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Abstract 21 

The current review provides an overview of different types of superabsorbent polymers (SAPs) together 22 

with appropriate strategies elaborated to enable their synthesis. The main focus will be on 23 

polysaccharide-based, semi-synthetic and ‘smart’ SAPs along with their derivatives. SAPs have already 24 

shown their use in a plethora of applications including diapers, the biomedical field, agriculture, etc. 25 

The different polymer classification possibilities are discussed, as well as the classification of the 26 

constituting building blocks. The main part of SAPs still has a synthetic origin. However, as they are 27 

often not biocompatible, biodegradable or renewable, natural SAPs based on polysaccharides have 28 

gained increasing interest. Due to the low solubility of synthetic polymers, purification problems or the 29 

need for organic solvents, a trend has emerged towards combining polysaccharides with synthetic 30 

monomers to create semi-synthetic, hybrid SAPs for specialized applications with fine-tuned properties 31 

including wound dressings, fertilizers or self-healing concrete. These specialized, semi-synthetic SAPs 32 

offer strong potential for a series of applications in the future. However, future research in this respect 33 

is still needed to optimize homogeneity and to increase gel fractions. A final part of this review includes 34 
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‘smart’ SAPs such as SAPs with a T-, electro- and pH-sensitivity. These ‘smart’ SAPs are especially 35 

becoming useful for certain biomedical applications such as drug release for which an in vivo location 36 

can be targeted. The use of ‘smart’, semi-synthetic SAPs with fine-tuned characteristics combining the 37 

best characteristics of both synthetic and natural SAPs, offer the greatest potential for the future. 38 
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Highlights 46 

 Polysaccharide-based SAPs sustainable alternative for conventional, synthetic SAPs  47 

 Semi-synthetic SAPs with fine-tuned properties for specialized applications 48 

 Smart SAPs particularly interesting for specific applications such as drug delivery 49 
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1. Cornerstones associated with selecting the ideal SAP for a dedicated 84 

application 85 

 86 

Superabsorbent polymer materials (SAPs) are cross-linked polymer networks constituted by water-87 

soluble building blocks. SAPs are generally composed of ionic monomers and are characterized by a 88 

low cross-linking density, which results in a large fluid uptake capacity (up to 1000 times their own 89 

weight). Interestingly, these superabsorbent networks can absorb and retain aqueous solutions up to 90 

several hundred times their own weight [1-4], while even retaining it under pressure [1, 3]. A clear 91 

distinction can be made between hydrogels and SAPs. SAPs are generally composed of ionic monomers 92 

and possess a low cross-linking degree, which results in a larger fluid uptake capacity compared to 93 

conventional hydrogels (up to 10 times their own weight) [5, 6]. However, as both terminologies are 94 

often inappropriately used in literature, references with hydrogels will also be considered in the current 95 

review. 96 

The ideal SAP needs to fulfill a number of requirements (depending on the application) including a high 97 

absorption capacity up to 1000 times its own weight, a tunable rate of absorption, a high absorbency 98 

when exposed to load, a high gel fraction after crosslinking (ranging from 85 to 95% [7, 8]), a low cost 99 

[9], excellent durability and stability upon swelling or during storage (shelf life of several years desired), 100 

non-toxicity and re-wetting capability (i.e. the ability to completely release the absorbed liquid as a 101 

function of time) [10]. To increase the strength and stability of the SAP, as an example for membrane 102 

shaped SAPs, the monomers are dissolved to enhance the mobility of the chains. The goal generally is 103 

not to meet all the above-mentioned criteria for one particular SAP, but rather to focus on those particular 104 

parameters which are useful for the targeted application. In the current manuscript, the focus is briefly 105 

placed on different parameters affecting the swelling capacity of SAPs, as further described in section 106 

2. This parameter is generally of paramount importance for various applications. Other parameters such 107 

as the gel strength and gel stability are beyond the scope of the review. More details on gel strength or 108 

gel stability of different SAPs can be found in other reviews [7, 11-13].  109 

After the absorption capacity, the different classifications in which SAPs can be subdivided will be 110 

presented in more detail.  111 

2. Factors determining the absorption capacity of a SAP 112 

 113 

One of the most important characteristics a SAP needs to show is a large water absorption capacity (i.e. 114 

the water absorbed by the SAP relative to the sample mass). The latter is determined by several factors. 115 

The osmotic pressure forces water into a polymer due to a higher ionic concentration inside the polymer 116 

compared to the surrounding solution because of the presence of charged and hydrophilic moieties onto 117 

the ionic monomers. The combination of these charged groups and additional polar moieties in a SAP 118 
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(hydroxyl, carbonyl or amine functionalities) attract water and induce hydrogen bonding. The amount 119 

of polar and/or ionic groups is directly proportional to the swelling capacity. Introducing a SAP into a 120 

solution with a lower ionic concentration will lead to a higher swelling capacity [14].  121 

The flexibility on the other hand depends on the cross-link density. A less dense network results in a 122 

more flexible material, but also in a higher absorption capacity. Conversely, insufficient cross-linking 123 

can result in a material which partially dissolves, leading to a low gel fraction, when being introduced 124 

in an aqueous solution. 125 

Raising the temperature of the water reduces the time required to reach equilibrium swelling [15]. 126 

However, a higher temperature can also result in a reduced or increased swelling, depending on whether 127 

or not the SAP exhibits thermo-responsive behavior [15]. The latter will be discussed in the section 128 

covering ‘smart’ SAPs (section 8, vide infra). 129 

As already mentioned earlier, SAPs are often composed of ionic constituents. These ionic charges result 130 

from an acid-base balance. As a result, changing the pH of the aqueous environment can lead to 131 

(de)protonation of acidic or basic groups. An acidic (basic) monomer will mainly be (de)protonated 132 

below (above) its pKa, thereby leading to a reduced swelling capacity. When the pH is higher (lower) 133 

than the pKa, acids become negatively (base becomes positively) charged which results in an increased 134 

swelling due to an increased affinity for water. Additionally, the repulsion of the charges leads to an 135 

increased free volume, in which water can accumulate. 136 

Exerting a mechanical force onto a swollen SAP will expel part of the water out of the SAP. The swelling 137 

capacity during application of such a force is referred to as the absorbency under load [16, 17].  138 

Another parameter influencing the absorption capacity is the surface to volume ratio. Due to a higher 139 

surface to volume ratio, small particles swell faster compared to larger particles which is useful for 140 

example for osmosis desalination [18, 19]. The swelling capacity is thus very depending on a multitude 141 

of parameters. The upcoming section will describe the different possible classifications to subdivide 142 

SAPs. 143 

 144 

3. Overview of polymer classification possibilities 145 

 146 

Depending on the characteristics taken into consideration, SAPs can be subdivided into different 147 

categories:   148 

3.1. Classification with respect to morphology 149 

SAPs can have a different morphological appearance in line with the envisaged application (Figure 1) 150 

including fibers [20, 21], powders [22, 23], granules [24, 25] or even sheets [1]. The original shape of a 151 

SAP should ideally not be altered by water uptake, which implies that the SAP should have enough 152 

strength to rule out any physical degradation whatsoever of the structure, even upon exposure to pressure 153 
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[10]. Powder and granule SAPs are often made through solution polymerization (again to enhance 154 

mobility) with a redox system, after which they are ground to the desired particle size [26, 27].  155 

 156 

3.2. Classification with respect to general building blocks 157 

The main building blocks of a SAP (Figure 1) can either be synthetic (e.g. acrylates, acrylamide), natural 158 

or a combination thereof (cfr. semi-synthetic [28, 29]) . Synthetic SAPs are generally synthetized from 159 

petrochemically-based monomers such as acrylates or acrylamides [27, 30-32] while natural SAPs 160 

include polypeptides and polysaccharides [33, 34]. In case of semi-synthetic SAPs, natural and synthetic 161 

building blocks are generally combined to create a SAP exhibiting fine-tuned characteristics towards 162 

specialized applications [29, 35]. This classification is the most general and widely used and will be 163 

mainly focused on throughout the upcoming paragraphs. Some examples of semi-synthetic SAPs 164 

include methacrylated polysaccharides combined with acrylic monomers for application in mortar [6, 165 

36, 37], cationic guar gum/poly(acrylic acid) polyelectrolyte hydrogels or chitosan cross-linked 166 

poly(acrylic acid) hydrogels for drug release [38]. The synthesis of synthetic SAPs can lead to a lack of 167 

reaction control and high polydispersity, but these SAPs often have high mechanical strengths. Natural 168 

SAPs are readily available, are non-toxic and sustainable. The semi-synthetic SAPs can thus lead on the 169 

one hand to more sustainable and biocompatible SAPs than synthetic SAPs and on the other hand 170 

mechanically stronger SAPs than the pure natural SAPs.  171 

 172 

3.3. Classification based on the cross-linking mechanism 173 

This classification is especially interesting with respect to mechanical properties for a SAP. Physically 174 

and chemically cross-linked SAPs (Figure 1) can be distinguished, which are characterized by different 175 

association mechanisms connecting the constituting polymer chains. Physical bonds such as hydrogen 176 

bonds or molecular entanglements are weak (typically only several kJ/mol) compared to chemical (i.e. 177 

covalent) linkages (> 100 kJ/mol). An example of physically cross-linked SAPs includes the 178 

combination of sodium alginate with multivalent cations such as Ca2+ to create calcium alginate. This 179 

will be further discussed in detail in section 7.1. Natural SAPs based on alginate. Chemical cross-linking 180 

results in strong covalent bonds (by linking with functionalized natural starting materials or synthetic 181 

cross-linkers, often by free radical polymerization, thereby creating networks).  182 

 183 

3.4. Classification based on the type of electrical charges present 184 

Within this classification, four categories can be distinguished depending on the presence of electrical 185 

charges along the polymer backbone and/or side chains (Figure 1) [1]: (1) non-ionic—polymers 186 

possessing no charges (e.g. agarose); (2) ionic—SAPs with either anionic or cationic moieties (e.g. 187 

synthetic acrylates or alginate); (3) ampholytic—both acidic as well as basic functionalities are present; 188 
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(4) zwitter-ionic—SAPs containing both anionic and cationic groups with an overall net charge of zero. 189 

This classification is used in the context of electro-sensitive ‘smart’ SAPs. 190 

 191 

 192 

 193 

Figure 1: Subdivision of possible SAP classifications. 194 

 195 

4. Importance of SAPs 196 

Both the industrial and academic research and the commercial relevance of SAPs have grown over the 197 

years. The upcoming subsections will describe these developments in more detail. 198 

4.1. Comparative study on SAP and hydrogel publications 199 

Throughout the last 20 years, SAP research has shown a growing tendency. The latter is evident based 200 

on the amount of published research articles covering ‘hydrogel’ or ‘superabsorbent polymer’ in their 201 

abstract which increased gradually over time (see Figure 2). Nowadays, this trend should be placed into 202 

further perspective as in earlier times, the terminology ‘hydrogel’ and ‘SAP’ has often been used 203 

irrespective of the swelling potential. More recently, differentiation between both has become more 204 

pronounced based on the extreme difference in swelling capacity enabling proper identification of both 205 

material classes.  206 
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 207 

Figure 2: Cumulative number of publications containing the words ‘hydrogel’ or ‘superabsorbent 208 

polymer’ in their abstract according to Web of Science as a function of the publication year. 209 

4.2. Overview of SAP applications 210 

To date, SAPs have found their entry in a multitude of applications including diapers, sanitary napkins 211 

[39, 40], for biomedical purposes (e.g. drug release [39, 41], and wound healing [39, 42, 43]), while 212 

hydrogels are more often used for applications in which swelling is less preferred such as in tissue 213 

engineering [39, 44] or (disposable) contact lenses [45, 46]. SAPs are also strongly used in the 214 

agricultural sector as soil conditioners, nutrient carriers and water reservoirs (to conserve water in dry 215 

areas) [4, 47-54]. Other applications include water purification and water-blocking tape. The latter is 216 

composed of a non-woven textile covered with a binder and a SAP as a top layer [55-57]. For more 217 

details on these strong developing agricultural applications of SAPs, the reader is referred to Guilherme 218 

et al. [58].Other applications include water purification and water-blocking tape. The latter is composed 219 

of a non-woven textile covered with a binder and a SAP as a top layer [56, 57]. With respect to the latter, 220 

the tape covers for example power transmission cables and retains water that would leach through the 221 

plastic case present around the cable [59, 60]. Water-blocking tape has also been more recently used at 222 

the different stages of oil production [61-63]. A final application receiving particular attention during 223 

the last decade is the use of SAPs in mortar and concrete and especially for self-sealing and self-healing 224 

of concrete cracks [6, 22, 36, 37, 64-69]. The cost estimation and life cycle assessment of these 225 

superabsorbent polymers compared to other self-healing concrete mechanisms has been investigated 226 

strongly in the past few years [9, 28, 70, 71].  227 

As such, the field of SAPs is already crowded in a plethora of applications while potential retains in 228 

many others. An overview of the different biomedical and non-biomedical applications using SAPs and 229 
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hydrogels is listed in Table 1. A whole range of different SAPs is used for the applications described in 230 

the current section. The following section will subdivide the SAPs according to their general building 231 

blocks and go into more detail on the their respective advantages and disadvantages.  232 

5. Synthetic vs. polysaccharide-based natural SAPs  233 

 234 

In addition to the classification based on the absence or the presence of charges (ionic, non-ionic, 235 

ampholytic or zwitter-ionic) or the cross-linking type (covalent versus physical) or the physical 236 

appearance (i.e. SAP morphology), the most important subdivision exists between synthetic, semi-237 

natural or semi-synthetic and natural SAPs [10]. Typical monomers applied in synthetic SAP 238 

development include among other: acrylic acid (AA), acrylamide (AM), methacrylic acid (MAA), 239 

dimethylaminoethyl methacrylate (DMAEMA), dimethylaminopropyl methacrylamide (DMAPMA), 2-240 

acrylamido-2-methylpropane sulfonic acid (AMPS), etc.  (see Figure 5, upper panel, at the end of section 241 

7.6.). They can be introduced into a cross-linked (co)polymer network using a synthetic cross-linker 242 

such as N,N’-methylene bisacrylamide (MBA) (Figure 5). Semi-synthetic or semi-natural SAPs can be 243 

synthesized by the addition of a synthetic constituent to a natural, polymeric backbone through graft 244 

polymerization [3, 32, 72, 73]. In the latter case, the natural backbone is acting as a natural cross-linker 245 

for the synthetic monomers. Natural SAPs include polysaccharides and proteins. Proteins used for SAP 246 

applications are acylated [74] and are often grafted onto other polymers such as poly(acrylic acid) [30, 247 

75] to induce cell-interactive properties when targeting biomedical applications. The limited use of 248 

proteins as such for SAP applications resulted in the focus of the current review to be on polysaccharides. 249 

Polysaccharides can be harvested from biosynthesis occurring in plants and animals. In recent research, 250 

polysaccharides produced by bacteria such as bacterial hyaluronan, gellan or xanthan have also been 251 

reported [76]. Currently used natural polymers for SAP include polysaccharides such as: alginate [36, 252 

76-79], chitosan [76, 80, 81], agar [82], carrageenan [83], dextrin [84], cellulose [51, 85], starch [85], 253 

gellan gum [76, 86] as well as proteins such as soybean, fish and collagen-based [10]. 254 

They have experienced a growing interest because of their designation as being biodegradable, readily 255 

available, biocompatible, non-toxic, renewable and sustainable. In addition, due to the increasing cost 256 

and finite nature of crude oil, natural polymers form a cost-effective and sustainable alternative [87, 88]. 257 

Indeed, their renewability causes them to cause a lower environmental burden than synthetic SAPs [28]. 258 

Water-soluble polysaccharides carry functional groups such as alcohols, carboxylic acids and/or amines. 259 

These moieties can be used for cross-linking or grafting of other polymers. The upcoming section 260 

provides an overview of the origin, the composition and the application field of both synthetic as well 261 

as natural SAPs. The most often used natural polymers including alginate, chitosan, agarose, κ-262 

carrageenan, cellulose and starch will be covered in greater detail. An overview of the different 263 
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advantages, disadvantages and recent examples of synthetic, natural and semi-synthetic SAPs can be 264 

found in Table 1.  The upcoming section will go into more detail on synthetic SAPs. 265 
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Table 1: Advantages and disadvantages of  the SAP types combined with the polymeric constituents and their applications. 266 

SAP type Advantages Disadvantages Material used References Application(s) 

Synthetic Abundant, 

multiple 

applications, 

high purity 

Often not 

biocompatible, no 

cell adhesion, not 

biodegradable, not 

renewable, possible 

toxicity, lack of 

reaction control 

Poly(acrylate) 

Poly(acrylic acid-co-acrylamide) 

 

Silicone 

Poly(2-hydroxyethyl methacrylate) 

Poly(ethylene glycol) 

 

[56, 89] 

[26, 27, 50, 

90] 

[46] 

[91] 

[42, 65] 

Hygiene product, water purification 

Self-healing concrete, drug release, 

nutrient carrier 

Contact lens 

Ventricular catheter 

Wound healing, self-healing concrete 

    

Natural Renewable, 

biocompatible, 

biodegradable, 

decreased 

environmental 

impact, readily 

available, 

sustainable, 

proteins are cell 

adhesive 

Extraction methods 

needed for the 

starting product, 

modifications 

required to create 

SAP 

Shelf-life/sensitive 

storage conditions 

 

Starch 

 

Alginate-g-gelatin 

Alginate  

Cellulose 

 

Lignin 

Gelatin 

Chitosan 

Pectin 

Guar gum 

[4, 25, 39, 

48] 

[34, 92] 

[68, 93] 

[51, 94-96] 

[97] 

[98] 

[57, 99, 100] 

[39, 101] 

[53] 

 

Slow release fertilizer, soil 

conditioner, diaper 

Tissue engineering, wound healing 

Self-healing concrete, wound healing 

Personal care, water purification, 

water reservoir, tissue engineering 

Water purification 

Water purification 

Drug delivery, water purification 

Drug delivery, wound healing 

Nutrient carrier 
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Semi-

synthetic 

Advantages of 

both 

synthetic/natural

, fine-tuned 

properties 

Phase separation 

Loss of 

biodegradability 

Homogeneity  

Starch-poly(acrylamide) 

Acrylic acid/gelatin 

Carboxymethyl cellulose/acrylic acid  

Chitin-acrylate 

Chitosan-poly(acrylic acid) 

Methacrylated alginate-acrylates 

Methacrylated agarose/chitosan-

DMAEMA 

Hydroxyethylacryl chitosan/sodium 

alginate 

Alginate-poly(acrylic acid- co-acrylamide) 

Carboxymethyl starch-g-polyacrylamide 

Poly(acrylic acid)/nanofibirllated cellulose 

Cellulose/Polyethylenimine 

 

[33] 

[8] 

[102] 

[31, 32] 

[38, 73] 

[28, 36, 70] 

 

[37, 81] 

 

[103] 

 

[36, 104] 

[105] 

[106] 

[107] 

 

Slow release fertilizer 

Drug release 

Water retention 

Water retention, personal care 

Drug release, wound dressing 

Self-healing concrete 

 

Self-healing concrete 

 

Drug release 

 

Wound healing, self-healing concrete 

Slow release fertilizer 

Personal care, diapers 

CO2 capture 

  

267 
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6. The composition, the origin and the use of synthetic SAPs 268 

The majority of SAPs used nowadays have a synthetic origin. The most often used monomers are based 269 

on acrylates or acrylamides [9, 27, 108]. Free-radical polymerization of the vinyl monomers in the 270 

presence of a multifunctional cross-linker is the most used technique for the preparation of acrylic-based 271 

synthetic SAPs [7, 10]. Initiation of the reaction can be performed on the one hand through free-radical 272 

azo- or peroxide-based thermal dissociative species or on the other hand through the use of a redox 273 

system [109]. A straightforward and often used process in this respect is the solution polymerization of 274 

AA either in the presence or absence of its salts in an aqueous solution together with a water-soluble 275 

cross-linker such as N,N’-methylene bisacrylamide. However, there is a lack of control over the reaction 276 

as well as difficulty to handle a rubbery/solid reaction product and issues with the particle size 277 

distribution (cfr. polydispersity). Additionally, the inhibitor is usually not removed due to technical 278 

difficulties and cost-related issues associated with an industrial process [110]. 279 

Synthetic SAPs can be used in a variety of biomedical applications including coatings for catheters [91, 280 

111], burn dressings [112, 113], drug delivery systems [7, 114] or other applications such as 281 

electrophoresis gels [115] and many more [116]. They can also be used for non-biomedical applications 282 

such as diapers, in water purification system[117], as water beads for plants [118] or as matrix for 283 

electronics [119]. More recent applications involve the use of SAPs based on AA and AM in concrete 284 

to mitigate autogenous shrinkage [120] or self-healing applications [28, 67]. AM-based SAPs have also 285 

found their entry in agricultural applications [121]. Poly(acrylate/acrylic acid) SAPs have been used for 286 

water conservation in sandy soil [108]. Cyclic acetal-based SAPs have been developed for applications 287 

requiring biodegradability [122].   288 

 289 

However, despite being used for a variety of applications, synthetic SAPs are not renewable or 290 

sustainable and often not biodegradable. Conversely, a more sustainable approach involves the use of 291 

natural SAPs. The upcoming paragraphs will describe in more detail the different polysaccharides used 292 

to develop natural SAPs along with their derivatives to create semi-synthetic SAPs.  293 

 294 

7. Natural SAPs based on different polysaccharides 295 

The current section will deal with the various polysaccharides used in SAP applications being alginate, 296 

chitosan, agarose, carrageenan, cellulose and starch. They each have their properties rendering them 297 

useful for certain applications such as the water solubility of alginate, the thermo-sensitivity of chitosan 298 

or the abundance of cellulose and starch. The following subsections focus on all these polysaccharides 299 

and their derivatives in greater detail. 300 
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7.1. Natural SAPs based on alginate and its derivatives 301 

 302 

Sodium alginate (Figure 5) is a water-soluble, unbranched anionic polysaccharide extracted from the 303 

cell walls of brown algae (i.e. phaeophyceae) [77, 123]. The quality and amount of alginate depends on 304 

the type and age of the algae and the applied extraction method [76, 78]. It is a linear copolymer 305 

composed of β-D-mannuronate (M, pKa 3.4) and α-L-guluronate (G, pKa 3.7), covalently linked in 306 

varying sequences and blocks and is commercially available as a sodium salt (NaAlg) [124, 125]. G-307 

blocks are stiffer than M- or alternating GM-blocks because they are linked via their axial positions, 308 

instead of the equatorial links that are found in M-blocks. The exact composition of alginate chains 309 

varies with the source, the harvest location, the season and the part of the seaweed used. These factors 310 

also influence the gelling capacity and strength of the produced alginate. Typical molecular weights 311 

range between 50 and 100,000 kg/mol. Alginate contains carboxylic acid groups which become 312 

negatively charged in aqueous solutions possessing a pH above the pKa of the monosaccharide units, 313 

rendering them suitable to be applied in pH-sensitive SAPs, as discussed in the section covering ‘smart’ 314 

SAPs (see section 1.8.3).  This can be interesting for example for a controlled self-healing concrete with 315 

pH-responsive SAPs [68]. The total alginate production is estimated to be approximately 25,500 tonnes 316 

per year (of which 30% for the food industry) [126]. As such it is one of the most used polysaccharides.  317 

The two types of processing methods to manufacture alginate include the ‘acid precipitation method’ 318 

and the ‘calcium precipitation method’. For the former, the polymer is typically extracted using 0.1 - 319 

0.2 M mineral acid (e.g. HCl). The insoluble alginic acid is then converted into soluble NaAlg through 320 

an aqueous alkali solution such as sodium hydroxide. Next, the extract is filtered to remove undesired 321 

solid material. Subsequently, the NaAlg can be obtained by evaporation. The latter method involves the 322 

addition of calcium chloride or an acid to precipitate calcium alginate or alginic acid respectively [127]. 323 

Aqueous alginate solutions exhibit shear thinning while the viscosity depends on the polymer 324 

concentration, its molecular weight and the polymer composition [128, 129]. 325 

 326 

Interestingly, when NaAlg is combined with multivalent cations such as calcium (Ca2+, originating from 327 

salts such as calcium chloride, CaCl2), a ionically cross-linked network is formed as the carboxylate 328 

moieties become coordinated by the cations, thereby becoming insoluble in water. The anionic groups 329 

will attract water into the structure, leading to SAP behavior. Helical chains are formed in the presence 330 

of calcium ions and arrange into the so-called ‘egg-box’ model, as illustrated in Figure 3 [130]. Another 331 

way to induce gel formation is by forming intermolecular hydrogen bonds by lowering the pH of the 332 

alginate solution below the pKa of both uronic acid groups. These gels are however more brittle 333 

compared to the ionic calcium alginate gels . This increased brittleness is related to the presence of 334 

interconnected random aggregates compared to the calcium alginate. 335 

 336 
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Alginate is often used for biomedical applications (e.g. controlled drug release, cell encapsulation, dental 337 

impression, wound dressing) [131-134] and in bioplastics (packaging, textiles, paper) [135]. It is also 338 

used in the food industry as a stabilizer, emulsifier and gelling agent [76, 78, 136]. When modified with 339 

propylene glycol, it can be used to bind edibles (e.g. microcrystalline cellulose [137], starch [138], etc.) 340 

under acidic conditions.  341 

 342 

 343 

Figure 3: Calcium coordination of the egg box model of calcium alginate (-GMGM-) formed only by 344 

the G-blocks.  345 

 346 

Naturally based SAPs such as alginate also have certain disadvantages such as their low solubility, the 347 

need for purification through dialysis as well as scalability issues related to pilot installations. Therefore, 348 

there is a need to further modify these natural SAPs to create semi-synthetic SAPs. To ensure stability 349 

of processed, alginate-based materials or to further tune their physical properties, they are often modified 350 

in line with the desired application. An overview of commonly applied derivatization strategies 351 

elaborated for the polysaccharides, is given as a second part of the subsection of each polysaccharide, 352 

together with their respective applications. Care should be taken with respect to the derivatization of 353 

polysaccharides by incorporating monomers or grafts as this can also lead to modified biological 354 

properties. Indeed, depending on the envisaged application, biodegradability and toxicity of the 355 

modified SAPs should be investigated. 356 

The hydroxyl groups of alginate can be modified by acetylation to increase the swelling potential of 357 

calcium gels [139], by phosphorylation which increases their resistance towards degradation [140] and 358 

by sulfation to ensure blood-compatibility and anticoagulant activity [141]. Its interaction with a cellular 359 

environment can be enhanced by the introduction of cell-signaling molecules [142-144]. To induce 360 
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hydrophobic or amphiphilic characteristics, hydrophobic moieties have already been attached onto the 361 

hydrophilic alginate backbone to prevent erosion in drug release applications [145-147]. 362 

Graft polymerization can be used as an alternative method to change some characteristics of an alginate 363 

gel. A great variety of polymers have already been grafted onto alginate such as poly(acrylonitrile), 364 

poly(methyl acrylate), poly(methyl methacrylate), polyamides, itaconic acid and poly(acrylic acid-co-365 

acrylamide) [148-152].  366 

Poly(N-isopropyl acrylamide) (PNIPAAm) has already been grafted onto alginate using the carboxylic 367 

acid moieties by activating the acid with a carbodiimide followed by reaction with the amine group of 368 

PNIPAAm to introduce an amide linkage [153, 154]. Additional cross-linking with Ca2+ created a 369 

thermo-responsive polymer network as the lower critical solution temperature (LCST) behavior of 370 

PNIPAAm decreased the swelling capacity at temperatures exceeding the critical temperature. 371 

Instead of physical cross-linking, which is associated with a limited stability, covalent cross-linking 372 

methods have also been established. For example, epichlorohydrin in a NaOH solution can be combined 373 

with ionically cross-linked alginate beads to induce covalent links between the hydroxyl groups present 374 

in alginate [155, 156]. Glutaraldehyde can also be used for the formation of acetal groups through 375 

reaction with the hydroxyl functionalities [157]. Another technique to develop covalently cross-linked 376 

alginate is by activating (with 2-chloromethyl-pyridine iodide) the acid moiety followed by subsequent 377 

reaction with a diamine to create amide-linked chains [148]. These approaches have resulted in a 378 

multitude of high-end applications such as beads for ion exchange chromatography to separate optical 379 

isomers of water-soluble α-amino acids, cell encapsulation and controlled drug release [127].  380 

A very straightforward but promising strategy to enable the development of a photo-crosslinked covalent 381 

network is the introduction of methacrylate moieties. For example, methacrylic anhydride (MAAH) can 382 

be used to enable simultaneous grafting onto and cross-linking of polysaccharides. This can be used for 383 

most polysaccharides (see Figure 5, bottom two rows where as an example one alcohol moiety is 384 

modified to a methacrylate) and will only be described as example here for alginate. Reaction of the 385 

hydroxyl groups from alginate with the anhydride will result in methacrylated alginate as displayed in 386 

Figure 4. These introduced double bond on the alginate backbone can subsequently be used in a free 387 

radical polymerization (with e.g. a redox initiator such as ammonium persulfate) in the presence of a 388 

whole range of monomers such as acrylic acid, acrylamide… [36, 158, 159]. Methacrylation can also 389 

be done by combining aminoethyl methacrylate to oxidized alginate by activating the carboxylate 390 

moieties using N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 391 

hydrochloride (EDC) [160]. 392 
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 393 

Figure 4: Methacrylation of alginate using methacrylic anhydride. Activated double bonds are 394 

incorporated in the alginate backbone to serve as a functional handle for subsequent free radical 395 

polymerization. 396 

7.2. Natural SAPs based on chitosan and its derivatives 397 

 398 

Chitosan (Figure 5) is a linear polysaccharide composed of glucosamine building blocks. Glucosamine 399 

is a so-called amino sugar as it has the same structure as glucose with the hydroxyl moiety at the C2-400 

position being replaced by an amine. Chitosan is made from chitin, which can be extracted from the 401 

exoskeleton of invertebrates such as crabs and shrimps. It can also be found in the cell walls of fungi, 402 

by partial deacetylation in an alkaline environment of N-acetylamino groups or by enzymatic hydrolysis 403 

in the presence of a chitin deacetylase. Since complete deacetylation is difficult to achieve, commercial 404 

resources always report the degree of deacetylation (DDA). Chitin with a DDA higher than 50% is 405 

considered as chitosan. A major disadvantage is that chitin is impossible to dissolve in most solvents 406 

[161]. Chitosan, on the other hand, has a pKa value for the conjugated acid of 6.0 which results in 407 

protonation in acidic environments and increases the solubility in acidic aqueous media [80, 162, 163]. 408 

This renders chitosan interesting to develop pH-responsive SAPs, which is further discussed in the 409 

section tackling ‘smart’ SAPs (see section 1.8.3.). 410 

 411 

Chitosan has many applications in the biomedical sector including among other as tissue engineering 412 

scaffold, wound dressing, for hair treatment and drug delivery. It has also already been used for the 413 

depollution of waste water and in the agricultural sector as a seed treatment, as biopesticide against 414 

fungal infections and in winemaking as a preservative given its biocompatibility [99, 162, 164-166]. 415 

Global chitosan production exceeds 118,000 tonnes annually [167]. 416 

Amine moieties are more reactive than hydroxyl groups. Derivatizations described in literature thus 417 

often take place through the amine functionality although some modifications do show hydroxyl 418 

selectivity. N- or O-carboxymethylation, phosphorylation and alkylation are some of the derivatizations 419 

which have already been described for chitosan [168, 169]. As an example, a carboxymethyl chitosan 420 

grafted poly (acrylic acid) found its application in hemostatic wound dressings [73]. 421 
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 Chitosan can react with oxalic acid to deliver a hydrogel which is physically cross-linked via an 422 

ammonium-carboxylate complex which can adsorb copper(II) [170]. Hydroxybutyl chitosan can be 423 

created through reaction with 1,2-epoxybutane [171, 172].  424 

 425 

7.3. Natural SAPs based on agarose and its derivatives 426 

Agar, which is extracted from red algae (i.e. rhodophyta), was initially discovered in the 17th century in 427 

Japan  and is used for its gelling properties [76, 173]. Agar is made of two components including agarose 428 

and agaropectin. Agarose (Figure 5) is constituted from β-D-galactopyranose and 3,6-anhydro-L-429 

galactopyranose. It only contains hydroxyl functionalities. Agaropectin on the other hand consists of the 430 

same building blocks as agarose, but contains additional anionic groups such as sulfate or pyruvate. Due 431 

to cooperative hydrogen bonds, a gel can be formed by double helices. Because of the slow organization 432 

of these double helices, physical agarose gels exhibit syneresis behavior during which water is expelled 433 

from the gel as a function of time. Agarose gels are often used for gel electrophoresis of DNA, RNA, 434 

plasmids and chromosomes and in the food industry as a vegetarian gelatin substitute. They are also 435 

used in the pharmaceutical sector as sustained release devices, for the production of intricate casts used 436 

in dentistry and for dye making [174]. The yearly production of agar is estimated to be 10,600 tons/year 437 

[175]. 438 

The main difference between agarose and alginate lies in the presence of carboxylic acid moieties in 439 

alginate. Therefore, only the derivatization of the hydroxyl groups described above can also be used for 440 

agarose. Additionally, an important functionalization of agarose involves the possibility to use 1,3-441 

dibromo-2-propanol to produce covalently cross-linked beads, which can be introduced in separation 442 

technology [176]. Further functionalization is often performed depending on the envisaged application. 443 

Agarose beads have already been epoxidized with epichlorohydrin followed by reaction with ethylene 444 

diamine or cysteine to create a support for enzyme immobilization [177]. Other researchers covalently 445 

cross-linked either alginate or chitosan with agarose using carbonyldiimidazole to study the effect of 446 

charges on neural tissue scaffolds [178]. 447 

7.4. Natural SAPs based on carrageenan and its derivatives 448 

Carrageenan is refined from the cell walls of red algae (i.e. rhodophyta). To enable extraction, an alcohol 449 

precipitation method is used, which is versatile for every type of seaweed, but comes together with a 450 

major investment. A second technique is ‘gel press technology’. Due to its lower cost, it has started to 451 

completely replace the first method. However, this latter technique is only useful to produce κ-452 

carrageenan (Figure 5), which is a disadvantage for other carrageenan types. Carrageenan is composed 453 

of repeating units of β-D-galactopyranose and α-D-galactopyranose [179]. It is especially used in the 454 

pharmaceutical and food industry as emulsifier, stabilizer or thickeners [83, 180]. Its yearly production 455 

amounts around 60,000 tons/year [175]. 456 
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There exist a series of chemical modifications to modulate the physico-chemical properties of 457 

carrageenan. For splitting the ι-carrageenan chain, the Smith periodate degradation can be used [181]. 458 

Κ-carrageenan containing hydroxyalkyl groups has already been developed to create a gel with a 459 

decreased syneresis and therefore, a broader industrial scope [182]. The association of κ-carrageenan 460 

with CaCl2 changes the swelling capacity of the gel [183]. Another often used derivatization type 461 

characteristic for these polysaccharides is alkalization. Different types of carrageenan can undergo 462 

cyclization when using a concentrated 1M sodium hydroxide solution at a temperature of 80°C. The 463 

latter improves the gelling properties as reflected by their strength [184-186]. By using alkaline 464 

hydrolysis or microwave irradiation, carrageenan gels have already been ‘cross-linked’ with 465 

poly(acrylamide) [187-189], acrylic acid [190] and methyl methacrylate [191]. In addition, a 466 

copolymerization with acrylic acid and 2-acrylamido-2-methylpropane-sulfonic acid has already been 467 

performed as well [192]. The latter hydrogels are especially very promising for the industrial 468 

immobilization of enzymes [193]. More specifically, by precipitating calcium phosphate into a κ-469 

carrageenan matrix, porous nanocomposites could be prepared which are useful for bone tissue 470 

engineering [194]. Other derivatizations performed earlier include acetylation, oversulfatation and 471 

phosphorylation of κ-carrageenan [195, 196]. These modifications can enhance the antioxidant activity 472 

of carrageenan [197]. Synthetic κ-seleno-carrageenan may inhibit the proliferation of breast cancer cells 473 

[198]. Alternatively, an O-maleoyl derivative of κ-carrageenan could be manifested by the reaction of 474 

tetrabutylammonium salt of the anionic carrageenan fragments with maleic anhydride, 4-475 

dimethylaminopyridine and tributylamine under homogeneous conditions in N,N-dimethylformamide 476 

[199]. As indicated by the many highlighted examples, the derivatization of carrageenan is very 477 

versatile[200]. 478 

7.5. Natural SAPs based on cellulose and its derivatives 479 

Cellulose (Figure 5) is considered as the most abundant organic compound which is derived from 480 

biomass [96]. In addition to its main origin being wood, other sources include plant fibers (leaf, stalk, 481 

fruit or the rigid structure), marine animals, algae… [201]. Total production of primary cellulose sources 482 

was estimated at 1200-1500 million tons/year in 2011 [202]. It is a linear homopolysaccharide composed 483 

of β-1,4-anhydro-D-glucose units [203]. The hydroxyl groups present can lead to strong hydrogen 484 

bonding. It shows a multi-scale microfibrillated structure which is useful for many of its applications. 485 

Additionally, it is characterized by hierarchical crystalline and amorphous regions and shows a highly 486 

cohesive nature. Some of its main applications can be found in paper, textile and the material industry. 487 

Interestingly, cellulose in combination with carboxymethylcellulose has already resulted in promising 488 

SAPs with biomedical applications enabling the controlled release of bovine serum albumin [204]. 489 

Nano-fibrillated cellulose (NFC) has already been combined with acrylic acid during the UV-initiated 490 

polymerization to improve the swelling properties of poly(acrylic acid) to become applied in agriculture 491 
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or for sanitary purposes [106]. SAPs based on cellulose nanofibrils and chitosan-graft-poly(acrylic acid) 492 

could potentially be used for the drug release properties of solutes [205].  493 

 494 

Pristine (CNC) and surfactant-modified cellulose nanocrystals (s-CNC) have already been used to 495 

investigate the barrier and migration properties of PLA nano-biocomposites [206]. Cellulose has also 496 

been modified with poly(ethyleneimine), ethylenediaminetetraacetic dianhydride, perfluoro-497 

octadecanoic acid or thiols to enable the selective removal of metals [107, 207-210]. Cellulose has also 498 

already been modified with quaternary ammonium groups to actively remove reactive red dyes [211]. 499 

Maleylated cellulose-g-poly(acrylic acid) has already been useful for its application in agriculture [212].  500 

Cellulose esterification has been performed by condensation of the carboxylic acid, acid anhydrides or 501 

acyl chlorides with a cellulosic alcohol group [210]. These have been used for drug delivery applications 502 

[213]. Ethylcellulose blended with or grafted with responsive polymers were used as coating materials 503 

to prepare coated particles with drug cores [214]. 504 

7.6. Natural SAPs based on starch and its derivatives 505 

In addition to cellulose, starch (Figure 5) is the second most abundant biomass found in nature and is 506 

derived from plant roots, stalks and crop seeds. The main sources are maize, wheat and potatoes [215]. 507 

It is composed of glucose units connected by glycosidic bonds, consisting of linear and helical amylose 508 

and branched amylopectin. It has industrial applications for the manufacturing of alcohols and biofuels. 509 

It can also be useful as thickening or gluing agent (e.g. adhesive in the papermaking process). The 510 

worldwide production of starch amounts 75 million tons [216]. The amylose/amylopectin ratio has a 511 

large influence on the properties of the starch. A larger amount of amylopectin increases the viscosity 512 

thereby reducing the mobility of the chains. An increasing amylose content leads to a stronger grafting 513 

efficiency and higher swelling capacity [217]. Double-coated polymers constituting ethyl cellulose as 514 

inner coating and a starch-based SAP as outer coating have already been developed as slow-release 515 

fertilizers to improve the fertilizer effectiveness [25]. 516 

 517 

Starch has already been applied (industrial, Free-Flow (FF)) as particle stabilizer for oil-in-water 518 

emulsions and modified with carboxymethyl cellulose to create new biodegradable composites for a 519 

plethora of applications [218]. Natural rubber has for example, been improved by grafting with modified 520 

cassava starch to enable controlled urea release or oil absorption [219, 220]. Metals can also be captured 521 

by starch-graft-acrylic acid/montmorillonite or starch-g-poly(acrylic acid)/sodium humate SAPs [221]. 522 

Starch-graft-poly(acrylamide) SAPs can be used for soil conditioning applications to retain soil moisture 523 

[222]. Carboxymethyl starch-g-polyacrylamide found its use as slow release fertilizers [105]. 524 

 525 
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The description of the different polysaccharides used for SAP development as well as their derivatives 526 

indicate the importance of executing further research towards the use of natural SAPs. Despite having 527 

many advantages towards the targeted applications, even semi-synthetic SAPs can often result in 528 

challenges to be tackled such as low gel fraction or limited homogeneity. Further research on these semi-529 

synthetic SAPs is still needed as these become interesting for specialized applications such as drug 530 

release, where environmental stimuli are needed to create fine-tuned SAP properties.      531 
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 532 

Figure 5: Chemical structure of the most common synthetic monomers (upper panel), the most used synthetic cross-linker (center) and  533 

methacrylated polysaccharides of which alcohol moieties can be modified into a methacrylate (lower panel). The latter can act as natural cross-linkers.  534 
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8.  ‘Smart’ SAPs 535 

Some SAPs undergo distinct physical changes upon small environmental variations [121]. These 536 

interesting, so-called ‘smart’ polymers [223] have the ability to sense environmental stimuli [224] 537 

including changes in pH [38, 81, 225-227], temperature [227-229], light [230, 231], pressure [232, 233], 538 

etc. A multitude of applications including drug release, is concomitant with the extensive use of pH-539 

sensitive, ‘smart’ SAPs [227, 234]. The aim generally is to create a system which releases bioactive 540 

components at a rate precisely matching physiological needs at the correct time point and/or appropriate 541 

site. To achieve this, the system needs to ‘sense’ a signal caused by a disease or injury and respond 542 

accordingly [227]. The most used ‘smart’ hydrogel systems will be discussed herein. 543 

8.1. Characteristics and applications of thermo-responsive SAPs  544 

 545 

One of the most often used type of ‘smart’ SAP have a temperature-responsiveness [235, 236]. Thermo-546 

responsive SAPs can have either a lower critical solution temperature (LCST) below which all 547 

components are miscible or an upper critical solution temperature (UCST) where materials are able to 548 

dissolve above a certain temperature. Some thermo-responsive SAPs are based on chitosan, cellulose, 549 

xyloglucan, poly(N-vinylcaprolactam) … [229]. Some synthetic examples include poly(N-isopropyl 550 

acrylamide), poly(2-oxazoline) (Figure 6) and poly(N,N-diethyl acrylamide) [227, 237]. Chitosan is also 551 

thermo-responsive and has already been used for neural tissue engineering and skin regeneration [238, 552 

239]. At a temperature below the LCST, the hydrophilic segments interact with water and the polymer 553 

starts to absorb the surrounding water. When the temperature increases, the gel starts to shrink and forces 554 

the absorbed liquid out, as the hydrophobic interactions increase. This effect is often referred to as 555 

negative temperature sensitivity [240]. An interpenetrating network of poly(acrylic acid) and 556 

poly(acrylamide) shows an increased swelling upon increasing the temperature and can thus be 557 

considered as a positive temperature sensitive polymer [241]. Thermo-responsivity also occurs in natural 558 

SAPs. A thermo-sensitive pectin-based SAP has already been used for oral drug delivery [101].  559 

 560 
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Figure 6: Cloud point as a function of chain length for poly(ethyloxazoline) and poly(n-561 

propyloxazoline) [237]. 562 

8.2. Characteristics and applications of pH-sensitive SAPs  563 

 564 

Due to the formation of ions at specific pH-values, the reactive groups in the polymer networks of pH-565 

sensitive hydrogels (e.g. carboxylic acid, sulfonic acid or amine functionalities) either repel or attract 566 

one another. The latter behavior thus depends on the acidity or the basicity of the aqueous environment. 567 

Some pH-sensitive SAPs are based on poly (acrylic acid), poly(vinylpyridine) or poly(vinylimidazole) 568 

[229]. Electrostatic repulsions between charged conjugates of acidic or basic moieties lead to additional 569 

ionization, which implies that the pKa of a polymer is more spread over a pH-range rather than being 570 

characterized by a single value characteristic for the individual monomers. Identical charges repel one 571 

another thereby creating more free volume in which a higher amount of water can be absorbed which 572 

results in a higher swelling capacity. Acid moieties are negatively charged above their pKa, while this 573 

is the case for basic moieties below their pKa (Figure 7). By combining various synthetic and natural 574 

pH-responsive polymers, very specialized applications can be targeted. An example is the use of pH-575 

reponsive SAPs based on poly(acrylic acid-co-acrylamide) SAPs, methacrylated alginate and acid 576 

monomers or methacrylated polysaccharides with amine-based monomers for self-healing of cracks in 577 

concrete [37, 67, 68, 81]. Starch-poly(sodium acrylate-co-acrylamide) [43], acryloyl ester of 5-[4-578 

(hydroxy phenyl) azo] salicylic acid (HPAS) [234] has been used as a drug delivery system. Poly(acrylic 579 

acid) based nanoparticles can be used for cancer therapy as drug delivery agent [242].  580 

 581 

Figure 7: pH-dependent ionization of poly(acrylic acid) (top) and poly(N,N′-diethylaminoethyl 582 

methacrylate) (bottom). 583 

 584 
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8.3. Characteristics and applications of photo- and electro-sensitive SAPs 585 

 586 

Light-sensitivity of SAPs is very interesting as this property can influence the solubility of the polymer 587 

to which the respective group is attached. The stimulus can be delivered directly with high accuracy and 588 

ease of control via laser. An interesting example of a UV-responsive hydrogel is a network containing 589 

leucocyanide moieties [243]. Dissociation of the molecule into a cyano anion and a triphenyl methyl 590 

cation occurs upon irradiation (488 nm with an intensity varying between 0 and 150 mW). This leads to 591 

an increased water affinity and electrostatic repulsion of the ionic groups and thus an increased swelling 592 

capacity. An opposite effect can occur when incorporating a visible light-sensitive chromophore, such 593 

as chlorophyllin sodium copper salt into a temperature-sensitive hydrogel such as poly(N-isopropyl 594 

acrylamide) [244]. As the chromophore absorbs the light, it disperses the energy as heat due to radiation-595 

less transitions, thereby increasing the hydrogel temperature which results in a decreased swelling due 596 

to the negative temperature sensitivity of  poly(N-isopropyl acrylamide).  597 

Electro-responsive hydrogels are similar to pH-responsive hydrogels as in both cases the sensitivity is 598 

related to the presence of ionic groups. An electrical or chemical potential can be created accordingly 599 

as ionic groups are attracted by oppositely charged electrodes. Depending on the charges of the ions and 600 

the electrodes, this can lead to either an increased or a reduced swelling degree for example using sodium 601 

alginate-g-poly(acrylic acid) [227, 245]. Some light or electro-sensitive SAPs are based on 602 

poly(acrylamide), poly(ethyloxazoline), polythiophene [229]… 603 

Conclusions and future perspectives 604 

The present review reports on the potential of polysaccharides to become applied (possibly in 605 

combination with synthetic building blocks such as monomers and cross-linkers) as superabsorbent 606 

polymers (SAPs). Both synthetic and polysaccharide-based SAPs have already been used for a 607 

multiplicity of applications such as diapers, the biomedical field, agriculture, etc. With respect to cost-608 

effectiveness and sustainability, the natural SAPs are of particular interest. They are renewable 609 

(decreased environmental impact compared to synthetic SAPs), biodegradable, readily available, 610 

biocompatible, non-toxic and function thus as a sustainable alternative for synthetic SAPs. Furthermore, 611 

they carry different functionalities which can be modified to render them more suited for the envisaged 612 

application or to covalently couple them to synthetic monomers to create so-called semi-synthetic SAPs. 613 

These semi-synthetic SAPs have gained increasing interest in recent years as they create fine-tuned 614 

properties for specialized applications. The combination of different polysaccharides with synthetic 615 

monomers offers a versatile range of inherent physical properties and concomitant possibilities and is 616 

an approach which will be further exploited throughout the upcoming years. Finally, ‘smart’ SAPs are 617 

often useful for biomedical applications such as drug release as they can target a certain in vivo location 618 

exerting particular characteristics triggering the release of the encapsulated/coupled drug.  619 
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In future work, the focus should be on more sustainable, biodegradable natural SAPs to avoid an increase 620 

of the current plastic soup with a huge environmental impact (e.g. oceans). Additionally, ‘smart’ SAPs 621 

will be needed to target specialized applications for which fine-tuned properties are necessary. 622 

Combining synthetic monomers with polymers of bio-based origin will also improve the sustainability 623 

of synthetic SAPs. As synthetic SAPs are still used in a major part of current applications, ‘smart’ semi-624 

synthetic SAPs require additional research efforts in the upcoming years.  625 
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