were taken to model goose feeding distribution from landscape characteristics. The 

first was a standard approach, logistic regression, which predicted the probability of a 

field being used by geese from the field's landscape characteristics. Models were 

based on goose distribution data from field surveys. The main factors affecting field 

choice by both species were distance from the nearest building and distance from the 

roost. The inclusion of autologistic terms did not improve the fit of the models. A 

second, more novel approach to predicting goose distribution was taken to see if more 

accurate predictions could be produced. This modelling technique involved 

simulating the movements of Greylag geese throughout the day. The rules 

constraining goose movement in the model were derived from analysis of radio­

tracked geese. Flight direction was constrained by altitude or distance from the river 

while the probability of landing was dependent on the distance from buildings. The 

accuracy of the models in predicting goose distribution was tested both within the 

study area, Strathearn and Strathallan, and in another area, Loch Leven. Models 

based on animal movements have the theoretical advantage of incorporating barriers 

to movement, but the simulation model did not out-perform the logistic regression 

model. The models can be applied to other goose feeding areas relatively easily and 

can be used to identify areas where management plans for both Pink-footed and 

Greylag geese should be targeted. 
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OVERVIEW AND AIMS OF STUDY 
Overview 

The numbers of Pink-footed geese Anser brachyrhynchus and Greylag geese Anser 

anser wintering in Britain have increased greatly since the 1960's (Hearn 2000). In 

Britain both species feed almost entirely on agricultural land, and goose grazing on 

certain crops can cause damage, and consequently economic loss to individual 

farmers (Edgell & Williams 1992), resulting in a conflict between geese and 

agriculture. Possible solutions to the goose-agriculture conflict are the creation of 

Alternative Feeding Areas (AFA's) for geese to reduce grazing pressure on the 

surrounding farmland (Owen 1977, Owen 1990, Jepsen 1991, Giroux & Patterson 

1995) and the implementation of schemes to compensate farmers for losses due to 

goose grazing (van Eerden 1990, Percival et alI997). A knowledge of where geese 

feed is required to enable goose management plans to be targeted effectively 

(Patterson & Fuchs 1992). 

Pink-footed and Greylag geese roost on a relatively small number of water-bodies, 

where their numbers are well documented (Mitchell et al 1999, Mitchell & 

Sigfusson 1999), and feed on the surrounding farmland. A model that could predict 

which fields are likely to be preferred by geese would highlight areas where goose 

management plans could be targeted. 

Studies of Pink-footed and Greylag geese have shown that a wide variety of factors 

influence their feeding distribution. Geese have preferences for certain crops 

(Newton & Campbell 1973, Forshaw 1983, Madsen 1984, Bell 1988, Patterson et al 

1989, Giroux & Patterson 1995, Hearn & Mitchell 1995, Stenhouse 1996). 



Depletion of food resources by con-specifics and other species will affect resource 

availability, and consequently influence goose feeding distribution. As geese fly 

out each day from a fixed point, roost location will influence their feeding 

distribution (Newton et a11973, Bell 1988, Giroux & Patterson 1995, Keller et al 

1997). The risk, or perceived risk, of disturbance and predation also affect where 

geese feed. While the actual rate of predation or disturbance is difficult to quantify, 

studies have shown that geese are less likely to feed close to features likely to cause 

disturbance, such as roads (Newton & Campbell 1973, Madsen 1984, Keller 1991, 

Gill 1994, Larsen & Madsen 2000). In addition, it as been shown that landscape 

features that prevent Pink-footed geese from having a clear view of potential 

predators tend to be avoided (Newton & Campbell 1973, Newton et al 1973, 

Madsen 1985b, Larsen & Madsen 2000). 

There is a growing interest in large-scale ecology, dominated by modelling, not 

least because results are often directly relevant to environmental management 

(Ormerod & Watkinson 2000). Approaches to large-scale ecology are widely 

debated and, as classical ecological experiments are often practically impossible at 

large scales, alternative techniques are required to test hypotheses (Ormerod & 

Watkinson 2000). Geographical Information Systems (GIS) and remote sensing 

have greatly increased both the quality and quantity of information that can be 

incorporated into predictive models (Austin et a11996, Cowley et al 2000, Corsi et 

al 2000). These systems have also enabled the development of alternative methods 

to tackling spatial modelling issues, for example cost-surface modelling for 

identifying the optimal (least-cost) paths across a landscape (Wadsworth & 
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Treweek 1999) and fuzzy logic mapping, which can be used to classify features 

which are not inherently discrete (Johnston 1998). 

Models based on biological processes, such as con-specific and inter-specific 

competition (Gill 1994, Sutherland & Allport 1994), body condition, reproductive 

success and survival (Pettifor et al 2000) primarily focus on the biotic factors 

affecting goose distribution. In these models the landscape was considered to be 

fairly homogenous (e.g. intertidal mudflats), to enable modelling of depletion. For 

Pink-footed geese, Gill (1994) restricted modelling to one crop type. To extend 

such modelling techniques to predict the feeding distribution of wide-ranging goose 

species such as Greylag and Pink-footed geese in a heterogeneous agricultural 

landscape would be extremely complex and require very detailed information of the 

availability of food resources. This type of information is not generally available, 

except through detailed surveys of specific sites. 

An alternative approach is to model the effect of abiotic factors, such as landscape 

characteristics, (e.g. Osborne et aI2001). Pink-footed and Greylag geese feed in a 

complex heterogeneous landscape, and previous have shown that their feeding 

distribution is affected by landscape characteristics (Newton et a11973, Newton & 

Campbell 1973, Madsen 1984, Madsen 1985b, Bell 1988, Keller 1991, Gill 1994, 

Giroux & Patterson 1995, Keller et a11997, Larsen & Madsen 2000). Therefore, 

for Pink-footed and Greylag geese a landscape based approaches, rather than a 

approach based on biological processed, were considered most appropriate for 

predicting feeding distribution. The landscape-based approach has the advantage 

that the landscape characteristics are permanent and can be derived from existent 
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digitised data, with no need for field surveys. A predictive model based on 

permanent landscape characteristics provide predictions which do not alter 

considerably over time, unlike resource based models in an agricultural 

environment, and can be applied to other goose wintering areas relatively simply. 

The major disadvantage of such an approach, however, is that the effects of biotic 

factors, primarily resource competition, are not considered. 

In this study two different landscape based modelling techniques will be used to 

predict the feeding distribution of wintering Pink-footed and Greylag geese. A 

standard approach, logistic regression, will be used to predict the chance of Pink­

footed and Greylag geese using a field from the field's landscape characteristics. A 

second and more novel modelling technique will be used to predict the feeding 

distribution of Greylag geese. Movements of geese will be simulated, based on 

rules derived from analysis of radio-tracked goose movements, to predict where 

they are likely to feed. Modelling techniques will be compared to see which can 

most accurately predict goose feeding distribution. 

Broad aims of study 

The overall aims of this research are: 

1 To predict the feeding distribution of Pink-footed and Greylag geese from 

landscape characteristics using logistic regression (Chapter 3). 

2 To simulate goose movement, using decision rules from radio-tracked geese, 

to predict the feeding distribution of Greylag geese (Chapter 5). 
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3 To compare the predicted results from the two modelling techniques both 

within the study area and in another area used by wintering Pink-footed and 

Greylag geese (Chapters 6 and 7). 

4 To draw conclusions about the suitability of the two modelling techniques 

for predicting the feeding distribution of geese (Chapters 6, 7 and 8). 

5 To draw conclusions about the feeding distribution of Pink-footed and 

Greylag geese in Stratheam and Strathallan, and highlight areas of high 

predicted goose use which would be suitable for targetting goose 

management plans (Chapters 3, 5 and 8). 
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CHAPTER 1- PINK-FOOTED AND GREYLAG GEESE: THEIR STATUS, 

DISTRIBUTION, BEHAVIOUR AND MANAGEMENT 

1.1 INTRODUCTION 

There is a relatively large amount of published information on the grey geese 

wintering in Britain. This chapter reviews the current knowledge of Pink-footed 

and Greylag geese, providing a background to the conflict between geese and 

agriculture, discusses the current knowledge about selection of feeding sites by 

geese, and consider possible solutions to the conflict. The majority of research to 

date has focused on Pink-footed geese, as reflected in this discussion, but 

information on Greylag geese has been included where available. 

1.2 AIMS 

The aims of this chapter are: 

(i) To look at the status and spatial distribution of Pink-footed and Greylag 

geese wintering in Britain. 

(ii) To discuss the effect of these geese on crops, providing a background to the 

goose-agriculture conflict. 

(iii) To investigate the current knowledge on what affects where geese choose to 

feed, which provides a basic understanding of what factors could be used to 

predict goose distribution. 

(iv) To consider some methods of managing wintering Greylag and Pink-footed 

geese to alleviate the goose-agriculture conflict, giving a insight into the 

practical applications of predicting goose distribution. 
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1.3 STATUS AND DISTRIBUTION OF PINK-FOOTED AND GREYLAG 

GEESE 

1.3.1 Distribution 

All Pink-footed geese overwintering in Britain are from the Icelandic population. 

Data from Pink-footed geese ringed in 1950-1954 by the Wildfowl Trust in both 

Britain and Iceland has shown that geese breeding in Iceland and Greenland winter 

in Britain, and show very little mixing from the geese breeding in Spitzbergen, 

which winter in Denmark, the Netherlands and Germany (Boyd 1956). Individual 

Pink-footed geese ringed in Britain have, however, been sighted on the continent 

(Fox et aI1989). 

There are three populations of Greylag geese in Britain; a feral population which is 

non migratory and mainly confined to England and a few sites in central Scotland; a 

sedentary population in north-west Scotland; and a migratory population which 

breeds in Iceland and winters in Scotland (Fox & Madsen 1999). Ringing 

recoveries have confirmed that the Icelandic population of Greylag geese wintering 

in Britain show little mixing with other Greylag goose populations in the Western 

Palearctic (Mitchell & Sigfusson 1999). This study is concerned with Icelandic 

Greylag geese and subsequent reference to Greylag geese refers to this population 

unless otherwise stated. 

Pink-footed geese arrive in Britain in late September and return to Iceland in late 

April and early May (Newton et aI1973). Greylag geese tend to arrive in Britain 

around a fortnight later and leave around a fortnight earlier than Pink-footed geese. 

Newton et af (1973) suggested that this is because Pink-footed geese breed in the 
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highlands of Iceland where the summer is shorter than in the lowlands, where the 

Greylag geese spend the summer. 

Once geese have arrived in Britain, before dispersing, they often congregate at well 

defined staging areas. For example, in September 1991 there were 57,500 Pink­

footed geese at Dupplin Loch, Perthshire (Bell & Newton 1995). From their 

staging grounds in Scotland some Pink-footed geese disperse to Lancashire and 

Norfolk (Fox et aI1994). Resightings of Pink-footed geese marked in Loch Leven 

show that there is high turnover of geese in October, many of which were re-sighted 

further south later in the season, while geese marked from December to February 

were often re-sighted within the region, and very seldom elsewhere (Hearn & 

Mitchell 1995). This indicates that Loch Leven is a major staging ground for Pink­

footed geese in autumn, but once passage has finished the geese have a tendency to 

remain in the area. 

In the spring the geese return northwards to spring staging areas in Grampian and 

the Moray Firth (Fox et aI1994). The geese are thought to move north following 

the point of 55% frost-free days to get the maximum protein from newly grown 

grass (Fox et aI1994). Pink-footed geese show some year to year site fidelity. The 

return rate for Pink-footed geese ringed on Lancashire in subsequent years was 75% 

(Fox et al 1994). At present no papers have been published on the movements of 

marked Greylag geese, although marking schemes are currently being carried out in 

the Highland region by Bob Swann. 
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Figure 1.1 The distribution of Pink-footed and Greylag gee e 10 

November 1999 (from Hearn 2000). 

Food availability appears to affect the wintering distribution of geese. In years with 

more potato and grain waste in east central Scotland larger numbers of Pink-footed 

geese winter in the area (Newton & Campbe111973, Newton et a/l973) while years 

with little grain waste in Scotland result in large numbers of geese moving to 

Lancashire in early autumn (Forshaw 1983). 
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While wintering in Britain the distribution of Pink-footed and Greylag geese is 

confined to farmland surrounding roost sites. The Pink-footed goose population is 

concentrated in relatively few roost sites, with three sites containing over 40% of 

the population in November 1999, and only 50 sites holding over 10 individuals 

(Hearn 2000). Forty-nine percent of the Greylag goose population was held at four 

roost sites in November 1999, and 75 sites held more than 10 individuals (Hearn 

2000). This shows the more dispersed nature of the Greylag goose when compared 

to the Pink-footed goose, especially as there are smaller numbers of Greylag geese. 

Figure 1.1 shows the counts of Pink-footed and Greylag geese at major roost sites 

throughout Britain in November 1999 (Hearn 2000). While both species are mainly 

confined to eastern Scotland large concentrations of Pink-footed geese are also 

found in Lancashire and north Norfolk. 

Within Britain the distribution of both Greylag and Pink-footed geese has changed 

over time. Numbers of Greylag geese wintering in England and Ireland have 

declined and are now very small (Boyd & Ogilvie 1972). Greylag geese wintering 

in Scotland have also shown a general shift away from their previous stronghold in 

east central Scotland (autumn counts for Angus and Perth have dropped from over 

30,000 - 40,000 in the late 1960's to less than 10,000 in 1999) to Orkney, Caithness 

and Ross & Cromarty (Boyd & Ogilvie 1972, Hearn 2000). This is a phenomenon 

known as 'short-stopping', where birds winter closer to their breeding grounds 

when conditions are suitable, and is well known on both sides of the Atlantic (Owen 

1992). 
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Although the range of Pink-footed geese has not changed in recent years, the 

proportion of geese wintering in England has increased, with up to 18% of the 

British population now wintering in Lancashire (Mitchell 1997) and 41 % in North 

Norfolk (Gill et al 1996b). Gill (1994) suggested that the increase in numbers of 

wintering Pink-footed geese in north Norfolk is due to a combination of: 

• Goose preference for feeding on sugar beet remains, with knowledge of the food 

supply spread by cultural learning of geese, accounting for the delayed reaction 

to the increase in sugar beet production in the region; 

• Overspill from traditional wintering sites due to increase in population size. 

1.3.2 Status 

The size of the British population of Pink-footed geese, estimated from capture­

recapture were calculated as c.34, 000 in November 1952, and c.50, 000 in 

November 1953 (Boyd 1956). This method of calculating the population size is 

expensive and unsatisfactory due to sampling problems, especially the inability to 

catch geese in proportion to their regional abundance. In November 1960 the 

Wildfowl Trust (now the Wildfowl and Wetlands Trust, WWT) began annual 

counts of Pink-footed and Greylag geese, with a large team of observers counting 

the number of geese at every roost in the country on a co-ordinated weekend (Boyd 

& Ogilvie 1969). autumn counts have shown that the population of Pink-footed 

geese wintering in Britain has increased from c.50, 000 in 1960 to c.215, 000 in 

1999 (Boyd & Ogilvie 1969, Hearn 2000). The number of Greylag geese wintering 

in Britain increased from c.26, 000 in 1960 to c.1lO, 000 in 1985 (Boyd & Ogilvie 

1972, Owen et al 1986). However, numbers of Greylag geese have since declined 

to c.76. 000 in autumn 1999 (Hearn 2000), and the British population is one of only 
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two goose populations in the Western Palearctic that is know to be in decline (Fox 

& Madsen 1999). Figure 1.2 shows the change in the number of Pink-footed and 

Greylag geese wintering in Britain since the 1960's. 
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Figure 2.2 Five year moving average of the November counts for Greylag geese 
at Drummond Pond. Data from the WWT National Census of Pink-footed geese 
and Greylag geese in Britain and Ireland. 

There have been no long-term trends in productivity in either species (Mitchell et al 

1999, Mitchell & Sigfusson 1999) and population increases have been attributed to 

changes in adult survival (Ebbinge 1985, Fox el at 1989, Owen 1990). In January 

1968 restrictions were placed on shooting and the sale of dead wild geese was 

banned. Both Greylag and Pink-footed geese are legal quarry species but they are 

protected in the closed season by Schedule 2 of the Wildlife and Countryside Act 

1981, which allows shooting in the closed season only by special licence In 

vulnerable areas. These protection measures have resulted in the lowering of 

mortality rates in both Pink-footed and Greylag geese which, together with the 

improved feeding conditions in the wintering grounds (with more barley, potatoes 
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and improved grassland), have resulted in an increase in population size (Ebbinge 

1985, Fox et a11989, Owen 1990). 

In 1994 the Icelandic government bought in legislation that required all holders of a 

shotgun license to complete a bag record card (Mitchell 1996). This revealed that in 

1995 c. 35,000 Greylag geese and c. 8,000 Pink-footed geese were shot in Iceland, 

and figures for 1996 were very similar (Mitchell 1997). For Greylag geese such 

heavy annual loss seems to be the major factor in the recent population decline 

(Mitchell & Sigfusson 1999). Although recent efforts to discourage the shooting of 

Greylag geese in Iceland have resulted in a slight decrease in the numbers shot, 

census estimates indicate that this reduction has not been great enough to stem the 

popUlation decline (Hearn 2000). There are no comparable estimates for numbers 

of grey geese shot in Britain, but results from a questionnaire suggest that c. 16, 000 

Pink-footed geese, and a similar number of Greylag geese are shot in Britain each 

year by BASe members (Harradine 1991). 

1.4 THE EFFECT OF GOOSE GRAZING ON CROPS 

1.4.1 Introduction 

Geese can feed at very high densities. Observations by Gill et al (1996) showed 

that individual sugar beet fields have been recorded supporting over 2000 goose 

days per hectare. This does not always result in damage, and it as been suggested 

by Kear (1970) that geese feeding on harvested potatoes and spilt grain can be 

beneficial to farmers, as cleaning up prevents carryover of pests such as cereal 

mildews, potato eel worms, weed seeds and roots. 
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1.4.2 Damage to grass 

The effect of goose grazing on 'early bite' spring grass results in direct competition 

with livestock (Owen et af 1986) and can reduce the silage yield on the first cut 

(Kear 1970, Groot Bruinerink 1989, Ernst 1991). Trampling by geese may also 

cause puddling and waterlogging, especially in areas with heavy soils (Owen et af 

1986). With intensification of farming, especially dairy farming, this is becoming 

an increasing problem (Groot Bruinderink 1989). Groot Bruinderink (1989) 

compared grazed grass with grass within 'goose free' enclosures to look at the 

effect of grazing, treading and manuring by a mixture of species of grey geese with 

respect to sward height, dry mass, and Gross Leaf Area Index. He concluded that 

goose grazing in winter and early spring in areas of goose dropping densities of 5 -

44 droppings per m2 resulted in dry-matter (DM) loss at first cut or grazing of 335-

1100 kg ha- t depending on grazing pressure and time. Similarly Ernst (1991) found 

that grey geese, feeding at 3000-6000 goose days per hectare reduced the first cut 

by 310-560kg DM ha- t
, a 10-20% loss of yield. Patton & Frame (1981) found that 

grazing by Greylag geese feeding at high densities in west Scotland resulted in an 

average herbage loss of 1.51 tonnes DM ha- t
• This is equivalent to an 8 tonne loss 

of silage, or 90 days of grazing for a cow or the silage part of a cow's winter diet. 

Goose grazing had no effect on species composition and density of shoots, and 

defecating and treading had no effect on chemical or physical soil factors (Groot 

Bruinderink 1989). The resultant decrease in area that can be mown for silage may 

result in farmers having to purchase supplementary feed. However, it may be 

possible to increase the first cut in grazed fields by increasing the nitrogen dose 

(Groot Bruinderink 1989). The cost of damage to grass by goose grazing has been 
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estimated from information on the March and April weather and the grazing 

pressure (Ernst 1991). 

1.4.3 Damage to cereals 

Damage can also occur when geese graze on winter cereal. Kear (1970) performed 

trials that involved putting very high numbers of domestic geese onto both winter 

wheat and spring cereals, and found no evidence of damage. In contrast Patterson 

et al (1989) found that goose grazing could damage autumn sown cereal. The 

difference between these results and that of Kear (1970) could be as that Patterson 

et al (1989) worked in Scotland, which is close to the northern limit of autumn 

sown barley, and therefore under more stress than cereal grown further south where 

Kear (1970) performed the experiments (Patterson et al 1989). Patterson et al 

(1989) measured goose use of field by dropping counts throughout the winter, 

which were correlated to the percentage of leaves grazed. They found that grazed 

cereal was shorter, even until the end of June, and unevenly grazed fields caused an 

uneven development of the crop. Grazing by geese also caused a decrease in grain 

yield and straw yield, and resulted in an increase in numbers of weeds. The yield, 

however, was very variable, and no correlation was found between yield and the 

extent of goose grazing due to confounding factors such as soils, topography, 

husbandry, severity of th~ winter and spring growing conditions (Patterson et al 

1989). Simulated goose damage to winter barley showed similar reduced plant 

height until late June, grain yield and straw yield and increased weed cover with 

grazing (Abdul Jalil & Patterson 1989). A reduction in mean weight of individual 

stems was found that would tend to weaken the stem, leaving the grazed crop more 

vulnerable to flattening in rainy and windy conditions, an effect sometimes 
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attributed to goose grazing (Abdul Jalil & Patterson 1989). The results from the 

simulated grazing also suggested that goose droppings had no effect on straw or 

grain yield, and that the loss of yield was much more affected by amount of 

damage, rather that the timing (between March and April). Summers (1990) 

concluded that high densities of Brent geese (Branta bernic/a) grazing on winter 

wheat reduced grain yield by 6-10%. A local Perthshire farm owner found that 

when he left fields for Greylag geese to feed freely, he lost 112 a tonne of winter 

wheat per acre (C. Connell, pers. comm.). Goose grazing of winter cereals before 

February is not considered to have a major impact on the crop (E. Cruikshank, pers. 

comm.). The results from Patterson et al (1989) suggested that winter wheat is 

more susceptible to damage from goose grazing than winter barley. Farmers, 

however, feel that more damage occurs when geese feed on winter barley, and this 

may be because winter wheat is a tougher plant, and has a lower growing point, 

which is less likely to be grazed out (M.V. Bell, pers. comm.). 

1.4.4 Damage to otller crops 

Both Greylag and Pink-footed geese sometimes feed on root vegetables, usually 

harvested remains, but Greylag geese also feed on turnips provided for livestock 

food and are therefore in direct competition with the livestock (Owen et al 1986). 

There are also occasional reports of geese ruining root crops. In Lancashire in 

1973-74, Pink-footed geese were said to have ruined a whole crop of carrots; 

Greylag geese can also ruin crops of unharvested swede (Owen et al 1986). There 

are no reports in the literature of Pink-footed or Greylag geese feeding on oil-seed 

rape, but very occasionally Greylag geese have been known to feed on this crop 

causing extensive damage (E. Cruikshank, pers. comm.). 
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1.4.5 Economic loss due to goose grazing 

Although the effect of goose grazing on the economic loss to farming as a whole is 

probably limited, individual farmers can suffer serious losses (Patterson et af 1989, 

Edgell & Williams 1992, SOAEFD 1996). Unfortunately, the extent of damage to 

crops and the resultant economic loss caused as a result of goose grazing is very 

hard to estimate, especially for cereal crops. This is because many factors such as 

time of grazing, spring weather and crop growing conditions affect yield as well as 

number of geese grazing (Patterson et a11989, SOAEFD 1996). 

1.5 ECONOMIC ADVANTAGES OF GEESE 

Goose grazing can cause localised damage to crops and can result in financial loss 

to individual farmers. On a national level, however, geese are financially 

advantageous. Reduction in yield due to goose grazing decreases surplus grain and 

therefore lessens spending on EU support, even when taking into account the cost to 

farmers (Edgell & Williams 1992). In addition geese can prove a major visitor 

attraction and therefore increase tourist-related income; for example, Barnacle 

geese on Islay (Edgell & Williams 1992) or Pink-footed geese at Loch Leven. 

Wildfowling is very popular in Scotland and can provide an attractive income to 

some farmers who can receive £35 -£65 per gun per flight. It is estimated that 

1,220 full time jobs are supported in the UK by game and wildfowl shooting 

(excluding grouse) and wildfowlers in Britain spend an estimated £5.7 million on 

their sport (SOAEFD 1996, Mitchell et a/1999). 
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1.6 FIELD SELECTION BY PINK-FOOTED AND GREEYLAG GEESE 

1.6.1 The pattern offield use by geese 

Geese have been shown to have a preference for feeding in certain areas (Newton & 

Campbell 1973, Giroux & Patterson 1995, Hearn & Mitchell 1995, Mitchell et al 

1995, Keller et al 1997). It has frequently been observed that there are large 

sections of the feeding area that the geese rarely visit although conditions appear 

suitable (Forshaw 1983, Bell 1988). For Pink-footed geese various studies have 

shown that around 70% of all goose days observed were within only 22.5% - 32.8% 

of the goose feeding area (Forshaw 1983, Giroux & Patterson 1995, Mitchell et al 

1995, Keller et al 1997). Pink-footed geese were found to centre their feeding in 

clusters of fields separated by areas where geese were never seen (Keller et al 

1997), and these main centres of activity remained the same between years, 

although only 49% of fields used in one year were used the next. Certain fields are 

often visited repeatedly; in the late 1960s Newton and Campbell (1973) found that 

75% of fields that geese were seen on were visited more than once, and if geese 

were seen feeding on a field twice there was a 90% chance of them returning. 

Work on the same feeding area in 1995 (Hearn & Mitchell) showed that not only 

were the centres of activity very similar to those in 1973, but the same figures were 

obtained for flocks of geese revisiting fields. Radio-tagged Pink-footed geese 

revisited 1 km2 cells on average 1.8 times, and 51 % of the time this was within a 3 

day period (Giroux & Patterson 1995). 

Many factors influence where geese choose to feed. These include: 

• Distance from the roost 

• Distance from other suitable feeding areas 
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• Food type 

• Disturbance levels 

1.6.2 Site Fidelity 

Site fidelity has been recorded for many different goose species, although to 

differing extents. Greenland White-fronted geese Anser albifrons jlavirostris have 

been shown to have very high site fidelity, to the extent that even when conditions 

deteriorate the geese still return to the area. Site fidelity is thought to be the 

explanation for some flock extinction's in this species (Wilson et al 1991). Some 

individually marked Pink-footed geese showed a strong preference for certain fields 

(Hearn & Mitchell 1995), but whether the feeding distribution of either Pink-footed 

geese or Greylag geese is due to site fidelity and tradition or habitat suitability is as 

yet unknown. 

1.6.3 Distallce/rom the roost 

Whether geese feed in an area will be dependent, in part, on the proximity to the 

nearest goose roost. In north-east Scotland observations of flocks (Bell 1988, 

Keller et of 1997) and radio-tracked Pink-footed geese (Giroux & Patterson 1995) 

found that Pink-footed geese fed a mean distance of 4 - 5 km from the roost. In this 

area Greylag geese flew further, flying a median distance of 10.7 km (Bell 1988). 

However in east central Scotland Pink-footed geese flew further from the roost than 

the Greylag geese; 90% of Greylag feeding grounds lay within 5 km of the roost, 

while only 66% of the Pink-footed geese feeding area did (Newton et aI1973). Gill 

(1994) found no significant effect of distance from the roost on field selection by 
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Pink-footed geese 3 to 10 km from the roost, but the order of field use was 

significantly related to distance from roost. 

1.6.4 Movements throughout the day 

Movement of geese once they have started feeding is relatively restricted. 

Excluding flights to and from the roost, Pink-footed geese were found to move on 

average 7 times per day (Giroux & Patterson 1995), and moved a mean distance of 

0.8 krn per move. Similarly Keller et al (1997) found that in north-east Scotland 

that the mean length of stay in a field was 3.33 hours, and geese visited an average 

of 4.22 fields a day, moving a mean distance between fields of 1.13 km. This 

resulted in geese covering a mean area of only 1.1 km2 (Giroux & Patterson 1995). 

Individual geese did not use the whole range; each bird used an average of 47% of 

the range, and geese had their own individual centres of activity (Giroux & 

Patterson 1995). 

1.6.5 Crop type 

Geese show definite preferences for certain crop types. In autumn both species of 

geese concentrate their feeding on harvested cereal fields where they feed on the 

spilt grain (Newton & Campbell 1973, Forshaw 1983, Madsen 1984, Bell 1988, 

Patterson et a11989, Giroux & Patterson 1995, Hearn & Mitchell 1995, Stenhouse 

1996). Between December and February the spilt grain is depleted, either by geese 

or other animals (Newton & Campbell 1973). The geese progressively move onto 

grass, especially improved grass and ley grass (which is under 2 years old) (Newton 

& Campbell 1973, Forshaw 1983, Madsen 1984, Bell 1988, Patterson et al 1989, 

Giroux & Patterson 1995, Hearn & Mitchell 1995, Mitchell et al 1995, Stenhouse 
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1996). Analysis of droppings confirms these seasonal changes (Patterson ct at 

1989). 

Where available, geese show strong preference for remains of root vegetables, 

especially potatoes, in mid winter (Newton & Campbell 1973, Forshaw 1983, Bell 

1988, Giroux & Patterson 1995, Hearn & Mitchell 1995, Mitchell et at 1995). 

Greylag geese, which have larger and stronger beaks, spend more time feeding on 

root crops than Pink-footed geese and also feed on turnips left out for sheep 

(Newton & Campbell 1973). Spring sown cereal was shown to be a minor food 

source (Newton & Campbell 1973, Bell 1988), although in Denmark it is important 

in April (Madsen 1984). The increase in the planting of winter wheat and winter 

barley in Scotland, particularly between 1979-1982 has resulted in a new source of 

food for the geese (Patterson et al 1989). Geese appear to use winter cereals less 

than (Forshaw 1983, Madsen 1984, Patterson et aI1989), or equal to (Mitchell et al 

1995) that expected from the crop area available, although around the Moray Firth 

Greylag geese showed a preference for germinating winter cereal in autumn 

(Stenhouse 1996). Giroux and Patterson (1995) observed that Pink-footed geese 

show a preference for winter barley later in the winter, but an aversion for winter 

wheat, while Mitchell et al (1995) found that Pink-footed geese mainly fed on 

winter cereal in the months of December and January, when over one third of geese 

fed on this crop type. 

Harvested potatoes and cereal stubble held larger flocks of Pink-footed geese, and 

geese feeding on these fields flew further from the roost than geese feeding on other 

crops (Giroux & Patterson 1995), suggesting a strong preference by Pink-footed 
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geese for stubble and potatoes than other crops. The proportion of geese feeding on 

stubble and winter cereals was inversely related, and dependent on the timing of 

harvest, with late, "dirty" harvests resulting in much greater use of the stubble by 

geese (Patterson et al 1989). 

In north Norfolk Pink-footed geese concentrate feeding on the remains of sugar 

beet, a crop that is not widely available in other parts of the wintering range (Gill 

1994). The preference for sugar beet remains is suggested to be due to a 

combination of the reduced disturbance in beet fields (as the geese are causing no 

damage), and the high carbohydrate content of the food source (Gill 1994). 

The amount of food available does not appear to be a major factor in determining 

where the geese feed. Gill (1994) found no significant effect of biomass after 

harvest and mean root mass on field selection by Pink-footed geese. Experimental 

manipulation of the density of sugar beet remains in fields also showed no 

significant difference in numbers of goose droppings with differing densities of 

food, or with the age of the food (Gill 1994). Similarly the amount of spilt grain in 

stubble fields and density of potatoes did not determine the extent of use of the field 

by geese (Newton & Campbell 1973). 

1.6.6 Disturbance 

Increasingly, disturbance is being considered as an important factor affecting bird 

distribution, and especially so for birds feeding in flocks (Hill et a11997, Madsen 

1998a & 1998b). Disturbance has been shown to be a major factor influencing the 

choice of feeding area by geese (Newton & Campbell 1973, Newton et al 1973, 
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Madsen 1984, Belanger & Bedard 1989, Gill 1994). In north-east Scotland 58% of 

goose take off followed disturbance (Giroux & Patterson 1995). 

The main cause of disturbance of Pink-footed geese is farm vehicles, which cause 

31.8 - 35.6% of observed disturbances (Forshaw 1983, Gill 1994); other causes of 

disturbances were aircraft, pedestrians, birdwatchers and pheasant shooters. The 

extent to which fields were exploited was negatively related to disturbance rate 

(Gill 1994). An increase in deliberate scaring by farmers has been observed for 

fields where crops are susceptible to damage, for instance winter sown cereals 

(Giroux & Patterson 1995) 

Both Icelandic Greylag and Pink-footed geese are shot heavily throughout their 

wintering range in Britain during the open season. BASC members shoot 

approximately 16,000 geese of each species per year (Harradine 1991). 

Disturbance from shooting is therefore likely to affect goose behaviour. The flight 

distances of wintering flocks of both White-fronted geese Anser albifrons and Bean 

geese Anser fabalis decreased from around 500m to 200m following a ban on 

shooting, and therefore resulted in an expansion of goose feeding grounds (Gerdes 

& Reepmeyer 1983). Madsen (1985b) also attributed seasonal differences in flight 

distance of Pink-footed geese to differences in shooting disturbance before and after 

the end of the shooting season. Grey geese avoid fields or roosts where shooting 

has occurred for a few days after the shoot (Newton & Campbe111973), showing a 

more local and short term effect of shooting. It remains unknown whether shooting 

has a longer-term effect on feeding distribution of geese, and the number of geese 

an area can support. 
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Roads result in an increased level of disturbance. Gill (1994) found that there was a 

significant relationship between the frequency of disturbance events and distance 

from the nearest road. The presence of roads is known to depress goose use of 

fields nearby (Newton & Campbell 1973, Madsen 1984, Keller 1991, Gill 1994). 

Work by Keller (1991) showed that both Pink-footed and Greylag geese wintering 

in north-east Scotland did not feed within 100m of roads, or in fields with centres 

closer than 100m from roads. Similarly in Norfolk the fields where Pink-footed 

geese fed had a significantly greater distance from the centre of the field to the 

nearest road than the average, and geese never fed within 35m of the road (Gill 

1994). In Denmark Madsen (1984) found roads with traffic volumes of 20-50 cars 

per day had a serious depressing effect of goose use within 500m of the road, and 

even tracks with fewer than one car per day had a depressing effect on goose 

utilisation. The greater effect of roads in Denmark is probably a result of lower 

overall disturbance rate in Denmark that in Britain. The presence of roads affects 

not only whether the field is used, but also the extent of crop depletion. Gill (1994) 

concluded that the extent of depletion of fields can mainly be accounted for by 

distance to nearest road and, in addition, the number of days the field was used 

varied with distance to the road. 

Geese prefer to feed in fields with an open view, so that potential predators can be 

seen (Newton & Campbell 1973, Newton et al1973, Madsen 1985b). If a field is 

enclosed by an object that will obstruct the view on more than one side, utilisation 

of the field by Pink-footed geese will be affected (Madsen 1985b). Windbreaks 

also depressed goose utilisation within 150m (Madsen 1985b, Larsen & Madsen 
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2000). However, neither Gill (1994) nor Stenhouse (1996) found a significant 

effect of the proportion of field surrounded by hedge. Small fields have reduced 

visibility and field size is recognised as a factor affecting field use by geese 

(Newton & Campbell 1973). In north Norfolk Pink-footed geese were found never 

to use fields smaller than 6 ha in area (Gi1l1994). Madsen (1985b) found that Pink­

footed geese in Denmark never use fields less than 500m wide. Other landscape 

characteristics that have been shown to depress Pink-footed goose use are wind 

turbines and power-lines (Larsen & Madsen 2000), although the effect of these may 

not be the result of disturbance. 

Disturbance has been shown to have a detrimental effect on geese. Disturbance of 

staging Greater Snow geese (Chen caerulescens atlantica) affects their feeding 

activities and their subsequent use of the area (Belanger & Bedard 1989). In 

Greenland the time budget of Pink-footed geese was strongly affected by 

disturbance by helicopters carrying out oil exploration work (Mosbech & Glahdcr 

1991). The Pink-footed geese spent less time resting and feeding and more time 

swimming and it was concluded that their energy intake was affected. However, 

disturbance will be detrimental to geese only if it reduces energy intake so much 

that it cannot be compensated for either by increasing rate of food intake while 

there is no disturbance or by night-time feeding. In Greater Snow geese increased 

disturbance did not result in an increase in food intake rate during the day and 

therefore up to a 32% increase in night-time feeding may be needed to compensate 

for energy losses (Belanger & Bedard 1989). Disturbance from shooting has been 

shown to affect the extent of night-time feeding. Night-time feeding has been 

shown to increase when geese are subject to increased predation, for example while 
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mounting (and therefore flightless) (Kahlert et af 1996) or during the hunting 

season (Newton & Campbell 1973). 

Abdominal profile indices (which have a linear relationship to weight) of Pink­

footed geese were significantly lower in areas and years when farmers initiated a 

scaring campaign against geese in their staging grounds in north Norway (Madsen 

1995). Disturbance also affected the subsequent breeding success ofthe geese, with 

geese staging in undisturbed areas having 46% breeding success, while geese 

feeding in the disturbed areas having a breeding success of only 17% (Madsen 

1995). Therefore disturbance can have a detrimental effect on goose populations, 

and may explain why geese choose to feed in areas with reduced disturbance levels. 

Most of the work on disturbance has been on Pink-footed geese. Greylag geese are 

less wary and less demanding with regard to field size (Newton et af 1973, Madsen 

1984 & 1985a). Pink-footed geese feed in larger and tighter flock than Greylag 

geese, and depression of utilisation of fields near roads is more apparent in Pink­

footed geese than Greylag geese (Newton and Campbell 1973). 

1. 6.7 Order of field use 

The order of field use by Pink-footed geese in Norfolk was found to be relatcd to 

distance from roost only, and not to root biomass, field area, mean root size or risk 

of disturbance (Gill 1994). This suggests that there are certain fields acceptable to 

the geese and that when they are depleted, the geese will travel further, as opposed 

to feeding in substandard fields, although closer. 
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Gill (1994) built a model to predict to what extent Pink-footed geese would use beet 

fields. The model was based on the following variables: 

Distance from roost 

Distance from road 

Harvest and ploughing dates (availability) 

Field size 

Amount of food consumed (Standard intake x no of geese on roost) 

The model ran on a daily basis for one winter, and results correlated strongly with 

field results, suggesting that the element of tradition on feeding location of these 

geese was slight, if an influencing factor at all. 

1.7 POSSIBLE SOLUTIONS TO THE GOOSE-AGRICULTURE 

CONFLICT 

1.7.1 IntroductiOil 

Both Pink-footed and Greylag geese are protected under European legislation 

(AfricanlEurasian Waterbird Agreement (AEWA) under the Bonn Convention, 

Annex III of the Bern Convention and Annex II of the EU Birds Directive) and are 

listed in the UK's Action Plans for Biodiversity (HMSO 1995). As the British 

government has a responsibility to conserve these geese it is necessary to find 

solutions that will reduce economic loss to farmers while conserving the geese. The 

goose-agriculture conflict . could be alleviated by reducing the density of geese 

feeding on vulnerable crops by one of a number of ways: 

• Simple changes in farm management 

• Creation of alternative feeding areas for geese 

• Compensation payments to farmers for losses 
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• Dispersing the geese 

• Managing the geese populations at lower levels that at present 

1.7.2 Farm management practices 

There are some steps that farmers can take to reduce damage to crops. One of the 

ways of keeping geese off crops where damage can occur is to encourage them to 

feed in fields where they are causing no harm. Decreasing disturbance of geese 

feeding in fields where crops cannot be damaged (i.e. cereal stubbles and remains of 

sugar beet), leaving ploughing as late as possible and putting livestock in fields 

which are not favoured by geese will all encourage geese (Gill 1994). Increasing 

the amount of spring-sown cereal will result in more sugar beet and stubble remains 

being left overwinter, as early ploughing is not required (Gill 1996). One farmer in 

Norfolk reduced all unnecessary farm traffic in the vicinity of fields where geese 

fed on sugar beet remains, and this resulted in an increase in the percentage of geese 

feeding on the sugar beet from 80% to 97% and a corresponding decrease in the 

amount of geese feeding on winter sown cereals (Cross 1993, Gill 1996). 

If the palatability of different varieties of cereal is tested, those with a higher fibre 

content and Jess protein may be less favoured by geese, and more suitable for 

planting in areas where goose grazing is a problem (Owen 1990). 

1.7.3 Altemative Feedillg Areas 

Major goose roosts are often protected by legislation (e.g. as Sites of Special 

Scientific Interest (SSSI), Specially Protected Areas (SPAs) or Ramsar sites). 

There is rarely, however, protected feeding areas for Pink-footed and Greylag geese 
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(Mitchell et aI1999). Creating and managing 'alternative feeding areas' (AFAs) to 

concentrate feeding geese could reduce grazing pressure on local farmland and has 

been suggested by many conservationists to be the best way of alleviating conflict 

between farmers and geese (Owen 1977, Owen 1990, Jepsen 1991, Andrews & 

Rebane 1994, Giroux & Patterson 1995). AF As could be managed either by 

conservation bodies (e.g. reserves) or by farmers (e.g. by incorporating into a set­

aside scheme) (Owen 1990, Patterson & Fuchs 1992, Giroux & Patterson 1995). 

A range of management prescriptions have been suggested to encourage geese to 

AFAs. Disturbance should be kept at a minimum, with no shooting (Fox & Madsen 

1997), and they should be sown with crops that are more attractive than those in 

nearby farmland. Suitable crops include cut but unharvested or partially harvested 

cereals (Giroux & Patterson 1995), improving grasslands through fertilisation 

(Owen 1975, Jepsen 1991, Patterson & Fuchs 1992, Giroux & Patterson 1995) and 

managing sward height (Patterson & Fuchs 1992, Andrews & Rebane 1994). In 

Denmark management measures include the daily provision of supplementary grain 

in the most vulnerable season (spring) as well as improved pasture (Jepsen 1991). 

Reseeding pasture can increase Barnacle goose feeding density by 60-135%, and 

fertiliser application increased time spent by geese on the grass by 17-42% 

(Percival 1993). 

The size suggested for management areas varies Giroux and Patterson (1995) 

suggest the creation of small management units of 1 kml scattered throughout the 

100 km2 feeding range at Loch Strathbeg, as Pink-footed geese tend to concentrate 

their daily feeding in a 1 km2 area (Giroux & Patterson 1995), Andrew and Rebane 
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(1994) advise that two to three managed fields of 10 ha, 500m apart can hold 1,000 

geese, while Jepsen (1991) suggests an area of 100 ha of improved grass and 'lure 

grain' can support 14,300 Pink-footed geese over 30 days in spring (when they are 

staging in Denmark). If possible, areas already favoured by geese should be chosen 

as AFAs (Owen 1990, Patterson & Fuchs 1992). 

Where alternative food areas are available, scaring and shooting of geese from areas 

where they are causing damage will reduce numbers and concentrate the geese in 

the refuges (Owen 1990, Leito 1991, Andrews & Rehane 1994). Objects for 

scaring geese such as sacks on poles, barrels or gas guns have a minimal effect and 

work for only a short time before geese become accustomed to them (Hearn & 

Mitchell 1995). Vickery and Summers (1992) have shown that the only cost 

effective form of scaring Brent geese Branta bernicla from cereal fields is to 

employ a human scarer to shoot at the birds each time they land on the fields. 

Studies on the management of Barnacle geese Branta leucopsis on Islay have 

shown that intensive, deliberate human disturbance can decrease the number of 

geese feeding in an area by 50%, mainly by moving the geese to refuges (Percival et 

aI1997). Owen (1990) suggests that Pink-footed and Greylag geese should be shot 

outside the managed areas throughout the year, unless numbers drop to below 100, 

000 (as they now have for Greylag geese) in which case the general licence should 

be withdrawn and specific licences should only be granted for known incidences of 

damage in vulnerable areas. 

At Loch Strathbeg a scheme was set up by Scottish Natural Heritage (SNH), 

running from 1994 to spring 1996, in which farmers who were heavily affected by 
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Pink-footed geese were encouraged to enter into a management agreement. 

Farmers provided refuge areas for the geese, and in these payment rates were made 

depending on goose use, which was assessed by the density of goose droppings. 

Outside the refuge area goose scaring was encouraged. Farmers received £50 to 

£80 per hectare, and the annual cost was around £27,000 (SOAEFD 1996). The 

Loch Strathbeg scheme was the only management scheme for Pink-footed geese 

operated by SNH, and no such schemes operate at present for Icelandic Greylag 

geese (Mitchell et al 1999, Mitchell & Sigfusson 1999). There is potential for 

payments from SOAEFD through the Environmentally Sensitive Area (ESA) 

Scheme and the Countryside Premium Scheme (CPS) to fund such management 

plans (Patterson & Fuchs 1992, SOAEFD 1996). The CPS has already been used to 

fund the provision of grazing for Brent geese (Patterson & Fuchs 1992). 

1.7.4 Compensation payments 

Alternatively, specific payments can be made to farmers to compensate for their 

loss of yield. In Islay farmers receive £9.50 per goose in compensation for the 

damage caused by Barnacle geese. This method of management is costly, although 

no more than the cost of using a human scarer to scare these geese onto refuges 

(Percival et al 1997). In Canada the federal government buys any crops damaged 

by geese (Owen et al 1986). In Europe the Netherlands is the only country with a 

nationwide compensation payment scheme (van Roomen & Madsen 1992), made 

by the Ministry of Agriculture and Fisheries, through the Game Fund (van Eerden 

1990). Other countries, however, make compensation payments in local situations 

(van Roomen & Madsen 1992). In the Netherlands an average of £167 per hectare 

is given for damage by geese to arable land, £35 per hectare for damage to 
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grassland, resulting in a total cost of up to £758, 000 in severe winters (van Eerden 

1990). As compensation payments are increasing at a rate exceeding the increase in 

goose numbers, however, the government may be unwilling to pay ever increasing 

compensation (van Eerden 1990). Vickery et al (1994) carried out an economic 

analysis on solutions to the problem of damage to agricultural land by Brent geese 

and found that the best solution for society was to create AFA's. However, the best 

solution for farmers was compensation for damaged crops. 

1.7.5 Goose redistributioll 

Meire and Kuijken (1991) suggest that instead of concentrating geese in protected 

areas, it would be preferable to use shooting as a method of dispersing the geese and 

therefore diluting the problem of damage. Patterson et al (1989) suggests that 

significant damage to winter cereals could be avoided by dispersal of the geese by 

scaring, so that they use more fields at lower grazing pressures, preferably below 

5, 000 goose hours ha- I
, Geese which are more dispersed will be less vulnerable 

than large proportions of the population concentrated in very restricted areas (Meire 

& Kuijken 1991). Mooij (1991) questioned shooting as a method of regulating 

goose damage, as it will only be effective if there are undisturbed areas for geese to 

feed. Shooting also injures non-target geese, if a goose is shot at 35m, on 37% of 

occasions other geese will get hit by some of the pellets (Mooij 1991). When x­

raying geese, 60% of adult geese and 30% of juveniles had lead pellets in them 

(Owen et a/1986), although the effect of stray pellets on geese is unknown. 
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1.7.6 Population management 

Population management involves reducing the numbers of geese and maintaining 

them at a desirable level (Owen 1990). Reducing numbers of geese through 

population management may reduce the level of conflict between farmers and geese 

(SOAEFD 1996). This can be achieved by the following methods: 

• Extending the shooing season for quarry species from the existing 

September to 31 January (inland) (SOAEFD 1996) 

• Increasing bag size (Owen 1990) 

• Relaxing shooting bans in refuges (Owen 1990) 

• Ease present restrictions on the sale of dead geese, while avoiding over 

exploitation (SOAEFD 1996) 

• Co-operate with Iceland and Greenland to produce an action plan to 

reduce breeding success by destroying eggs I goslings, or reducing 

control of the Arctic fox, a natural predator of geese (SOAEFD 1996) 

• Chemical control (Owen 1990). 

Reduction of the numbers of geese may not be the solution to the goose-agriculture 

conflict as it is the spatio-temporal distribution, rather that the population size, 

which causes conflict (Moser & Kalden 1992). In addition all of the above 

suggestions would be difficult to implement due to international agreements, public 

outcry and disagreement by wildfowlers and conservationists (Owen 1990). 

1.7 SUl\IMARY 

Pink-footed and Greylag geese wintering in Britain feed in farn1land surrounding 

roost sites. Food availability and causes of disturbance affect the locations of 
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feeding flocks. It has been shown that grazing geese can cause damage to crops and 

therefore economic loss to farmers. At present there are no schemes to manage 

Pink-footed geese or Greylag geese in Scotland to reduce conflict with farmers. 

The most feasible solutions to the conflict between grey geese and agriculture 

appear to be the creation of Alternative Feeding Areas (AFA's) or the establishment 

of a scheme to compensate farmer for losses suffered due to goose grazing. An 

understanding of where geese are likely to feed would be helpful in targeting 

management plans such as these (Patterson & Fuchs 1992). 
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CHAPTER2-THESTUDYAREA: STRATHEARNANDSTRATHALLAN 

2.1 INTRODUCTION 

The study area was situated in east central Scotland along the River Earn and Allan 

Water (Figure 2.1) covering an area of 420km2 with altitude's ranging from 0 to 500 

mas!. The area is bounded to the north by the Turret Hills and to the south by the 

Ochil Hills. Of the two main rivers flowing through the study area the River Earn is 

the largest, ranging in width between c.30 and 45m while the Allan Water is c.15 -

20m wide. Smaller rivers and burns in the study area such as the Pow Water, 

Machany Water, Turret Burn and the Ruthven Water did not reach more than 

10m in width. 

25 0 25 Kilometa-s 
~ 

Figure 2.1 The location of the study area within Scotland 
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The landcover of the study area was 55% arable land, 13% wooded, 12% 

unimproved grassland, 9% improved grassland, 7% heather moorland, and 4% 

urban areas, roads, and other minor land uses (Macaulay Land Cover of Scotland 

1988). 

Within the study area, analysis and prediction of goose use was restricted to land in 

the 'rural' category of the Land-Line digitized data (Ordnance Survey, 

Southampton, United Kingdom, scale 1:12500), which corresponded to the limits of 

the 'agricultural' land class in the Land Cover of Scotland (LCS88) (1988, The 

Macaulay Institute, Craigiebuckler, Aberdeen, Scotland, scale 1 :25000). The area 

within the 'rural' category of the OS Land-Line data is typical of agricultural areas 

of lowland Scotland with 73% of the area classified as arable land, 11 % as wooded, 

9% as permanent pasture (mainly improved pasture) and 7% urban areas, roads, and 

other minor land uses (Macaulay Land Cover of Scotland 1988). The 3607 study 

fields which fell into this category ranged in altitude between 5 and 267 masl (mean 

= 92 masl) and are shown in Figure 2.2. 

2.2 STATUS OF GEESE IN STRATHEARN AND STRATHALLAN 

There are three major goose roosts in Strathearn and Strathallan. In Strathearn 

Drummond Pond, situated to the west of the study area, is mainly used by Greylag 

geese while Dupplin Loch, situated further to the east, is predominantly a roost for 

Pink-footed geese. In Strathallan Carsebreck Lochs hold large numbers of Pink. 

footed geese and smaller numbers of Greylag. These three major roosts are 

the largest lowland water bodies in the study area and geese roosting here are 

subject to little or no shooting (Bell et al 1997). The following account of the 

36 



1 0 1 2 3 Kilometers 
~ . 

Figure 2.2 The study area in Strathearn and Strathallan, showing individual fields. 
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numbers and trends of geese using these roosts is based on data the National 

Census of Pink-footed Geese and Icelandic Greylag Geese in Britain, supplied by 

the Wetland Bird Survey (WeBS). 

2.2.1 Drummond Pond 

Drummond Pond, in the grounds of Drummond Castle, is a designated SSSI and 

RAMSAR site. Figure 2.3 show the five-year moving average of the counts at 

Drummond Pond from the National Census of Pink-footed Geese and Icelandic 

Greylag Geese in Britain and Ireland (Boyd & Ogilvie 1972, WWT Goose Census 

data) carried out each November since 1960. Drummond Pond was the largest 

Greylag goose roost in Britain in the 1960s holding on average c.7900 geese at the 

time of the November census between 1965 and 1970, nearly 14% of the British 

population (Boyd & Ogilvie 1972). Since the early 1980s the number of geese 

present at Drummond Pond has dropped considerably to an average of 1590 over 

the last five years, 2.0% of the British population (WWT Goose Census data, Hearn 

2000). The decline in the numbers of Greylag geese is a part of a general shift of 

this species away from their previous stronghold in east central Scotland to Orkney, 

Caithness and Ross & Cromarty (Boyd & Ogilvie 1972, Hearn 2000). Autumn 

counts for Angus & Perth have dropped from 30,000 - 40,000 in the late 1960s to 

less than 10,000 in 1999 (Boyd & Ogilvie 1972, Hearn 2000). 

Pink-footed geese were first recorded at Drummond Pond in 1988, and since 1990 

c.3000 have been present each October, although none remained by mid-November 

(Bell & Newton 1995). By clearing local stubble fields of spilt grain before the 
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Greylag geese arrived the Pink-footed geese might have contributed to the drop in 

numbers of Greylag geese in recent years (Bell & Newton 1995). 
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Figure 2.3 Five year moving average of the November counts for 
Greylag geese at Drummond Pond. Data from the WWT National 
Census of Pink-footed geese and Greylag geese in Britain and 
Ireland. 

In addition to Drummond Pond, Greylag geese in Strathearn were recorded to use a 

further nine roosts by Bell et al (1997) with only 54% of recorded flocks of Greylag 

observed between the winters of 1987/88 and 1993/94 roosting at Drummond Pond. 

Counts of all Greylag goose roosts in Strathearn throughout the winters of 1988/89 

to 1993/94 show that the area held relatively constant numbers of Greylag 

throughout the winter. Most geese roost at Drummond Pond when they first arrive 

in autumn, but disperse to the smaller roosts as the winter progresses (Bell & 

Newton 1995). 

2.2.2 Dupplin Loch 

Dupplin Loch is the main Pink-footed goose roost in Strathearn. Dupplin Loch 

appears to be unattractive to roosting geese as it is relatively small (c.30ha) and is 
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surrounded by mature woodland. However, the loch is undisturbed such that at 

times it has held more Pink-footed geese than any other site in Britain (Newton et al 

1973, Bell & Newton 1995). The number of Pink-footed geese using the roost has 

remained relatively constant since the 1960s, when accurate goose counts began 

(Figure 2.4). Seasonal trends in the numbers of Pink-footed geese shows a very 

clear peak in numbers using the roost in early autumn (Figure 2.5). In November 

1973 Dupplin Loch held 27,500 Pink-footed geese, at the time representing 33% of 

the British population. More recently numbers have regularly peaked at over 

30,000 and in September 1991 57,500 geese were roosting at the loch, 25% of the 

British population (Bell & Newton 1995). These large numbers of geese cannot be 

sustained, and by mid November much of the spilt grain in the area is depleted. At 

this time the numbers of Pink-footed geese fall to c. 6000 (c. 3% of the British 

population) and remain at around this level for the rest of the winter (Bell & 

Newton 1995). Pink-footed geese in Strathearn have been recorded to use 

floodwaters as alternative roost sites on occasion (Bell & Newton 1995. Bell et al 

1997) but the vast majority of flocks observed roosted at Dupplin Loch (93% Bell et 

alI997). 

Large numbers of Greylag geese roosted at Dupplin Loch in the past, with numbers 

averaging c. 2000 in the 1970s but in recent years a maximum of a few hundred 

Greylag geese roost at Dupplin and often fewer (WWT Goose Census data). As 

discussed previously this decline is part of a wider shift of Greylag geese away 

from traditional roosts in east central Scotland. 
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Figure 2.4 Five year moving average of the autumn counts for Pink­
footed and Greylag geese at Dupplin Loch. Data from the WWT 
National Census of Pink-footed geese and Greylag geese in Britain 
and Ireland . 
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Figure 2.5 Seasonal trends in the mean number of Pink-footed geese 
using Dupplin Loch from 1987 to 1998. Data from the WWT. Error 
bars = standard error of mean . 

2.2.3 Carsebreck Lochs 

2000 

Carsebreck Lochs are a complex of three lochs, Carsebreck Loch, Upper Rhynd and 

Lower Rhynd, situated close to the Allan Water. Since the National Census of Pink-
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footed Geese and Greylag Geese in Britain and Ireland began in 1960 the lochs have 

been used as a roost by both Pink-footed and Greylag geese. Figure 2.6 shows the 

trends in goose numbers during the November census' (Boyd & Ogilvie 1969, 

WWT Goose Census data). The numbers of Pink-footed geese using the roost 

increased rapidly in the 1980s corresponding to the increase in the national trend. 

However the numbers levelled out around 1990 while the numbers nationally were 

still increasing, as the area reached its 'carrying capacity' (Bell & Newton 1995). 

Carsebreck Lochs presently hold c. 6000 Pink-footed geese, around 3% of the 

British population, at the time of the November census. While the pattern of goose 

use of the lochs throughout the season is not as marked as at Dupplin Loch, there is 

a clear passage of Pink-footed geese in both the early autumn and the spring (Bell & 

Newton 1995) (see Figure 2.7). As at Dupplin Loch the vast majority of Pink-

footed geese feeding in Strathallan roost at the main lochs (90% Bell et al 1997), 

although a further 12 roosts were used on occasion. 
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Figure 2.6 Five year moving average of the autumn counts for Pink­
footed and Greylag geese at Carsebreck Lochs. Data from the WWT 
National Census of Pink-footed geese and Greylag geese in Britain 
and Ireland . 
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Figure 2.7 Seasonal trends in the mean number of Pink-footed and 
Greylag geese using Carsebreck Lochs from 1987 to 1998. Data 
from the WWT. Error bars = standard error of mean. 

In the 1960s Carsebreck held relatively large numbers of Greylag geese, c. 4000 

which at the time was nearly 6% of the British population. As in Stratheam, since 

that time the numbers have crashed to fewer than 500 geese in recent years (WWT 

Goose Census data). Only 30% of Greylag flocks observed roosted at Carsebreck 

lochs, with a further nine smaller roosts also used, especia1Jy after the end of the 

shooting season (Bell et aI1997). 

2.3 SUMMARY 

When the National Grey Goose Census began in the 1960s Strathearn and 

Strathal1an was one of the most important areas in Britain for wintering Pink-footed 

and Greylag geese (Boyd & Ogilvie 1969 & 1972). By the 1980s the relative 

importance of this area had decreased for both species, Pink-footed goose numbers 

did not increase in line with the national trend while Greylag goose number at all 

three main roosts have declined considerably despite an increase in the British 
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population (Bell & Newton 1995). The decline in numbers of Greylag geese is a 

part of a general shift of these geese away from east central Scotland to roosts in 

Orkney, Caithness and Ross & Cromarty (Boyd & Ogilvie 1972, Hearn 2000). 

Passage of Pink-footed geese through Strathearn and Strathallan causes an influx of 

geese at all roosts in early autumn, and again in spring in Strathallan. The size and 

duration of the autumn peak reflects the amount of grain shed at harvest, suggesting 

geese move on as there is inadequate food resources to sustain them for the rest of 

the winter (Bell & Newton 1995). Seasonal trends in the numbers of Greylag geese 

using the roosts are much less apparent as the area is close to the southern limit for 

this species, and therefore there is a smaller passage (Bell & Newton 1995). In 

addition, as Greylag geese roost in smaller numbers (WWT Goose Census data) 

depletion of food close to the roosts is likely to be less severe in this species and 

therefore food resources are likely to last longer. 
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CHAPTER 3 PREDICTING GOOSE DISTRIBUTION FROM 

LANDSCAPE CHARACTERISTICS 

3.1 INTRODUCTION 

3.1.1 A review ofmetllOdsfor predicting tlte distrihutiOlI of animals 

Knowledge of the distribution of animals is often a basic requirement of 

conservation management. In certain circumstances survey work can provide the 

required information, if for example knowledge of distribution is only required for a 

specific area or if it is possible to co-ordinate volunteers to cover large areas (e.g. 

Sharrock 1976). Census work may hold logistic problems, however, such as cost 

and access to remote areas (Osborne & Tigar 1992, Tucker et at 1997). In such 

circumstances prediction of the distribution of animals from data of a smaller 

sample area will often prove more cost-effective. There are a range of techniques 

available that can be employed to predict distribution of a species from sample data. 

INTERPOLATION 

Interpolation mapping is a family of methods where the value of a variable at a 

specific point on a map is estimated by local interpolation (Legendre & Legendre 

1998). Interpolation methods used in ecological situations range from simple linear 

interpolation (Farina 1997) to kriging (Robertson 1987, Palma et at 1999). 

Although interpolation techniques take account of the spatial patterns in species 

distribution (Legendre 1993) they do not take account of the effect of habitat quality 

when predicting where animals will occur (Augustin et aI1996). 
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WILDLIFE-HABITAT MODELS 

Species distribution is often related to landscape characteristics, with species being 

present only if suitable habitat is available. Landscape characteristics can either be 

measures of the real requirements of a species (e.g. food availability) or proxy 

measures (Le. houses as a measure of human disturbance). If the relationships 

between landscape characteristics and species distribution are known then the 

species distribution can be predicted from information on the landscape 

characteristics. An added advantage of using predictive models based on the 

availability of suitable habitat is their ability to predict the effect of future change in 

land-use on the species (Saarenmaa et al 1988, Austin et al 1996, Cowley et al 

2000). Such analysis requires data on landscape characteristics for both the sample 

area and the area where prediction of species distribution is required. In the past 

field surveys and maps have had to be used to provide landscape data (e.g. Osborne 

& Tigar 1992, Fielding & Haworth 1996, Collingham et al 2000, Cowley et al 

2000). In recent years the advent of Geographical Information Systems (GIS) has 

enabled the storage, manipulation and display of spatial data, a tool which is being 

increasingly used in the creation of predictive models (e.g. Pereira & Itami 1991, 

Buckland & Elston 1993, Augustin et al 1996, Austin et al 1996, Tucker et al 

1997). A wealth of landscape data is now available in digitised form (e.g. Ordnance 

Survey Landline data). Remote sensing, the use of aerial photography and satellite 

imagery, has also been used in recent years to identify landscape characteristics on 

the ground (Austin et al 1996, Tucker et al 1997, Osborne et al200t) and species 

distributions (Crist & Wiens 1996). GIS and remote sensing have therefore greatly 
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increased both the quality and quantity of information that can be incorporated into 

predictive models (Austin et a11996, Cowley et a12000, Corsi et aI2000). 

MULTIPLE REGRESSION 

A range of statistical techniques are available for analysing the effect of landscape 

characteristics on species distributions. Multiple regression can be used to model 

the effect of a suite of landscape characteristics on species abundance (e.g. 

Morrison et a/ 1987). This technique, however. is inappropriate for data where the 

species is absent from a large proportion of sample points, as is often the case with 

species distribution. In such cases analysis of the presence or absence of a species 

is often a more appropriate approach. 

TECHNIQUES FOR MODELLING PRESENCE / ABSENCE DATA 

Logistic regression and discriminate function analysis are two techniques for 

predicting the species distribution by relating landscape characteristics to the 

presence or absence of a species and have been frequently used to model species 

distribution (Pereira & Itami 1991, Osborne & Tigar 1992, Buckland & Elston 

1993. Austin et a/ 1996, Fielding & Haworth 1996, Manel et a/ 1999, Collingham et 

a12000, Cowley et al 2000, Osborne et a/ 2001). Both techniques yield very similar 

results (Fielding & Haworth 1995, Manel et a/ 1999) but are limited in assuming a 

linear response to environmental predictors (Manel et a/ 1999). More recently 

artificial neural networks (ANN) (e.g. Spitz & Lek 1999) and tree regression 

analysis (e.g. Rejwan et a/ 1999) have been used to predict species distribution. 

These techniques do not require the dependent variable to be linearly related to the 

predictor variables and make no assumptions about the distributions of the predictor 

variables (Manel et al 1999, Rejwan et al 1999). Although such techniques are 
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advantageous if relationships between landscape characteristics and species 

distribution cannot be made linear (Rejwan et al 1999), if the assumptions of more 

traditional modelling techniques are met, ANN's will not outperform them (Manel 

et al 1999). In addition the output is difficult to interpret (P.E. Osborne pers. 

comm.). 

SPATIAL AUTOCORRELATION 

None of the above techniques takes account of the spatial arrangement of dependent 

variables, predictor variables or residuals, and they assume that all points are 

spatially independent. Ecological variables, however, are often spatially 

autocorrelated, that is to say that random points are likely to be more correlated the 

closer they are to each other (Legendre 1993). All the wildlife-habitat models 

outlined above assume that data points are spatially independent and therefore 

spatial autocorrelation will result in an overestimation of the degrees of freedom 

and therefore the possibility of false significance in statistical tests (Legendre 1993, 

Augustin et al1996, Fielding & Bell 1997). Correctly predicted species presence or 

absence will also be a conservative measure of model performance as no account is 

taken of the spatial element (i.e. the distance of false positives from real positives) 

(Austin et al 1996, Fielding & Bell 1997). Spatial autocorrelation in residuals of a 

wildlife-habitat model, the result of unexplained covariates or animal behaviour, is 

often ignored (Augustin et al 1996), although Fielding and Haworth (1996) found 

only weak spatial dependence of logistic regression model residuals in their study. 

Augustin et al (1996) have developed an approach, called autologistic regression, 

that incorporates both the effect of spatial autocorrelation and landscape 
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characteristics by including an additional covariate into a logistic regression model 

which takes account of species abundance in neighbouring cells. 

ASSESSING MODEL PERFORMANCE 

Once a model has been built it is important that its power to predict species 

distributions is assessed. The number of correctly classified cases may not be the 

most appropriate measure of model fit (Fielding & Bell 1997, Manel et al 1999). 

Fielding and Bell (1997) discuss a range of statistics which describe various aspects 

of the results of presence / absence models, including the use of receiver operator 

characteristic (ROC) plots which assess the accuracy of models through the whole 

range of threshold values (e.g. Fielding & Haworth 1996). 

Assessing model accuracy from the correct classification of sample points used to 

create the model can be optimistically biased and therefore model accuracy should 

be assessed on independent data (Verbyla & Litvaitis 1989). The most rigorous test 

of a statistical model is to apply it to an independent data set (e.g. Austin et at 

1996), but resampling methods can be used to obtain more realistic measures of 

classification accuracy with the available data (Verbyla & Litvaitis 1989). A range 

of res amp ling techniques exist which involve creating a model with a portion of the 

data and testing the model accuracy with the rest. Cross validation, splitting the 

data in two and using one sub-sample to develop the model and the second to assess 

model accuracy, results in a loss of data on which the model is built (Verbyla & 

Litvaitis 1989). A preferable method of resampling, in which no such loss of data 

occurs, is jack-knifing. With jack·knifing each sample point is excluded in tum 

from the analysis so that the prediction of species present at the excluded sample 
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point is independent. This technique is frequently used to assess model accuracy 

(e.g. Osborne & Tigar 1992, Manel et a11999, Cowley et aI2000). Bootstrapping 

is another re-sampling technique. This involves taking a random sample of data 

that is the same size as the original data set, but with replacement, and predicts the 

presence of the species for the remaining data. The process is repeated many times, 

then the mean predicted value for each data point is calculated and used to assess 

model fit. Although bootstrapping is the best assessment of model fit it requires the 

most computer power (Verbyla & Litvaitis 1989). 

SOME PROBLEMS OF WILDLIFE HABITAT MODELS 

Predictive models based on associations between habitat types and species 

distribution may not be accurate, even if all the assumption above are addressed. 

Factors affecting species use of a habitat have been shown to vary between regions, 

possibly due to regional differences in habitat composition and animal behaviour 

(Fielding & Haworth 1996, ManeI et aI1999). Species may not occur in all suitable 

habitat and may be present in unsuitable habitat due to factors such as delayed 

reaction of a species to changes in habitat (e.g. succession) (Fielding & Haworth 

1996), undersaturation (Fielding & Bell 1997), individual variation (e.g. as a result 

of social status) (Fielding & Bell 1997). Scale is an important factor and should be 

considered. Wiens et al (1987) found that habitat characteristics affecting the 

distribution of bird species were dependent on the spatial scale at which species 

distribution was assessed. These factors suggest that caution should be exercised 

when extrapolating models to other areas, at different scales or when making 

predictions in the effect changes in land-use (Fielding & Haworth 1996). Beutel et 

al (1999) commented that as conservation strategies aim to optimise habitat quality 
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and because species presence may not necessarily indicate high quality habitat, 

alternatives to studying species distribution such as survivorship, reproductive 

success or physiological condition may be more appropriate for highlighting areas 

of conservation interest (e.g. Paradis et a/2000). 

3.1.2 Predicting thefeeding distribution of geese 

In this chapter the probability of geese using individual fields will be predicted from 

the field's landscape characteristics. Information on goose distribution was 

obtained from the surveying of sample fields, and in the majority of these fields no 

geese were observed. Pink-footed and Greylag geese have a tendency to feed in 

fields which they had used on previous days and are also likely to select fields 

where other geese are present. Consequently, the observation of a large flock of 

geese in a field, or observations of geese repeatedly using the same field, was not 

considered to be a much more accurate measure of field suitability than the 

observed presence I absence of geese. Therefore analysis of the effect of landscape 

characteristics on the presence I absence of geese, as opposed to their density, was 

considered appropriate. 

As analysis was of presence / absence data multiple regression was considered 

inappropriate. The relationships between habitat variables and goose use appeared 

linear when simple transformations were applied so there was no need for 

techniques such as ANN and tree regression analysis. Therefore, logistic regression 

and discriminate function analysis were the two most appropriate statistical 

techniques for predicting the distribution of geese, and of these logistic regression 

was selected for this analysis. 
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Table 3.1. Factors potentially affecting feeding distribution of Pink-footed (PF) and Greylag (GL) 
geese. 
Field characteristic Possible effect Possible explanation Effect References 

shown 
PF GL 

Distance to roost Decreased field use Increased flight cost Newton et al. 1973 
further from roost Bell 1988 .t .t Keller et al. 1995 

Giroux & Patterson 
1995 

Crop type Increased use in Increased nutrient Newton & Campbell 
fields with preferred intake 1973 
food type .t .t Forshaw 1983 

Madsen 1984 
Bell 1988 
Patterson et al. 1989 
GiI11994 
Giroux & Patterson 
1995 
Hearn & Mitchell 
1995 
Mitchell et al. 1995 

Distance to water Increased use near Decrease cost of 
source water source moving when water 

required for drinking, 
bathing 

Field area Increased use of Increased probability Newton & Campbell 
larger fields of use purely due to 1973 

size .t Madsen 1984 
Decreased chance of Gill 1994 
visibility being 
impaired by field 
boundary 

Proximity to roads Decreased use of Increased human Newton & Campbell 
fields near road disturbance 1973 

.t .t Madsen 1984 
Keller 1991 
Gi111994 

Proximity to Decreased use of Increased human X Gill 1994 
buildings fields near buildings disturbance 
Proximity to urban Decreased use of Increased human 
areas fields near urban disturbance 

areas 
Slope Decrease use of Decreased ability for 

sloping fields geese to detect 
potential predators 

Proximity to trees, Decreased use of Decreased visibility Madsen 1984 
windbreaks fields near .t 

windbreaks 

Previous studies have shown the effect of proximity to human disturbance. food 

types and travel time from roost on field choice by Pink-footed and Greylag geese 

(refs. in Table 3.1). However, Pink-footed geese have been shown to concentrate a 

day's feeding within a mean area of 1.1km2 (Giroux & Patterson 1995), and 
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therefore the chance of a field being used by geese may not only be affected by the 

characteristics of the particular field but also by the suitability of neighbouring 

fields. A radius of 500m would therefore define the area within which geese are 

most likely to feed during the day, so the suitability or use of neighbouring fields 

within this radius may affect goose use of the field. 

3.1.3 Aims 

The objectives of this chapter are: 

(i) To quantify the effects of both disturbance-related and non-disturbance 

related field characteristics on the feeding distribution of Pink-footed and 

Greylag geese. 

(ii) To assess the effect of both the predicted and observed goose presence in 

neighbouring fields on goose use ofa field (autologistic regression). 

(iii) To build models that predict the feeding distribution of Pink-footed and 

Greylag geese from these relationships. 

3.2 METHODOLOGY 

3.2.1 Goose surveys 

Geese are very susceptible to disturbance from traffic (Keller 1991) so surveys were 

performed only from public roads where geese were habituated to regular traffic. 

Ten vantage points and two sections of road with good visibility were selected 

across the study area and from these 755 sample fields, situated throughout the 

study area, could be viewed. Fields were only included if entirely visible to the 

observer. Care was taken to ensure that during surveying no geese within any study 

fields were disturbed enough to leave that field. Sample fields were surveyed 2-3 
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times a week from the 15t October 1997 to 8th May 1998, a total of 71 surveys 

overall. The number and species of geese present in the fields were noted. Pink­

footed geese were observed in 123 of the sample fields, Greylag geese in 43 of the 

sample fields. 

3.2.2 Deriving field characteristics 

ArcInfo GIS ver. 7.2.1 (ESRI, Redlands, California, USA) was used to derive a 

polygon coverage for all 3,599 fields in the study area from digitised OS LandLine 

data. Table 3.2 lists the landscape characteristics for each field, which were derived 

from digitised data using the ArcView GIS version 3.1 (ESRI, Redlands, California, 

USA). Three sources of published spatial data sets were used, the rural category of 

Land-Line Data (Ordnance Survey, Southampton, United Kingdom) consists of 

vector coverage of man-made and natural features at a scale of 1: 12500. Land­

Form PANORAMA Data (Ordnance Survey, Southampton, United Kingdom) 

provides contour of land elevation at vertical intervals of 10m at a scale of 1 :50000. 

The Land Cover of Scotland digital data set (LCS88) (1988, The Macaulay 

Institute, Craigiebuckler, Aberdeen, Scotland) provides rural landcover data, 

interpreted from aerial photographs, in 126 land classes at a scale of 1 :25000. 

Three measurements of distance were taken: the distance from the farthest point in 

the field to the feature (maximum distance); the distance from the nearest point in 

the field to the feature (minimum distance); and the average distance to the feature 

(mean distance) using ArcView GIS. For variables with relatively large distances 

the difference between the mean and maximum or minimum value were considered 

insignificant, and therefore only the mean distance was used (see Table 3.2). 
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Appendices 1 and 2 provide descriptive statistics of the distribution of these data 

and the correlations between the landscape characteristics. 

Altitude and slope information was derived from the Land-Fornl PANORAMA 

Data. The 3D Analyst extensions of ArcView GIS was used to create TIN features 

from the contour data, which interpolate altitude and slope between the contour 

lines. From the TIN features the mean altitude and slope of each field was 

calculated. For maps of these variables see Appendices 3 and 4. 

T hI 32 F' Id h I ltd' I d' a e .. Ie s c aractertstlcs ca cu a e ,mc u mg source 0 fdt dd' d a a an ertve resu ts. 
Field Description Units Source Derived 
Characteristic data results 
Area Area of field m2 OS Land- value 

Line data 
Roost distance Distance to nearest roost m OS Land- mean 

Line data 
Road distance Distance to nearest road or m OS Land- mean 

track. Line data minimum 
maximum 

Building distance Distance to nearest m OS Land- mean 
building Line data minimum 

maximum 
Urban area Distance to nearest urban m LCS88 mean 
distance area 
Woodland Distance to nearest wooded m LCS 88 mean 
distance area 
Water distance Distance to nearest m OS Land- mean 

permanent water, including Line data 
ponds, drains rivers etc. 

Altitude A verage field altitude masl OS mean 
Panorama 
contour 

Slope Average slope of field degrees OS mean 
Panorama 
contour 

Greylag and Pink-footed geese tend to occupy established roosts. However, 

Greylag geese in particular, will roost at other sites (Newton et al 1973; Bell et al 

1997). In this study Greylag and Pink-footed goose roosts were defined as sites 

where more than 5% of observations of roosting geese for the river catchment were 

made (derived from Bell et aI1997). This resulted in nine Greylag goose roosts and 
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three Pink-footed goose roosts being used to calculate the distance from the nearest 

roost. 

Crop type was recorded for each sample field monthly. For analysis a broad single 

crop type category was assigned to each field. Crop categories used were stubble, 

grass, winter cereal, spring cereal, ploughed, oil seed rape, turnips and other. 

3.2.3 Relationships between field characteristics and goose use 

Owing to the low frequency of use of the majority of fields by geese, analysis was 

performed on the presence or absence of geese in the field as opposed to numbers. 

To display data trends graphically, fields were grouped into ranked sets of 40, 

according to the characteristic in question. For each group of fields, the mean and 

standard deviation of the field characteristic and the proportion of fields that were 

observed to contain geese were calculated. The proportions of fields containing 

geese were then plotted against the mean field characteristic for that group. Trends 

were detected using regression analysis. This technique was considered preferable 

to logistic regression for uni-variate analysis, as with the latter method large 

amounts of 'absence' data would be discarded, although not appropriate when 

considering a suite of predictor variables. Note that the R2 values will tend to be 

higher for grouped data than for individual fields. Selection of crop type by geese 

was assessed using a Chi-squared test. 

3.2.4 Logistic regressioll 

Analysis was of presence I absence data and the relationships between habitat 

variables and goose use appeared linear when simple transformations were applied. 
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Multiple logistic regression was therefore considered an appropriate modelling 

technique and stepwise logistic regression was used to model the presence or 

absence of geese in fields against a suite of predictor variables. All fields in which 

geese were observed were used together with an equal number of fields that did not 

contain geese selected at random. This resulted in 234 fields being included in the 

Pink-footed goose analysis and 86 fields in the Greylag goose analysis, with large 

quantities of 'absence' data being discarded. The variables in Table 3.2 were 

incorporated in the model, using a forward stepwise procedure with a probability 

for entry at p = 0.05, and a probability for removal at p = O.l. The performance of 

logistic regression models is best described by Receiver Operator Characteristic 

(ROC) curves (Fielding & Bell 1997). In ROC curves the accuracy of fit of a 

presence-absence model is plotted for the whole range of possible cut off values, 

rather than for an arbitrary dichotomy such as probabilities> 0.5 being regarded as 

presence and < 0.5 as absence. A useful summary statistic of the fit of the model is 

the area under the ROe curve (AUe). The AUe can range from 0 to 1, with a 

model performing no better than chance having an AUC of 0.5. Logistic regression 

results were expressed as the AUC ± its SE with the significance of departure from 

a chance model. In addition the percentage of fields classified correctly at a 50% 

cut off level is given for simplicity. although the limitations in this approach must 

be appreciated. These models will be referred to as the ordinary logistic regression 

models. 

3.2.5 Alltologistic model 

The effect of neighbouring fields was investigated using a simplified form of 

autologistic regression modelling (Augustin et a/1996). ArcView GIS was used to 
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identify the neighbours of each field, defined as fields with centres within 500m of 

each other. The addition of goose use in the neighbouring area to the existing 

model was investigated by forcing the proportion of neighbouring fields containing 

geese as an additional variable in the ordinary logistic regression model. Similarly, 

the effect of surrounding habitat suitability was investigated by including the mean 

and maximum predicted probabilities (from the logistic regression model) as 

variables in a subsequent model. 

To assess whether any of the auto logistic models were significantly better at 

predicting goose distribution that the ordinary model, the differences in ROC 

AUC's of the models were tested for significance using the method of Beck & 

Shultz (1986). 

3.2.6 Jack-knifing 

Once a parsimonious model had been derived, jack~knifing was used to check the· 

robustness of the model. Each field in tum was removed from the analysis and the 

remaining fields used to generate a predictive equation. Goose use of the excluded 

field was calculated from this equation, giving· a prediction independent of the 

observed data. As with the autologistic model, the significance of the difference in 

the AUC's was used to compare the jack-knifed and ordinary logistic regression 

models. 

3.3 RESULTS 

Results from the survey showed that 16.3% of the sample fields were observed to 

contain Pink-footed geese and 5.7% of the sample fields contained Greylag geese. 

S8 



3.3.1 Factors affecting goose distribution 

Pink-footed geese show a significant (P < 0.01) decrease in field use further from 

the roost, in smaller fields, in fields closer to roads and buildings, and in fields with 

a greater slope (Table 3.3 and Figure 3.1). Greylag geese exhibited weaker 

relationships between field use and field characteristics. Significant relationships (P 

< 0.05) were shown with distance from roost and distance to buildings for this 

species (Table 3.3 and Figure 3.1). The lack of highly significant relationships 

detected for Greylag geese may be due to the small number of fields used by this 

species. 

Table 3.3. R values and significance of the regression analysis showing the relationships between 
field characteristics and proportion of fields in each group with geese observed. Both linear and 
I . h . h ogant mlC curve esttmatlOns are sown. 

Pink-footed geese Greylag geese 
Field N (groups) = 18, d.f. = 16 N (groups) = II d.f. = 9 
characteristic Linear Logarithmic Linear Logarithmic 

R Sig. R Sig. R Sig. R Sig. 
Distance to nearest -0.571 0.011 -0.499 0.030 - - - -
PF roost 
Distance to nearest - - - - -0.363 0.273 -0.615 0.044 
GL roost 
Field Area 0.841 < 0.001 0.862 < 0.001 0.406 0.215 0.490 0.126 
Mean distance to 0.593 0.007 0.748 <0.001 0.055 0.866 0.152 0.655 
road 
Mean distance to 0.930 < 0.001 0.872 < 0.001 0.635 0.036 0.713 0.014 
building 
Distance to urban -0.045 0.870 0.000 0.948 0.197 0.562 0.348 0.295 
areas 
Distance to 0.261 0.294 0.421 0.243 -0.110 0.750 -0.055 0.884 
woodland 
Distance to water 0.362 0.128 0.376 0.113 -0.379 0.250 -0.268 0.426 
Altitude -0.249 0.305 -0.263 0.276 -0.348 0.295 -0.332 0.320 
Slope -0.759 <0.001 -0.718 < 0.001 -0.084 0.811 -0.298 0.373 
Min. distance to 0.319 0.197 - . 0.000 0.962 . -
road 
Max. distance to 0.667 0.003 0.766 < 0.001 0.522 0.099 0.512 0.107 
road 
Min. distance to 0.463 0.004 - - 0.358 0.279 - -
building 
Max. distance to 0.841 < 0.001 0.806 < 0.001 0.447 0.168 0.443 0.172 
building 
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Figure 3.1 The relationship between the proportion of fields used by Pink-footed (a) 
and Greylag (b) geese and distance to the nearest roost and building. Error bars = St. 
dey. 

For Pink-footed geese Chi-squared tests showed a significant difference between 

observed field choice and expected use if crops were used in proportion to their 

availability (X2 
:;: 18.9, d.f. = 7, P :;: 0.008). Greylag goose use of different crop 

types showed no significant difference from the expected (X 2 == 8.6, d.f. = 7, P == 

0.282), although they showed the same trend as Pink-footed geese in their 

preference for stubble fields. 

3.3.2 Logistic regressioft 

For Pink-footed geese, stepwise logistic regression resulted in four variables being 

included as predictors of field use. Predictors were distance of the field from the 

nearest roost, distance from the furthest point in the field to the nearest building, the 

slope of the field and the log (l0) of the field area (Table 3.4). This model had an 



Aue of 0.826 ± 0.027 (P < 0.001). At a 0.5 cut offlevel classified the presence of 

geese correctly on 77.0% of occasions, 80.0% of occasions in for fields where geese 

were observed and 73.9% of occasions for fields where no geese were observed. 

T bl 3 4 S .. f hI' . d I fi p' k fi d a e .. tahstlcs 0 t e oglsttc regressIOn mo e or m - oote . geese 

Independent variable B s.e (B) 
Wald Degrees of 

Significance statistic freedom 
Distance from roost -0.0002 6.1.10-5 15.25 1 0.0001 
Maximum distance from building 0.0044 0.0012 12.26 1 0.0005 
Slope -0.3341 0.1104 9.15 1 0.0025 
Log (field area) 2.2374 0.7488 8.93 1 0.0028 
Constant -11.337 3.6573 9.61 1 0.0019 

N =234, Goodness of Fit = 267.26, model X~ = 79.34, d.f. = 4. P < 0.0001 

For Greylag geese three variables were selected as predictors of field use. The 

predictors where log (10) of distance to the nearest roost, distance from the furthest 

point in the field to the nearest building and altitude (Table 3.5). The model had in 

Aue of 0.823 ± 0.046 (P < 0.001). At a 0.5 cut off level classified the presence of 

geese correctly on 78.3% of occasions, 75.6% f occasions for fields where geese 

were observed and 81.0% of occasions for fields where geese were not observed. 

Table 3.S. Statistics of the logistic regressIOn mo e or dlti G reyl ag geese 

Independent variable B s.e (B) 
Wald Degrees of 

Significance statistic freedom 
Log (Distance from roost) -2.5700 0.8068 10.15 1 0.0014 

Maximum distance from building 0.0065 0.0021 9.96 1 0.0016 
Altitude ·0.0161 0.0064 6.36 1 0.0117 
Constant 6.5616 2.6100 6.3203 1 0.0119 

N=87. Goodness of Fit = 82.37, model-c = 30.15, d.f." 3, P < 0.0001 

3.3.3 Aut%gistic regressiOl' 

For Pink footed geese the inclusion of proportion of neighbouring fields occupied 

by geese and the highest predicted value for a neighbouring field both just 

significantly improved the ordinary logistic regression model (significance tn 

difference of AUe's, P = 0.050 and P = 0.044 respectively) (Table 3.6), 
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T hI 36 R a e .. f I dd" fl" h d' esu ts 0 t le a ItlOn 0 auto oglstlc terms to t e or mary ogistic regression model. 
Autologistic term Area under ROC curve Difference from 

Goose species ordinary modd 
Value SE P z~ n P 

value 
Pink~footed Proportion of neighbouring 0.855 0.025 < 0.001 1.955 234 0.050 
goose field with Pink-footed geese 

Average predicted 0.837 0.027 <0.001 0.799 234 0.424 
probability of neighbours 
Max. predicted probability 0.856 0.025 <0.001 2.023 234 0.044 
of neighbours 

Greylag goose Proportion of neighbouring 0.862 0.039 < 0.001 1.365 86 0.171 
field with Greylag geese 
Average predicted 0.823 0.046 < 0.001 0.128 86 0.987 
probability of neighbours 
Max. predicted probability 0.836 0.046 < 0.001 0.426 86 0.667 
of neighbours 

However, these improvements were only marginal and, given the extra computation 

involved, the more parsimonious ordinary logistic regression model was considered 

preferable. For Greylag geese none of the autologistic terms significantly improved 

the fit of the model(Table 3.4). 

3.3.4 Jack.kllijillg 

For Pink-footed geese the jack-knifed results had an AVC of 0.808 ±0.029 (P < 

0.001) and at a 0.5 cut off level classified the presence of geese correctly on 73.7% 

of occasions. Comparing the AVC's of the ordinary and jack-knifed model showed 

no significant difference between the fit of the models (z-value = 1.380, n = 234, P 

= 0.168). For Greylag geese the jackknifed results had an AVC of 0.803 ± 0.048 (P 

< 0.001) and at a 0.5 cut off level classified the presence of geese correctly on 

76.7% of fields. Again comparing the AVC's of the two models shows there is no 

significant difference in fit between the two (z-value = 1.262, n = 86, P = 0.208). 

These results suggest that for both species the ordinary logistic model is robust and 

capable of predicting goose distribution for fields not included in the regression 
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model. It was therefore considered appropriate to extrapolate predicted field use 

over the whole study area using the ordinary logistic regression model. 

3.3.5 Extrapo/atioll 

Figures 3.2 and 3.3 shows the probability surface of field use by Pink-footed and 

Greylag geese as predicted by the logistic regression model. As evident from the 

logistic regression results, field use by Pink-footed geese is concentrated around the 

roosts and away from slopes. The finer scale patterning is deternlined by field size 

and disturbance associated with bUildings. For Greylag geese the predicted 

distribution is defined on a course scale by proximity to roosts and away from 

higher areas, finer scale patterning being determined by distance from buildings. 

3.4 DISCUSSION 

3.4.1 Overview 

Both analysis of the effect of individual variables and results of the multiple logistic 

regression show that field use by geese was significantly affected by both 

disturbance-related and non disturbance-related landscape characteristics. Stepwise 

logistic regression successfully used these associations to predict the probability of 

Pink-footed and Greylag geese using individual fields. Consideration of the effect 

of goose use of neighbouring fields did not considerably improve predictions. 

3.4.2 Factors alleetblg goose distriblltiOll 

Human disturbance has been shown to affect the distributions of many bird species 

(see Hockin et aT. 1992). The presence of roads has a negative impact on breeding 

woodland birds, lapwings, godwits and great bustards (Reijnen et al. 1995; van der 
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Zande et al. 1980; Osborne et al200 1). A number of studies have shown that fields 

close to roads have suppressed use by Pink-footed geese (Newton & Campbell 

1974; Madsen 1984; Keller 1991) and reduced food depletion rates (Gill 1996). 

This study supported the hypotheses that Pink-footed geese avoided fields closer to 

roads, although Greylag geese showed less clear relationships. The effect of 

disturbance associated with buildings on bird distribution has rarely been studied, 

but the presence of buildings has a highly significant effect on the distribution of 

great bustards in Spain (Osborne et al 2001). The only study exploring the effect 

of distance to nearest building on goose distribution found no effect on field choice 

(Gill 1996). However, this study showed distance of field from the nearest building 

explained more of the variance in the Pink-footed and Greylag goose distributions 

than distance from the nearest road. In addition, when distance to buildings was 

included in the logistic regression model for Pink-footed geese the relationship 

between goose use and distance to the road was not significant. This is a 

consequence of the positive association between distance to road and distance to 

nearest building (Pearson correlation = 0.451, P < 0.001) and suggests that any 

effect of roads in this study area was over-ridden by the effect of disturbance 

associated with buildings. This finding suggests that human presence around 

buildings causes greater disturbance to Pink-footed and Greylag geese than 

vehicles, and that more attention should be paid to the effects of buildings when 

studying bird distributions, especially geese. It has been noted that Greylag geese 

appear to be more tolerant of human disturbance than Pink-footed geese (Newton et 

at. 1973). This is supported by both field observations and an apparent 

elevation of the 
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regression line of field use by Greylag geese against distance to the nearest building 

compared with that for Pink-footed geese (see Figure 3.1). 

Field use by Pink-footed and Greylag geese declined as the distance from the roost 

increased, as previously observed by Bell (1988), Giroux & Patterson (1995) and 

Keller et al. (1995). Although the relationships for Pink-footed and Greylag geese 

appear to differ with respect to distance from the roost (Figure 3.1), comparison 

between the two species is made difficult due to the scatter surrounding the fitted 

lines and the different number of roosts used to calculate distance values for the two 

species. 

Larger fields were used significantly more than smaller fields by Pink-footed geese, 

but this might be expected as large fields have a greater chance of being used at 

random. When field size was controlled for statistically, no significant relationship 

was observed between field size and its use by Pink-footed geese (R2=O.OO, P=O.98) 

suggesting the relationship between goose use and field area could be a result of 

increased use due to chance. Depression of Pink-footed goose use, over that 

expected by chance, has been observed for fields smaller that 6 ha (Newton & 

Campbell 1974; Gill 1996) possibly due to decreased visibility in smaller fields 

caused by the field boundaries. In this study only 14% of survey fields were below 

this size, and therefore suppression of goose use within these fields would be hard 

to detect. 

Many studies have shown seasonal trends by Pink-footed geese in their preference 

for certain crops (Newton & Campbell 1974; F orshaw 1983; Madsen 1984; Bell 
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1988; Patterson et al. 1989; Gill 1994; Giroux & Patterson 1995; Hearn & Mitchell 

1995; Mitchell et at. 1995). These seasonal trends were observed in the data for 

both species (C.D. Urquhart, unpublished data) but when field use over the whole 

winter was considered the effect of crop type was less noticeable. Pink-footed 

geese used stubble fields more than expected by chance and pasture and winter 

cereal less, and Greylag geese showed the same trends (although they were not 

significant). Unfortunately it was not possible to assess the true quality and 

quantity of food available in fields using rough crop categories. The effect of crops 

which covered only a small proportion of the study area such as potatoes, the 

quality of grass and the amount of spilt grain in stubble fields are likely to affect 

goose use of a field but were harder to quantify. 

3.4.3 Logistic regression model 

Logistic regression has often been used to model and predict species distributions 

(Pereira & Itami 1991; Osborne & Tigar 1992; Buckland & Elston 1993; Manel et 

al. 1999, Cowley et aI2000). The predictive models produced for both Pink-footed 

and Greylag geese highlighted distance from the roost and disturbance from 

buildings as the two main factors affecting goose feeding distribution, and proved 

relatively accurate at predicting feeding distribution of Pink-footed and Greylag 

geese within the study area. There are, however, some limitations to this modelling 

technique. Knowledge of goose roosts is required, and although data are available 

for larger roosts, the extent of use of smaller roosts may not be wen documented 

in 
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some areas. This is of particular concern when considering Greylag geese that tend 

to use smaller roost sites. In addition the model does not take account of the effect 

of differing numbers of geese at different roosts, again an issue more likely to affect 

the Greylag goose model due to the larger number of roosts. 

Note that crop type is not included in either the Pink-footed or Greylag goose 

models even though feeding distribution of geese will be influenced by the 

availability of food. These models therefore indicate the potential distribution of 

geese constrained by the effects of disturbance, flight costs and topography, and 

highlights were crop damage could occur. Inclusion of the effects of crop type 

would be possible by combining a probability surface related solely to crop type 

with the above models using Bayesian statistics (see Pereira & Itami 1991). Such a 

model is likely to give a more accurate representation of the exact fields used by 

geese at one particular time, but is unlikely to influence the larger scale pattern. 

Furthermore, for goose management strategies that involve the creation of 

alternative feeding areas, knowledge of the potential distribution is more important 

than the precise field use in anyone season. 

3.5 SUl\fl\fARY 

The presence of Pink-footed and Greylag geese in fields was successfully predicted 

in Strathearn and Strathallan using field characteristics. The main factors affecting 

distribution of both species were distance from the roost (a cost reduction 

mechanism) and distance from the nearest building (a disturbance reduction 

mechanism). Inclusion of autologistic terms did not improve the models notably. 

The data required for predicting the probability of goose presence within fields may 
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be derived relatively simply from available digitised maps, with no need for survey 

work, and is therefore relatively easily applied to other areas. 
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CHAPTER 4 - DAILY 1\fOVEMENTS OF GREYLAG GEESE 

4.1 INTRODUCTION 

4.1.1 Background 

Information on the daily movements of Pink-footed geese has been used to assess 

how geese use their feeding grounds, and therefore how alternative feeding areas 

(AFA's) should be arranged (Giroux & Patterson 1995). There is no such 

information published for Greylag geese and it is often assumed that they have 

similar requirements to Pink-footed geese (e.g. Vickery & Gill 1999), however this 

may not be the case. This chapter compares the daily movements of Greylag geese 

with published data on Pink-footed geese (Giroux & Patterson 1995) to highlight 

differences between the two species, as any differences will have implications for 

potential management plans for Greylag geese. 

A relatively large number of studies have looked at habitat use by feeding Pink­

footed geese from survey work (Newton & Campbell 1973, Newton et al 1973, 

Forshaw 1983, Bell 1988, Gill 1994, Giroux & Patterson 1995, Hearn & Mitchell 

1995, Keller et al 1997, Mitchell et al 1995). Field attributes such as crop type 

(Newton & Campbell 1973, Forshaw 1983, Madsen 1984, Bell 1988, Patterson et al 

1989, Gill 1994, Giroux & Patterson 1995, Hearn & Mitchell 1995, Mitchell et at 

1995) and disturbance (Newton & Campbell 1973, Newton et al 1973, Keller 1991, 

Gill 1994, Giroux & Patterson 1995, Madsen 1995) have been shown to affect field 

use by Pink-footed geese (see Chapter 2), In addition, radio-tracking of Pink-footed 

geese has provided information on the pattern of field use of individual geese 

(Keller et al 1997), length of stay in the feeding area (Giroux & Patterson 1995), 
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roost fidelity (Giroux 1991) and the size and frequency of movements made 

(Giroux & Patterson 1995, Keller et alI997). 

In contrast relatively little attention has been focused on the feeding behaviour of 

Icelandic Greylag geese. Several studies have looked at the feeding distribution of 

Greylag geese in Scotland (Newton & Campbell 1973, Newton et al 1973, Bell 

1988, Patterson et a/ 1989). These studies showed that Greylag geese differed 

slightly from Pink-footed geese in their preferred use of crops (Newton & Campbell 

1983, Patterson et al 1989). They are also less affected by disturbance, being less 

demanding regarding field size (Newton et al 1973, Madsen 1985a) and less 

affected by disturbance from roads (Newton & Campbell 1973). Icelandic Greylag 

geese have never been radio-tracked and therefore the only information on their 

movements is from sightings of collared individuals, on which no research has yet 

been published. 

In this study Greylag geese were radio-tracked primarily to investigate how 

landscape characteristics affect goose movements so that realistic rules could be 

incorporated into a simulation model (see Chapter 5). The aim of this chapter is to 

compare the daily movements of wintering Greylag geese and Pink-footed geese. 

There are no published recommendations for implementing management plans 

specifically for Greylag geese. such as AFA's, therefore any differences between 

the two species will have implications for Greylag goose management. The radio .. 

tracking data from Greylag geese was used to calculate statistics of goose 

movement for comparison with published data on the movements of Pink-footed 

geese. Giroux and Patterson (1995) published a comprehensive study of daily 
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movements and habitat use of radio-tracked Pink-footed geese in northeast 

Scotland, which has been used as the main source of data for comparison with the 

results in this chapter. The study area used by Giroux and Patterson (1995) was 

around Newburgh, Grampian, and covered 340km2, slightly less than the 420km2 

area used in this study, and held an average overwintering population of 6,000 -

8,000 Pink-footed geese. 

4.2.1 Aims 

The aims of this chapter are 

(i) To obtain data on Greylag goose movements from radio-tracked geese that 

is representative of the whole population. 

(ii) To quantify the daily movements of Greylag geese in a range of summary 

statistics. 

(iii) To assess the similarities and differences between the daily movements of 

Pink-footed and Greylag geese by comparing results to published data on 

Pink-footed geese. 

4.3 METHODS 

4.2.1 Radio-trallsmitter attachme"t 

Twenty-three Greylag geese were fitted with radio transmitters during four catches 

during the winters of 1997/98, 1998/99 and 1999/2000. Catches were spread 

through the winter, with two catches in November and February, at two locations in 

the study area. Geese were caught using cannon netting and fitted with ETO metal 

rings and Darvic neck collars to enable the field identification of individual geese. 
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The radio-transmitters (TW-3 twin cell tags, BIOTRACK Ltd.) had a mean weight 

of 46.5g, approximately 1.25% of the body weight of the tagged birds at the time of 

catching, and had batteries that lasted approximately two and a half years. 

Transmitters were attached to the backs of the geese using an elastic harness that 

fitted behind the wings and in front of the legs, with the transmitter temporarily 

secured onto the down and feathers using superglue. This method of transmitter 

attachment has proved successful on Greenland White-fronted geese (A. albifrons 

flavirostris) (Glahder et at 1996, Glahder et at 1997). Alternative methods of 

transmitter attachment were not considered appropriate. Gluing radio-transmitters 

onto the backs of Pink-footed geese proved only partially successful with 

transmitters becoming detached after a mean period of 23 days (Hearn & Mitchell 

1995). While the attachment of radio-transmitters onto the tail feathers of Pink­

footed geese proved successful (Giroux et al 1990) this was considered 

inappropriate for Greylag geese as their strong beak could remove the tail feathers 

onto which the transmitter was attached. 

Greylag geese feed in family groups consisting of a pair of adult birds and their 

young from the previous summer. If two members of the same family group were 

tagged then similar, if not identical, movement data would be obtained from each 

bird. To prevent this pseudo-replication, only adult male geese had radio· 

transmitters fitted. This ensured that only one goose from each family unit could be 

radio-tracked. 
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4.2.2 Radio-tracking methodology 

Radio-tagged geese were given a period of 5-7 days to become accustomed to the 

radio-transmitters before data collection commenced. During the winters of 1997-

98 and 1998-99, individual tagged geese were tracked continuously for half-day 

periods, either from dawn to mid-day, or mid-day to dusk, using a Telonics TR-4 

receiver and three element flexible yagi antenna. The location of the goose was 

recorded with the flock size, crop type, duration of stay in the field and reason for 

leaving (i.e. cause of disturbance if scared). Greylag geese in the study area were 

often observed to return to the same fields in subsequent days. Therefore to reduce 

the repetition and dependence between recorded goose movements for individual 

geese, radio-tracking periods were spaced as far apart as possible, separated by at 

least three days. 

Giroux and Patterson (1995) radio-tracked Pink-footed geese for whole days. 

However the strategy of radio-tracking Greylag geese for half day periods was 

considered more appropriate for the requirements of this study as it enabled more 

frequent radio-tracking of each individual goose, and consequently the collection of 

more independent data. Extrapolation of the mlmber of movements made, or the 

distance flown in one day, from data obtained for a half day period was considered 

to be entirely appropriate. If the daily movements of geese do not follow a set 

pattern, as suggested by the data. then the number ofmovements·/ distance flown in 

a given time will be proportional to the amount time period. Even differences in 

movements of geese between the morning and afternoon will not affect the results, 

as individual geese were radio-tracked for mornings and afternoons alternatively, 

therefore calculations are based on observations from throughout the day, As 
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discussed later, calculation of the amount of time geese spend in fields will be 

underestimated if observation periods are less that a full day. Consequently, 

analysis of the length of time geese spent in each field was not perfonncd. 

During the winter of 1999-2000 the methodology was altered to maximise the 

number of goose movements recorded. All radio-tagged geese were located at the 

roosts and then at approximately 2-3 hour periods throughout the day. As Greylag 

geese make few movements between fields during the day, it was considered 

appropriate to assume that the goose had flown directly between fields if the goose 

had moved. As a result no data were collected on the time geese spent in the fields 

or on the cause of leaving in this season. The data from this season was excluded 

from some analysis, as detailed in the methodology. For all years, radio-tracking 

continued until the goose left the study area. As in previous winters, subsequent 

days of radio tracking of an individual goose were separated by at least three days. 

4.2.3 Analysis of goose movemellts 

If there is correlation between sequential locations or variation in the behaviour of 

individuals, the use of radio-locations as opposed to individual animals as sample 

units in analyses of radio-tracking data, will result in non independence and 

inflation of the number of degrees of freedom (Aebischer et al 1993), In this 

chapter measures of the daily movements of Greylag geese have been calculated for 

comparison with published literature, and therefore the radio-locations or 

movements of geese have been used as sample points. As discussed in Chapter 5 

the dangers of taking this approach may not be as significant for the radio-tracking 

data of Greylag geese as with some other radio-tracking data.· In addition 
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ANOVA's were perfonned on some statistics to assess whether there was variation 

between individuals. 

The distance flown by an individual was calculated as the straight-line distance 

between the point of take-off and the point of landing. The total distance travelled 

by the individual during this period was calculated by summing the distance of all 

movements made by an individual during one observation period. However, for 

comparison with data obtained for Pink-footed geese (Giroux & Patterson 1995) the 

total distance travelled per day was required. As geese were not tracked for whole 

days it was necessary to estimate the total distance travelled per day and the 

distance travelled on the feeding area per day. The distance travelled on the feeding 

area by each goose for each day observed was calculated using the following 

equation: 

Dist. travel (feeding area) = k(Dist. non roost moves) '" N (hours) I No (hours obs.) 

Where N (hours) is the number of hours of feeding time in the day and N (hours 

obs.) is the number of hours the individual was tracked. As the amount of fceding 

time varies through the season, the amount of feeding time was calculated from the 

15th October to the lit April. Radio-tracking data was used to calculate the mean 

time the geese left the roost from sunrise, and the mean time from sunset they 

returned. The amount of feeding time per day was calculated by adding or 

subtracting these means from sunrise and sunset times and from this the number of 

hours of feeding time for each day were calculated. A polynomial line was fitted to 

the data on the number of hours of feeding time through the season (see Figure 4.1). 
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Figure 4.1 The variation in the number of hours of feeding time for geese throughout the winter. 

This equation was used to calculate N (hours) for each day radio-tracking data were 

collected. The distance travelled on the feeding ground was only calculated for 

days when geese were tracked continuously (Le. during the winters of 1997/8 and 

1998/9) as movements may have been missed during the final season (1999/2000) 

when geese locations were recorded only every two to three hours. The total 

distance travelled by each goose for each day observed was calculated using the 

following equation: 

Total Dist. = (roost move *2) + (L(non roost moves) * N (hours) 1 No (hours obs.» 

The total distance travelled could only be calculated for days where goose 

movements either to or from the roost were recorded and was only calculated for 

days when geese were tracked continuously (i.e. during the winters of 1997/8 and 

1998/9). 
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The maXlmum distance that radio-tracked geese fed from their roost site was 

calculated for the observation period only as it was not possible to estimate the 

maximum distance from the roost reached over the whole day from the data 

available. The maximum distance at which the goose was observed from the roost 

could be less than the maximum distance reached over the whole day resulting in an 

underestimation in the mean result, an important consideration when comparing the 

results with those of Pink-footed geese. 

The number of non-roost moves per day was estimated for each day that a goose 

was radio-tracked using the following equation. Again only days where geese were 

continually radio-tracked were included in the analysis as movements could have 

been missed during the final field season. 

Number moves per day = N (moves obs.) * N (hours in day) / N (hours obs.) 

Where N (moves obs.) is the number of moves observed during the observation 

period, N (hours in day) is the number of hours of feeding time in the day and N 

(hours obs.) is the number of hours that the goose was observed. In addition, the 

number of take-offs per hour of radio-tracking and the average distance per move 

were calculated. 

The mean and median size of the flocks with which radio-tracked geese fed were 

calculated. The effect of crop type on the size of goose flocks and the density of 

geese was assessed by testing the difference in flock size between the four main 

crop types used (autumn sown cereal, grass, potatoes and cereal stubbles) using the 

Kruskal-Wallis one-way ANOVA. 
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The frequency of goose movements resulting from disturbance and the causes of 

disturbance were noted. The effect of the cause of movement (Le. caused by 

disturbance or not) on the length of the subsequent move was tested with a Mann­

Whitney U test. 

The mean and median distance at which geese fed from their roosting site the 

previous night was calculated from all goose locations recorded where the roost 

used was known. In addition the mean and median distance of feeding geese from 

the nearest roost was calculated. The use of roosts in the study area was 

investigated, although it was not possible to assess the roost fidelity of Greylag 

geese in this area as roosting locations were not recorded frequently enough. 

Although carried out by Giroux and Patterson (1995) no analysis was performed on 

goose use of crops in proportion to their availability as data on the crops over the 

whole study area was not available. Defining an area considered available for the 

geese could prove problematic and could affect the calculated proportion of each 

crop available as crops are not randomly distributed. A potentially better technique 

for assessing the preference of geese for certain crops is to compare the crop type of 

fields flown over and not landed in with those where geese choose to land. This 

was the technique used in Chapter 5 for assessing the effect of other landscape 

variables on the chance of a goose landing. It was not possible to perfonll analyses 

on the duration of stay of geese in fields. As geese were not tracked for whole day 

periods, shorter stay lengths were more likely to be recorded than longer stay 

lengths. therefore resulting in an underestimate of the length of time geese feed in a 
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field. An alternative approach was used in Chapter 5, which investigated the 

probability of geese leaving in each half-hour after landing, a result not comparable 

with any published Pink-footed goose data. 

4.4 RESULTS 

4.3.1 Results ofradio-trackillg 

Over the three year period, 23 Greylag geese had transmitters fitted and 20 of these 

were successfully radio-tracked before leaving the study area. The three other geese 

left the study area during the settling in period after capture before radio-tracking 

began. During first two seasons 12 individual Greylag geese were radio-tracked for 

a total of 57 half-days (241 hours) while they remained in the study area. During 

the final season eight geese were tracked for 70 half-days, a total of 386.3 hours. 

During this time 244 locations and 227 goose movements were recorded. Figure 4.2 

shows the roosts and fields used and movements recorded from the radio-tracked 

Greylag geese. For comparison Giroux & Patterson (1995) radio-tracked 10 Pink­

footed geese for a total of 47 continuous days, giving 498 hours plus an additional 

275 hours of observations. 

Individual geese remained in the study area between 0 and 123 days after being 

caught, with a mean stay length of 29.2 days (± 6.7). Although the range is similar 

to that found with Pink-footed geese in north-east Scotland, the mean length of stay 

of Greylag geese in this study is 45% less than the 53 days (± 13) found for Pink­

footed geese in northeast Scotland (Giroux & Patterson 1995). 
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4.3.2 Daily movemellts 

A Kruskal-Wallis one way ANOVA showed that there was no significant 

difference in any of the measures of daily movements between individual geese 

(Table 4.1). Greylag geese made around half the number of moves during the day 

compared with Pink-footed geese. Greylag geese also fed around 50% closer to the 

roost than Pink-footed geese, although care must be taken when interpreting this 

result as the maximum distance Greylag geese were observed from the roost during 

the half-day observation period was calculated and not the whole day. Greylag 

geese appear to move further between fields during the day, however, they still 

travelled less distance than the Pink-footed geese both on the feeding grounds and 

over the whole day. 

Table 4.1. Comparison of daily movements of Greylag geese with those observed for Pink-footed 
~eese in northeast Scotland (Giroux & Patterson 1995). 

Species Median Mean SE Min Max x2-vahle pi 
Total distance per day Greylag 2 8.3 8.3 1.0 1.2 23.4 7.90 0.543 
(km) Pink-footed J 10.6 11.7 0.9 1.6 27.0 - 0.053 
Maximum distance Greylag 2.0 2.5 0.3 0.3 5.7 8.50 0.291 
from roost used (km) Pink-footed 3 4.8 4.8 0.4 0.5 11.4 - 0.004 
Moves I day on Greylag l 2.9 3.6 0.5 0 13.4 12.69 0.392 
feeding ground Pink-footed 1 7.0 7.3 0.5 I 17 - 0.362 
Distance travelled per Greylag 0.7 1.3 0.1 0 7.2 18.47 0.066 
move (km) Pink-footed J 0.8 0.8 0.1 0.2 3.1 - 0.466 
Distance moved on Greylag 2 2.4 4.4 0.7 0 16.3 11.86 0.457 
feeding ground (km) Pink-footed 1 5.3 5.6 0.5 0.7 17.3 - 0.068 
I X2

-value and P-value of one way A VOVA companng mean between mdlvldual Pmk-footed geese 
and median between individual Greylag geese (Kruskal-Wallis one way ANOVA used in this study, 
d.f.= 19) 
2 Estimation 
3 From Giroux & Patterson 1995 

Radio-tracked Greylag geese fed between 0 and 7.22 km from the roost that they 

had used the previous night with a median distance of 1.97 km and mean of 2.40 km 

(± 0.16), virtually the same as the maximum distance reached in each half day. The 

median distance of flights to and from the roosts was 1.62 km with values ranging 

from 0 to 7.11 km, a mean of 2.37 km (± 0.18). As they often fed close to roosts that 
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they had not used the previous night, however (see Figure 4.1), feeding Greylag 

geese never fed more than 3.32 km from the nearest roost used by any radio-tracked 

goose, with a median distance of 0.57 km and a mean of 0.72 km (± 0.04). The 

number of movements per hour for Greylag geese during the winters of 1997/8 and 

1998/9 when geese were continually radio-tracked was 0.373 compared with 0.750 

movements per hour observed for Pink-footed geese (Giroux & Patterson 1995). 

4.3.3 Flock size 

The size of flocks with which radio-tracked Greylag geese fed ranged from 5 to 

2,140 with a mean of 468 (± 35) and a median of 290. Radio-tracked Pink-footed 

geese in northeast Scotland fed in much larger flocks with a mean size of 2,026 

geese (Giroux & Patterson). Both species feed in significantly different sized flocks 

on different crops (see Table 4.2). In both species radio-tracked geese fed in larger 

flocks in stubble and potato fields than on grasslands. For Greylag geese, however, 

there was no significant difference in flock size between flocks feeding on stubble, 

potatoes and winter cereal (Kruskal-WaIIis one-way ANOVA x2
- value = 0.357, d.f. 

= 2, p = 0.837) while Pink-footed geese fed in significantly smaller flocks in cereal 

fields than in grassland, potato and stubble fields (Giroux & Patterson 1995). 

Moreover when the density of Greylag geese (flock size / area of field) was 

considered there was no significant difference in density of geese between different 

crop types. This suggests that the difference in flock size observed for Greylag 

geese is largely due to the relationship between field size and crop type (Kruskal­

WalIis one-way ANOVA x2-value = 41.13, d.f. = 3, p < 0.001). 
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Table 4.2. The mean flock size ± SE (mean) for Pink-footed and Greylag geese in different crop 
types. 

Species Grassland Stubble Potatoes Cereals 

Greylag geese I 297 ± 32 671 ± 97 586 ± 81 528 ± 71 

Pink-footed geese 1 3322 ± 244 4363 ± 254 2031 ± 20 

I Significant difference between crop types (Kruskal-Wallis one-way ANOVA x2-value =17.61, d.f 
=3, P = 0.001) 
2 Giroux & Patterson (1995) data for period 21 Dec - 29 Feb. Significant difference between crops 
(Student-Newman-Keuls test p < 0.05) 

4.3.4 Causes of disturballce 

For 106 take-offs during the winters of 1997/98 and 1998/99 it was possible to 

assess whether geese moved field as a result of disturbance. Forty-eight percent of 

these movements were caused by disturbance, although the cause of the disturbance 

was only ascertained in 26 (51 %) of these cases. This is not significantly different 

from the 52% (n=335) of movements caused by disturbance for Pink-footed geese 

derived from Giroux and Patterson (1995) (x2-value = 0.472, d.f = 1, P = 0.492). 

Table 4.3 shows the causes of disturbance observed for both Greylag geese and 

Pink-footed geese (from Giroux & Patterson 1995). Excluding disturbance caused 

by the observer there is no significant difference in the causes of disturbance for the 

two species, with motorised vehicles and fanning activity causing most disturbance 

to both species of goose (x2-value = 1.91, d.f= 4, P = 0.753). The effect of observer 

(field worker) on the geese could not be compared between species, as the number 

of disturbances caused by the observer will be dependent on the behaviour of the 

observer, which could have differed between studies. 
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Table 4.3. Sources of disturbance to Greylag geese and Pink-footed geese. ... From Giroux & 
Patterson (1995). Chi-squared test of difference in causes of disturbance between two species 
(excluding unidentified disturbance and disturbance due to observer) x2-value = 1.91, d.f. = 4, P = 
0.753. 
Cause of Scaring Number of times observed 

Greylag geese Pink-footed 
gl.'ese* 

Observer 0 10 

Unidentified 25 34 

Motorised vehicles and farming activity 10 25 

Air traffic (airplanes and helicopters) 6 7 

Human activity 4 9 
(horse-riding, bird watching, pheasant shooting, dog walking) 

Deliberate scaring by farmers 4 12 

Others (sheep, other birds) 2 3 

Greylag geese showed no significant difference in the proportion of moves resulting 

from disturbance for different crop types (x2-value = 0.782, d.f. = 3, P = 0.676). 

Although Pink-footed geese in stubble and potato fields made significantly more 

take-offs due to disturbance than geese in other fields, significantly fewer of these 

take-offs resulted in movement between fields. Consequently the Greylag goose 

results cannot be directly compared with the results for Pink-footed geese as the 

overall effect of crop type on the number of movements caused by disturbance is not 

apparent from the published data (Giroux & Patterson 1995). 

4.3.5 Use of roost sites 

Radio-tracked Greylag geese were located at their roost site on 104 occasions. On 

31 occasions (29.8% of records) the geese were roosting at the main roost in the 

study area, Drummond Pond. Radio-tracked geese used 15 other roost sites on 

between one and nine occasions. Five of these sites were temporary floodwaters 
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along the River Earn, while the other 10 sites were pennanent water bodies. There 

were 22 bodies of water over 4000m2 in the study area. Radio-tracked Greylag 

geese used eight of these. Much smaller water bodies, however, were also used as 

roost sites and sites as small as 700m2 and 1300m2 were used on eight and nine 

occasions respectively. These small roosting sites were often shooting ponds where 

potatoes or grain were put out to encourage wildfowl. 

Radio-tracked Greylag geese were recorded using a mean of 2.9 (± 0.6) different 

roosts while in the study area. As geese were only located at roosts c.19% of the 

time (mean = 5.5 (± 1.2) roost locations recorded per goose) this result is likely to 

be a gross underestimation of the number of roosts used by individual geese while 

in the study area. The roost locations recorded for each goose were separated by a 

minimum of three days and therefore it was not possible to estimate the time an 

individual remained at one roost before moving. Giroux (1991), from 500 recorded 

roost locations, found Pink-footed geese changed roost approximately every 10 days 

and used a mean of 3.4 roost sites while remaining in the study area. Although the 

Greylag goose results suffer from limited data they suggest that even though 

Greylag geese spent on average 45% less time in the study area than Pink-footed 

geese, they use a larger number of roosts. 

4.5 DISCUSSION 

4.4.1 Overview 

Radio-tracking of Greylag geese proved successful, data being collected from 20 

individuals. The results show that Greylag geese differed from Pink-footed geese in 

the way they use the feeding grounds. Comparison with Pink-footed geese showed 
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that Greylag geese used a larger number of roost sites and appeared to move roost 

more frequently. Greylag geese, however, fed much closer to the roost and moved 

much less frequently during the course of the day than Pink-footed geese. These 

findings have implications for Greylag goose management. 

4.4.2 Success ofradio-trackillg 

Using radio-tagged birds to sample movements of the population assumes that 

radio-transmitter attachment does not affect animals or that negative effects are not 

important (Murray & Fuller 2000). Assessment of the effect of using a harness to 

attach transmitters on geese has suggested that productivity, survival (Ward & Flint 

1995) and flight performance (Obrecht et al 1988) may be affected, although any 

effect will be dependent on the technique of harness fitting used. The method of 

harness attachment used in this study proved successful for Greenland White­

fronted geese (A. albifrons jlavirostris), and no effect of the transmitter on 

behaviour was apparent during studies on their wintering grounds (Glahder et a/ 

1996). The attachment of radio-transmitters appeared successful in this study. 

Although not formally assessed, radio-tagged geese fed in flocks with other geese 

and appeared to behave normally while in the study area. Sightings of the majority 

of radio-tagged geese, both in the winter they were caught and in subsequent 

winters, at other feeding sites showed that the geese were able to move around the 

country and survive to the next year. No transmitters detached while the geese 

remained in the study area. In addition one individual caught in the winter of 1998-

99 returned to the study area for several days the following winter, with its radio­

transmitter still transmitting, having presumably spent the breeding season in 

Iceland. 
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4.4.2 Comparisoll of daily movements of Greylag and Pillk-footed geese 

Results of daily movements of radio-tracked Pink-footed geese in northeast 

Scotland by Giroux and Patterson (1995) provides data that is comparable with data 

collected from Greylag geese in this study. There were some differences between 

the data for the two species. In this study it was necessary to estimate distance 

moved by geese per day and number of moves made per day from the results of half 

days of radio-tracking. In addition the Greylag goose data was based on a larger 

sample size of geese but with fewer data from each individual. Comparison is 

further complicated as the two data sets were collected in different years and in 

different places. Overall, however, similar data collection techniques, sample sizes 

and size of study areas made the comparison of movements of the two species 

possible. Analysing data using data points or daily summaries as opposed to 

individual animals as data points allowed comparison with published data and 

although not ideal (see Chapter 5), is unlikely to affect the results significantly. 

There was no significant difference in the various measures of goose movements 

between individuals. In addition there is likely to be little correlation between 

measures of goose movements for an individual in subsequent radio-tracking 

periods as days of radio-tracking were separated by at least 3 days. As a result the 

analysis is likely to be a good assessment of the differences in movement between 

the two species of geese. 

Pink-footed geese roost in large numbers at relatively few roost sites (Hearn 2000), 

and smaller roost sites within their feeding ranges are only used occasionally (Bell 

et al 1997). Pink-footed geese in northeast Scotland have been shown to feed a 

median distance of 4.0 - 4.3km from the nearest roost (Bell 1988, Keller et af 
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1997}. These figures fit well with the median maximum distance of 4.8km from the 

roost recorded from radio-tracked Pink-footed geese (Giroux & Patterson 1995). 

Pink-footed geese feed in distinct core feeding areas that are consistent between 

years (Keller et aI1997). Radio-tracking data has shown that while individual geese 

are not confined to particular feeding areas, within the course of one day goose use 

is restricted to a few fields close together, with geese rarely moving between core 

feeding areas (Giroux & Patterson 1995. Keller et aI1997). 

Greylag geese were recorded at 20% more roost sites than Pink-footed geese 

throughout Britain in the 1999 National grey goose counts (82 compared with 65 for 

Pink-footed geese) even though the total wintering population of Pink-footed geese 

is almost three times that of Greylag geese (Hearn 2000). These figures 

underestimate the extent of the difference between the two species in their use of 

roosts. Greylag geese are more likely to be concentrated at major roosts in the 

autumn, when counts are made, than later in the winter (Bell et al 1997) and smaller 

roost sites are less likely to be counted. Bell et al (1997) found that while 90-93% 

of Pink-footed geese in Strathearn and Strathallan roosted at the major roosts 

through the winter only 30-54% of Greylag geese did so. Data from radio-tracked 

Greylag geese agreed with these findings with only 31 % of radio-tracked geese 

using the major roost sites, with an additional 14 sites being used. Greylag geese 

therefore use a greater number of roost sites than Pink-footed geese and as a 

consequence there will tend to be smaller numbers of geese using individual roosts. 

Radio-tracked Greylag geese fed approximately 2km from the roost site compared 

with c.5km for Pink-footed geese (Giroux & Patterson 1995). 
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Greylag geese are less affected by disturbance and are less likely to avoid smaller 

fields than Pink-footed geese (Pink-footed geese avoid smaller fields as their 

visibility is restricted) (Newton et al 1973, Madsen 1985a) and less affected by 

disturbance from roads than Pink-footed geese (Newton & Campbell 1973). Levels 

of disturbance also have a significant effect on the choice of roost sites for geese 

(Newton et al 1973). If Pink-footed geese were more susceptible to disturbance 

than Greylag geese at the roost as well as while feeding in the field, this is likely to 

be the cause of Greylag geese using a wider range of roost sites. 

The observed difference in the distance at which the two species fed from the roost 

is likely to be influenced by differences in the response of the two species to 

disturbance. The larger numbers of Pink-footed geese using each roost site, 

compared to Greylag geese, will result in faster depletion of food resources in 

suitable fields close to the roost and therefore the need for geese to fly further to 

obtain enough food. This is supported by Gill's findings (1994) that the order of 

use of fields by Pink-footed geese was significantly related to the distance from the 

roost. If Pink-footed geese were more conservative in their selection of fields than 

Greylag geese, as a result of disturbance, then there would be less fields suitable for 

them to feed in. With fewer suitable fields available, Pink-footed geese would 

deplete resources in suitable fields close to the roost more quickly, further 

accentuating the difference between the two species. 

On the feeding grounds Greylag geese, like Pink-footed geese, often make short 

moves between fields during the day with median move lengths of 0.7 and O.8km 

respectively. They therefore feed in a relatively restricted area over the period of a 
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day. Pink-footed geese fed c.4km from the nearest roost site (Bell 1988, Keller et 

a11997) similar to the distance flown by the geese (Giroux & Patterson 1995). In 

contrast Greylag geese fed a median distance of just O.6km from the nearest roost, 

although c.2km from the roost they had used. Feeding areas for Greylag geese are 

therefore situated very close to roost sites, but geese do not necessarily feed in the 

closest feeding area, possibly due to local disturbance or depletion of food. The 

frequency of movements within and between feeding areas was not calculated for 

Greylag geese, as distinct feeding areas were not defined. Figure 4.1, however, 

shows large numbers of movements between the feeding areas during the day as 

well as when geese are flying from the roost. It is possible that the slightly greater 

mean distance moved by Greylag geese (l.3km compared with the O.8km found by 

Giroux and Patterson (1995) and 1.1km found by Keller et al (1997) for Pink-footed 

geese) is a result of Greylag geese making more movements between feeding areas 

during the day compared with Pink-footed geese. As movement between feeding 

areas for Greylag geese is likely to result in geese feeding close to roosts that they 

had not used the previous night, regular changes in roost site would be expected and 

were observed. It is unclear whether the feeding areas used by Greylag geese in 

Strathearn and Strathallan were selected by geese because they were close to roosts 

or whether the roost sites were selected because they were close to good feeding 

areas. Keller et a/ (1997) noted that Pink-footed geese were very mobile, with large 

seasonal ranges and a high turnover of geese. Greylag geese do not travel as far as 

Pink-footed geese during the course of an average day, make fewer moves during 

the day and feed closer to the roost. On a larger scale, however, Greylag geese 

appear to be more mobile than Pink-footed geese, both changing roosts within the 

study area and moving out of the study area more frequently than Pink-footed geese. 
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In conclusion Greylag geese differ from Pink-footed geese in their use of the 

feeding grounds. Pink-footed geese roost at major roosts in very large numbers. 

This is likely to result in depletion of food resources in fields close to the roost so 

geese have to fly further to obtain enough food. In contrast Greylag geese were 

found to use a greater number of roost sites. Smaller numbers of geese are unlikely 

to deplete food resources as quickly and therefore feeding areas were generally 

situated very close to the roosts. Greylag geese are very mobile and move readily 

between roosts and feeding patches, possibly in response to local depletion or 

disturbance. This strategy results in Greylag geese flying shorter distances during 

the day than Pink-footed geese, but possibly at the expense of increasing predation 

risk (Le. shooting) or decreasing energy intake. 

As a results of their work on Pink-footed geese, Giroux and Patterson (1995) 

recommended that creating a number of small areas managed for geese (c. I km2
), 

scattered through the feeding range, was likely to be a better approach to reducing 

goose damage than the establishment of a single large reserve. There is no evidence 

to suggest that the size of management units for Greylag geese should differ from 

those recommended for Pink-footed geese. Both species made daytime movements 

of about the same distance, and Pink-footed geese made considerably more 

movements during the course of a day than Greylag geese, therefore Greylag geese 

are unlikely to use a larger area during the course of one day than Pink-footed geese. 

However the results of this chapter do suggest that for Greylag geese AFA's should 

be situated very close to goose roosts, as opposed to being scattered throughout the 

feeding area. As Greylag geese use a large number of minor roosts, the knowledge 

of where these are located is necessary for AFA's to be positioned correctly. 
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4.5 SUMMARY 

Radio-transmitters were attached to 23 Greylag geese, 20 of which were radio­

tracked successfully. Data from these geese suggested that Greylag geese differ 

from Pink-footed geese as they use a larger number of roost sites, and possibly 

change roost site more frequently. In addition they feed much closer to roost sites, 

although not necessarily the roost site which they used, and make fewer movements 

during the day. These results have implications for potential management schemes 

aimed at reducing damage caused to crops by geese. 
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CHAPTER 5 - PREDICTING GREYLAG GOOSE DISTIUBUTION BY 

l\-IODELLING GOOSE l\-IOVEl\IENT 

5.1 INTRODUCTION 

5.1.1 Wily model movement? 

Wildlife-habitat models are often used to predict distributions of animals by defining 

suitable habitat from landscape characteristics (e.g. Pereira & Itami 1991, Osborne & 

Tigar 1992, Buckland & Elston 1993, Manel et al 1999, Cowley et al 2000). While 

such models can predict the suitability of the habitat for an animal, difficulties may 

occur when predicting the distribution of animals dispersing from a fixed point. This is 

because areas close to the point of dispersal will be encountered more often and are 

therefore more likely to be occupied. Simple distance measurements (e.g. distance 

from the point of dispersal) can be incorporated into regression models as a proxy for 

encounter rate (e.g. Chapter 3), The movement paths of individual animals are 

important in determining the animal's ability to utilise resources (Smith 1974, Jones 

1977). Therefore if an animal's path is influenced by spatial heterogeneity, the 

availability and, consequently the use, of resources will be affected (Johnson et at 

1992). In situations where time for dispersal is limited and animal movement is 

affected by a heterogeneous landscape (and therefore encounter rate of patches is not 

necessarily proportional to the distance from the initial location) movement models 

may prove a more realistic method of predicting distribution. The modelling of 

movements in ecology has received increasing attention in the last 50 years; a summary 

of some techniques for the modelling of animal movement are given below. 
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5.1.1 A review ofmetllOdsfor modelling animal movement 

EMPIRICAL MODELS 

Empirical models simply describe the relationship between organism density and 

distance from point of release by fitting equations to observed trends (e.g. Freeman 

1977). These were some of the first quantitative tools used to describe dispersal and 

although they could be incorporated into regression models, they do not solve the 

problem of the effect of spatial heterogeneity (Turchin 1998). 

DIFFUSION EQUATIONS 

Skellam (1951) was the first ecologist to apply the expressions for molecular diffusion 

to ecological problems (Okubo 1980, Turchin 1998). By assuming that individuals 

move in a random direction the density of organisms at a point can be approximated by 

diffusion equations. The diffusion models assume that movements of an organism are 

random, not affected by spatial heterogeneity, drift or previous direction of travel, and 

therefore although giving an insight into population dynamics, are an over· 

simplification of the movements of real organisms (Turchin 1998). Simple diffusion 

models can be developed to incorporate a number of biological phenomena, producing 

a whole family of generalised diffusion models. PatIak (1953) derived a generalised 

diffusion model that included the correlation of successive moves of an individual, 

spatial heterogeneity and directional bias (Okubo 1980, Turchin 1998). The direction 

an organism moves is often correlated with the direction of its previous move, 

producing paths with more persistence in direction than if subsequent moves were 

independent (Levin et al 1970, Smith 1974, Karieva & Shigesdad 1983, Dovet & 
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Benhamou 1988, McCulloch & Cain 1989). In Patlak's model successive movements 

of an individual were correlated by constraining the angle of tum between subsequent 

movements so individuals are more likely to continue in the direction of their previous 

movement; this is called a correlated random walk. Spatial heterogeneity was 

incorporated by altering the angle of tum, speed and move duration, dependent on 

habitat quality. Patlak's model also allowed external forces to influence the direction 

of movement resulting in a bias for organisms moving in a specific direction. 

Comparison of Patlak's model to other diffusion models found that most were special 

cases of the Patlak model (Turchin 1998). Reaction-diffusion models extend simple 

diffusion models by the addition of birth and death terms, as well as movement terms 

(Tilman et al 1997, Turchin 1998) a simple example being inclusion of an exponential 

growth factor by Skellam (1951). 

Although diffusion equations can be applied to real life situations (e.g. the advection­

diffusion-reaction model for skipjack tuna (Sibert et al. 1999» formulating viable 

schemes for establishing connections with data is conceptually more difficult as models 

become more complex (Turchin 1998). Where parameters are hard to derive, 

modelling dispersal on a computer and choosing the diffusion coefficients that best fit 

the observed data may be the only solution (as in Dobzhansky et al. 1979). 

DISCRETE RANDOM WALK MODELS 

Diffusion models are continuous models that assume that many moves occur between 

sample points whereas discrete random walk models employ a smaller number of 
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movements (McCulloch & Cain 1989). Correlated discrete random walk models, 

where the directions of subsequent movements are correlated (Kareiva & Shigesada 

1983, Bovet & Benhamou 1988, Marsh & Jones 1988, McCulloch & Cain 1989) and 

random walk models with directional bias (Marsh & Jones 1988) have been developed 

to investigate the patterns of animal movement. Such models enable us to quantify 

aspects of animal movement, such as sinuosity (a measure of the amount of turning in 

the path) (Bovet & Benhamou 1988), or net displacement (Kareiva & Shigesada 1983, 

McCulloch & Cain 1989) enabling comparisons between behaviour in different habitats 

or between different species and the exploration of the consequences of varying rules of 

movement. 

INDIVIDUAL BASED MOVEMENT MODELS 

In individual based movement models (lBMMs) the movements of individuals are 

constrained by behavioural rules, each with a stochastic element, with the movement of 

many individuals approximating to the behaviour of the population. The advantage of 

such models is their ability to simulate the observed animal behaviours and reactions 

very closely (Marsh & Jones 1988, Turchin 1998). The downfall of IBMMs, however, 

is that modelling techniques vary widely, dependent on the results required and the 

organism in question. This means that comparison between different IBMMs is 

exceptionally difficult (Marsh & Jones 1988, Turchin 1998). Thus while IBMMs may 

not prove useful in formulating general theoretical hypotheses about animal movements 

they may prove effective means of predicting the movements for a specific species. 
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One of the first models based on individual movement behaviour used to predict spatial 

distribution was by RE Jones (Jones 1977, Jones et al 1980). In this simulation model 

the distribution of eggs of the cabbage white butterfly Pieris rapae was predicted. 

Observations of the movement and oviposition of butterflies in a cabbage patch were 

used to derive probabilities of a butterfly stopping at a plant and the probability of a 

butterfly laying eggs when stopped (both were dependent on plant age and species). 

The flight path of a butterfly was a correlated random walk and in addition each 

butterfly had a directional bias (Jones 1977). This model was tested by releasing 

butterflies with dyed eggs and comparing the observed distribution of dyed eggs with 

that predicted from the model for a larger area and for a longer time period than used in 

the original model. Predicted patterns of oviposition were similar to those observed 

and therefore it is possible to gain an insight into the long-distance movements of the 

cabbage white butterfly from smaller scale observations as behavioural rules were not 

scale dependent (Jones et aI1980). 

A whole family of simulation models has been created with rules ranging from simple 

movements in a homogenous environment (Siniff & Jessen 1969, Kaiser 1976) to 

movements in heterogeneous environments (Turner et al 1993 & 1994, Boone and 

Hunter 1996, Schippers et al 1996) and the inclusion of linear barriers (Boone & 

Hunter 1996, Schippers et al 1996), mortality (Dewdney 1984, Collins & Jefferson 

1990, Turner et al1993 & 1994, Schippers et aI1996), energetics (Turner et af 1993 & 

1994), depletion (Turner et of 1993 & 1994), individual variation (Saarenmaa et al 
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1988), predator-prey ystems (Dewdney 1984) and evolution (Collins & Jefferson 

1990). 

5.1.3 Modelling goose movements 

In Chapter 3 the feeding distribution of Greylag geese was predicted in Strathearn and 

Strathallan from the landscape characteristics of fields using logistic regression. 

Landscape characteristics affecting the distribution of Greylag geese were di stance 

from the roost, altitude and distance from buildings. The aim of this chapter is to 

predict the distribution of the geese by an alternative method, modelling the daily 

movements of geese. Modelling the movement of individuals in response to the 

environment may produce a more realistic model of goose feeding distribution than 

regression techniques. If goose movements are affected by the spatial heterogeneity of 

the landscape this could affect the distribution of feeding geese in a way not predictable 

from the logistic regression technique used (see Figure 5.1). 

HILLS 

ROOST 

Figure 5.1. A diagram showing the possible effect of a heterogeneous landscape on the night paths of 
geese. Fields A and B are the same distance from the roost and have identical landscape characteristics, 
and therefore if encountered by geese have the same probability of being used. Logistic regression 
would predict both fields to be used equally. If the hills constrain goose flight, however, fewer geese will 
encounter field B and therefore field B will be less likely to be used by the geese. 
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As the aim is to model relatively small scale goose movements in a heterogeneous 

environment, even complex generalised diffusion models are likely to be much too 

simplistic to model goose movement realistically on a field based scale. Therefore the 

distribution of Greylag geese in Stratheam and Strathallan will be predicted using an 

IBMM, which simulates goose movements, with the goose decision based in data from 

the study of radio-tracked birds. 

5.1.4 Aims 

The objectives of this chapter are to: 

(i) To use data from radio-tagged Greylag geese to assess the effect of landscape 

characteristics on the behaviour of geese, namely the direction of flight and the 

decision to land. 

(ii) To build an individual based movement model (IBMM) that simulates goose 

movements to feeding areas through the day, with rules for flight direction and 

the probability of landing dependent on the landscape characteristics shown to 

affect goose behaviour. 

(iii) To use the IBMM to predict the feeding distribution of Greylag geese in 

Stratheam and Strathallan. 

5.2 ~fETHODOLOGY 

5.2.1 Radio-tracking methodology 

Twenty-three Greylag geese were fitted with radio transmitters on four catches during 

1997/98, 1998/99 and 1999/2000. For further details see Chapter 4. Radio-tagged 

geese were given a period of 5-7 days to become accustomed to the radio-transmitters 
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before data collection commenced. During the winters of 1997-98 and 1998-99, 

individual tagged geese were tracked continuously for half-day periods, either from 

dawn to mid-day, or mid-day to dusk. The location of the goose was recorded with the 

flock size, crop type, duration of stay in the field and reason for leaving (i.e. cause of 

disturbance if scared). Greylag geese in the study area were often observed to return to 

the same fields on subsequent days. Therefore to reduce the repetition and dependence 

between recorded goose movements for individual geese, radio-tracking periods were 

spaced as far apart as possible, separated by at least three days (for further debate on 

the non-independence of radio-tracking data see the discussion). 

During the winter of 1999-2000 the methodology was altered to maximise the number 

of goose movements recorded. All radio-tagged geese were located at the roosts and 

then at approximately 2-3 hour periods throughout the day. As Greylag geese make 

few movements between fields during the day, it was considered appropriate to assume 

that the goose had flown directly between fields if the goose had moved. As a result no 

data were collected on the time geese spent in the fields or on the cause of leaving in 

this season. For all field seasons radio-tracking continued until the goose left the study 

area. As in previous winters, subsequent days of radio tracking of an individual goose 

were separated by at least 3 days 

5.2.2 Durat;oll o/l';s;ts 

The analysis of the amount of time geese spent in a field was performed using data 

from the first two field seasons. The time of arrival or departure of geese in a field was 
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not recorded if it fell outside the observation time and therefore analysis of recorded 

durations only would result in an under representation of longer field stays. To combat 

this bias, the probability of geese leaving was calculated using the following equation 

P (T) = NO. LEFT (T) / NO. OBSERVED (T) 

where: 

P (T) is the probability of a goose leaving in the lh half-hour after landing 

NO. LEFT (T) is the number of geese that left in the lh half hour after landing 

NO. OBSERVED (T) is the number of geese observed for the tth half hour after landing 

This gave the probability of geese leaving the field for each half-hour period after 

landing. A Chi squared test was performed on the numbers of geese that left / did not 

leave for each half-hour period to see if the chance of geese leaving the field was 

constant over time. 

5.2.3 Deriving lQlfdscape characteristics 

ArcInfo GIS ver. 7.2.1 (ESRI, Redlands, California, USA) was used to derive a 

polygon coverage of all 3,700 fields in the study area from digitised OS LandLine data. 

Landscape characteristics for each field were calculated from OS LandLine, OS 

Panorama contour and Macaulay Land Cover for Scotland 1988 (LCS 88) data (see 

Table 5.1) as in Chapter 3. 
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The study area was converted to a grid of 256 by 203 100m square pixels. For each 

pixel landscape characteristics were derived in ArcView. In addition field-based 

characteristics of pixels lying within the boundaries of fields were derived from the 

field coverage. Table 5.1 describes both the landscape characteristics derived per pixel 

and the field-based landscape characteristics derived for pixels lying within field 

boundaries. 

T bl 51 F' Id h I I d fi . 1 d fi Id . I d' a e .. Ie s e araetenstles ea eu ate orpIxe san Ie s, me u 109 source 0 fd ata. 
Field Description Units Source data Held based Pixel based 
Characteristic data data 
Area Area of field mZ OS Land-Line Field value -

data 
River distance Dist. to river m OS Land-Line Field mean Pixel value 

data 
Road distance Dist. to nearest road or track m OS Land-Line Field mean, Pixel value 

data minimum & 
maximum 

Building Dist. to nearest building m OS Land-Line Field mean, Pixel value 
distance data minimum & 

maximum 
Woodland Dist. to nearest wooded area m LCS 88 Field mean Pixel value 
distance 
Water distance Dist. to nearest permanent m OS Land-Line Field mean Pixel value 

water, including ponds, data 
drains rivers etc. 

Altitude Average field altitude masl OS Panorama Field mean Pixel value 
contour 

Slope Average slope offield degrees OS Panorama Field mean Pixel value 
contour 

Landcover LCS 88 landcover category LCS 88 Pixel 
category 

5.2.4 Factors affecting where geese flew 

The effect of landscape characteristics on the direction geese flew was investigated by 

comparing the character of land flown over by geese with land that could have been 

flown over if the goose had flown in a random direction. Goose flight paths were 

assumed to be a straight line between observed goose take off and landing points, as it 

104 



was not possible to record the actual flight path of the goose in the field, and pixels 

lying on this line were identified as pixels flown over by the goose. 

• 

• Observed goose location 
-+ Assumed real flight path 
-+ Randomly generated flight path 

• Pixel under real goose movement 
• Pixel under randomly generated 

movement 

Figure S.2. A diagram showing how pixels flown over in real goose movements and randomly 
generated movements were identified for the analysis of goose flight direction, from recorded locations 
of radio-tracked geese for one roost movement and one non-roo t movement. Each grid square 
represents a 100m x 100m pixel. 

For each recorded goose movement a random movement was also generated i.e. a flight 

path from the same take off point, of the same length as the recorded movement but in a 

randomJy generated direction (Figure 5.2). Goose movements were divided into roost 

movements (from the roost to a field at the start of the day) and non-roost movements 

(between fields throughout the day). For both real and randomly generated roost and 

non-roost movements, the values of all pixels flown over were determined (see Figure 

5.2). Logistic regression was used to compare landscape characteristics of pixels which 

geese chose to fly over (real movements) with what they would have flown over if 
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landscape characteristics had no effect on flight direction (randomly generated 

movements). Separate models were produced for both roost and non-roost movements. 

The landscape characteristics of pixels flown over by geese are spatially dependent and 

could affect the validity of results from logistic regression models. To reduce the effect 

of spatial dependence on the logistic regression results a random sample of 10% the 

pixels flown over was selected for analysis. Forward stepwise logistic regression was 

used with a probability for entry at p = 0.05, and a probability for removal at p = 0.1. 

Landscape characteristics included as variables in the logistic regression model 

included all those calculated per pixel as shown in Table 5.1. The logistic regression 

model was repeated five times, with a different 10% sample of data in each run, to 

assess the consistence of the results. 

From the five resultant logistic regression equations the model with the median logistic 

regression coefficient was selected as the most representative. This logistic regression 

equation was used to derive a chance of geese flying over each pixel in the study area, 

called the 'probability of flying I probability surface. Probability surfaces were created 

in this way for both roost and non-roost movements. 

The feeding area of the geese in the study area was based along the valleys of two 

rivers and so distance from the nearest river was a landscape variable included in this 

analysis. A model incorporating distance from the river would not be transferable to 

areas where there was no major rivers, for example, geese roosting on lochs and coastal 

roost sites. An alternative analysis of factors affecting where geese flew was performed 
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excluding distance from the river as a landscape variable. The logistic regression 

analysis was perfonned as above but excluding distance from the river as a possible 

covariate, and alternative probability surfaces for geese flying over each pixel created, 

for both roost and non-roost movements. These alternative logistic regression models 

could be used to predict the probability of geese flying over pixels in goose feeding 

areas where there are no major rivers and therefore are more widely transferable. 

5.2.5 Factors affecting where geese landed 

To investigate the landscape characteristics affecting where geese chose to land, the 

landscape characteristics of pixels that were flown over and not landed in were 

compared to those where the goose did choose to land. As when investigating factors 

affecting where geese chose to fly, goose movements were assumed to be a straight line 

between observed goose take off and landing points. Where geese chose to land was 

analysed on a field scale with all pixels in one field having the same probability of 

being landed in (rather than the pixel scale used for analysis of flight direction). This 

was considered a more realistic approach than a pixel-based probability as geese used 

fields as units (bounded by fences that require flying over). The landscape 

characteristics investigated are shown in Table 5.1. As when assessing the effect of 

landscape characteristics on goose flight paths, separate analyses were perfonned to 

investigate roost and non-roost movements. 

To assess which factors affected the chance of geese landing in fields, fields were 

grouped into ranked sets of 20, according to the landscape characteristic in question. 
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For each group of fields, the mean and standard deviation of the field characteristic and 

the proportion of pixels where geese chose to land were calculated. The proportions of 

pixels landed in were then plotted against the mean field characteristic for that group 

(as in Chapter 3). Both logarithmic and linear trends were detected using regression 

analysis on the data. 

Conventionally such data would be displayed as a bar chart with the proportion of 

pixels landed in calculated for given ranges of landscape characteristic values. This 

would result in the accuracy of the probabilities varying with the number of fields in 

each range. By grouping fields, as described above, the accuracy of predicted 

probabilities across the range of landscape characteristic values is constant giving data 

more suitable for regression analysis. Note that the R2 values will tend to be higher for 

grouped data than for individual fields. 

To assess which variables affected where geese were landing, it was necessary to 

control for the most significant variable and see if other landscape characteristics also 

affected goose landing. The predicted probabilities of geese landing in each field were 

derived from the regression equation of the most influential landscape characteristic 

and the residuals calculated. The residuals were then plotted against the remaining 

landscape characteristics using the grouping method as described above, and the 

significance of any relationships calculated, to assess whether more than one landscape 

characteristic could be used to predict the chance of geese landing. 
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This approach was considered more appropriate than standard logistic regression as the 

highly skewed ratio of 'pixels flown over' to 'pixels landed in' would affect the 

outcome of model performance testing (Fielding & Bell 1997, Manel et al 1999). 

unless the majority of data from pixels that were flown were excluded. In addition, 

exclusion of some pixels where geese did not land would result in an over-estimation of 

the probability of landing for all pixels, therefore probabilities would require 

adjustment. 

The regression equations were used to derive a probability surface of geese landing in 

each field over the entire study area for both roost and non-roost movements, with the 

probability of geese landing outside fields equal to zero. These were called the 

'probability of landing' probability surfaces. 

5.2.6 Simlliation model 

The feeding distribution of geese was predicted by simulating goose movements 

through the day using rules derived from radio-tracked geese. The model simulates an 

individual goose flying from the roost site to a field and then between fields throughout 

the day, When run repeatedly the model results were used to produce a probability 

surface showing the predicted extent of use of individual fields by geese. 

Simulated goose movements in the model were from pixel to pixel, starting at the roost 

site. . As geese fly in a relatively straight line subsequent movements between pixels 

were strongly correlated, a constraint often incorporated into movements models 
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(Patlak 1953, Siniff & Jessen 1969, Jones 1977, Kareiva & Shigesada 1983, Bovet & 

Benhamou 1988, McCulloch & Cain 1989, Turner et a/1994, Boone & Hunter 1996, 

Schippers et al 1996). In this model goose movement was constrained so that geese 

could only move to the pixel straight ahead or to the pixels at 45 degrees on either side, 

with a greater chance of continuing straight ahead. Flight direction was also 

constrained by the 'probability offlying' probability surface. The process of simulated 

geese moving between pixels was repeated until the goose landed. The chance of 

landing in each pixel flown over was taken from the 'probability of landing' probability 

surface. 

An outline of the model is shown in Figure 5.3 and was programmed in Microsoft 

Excel 97 with macros written in Microsoft VisualBasic. The starting point for each 

goose was one of the sixteen roosts used by radio-tracked geese, with the probability of 

a goose starting at a particular roost corresponding to the proportion of radio-track 

movements observed from the roost. 

MODELLING GOOSE FLIGHT 

Goose movements over the surface was constrained by the 'probability of flying' 

probability surfaces. The probability surface was simplified into bands of 0.1, 0.2, 0.3 

etc. to allow goose flight to be constrained without causing so many changes in 

direction that the simulated flight path became unrealistic. 
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Fly Fly 
ahead left 

Fly 
ahead 

Move ., I 
Total moves'" periods • P (leave) 
P (leave) '" random number from N (0.134, 0.064) 
Period ., number of Yl hour feeding periods 

"' 0.0013,,2 - 0.177" +22.05 
" '" number of days from JS'h October 

&' OQ"rfnm .,u."hPr hAhl/J'OP-n 1 qntf 1 hi 
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Fly 
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ahead 

Fly 
left 

Yes 

Figure S.3 Flow chart of simulation model. Note P (land), the probability of landing, and P (fly) the 
probability of flying, differ in space. If move = 1 then the goose is flying from the roost so P (land) and P (fly) 
for foost moves are used, if move> 1 then it is a non roost movement and P (land) and P (fly) for non roost 
movements used. r, ~ f. are randomly generated numbers between 0 and 1. 
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If the pixels at 45 degrees to the left or the right had a lesser or equal probability of 

being flown over there was 98% chance that the goose would continue in a straight line 

and 1 % chance of it turning to the left or the right. The small chance of turning, when 

flight is not constrained by the probability surface, was selected as it results in 

realistically direct flight paths while including an element of stochasticity. Many 

simulated geese leave from the same roost and are constrained by the same probability 

bands which can result in certain flight paths being repeatedly simulated, an effect 

reduced by the inclusion of occasional random change of direction. 

If the chance of pixels either to the left or right being flown over was greater than the 

pixel straight ahead then there was a 60% chance of the goose turning in the preferred 

direction. This probability of turning at the flight constraint boundaries was selected as 

it gave simulated geese the correct probability of flying in the different probability 

bands (see later and Figures 5.10a & 5.10b). 

MODELLING GOOSE LANDING 

The probability of geese landing per pixel was taken directly from the 1JrobabUity of 

landing' probability surface. 

NUMBER OF MOVEMENTS PER DAY 

The number of moves a goose makes in a day will be dependent on the frequency of 

movements and the number of hours spent feeding in a day. The probability of a goose 

leaving per half-hour was taken at random from a normal distribution with the mean 



and standard deviation taken from the duration of visit analysis. As the amount of 

feeding time in the day varies through the season, for each run of the model the amount 

of feeding time was calculated for a random day between 15th October and 1st April 

using the polynomial equation derived in Chapter 4. The number of goose movements 

for the day was calculated as: 

2 * No. HOURS FEEDING TIME * P (LEAVING PER HALF-HOUR PERIOD) 

For subsequent goose movements between fields, the model was run as the first goose 

movement from the roost but using probability surfaces for both flight path and 

probability of landing derived for non-roost movements. 

DERIVING THE PROBABILITY OF GOOSE USE FROM SIMULATED GEESE 

The result of this model, when run repeatedly, was a grid with the number of simulated 

goose landings per pixel. Arc View was used to summarise the results per field, giving 

the total number of geese landing per field, and the mean number of geese landing per 

pixel (density) for each field. 

To assess the number of simulated goose days required to produce consistent results, 

the model was run twice for 1000, 5000, 10000, 30000 and 50000 goose days. 

Regressing the sum and density of geese landing per field for the two runs assessed the 

degree of consistency between the results of the two runs. When consistent results 

were obtained from the two runs there was considered to be an adequate number of 

simulated goose days and this was the number of times the model was run for all 

subsequent procedures. 
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To assess whether the simulation model accurately reflected the probability surface for 

geese flying over the area, the model was modified to give the number of times each 

pixel was flown over by simulated geese. For an area within 3km of any goose roost, 

the mean number of times pixels from each probability band were flown over in the 

simulation model was calculated and compared to what would be expected from the 

probability surface, for both roost and non-roost movements. 

ALTERNATIVE SIMULATION MODEL 

The model was then run as above but using the alternative ·probability of flying' 

probability surfaces with distance from the river excluded from the flight analysis. As 

discussed previously this alternative model is transferable to other goose feeding areas 

where there are no major rivers. The results of this alternative model were compared to 

those of the ordinary model both by visual comparison of the predicted probability 

surfaces and by regressing the sum and density of geese landing per field for the two 

runs, as when comparing the consistency of results from two runs of an identical model 

previously. 

5.2.7 Sellsitivity analysis 

The data on which this simulation model was based were not extensive. As a result it 

was necessary to assess the effect of potential error in the relationships used in the 

model. To assess the effect of error in the 'probability of flying' probability surface, 

the upper and lower 95% confidence limits of the coefficient for the logistic regression 

model were used. The model was run using probability surfaces derived from the 
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lower confidence limits of the coefficient for both roost and non-roost movements and 

for analyses both including and excluding the distance from river variable. This was 

repeated to create four probability surfaces using the upper confidence limits of the 

coefficients. Agreement between the original and modified model results was assessed 

both by visual comparison of the predicted probability surfaces and by regressing the 

sum and density of geese landing per field for the two runs, as when comparing the 

consistency of results from two runs of an identical model previously. 

To assess the effect of error in the 'probability of landing' probability surface it was not 

considered appropriate to use the confidence intervals for the relationship. as a uniform 

reduction in the probability of landing would result in geese flying further from the 

roost, not a realistic measure of any error that could have entered the analysis. Instead 

it was considered more appropriate to include a random error into the probability of 

geese landing for each field. For each field the probability of landing was altered by a 

random error from a uniform distribution between -20% and +20% for both roost and 

non-roost probability surfaces and the model re-run. This procedure was repeated with 

the probability surface being altered by a random error of between -50% and +50%. 

Again agreement between the original and modified model results was assessed both 

visually and by regressing the sum and densities of geese landing per field for the two 

runs. 
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5.3 RESULTS 

5.3.1 Radio-tracking geese 

During the first two field seasons, 15 geese were caught and 12 were radio-tracked over 

half day periods for a total of 57 half days during 19th February - 25th March 1998 and 

3rd December 1998 - t h April 1999. During this time 123 goose movements were 

observed. Three geese left the study area before any data could be collected. 

During the final season eight radio-tagged geese were located every 2-3 hours. A total 

of 104 transitions were observed between 5th November 1999 and 1 t h January 2000, 

including two transitions from a goose caught the previous winter. No data of stay 

duration or scaring were obtained in the winter of 1999-2000. The number of 

transitions recorded varied greatly between individuals (mean = 10.8, s.d = 10.3), 

reflecting the variation in the amount of time individuals remained in the study area 

after capture. Individuals feeding in the same flock were not radio-tracked 

simultaneously, to reduce dependence in the data. 

5.3.2 Duration o/visits 

Figure 5.4 shows the probability of geese leaving the field in each half-hour period 

after landing. There is no apparent relationship between the chance of a goose leaving 

and the amount of time already spent in the field. Chi squared tests on the number of 

geese leaving or remaining per half hour period showed no significant variation in the 

proportion of geese leaving over time (X2 = 3.88, d.f. = 6, P > 0.1). The mean 

proportion of geese leaving per half-hour period was 0.13 (s.d. = 0.06). 
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Figure 5.4 The probability of geese leaving during each half-hour period after 
arrival in the field. Mean = O. J 3, sd = 0.06. 

5.3.3 Factors ajjeetillg where geese flew 

The results of the five runs of the logistic regression models comparing the landscape 

characteristics of pixels flown over and not flown over for both roost and non-roost 

movements are shown in Tables 5.2a and 5.2b. Further details of the results of the 

logistic regression models are presented in Appendices 5 and 6. 

Table 5.2a Significance of variables in five logistic regression models using a random 10% of pixels for 
roost movements. Comparing landscape characteristics of pixels flown over and potential pixels flown 
over if flight was not affected by the landscape. R-values and significance level of variables included in 

. "'E 001 *"'001 PODOl d*"''''P 0001 equation. ~quates to 0.05 > P > • > > an < 
Landscape Characteristic run 1 run 2 run 3 run 4 runS 

Dist. from building 0.06'" 
Dist. from road 
Dist. from river -0.16"''''''' -0.24"""'" -0. I 9*"'''' -0.30*"'* -0.27 .... '" 
Dist. from water 
Dist. from woodland -0.07'" 
Landcover 
Slope -0.07'" -0.06'" 
Altitude -0.13"''''''' -0.09*'" 
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Table S.2b Significance of variables in five logistic regression models using a random 10% of pixels for 
non-roost movements. Comparing landscape characteristics of pixels flown over and potential pixels 
flown over if flight was not affected by the landscape. R-values and significance level of variables 
. I d d' .• E 005 P 00 .. 001 P 0001 d·.... 0 me u e m equatton. ~quates to > > . 1, > > an P< .001. 
Landscape Characteristic run 1 run 2 run 3 run 4 run 5 

Dist. from building 0.11 .... 
Dist. from road 
Dist. from river -0.16"· -0.24··· -0.22 .... • -0.010·· 
Dist. from water 
Dist. from woodland -0.7· -0.09· 
Landcover 
Slope 0.14·· 0.09· 
Altitude -0.25··· 

Distance to the river was consistently the most significant factor affecting where geese 

flew, with geese being more likely to fly over pixels nearer the river, for both roost and 

non-roost movements. The correlation between distance from the river and altitude (r = 

0.28, P < 0.001) accounts for the result of run 2 from the non-roost movements. With 

altitude controlled for, the effect of distance from the river is no longer significant. 

Other variables were included into the logistic regression models, but not consistently 

and at much lower significance levels than the distance from the river. As such it was 

considered appropriate to include only the distance from the river in the logistic 

regression model. The logistic regression models were run again five times for both 

roost and non-roost movements, with only distance from the river included as a 

dependent variable. Of the five logistic regression equations generated the equation 

with the median coefficient value was selected to represent the relationship between the 

distance from rivers and the chance of a pixel being flown over by geese. The selected 

logistic regression equations were used to predict probability surfaces of geese flying 

over each pixel in the study area, for both roost and non-roost movements. For roost 

movements the probability of flying P (fly) was calculated by the following equation: 
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P (FLY) = lIExp«0.808 * DISTANCE TO RIVER) + 0.027) 

For non-roost movements the probability was calculated by the equation: 

P (FLY) = lIExp«0.420* DISTANCE TO RIVER) + 0.509) 

where distance from the river is measured in kilometers. The probability surface for 

roost movements is shown in Figure 5.5. 

When the distance from the river was excluded from the analysis, altitude was 

consistently the most significant variable in the model in all five runs for both roost and 

non-roost movements, with geese more likely to fly over pixels at lower altitudes (see 

Tables 5.3a & 5.3b). Further details of the results of the logistic regression models are 

presented in Appendices 7 and 8. 

Table S.3a. Significance of variables in five logistic regression models using a random 10% of pixels. 
with distance from river excluded, for roost movements. Comparing landscape characteristics of pixels 
flown over and potential pixels flown over if flight was not affected by the landscape. R-values and 
significance level of variables included in equation. • Equates to 0.05 > P > 0.0 I, .- 0.01 > P > 0.00 I 
and .-. P < 0001 

Landscape Characteristic run 1 run 2 run 3 run 4 run 5 

Dist. from building 0.06* 0.11** 0.05* 0.08·· 0.10** 
Dist. from road 0.07· 
Dist. from water 
Dist. from woodland 
Landcover 
Slope 
Altitude -0.23*** -0.24*** -0.26*** -0.26* .... -0.24*** 

Table S.3b. Significance of variables in five logistic regression models using a random 10% of pixels, 
with distance from river excluded, for non-roost movements. R-vaJues and significance level of 

. hI . I d d' . * E 005 POOl ** 0 01 P 0001 d *** P 0001 varia es mc u e m equation. iquates to > > l, > > an < 
Landscape Characteristic run 1 run 2 run 3 run 4 run 5 

Dist. from building 0.11** 0.10** 0.06-
Dist. from road 
Dist. from water 
Dist. from woodland -0.06* ·0.08* 
Landcover 
Slope 0.13** 0.08* 0.13** 
Altitude -0.14-" -0.24*** -0.17*** -0.17-" -0.11 ** 
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Figure 5.5 The probability of flying bands for goose movements from the roost, based on distance from the river. 



As with the analysis including distance from the river, other variables were included in 

various runs of the model, but not consistently and at lower significance levels. 

Distance from the nearest building was included in the majority of models as a 

significant landscape characteristic affecting where geese fly, though not in all the 

models, and was much less significant than altitude. Inclusion of altitude and distance 

from buildings in the final model would have resulted in a patchy probability surface as 

opposed to the banded effect obtained from distance from the river and altitude. This 

would affect how simulated geese move over the grid by 'trapping' them in patches of 

high probability. It was therefore considered that the inclusion of altitude alone would 

result in a better substitute probability surface for the 'distance from river' model. As a 

result only altitude was included in the logistic regression model. As above logistic 

regression was run on the five subsets of data with only altitude included as a 

dependant variable, for both roost and non-roost movements. The logistic regression 

equations with the median coefficient values were selected to create alternative 

probability surfaces for the probability of flying. Figure 5.6 shows the probability 

surface for geese flying from the roost. 

5.3.4 Factors affectillg where geese lallded 

Both linear and logarithmic curves were fitted to the relationships between landscape 

characteristics and the chance of geese landing. Various measures of distance from 

buildings were the most significant landscape variables affecting where geese landed 

for both roost and non-roost movements, with geese being more likely to land in pixels 
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Figure 5.6 The probability bands for goose movements from the roost, based on altitude. 
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further from the buildings (Table 5.4). The area of the field also showed a relationship 

with the chance of geese landing, with geese more likely to land in a pixel in a larger 

field, for both roost and non-roost movements. Of the three measures of distance from 

the buildings, the maximum distance was the most significant for roost movements, and 

was also significant for non-roost movements. 

Table 5.4 Results of the regression analysis of the effect of landscape characteristics on the chance of 
I d' geese an 109 in a pixel. 

Landscape Characteristic Roost movements (n ... 15) Non-roost movements (n ... 12 J_ 
Linear L02arlthmlc Linear Logarithmic 

R Sig. R Sig. R Sig. R Sig. 
Mean dist. from building 0.48 0.070 0.53 0.044 0.75 0.005 0.84 0.001 
Max. dist. from building 0.73 0.002 0.74 0.001 0.72 0.008 0.78 0.003 
Min. dist. from building 0.18 0.526 - - 0.75 0.005 - -
Mean dist. from road 0.40 0.138 0.51 0.054 0.31 0.328 0.50 0.101 
Max. dist. from road 0.55 0.033 0.57 0.027 0.37 0.243 0.44 0.153 
Min. dist. from road 0.20 0.467 - - 0.06 0.850 - -
Dist. from river 0.40 0.513 0.00 0.961 0.05 0.857 0.21 0.516 
Dist. from water - 0.05 0.850 0.11 0.704 0.48 0.112 0.45 0.144 
Dist. from woodland ns ns 0.59 0.042 0.62 0.032 
Field area 0.72 0.003 0.67 0.006 0.56 0.059 0.67 0.018 
Altitude - 0.28 0.316 -0.41 0.125 - 0.19 0.550 - 0.20 0.533 
Slope -0.44 0.101 - - - 0.24 0.451 - 0.16 0.620 

Table 5.5 Results of the regression analysis of the effect of landscape characteristics on the residuals 
. h . d' fi b 'ld' from the regression model incorporatmg t e maxtnmm Istance rom a III mg. 

Landscape Characteristic Roost movements (n ... 15 ) Non-roost movements n'" ) 
Linear L02arithmic Linear LOl!arithmic 

R Sig~ R Sig. R Sig. n. Sil!. 
Mean dist. from building 0.00 0.989 0.04 0.887 0.29 0.353 0.40 0.193 
Min. dist. from building - 0.32 0.242 - - -0.08 0.798 - . 
Mean dist. from road 0.10 0.726 0.20 0.476 0.08 0.806 0.16 0.623 
Max. dist. from road 0.22 0.431 0.23 0.408 0.03 0.941 0.14 0.658 
Min. dist. from road - 0.09 0.738 - . 0.33 0.302 - . 
Dist. from river 0.14 0.627 0.10 0.729 0.21 0.516 0.33 O.30} 
Dist. from water 0.10 0.734 0.04 0.892 0.08 0.791 0.03 0.917 
Dist. from woodland 0.30 0.275 0.18 0.532 0.51 0.093 0.61 0.035 
Field area 0.51 0.052 0.41 0.133 0.24 0.442 0.39 0.215 
Altitude - 0.28 0.296 -0.40 0.137 - 0.08 0.791 - 0.03 0.917 
Slope ·0.49 0.063 - - - 0.35 0.271 - 0.30 0.334 

When maximum distance from buildings was controlled for, the residuals did not show 

significant relationships with any of the other landscape characteristics investigated, 
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including field area (Table 5.5). This is likely to be due to the correlation between area 

and maximum distance from buildings (r = 0.441, n = 3,599, p < 0.001). These results 

suggest that how far away a goose can get from buildings in a field is the major factor 

affecting whether it will land. 

The logarithmic regression curve equations fitted to the relationships between 

maximum distance to buildings and the chance of geese landing per pixel for both roost 

and non-roost movements were used to calculate the probability of geese landing in any 

pixel throughout the study area if flown over. The equation for roost movements is: 

P (LAND) = 0.084 * LN (MAXIMUM DISTANCE FROM THE NEAREST BUILDING) - 0.445 

and the equation for non-roost movements is 

P (LAND) = 0.104 * LN (MAXIMUM DISTANCE FROM THE NEAREST BUILDING) - 0.523 

where the maximum distance from the nearest building measured in metres. 

Figure 5.7 shows the relationship between maximum distance from the buildings and 

both the proportion of geese observed to land and the logarithmic curves fitted to the 

data. Although the shapes of the relationships are very similar for roost and non-roost 

movements, the probability of landing is higher for non-roost movements. This is 

because geese move shorter·distances between fields during the day than when leaving 

the roost at the start of the day, a difference that is reflected in the probability surfaces. 
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The logarithmic curves were considered more appropriate models as they were more 

significant than the linear regression lines in both instances. In addition the effect of 

disturbance is most likely to be logarithmic with the effect disturbance being greatest 

when in close proximity to the source and lessening at greater distances. The 

probability of geese landing in pixels not in fields was fixed as zero. 
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Figure 5.7 The probability of geese landing at varying distances from buildings 
for both roost and non-roost movements. 
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5.3.5 Simulation model 
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Figure 5.8 The consistency between two runs of the model with differing 
numbers of goose days. P < 0.001 for all. 

Figure 5.8 shows the consistency of results between runs with varying numbers of 

goose days simulated. Both the total number of geese landing in each field and mean 

number of geese landing per pixel became fairly consistent by 20000 to 30000 

simulated goose days. By 50000 simulated goose days the R2 values of the total 

number of geese landing in a field and the mean number of geese landing per pixel 

were 98.6% and 97.2% respectively. It was therefore considered appropriate to use 

50000 iterations to produce consistent results and all subsequent models were run for 

this number of simulated goose days. 
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underlying probability surface on which it is based for both roost and non-roost 

movements. This suggests that the rule that govern how simulated geese respond to 
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the 'probability offlying' probability surfaces are realistic. The reduced accuracy of fit 

of the roost movements when compared to the non-roost movements arises because 

more geese fly over pixels very close to the roosts irrespective of distance from the 

river. This results in more geese flying over pixels in probability categories containing 

more roosting geese. For non-roost movements, geese are starting their flights from 

more dispersed locations so this effect is not apparent, and therefore the fit to the 

expected results is better. 

Figure 5.10 shows the results of the original simulation model, with the mean number 

of times each pixel in the field was landed in shown. In this model goose flight was 

constrained by distance from the river, and geese are predicted to be more numerous in 

fields far from buildings and fields close to the river. 

Figure 5.11 shows the results of the alternative simulation model, with distance from 

the river excluded as a variable, again showing the mean number of times each pixel in 

the field was landed in. In this model goose flight was constrained by altitude, with 

geese being more likely to fly at lower altitudes. Where geese landed was again 

dependent on the distance from the nearest building. The two models produced 

relatively similar results for individual fields (see Table 5.6) although visual 

comparison shows that the altitude based model constrains the direction of goose flight 

less than the river based model, resulting in a greater spread of fields predicted to be 

used by geese. 
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Figure 5.10 Results from the simulation model with flight constrained by distance from the river, showing the mean number geese 
simulated to land per pixel for each field. 
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Figure 5.11 Results of the alternative simulation model with flight constrained by altitude, showing the mean number of geese simulated to 
land per pixel for each field. 



5.3.6 Sellsitivity analysis 

Table 5.6 shows the consistency of results for each field between runs of the ordinary 

model and those models with error incorporated into the probability, Figures 5.12a, 

5.I 2b & 5.I 3 show maps of the predicted results to allow comparison of changes in the 

spatial pattern. The results of individual fields from the ordinary model and models 

using the upper and lower 95% confidence limits of the logistic regression coefficients 

to produce the 'probability of flying' probability surfaces were very similar (See Table 

5.5). From Figures 5.12a & 5.l2b it can be seen that although the spatial effect of 

altering the logistic regression model is not great and the overall pattern of predicted 

goose use is very similar, slight differences can be seen. Applying the lower coefficient 

results in a predicted probability surface with the distance from the river having a 

greater effect. As a consequence it can be seen from the maps that geese are predicted 

to feed in fields further from the river slightly more often than with the ordinary run of 

the model. The reverse 'can be observed from the results when the upper confidence 

limit was applied. Given the relatively large amount of error incorporated into the 

model using this method, the effects on the resultant predictions of goose use were 

considered relatively slight. Therefore the model is relatively insensitive to the exact 

relationship between goose flight and distance from the river and so inaccuracies in the 
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Figure S.I2a Results of the river simulation model using the upper 95% confidence limits of the logistic regression coefficient, showing the 
mean number of geese simulated to land per pixel for each field. 
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Figure 5.12b Results of the river simulation model using the lower 95% confidence limits of the logistic regression coefficients, showing 
the mean number of geese simulated to land per pixel for each field. 
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Figure 5.13 Results of the river simulation model with up to 50% error incorporated into the probability oflanding in each field, showing 
the mean number of geese simulated to land per pixel for each field. 



equations used in the model to predict the probability of pixels being flown over should 

not have a great effect on the results. 

Table 5.6 Agreement of results of ordinary simulation model and sensitivity models with error included. 
n = 3.599) 
Comparing agreement of ordinary run and •• Mean pixel value Sum of pixel values 

RZ Sig. R~ Sig. 

· . repeat ordinary run 97.2% < 0.001 98.6% <0.001 

· . probability flying using upper 95% confidence limit 88.3% < 0.001 94.1% < 0.001 

lower 95% confidence limit 90.7% < 0.001 95.5% < 0.001 

· . probability landing with up to ± 20% error 95.8% < 0.001 97.5% < 0.001 

up to ± 50% error 90.2% < 0.001 92.4% < 0.001 

The effect of including random error into the probability of geese landing in each field 

of between -20% and 20% (mean ± 10%) produced results only slightly less consistent 

than repeat runs ofthe ordinary model (see Table 5.6). Increasing this error to between 

-50% and 50% (mean ± 25%) did result in a decrease in consistency of results with the 

ordinary model, but agreement was still considered good. Inspection of the overall 

pattern of predicted goose use from the sensitivity analysis models (see Figure 5.13) 

shows no spatial shift when compared to the results of the ordinary model. This 

observation is to be expected as random error was assigned to each field and therefore 

there was no spatial pattern in incorporated error. 

Table 5.7 shows the effect of altering the relationship between altitude and the 

probability of flying in the alternative model where distance from the river was 

excluded from the analysis. Again the results from individual fields did not vary 

greatly when the upper or lower 95% confidence limits of the logistic regression 

coefficients was used to produce the 'probability o/flying' probability surfaces (See 
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Figure 5.14a Results of the altitude simulation model using the upper 95% confidence limits of the logistic regression coefficients, 
showing the mean number of geese simulated to land per pixel for each field. 
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Figure S.14b Results of the altitude simulation model using the lower 95% confidence limits of the logistic regression coefficients, 
showing the mean number of geese simulated to land per pixel for each field. 



Table 5.7). From Figures 5.14a & 5.14b it can be seen that although the spatial effect 

of altering the logistic regression model is not great there are slight differences in the 

overall pattern of predicted goose use. These differences, however, do not follow the 

clear patterns observed when the ordinary model was altered. This is because the 

'probability of flying' probability surface is more complex when based on altitude, 

rather than distance from the river (see Figures 5.6 & 5.7). 

Table S.7 Agreement of results of ordinary simulation model and altitude based simulation model, 
including sensitivity of altitude based probability of flyin~. (n = 3,599) 

Comparing agreement of altitude model run and Mean pixel value Sum of pixel values 
Rl Sig. Rl Sig. 

.. ordinary model run 77.8% < 0.001 84.3% < 0.001 

.. probability flying using upper 95% confidence limit 88.2% < 0.001 93.6% <0.001 

lower 95% confidence limit 89.1% < 0.001 93.7% <0.001 

5.4 DISCUSSION 

5.4.1 Overview 

Analysis of radio-tracking data showed that both the direction of goose flight and 

where geese landed was related to landscape characteristics. These landscape 

characteristics were used to constrain movement in a model which simulated the 

movements of feeding geese. The model was used to predict the feeding distribution of 

geese throughout Strathearn and Strathallan and proved robust to potential error in the 

effects of the landscape characteristics on goose movements. 
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5.4.2 Radio-trackillg data 

The amount of time that individual geese remained in the study area varied greatly. As 

a result the amount of radio-tracking data collected also differed greatly among 

individuals geese. Aebischer et al (1993) warn that the use of radio locations as sample 

units can lead to non-independence and an inflation of the apparent number of degrees 

of freedom, and suggest the use of animals rather than radio locations as a sample unit. 

Non-independence can result from: 

1) Serial correlation of sequentially collected radio locations 

In this analysis discrete goose movements were analysed. As subsequent 

movements were punctuated with periods of time that the goose spent feeding, 

it is unlikely that serial correlation between subsequently collected goose 

movements would prove a major problem. 

2) Individual variation in behaviour between animals 

Radio-tagged geese roosted with large numbers of other geese, flew out to feed 

in large flocks and moved relatively regularly, therefore utilising different parts 

of the study area. Furthermore analysis of different measures of goose 

movements showed that variation between individuals was no greater than that 

within individuals (Chapter 4). This suggests that the movements of radio­

tracked individuals did not vary greatly and was a good representation of typical 

movements of the whole population of geese in the study area. This was 

supported by the fact that although only 1.1 % of fields in the study area were 

observed to have been used by radio-tagged geese, of these fields 30% were 

used by more than one radio-tagged individual at different times. 
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Analysing the data collected using individuals as sample units would have been too 

complex and would have required more data. It was considered that although not ideal, 

analysing goose movements by pooling observations over all individuals was valid. 

5.4.3 Effect o/topography 

Distance from the river appeared to be the main factor affecting where geese flew in the 

study area, and in the absence of this data, altitude was the next most significant 

variable. Although flying over flat areas (Le. along the valley floor) will use less 

energy that flying up and down hills, the range of altitudes considered in this analysis 

was small (5 - 268masI, mean = 91, s.d. = 50) and this effect is likely to be slight. 

Geese are more likely to fly along the valley bottoms because this is where the most 

fertile soil is, with more stubble fields and better quality grassland. In addition, 

following a river or valley will lead to more high quality farmland, whereas continued 

flying uphill would eventually result in encountering less suitable feeding areas such as 

rough grassland and moorland. Floodwaters along rivers also provide areas for loafing, 

drinking and bathing which may be an added attraction to the birds. 

In reality geese do not make decisions about their direction of flight from consideration 

of the altitude, or distance from the river, based on the area 100m in front of them 

alone. Geese are likely to respond to the landscape at a much greater scale, and be 

affected by other visual cues such as the position of other flocks of feeding geese. It is 

probable that geese have some prior knowledge of where good feeding areas are 

situated and fly directly to them. Although the mechanism used to constrain flight in 
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the simulation model may not be that used by the geese, it is likely that the resultant 

flight paths are realistic as the relationships in the model are based on the results of 

analysis of goose movements. 

5.4.4 Effect of disturbance 

The effect of disturbance on bird distributions has been well documented (see Hockin 

et al 1992). Human disturbance of geese has been shown to affect goose feeding 

distribution, with geese avoiding areas with disturbance from roads (Newton & 

Campbell 1973; Madsen 1984; Keller 1991), buildings (Chapter 3) and shooting 

(Newton & Campbell 1973; Gerdes & Reepmeyer 1983; Madsen 1984). Observations 

of causes of disturbance to radio-tagged geese in this study show that the majority is 

due to human activity (see Chapter 4). The distance from the nearest building is the 

variable that best predicted where geese were likely to land. This is due to disturbance 

caused by the increased human activity around buildings. 

5.4.5 Predicting goose distribution 

Logistic regression analysis of the presence / absence of Greylag geese has been carried 

out in the same study area (see Chapter 3). The same landscape characteristics were 

used as in this study and goose distribution data were collected by surveying sample 

fields in the winter of 1997-1998. This logistic regression model included distance from 

roost, maximum distance from buildings and altitude (distance from the river was not 

included in the model) as field characteristics affecting whether geese used fields. Two 

of these variables, maximum distance from the nearest building and altitude, were 
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included in the simulation model to constrain goose movements. Distance from the 

nearest roost was the third variable included in the logistic regression model and roost 

location is included in the simulation model, as this is where geese start the day. The 

agreement between the two analyses on the landscape characteristics affecting goose 

distribution in the study area gives confidence to the findings of the analysis of radio­

tracking data. In addition, the sensitivity analysis showed the model to be robust to 

potential inaccuracies in the form of these relationships. This suggests that the 

simulation model is likely to be a good representation of goose movements and 

therefore where geese feed in Stratheam and Strathallan. 

The ability to create transferable predictive models is important. For this study area the 

model including distance from the river as a variable is probably the most accurate. 

Although transferable to other goose feeding areas along major rivers, this model is not 

suitable for predicting goose distribution in all situations. Substituting altitude for 

distance from the river results in a more widely transferable model. As altitude was 

less significant than distance from the river at predicting where geese were likely to fly, 

however. the altitude-based model constrained the flight path of geese much less than 

the original model (see Figs 5 & 6). As a result the altitude-based model is likely to be 

less accurate at predicting the distribution of geese. 

5.4.6 Possible developments 

An obvious omission from this model is resource quality or quantity. especially as 

geese are flying out to fields for the sole purpose of feeding. Owing to the flexibility of 

142 



IBMM's it is possible to extent this model to include the effect of resource availability. 

This would require the creation of a probability surface with a measure of the resource 

available in each pixel. There are several ways such information could be included in 

this model: 

1. To integrate a probability surface based on resource quality / quantity with the 

'probability of landing' surface using Bayesian integration (see Pereira & Itami 

1991). This would result in the probability of a goose landing in a field being 

dependent on a combination of the extent of disturbance (maximum distance from 

the nearest building) and resource availability. 

2. To include a temporal dimension to the model with the time spent by the goose in 

the field dependent on resource availability. This would require the model to be 

extended to register the total time spent by geese in each pixel. 

3. To create a depletion model, in which the resources are depleted at each visit by a 

goose, reducing the amount of resource in the pixel and therefore the probability of 

subsequent geese landing. 

Although such resource modelling is possible, obtaining accurate data on the resources 

available is problematic. Different crops are used to differing extents, but more 

importantly the quality and quantity of the resource available cannot be ascertained 

from knowledge of the crop type alone. For example, the amount of stubble in fields 
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varies greatly (Newton & Campbell 1973) and the quality of grass is likely to affect 

goose preference as with Barnacle Geese (Branta /eocopsis) (Patton & Frame 1981, 

Percival 1993). In addition there are temporal changes in resource availability, for 

example, grass being depleted by livestock or increasing through growth, stubble being 

ploughed or depleted by animals and birds other than geese. Even if these data could 

be obtained and included in the model, it would only be applicable for the place and 

year in which the data were gathered. It was therefore considered more suitable to 

build a baseline transferable model that highlights areas which are likely to be used by 

geese, provided suitable resources are available. 

The simulation model is likely to be more transferable to other areas than correlative 

mapping models in which probability of occurrence at different distances from the roost 

is fixed. This is because whether a goose flies over a field and has the opportunity of 

landing in it is dependent on how suitable the landscape was nearer the roost. If there 

are plenty of suitable feeding areas close to the roost, the goose is Jess likely to have the 

need or opportunity to land in fields further away. The whole landscape and not just 

the characteristics of an individual field therefore influence predicted distribution in the 

simulation model (see Figure 5.15). 

The simulation model also provides the flexibility to vary numbers of geese at each 

roost, whereas the logistic regression models do not. This is particularly beneficial in 

this study area where a relatively large number of roosts were used but to very different 

extents. It is also possible to manipulate the number of geese leaving from each roost 
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to investigate the impact of changes in roost use (e.g. due to development or positive 

site management) on goose feeding distribution. 
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Figure 5.15 Diagram to show the effect of the surrounding landscape on the probabi li ty of a simulated 
goose landing in a particular pixel (pixel B). Grey boxes represent pixels. with the probabi lity of landing 
shown in white. The red arrow hows the path of a goose nying from A towards B with the probability 
of a goose reaching each pixel shown in red. The black numbers give the probability of the goose 
landing in each pixel. It can be seen that the chance of a goose landing in pixel B (which has a 
probability of landing of 0.1) is dependent on the probability of landing in previous fields in addition to 
that of the B pixels. 

In conclusion ffiMM's provide a flexible approach for predicting the distribution of 

populations, whether modelling the dispersal of individuals to predict meta-population 

dynamics (e.g. Boone & Hunter 1996) or foraging trips to predict feeding distribution 

(e.g. Jones 1977). Deriving the decision rules on which these models are based from 

empirical data obtained from the behaviour of individual animals (e.g. radio-tracking) 

gives the model realistic parameters and in tum realistic results. 
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5.5 SUl\fl\fARY 

Twenty-four Greylag geese were radio-tracked over the course of three winters, and a 

total of 227 movements recorded. Analysis of goose flight directions showed that they 

were more likely to fly close to the river, or at low altitudes. Analysis of where geese 

chose to land showed that they were more likely to land in fields far from bUildings. 

These rules were incorporated into an individual based movement model (lBMM) that 

simulated geese flying from the roost to feed in fields. Goose feeding distribution was 

predicted from the results of repeated runs of the model. The model was relatively 

insensitive to possible errors on the rules governing goose movements. 
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CHAPTER 6 - COMPARISON BET\VEEN THE MODELLING TECHNIQUES 

WITHIN STRA THEARN AND STRA THALLAN 

6.1 INTRODUCTION 

6.1.1 Background 

Wildlife-habitat models are used relatively frequently to predict animal distribution (see 

review in Chapter 3) and consequently a number of papers have compared different 

approaches to this type of modelling (e.g. Manel et at 2000). In contrast there are 

relatively few examples of distribution predictions being made from models of animal 

movements. No comparison of individual based movement models (lBMM) with more 

standard approaches (Le. wildlife-habitat models) could be found in the literature. In 

this study two modelling techniques have been used to predict the feeding distribution 

of Greylag geese in Stratheam and Strathallan (see Chapters 3 & 5). The purpose of 

this chapter is to compare the two approaches and assess whether the IBMM is better at 

predicting goose feeding distribution than a standard approach, logistic regression. 

The first modelling technique, logistic regression, was a deterministic approach derived 

from goose survey data. This logistic regression model predicted the probability of 

Greylag geese using a field from the field's landscape characteristics (distance from the 

nearest Greylag goose roost, distance from the nearest building and the altitude of the 

field) (see Chapter 3). The second modelling technique, an IBMM, simulated goose 

movements throughout the day. Simulated goose movements were influenced by the 

landscape, with the relationships between landscape characteristics and goose 

movements derived from radio-tracking data. In the model simulated geese fly from 
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the roost with their flight path constrained by altitude or distance from the river. The 

probability of the goose landing was dependent on how far the field over which they 

were flying is from the nearest bUilding. After the initial flight from the roost, 

simulated geese made subsequent movements between fields until the end of the day. 

These movements were constrained by the same variables as the initial flight from the 

roost, but with slightly differing rules (see Chapter 5). 

The two models take different approaches to predicting the distribution of geese and 

were based on different types of data, but both models used the same landscape 

characteristics to predict the feeding distribution of Greylag geese. In addition to 

comparing the consistency of results obtained from the two modelling techniques, it 

was therefore possible to compare the relationships between predicted goose use and 

the landscape characteristics incorporated in the model between modelling techniques. 

Two sets of data on the pattern of Greylag goose use in Strathearn and Strathallan were 

collected: the results of the survey work on which the logistic regression model was 

based (see Chapter 3); and the radio-tracking data, used in the creation of the IBMM 

(see Chapter 5). The ability oflogistic regression models to predict observed goose use 

was assessed using standard techniques such as ROC-plots (see Chapter 3). The results 

of the IBMMs, however, give a measure of the extent of goose use and the shape of the 

distribution of predicted results cannot be transformed into probabilities. 

Consequently, standard techniques such as ROC plots cannot be used to assess model 

fit. In Chapter 5 no measure was given of the ability of the IBMM to predict the 
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observed goose distribution. In this chapter the capability of the two modelling 

techniques to distinguish between fields where geese were present and fields where 

they were not is assessed using observations from both the radio-tracking and survey 

work. 

6.1.2 Aims 

This chapter aims to: 

(i) Assess agreement between the results of the two modelling techniques 

(ii) Examine the relationship between landscape variables and the predicted results 

to enable a comparison of the two modelling techniques 

(iii) Compare the results of the two modelling techniques with observed data to 

assess their accuracy at predicting the distribution of Greylag geese within 

Stratheam and Strathallan 

6.2 METHODOLOGY 

6.2.1 ftlodels used ill comparison 

The raw landscape data required to predict the distribution of Greylag geese, by either 

modelling technique, are the altitude and the location of buildings, fields and goose 

roosts. If applying the IBMM with flight constrained by distance from the river then 

the location of rivers is also required. These data can be extracted from as Land-Line 

data with the exception of the location of goose roosts. For the logistic regression 

model infonnation on the location of Greylag goose roosts was taken from a study on 

roost use in the area by Bell et aT (1997). Greylag goose roosts were included in the 
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model if more than 5% of observations for the river catchment were from that roost: a 

total of nine Greylag goose roosts were selected. Radio-tracking data from this project, 

however, recorded 16 roost sites being used by radio-tracked geese in the study area 

(see Chapters 4 & 5) while only four of these sites were included in the original logistic 

regression analysis. These 16 roost sites used by radio-tracked geese were included in 

the IBMM with the frequency of use by simulated geese corresponding to that 

observed. The difference in the roost data used in these two modelling techniques 

makes the following comparisons between the two techniques problematic: 

(i) Visual comparison of the predicted goose distributions between models as 

predicted goose use would not be clustered around the same roost sites. 

(ii) Comparisons of the distance geese are predicted to feed from the roost. 

When there are more roost sites geese are likely to feed closer to the nearest 

roost as there will be an increased chance of geese feeding near a roost where 

they did not spend the night. 

(iii) Comparisons of the altitude at which geese are predicted to feed. 

Landscape variables, in particular altitude, are spatially autocorrelated. 

Therefore as geese are predicted to feed close to roosts, the altitude of roost 

sites will affect the altitude at which geese are predicted to feed. 

(iv) Comparison of the fit of models to observed data. Assessing the fit of the 

models to the observed data will be dependent on the accuracy of the roost 

locations incorporated in addition to the modelling technique. 
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Therefore as well as considering the original logistic regression model and IBMMs 

(from Chapter 3 & Chapter 5 respectively) the roost sites in both models were adjusted 

to enable more direct comparisons between modelling techniques. Table 6.1 

summarises the different models created. For both modelling techniques new models 

were created using the alternative source of roost location data. In addition, as the 

regression model does not account for unequal use of different roost sites, the original 

IBMMs were run with equal numbers of geese using each roost. 

Comparison between models and between predicted and observed results was made at a 

field scale because fields are the unit in which goose use is predicted by both modelling 

techniques. In addition this is the scale at which accuracy would be required for goose 

management plans. 

Table 6.1. A description of the source data used in the original and adjusted models. LRM:;:: logistic 
. d 1 IBMM I d"d I b d d 1 regressIOn mo e. = n IVI ua ase movement mo e. 

Model Technique Original Roost data source Roosts used Topographic 
name model? Bell et al Radio- equally? variable 

(1997) tracking 
OLR LRM ./ ./ altitude 
LR2 LRM X ./ altitude 
OM-R IBMM ./ ./ X river 
OM-A IBMM ./ ./ X altitude 
EQM-R IBMM X ./ ./ river 
EQM-A IBMM X ./ ./ altitude 
M2-R IBMM X ./ ./ river 
M2-A IBMM X ./ ./ altitude 

6.2.2 Comparlsoll oft/Ie results of the models 

The agreement between the predicted results from the two logistic regression models 

and six IBMMs (three river model and three altitude models) was assessed by 

correlating the predicted goose use for each field. For simplicity, in this and all 
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subsequent analyses in this chapter, only the mean number of simulated geese landing 

per pixel was used as the measure of predicted goose use for the IBMMs. The mean 

number of geese landing per pixel was considered preferable to the total number of 

geese landing per field for this comparison because the latter is dependent on both field 

suitability and field size. Owing to the correlation between area and both maximum 

distance from the nearest building (r = 0.44, n = 3599, P < 0.001) and altitude (r = -

0.09, n = 3599, p < 0.001), comparison of the effects of landscape characteristics 

between models would be confounded when using the predicted total number of geese 

per field, but not when using the predicted mean number of geese per pixel (density). 

Correlation takes no account of spatial distribution and therefore gives no indication of 

the differences in the spatial patterns of the two models (Le. whether one model 

predicts higher goose use in certain areas I regions). The difference between models 

was therefore also displayed visually. For each model, fields were ranked by the 

predicted goose use, with tied ranks being given the mean rank value. The difference 

between the ranks of the two models was then mapped for each field. 

In addition to comparing the agreement between the model predictions, analysis of the 

relationships between predicted goose use and the individual landscape variables on 

which the models are based provides an insight into how the models differed. Bar 

charts were used to show the variation in the predicted extent of goose use at differing 

distances from the roost, distances from buildings and altitudes for each model (i.e. the 

significant predictor variables in the models), 
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6.2.3 Fit to observed data 

The data on field use by Greylag geese in Stratheam and Strathallan used to create the 

logistic regression model was based on surveying 422 fields throughout one winter (see 

Chapter 3). The IBMMs were based on data from radio-tracked geese. Radio-tracked 

geese were recorded in 92 fields. For this analysis an additional 92 fields not used by 

geese were selected by identifying fields that the goose would have landed in had it 

flown from the same origin for the same distance but in a random direction (see 

Chapter 5). Greylag geese were observed in 43 fields during the survey work and radio­

tracked geese used 25 of the survey fields. A chi-squared test was used to assess the 

agreement between the two sets of observed data within the survey area. 

The ability of the models to distinguish between fields where geese were observed and 

those that were not used was tested using a Mann-Whitney U test. A non-parametric 

test was required as the predicted results, particularly the IBMMs, were not normally 

distributed. The z-score of the Mann-Whitney U test was used as a measure of the 

ability of the models to predict the presence / absence of geese. 

6.3 RESULTS 

6.3.1 Comparison on model results 

Table 6.2 shows the R-values from the correlations comparing predicted results from 

different models for each field. All model results were highly significantly correlated 

(P < 0.001) (Table 6.2) although this might be expected with such a large sample size 

(n = 3599). The consistency between the results of the two logistic regression models 

153 



using different roosts (LR-O and LR-2) was moderately high (R-value = 0.833, P < 

0.001). IBMMs based on the same roost sites also gave consistent results (R-values 

ranged between 0.891 and 0.925, P < 0.001 for all). The agreements between the 

IBMMs based on different roost locations, however, were considerably lower (R-values 

ranged between 0.336 & 0.479, P < 0.001 for all) (see Table 6.2). This suggests that 

changing the roost locations had a greater effect on the results of the IBMM than the 

logistic regression model. As expected models using identical roost data (LR-O & M-2 

and LR-2 & M-EQ) had more consistent results than models using different roost 

locations or different frequencies of use. The consistency between modelling 

techniques using the same roost locations was actually greater that the consistency of 

the IBMMs using different roosts. 

Table 6.2. Comparison of the predicted results of the logistic regression models and IBMMs showing 
the r-value of the correlations P <0 001 and n = 3599 for all '. 
Models LR-O LR-2 M-OR M-OA M-EQR M-EQA M-2R M-2A 
LR-O 0.833 0.591 0.595 0.634 0.641 0.644 0.658 
LR-2 0.637 0.643 0.707 0.722 0.534 0.530 
M-OR " 0.925 0.894 0.849 0.381 0.339 
M-OA .' .. " 

... 
.... " ... ' 0.891 0.336 0.394 

M-EQR 0.912 0.479 0.401 
M-EQA ," 0.42() 0.432 
M-2R i '., ". 0.877 

The differences in the rank of the predicted results for selected pairs of models are 

shown in Figures 6.1 to 6.4. The variation between the results of models are not 

spatially independent and there are relatively large patches where one model out 

predicts another. These differences can be understood by looking at how predicted 

goose use varies with changing altitude and distance from the roost, factors that are 

clearly spatially autocorrelated. 
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Figure 6.1 The difference in rank between M-EQA and LR-2. Positive values indicate high predicted use by model M-EQA, while negative 
values indicate higher predicted use by model LR-2. Rank values range from 1 to 3196. 
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Figure 6.2 The difference in rank between M-2A and LR-O. Positive values indicate higher predicted use by model M-2A, while negative 
values indicate higher predicted use by model LR-O. Rank values range from 1 to 3196. 
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Figure 6.3 The difference in rank between LR-O and LR-2. Positive (red) values indicate higher predicted use by model LR-2, while 
negative (green) values indicate higher predicted use by model LR-O. Rank values range from 1 to 3196. 
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Figure 6.4 The difference in rank between M-2A and M-EQA. Positive values (red) indicate higher predicted use by model M-EQA, while 
negative values (green) indicate higher predicted use by model M-2A. Rank values range from 1 to 3196. 



6.3.2 Comparison of the relationships with predictor variables 

All mMMs showed a very similar pattern of predicted goose use at varying distances 

from the roost with high predicted use close to the roost, dropping off quickly with 

distance (Figure 6.5). The similarity of the different models is to be expected as the 

distance travelled is dependent on the probability of landing which does not alter 

between models and is not greatly spatially autocorrelated. There is a slight increase in 

the number of geese feeding in fields close to the roost in the M-2 models. This is 

because the M-2 models are based on fewer goose roosts and, therefore, with more 

geese leaving from each roost site, larger numbers of geese are predicted to land in 

fields nearby. 
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Figure 6_5 The mean number of geese landing per pixel in fields at different 
distances from the nearest roost, for all IBMMs. Error bars = s.e.(mean) . 
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The form of the relationship expected when considering geese just using the first field 

in the day should approximate to: 

P(D) = A*EXP(-AlD)/21tD 

Where A ~ D/Q, A is the mean distance at which geese land from the roost (in pixels), D 

is the distance from the roost (in pixels) and Q is the mean probability of landing per 

pixel. The term 21tD accounts for the effect of the increasing number of pixels available 

to land in at greater distances from the point of origin. This relationship will be further 

complicated by goose movements throughout the day but will maintain its basic form. 

The median distance at which geese were predicted to feed from the nearest roost in the 

IBMMs ranged from 1.2 to I.Skm. Models with goose flight constrained by rivers had 

a median flight distance consistently O.lkm less that the equivalent altitude model. 

This is likely to be because many roosts are situated along the river so simulated geese 

constrained to fly up and down the river are more likely to land nearer a roost that they 

had not used the previous night. The M-2 models (using the nine roosts from Bell et al 

(1997) as opposed to the 16 roosts from the radio-tracking data) also showed a 

consistent increase of 0.1 km in the median distance of geese from the roost compared 

with the equivalent M-EQ models. This is likely to be because in the M-2 models there 

was less chance of a goose landing close to a roost that it had not used the previous 

night. 

The expected form of the relationship between the distance from the roost and the 

predicted probability of goose use from the logistic regression models is a logarithmic 

curve, as Ln (distance from roost) was the term incorporate in the model. This appears 
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to be true for both logistic regression models (Figure 6.6). The relationship between 

predicted goose use and distance from the roost differs between modelling techniques. 

The logistic regression models predict high r use of fields fUl1her from the roost 

compared with the IBMMs. This effect can be seen when looking at the spatial pattern 

of the differences between the modelling techniques (Figures 6.1 and 6.2). Assuming 

that the predicted probability of goose use of a field was a measure of the extent of 

goose use, then the median distance from the roost of feeding geese from LR-O was 

2.3km. For LR-2, using the roosts from radio-tracking data, the predicted median 

distance of feeding geese from the roost was 1.7km, much closer to the value predicted 

by the IBMMs. 
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Figure 6.6 The mean predicted probability of field use at different distances 
from the nearest roost for all logistic regression models. Error bars = s.e. 
(mean). 

Figure 6.7 shows the relationship between altitude and the predicted extent of goose use 

for the six IBMMs. There is relatively little difference between M-O and M-EQ models 
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and between the altitude and rivet models, all showing greater predicted goose use of 

fields at lower altitudes. The M-2 models, however, result in a very different pattern 

reflecting the positions of roosts. High goose use will be predicted close to roost sites 

and therefore the altitude of roost sites will affect the altitude at which geese feed. 
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Figure 6.7 The mean number of geese landing per pixel in fields at different 
altitudes, for all IBMMs. Error bars = s.e. (mean). 

Altitude was not transformed in the logistic regression model and therefore a linear 

relationship between altitude and the predicted probability of fields being used would 

be expected. Variation from the linear trend is likely to be a result of the locations of 

roosts. LR-2, based on roost data from radio-tracked geese, shows a weaker relationship 

between altitude and predicted goose use than LR-O (Figure 6.8). This result is reflected 

in the map showing the difference in predicted results between the two logistic 

regression models (Figure 6.3), with LR-2 showing higher goose use at higher altitudes, 

compared with LR-0. This trend is the reverse of that found in the IBMM and is not a 
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reflection of the altitude of roosts, as in general the roost locations used in LR-O were at 

greater altitudes that those used in LR-2. The difference between the two logistic 

regression models, caused by variation in the altitude co-efficient, is likely to be due to 

the relatively small sample ize (n = 84). 
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Figure 6.8 The mean predicted probability of fields use at different altitudes 
for all logistic regres ion models. Error bars = s.e.(mean). 

All six mMMs showed a imilar linear relationship between maximum distance to the 

nearest building and the predicted extent of goose (Figure 6.9). This was expected as 

the probability of landing in the mMM is a linear function of the distance from 

buildings. The M-2 models showed a sl ightly stronger relationship with distance from 

buildings than the other mMMs with fields closer to buildings being less likely to be 

used. This is probably the re ult of more simulated geese roosting in Strathallan where 

there are relatively few buildings very close to the roost complex (Carsebreck Lochs) 
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where geese are predicted to feed. The shift in predicted goose use towards Strathallan 

in the M-2 models when compared to the M-O and M-EQ models is shown in Figure 6.4. 

0·200 200·300 300·400 400·500 500·600 600+ 

Maximum distance from nearest building (m) 

Figure 6.9 The mean number of geese landing per pixel in fields at different 
distances from the ncarest building. for all IBMMs. Error bars = s.c. (mean). 

There is a linear relationship between maxImum distance from buildings and the 

predicted probability of goose use from the logistic regression models (Figure 6.10). 

Again, this was expected as maximum distance from buildings was not transformed in 

the logistic regression models. The close fit of the predicted results to the expected 

linear trend is a result of the distance from buildings was not greatly spatially 

autocorrelated. The relationship between goose use and distance from buildings did not 

appear to differ greatly between the two models although goose use of fields very close 

to buildings was lower in the IBMMs. 
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Figure 6.10 The mean predicted probability of field use at different distances 
from the nearest building for both logistic regression models. Error bars = 
s.e.(mean). 

6.3.3 Comparison of models to observed data 

The two data sets of observed goose distribution showed a good degree of agreement, 

especially considering the data were collected in different years and crop types could 

have changed . Radio-tracked geese used 32.6% of survey fields where flocks of 

Greylag were observed, while only 2.9% of survey fields where flocks were not 

observed were used by radio-tracked geese. The Chi-squared value for 

presence/absence of radio-tracked geese and observed flocks in survey fields was 60.94 

(d.f. = 1, P < 0.001). 

Table 6.3 shows the results of the Mann-Whitney U test which tested the difference in 

predicted results between fields where geese were observed and fields where they were 

not. The logistic regression models showed a better fit to the survey data while the 
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IBMMs showed a better fit with the radio-tracking data. These results are to be 

expected as they show the fit of the predicted results with the data on which the models 

were built. The M-2 models proved an exception, fitting both sets of observed data 

poorly, most notably the survey data, probably as these models were based on 

incomplete roost location data. When considering the fit of the model predictions with 

the independently observed data sets, neither modelling technique appeared to 

outperform the other. LR-2 fitted the radio tracking better than LR-O, probably because 

the roost locations used in LR-2 were correct for radio-tracked geese. The M-O and M-EQ 

models appeared to fit the survey data equally well. They did not reflect the results of 

the fit with the radio-tracking data where river-based models showed a slightly closer 

fit than the altitude models. In general these results suggest that models using roost 

data derived from Bell et al (1997) (LR-O, M-2R and M-2A) predict goose distribution 

less well than models using roost data from radio-tracked geese. 

Table 6.3. z-scores of Mann-Whitney U test. Shaded cells show the fit of the model with data on which 
the model was based. White cells show the fit of the model with an independent data set. "''''''' p < 0.00 I, 
"'''' 001'" 005 > 005 p < , p < , ns= p 
Model Survey data Radio-tracking data 

(n = 422) (n = ,184) 
Z -score Sil!. Z-score Sig. 

LR-O 5.427 <"0.001 ' 3.948 < 0.001 
LR-2 5.178 < 0.'001 4.932 < 0.001 
M-OR 4.538 < 0.001 I :·~' ",,,,5.645 ." J <: 0.001 ' .. 

M-OA 4.698 < 0.001 I ~ ",s.169 , " < 0'.00 1 
M-EQR 4.533 < 0.001 I '~ ff:t';'SA13 "-' ;, ' < 0,001' 
M-EQA 4.787 < 0.001 . ", ":~5'.245 ' " <: 0.001 
M-2R 1.649 0.099 A:"520' ;~ . ,', ~ , , < 0.01)] 
M-2A 2.023 0.043 ;':3.333 0.001 , 
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6.4 DISCUSSION 

Comparison of the two modelling techniques showed that they gave relatively similar 

results when the same roost sites were used. Differences in the relationship between 

predictor variables and predicted goose use are likely to be a consequence of the data 

used for analysis as opposed to the model1ing technique employed. The IBMM did not 

appear to out-perform the logistic regression model in predicting the feeding 

distribution of Greylag geese. The results of this chapter also emphasise the 

considerable effect of the roost locations used in the model on the resultant predicted 

distribution and highlights the need for accurate roost data. 

In the IBMM predicted goose use is strongly centred around the roost sites of the geese. 

As the probability of landing was derived from observed goose movements, the 

distances at which IBMMs predict geese to feed from the roost are probably a relatively 

accurate representation of the real distances Greylag geese fly in Stratheam and 

Strathallan. . A slight underestimation of the distance geese feed from the roost may 

have occurred because analysis of goose movements assumed geese flew in a straight 

line between their point of departure and landing location and the probabilities of 

landing were calculated accordingly. However, due to the algorithm used, simulated 

geese make some turns in their flight path. This results in both observed and simulated 

goose movements being of the same length and therefore the straight-line distance 

travelled by the simulated goose being somewhat shorter. As geese are predicted to 

feed close to the roosts in the IBMM, changes in roost location produce very different 

predicted goose use distributions. 
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In the logistic regression model the relationship between distance from the roost and 

predicted use by geese was not as strong as for the IBMM. As a result, the two logistic 

regression models using different roosts were much more consistent than the IBMM 

when the roost locations were altered. As we know that the distances travelled in the 

IBMMs are approximately correct, the median distance of feeding geese of 2.4 km 

from the roost obtained from the ordinary logistic regression model appears to be too 

great. This suggests that the roost data used to build the model were imperfect. The 

decrease of the median predicted distance of feeding geese from the roost to 1.7 km in 

LR-2, using roosts used by radio-tracked geese in the analysis, cannot be explained by 

the increased number of roosts in the model. The same change in roosts used caused 

only a 0.1 km decrease in median distance from the roost in the IBMM. The decrease in 

median distance between LR-O and LR-2 to one much closer to that obtained in the 

IBMMs suggests that the second model, based on roost locations of radio-tracked 

geese, was a more accurate reflection of the roosts used by the geese observed in the 

goose survey. This suggestion is supported by the results of the fit of models with 

observed data. 

The models based on the radio-tracked goose roosts (LR-2, M-OA, M-OR, M-EQA and 

M-EQR) all showed a much better fit to the radio-tracking data than models based on 

the roosts locations derived from Bell et at (1997) (LR-O, M-2A and M-2R). This is 

because the roost data from radio-tracked geese gave infonnation of the roost locations 

used during the period that data were being collected. Therefore the roost location data 
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were obviously more accurate than the roost locations in the literature (Bell et at 1997) 

for the radio-tracked geese although not necessarily for the whole population of geese 

in Stratheam and Strathallan. There was also, however, a considerable reduction of the 

fit of the M-2 models to the survey data compared with the M-O and M-EQ models. 

This suggests that the roost use recorded by radio-tracked geese was closer to the real 

roost use by geese observed in the survey than the roost data in literature (Bell et at 

1997). These analyses highlights the need of both modelling techniques for accurate 

infonnation about the locations of goose roosts, most especially the IBMMs. They also 

highlight the difficulty in obtaining such infonnation. While major Greylag goose 

roosts are known throughout Britain, minor roosts may go unrecorded. Bell et al 

(1997) carried out a detailed investigation of the use of Greylag goose roost sites in 

Stratheam and Strathallan between 1987/88 and 1993/94. Radio-tracking, however, 

has highlighted roosts where no geese were observed by Bell et at (1997) while some 

roosts observed to be used by these authors appeared to have been abandoned, or used 

very little. Whether this is the result of a shift in roosting locations over time or 

because not all roosts were located in the studies, these results show the difficulty in 

obtaining adequate goose roost infonnation. 

The data collected from the radio-tracked geese was a better data set on which to test 

the accuracy of the model. Ninety-two fields were observed to be used by Greylag 

geese compared with 43 in the survey data. In addition the fields not used by radio­

tracked geese were the same distance from the goose's previous location as the field to 

which the observed goose moved. Assessing the fit of model results to the radio-
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tracking data is a more rigorous test for the predictive power of the models than the 

survey data, in which fields where goose absence was recorded had no such criteria. 

Furthermore the results of the IBMMs were not as closely related to the field use by 

radio-tracked geese as that between the logistic regression models and the survey data. 

Therefore the radio-tracking data is likely to be better for comparison between 

modelling techniques. 

The results of the fit of model predictions with observed data suggest that the 

simulation modelling technique is no better at predicting the distribution of Greylag 

geese in Stratheam and Strathallan than the logistic regression modelling technique. 

The logistic regression model was built on data collected in one season with only 43 

fields used by geese and an equal number that were not. The data collection for the 

IBMM was much more time consuming, and although more data were collected, this 

does not appear to have improved the accuracy of the resulting models. Advantages of 

the IBMM are that the number of geese roosting at different sites can be altered, in 

contrast to the logistic regression model where goose use of roosts is considered 

uniform. This advantage may be slight. Altering the frequency of roost use appears to 

have very little effect on the fit of the model to observed data, even though goose use of 

roosts varied by up to 30 fold. 

Comparison of the various IBMMs showed that M-OR and M-EQR models, with flight 

constrained by rivers. proved the closest fit to the radio-tracking data. The analysis of 

factors constraining goose flight direction found river to be the only consistently 
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significant variable, with altitude only incorporated in the model to constrain goose 

flight when distance from the river was removed from the analysis (see Chapter 5). 

This suggests that the river model was a more accurate representation of how the radio­

tracked geese moved. It does not, however, necessarily mean that it is a better model, 

as the river-based models did not give a better fit to the survey data than the altitude­

based models. 

Comparison of predicted and observed data was on a field basis and was not spatially 

explicit. Correctly predicted species presence or absence will be a conservative measure 

of model performance as no account is taken of the spatial element (Le. predicting 

goose presence close to where geese were observed) (Austin et at 1996, Fielding & 

Bell 1997). In Chapter 3 the inclusion of autologistic terms, predicted and observed 

goose use in neighbouring fields, into the logistic regression models did not result in a 

significant improvement in the modeL These results suggest that geese are no more 

likely to feed in fields close to others were goose presence is predicted. Therefore 

consideration of the spatial element when comparing observed and predicted goose 

distributions is unlikely to have a profound effect on the results. 

6.5 SUl\fMARY 

Both modelling techniques (logistic regression models and IBMMs) show very similar 

and clear relationships between distance from buildings and predicted goose use, and 

similar although less clear relationships between altitude and predicted goose use. 

Differences between the models in the distance geese were predicted to feed from the 
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roost were most likely the result of incomplete knowledge of the goose roosts for the 

logistic regression models rather than an intrinsic difference between the modelling 

techniques. The two techniques have both resulted in models that appear to be based 

on real effects of the landscape within Stratheam and Strathal1an on the feeding 

distribution of Greylag geese. Neither modelling technique appears to out-perform the 

other in its ability to predict goose distribution. Both models can be applied to other 

areas used by wintering Greylag geese relatively easily and require the same data to do 

so. It is apparent, however, that good knowledge of the location of goose roosts is 

essential for the models to produce realistic results. 



CHAPTER 7 - PREDICTING GOOSE DISTRIBUTION FOR A DIFFERENT 

AREA: LOCH LEVEN 

7.1 INTRODUCTION 

7.1.1 BackgroUlld 

Two models were built to predict the distribution of goose feeding areas in Strathearn 

and Strathallan, Perthshire. First a correlative mapping technique, logistic regression, 

was used to predict the probability of geese using a field based on the field's landscape 

characteristics (Chapter 3). The goose distribution data on which this model was based 

were obtained by surveying 755 fields regularly for the presence of geese throughout 

the winter. Models were built for both Greylag and Pink-footed geese. The second 

model was an individual based behaviour model (IBBM), in which the movements of 

individual geese was simulated as they flew from the roost to fields, and from field to 

field throughout the day (Chapter 5). This model was built using movement decision 

rules based on data from radio-tracked Greylag geese and was used to predict the 

feeding distribution of Greylag geese only. 

Large-scale ecology such as in this study exceeds the spatial scate of classical 

ecological experiments and therefore alternative methods to experimental 

manipulations are required to assess the accuracy of results (Ormerod & Watkinson 

2000). The logistic regression models were tested on independent data in Chapter 3 by 

jack-knifing. In addition the results of both logistic regression models and 1I3MMs 

were tested on independent goose distribution data from the same area, Strathearn and 
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Strathallan (see Chapter 6). Habitat preference of species, however, may differ 

between regions (Fielding & Haworth 1995). Testing the ability of a model to predict 

species distribution in another area is therefore a more robust test of a model's 

performance (Verbyla & Litvaitis 1989). The performance of the two modelling 

techniques was therefore tested on another area. 

It was necessary to test the models on an area where information about the feeding 

distribution of both Pink-footed and Greylag geese was available. There have been a 

number of studies on the feeding distribution of wintering Pink-footed geese in 

Scotland (Newton & Campbell 1973; Newton et al 1973; Bell 1988; Patterson et al 

1989; Bell & Newton 1995; Hearn & Mitchell 1995; Hearn et aI1996). However, the 

only accurate data on the feeding distribution of Greylag geese, at a field scale, were 

collected at Loch Leven National Nature Reserve, Fife during the winters of 1968~69 

and 1969-70 (Newton & Campbell 1973). The feeding distribution around Loch Leven 

was again surveyed during the winters of 1994-95 (Hearn & Mitchell 1995) and 1995-

96 (Hearn et al 1996). Data for the distribution of Greylag geese were not sufficient in 

these later studies as the numbers roosting at Loch Leven have declined dramatically 

since the 1960's, with the November counts falling from 2500-5000 in the mid 1970's 

to fewer than 300 in the early 1990's (Boyd et al 1994), Furthermore, a large 

proportion of the wintering Greylag geese at Loch Leven was of feral origin by the time 

of the second survey (Hearn & Mitchell 1995). Therefore data from the earlier surveys 

(Newton & Campbell 1973) were used to test the predictive powers of the two 

modelling techniques. 

174 



7.1.2 Aims 

The aims of this chapter are: 

(i) To use both the logistic regression model and IBMM to predict the feeding 

distribution of geese around Loch Leven NNR 

(ii) To assess the goodness of fit of predicted distributions with the observed goose 

feeding distributions in the late 1960s (Newton & Campbell 1973) 

(iii) To draw conclusions about the ability of the two modelling techniques to 

predict goose distributions in different geographical areas 

7.1.3 Study area 

The study area consisted of farmland surrounding Loch Leven NNR, an area covering 

476km20feast central Scotland (see Figure 7.1). The area lies within NO 0213 and NT 

3096, the limits of the study area being chosen to include all goose feeding areas 

mapped in Newton & Campbell's study (1973). Approximately fifty-three percent of 

the area is classified as arable, 14.1% heather and grass moorland (upland areas 

corresponding to mountain and moorland classification in OS LandLine), 8.9% as 

wooded, 9.3% as improved pasture and 15.0% urban areas, roads, and other minor land 

uses (derived from Macaulay Land Cover of Scotland 1988). Loch Leven is the only 

roost in the study area; it covers some 14km2 and is the largest eutrophic lake in Britain 

(Boyd et aI1994). The loch is renowned for its wildfowl and was one of the first sites 

designated by the United Kingdom under the Ramsar Convention (Owen et aI1986). 

During the winters of 1968/69 and 1969170 the mean weekly counts of Pink-footed 

geese were 3418 and 3708 respectively while the mean numbers of Greylag geese were 
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1638 and 906. At the time of the 1968-70 survey there were not significant numbers of 

feral Greylag geese using the loch (A. Lauder, pers. comm.). 

7.2 l\fETIIODOLOGY 

ArcInfo GIS ver. 7.2.1 (ESRI, Redlands, California, USA) was used to create a polygon 

coverage of the 3,445 fields in the study area from digitized OS LandLine data with 

each field individually labelled. As for Strathearn and Strathallan, only fields within the 

limits of the 'arable' land class in the Macaulay Land Cover for Scotland 1998 (LCS 

88) were included. This included arable fields and fields of improved grassland. 

7.2.1 Logistic regression model 

To apply the correlative mapping model to Loch Leven for both species, ArcView GIS 

version 3.1 (ESRI, Redlands, California, USA) was used to derive the following 

landscape characteristics for each field from OS LandLine and OS Panorama data: 

For the Greylag goose model: 

Altitude of field 

Maximum distance from the nearest building 

Distance of field from nearest Greylag goose roost 

For the Pink-footed goose model: 

Slope of field 

Field area 

Maximum distance from the nearest building 

Distance offield from nearest Pink-footed goose roost 
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Only certain areas of Loch Leven are used by roosting geese. A map of the roost areas 

on the loch for both species by Newton and Campbell (1973) was digitised to enable 

the calculation of distance from the roost. The logistic regression equation was applied 

to all fields in the Loch Leven study area and the probability of geese landing in each 

field was calculated. 

7.2.2 IBllll 

The IBMM including distance to the river (Chapter 5) could not be applied to this study 

area. This was because there was no major river in the study area that would equate to 

the River Earn or Allan Water in Stratheam and Strathallan. Therefore the IBMM 

using altitude to constrain goose flight was applied to the Loch Leven study area. 

To apply the individual based movement model to Loch Leven the study area was 

converted to a grid of 256 by 170 100m square pixels. For each pixel data on the 

following was required: 

Pixel Property Effect on model 

Altitude of pixel Constrain flight direction 
Max. distance from building of underlying field Constrain probability of landing 

Whether Greylag roost site Starting position 

The altitude of each pixel was derived in ArcView from OS contour data. The logistic 

regression equations for both roost and non-roost movements, derived from Stratheam 

and StrathaIlan radio-tracking data were applied to the altitude data. This gave the 

probability of geese flying over each pixel which was rounded to one decimal place to 

create probability bands (see Chapter 5) 
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For all pixels the maximum distance from the nearest building of the field over which 

the pixel lies was derived. There were no data for pixels that did not lie over a field. 

The regression equations for the probability of a goose landing, derived from the 

Stratheam and Strathallan radio-tracking data for both roost and non-roost movements, 

were applied to each pixel. These were dependent on maximum distance from the 

nearest building and gave the probability of each pixel being landed in when flown 

over, for both roost and non-roost movements. 

The location of pixels overlying Greylag goose roosts were derived from the roost map 

in Newton & Campbell (1973). When the IBMM was applied to Stratheam and 

StrathaIIan, the chance of geese leaving a roost was taken from the proportion of radio­

tracked geese using the roost. There were no data available on the proportion of 

Greylag geese using each roosting area on the loch for the time when the test data were 

collected. As a result in the Loch Leven model simulated goose movements from the 

roost had an equal chance of being from any roost pixel. This was unlikely to have a 

great impact on the results of the model, as all roost sites were located on Loch Leven. 

The model was run for 50,000 goose days. As with the Stratheam and Strathallan 

models, Arc-View was used to summarise for each field the total number of simulated 

geese using the field and the mean number of geese landing per pixel ( density). 
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7.2.3 Calculating the distance at which geese were predicted to feed from the roost 

The predicted extent of field use (IBMM) or probability of use (logistic regression 

models) was averaged for different distance categories from the roost. The median 

distance geese were predicted to feed from the roost was calculated. For the logistic 

regression model this assumed that the predicted probability of goose use of a field was 

a measure of the extent of goose use. 

7.2.4 Comparison of results from the two models 

The results of the two modelling techniques (for Greylag geese only) were compared 

by plotting the predicted probability of Greylag geese using each field against the total 

number of geese simulated to have landed in the field and the mean number of geese 

landing per pixel. The consistency of results between the two models was assessed 

both by Pearson's correlation and visually. 

7.2.5 Comparison with observed goose distribution 

Goose distribution data were obtained from a study carried out during the winters of 

1968-69 and 1969~70 (Newton & Campbell 1973). For 324 fields situated around the 

loch (the core goose feeding area - see Figure 7.1) surveys were carried out on 301 

days over the two winters. On some days more than one survey was performed. In 

such cases the largest flock in each field only was included. This was because if a 

goose lands in· a field and remains in it all day, it has still only chosen the field once. 

For these fields the raw data were kindly supplied from the author (Prof. Ian Newton, 
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CEH, Monks Wood) and the total number of each species over the two winters was 

calculated for each field. 

The method of assessing the fit of models with observed data differs from that used in 

Chapter 6, where observed data was in presence I absence form. In the core fields at 

Loch Leven goose use was very high and there were few fields where geese were not 

observed, therefore predicted results were compared with the extent of use of these core 

fields. The accuracy of the two modelling techniques at predicting goose distribution 

for these 324 core fields surrounding the loch was assessed by the following methods. 

The predicted probabilities of field use from the logistic regression models for both 

Greylag and Pink-footed geese were plotted against the number of flocks observed in 

the field over the two winters. Linear regression was performed to assess the ability of 

the models to predict the observed extent of goose use of fields. In addition the results 

were summarised as bar charts with the mean number of flocks observed in groups of 

fields of differing predicted probabilities of goose use. These methods compare the 

results for individual fields but do not take into account the spatial pattern of goose use, 

therefore visual comparison of the observed and predicted results was also necessary. 

The same method of comparison was used to assess the results of the IBMM with both 

the mean number of geese landing per pixel and total number of geese compared with 

the number of Greylag goose flocks observed. 

Outside the core area of 324 fields, goose feeding distribution was mapped but no 

accurate counts were taken during the 1968-70 survey. The raw data for goose use of 
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the area outside the 324 core fields were not available; therefore the only infOlmation 

on goose distribution in these fields was from the map in Newton and Campbell (1973). 

The map in this paper showing the feeding distribution of Pink-footed and Greylag 

geese at Loch Leven, thought to include all areas where geese fed (1. Newton, pers. 

comm.), was digitized using ArcView and warped to fit the OS based maps using the 

ImageWarp extension ver 2.0. This enabled a visual comparison of the expected goose 

distribution from the two models with that observed. 

7.3 RESULTS 

7.3.1 Results olthe logistic regression modelslor the whole study area 

Figures 7.2 and 7.3 show the predicted feeding distribution around Loch Leven for 

Pink-footed and Greylag geese respectively from the logistic regression model, with the 

feeding areas for each species observed during the 1968-70 survey superimposed. For 

Pink-footed geese the predicted feeding distribution close to the roost fits observed data 

well. The extent of dispersal of the geese over the study area appeared consistent with 

observed data, although not all patches of high predicted distribution fitted those 

observed. The prediction of Pink-footed goose presence in fields further from the 

roost, especially to the north east of Loch Leven, appeared to be greater than observed. 

The observed feeding area to the south west of the study area should not be compared 

as a nearby town has expanded to cover some of the fields where geese fed during the 

1968-70 survey and fields still present are likely be closer to buildings and subject to 

increased disturbance. As with Pink-footed geese, the predicted distribution of Greylag 

geese around Loch Leven roughly fits that observed. during 1968·70, but patches of 
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Figure 7.2 The predicted distribution of Pink-footed geese from the logistic regression model, with the observed distribution of feeding Pink-footed geese overlaid. 
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Figure 7.3 The predicted distribution of Greylag geese from the logistic regression model, with the observed distribution of feeding Greylag geese overlaid. 



high predicted goose use further from the roost do not always fit the observed 

distribution, although the pattern of dispersal is similar. The model results reflect the 

observed distribution in that Greylag geese concentrate the majority of their feeding 

closer to the roost than do Pink-footed geese. 

7.3.2 Results oJtlle IB.I.'1fAlsJor tile wllole area 

Figures 7.4 & 7.5 show the predicted feeding distribution of Greylag geese from the 

IBMM, showing the total number of simulated geese using each field and the mean 

number of geese landing per pixel (density) respectively. There is no difference in 

pattern between the two measures of goose use. 

Mean no. of geese per pixel = Total no. geese in field / No. pixels in field 

therefore if field area (~ number of pixels in field) is not spatially autocorrelated we 

would not expected the pattern of predicted goose use to differ between these two 

measures of predicted goose use, although individual values will vary. As with the 

logistic regression model the IBMM predicts the rough feeding distribution close to the 

loch, but the exact location of more distant feeding patches is not predicted. Figure 7.6 

show the 'probability of flying' surface for both roost and non-roost movements on 

which the model was based. Close to the roost the land is relatively flat and there is 

little constraint on the direction of goose flight, however further from the roost flight is 

constrained to the north, east and south by hills. 

185 



1 0 1 2 3 Ki lometers 

• 1"""- _ 

_ Loch Leven 
o 

o Observed distribution C 
Total no. simulated geese I field 

1 - 10 
10 - 50 
50 - 200 
200 -1500 A 

~ CJ 

(.J 

Figur e 7.4 The predicted extent of Greylag goose use of each field from the simulation model, with the observed distribution of feeding Greylag geese overlaid. 
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Figure 7.5 The predicted density of Greylag goose use of each field from the simulation model, with the observed distribution of feeding Greylag geese overlaid. 
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Figure 7.6 The boundaries of the probability bands constraining flight for both roost (blue) and non-roost (red) movements (i.e. flight is constrained by altitude 
only when considering movements at these boundaries) 



7.3.3 Distance geese are predicted to feed from tlte roost 

Figures 7.7 show the mean predicted probabi lity of fields at different distances from the 

roost being used by Pink-footed and Greylag geese respectively. If the probability of 

goose use is considered a measure of the predicted extent of goose use, the median 

distance geese are predicted to feed from the roost was 4.4km for Pink-footed geese 

(with 17.6% of geese predicted to feed in core fields) and 3.7km for Greylag geese 

(with 29% predicted to feed in the core fields). 
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Figure 7.7 The mean predicted probability of a fie ld being used by Pink­
footed and Greylag geese from the logistic regression models at different 
distances from the roost. Error bars = s.e.{mean). 

Figure 7.8 shows the mean number of simulated Greylag geese to have landed at 

different distances from the roost. By comparison with Figure 7.7, it can be seen that 

far fewer geese are predicted to land in the fields further from the roost than with the 

logistic regression model, as in Stratheam and Strathallan (see Chapter 6). The median 
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distance geese were predicted to feed from the roost was just 1.7km with 53.8% of 

geese predicted to land in the core area. 
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Figure 7.8 A bar chart showing the mean number of Greylag geese 
predicted to land per pixel from the IBMM for fie lds at different distances 
from the roost. Error bars = s.e.(mean). 

7.3.4 Agreemellt betweell results o/modellillg techniques 

The total number of times geese landed in the fie ld, from the IBMM showed reasonable 

agreement with the results of the logistic regression model (R = 0.677, p < 0.001 for all 

3,445 fields, R = 0.682, p < 0.001 for core fie lds) (Figure 7.9). The mean number of 

times pixels were landed in per field from the IBMM showed a better agreement, 

however, with an R-value of 0.746 (p < 0.001) for all 3,445 fields and an R-value of 

0.825 (p < 0.001) for the core fields (Figure 7.10). The mean number of times a pixel 

is landed in for the IBMM is more consistent with the results from the logistic 

regression model than the total number of geese landed per field. This is because there 

is no measure of field area included in the logistic regression model. 

190 



'C 
] 
--Q) 
en 
Q) 
Q) 
Cl 

"iii 
g 
!1 
"S en 
Q) ..... 
c: 
0 
. ~ 
::J 
E 

U5 

1600 

1400 

1200 

1000 

800 

600 

400 

200 

o 
0.0 0.1 

• 

• • 

• • . · .. 
• . • • • • · . • .... . . t . . · . • • . • \ .. • . . • . ' . 

• • • , •• .. ' I' · .. · • • • • . · - • • • • 
"- •• · ..... • 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Predicted probability from logistic regression model 

Figure 7.9 The relation hip between the mean number of geese landing per 
pixel for the IBMM and the predicted probability of goose use from the logistic 
regression model for each field (R-value = 0.667, n = 3445, P < 0.001). Fields 
from the core area are highlighted in red (R-value = 0.682, n = 324, P < 0.00 I). 
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Figure 7.10 The relationship between the total number of geese landing per 
field for the IBMM and the predicted probability of goo e u e from the logistic 
regression model for each field (R-value = 0.746, n = 3445, p < 0.00 I). Fields 
from the core area are highlighted in red (R-value = 0.825, n = 324, p < 0.00 I). 
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In addition there is better agreement between the results of the two modelling 

techniques for the core fields than for fields further from the roost. There was greater 

agreement between the results of the two models for the Loch Leven study area than 

there was for Strathearn and Strathallan. Comparison between the results of the logistic 

regression model and the mean pixel value and total field value from the IBMM at 

Strathearn and StrathalIan, using the same roost data, gave an R-value of 0.681 (n = 

3445, p < 0.001) and 0.480 (n = 3445, p < 0.001) respectively (see Chapter 6). The 

greater agreement between the two models at Loch Leven probably arises because there 

is effectively only one goose roost as opposed to the nine in Strathearn and StrathalIan, 

resulting in a simpler overall goose feeding pattern. 

7.3.5 Results of tile logistic regression models for core fields 

For Pink-footed geese, comparison of the logistic regression results with the number of 

flocks of geese observed during the 1968-70 survey can be see in Figure 7.11 (R2 = 

14.8%,n = 324, P < 0.001). Although the extent of goose use in all fields was not 

predicted exactly, very few fields with a low predicted probability of goose use were 

used regularly. Figure 7.12 shows the average number of flocks observed in fields of 

differing predicted probability and shows a strong relationship between the predicted 

probability of goose use and numbers of flocks of Pink-footed geese observed. Visual 

comparison confi11l1s this (see Figures 7.13 & 7.14) with a good fit for areas of low 

predicted goose use but areas of high predicted goose use not necessarily holding large 

numbers of goose flocks. 
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Figure 7.11 The relationship between the predicted probability of Pink­
footed goose presence from the logistic regression model and the number of 
flocks observed for each of the core fields (R2 -value = 0.148, n == 324, P < 
0.001). 
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Figure 7.12 The average number of flocks observed in fields in different 
predicted probability bands for Pink-footed goose presence from the logistic 
regression model . Data for core fields only. Error bars = s.e.(mean). 

193 



_ Loch Leven 

Predicted probabifity of use of field 
0-0.25 
0.25 -0.5 AN 
0.5 - 0.75 
0.75 -1 

0.5 0 0.5 1 Kilometers 

Figure 7.13 The predicted distribution of Pink-footed geese in the core fields from the logistic 

regression model. 
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Figure 7.14 The number of flocks of Pink-footed geese observed in the core fields. 
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Figure 7.15 The relationship between the predicted probability of Greylag 
goose presence from the logistic regression model and the number of flocks 
observed for each field in the core area (R2-value = 0.035,n = 324, p = 0.001). 
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Figure 7.16 The average number of flocks of Greylag geese observed in 
fields in different predicted probability bands for Greylag goose presence 
from the logistic regression model. Data from core fields only. Error bars 
= s.e.(mean). 
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Figure 7.17 The predicted distribution of Greylag geese in the core fields from the logistic 
regression model. 
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Figure 7.18 The number of flocks of Greylag geese observed in the core fields. 
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For Greylag geese the results of the logistic regression model do not fit the observed 

data as well, reflected in the R2-value of 3.5% (n = 324, p < 0.001) (Figure 7.15). 

However, when the number of flocks was averaged for differing predicted probabilities 

of goose use, it can be seen that fields with lower predicted probabilities were likely to 

hold fewer flocks of geese (Figure 7.16). Visual comparison confinns that there are 

clusters of fields with high predicted probabilities that held few flocks and clusters with 

low predicted probabilities which held large numbers of Greylag goose flocks (Figures 

7.17 & 7.18). 

7.3.6 Results of the IRAIAI for core fields 

The results for the core fields from the IBMM for Greylag geese are shown in Figures 

7.19 & 7.20. The predicted results do not fit the observed data very closely. 

Regression analysis gives an R2.vaJue of 15.7% (n = 324, p < 0.001) with goose use 

measured as total number of geese per field and an R2-value of 9.9% (n = 324, p < 

0.001) when goose use was measured as the mean number of geese per pixel. When 

the observed data for fields was averaged for different predicted probabilities, the trend 

for a greater number of flocks being observed in fields with a greater probability of 

goose use could be seen. The total number of goose visits per field produced a stronger 

relationship with the observed data than the total number of goose visits per field 

(Figures 7.21 & 7.22), and both measures reflected the observed distribution of Greylag 

geese better than the logistic regression model. 
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Figure 7.19 Comparison of the total number of geese simulated to land in each 
field with the number of flocks observed in the core fields (R2 -value = O. I 57,n = 
324, p < 0.001). 
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Figure 7.20 A comparison of the average number of geese simulated to land 
per pixel for with the number of flocks observed in the core fields (R2-value = 
0.099, n = 324, P < 0.001). 
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Figure 7.21 The average number of flocks of Greylag geese observed in 
fields in different bands of predicted goose use from the IBMM, using the 
total number of geese landing per field. Data from core fields only. Error 
bars = s.e.(mean). 
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Figure 7.22 The average number of flocks of Greylag geese observed in 
fields in different bands of predicted goose use from the IBMM, using the 
mean number of geese landing per pixel. Data from core fields only. Error 
bars = s.e.{mean). 
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Figure 7.23 The predicted distribution of Greylag geese in the core fields from the simulation 
model, showing the total number of geese per pixel. 
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Figure 7.24 The predicted distribution of Greylag geese in the core fields from the simulation 
modeJ, showing the mean number of geese per pixel. 



Visual comparison of the predicted distribution of feeding Greylag geese from the 

IBMM (Figures 7.23 & 7.24) shows a pattern of predicted use of the core fields very 

similar to that predicted from the logistic regression model (Figure 7.17). As with the 

logistic regression model there were clusters of fields with high predicted goose use 

where few Greylag flocks were observed (Figure 7.18) and vice-versa. This was 

especially apparent in the south-west of the core area, an area where particularly high 

numbers of Pink-footed geese were observed (Figure 7.14). 

7.4 DISCUSSION 

Using data from another area is a powerful method for testing the predictive powers of 

models (Verbyla & Litvaitis 1989). For both modeIJing techniques models were built 

on data from Strathearn and Strathallan, an area where goose roosts and feeding areas 

are based along the valleys of two rivers. A number of roosts are used by each species, 

and in addition different roosts are often used by the two species. The models were 

tested on goose feeding areas around Loch Leven. In this area all geese roosted on 

Loch Leven, although different areas of the loch were used by the two species, and no 

major river were present in the study area. This difference between the study areas 

makes these tests particularly rigorous. 

In addition the data on goose distribution used to test the models was 30 years old and 

although Hearn & Mitchell (1995) noted little change in the feeding distribution of 

Pink-footed geese, in that time some changes will have occurred. The models were 

based on landscape characteristics from recent digitised OS maps, therefore changes 

such as the alteration of field boundaries, building / demolition of houses will affect the 
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predicted results. This is especially notable to the south west of the study area where 

areas previously used by geese are no longer farmland. In addition accurate counts of 

goose use of fields were only available for the core 324 fields, providing only a small 

number of fields for detailed comparisons, all with relatively high goose use due to 

their location so close to the roost. 

For Pink-footed geese the results of the logistic regression proved a good fit to the 

observed data. Although goose feeding patches further from the roost were not 

predicted exactly, the general distribution of geese was realistic and the extent of the 

main feeding area around the roost well predicted. Within this core area the model 

again proved good at predicting the extent of goose use of individual fields. Fields with 

low predicted use were seldom used. Fields with high predicted goose use were not 

always observed to contain large numbers of geese. Such 'false positive I errors 

(Fielding & Bell 1997) are frequently found in wildlife-habitat models (e.g. Osborne et 

al 2001). Undersaturation can be the cause of 'false positive t errors (Fielding & Bell 

1997), but this is unlikely to be the case in this situation as all core fields were situated 

close to a major goose roost. The errors in this study are more likely to be due to 

environmental variables such as fields not containing suitable food or being subject to 

high disturbance levels such as deliberate scaring by farmers. The models therefore 

predict areas of potential goose use as stressed in Chapter 3. The predicted probability 

of goose presence is a measure of the chance of geese occurring in a field, but analysis 

of the core fields shows that it can be considered as a measure of the extent of goose 

use of a field. As such the predicted median distance at which Pink-footed geese feed 
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from the roost, 4.4 km, fits very well with results obtained from other studies in nOlth­

east Scotland where Pink-footed geese are observed to feed at a median distance of 3.9 

- 4.8 km from the roost (Bell 1988; Giroux & Patterson 1995; Keller et af 1997). 

Newton & Campbell (1973) calculated that c.20% of Pink-footed geese fed within the 

core area while the model predicted 17.6% showing that the area over which Pink­

footed geese were predicted to feed was realistic. 

The results of the logistic regression model for Greylag geese predicted the general 

distribution of Greylag geese around the loch and correctly predicted Greylag geese to 

feed, in general, nearer to the loch than Pink-footed geese. As with Pink-footed geese, 

however, the location of feeding patches further from the loch were not predicted 

exactly. For the core fields the extent of goose use of fields was not accurately 

predicted and Greylag geese were observed to feed repeatedly in fields where low 

goose use was predicted, as well as being absent from fields where goose use was 

predicted to be high. In the core area altitude was fairly uniform and therefore distance 

from buildings and the roost were the landscape characteristics affecting the predicted 

pattern of Greylag goose use. The results therefore suggest that Greylag geese are 

feeding in fields closer to buildings than predicted from the Strathearn and Strathallan 

data. This could be due to a number of reasons. The logistic regression model may not 

have been an accurate representation of the relationship between landscape 

characteristics and the distribution of Greylag geese as only 84 fields were used to 

create the model compared with 234 for Pink-footed goose model. However, it is more 

likely that the behaviour of Greylag geese at Loch Leven differs from those in 
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Strathearn and Strathallan. Shooting pressure on Loch Leven was relatively light at the 

time of the 1968-70 survey with fewer than 200 geese being shot per year (Newton & 

Campbell 1973). In Stratheam, however, the recent increased shooting pressure is 

considered to have had an impact on the feeding distribution of Greylag geese (Bell & 

Newton 1995). As high shooting pressure can increase the response of geese to human 

disturbance (Gerdes & Reepmeyer 1983, Madsen 1984) differences in shooting 

pressure between the two study areas may mean that the tolerance of Greylag geese to 

human disturbance at Loch Leven was greater. Unlike at Strathearn and Strathallan, all 

Pink-footed and Greylag geese at Loch Leven roost at the same site resulting in 

competition between species for food in the core fields close to the loch. Observations 

of Pink-footed and Greylag geese in mixed flocks show that in any disputes Greylag are 

dominant (Kear 1965) but Madsen (1985a) found that when large numbers of Pink­

footed geese where present in West Jutland, Denmark, Greylag geese shifted their field 

use. Greylag geese changed crop use away from that preferred by the Pink-footed 

geese and also avoided Pink-footed geese by feeding in fields closer to the road. 

Madsen (1985a) suggested that this was due to exploitative competition rather than 

interference competition where Greylag geese behaved optimally by selecting sub­

optimal habitat as opposed to competing for grain with large numbers of Pink-footed 

geese. In contrast to the situation in West Jutland where Greylag geese arrive before 

the Pink-footed geese, at Loch Leven Pink-footed geese arrive first and numbers peak 

in early October when up to 10,000 geese are present (Newton & Campbell 1973), 

Therefore at Loch Leven Pink-footed geese have the opportunity to deplete resources in 
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the most suitable fields before the majority of Greylag geese had even arrived, further 

increasing the opportunity for exploitative competition. 

Simple attempts to control for competition with Pink-footed geese in the Greylag goose 

regression model proved unsuccessful. The probability of field use by Greylag geese 

from the logistic regression model was integrated with an inverse measure of Pink­

footed goose presence, using Bayesian statistics. The resultant probability surface for 

Greylag geese, however, was not significantly related to the observed distribution of 

Greylag geese (R2 = 0.005, P = 0.23). 

The IBMM highlighted the core feeding area for Greylag geese near the roost. 

Although the IBMM was more successful at predicting the Greylag goose distribution 

than the logistic regression model, the fit between observed and predicted goose use 

was not very good. Differences between the observed and predicted Greylag goose 

distribution within the core area are likely to be due to factors discussed above. 

The overall pattern of predicted goose distribution for Greylag geese differed between 

the two models. The simulation concentrated goose use of fields around the roost while 

in the logistic regression model, some fields over 15 km from the roost still had 

relatively high probabilities of goose use. This is clearly seen in the analysis of field 

use at different distances from the roost (see Figures 7.7 & 7.8) where the median 

distance of feeding geese from the roost was 3.7 km for the logistic regression model 

and 1.7 km for the IBMM. as observed for Strathearn and Strathallan (see Chapter 6). 
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The only published data on the median distance at which Greylag geese feed from the 

roost in north-east Scotland, showed a range from 2.4 km - 14.2 km dependent on the 

roost and time (Bell 1988) and was therefore of little use in establishing the most 

realistic model. Radio-tracked Greylag geese in Stratheam and Strathallan fed a mean 

distance of 2.0 km from the roost used the previous night (Chapter 4). Newton and 

Campbell (1973) found that c. 40% of Greylag geese fed within the core fields. This 

value lies in the middle of the 29% predicted from the logistic regression model and 

54% predicted from the IBMM. The logistic regression model underestimated the 

percentage of geese feeding in the core area near the roost at Loch Leven. The result 

confirms suggestions in Chapter 6 that the logistic regression model overestimates the 

distance geese feed from the roost as the roosts used to build the model were not 

exactly those used by the geese observed. The IBMM, conversely, overestimated the 

percentage of Greylag geese feeding in the core fields. The IBMMs were built on data 

from geese in Stratheam and Strathallan where many more roosts were used and 

numbers of geese at each roost were relatively small so the effect of depletion in fields 

close to the roost was not great. At Loch Leven the large numbers of both Pink-footed 

and Greylag geese at the one roost may result in depletion of favoured fields close to 

the roost. The extremely high levels of goose use in fields close to the roost predicted 

by the IBMM at Loch Leven are unrealistic as these fields would not have enough 

resources to sustain such numbers of geese. Predicted goose use of fields close to the 

roost above their carrying capacity, due to the larger numbers of geese at Loch Leven, 

is therefore likely to account for the overestimation of the percent of geese feeding in 

the core fields. 
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The IBMM was better than the logistic regressIOn model at predicting goose 

distribution in the core fields close to the roost. When predicting the entire feeding 

area, however, the IBMM did not predict geese feeding as far from the roost as they 

were observed, with the logistic regression model predicting a more realistic overall 

distribution. As discussed in Chapter 6, the logistic regression model overestimates the 

distance at which geese feed from the roost in Strathearn and Strathallan. The IBMM 

produced a more realistic pattern of goose use with distance from the roost for 

Strathearn and Strathallan as the probability of landing was derived from observed 

goose movements (see Chapter 6). At Loch Leven the situation differs in that only one 

goose roost is used by much larger numbers of both Pink-footed and Greylag geese. 

Larger numbers of geese will result in the depletion of resources in suitable fields close 

to the roost so that geese have to fly further to feed than at Strathearn and Strathallan. 

The apparent closer fit of the logistic regression model with the feeding distribution of 

Greylag geese at Loch Leven for areas further from the roost is therefore likely to be a 

chance result. It is also possible that some of the Greylag geese observed feeding 

further from Loch Leven were roosting elsewhere, as Greylag geese frequently roost at 

small roosts (Bell et al 1997, Chapter 4). The IBMM may be modified to include 

threshold values for field use, above which geese do not use a field. Although such 

modifications could take account of the numbers of Greylag geese, they could not take 

account of depletion by other species (Le. Pink-footed geese). 
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In conclusion the logistic regression model proved fairly good at predicting the 

distribution of Pink-footed geese over the whole area and the extent of goose use in the 

core fields, although not all feeding patches further from the roost were predicted 

accurately. Predicting the feeding distribution of Greylag geese proved less successful 

possibly due to a habitat shift caused by competition by the more numerous Pink-footed 

geese. The IBMM predicted the use of core fields better than the logistic regression 

model, but underestimated Greylag goose use further from the roost. 

7.5 SUMMARY 

The predictive powers of the two modelling techniques developed in this study were 

tested on another goose feeding area, around Loch Leven. Data on goose distribution 

in this area were available from a previous study (Newton & Campbell 1973). The 

logistic regression model predicted Pink-footed goose distribution fairly well. The 

feeding distribution of Greylag geese were not as well predicted by either modelling 

technique, probably due to changes in behaviour at Loch Leven compared with 

Stratheam and Strathallan, caused by competition with Pink-footed geese. The IDMM 

predicted field use better than the logistic regression model close to the roost, but did 

not predict fields used by geese further from the roost. 
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CHAPTER 8 - DISCUSSION AND CONCLUSIONS 

8.1 OVERVIEW 

This study has looked at the effects of landscape characteristics on field selection by 

geese and used these relationships to predict the feeding distribution of geese using two 

different modelling approaches, a standard logistic regression technique (Chapter 3) 

and an individual based movement model (IBMM) (Chapter 5). The IBMM appeared 

to perform as well as, but not better than, the standard logistic regression model 

(Chapters 6 & 7). 

The results of this study have implications for the management of wintering Greylag 

and Pink-footed geese in Britain. Radio-tracking data has highlighted differences in the 

way two species use their feeding grounds (Chapter 4). Predictive models have enabled 

the identification of potential areas for the siting of alternative feeding areas (AFAs) for 

both species in Strathearn and Strathallan. Both the logistic regression models and the 

IBMM's can be applied to any area used by wintering geese without the need for 

fieldwork, requiring only digitized OS LandLine data, OS Panorama data, Macaulay 

Land Cover for Scotland 1988 data and knowledge of the location of goose roosts. 

8.2 THE EFFECT OF THE LANDSCAPE ON FIELD CHOICE BY GEESE 

Various studies have shown that grey geese avoid feeding in proximity to landscape 

characteristics associated with disturbance, for example roads (Gill 1994, Keller 1991, 

Madsen 1984, Newton & Campbell 1973) and wind turbines (Larsen & Madsen 2000). 
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Landscape characteristics such as these can have a considerable influence on where 

geese feed as confinned in this study where distance for buildings was a highly 

significant predictor variable in both Pink-footed and Greylag goose models. 

Topography also affects goose feeding distribution, although differently for the two 

goose species. Previous studies have noted that while Greylag geese have a tendency 

to feed along the river, Pink-footed geese prefer large fields in an open area, however 

far from the river (Newton et aI1973). This was con finned by the results of this study, 

which showed that Greylag geese have a preference for feeding at lower altitudes, close 

to the river while Pink-footed geese selected fields dependent on both their size and 

their slope, preferring larger flatter fields (Chapters 3 & 5). 

8.3 THE RESULTS OF PREDICTIVE MODELS 

8.3.1 Introduction 

Validation of models using independent data is necessary if the predictive powers of 

the two models are to be compared, the most rigorous test being to assess the ability of 

models to predict distributions in a different geographical area (Verbyla & Litvaitis 

1989). The accuracy of the two modelling techniques developed in this study at 

predicting the feeding distribution of geese was tested with independent goose 

distribution data both within Strathearn and Strathallan and for another area, Loch 

Leven. 
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8.3.2 Logistic Regression models 

The logistic regression models for Pink-footed and Greylag geese appeared to fit the 

jack-knifed results equally well (AVC's = 0.808 and 0.803 respectively) despite the 

Greylag goose model being based on a much smaller sample size (n = 86 as opposed to 

234 for Pink-footed geese) (Chapter 3). When these models were applied to Loch 

Leven the Pink-footed goose model fitted the observed data fairly well, both within the 

core area and for the general distribution of feeding geese. The Greylag goose model, 

however, showed a much poorer fit, with heavy goose use of fields where geese were 

not predicted to feed (Chapter 7). It is possible that the small sample size used resulted 

in the Greylag goose model not reflecting the effect of the habitat on goose distribution 

accurately. It is more likely, however, that it is the result of differing behaviour of 

Greylag geese at the Loch Leven study area due to competition with con-specifics and 

large numbers of Pink-footed geese. 

8.3.3 IRMA! 

There was no means of evaluating the IBMM on the data on which it was built. As 

with the logistic regression model, when tested on independent data, Greylag goose 

distribution was predicted well in Stratheam and Strathallan (Chapter 6) but relatively 

poorly predicted when the model was applied to Loch Leven (Chapter 7). 

The major difference between the results of the two modelling techniques was that the 

simulation model predicted geese to feed much closer to the roost than the logistic 

regression model. As discussed previously (Chapter 6) the logistic regression model 
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probably overestimated the distance that Greylag geese fed from the roost as analysis 

was based on inaccurate roost data. In the simulation model the probability of landing 

was based on real goose movements from known roosts. The probability of landing, 

and consequently the distance at which simulated geese land from the roost, is therefore 

an accurate reflection of observed goose behaviour. The distance that simulated geese 

flew in one movement may, however, have been underestimated. The distance that 

observed geese flew from the roost was approximated to a straight line while the path 

of a simulated goose, although having the same probability of landing in each pixel and 

therefore the same length, was not necessarily straight. This effect was unlikely to be 

great as simulated geese had relatively straight flight paths. The models could have 

been adapted to adjust for this effect by dividing the probability of landing for each 

pixel by 

Mean (simulated path length) I Mean (straight-line distance of movement). 

8.3.4 Additional factors alleetblg goose distriblltioll 

The distribution of animals is strongly affected by food availability (Sutherland 1996). 

However, neither of the predictive models developed in this study incorporated any 

measure of resource availability. Although Greylag and Pink-footed geese show strong 

preferences for particular crop types at certain times of the year (Newton & Campbell 

1973, Forshaw 1983, Madsen 1984, Bell 1988, Patterson et al 1989, Giroux & 

Patterson 1995, Hearn & Mitchell 1995, Stenhouse 1996), crop preferences are less 

significant when averaged through the whole winter (Chapter 3). Data on crop type is 

much harder to obtain than for other predictor variables. Therefore inclusion of crop 
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types into the predictive models would make them much more difficult to apply to 

other goose wintering areas. In addition, as crop types change annually, the predictive 

models would only be valid for one year. Although crop type categories were included 

as one of the landscape variables in the logistic regression analysis, they were not 

selected in the models for either Pink-footed geese or Greylag geese. The preferences 

of geese for certain crops varies through the winter as some foods are depleted (e.g. 

stubbles) while others become available (e.g. winter cereal) (Newton & Campbell 1973, 

Forshaw 1983, Madsen 1984, Bell 1988, Patterson et al 1989, Giroux & Patterson 

1995, Hearn & Mitchell 1995, Stenhouse 1996). It is likely that by defining crop types 

for shorter periods (e.g. monthly), food availability could be better modelled, but such 

models would prove very difficult to apply to other areas as in addition to crop types, 

ploughing dates and sowing dates would be required. Neither does accurate crop data 

necessarily provide adequate information on the quality or quantity of food available. 

Geese show preferences for grass of different sward height (Andrews & Rebane 1994) 

and quality (Owen 1975) while the amount of spilt grain available in stubble fields is 

highly variable (Patterson et aI1989). 

Additional factors such as scaring intensity and shooting pressure will also affect the 

distribution of feeding geese (Newton & Campbell 1973, Madsen 1985b). As with 

food availability these effects will vary over time, are difficult to quantify, and they are 

not permanent landscape characteristics like the variables included in the predictive 

models. If incorporated into the models such variables would reduce the transferability 

to other areas. All models produced in this study therefore predict fields in which 
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geese are likely to feed provided that adequate food is available and disturbance is 

below a critical threshold. 

8.3.5 Comparison of the predictive powers of the two modelling techniques 

Individual based movement models (IBMMs) can potentially outperform standard 

wildlife-habitat models at predicting the distribution of animals if the path of an 

individual is constrained by landscape heterogeneity, as this will affect the use of 

resources (Johnson et aI1992). Individuals may not encounter suitable habitat patches 

if there are barriers to movement to the patch, an effect that would be modelled in a 

movement model but not by wildlife-habitat models such as logistic regression (see 

Chapter S). 

The results of this study, however, showed no evidence of IBMMs proving more 

accurate at predicting the feeding distribution of geese than the standard logistic 

regression technique. Within Stratheam and Strathallan neither modelling technique 

out-predicted the other when applied to the independent data set (Chapter 6), When 

applied to the Loch Leven study area the simulation model showed a slightly better fit 

to the observed data than the logistic regression model (Chapter 7). However these 

results do not indicate that the IBMM was a superior method of predicting goose 

distribution. The agreement of model predictions with observed goose distribution data 

was low for both modelling techniques, probably due to competition as discussed above 

and in Chapter 7. Differences between the two techniques are likely due to chance 

differences in the relationships between predictor variables and the predicted goose use. 
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In the IBMM the direction of goose flight was constrained by either altitude or distance 

from the river (Chapter 5). There were no areas that were suitable for feeding geese, as 

predicted by the logistic regression model, but to which there were significant barriers 

to movement due to altitude or distance from the river in either study area. This is why 

the simulation model did not prove better at predicting the distribution of Greylag geese 

than the logistic regression model, despite being based on a larger amount of data and 

therefore on presumably more accurate relationships between goose feeding behaviour 

and landscape characteristics. Although there is some potential for using IBMMs to 

predict goose distribution in areas where there is a possibility of geese moving between 

valleys while feeding, this situation is unlikely to be common. 

The IBMM assumed that geese move randomly and therefore do not have a pre­

determined destination. Conversely the logistic regression model assumes that geese 

have perfect knowledge of the suitability of fields. Individual Pink-footed geese have 

been shown to return repeatedly to certain feeding areas (Hearn & Mitchell 1995) and 

Pink-footed geese have been shown to fly further to feed in fields of preferred crops 

(Giroux & Patterson 1995). Radio-tracking results suggest that Greylag geese feed in 

areas surrounding roosts but not necessarily by the roost that they had used (Chapter 4). 

This suggests that Pink-footed and Greylag geese do use prior knowledge when 

selecting a field to feed. It is not necessary that geese use the same mechanism for 

decision making as the simulated geese, as long as the patterns of movement arc the 

same. If, however, Greylag geese favour feeding areas close to roosts, irrespective of 
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whether it was the roost that they used or not, predicting geese to feed close to roosts 

(as with logistic regression) may be a more appropriate technique than modelling their 

movements (as with IBMMs). 

8.4 IBMMs IN ECOLOGY 

The IBMMs developed in this study did not out-perform the logistic regression model. 

However, such models could potentially predict animal distribution better than standard 

wildlife-habitat models, if animal movement is constrained by a heterogeneous 

landscape (Johnson et al 1992). IBMMs have an added advantage of being very 

flexible (Turchin 1991, Marsh & Jones 1988), enabling the incorporation of a whole 

range of features such as depletion (e.g. Turner et al1993 & 1994), individual variation 

(e.g. Saarenmaa 1988), mortality (e.g. Dewdney 1984, Turner et al 1993 & 1994, 

Schippers et al 1996) and energetics (e.g. Turner et al 1993 & 1994) which cannot be 

incorporated into more standard distribution modelling techniques. Although IBMMs 

cannot be applied to all situations, as there needs to be a known starting position / 

distribution, there is a wide range of situations to which they could be appJied. Despite 

their potential advantages, IBMMs have not been widely used in ecology. IBMMs 

have been primarily used to model dispersal and connectivity between populations. For 

example Boone and Hunter (1996) modelled the movement of Grizzly bears (Ursus 

arctos horribilis) constrained by habitat type and linear barriers (roads), and predicted 

the effect of proposed timber harvesting plans on the connectivity of bear popUlations. 

Similar work by Schippers et al (1996) modelled the dispersal of badgers (Aleles metes) 

to assess the possibility of extinct populations being recolonised, again with movement 
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constrained by habitat quality, roads and rivers. In most IBMMs the effect of landscape 

characteristics on animal movement are estimated (e.g. Schippers et al 1996) or 

interpreted from literature (e.g. Boone & Hunter 1996), which is far from ideal. There 

are few example of IBMMs based on analysis of observed animal movements, although 

Jones (1977) modelled the movement and oviposition of cabbage butterflies by 

analysing the observed movements of butterflies in experimental plots. There is 

considerable scope for analysing movement data from marked, and more specifically 

radio-tracked, individuals to derive rules on movement that can be incorporated into 

IBMMs, as shown in this study (Chapter 5, Boone & Hunter 1996). There are a variety 

of scenarios where IBMMs may prove more appropriate for modelling distributions 

than standard wildlife-habitat models for example: 

(i) Predicting the spread of alien species, for example the Coypu (Myocastor 

coypus) in East Anglia (Reeves & Usher 1989) or Grey squirrels (ScillniS 

carolinensis) in mainland Europe (Rushton et aI1997). 

(ii) Predicting the probability of animals colonising newly created habitat or 

returning to areas where local extinction has occurred. For example, the 

recolonisation of patches where stochastic local extinction has occurred in 

patchily distributed butterfly species (Thomas & Harrison 1992, Hanski et a/ 

1995). 

(iii) Predicting the feeding distribution of animals that moves out from a known 

roost I den locations. As this situation is uncommon, using IBMMs to predict 

feeding distribution is restricted to relatively few species, mainly wildfowl. 
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IBMMs may be particularly suitable at predicting the feeding distribution of scarce 

species, as the ability of standard methods such as logistic regression, discriminate 

analysis and artificial neural networks to predict distribution decreases as species rarity 

increases (Manel et a11999) while a relatively small number of individuals are required 

to obtain parameters for models from radio-tracking. 

8.S IMPLICATIONS FOR THE MANAGEMENT OF \VINTERING GEESE 

8.5.1 Introduction 

Considerable emphasis was placed on the damage caused by grey geese and methods of 

alleviating the goose-agriculture conflict during the 1980s and early 1990s (e.g. van 

Roomen & Madsen 1992) as the number of geese wintering in Britain and the whole 

Western Palearctic increased (Madsen 1992). Combining all goose species, Britain is 

subject to the highest goose grazing pressure in Western Europe at 70-90 million 

goose-days per year in the early 1990's (Madsen 1992). The two methods most widely 

recommended to alleviate goose-agriculture conflict are the implementation of a 

scheme to compensate farms for economic loss and the creation of Alternative Feeding 

Areas (AFA's) (Owen 1977, van Eerden 1990, Owen 1990, Jepsen 1991, Andrews & 

Rebone 1994, Giroux & Patterson 1995, Percival et aI1997). 

8.5.2 Transferability of goose models 

The predictive models developed in this study can only be used to target the 

management of wintering geese for areas outside Strathearn and Strathallan if they are 

transferable to other geographical regions. Although models can accurately predict 
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species distribution in different areas (e.g. Austin et al 1996), owing to differences in 

animal behaviour, species composition and habitat, this is not always the case (Fielding 

& Haworth 1995). 

Pink-footed geese are very mobile and move between feeding areas throughout the 

course of the winter (Fox et al 1989). Radio-tracking results from this study suggest 

that Greylag geese may be even more mobile (Chapter 4). It is therefore unlikely that 

goose behaviour will vary between wintering areas within Britain, except in response to 

differences in the environment. 

The availability of resources will affect the feeding distribution of geese. The overall 

availability of food will be affected by agricultural practices or depletion of food, 

especially by geese. If, for example, models are applied to areas with larger numbers of 

geese than in the area where the models were created, model predictions are likely to be 

inaccurate as the effect of competition for resources may result in geese flying further 

from the roost to feed, or feed in sub-optimal fields (for example fields closer to 

buildings). 

Higher intensities of shooting and scaring increases the response of geese to 

disturbance (Newton & Campbell 1973, Madsen 1985). Consequently, in areas subject 

to increased disturbance, geese may suppress their use of fields that are close to 

buildings more than geese in areas with less shooting and scaring. In addition, 

increased disturbance will probably result in geese making more frequent movements 
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between fields However, this difference it unlikely to affect the overall feeding 

distribution of geese and therefore will not affect the accuracy of predictions made by 

the IBMMs. 

The topographic features of the study area incorporated in the predictive models are 

unlikely to differ greatly in range from other goose feeding areas in eastern Scotland. 

When predicting the feeding distribution of geese in areas where topographical features 

are outside the range of those in the Strathearn and Strathallan study area, the 

relationship between goose use and topographical features may be less accurate, and 

the magnitude of predicted probabilities from the logistic regression models will be 

affected. However, there is no reason why the general pattern of goose use should not 

be predicted correctly. 

In conclusion, differences between geographical areas could affect the accuracy of the 

models developed in this study if they were applied to other goose feeding areas. 

Farming and shooting practices, on a large scale, are unlikely to vary greatly over grey 

goose feeding areas in east Scotland, which are generally confined to lowland 

agricultural regions. Therefore these models are likely to be transferable to other goose 

wintering areas in Scotland, provided that the numbers of geese using individual roosts 

do not differ greatly from those in Stratheam and Strathallan. Predictions of the 

feeding distribution of geese in areas with very different farming practices and 

topography, such as East Anglia, or with different numbers of geese, and therefore 

increased competition, are likely to be less realistic. 
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8.5.3 Compensation payments 

Although it is known that goose grazing does damage crops (Kear 1970, Owen et al 

1986, Groot Bruinerink 1989, Patterson et a11989, Ernst 1991) there is little knowledge 

of the scale or distribution of damage to crops in Britain (Mitchell et al 1999, Mitchell 

& Sigfusson 1999). If a threshold of goose-days were defined, over which significant 

damage to crops could occur, then predictive models such as those developed in this 

study could be used to define zones in which goose management plans could be 

considered. Such zones could be used to define areas in which compensation payments 

could be paid. 

8.5.4 Locations/or AFAs 

The steady decline of Greylag geese since the early 1990s (Hearn 2000), if it continues, 

is likely to become an increasingly important conservation issue. While it is clear that 

the major cause to the population decline is the high levels of mortality due to hunting, 

mainly in Iceland (Hearn 2000), conservation measures to support the popUlation while 

wintering in Britain may become increasingly desirable. Therefore AFA's may not 

only be an appropriate method of managing the goose-agriculture conflict for Pink­

footed and Greylag geese, but the provision of refuges where Greylag geese can feed 

free of disturbance may improve the condition of geese, which has been shown to 

improve winter survival and reproductive success (Madsen 1995). While studies have 

suggested the appropriate size and spacing of AFA's from major roost sites for Pink-
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footed geese (Giroux & Patterson 1995), little attention has been focused on the 

requirement for Greylag geese in this respect. 

For Pink-footed geese, studies suggest that AFA's should be relatively small (1 km2) 

and scattered throughout their feeding area (Giroux & Patterson 1995). The logistic 

regression model could identify fields, or areas, that are intrinsically attractive to Pink­

footed geese due to their landscape characteristics and therefore good potential sites for 

AFA's. For example Figure 8.1 shows all patches in Strathearn and Strathallan that 

have high predicted goose use from the logistic regression model (greater that the 

arbitrary cut-off value of 0.75) and are larger than Ikm2
, and which therefore could be 

considered good locations for AF As. Indeed the predictive models are better suited to 

identifying fields for the creation of refuges than for predicting goose distribution 

which is dependent on additional factors such as hunting pressure, food availability and 

quality. These are factors that can be manipulated in an AF A and therefore permanent 

landscape characteristics, such as those developed in the models developed in this 

study, should be used to define the suitability of sites for refuge placement. 

For Greylag geese there are few published recommendations for refuge placement. 

Greylag geese use a wide range of smaller roost sites (Bell et a/1997), and feed a mean 

distance of just 0.7km from roost sites, although geese frequently fly between feeding 

areas (Chapter 4). These results suggest that Greylag geese are likely to benefit from 

AFA's that are situated close to roost sites as opposed to being scattered throughout the 

extended feeding area as for Pink-footed geese. There is no reason to expect the size of 
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Figure 8.1 Potential sites for the location of AFA's in Strathearn and Strathallan for Pink-footed and Greylag geese, derived from the results of 
the logistic regression model 



»! 

1 a 1 2 3 Kilometers - --- -

Urban areas AN 
Roads 
Rivers 
Both models 
River based model 
Altitude based model 
Fields in study area 

...... 

Figure 8.2 Potential sites for the location of AFA's in Strathearn and Strathallan for Greylag geese, derived from the results of two IBMMs, one 
with flight constrained by altitude, the other by distance from the river. 



AF As required for Greylag geese to differ from that recommended for Pink-footed 

geese, as both species make very similar length movements during the day (Chapter 

4). Both the logistic regression and IBMM modelling techniques could be used to 

identify suitable fields or areas for the creation of AFA's. The results of the logistic 

regression model and IBMMs were used to identify possible locations for AFAs for 

Greylag geese, using the same criteria for as for Pink-footed geese (Figure 8.1 and 8.2). 

The areas suggested for potential goose management plans differ greatly depending on 

which modelling technique was used, although there is little difference in the results for 

the two IBMMs. Differences between the two modelling techniques are due to the use 

of different roost data, and highlight the need for complete knowledge of the roosts 

used by Greylag geese if suitable locations for AFA's are to be identified. 

8.6 FURTHER WORK 

8.6.1 Need/or spatially explicit model validation techlliques 

The predictive power of large-scale models, such as those developed in this study, are 

often difficult to assess using classical ecological experiments. Consequently 

alternative methods are required to assess the accuracy of models, such as testing on a 

different geographical region or by large-scale environmental manipulations (Ormerod 

& Watkinson 2000). At present statistical comparisons cannot take into account the 

spatial agreement between two models, or between observed and predicted results; it is 

only possible to compare units (Le. pixels or fields) as independent points. 

Consequently consideration of scale is very important (Caldow & Racey 2000) and it is 

imperative that an appropriate scale is chosen for the comparison. For the models in 
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this study comparisons were made between fields as this was considered to be the scale 

at which geese make choices on where to feed. Even if an appropriate scale is used, 

difficulties occur when techniques assume independence of data points as species 

distribution and landscape characteristics are often spatially autocorrelated (Legendre 

1993). If species distribution or landscape characteristics are spatially autocorrelated 

the assumptions of many statistical analyses (e.g. logistic regression) will by broken, 

resulting in an overestimation of the degrees of freedom and therefore the possibility of 

false significance in statistical tests (Legendre 1993, Augustin et al 1996, Fielding & 

Bell 1997). In addition no account is taken of how far species were recorded from 

areas where presence was predicted (Le. the distance of false positives from real 

positives) when models are evaluated (Austin et al 1996, Fielding & Bell 1997), 

whereas a model which predicts presence close to where animals are observed is clearly 

preferable. Due to the recent increase in large-scale ecological modelling (Ormerod & 

Watkinson 2000) it is clear that new techniques for model validation and testing are 

now required that take into account the spatial distribution of both observed and 

predicted results. 

8.6.2 Possible improvemellts to the IBMA! predictillg goose distributiOIl 

The IBMM could be extended to include the effects of depletion, either dependent on 

crop type (as discussed in Chapter 5) or more simply by giving all pixels a uniform 

threshold of goose days above which the resources were assumed to be depleted and 

geese could no longer land. If the model was adapted for Pink-footed geese then it 

would be possible to incorporate depletion caused by both species. Such models will 
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predict differences in field selection by geese due to inter-specific and possibly intra­

specific competition, and therefore are likely to be more transferable to different 

situations. 

8.6.3 Effective targeting of goose management plalls 

When creating refuges for mobile species such as geese, there is a danger that, instead 

of relieving goose-grazing pressure on surrounding farmland, the provision of 

improved wintering conditions may encourage larger numbers of individuals to use the 

area, possibly even increasing existing conflict between geese and agriculture locally 

(Miere & Kuijen 1991). Therefore there is a need for field trials to assess the impact of 

AF As on both damage to surrounding farmland and on goose condition (e.g. abdominal 

profile) to see if the creation of AF As will have the desired effect. 

8.7 CONCLUSIONS 

1. The main landscape characteristics affecting the feeding distribution of Pink-footed 

and Greylag geese in Stratheam and Strathallan are distance from the roost and 

distance from buildings. Topography also affects which fields geese choose for 

feeding. 

2. Using information on these landscape characteristics from existing digitised data 

sources it is possible to predict where geese are likely to occur. 

3. Movement models, although advantageous in certain situations, did not consistently 

predict Greylag goose distribution more accurately than the logistic regression. 
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4. Greylag geese use many small roosts in addition to main roosts, some of which may 

not be documented. Knowledge of these is required if the Greylag goose 

distribution is to be predicted correctly. 

The predictive models created can be applied to other areas used by wintering geese. 

Within goose feeding areas in Scotland the behaviour of geese and landscape 

characteristics are unlikely to vary greatly from those in the Strathearn and 

Strathallan. The models developed in this thesis therefore have the potential of 

being used to identify zones for where farmers can be compensate for economic 

loss caused by geese, or to identify locations which are suitable for the creation of 

Alternative Feeding Areas. 
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APPE~1J)ICES 

A dix t. De .. ----r-- - -- ------ flandsca . ,bI -- ._- ed in th - 1 . 
- - . -

Variable Sample size Mean SD SEofMean Minimum Maximum Median 

Distance from greylag roost 3599 4521.4 3268.1 54.5 5.8 14426.3 3519.7 

Distance from pink-footed goose roost 3496 6191.4 3116.4 52.7 20.1 14133.9 6132.0 

Area 3599 73979 59260 988 2656 1127153 62304 

Slope 3599 3.2 2.3 0.0 0.0 18.8 2.6 

Altitude 3599 91.1 49.8 0.8 5.1 267.7 81.0 

Mean distance from building 3599 261.7 153.7 2.6 9.8 1304.5 225.7 

Minimum distance from building 3599 116.7 133.8 2.2 0.0 1064.0 60.0 

Maximum distance from building 3599 383.1 163.3 2.7 60.0 1539.4 362.5 

Mean distance from road 3599 250.1 197.6 3.3 17.4 1423.0 181.7 

Minimum distance from road 3599 122.4 181.2 3.0 0.0 1282.7 0.0 

Maximum distance from road 3599 384.6 217.3 3.6 30.0 1603.8 335.4 

Distance from permanent water 3498 145.9 95.0 1.6 0.0 719.2 124.0 

Distance from river 3599 2780.9 1946.1 32.4 36.9 8233.1 2567.6 

Distance from urban areas 3599 1686.2 929.6 15.5 0.0 4642.1 1613.1 

Distance from wood 3599 433.3 321.3 5.4 0.0 1897.2 350.7 ------
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Dist to Greylag roosts 1.000 

Max. dist to building 0.059 1.000 

Slope 0.017 -0.053 1.000 

Altitude -0.155 0.079 0.398 1.000 

Dist to water 0.052 0.082 -0.059 -0.014 1.000 

Average dist. to building 0.046 0.919 -0.043 0.091 0.054 1.000 

Field area 0.070 0.441 -0.101 -0.087 0.175 0.290 1.000 

Minimum dist to building 0.011 0.770 -0.004 0.147 -0.014 0.891 -0.006 1.000 

Minimum dist to road 0.062 0.339 0.042 0.073 -0.035 0.350 -0.026 0.385 1.000 

Maximum dist. to road 0.093 0.519 -0.007 0.029 0.040 0.443 0.332 0.347 0.856 1.000 

Average dist. to road 0.080 0.449 0.017 0.053 0.007 0.414 0.168 0.378 0.954 0.965 1.000 

Dist to river 0.525 -0.031 0.175 0.279 0.038 -0.009 -0.043 0.007 0.091 0.071 0.083 1.000 

Dist. to urban area 0.051 0.219 0.013 0.057 -0.066 0.179 0.102 0.155 0.120 0.168 0.149 0.056 1.000 

Dist. to woodland 0.034 -0.037 -0.174 -0.279 0.056 -0.047 0.075 -0.087 -0.007 0.030 0.012 -0.101 -0.172 1.000 

Dist to Pink-foot roost -0.128 -0.208 0.168 -0.235 0.017 -0.173 -0.088 -0.149 0.032 -0.001 0.014 0.128 -0.129 0.007 1.000 
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Appendix 3 The altitude of fields in the Strathearn and Strathallan study area 
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Appendix 4 The slope of fields in the Strathearn and Strathallan study area. 

Average slq:>e ri field (degrees) 
0-2 
3-4 
5-6 N 

7-10 A 
10 pits 



Appendix 5. Statistics of the five logistic regression models investigating where geese fly for 
. ffI d I OO/! If' I movements from the roost, usmg di erent ran om o samp es 0 . plxe s. 

Run Independent variable B s.e (B) Wald Degrees of 
Significance statistic freedom 

Distance from river -0.0006 0.0001 19.54 1 < 0.0001 
Altitude -0.0090 0.0025 13.36 I 0.0003 

1 Distance from buildings 0.0011 0.0005 4.41 1 0.0358 
constant 0.9533 0.1968 23.47 1 < 0.0001 

N = 500, Goodness of Fit = 487.99, model Xl = 71.43, d.f.=3, P < 0.0001 
63.8% classified correctly 

Distance from river -0.0007 0.0001 43.36 1 < 0.0001 
Slope -0.0432 0.0189 5.21 1 0.0224 2 constant 1.0370 0.1707 36.92 1 < 0.0001 

N =500, Goodness of Fit = 485.18, model Xl = 65.14, d.f. =2 P < 0.0001 
61.8% classified correctly 

Distance from river -0.0007 0.0001 26.12 1 < 0.0001 
Altitude -0.0069 0.0025 7.37 1 0.0066 

3 constant 1.2888 0.1880 47.00 1 < 0.0001 
N = 500, Goodness of Fit = 480.41, model Xl- 90.20, d.f. = 2, P < 0.0001 

64.6% classified correctlv 
Distance from river -0.0010 0.0001 62.82 1 < 0.0001 
Slope -0.0376 0.0172 4.78 1 0.0288 

4 constant 1.3121 0.1784 54.09 1 < 0.0001 
N = 500, Goodness of Fit.., 484.63, model Xl .. 103.4 J, 

67.6% classified correctly 
d.t'.'" 2, P < 0.0001 

Distance from river -0.0009 0.0001 52.59 1 < 0.0001 
Distance from woods -0.0008 0.0003 5.31 1 0.0213 

5 constant 1.3817 0.2423 32.52 1 < 0.0001 
N=500, Goodness of Fit.., 482.25, model Xl ;: 77.80, 

63.6% classified correctly 
d.f. =2, P < 0.0001 
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Appendix 6. Statistics of the five logistic regression models investigating where geese fly for non­
f . roost movements, using different random 10% samples 0 PIxels. 

Run Independent variable B s.e (8) Wald Degrees of 
Significance statistic freedom 

Distance from river -0.0003 9.3*10,5 13.58 1 0.0002 
Distance from woods -0.0007 0.0003 4.23 1 0.0396 1 constant 0.7687 0.2556 9.05 1 0.0026 

N =340, Goodness of Fit == 339.45, model 'l'" 15.81, d.f. = 2, P = 0.0004 
60.3% classified correctlv 

Altitude -0.0136 0.0025 28.56 1 < 0.0001 
Slope 0.1006 0.0313 10.36 1 0.0013 

2 Distance from building 0.0016 0.0006 8.10 1 0.0044 
constant 0.1205 0.2016 0.36 1 0.5502 

N = 340, Goodness of Fit = 339.99, model Xl = 38.35, d.f. =3 p < 0.0001 
65.0% classified correctly 

Distance from river -0.0006 0.0001 29.58 1 < 0.0001 
Distance from woods -0.0008 0.0003 6.41 1 0.0114 

3 constant 1.0878 0.2579 17.79 1 < 0.0001 
N == 340, Goodness of Fit = 346.80, model Xl ... 36.26, d.f. '" 2, P < 0.0001 

65.9% classifled correctly 
Distance from river -0.0005 0.0001 24.41 1 < 0.0001 
Slope 0.0759 0.0308 6.08 1 0.0137 

4 constant 0.3681 0.1723 4.56 1 0.0327 
N =340, Goodness of Fit = 340.08, model Xl ... 31.61, d.f. == 2, P < 0.0001 

60.0% classified correctly 
Distance from river -0.0002 9.2*10'5 6.70 1 0.0096 

5 constant 0.2620 0.1477 3.15 1 0.0761 
N =340, Goodness of Fit"" 340.98, model Xl ... 7.01, d.f. == 1, P = 0.0081 

58.2% classified correctly 
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Appendix 7. Statistics of the five logistic regression models excluding distance from river, 
investigating where geese fly for movements from the roost, using different random 10% samples of 
. I plxe s. 

Run Independent variable B s.e (B) Wald Degrees of 
Signiflcance statistic freedom 

Attitude -0.0141 0.0022 39.43 1 < 0.0001 
Distance from buildings 0.0010 0.0005 4.20 1 0.0403 

1 constant 0.7510 0.1899 15.63 1 0.0001 
N" 500, Goodness of Fit == 508.00, model 'Y.z ... 48.35, d.f. "" 2, P < 0.0001 

63.0% classified correctly 
Attitude - 0.0143 0.0023 40.30 1 < 0.0001 
Distance from buildings 0.0017 0.0005 10.21 1 0.0014 2 constant 0.5849 0.2009 8.48 1 0.0001 

N=500, Goodness of Fit == 501.43, model 'Y.z == 46.80, d.f.::o 2 p < 0.0001 
63.6% classified correctly 

Attitude - 0.0165 0.0024 47.72 1 < 0.0001 
Distance from buildings 0.0010 0.0005 3.92 1 0.0478 

3 constant 0.9070 0.2015 20.25 1 < 0.0001 
N = 500, Goodness of Fit"" 518.20, model"l == 61.03, d.f. == 2, P < 0.0001 

65.8% classified correctly 
Attitude - 0.0162 0.0023 48.39 1 < 0.0001 
Distance from buildings 0.0014 0.0005 6.93 I 0.0085 

4 constant 0.8321 0.1984 17.58 1 < 0.0001 
N= 500, Goodness of Fit = 498.93, model Xl ... 58.05, 

62.6% classified correctly 
d.f. == 2, P < 0.0001 

Attitude - 0.0140 0.0022 40.49 1 < 0.0001 
Distance from buildings 0.0016 0.0005 8.47 1 0.0036 

5 Distance from roads - 0.0011 0.0005 5.27 1 0.0216 
constant 0.8669 0.2090 17.21 1 < 0.0001 

N=500, Goodness of Fit .. 497.00, model Xl == 50.08, 
62.0% classified correctlv 

d.f. = 3, P < 0.0001 
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Appendix 8. Statistics of the five logistic regression models excluding distance from river, 
investigating where geese fly for non-roost movements, using different random 10% samples of 
. I plxe s. 

Run Independent variable B s.e (B) Wald Degrees of 
Significance statistic freedom 

Altitude - 0.0064 0.0020 10.79 I 0.0010 
Distance from woodland - 0.0007 0.0003 3.95 1 0.0468 

1 constant 0.7967 0.2764 8.31 1 0.0039 
N=340, Goodness of Fit = 337.77, model Xl = 13.11, d.f. = 2, P = 0.0014 

54.1 % classified correctly 
Altitude -0.0136 0.0025 28.56 1 < 0.0001 
Slope 0.1006 0.0313 10.36 1 0.0013 

2 Distance from buildings 0.0016 0.0006 8.10 1 0.0044 
constant 0.1205 0.2016 0.36 1 0.5502 

N =340, Goodness of Fit == 339.99, model Xl ... 38.35, d.f.=3 P < 0.0001 
65.0% classified correctly 

Altitude - 0.0 III 0.0028 16.33 1 0.0001 
Slope 0.0667 0.0287 5.39 1 0.0202 

3 Distance from woodland - 0.0008 0.0003 5.34 1 0.0209 
constant 0.9515 0.3092 8.88 1 0.0029 

N=340, Goodness of Fit ... 341.69, model "I} == 21.56, d.f. == 3, P = 0.0001 
61.8% classified correctly 

Altitude - 0.0095 0.0024 16.22 I 0.0001 
Slope 0.1025 0.0331 9.62 1 0.0019 

4 Distance from buildings 0.0013 0.0005 6.97 1 0.0083 
constant - 0.0933 0.2161 0.19 1 0.6660 

N =340, Goodness of Fit = 340.63, model Xl == 23.60, d.f. =3, P < 0.0001 
60.6% classified correctly 

Altitude - 0.0060 0.0022 7.80 I 0.0052 
Distance from buildings 0.0012 0.0006 3.86 I 0.0495 5 constant - 0.0043 0.2356 0.00 1 0.9854 

N=340, Goodness of Fit ... 340.07, model Xl = 9.72, d.f. = 2, P 0.0077 
57.4% classified correctly 
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