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Abstract—An object tracking algorithm using the Mean Shift
framework is presented which is largely invariant to both partial
and full occlusions, complex backgrounds and change in scale.
Multiple features are used to gain a descriptive representation
of the target object. Image moments are used to determine the
scale of the target object. A kalman filter is used to successfully
track the target object through partial and full occlusions, the
Bhattacharyya coefficient is used to determine the measurement
noise estimation.

I. INTRODUCTION

Object tracking is of great importance in computer vision
and is used in many applications such as visual surveillance,
perceptual user interfaces, augmented reality and intelligent
transport systems. Mean Shift [1] is a popular method
used in object tracking which is also used in commercial
applications due its simple implementation, efficient and
robust performance. The Mean Shift method is a non-
parametric, variable step-size, statistical density estimator
which iteratively determines the nearest mode of a point
sample distribution using gradient ascent. The Mean Shift
method has been used in a number of computer vision
problems, these include line fitting [2], image segmentation
[3] and object tracking [4].

A number of improvements to the traditional formulation
of the Mean Shift method for object tracking have been
investigated [4]. Multiple features have been investigated to
gain a more descriptive representation of the target object
[5,6]. In [5] various colour spaces and edge directions are
used as descriptive features, feature localization weights are
determined according to the similarity between background
features and features present in the target model. In [6] the
RGB colour space, edge directions and textural information
(obtained using the discrete wavelet transform) are used
as descriptive features, feature localization weights are
determined according to the similarity between target
candidate features and features present in the target model.
Scale space theory was adopted in order to successfully
determine the target object’s scale during tracking [7]. The
Mean Shift method was applied to Gaussian kernels at various
scales to determine the target object’s scale. Image moments
have been used with the similarity weights (between the target

model and candidate) to determine the scale and orientation
of the target object [8]. Multiple ellipsoidal, asymmetric
kernels with asymmetric centres have been used to effectively
track target position, scale and orientation simultaneously
[9]. In order to remove background features from the target
model and candidate a level set function has been used along
the contour of the target object [10]. The level set function
defines an asymmetric kernel over the target region which
does not contain any background features. Mean Shift is
used to track the target object’s position, scale and orientation.

This paper proposes a tracking algorithm using the Mean
Shift framework which is largely invariant to both partial
and full occlusions, complex backgrounds and change in
scale. Multiple features are used to gain a more descriptive
representation of the target object, these features include
colour, edges and texture. An adaptive feature weighting
method is used to maximize the feature weights of features
which better localize the target object. Image moments are
used in conjunction with the similarity weights (between
the target model and candidate) to determine the scale of
the target object. A kalman filter is used to improve the
tracking performance during partial and full occlusions,
a measurement noise estimation is determined using the
Bhattacharyya coefficient [11].

The paper is arranged as follows. Section II provides an
overview of the Mean Shift tracking algorithm [4]. Section
III provides a description of the various features used to
describe the target object. Section IV provides details on
the tracking algorithm including scale selection, kalman filter
implementation and a brief overview of the tracking algorithm.
Section V provides experimental results which describe the
performance of the tracking algorithm. Section VI concludes
the paper.

II. MEAN SHIFT TRACKING ALGORITHM

A. Target Representation

A target is typically defined by an ellipsoidal region or patch
surrounding a region of interest in an image. A feature space is
chosen (typically the RGB feature space is used) to determine
a histogram of the pixel distribution in the target region. The
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histogram is represented by target model q. The target model
is used to describe the appearance of the object located in the
target region. The target model q is comprised of m normalized
bins [4].

Target model:
q̂ = {q̂u}u=1...m (1)

m∑
u=1

q̂u = 1 (2)

Let {x∗i }i=1...n denote the n normalized pixel locations in
the target region which are centred around 0. Let k(x) denote a
convex, monotonically decreasing, isotropic kernel. Let b: R2

→ {1...m} be a function which determines the histogram bin
b(x∗i ) associated with the pixel location x∗i . The probability
of the feature u = 1...m in the target models histogram is
determined by

q̂u = C

n∑
i=1

k(‖ x∗i ‖2)δ[b(x∗i )− u] (3)

Where δ is the Kronecker delta function. The normalization
constant C is derived by imposing the condition (2), normal-
ization constant C can therefore be represented by

C =
1∑n

i=1 k(‖ x∗i ‖2)
(4)

B. Candidate Representation

Typically the target model is formed from the target region
in the first frame of a video sequence. The target model
is compared to candidate regions in the current frame to
determine the location and scale of the target in the current
frame. A target candidate p(y) is defined by a histogram of the
pixel distribution of a region in the current frame. The target
candidate p(y) is comprised of m normalized bins [4].

Target candidate:

p̂(y) = {p̂u(y)}u=1...m (5)

m∑
u=1

p̂u(y) = 1 (6)

Let {xi}i=1...nh
denote the nh normalized pixel locations

in the candidate region which are centred around y. Let k(x)
denote the same convex, monotonically decreasing, isotropic
kernel used with the target model only with a different size
(based on the scale of the target object) specified by bandwidth
h. The probability of the feature u = 1...m in the target
candidates histogram is determined by

p̂u(y) = Ch

nh∑
i=1

k(‖ y − xi
h

‖2)δ[b(xi)− u] (7)

where

Ch =
1∑nh

i=1 k(‖ y−xi

h ‖2)
(8)

C. Similarity Model

In order to determine the similarity between the target model
and the target candidate a similarity function is determined.
The similarity function used is the sample estimate of the
Bhattacharyya coefficient [11] between the distributions q̂ and
p̂(y). The similarity function is defined by

ρ̂(y) = ρ[p̂(y), q̂] =

m∑
u=1

√
p̂u(y)q̂u (9)

Due to the conditions imposed by (2) and (6) the similarity
function has a minimum value of 0 (distributions are orthog-
onal) and a maximum value of 1 (distributions are equal).

D. Mean Shift Vector

The Mean Shift algorithm iteratively samples target can-
didate locations in an effort to find the local maximum of
the similarity function ρ̂(y). By taking the Taylor expansion
around the target candidate probability values p̂u(ŷ0) (where
the target candidate p̂(ŷ0) is centred around ŷ0) the estimated
linear approximation of the Bhattacharyya coefficient [4] can
be described by

ρ[p̂(y), q̂] =
1

2

m∑
u=1

√
p̂u(ŷ0)q̂u +

1

2

m∑
u=1

p̂u(y)

√
q̂u

p̂u(ŷ0)
(10)

The first term of (10) is independent of position y, therefore
to maximize ρ[p̂(y), q̂] it is necessary to maximize the second
term of (10), using (7) the second term of (10) denoted by
ρ[p̂(y), q̂]2 can be described by

ρ[p̂(y), q̂]2 =
Ch

2

nh∑
i=1

ωik(‖ y − xi
h

‖2) (11)

where

ωi =

m∑
u=1

√
q̂u

p̂u(ŷ0)
δ[b(xi)− u] (12)

The Mean Shift vector is determined in order to maximize
the similarity function ρ̂(y) by maximizing (11). The Mean
Shift vector is determined by

Y1 =

∑nh

i=1(xi − ŷ0)ωig(‖ ŷ0−xi

h ‖2)∑nh

i=1 ωig(‖ ŷ0−xi

h ‖2)
(13)

Where g(x) = k′(x). If we choose k(x) to use the
Epanechnikov profile [12] described by

k(x) =

{
1
2c
−1
d (d+ 2)(1− x) if x ≤ 1

0 otherwise
(14)

the computation of (13) can be simplified as g(x) becomes a
constant. Different kernel profiles may be used, they however
have little impact on the localization accuracy of the Mean
Shift algorithm. These kernel profiles have a higher computa-
tional cost as the kernel derivative g(x) must be determined



for each computation of the Mean Shift vector. Using the
Epanechnikov profile the Mean Shift vector can be described
by

Y1 =

∑nh

i=1(xi − ŷ0)ωi∑nh

i=1 ωi
(15)

The updated position of the target candidate position ŷ1 is
simply described by

ŷ1 = ŷ0 + Y1 (16)

The Mean Shift algorithm is run recursively until conver-
gence, convergence occurs when the Mean Shift vector is
lower than a tolerance ε. The tolerance is usually chosen to
be the width of a single pixel.

III. IMAGE FEATURES

Multiple Image features were used during tracking in order
to better describe the appearance of the target object.

A. Local Binary Pattern Features

The local binary pattern [13,14] is an image operator which
transforms an image into an array of integer labels which
describe the small scale appearance of the image [14]. The
LBP (local binary pattern) is an efficient texture classification
method which is invariant to monotonic grey level changes.
The local binary pattern was used to provide useful textural
descriptive information of the target object.

The basic LBP [13] was initially designed for texture de-
scription. The basic LBP operator assigns a label to each pixel
in the image. Let z(x, y) describe the 3 × 3 neighbourhood
surrounding a pixel. z(x, y) is described by

z(x, y) = I(x, y)− I(xc, yc) (17)

Where I(x, y) represents the pixel values in the 3 × 3
neighbourhood and I(xc, yc) represents the centre pixel in the
3 × 3 neighbourhood. Let s(z(x, y)) be the thresholding step
function where

s(z(x, y)) =

{
1 if z(x, y) ≥ 0
0 if z(x, y) < 0 (18)

The pixels surrounding the centre pixel in s(z(x, y)) form
a binary number which is used as a label to describe the
pixel. Fig. 1 shows an illustration of the basic LBP operator.
A histogram of these labels can be used to describe the image.

Traditionally the histogram describing a texture or image is
determined by separating uniforms patterns (such as 00000000
or 11001111) into bins. Where each unique uniform pattern
has a preallocated bin and all non-uniform patterns are grouped
in a single bin. There are 58 unique uniform patterns in the
basic LBP and 198 non-uniform patterns [14]. In order to
improve the rotational invariance of the LBP, the binary label
for each pixel is circularly bit-shifted to find a minimum binary

value which describes the pixel for eight possible orientations
of the LBP operator. This is shown by

LBP r,i
P,R = min

i
ROR(LBPP,R, i) (19)

Where LBP r,i
P,R denotes the output rotationally invariant

binary label, ROR(x, i) denotes the circular bitwise right
rotation of bit sequence x by i steps and LBPP,R denotes
the original basic LBP binary label.

Performing this rotation invariance step is useful in
that it allows the LBP to perform robustly when rotation
occurs as well as limiting the number of possible unique
uniform patterns. The unique uniform patterns are reduced
to the following 9 patterns 00000000, 00000001, 00000011,
00000111, 00001111, 00011111, 00111111, 01111111,
11111111 after the rotation invariance step.

The basic LBP operator with the rotation invariance step
was used for each channel in the RGB colour space. A 3-
dimensional RGB-LBP histogram with 10 bins per channel
was formed from the 3 channels R, G and B.

B. Edge Features

Edges describe the structure of an image, edges provide
beneficial descriptive information in object tracking when
objects in a scene have similar colour yet different structure.
A 2-dimensional edge histogram of size Ne × Ne with one
channel for edge magnitude and the other for edge direction
is used to describe the edge features in the target object. The
simple Scharr operator [15] was used to find edges in the
image as it provides efficient, robust and rotational invariant
edge detection. The gradients Dx(x, y) and Dy(x, y) are
represented by

Dx(x, y) = Sx

⊗
I(x, y) (20)

Dy(x, y) = Sy

⊗
I(x, y) (21)

Where Dx(x, y) is the gradient in the x direction, Dy(x, y)
is the gradient in the y direction, Sx is the simple Scharr
gradient operator in the x direction and Sy is the simple Scharr
gradient operator in the y direction,

⊗
is the convolution

operator and I(x,y) represents the intensity values in the image.
The edge magnitude denoted by D(x, y) and the gradient
direction denoted by θ(x, y) are represented by

D(x, y) =
√
Dx(x, y)2 +Dy(x, y)2 (22)

θ(x, y) = arctan(
Dy(x, y)

Dx(x, y)
) (23)

Where θ(x, y) is determined between edges directions 0◦

≤ θ(x, y) < 360◦. Edges were filtered such that only edges
with magnitudes above a threshold te were considered in the
edge feature histogram.



Fig. 1: Local Binary Pattern Operator

C. Colour Features

Colour histograms are most commonly used in conjunction
with the Mean Shift algorithm as they are robust to partial
occlusion and change in scale and rotation. They perform well
under non-rigid deformations of the target object and changing
complex backgrounds [4,12]. Colour histograms do however
fail when other objects or background features have the same
or similar colour. A 3-dimensional RGB colour histogram of
size Nc × Nc × Nc was used to describe the RGB colour
distribution of the target object. A 1-dimensional Hue (from
the HSV colour space) colour histogram of size Nh was used
to describe the Hue colour distribution of the target object. The
Hue histogram is useful as it is largely illumination invariant.

D. Colour and Edge Features

Colour and Edge features where combined in an effort
to combine structural and colour information in a single
histogram. Edges were found using the simple Scharr operator.
The greyscale gradient magnitude D(x, y) was determined for
each pixel in the target object region. The pixel value Ii(x, y)
for each RGB channel is determined by.

Ii(x, y) =

{
Ii(x, y) +Di(x, y) if D(x, y) ≤ te
Ii(x, y)−Di(x, y) if D(x, y) > te

(24)

Where Ii(x, y) is i’th RGB channel value for the pixel
I(x, y) and Di(x, y) is the gradient magnitude for the RGB
channel i. A 3-dimensional colour-edge histogram of size
Nc ×Nc ×Nc was used to describe Ii(x, y).

Let σ denote the scale of the target object. Due to the
elliptical shape of the target region, typically both background
and object features are present in the target region of scale
σ [10]. Background features in the target model can have an
effect on the localization accuracy of the tracking algorithm.
In order to minimize this effect 3 colour-edge histograms
were used to describe the target object. The 3 colour-edge
histograms were determined for target regions of scales σ, 0.8σ
and 0.6σ. Histograms formed from target regions smaller than
the scale of the object are less likely to contain background
features.

E. Background Weighted Colour Features

If some background features are present in the target
model and candidate, the localization performance would be
improved if the background feature information in the target
model and target candidate was suppressed. This is done

by weighting the target model and target candidate with a
background model at each frame such that the target object
has a more salient description relative to the background [4].

Let ô(y) denote the background model centred around y.
Let {xi}i=1...nh

denote the nh normalized pixel locations in
the background model region which are centred around y. Let
a(x) denote a concave, monotonically increasing, isotropic
kernel with a size (based on the scale of the target object)
specified by bandwidth h. The probability of the feature
u = 1...m in the background model histogram is determined
by

ôu(y) = Ch

nh∑
i=1

a(‖ y − xi
h

‖2)δ[b(xi)− u] (25)

where
Ch =

1∑nh

i=1 a(‖ y−xi

h ‖2)
(26)

The background kernel used is described by

a(x) =

 0 if x ≤ 1
x− 1 if 1 < x ≤ 2
0 otherwise

(27)

Where 1 represents the boundary of the target model or can-
didate region and 2 represents the boundary of the background
model region. The kernel a(x) assigns weights to pixels such
that features further from the object boundary have a higher
weighting. Let ô∗ denote the smallest non-zero histogram bin
in the background histogram ô(y). The scaling array vu [4]
used to minimize similar features between the background
model and the target model and candidate is described by

{vu = min(
ô∗

ôu
, 1)}u=1...m (28)

The background weighted target model q̂u and target can-
didate p̂u(y) are represented by

q̂u = Cvu

n∑
i=1

k(‖ x∗i ‖2)δ[b(x∗i )− u] (29)

where

C =
1∑n

i=1 k(‖ x∗i ‖2)
∑m

u=1 vuδ[b(x
∗
i )− u]

(30)

p̂u(y) = Chvu

nh∑
i=1

k(‖ y − xi
h

‖2)δ[b(xi)− u] (31)



where

Ch =
1∑nh

i=1 k(‖ y−xi

h ‖2)
∑m

u=1 vuδ[b(x
∗
i )− u]

(32)

A 3-dimensional background weighted colour histogram of
size Nc ×Nc ×Nc was used to describe a more salient RGB
colour representation of the target object.

IV. TARGET OBJECT LOCALIZATION

A. Feature Localization Weights

Each feature determines an updated target object position
ŷ1 using the Mean Shift localization algorithm. To determine
the best estimation of the target object’s updated position, a
weighted average is determined of the updated target object
positions determined by the various features. The updated
target object position ŷ1 is determined by

ŷ1 =

Kf∑
j=1

ωj ŷ1j (33)

Where ωj denotes the localization weight for feature j,
ŷ1j denotes the updated target object position for feature j
and Kf denotes the number of features. The feature weights
are determined from 3 global weights, The global weights
consist of predetermined feature weights, model-candidate
similarity feature weights and model-background similarity
feature weights.

The global model-candidate similarity feature weight deter-
mines a weight based on the similarity function between the
target model and target candidate. The higher the similarity,
the higher the weight associated with the feature. The model-
candidate similarity feature weight ωc is described by

ωcj =
1

(1− ρ[p̂j(y), q̂j ])(Cc)
(34)

where

Cc =

Kf∑
j=1

1

(1− ρ[p̂j(y), q̂j ])
(35)

Where ωcj denotes the model-candidate similarity feature
weight for feature j, q̂j denotes the target model for feature
j and p̂j(y) denotes the target candidate for feature j. The
global model-background similarity feature weight determines
a weight based on the similarity function between the target
model and background model. The higher the similarity, the
lower the weight associated with the feature. The model-
background similarity feature weight ωb is described by

ωbj =
ωpj

(ρ[ôj(y), q̂j ])(Cb)
(36)

where

Cb =

Kf∑
j=1

ωpj

(ρ[ôj(y), q̂j ])
(37)

Where ωbj denotes the model-background similarity feature
weight for feature j, ôj(y) denotes the background model

for feature j and ωpj
denotes predetermined feature weight

for feature j. The localization weight ωj for the feature j is
determined by

ωj = αωcj + βωbj + γωpj
(38)

where
α+ β + γ = 1 (39)

Where α, β and γ are constants which specify the re-
lationship between the various global weights and the fea-
ture weights. The features weights are normalized such that∑Kf

j=1 ωj = 1.

B. Scale Selection

It is necessary to determine the scale of the target object
to effectively track it through out a video sequence. Image
moments [16,17] are used to determine the scale of the target
object in this algorithm, a similar approach is used by [8]
and [18]. In [18] (CAMSHIFT) the scale and orientation is
determined using image moments on a skin probability back
projection. In [8] (SOAMST) the traditional kernel-based
Mean Shift object tracking algorithm is used, the similarity
weights ωi (12) are used as a probability back projection.
Image moments are used with the similarity weights to
determine the scale and orientation of the target object. A
similarity area estimation is used to correctly determine the
target object’s scale.

In this algorithm the similarity weights ωi are determined
for each pixel in the target region with a scale 1.2σ. Image
moments are then used in conjunction with the similarity
weights to determine the scale of target object in the current
frame. The similarity weights ωi are determined by

ωi =

Kf∑
j=1

ωjωij (40)

Where ωij denotes the similarity weight determined by (12)
for feature j. The zeroth order moment denoted by M00 is
determined by

M00 =

nh∑
i=1

ωi (41)

Where nh is the number of pixels in the target region with a
scale 1.2σ. The second order moments denoted by M20, M02

and M11 are determined by

M20 =

nh∑
i=1

ωix
2
i,1 (42)

M02 =

nh∑
i=1

ωix
2
i,2 (43)

M11 =

nh∑
i=1

ωixi,1xi,2 (44)



Where xi,1 denotes the i’th x value in the target region with
a scale 1.2σ and xi,2 denotes the i’th y value in the target
region with a scale 1.2σ. The second order central moments
denoted by µ20, µ02 and µ11 are determined by

µ20 =
M20

M00
− x̄21 (45)

µ02 =
M02

M00
− x̄22 (46)

µ11 =
M11

M00
− x̄1x̄2 (47)

Where x̄1 is the target object’s centre x position and x̄2 is
the target object’s centre y position. The second order central
moment covariance matrix donated by Cov is represented by

Cov =

[
µ20 µ11

µ11 µ02

]
(48)

The eigenvalues of the covariance matrix represent the size
of the axis a and b of the target object region. Half the height
of the target object is determined by b and half the width is
determined by a, they are represented by

a =
µ20 + µ02

2
−
√

4µ2
11 + (µ20 − µ02)2

2
(49)

b =
µ20 + µ02

2
+

√
4µ2

11 + (µ20 − µ02)2

2
(50)

It is assumed that the scale change between frames is rela-
tively small, to get a more accurate and smooth scale change
between frames the target height and width is determined by

a = (ζ)ap + (1− ζ)an (51)

b = (ζ)bp + (1− ζ)bn (52)

Where (ζ) denotes a constant which determines the rate
at which the target object’s scale should change, ap denotes
half the object width determined in the previous frame, an
denotes half the object width determined in the current frame,
bp denotes half the object height determined in the previous
frame and bn denotes half the object height determined in the
current frame.

C. State Estimation

The Mean Shift algorithm is not well suited for tracking
objects in the presence of full occlusions. In order to improve
the performance of the Mean Shift tracking algorithm in the
presence of partial and full occlusions a kalman filter [19,20]
is used. A kalman filter is a state estimation algorithm which
compares state prediction against state measurements to get
an accurate estimation of the true state.

The state prediction matrix F in Xk = FXk−1 + vk is
determined using simple equations of motion for position,

velocity and acceleration. The state prediction matrix also
called the system matrix is represented by

F =



1 0 1 0 1
2 0

0 1 0 1 0 1
2

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1


(53)

For the kalman filter to perform accurately the measurement
noise nk [20] needs to be estimated. The measurement noise
nk is used to estimate how reliable the measurements are in
zk = HXk + nk. An accurate estimation of the measurement
noise is necessary in order to minimize the effect of inaccurate
target object localization during occlusion. The measurement
noise nk is determined relative to the similarity between the
target model and the target candidate, the more similar the tar-
get model and candidate, the more accurate the measurement.
The measurement noise nk is described by

{nk = 10l(1−ρ[p̂(y), q̂]c) if εl+1 < ρ[p̂(y), q̂]c ≤ εl}l=0...3

(54)
where

ρ[p̂(y), q̂]c =

Kf∑
j=1

ρ[p̂j(y), q̂j ]ωj (55)

Where εl{l=0...3} are constants which specify the bounds
of the piecewise measurement noise estimation function. It
is assumed that a target object’s velocity is constant during
occlusion. Using this assumption in order to improve the
tracking performance during occlusion, the current state ma-
trix velocity is updated every frame with the target object’s
weighted average velocity Vak

represented by

Vak
= 0.85Vak−1

+ 0.15((1− Vnk
)Vk + Vnk

Vak−1
) (56)

Where Vnk
is the velocity noise at frame k determined by

{Vnk
= 0.2l if εl+1 < ρ[p̂(y), q̂]c ≤ εl}l=0...3 (57)

The state matrix velocity Xkv is updated with the weighted
average velocity such that Xkv

= 0.85Vak
+ 0.15Xkv

.

D. Tracking Algorithm Overview

Using the methods described in sections II, III and IV, the
tracking algorithm can be summarized as follows

1) Determine target model q̂j for features 1...j
2) Initialize iteration number ki ← 0
3) Initialize position y0 of candidate target in current frame
4) Determine candidate target p̂j(y0) for features 1...j
5) Calculate feature localization weights wj for features

1...j
6) Calculate similarity weights ωij for features 1...j
7) Calculate combined similarity weights ωi



8) Determine updated target object position y1
9) If ‖ y1 − y0 ‖< ε (where ε < 1) or if k ≥ N (where N

is chosen to be 20) stop. Go to step 10)
Otherwise ki ← ki + 1 and y0 ← y1. Go to step 4)

10) Determine height 2b and width 2a of target object
11) Update target object states using kalman filter, this

includes updating object position. Determine y0 for the
next frame using state prediction matrix F

12) Load next frame, go to step 2)

V. EXPERIMENTAL RESULTS

The proposed algorithm’s performance is compared to
the original Mean Shift tracking algorithm with variable
scale selection in [4] and the SOAMST algorithm in [8].
These algorithms were selected to use 64 × 64 × 64 RGB
colour histograms, the algorithms in [4] and [8] were
implemented using the same kalman filter implementation
used in the proposed tracking algorithm. The algorithms
were tested on a complex scene (video sequence:
motinas multi face frontal.avi, frames: 1 - 300, target:
Emilio) [21]. A persons face (Target: Emilio) was tracked
in a complex environment with partial and full occlusions,
change in scale, change in illumination and slight change
in the appearance of the target object. During the video
sequence the target’s face is fully occluded by the face of a
person (target: Joe, frames: 88 - 95). There is a rapid change
in scale of the target (frames: 250 - 300) and a change in
illumination experienced by the target (frames: 196 - 275).

The tracking performance of the algorithms can be observed
from Fig. 2 (visual description of tracking performance for
proposed algorithm, original Mean Shift tracking algorithm
and SOAMST algorithm) and Fig. 3 (graphs describing posi-
tion and scale selection error from ground truth). The original
Mean Shift object tracking algorithm shows good performance
in tracking the target object, however once occlusion occurs
the tracker diverges, the algorithm does not benefit greatly
from the kalman filter implementation. The SOAMST algo-
rithm shows good performance in tracking the target object,
however the algorithm selects the scale of the target object
abruptly and inaccurately. Like the original Mean Shift algo-
rithm the SOAMST algorithm diverges when occlusion occurs
and does not benefit greatly from the kalman filter imple-
mentation. The proposed algorithm shows good performance
in tracking the target object through out the video sequence.
The algorithm localizes the target object inaccurately during
occlusion, however the algorithm does not diverge during
occlusion. The proposed tracking algorithm benefits greatly
from the kalman filter implementation in minimizing the effect
of object occlusion.

VI. CONCLUSION

A tracking algorithm using the Mean Shift framework is
presented which performs robustly in complex scenes where
occlusion occurs. The algorithm uses multiple features to

uniquely describe objects, image moments to effectively de-
termine the target object’s scale and a kalman filter to aid
the localization algorithm during occlusion. The algorithm has
shown superior tracking performance in complex scenes when
compared to the original Mean Shift tracking algorithm and
the scale adaptive SOAMST algorithm.

REFERENCES

[1] K. Fukunaga and L. Hostetler, “The Estimation of the Gradient of a
Density Function, with Applications in Pattern Recognition,” in IEEE IT,
vol. 21, no. 1, pp. 32 - 40, 1975.

[2] Y. Cheng “Mean Shift, Mode Seeking, and Clustering,” in IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 790 -
799, 1995.

[3] D. Comaniciu and P. Meer, “Mean Shift Analysis and Applications,” in
International Conference on Computer Vision, vol. 2, pp. 1197 - 1203,
1999.

[4] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-Based Object Tracking,”
in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
25, no. 5, pp. 564 - 577, May 2003

[5] J. Wang and Y. Yagi, “Integrating Shape and Color Features for Adaptive
Real-time Object Tracking,” in IEEE International Conference on Robotics
and Biomimetics, pp. 1 - 6, 2006

[6] A. Babaeian, S. Rastegar, M. Bandarabadi and M. Rezaei, “Mean Shift-
Based Object Tracking with Multiple Features,” in 41st Southeastern
Symposium on System Theory, pp. 68 - 72, March 2009

[7] R. T. Collins, “Mean-shift blob tracking through scale space,” in IEEE
Conference on Computer Vision and Pattern Recognition, pp. 234 - 240
2003

[8] J. Ning, L. Zhang1, D. Zhang and C. Wu, “Scale and Orientation Adaptive
Mean Shift Tracking,” in Computer Vision, IET, vol. 6, iss. 1, pp. 52 -
61, 2012

[9] S. Zhang and Y. Bar-Shalom, “Robust Kernel-Based Object Tracking with
Multiple Kernel Centers,” in 12th International Conference on Information
Fusion, pp. 1014 - 1021, July 2009

[10] A. Yilmaz, “Object Tracking by Asymmetric Kernel Mean Shift with
Automatic Scale and Orientation Selection,” in IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1 - 6, 2007

[11] F. Aherne, N. Thacker, and P. Rockett, “The Bhattacharyya Metric as an
Absolute Similarity Measure for Frequency Coded Data,” in Kybernetika,
vol. 34, no. 4, pp 363 - 368, 1998.

[12] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach Toward
Feature Space Analysis,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 24, no. 5, pp. 603 - 619, May 2002.

[13] T. Ojala, M. Pietikinen, and D. Harwood, “A comparative study of
texture measures with classification based on feature distributions,” in
Pattern Recognition, vol. 29, no. 1, pp. 51 - 59, 1996.

[14] M. Pietikinen, A. Hadid, A. Zhao and T. Ahonen “Local Binary Patterns
for Still Images” in Computer Vision using Local Binary Patterns, 2011,
2011, XV, 209 p. 87 illus., 56 in color, pp 13 - 43

[15] B. Jhne, H. Scharr, and S. Krkel, “Principles of filter design,” in B.
Jhne, H. Hauecker, and P. Geiler, editors Handbook of Computer Vision
and Applications,, vol. 2, pp 125 - 151. Academic Press, 1999.

[16] F. Chaumette, “Image Moments: A General and Useful Set of Features
for Visual Servoing,” in IEEE Transactions on Robotics, vol. 20, no. 4,
pp 713 - 723. August 2004

[17] R. Mukundan and K. R. Ramakrishnan, Moment Functions in Image
Analysis: Theory and Applications, World Scientific, Singapore, 1996.

[18] G. Bradski, “Computer Vision Face Tracking for Use in a Perceptual
User Interface,” in Intel Technology Journal, 2(Q2), pp. 1-15, 1998.

[19] G. Welch and G. Bishop, SIGGRAPH 2001, Course 8, Topic: An
Introduction to the Kalman Filter, University of North Carolina at Chapel
Hill, Department of Computer Science, Chapel Hill, NC 27599-3175,
2001

[20] K. Nickels and S. Hutchinson, “Estimating Uncertainty in SSDBased
Feature Tracking,” in Image and Vision Computing, vol. 20, pp. 47-58,
2002.

[21] E. Maggio, E. Piccardo, C. Regazzoni and A. Cavallaro, “Particle PHD
filter for multi-target visual tracking,” in IEEE International Conference
on Acoustics, Speech and Signal Processing,(ICASSP 2007), Honolulu
(USA), April 15-20, 2007



(a) Frame: 30 (b) Frame: 80 (c) Frame: 150 (d) Frame: 270

(e) Frame: 30 (f) Frame: 80 (g) Frame: 150 (h) Frame: 270

(i) Frame: 30 (j) Frame: 80 (k) Frame: 150 (l) Frame: 270

Fig. 2: Proposed algorothm (a - d), Original Mean Shift algorothm (e - h), SOAMST (i - l)

(a) Position Error from Ground Truth (b) Scale Selection Error from Ground Truth

Fig. 3: Tracking Error from Ground Truth


