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Abstract 

Employment of Electric Commercial Vehicles (ECVs) constitutes a measure to 

achieve sustainable Urban Freight Transport (UFT). Despite a need for ECVs, the 

commercialization of ECVs in UFT has remained relatively low, which is reflected 

in the low market penetration. To increase the market penetration, much attention 

has been paid to four areas, which are the feasibility of ECVs, adaptions of 

logistics concepts, adaptions of vehicle concepts, and support of stakeholders. 

Besides studying these four areas, obtaining a satisfactory match between 

characteristics of ECVs and preferences of UFT is also an area for increasing the 

market penetration. However, due to the shortage of academic studies and 

appropriate tools that can systematically guide decision-makers in UFT to obtain a 

satisfactory match, little attention has been paid to this area.  

The present dissertation proposed a methodological concept, namely Sustainable 

ECV-UFT Matching Concept, to deal with the outlined problem. This concept 

comprises two methodologies (methodology of assessment and methodology of 

determination). Since matching up the ECVs and UFT generates many possibilities 

(denoted as ECV-UFT combinations), the methodology of assessment was 

developed to help decision-makers to assess the diverse ECV-UFT combinations 

quantitatively in the economic, social, and environmental perspective. 

Subsequently, the methodology of determination was developed to analyze the 

assessment results and support decision-makers in determining the satisfactory 

match from the many possibilities. In addition, this dissertation implemented this 

methodological concept by designing a simulation platform, which includes an 

available database and corresponding mathematical expressions. 

Three scenarios (DCV-, BEV-, and HEV-Express/post) were applied in the 

simulation platform to analyze the proposed methodological concept. The results 

confirmed that the Sustainable ECV-UFT Matching Concept is feasible in 

supporting decision-makers to determine the satisfactory match from the many 

ECV-UFT combinations. The benefits of obtaining a satisfactory match may 

inspire corresponding decision-makers to consider the employment of the 

appropriate ECVs in their UFT markets. This consideration may subsequently 

facilitate the market penetration of ECVs to achieve sustainable UFT. Overall, the 

main contribution of this dissertation is the development of a methodological 

concept to support the commercialization of ECVs for achieving sustainable UFT. 
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Zusammenfassung 

Neben dem Einsatz im Bereich eines nachhaltigen Personennahverkehrs, werden 

elektrische Antriebsformen zukünftig auch für Nutzfahrzeuge (ECV – Electric 

Commercial Vehicle) einen wesentlichen Beitrag bei der Konzipierung und 

Realisierung eines nachhaltigen urbanen Gütertransports (UFT – Urban Freight 

Transport) leisten. Obwohl es heute bereits eine Vielzahl unterschiedlicher 

Ausprägungsformen sowohl im Bereich der Antriebe als auch bei den 

entsprechenden Fahrzeugen gibt, ist die Marktdurchdringung der Elektromobilität 

im innerstädtischen Güterverkehr noch sehr gering. Ziel der Arbeit ist die 

systematische Unterstützung der Entwicklung angemessener Konzepte für einen 

nachhaltigen innerstädtischen Gütertransport unter konsequenter Berücksichtigung 

des Potentials elektrisch angetriebener Nutzfahrzeuge. Hierbei werden Aspekte wie 

das Einsatzpotential elektrisch getriebener Fahrzeuge, die Anpassbarkeit von 

Logistikkonzepten, die Anpassbarkeit der Fahrzeugkonzepte und die Interessenlage 

der verschiedenen Stakeholder gleichermaßen betrachtet. Ein wesentlicher Beitrag 

der Arbeit liegt in dem systematischen Abgleich der Eigenschaften der 

Antriebskonzepte elektrisch betriebener Nutzfahrzeuge mit den bestehenden 

Anforderungen und Merkmalen innerstädtischer Güterverkehrskonzepte. 

Entsprechende Analysen und Vergleiche, die Entscheidungsträger im Bereich der 

Gestaltung nachhaltiger, innerstädtischer Güterverkehrskonzepte unterstützen, 

liegen bisher nicht vor. 

Die vorliegende Dissertation entwickelt mit dem „Sustainable ECV-UFT Matching 

Concept“ einen Lösungsansatz, welcher auf eine Bewertungs- und eine 

Bestimmungsmethodik aufbaut. Da der Abgleich von ECVs und UFT viele 

Kombinationsmöglichkeiten aufweist, welche im Weiteren als ECV-UFT-

Kombinationen bezeichnet werden, wird eine Bewertungsmethodik entwickelt. 

Diese hilft Entscheidungsträgern, die verschiedenen ECV-UFT-Kombinationen 

quantitativ in wirtschaftlicher, sozialer und ökologischer Perspektive zu bewerten. 

Ergänzend wurde eine Bestimmungsmethodik entwickelt, welche die 

Bewertungsergebnisse analysiert und Entscheidungsträger bei der Ermittlung einer 

passgenauen Kombination unterstützt. Darüber hinaus wurde eine 

Simulationsplattform entwickelt, die einen vorhandenen Datensatz und 

entsprechende mathematische Ausdrücke enthält, um das vorgeschlagene Konzept 

umzusetzen.  

Die Anwendbarkeit des vorgeschlagenen Lösungsansatzes wurde an drei 

Teilszenarien simuliert. Die Ergebnisse bestätigen, dass das vorgeschlagene 

„Sustainable ECV-UFT Matching Concept“ Entscheidungsträgern bei der 

Identifikation und Auswahl fallspezifisch geeigneter ECV-UFT-Kombinationen 

unterstützen kann. Das vorgeschlagene Konzept leistet damit einen Beitrag für eine 

nachhaltigere Gestaltung zukünftiger Lösungsansätze im Bereich des 

innerstädtischen Güterverkehrs. 
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1 Introduction 

Electric Vehicles (EVs) is a well-known topic widely discussed in recent years. 

The attention on this topic primarily arises from the challenges of Internal 

Combustion Engine (ICE) vehicles. The ICE vehicles, which are designed to ignite 

fossil fuels to propel wheels, are the common means of transport. Since the fossil 

fuel is non-renewable energy and the exhaust gases of burning fossil fuels pollute 

the environment of the daily life, the EVs, which are partly or entirely powered by 

electric energy, are considered as an alternative to the ICE vehicles.  

The development of EVs experienced the invention, the disappearance, and the 

reappearance. In 1828, the small-scale model car powered by an electric motor was 

invented (Chan, 2013). In the middle of the 19th century, the EVs became popular 

on the basis of their clean, quiet, as well as easy to start and drive. However, this 

popularity of EVs has switched to ICE vehicles since 1930. The main reasons for 

the disappearance include the demand for longer range vehicles, the reduction of 

gasoline price, the invention of the electric starter for ICE vehicles, the mass 

production of the ICE vehicles, and the increased number of gas stations (Chan, 

2013). In the early 1970s, the EVs reappeared on account of the non-renewable 

fossil fuels. Additionally, since the attention is increasingly paid on the 

environmental protection and the concept of the sustainable development was 

proposed in 1987 (WCED, 1987), the EVs as a solution to address the outlined 

challenges have reappeared and become a widely discussed topic.  

The studies of EVs commonly focus on passenger cars. These studies explored 

many areas of focus to solve the limitations of employing EVs for reducing the 

environmental pollution and the consumption of fossil fuels. These limitations 

mainly refer to the high purchase price, the long charging time, the limited driving 

range, and the insufficient charging stations (Chan, Bouscayrol, & Chen, 2010). 

Many areas of focus, such as battery systems (Lu, Han, Li, Hua, & Ouyang, 2013), 

fast charging (Anseán et al., 2016), arrangement of charging stations (Namdeo, 

Tiwary, & Dziurla, 2014), and customer preferences (Oliveira, Dias, & Santos, 

2015; Ziegler, 2012), were considered in solving the limitations. However, in these 

studies, the electrification of commercial vehicles for addressing the environmental 

challenges of Urban Freight Transport (UFT) seems ignored.     

Inconsistent with the passenger cars, commercial vehicles are one category of 

motor vehicles with at least four wheels designed and constructed for the carriage 

of goods (The European Parliament and of the Council, 2007). The role of driving 

commercial vehicles is to deliver goods for satisfying citizens and supporting the 

operations of logistic companies, whereas the drivers of passenger cars pursue 

convenient commute and the driving pleasure. To this effect, research on Electric 

Commercial Vehicles (ECVs) cannot be missing. In particular, these studies are 
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required to focus on not only same areas as electric passenger cars, such as the 

driving range, the charging time, the charging stations, and the purchase price, but 

also the other exclusive areas of ECVs, such as the payload capacity, the travel 

time, the travel distance, the profit, and the attitude of fleet managers. Given these 

points, the studies of ECVs in UFT is indispensable. 

1.1 Motivation 

Urban freight transport is a segment of freight transport. In this segment, road 

freight transport is the primary mode. The commercial vehicles constitute the 

means of UFT to deliver goods on the road. The goal of UFT is mainly to satisfy 

the needs of citizens. In recent years, this demand for necessaries and services from 

commercial and domestic users in urban areas is increasing spurred by the rapid 

urbanization (Cui, Dodson, & Hall, 2015). To fulfill the demand, the UFT plays an 

increasingly significant role.  

This significant role leads to challenges in UFT. Among these challenges, much 

attention is paid to environmental challenges, which arise from the ICE 

commercial vehicles. Saving energy and reducing Greenhouse Gas (GHG) 

emissions essentially constitute the environmental challenges of UFT. According 

to statistics in EU-28, road transport consumed 82.6% of the total energy 

consumption of transport (road, rail, domestic navigation, domestic aviation, and 

international aviation) in 2013. Similarly, road transport accounted for 94.4% of 

the total GHG emissions from transport in 2012 (Eurostat, 2015). These statistics 

indicate that road transport dominates the amount of energy consumption and GHG 

emissions. In addressing these environmental challenges to achieve sustainable 

UFT, the European Commission (European Commission, 2011) recommends 

developing and deploying new and sustainable fuels as well as propulsion systems 

for road transport.  

Electric commercial vehicles constitute one category of vehicles recommended to 

address the outlined challenges towards sustainable UFT. As the one category, the 

ECVs are partly or entirely independent of fossil fuels and involves electric 

propulsion, such as electric motors and power converters (Chan, 2002; Chan et al., 

2010). In terms of these features, the ECVs commonly consist of four types 

including Battery Electric Vehicles (BEVs), Hybrid Electric Vehicles (HEVs), 

Plug-in Hybrid Electric Vehicles (PHEVs), and Fuel Cell Electric Vehicles 

(FCEVs) (Chan et al., 2010). Besides classifying the ECVs, the features also 

contribute to decreasing noises, GHG emissions, and the amount of energy 

consumption.  

In the perspective of commercial use, the ECVs appear suitable in the UFT due to 

conducive application environments. The UFT provides suitable conditions to 

employ the ECVs on account of the high use rates of fleet vehicles; route 
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predictability, as well as; the low commercial and industrial electricity rates 

(Lebeau, Macharis, & Mierlo, 2016; Pelletier, Jabali, & Laporte, 2016). Given 

these points, the environmental benefits resulting from ECVs and suitable 

prevailing conditions in UFT encourage stakeholders of the UFT to consider 

employing the ECVs.  

Furthermore, some policies support the employment of ECVs in UFT. For 

example, the financial incentives, such as subsidies for the purchase price and 

setup of charging infrastructures as well as tax exemptions, stimulate the 

possibility to purchase and employ ECVs in UFT (Pelletier et al., 2016). 

Additionally, there are non-financial incentives offered to users of the ECVs in 

exclusion of other vehicles. The incentives such as preferential parking, initiating 

repair centers, permission to drive on high occupancy or bus lanes, and privileges 

to accessing to low emission zones in city centers, also facilitate the employment 

of ECVs in UFT (Pelletier, Jabali, et al., 2016; Taefi, Kreutzfeldt, Held, & Fink, 

2016). 

Despite the notable environmental benefits and supporting policies, yet the 

commercialization of ECVs for addressing the environmental challenges in UFT is 

relatively low. This low commercialization is reflected in the low market 

penetration of ECVs in UFT. According to the report of ICCT (International 

Council on Clean Transportation, 2017), in Europe, the light electric commercial 

vehicles (gross vehicle weight< 3.5𝑡) including the BEVs, HEVs, and PHEVs, 

accounted for 0.7% of total sales of light commercial vehicles in 2016. In a similar 

manner, Navigant Research (Alexander & Jerram, 2017) forecasted that the market 

share of diesel medium – and heavy – duty trucks (gross vehicle weight≥ 3.5𝑡) 

will remain the dominant in next decade. To this end, the outlined progresses imply 

that there is a low market penetration of ECVs, especially in the UFT. However, to 

address the environmental challenges, the commercialization of ECVs by 

increasing the market penetration is a potential solution to be considered. In this 

context, the conflict between a demand of commercialization and the low market 

penetration calls up for a need to address this problem. 

1.2 Problem Statement 

Much literature has studied the low market penetration. For example, works in 

(Pelletier, Jabali, et al., 2016; Sierzchula, 2014; Taefi, Kreutzfeldt, et al., 2015) 

have applied the survey and case study methods to explore and analyze factors 

related to cost, technology, infrastructures, sources of electricity, and incentives to 

increase an understanding of the problem. Other similar studies, which focus on 

reducing impacts resulting from the explored factors have also been carried out. 

For instance, the literature (Conrad & Figliozzi, 2011; Goeke & Schneider, 2015; 

Hiermann, Puchinger, Ropke, & Hartl, 2016; Schneider et al., 2014; Sevgi 

Erdog˘an, Miller-hooks, 2012) has proposed and formulated the Electric Vehicle 
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Routing Problem (EVRP) to minimize impacts concerning the limited driving 

range and charging infrastructures. Equally, to improve the battery systems in the 

ECVs, the literature (Kelouwani, Agbossou, Dubé, & Boulon, 2013; Lu et al., 

2013) has addressed management of energy in batteries. Moreover, propositions on 

how to reduce impacts resulting from a need for fast charging (Anseán et al., 

2016); retail infrastructure costs (Melaina, Sun, & Bush, 2014), and; spatial 

planning of public charging infrastructures (Namdeo et al., 2014) have been 

considered as well. On the whole, to increase the market penetration of ECVs in 

UFT, the existing works have studied the factors causing the low market 

penetration including the identification of factors and reducing the impacts of 

factors. 

On top of the EVRP, battery systems, and charging infrastructures issues, the 

feasibility to employ the ECVs in UFT has been evaluated in different ways. It has 

been evaluated through modeling and simulation (Davis & Figliozzi, 2013; Feng & 

Figliozzi, 2013; Macharis, Van Mierlo, & Van Den Bossche, 2007) as well as 

tested by trials (Browne, Allen, & Leonardi, 2011; Melo, Baptista, & Costa, 2014). 

Similarly, the demonstrative projects such as the EU project FREVUE (“FREVUE 

Objectives,” 2018) and the national project MELODYS (ALICE / ERTRAC Urban 

mobility WG, 2014) also have conducted the related evaluation. In the overall, 

studies on low market penetration are increasingly attracting attention and 

gradually making progress. In speeding up this progress, there is also a critical 

need to obtain a satisfactory match between product (ECVs) characteristics and 

customer (UFT) preferences (Oliveira et al., 2015).  

This critical need regarding the satisfactory match has been considered in urban 

passenger transport systems (Camargo Pérez, Carrillo, & Montoya-Torres, 2015). 

The product in this satisfactory match refers to electric passenger cars or electric 

buses in urban passenger transport systems. The customer refers to individuals or 

bus operations. In this context, the product characteristics are commonly 

determined by the characteristics of each vehicle types. The customer preferences 

are reflected in the requirements, the interests, and the hobbies of individuals or 

bus operations. Accordingly, studies addressing the satisfactory match in urban 

passenger transport systems have focused on selecting suitable vehicle types in 

terms of the characteristics and increasing the understanding of customer 

preferences. For instance, Zubaryeva et al. (2012) and Mohamadabadi et al. (2009) 

have addressed issues regarding the suitable choice of electric passenger cars. 

Tzeng et al. (2005) and Vahdani et al. (2011) have concentrated on investigating 

the proper choice of electric buses. Oliveria et al. (2015) and Ziegler (2012) have 

conducted studies on customer preferences for electric passenger cars. 

Compared to the literature on the choice of vehicles and customer preferences in 

urban passenger transport systems, few studies are addressing the same topic in the 

UFT systems. To obtain the satisfactory match in UFT, the product accordingly 
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refers to the ECVs and the customer mainly refers to the freight carriers in UFT. 

Similar to the urban passenger transport systems, the product characteristics are 

determined by the characteristics of each vehicle type. The customer preferences 

are presented in the requirements of freight carriers. Due to gaining insights into 

the ECVs (Section 2.3), there are four types of ECVs in terms of the differences 

concerning the configurations, propulsion systems, and energy storages (Chan et 

al., 2010). Additionally, the freight carriers have respective requirements 

depending on their various delivery tasks (Section 2.1). Five primary delivery tasks 

constitute five UFT markets (Abel & Karrer, 2005; CIVITAS, 2015; MDS 

Transmodal Limited, 2012). To this effect, matching up the four types of ECVs 

and the five UFT markets presents many possibilities. These possibilities reveal 

diversity in the employment of ECVs in UFT (Section 2.4). This diversity is 

denoted as ECV-UFT combinations in this dissertation.  

Such diversity has been overlooked by the majority of the literature. In other 

words, there are few possibilities (ECV-UFT combinations) studied in the 

literature (Section 3.3). These few possibilities accordingly restrict the range of 

available ECV-UFT combinations for obtaining a satisfactory match. Moreover, 

the few possibilities studied in the literature limits the understanding concerning 

the employment of ECVs in UFT, namely lacking a comprehensive view of all 

possibilities. In this perspective, this limitation leads to a difficulty to thoroughly 

compare and assess different possibilities for determining the satisfactory match. 

Besides, the existing studies on the choice of ECVs and the identification of freight 

carriers’ preferences have only completed a part of the task concerning the 

satisfactory match. For instance, Wątróbski et al. (2017) propose a multi-criteria 

analysis-based approach to select proper vehicle types of available BEVs for UFT. 

Lebeau et al. (2016) explore the battery electric vehicle choice behavior of 

transport companies. Although the articles studied the proper choice of ECVs and 

the identification of requirements in UFT, the studies to match up the ECVs and 

the UFT is missing.  

Furthermore, no existing tools matched up the ECVs and the UFT by taking into 

account all possibilities along with the goal of obtaining a satisfactory match. The 

existing tools can be divided into vehicle-oriented (Burnham, 2016; Markel et al., 

2002; TA Engineering, 2014) and logistics-oriented tools (ifeu Heidelberg, 

INFRAS Berne, & IVE Hannover, 2016; Institut für Transportlogistik TU 

Dortmund, 2018; Schmied, Knörr, Friedl, & Hepburn, 2012) according to their 

purposes. These two orientations reveal that there is no connection between the 

automotive and logistical parameters in the existing tools. On top of this, the 

criteria to determine the results in the existing tools are mainly economic and 

environmental criteria. Since the role of the satisfactory match is to facilitate the 

market penetration for ultimately achieving the sustainable UFT, the criteria to 

determine the satisfactory match are required to involve the three dimensions 

(economic, social, and environmental) of sustainability (Kates, Parris, & 



1   Introduction

 

6 
 

Leiserowitz, 2005). The social criterion is missing in the existing tools. Given 

these points, in the context of lacking similar academic studies and appropriate 

tools, there is a need for a study, which may propose a systematic approach to 

guide decision-makers in UFT for assessing and determining the satisfactory match 

by taking into account the aforementioned missing elements.  

On the whole, the problem statement of this dissertation phrases as follows: A 

methodological concept is required for obtaining the satisfactory match between 

the characteristics of ECVs and the preferences of UFT to increase the market 

penetration of ECVs towards sustainable UFT. Such a methodological concept has 

to consider the diversity in the employment of ECVs in UFT, the quantitative 

connection between ECVs and UFT, and the all three dimensions of sustainability 

to assess the diverse possibilities (ECV-UFT combinations) for supporting the 

determination of the satisfactory match. 

1.3 Research Goal and Research Question 

The research goal of this dissertation is to develop a methodological concept that 

supports decision-makers in UFT to facilitate the commercialization of ECVs for 

achieving sustainable UFT. In particular, this methodological concept helps 

decision-makers to: quantitatively assess diverse ECV-UFT combinations in 

economic, social, and environmental perspectives, as well as determine the 

satisfactory match by analyzing the assessed ECV-UFT combinations. 

To accomplish the research goal, this dissertation mainly answers the following 

research question: 

How can decision-makers obtain a satisfactory match to increase the market 

penetration of ECVs for achieving sustainable UFT?  

Specifically, the answer to this research question is acquired by analyzing the 

following three questions step by step:  

 Q1: What are the challenges and requirements of obtaining the satisfactory 
match between the characteristics of ECVs and the preferences of UFT? 

 Q2: How can decision-makers assess and determine the satisfactory match 

by addressing the challenges and satisfying the requirements? 

 Q3: To what extent does the methodological concept support the decision-

makers? 

According to the challenges and requirements identified in Q1, two methodologies 

including the methodology of assessment and the methodology of determination are 

proposed to constitute the methodological concept for answering the Q2. The 
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methodology of assessment is designed to quantify and calculate the economic, 

social, and environmental performance of diverse ECV-UFT combinations. The 

methodology of determination is designed to systematically compare and analyze 

the assessed ECV-UFT combinations for determining the satisfactory match. These 

two methodologies shape the methodological concept – Sustainable ECV-UFT 

Matching Concept in this dissertation. After developing the concept by answering 

the Q2, the implementation and the evaluation of this concept are conducted to 

answer the Q3. A simulation platform is designed to implement the two 

methodologies. Six alternatives in three scenarios are evaluated by applying the 

simulation platform to exemplify how the developed methodological concept 

supports the decision-makers to determine the satisfactory match and illustrate the 

extent of this support. In the end, the main research question can be answered by 

synthesizing the solutions of the three sub-questions. 

1.4 Research Methodology 

The research methodology for carrying out the entire dissertation is structured by: 

1. Identifying the challenges of obtaining a satisfactory match (literature 

review) and specifying the corresponding requirements; 

2. Proposing a methodological concept based on the Multi-Criteria Decision 

Making (MCDM) method and the approaches for supporting in analyzing 

and determining the satisfactory match (sensitivity analysis, ternary plot, and 

calculation of equivalent points); 

3. Designing a simulation platform based on mathematical expressions, the 

Monte-Carlo method, and the 10-fold cross validation, to convert the 

proposed methodological concept from theoretical to practicable guidance; 

4. Evaluating the proposed methodological concept in the simulation platform. 

A Systematic Literature Review (SLR) is firstly conducted to increase the 

understanding regarding the state of the art in the field of employing ECVs in UFT. 

This state of the art supports to identify what areas of focus have been considered 

in the literature and what the challenges hinder efforts for obtaining the satisfactory 

match. The requirements are accordingly specified by analyzing the identified 

challenges.  

To address the identified challenges and satisfy the specified requirements, the 

methodological concept is proposed to guide decision-makers to obtain their 

satisfactory match. In this concept, the methodology of assessment is developed 

based on the MCDM. Since the objectives of the three criteria (economic, social, 

and environmental) in the assessment are conflicting, the MCDM is then applied in 

this methodology to deal with decision problems under the presence of a number of 
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conflicting decision criteria (Triantaphyllou, Shu, Sauchez, & Ray, 1998; 

Wątróbski et al., 2017). Moreover, the methodology of determination is developed 

based on the sensitivity analysis, the ternary plot, and the calculation of equivalent 

points. The purpose of applying the sensitivity analysis is to reduce the number of 

available ECV-UFT combinations and simplify the decision of the satisfactory 

match. Additionally, the role of the ternary plot is to synthesize and visualize the 

assessed ECV-UFT combinations in a triangle. By observing the visualized ECV-

UFT combinations in this triangle, decision-makers can visually compare them and 

quickly select the satisfactory match. In addition, the calculation of equivalent 

points is applied as the last step in the methodology of determination. The purpose 

of this step is to explore the differences between the satisfactory match selected 

from the ternary plot and the rest of ECV-UFT combinations assessed in the last 

two steps. The conclusions deduced from these equivalent points are considered as 

potential future research. 

The simulation platform is designed to implement the proposed methodological 

concept. Formulation of mathematical expressions, the Monte-Carlo method, and 

the 10-fold cross validation are involved in this simulation platform. To 

quantitatively assess the ECV-UFT combinations, three mathematical expressions 

are formulated with respect to the three criteria. Furthermore, since the available 

data is scarce, the Monte-Carlo method is accordingly applied. The role of this 

method is to numerously create stochastic data for simulating the assessment of 

ECV-UFT combinations close to real conditions. Similarly, the 10-fold cross 

validation is introduced to numerously and repeatedly simulate the assessment for 

validating the methodological concept. Finally, the proposed methodological 

concept is evaluated by using six alternatives in the simulation platform. 

1.5 Structure of Dissertation 

Five elements constitute the present dissertation. The sequence of conducting these 

five elements shapes the structure of the dissertation (Figure 1). The first element 

in this structure refers to Chapter 1 (Introduction). In this chapter, the motivation 

for conducting this research, the statement of the existing problem, the research 

goal and the research questions, as well as the research methodology for solving 

this problem are outlined. 
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Figure 1: Structure of the dissertation 

The second element involves Chapter 2 and 3. Chapter 2 mainly provides 

significant background knowledge including the definitions, the characteristics, 

and the development of ECVs, UFT, as well as sustainable UFT. On top of this 

background, Chapter 3 carries out a state of the art regarding the employment of 

ECVs in UFT. The primary areas of focus in the literature, the advantages and 

disadvantages of existing tools as well as the factors influencing the employment 

are illustrated in this chapter. In addition, a limitation of obtaining a satisfactory 

match is identified by reviewing the literature and tools. In essence, Chapter 2 and 

3 provide the research foundation to increase the understanding and identify the 

research gap of this dissertation. 
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The third element of this structure (Chapter 4) focuses on proposing a concept to 

fill the identified research gap. In particular, the challenges, the main focus, the 

objective, and the requirements of proposing this concept are clarified in Section 

4.1 and 4.2. Based on this groundwork, the Sustainable ECV-UFT Matching 

Concept including the methodology of assessment and determination is proposed 

in Section 4.3.  

The fourth element in this structure deals with the implementation and the 

evaluation of the proposed methodological concept (Chapter 5&6). A simulation 

platform is designed by transforming the two methodologies into the computer for 

implementing the concept (Chapter 5). Moreover, six alternatives in three 

scenarios are introduced (Section 6.1&6.2) and entered into the designed 

simulation platform to evaluate the methodological concept. The evaluation results 

in these three scenarios are shown in Section 6.3. Besides, the discussions and the 

limitations of this methodological concept are presented in Section 6.4&6.5. 

Finally, this dissertation ends with the conclusion and the outlook (Chapter 7). 
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2 Background of Sustainable Urban Freight Transport 

This chapter introduces the background of sustainable urban freight transport. In 

particular, the definition, the characteristics, and the environmental problems of 

urban freight transport are elaborated in Section 2.1. Furthermore, on account of 

these environmental problems, the concept: sustainable urban freight transport is 

introduced in Section 2.2. Besides these two sections, electric commercial vehicles 

as an essential measure of achieving sustainable urban freight transport are 

characterized in Section 2.3. On top of the background, this chapter also presents 

the challenges of employing electric commercial vehicles for achieving sustainable 

urban freight transport (Section 2.4). On the whole, this chapter describes the 

research foundation and outlines the research problem of this dissertation. 

2.1 Urban Freight Transport 

Urban Freight Transport (UFT) is an essential segment of freight transport to 

satisfy the needs of citizens. In turn, the rapidly increasing number of citizens 

accelerates the development of UFT. The rapidly increasing number of citizens 

results from rapid urbanization. As stated by the United Nations (2007; 2015), a 

shift of the population from dispersed small rural settlements to concentrated large 

and dense urban settlements is the process of urbanization. It implies that the 

dominant economic activity moves from agriculture towards industrial and service 

activities (Martine et al., 2007; United Nation, 2015). However, this movement 

keeps citizens away from their sources of necessaries, such as food, consumer 

products, and waste disposal opportunities. Furthermore, the rapid urbanization 

spurs increasing demand for necessaries and services from commercial and 

domestic users (Cui et al., 2015). To this effect, the UFT plays an increasingly 

significant role to deliver the necessaries from sources to citizens and to fulfill the 

increasing demand.   

Referring to the knowledge of Dablanc (2009), MDS Transmodal (2012), Comi et 

al. (2013), Taniguchi (2013), UFT is defined in this research as follows: 

Urban freight transport: is a segment of road freight transport, which carries the 

goods by or for commercial entities into, out of and within urban areas, to satisfy 
the needs of citizens, support efficient economic, and social development. 

To gain insight into the UFT, the means, the stakeholders, and the markets of UFT 

are mainly introduced in the following subsections. Additionally, this section 

presents the environmental challenges arisen in UFT.  
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2.1.1 Commercial Vehicles and Stakeholders of Urban Freight Transport 

The commercial vehicle is the means of transporting goods on the road. The 

functions of these commercial vehicles vary depending on their size, weight, 

horsepower, and regional factors, such as the level of economic development, 

geography, and the shares of various sectors in the economy (International Energy 

Agency, 2017). In addition to the functions, the classification schemes of these 

commercial vehicles vary from country to country. Nevertheless, these countries 

essentially use the same parameter - Gross Vehicle Weight (GVW), which means 

the weight of the vehicle plus the maximum intended payload (International 

Energy Agency, 2017), to categorize their commercial vehicles. The classification 

schemes of commercial vehicles in the European Union and the United States 

exemplify two common schemes (Figure 2). Obviously, in the US, the 

classification is defined in more detail compared to the EU. Additionally, this 

classification in the US can also be generally categorized as light-duty (class 1-2), 

medium-duty (class 3-6), and heavy-duty (class 7-8) commercial vehicles. With 

the knowledge of these two classification schemes, the commercial vehicle 

category used in this research is defined as: light-duty commercial vehicles (<3.5t); 

medium-duty commercial vehicles (3.5t-12t), and; heavy-duty commercial vehicles 
(>12t).  

 

Figure 2: Classification schemes of commercial vehicles in the EU and the US 

(Alternative Fuels Data Centre, 2018; The European Parliament and of the 

Council, 2007) 

On top of the commercial vehicles, the UFT comprises many stakeholders. In the 

perspective of the supply chain, the UFT stakeholders range from shippers, freight 

carriers, to receivers (Ma, 2014; MDS Transmodal Limited, 2012; OECD, 2003). 

Commonly, the task of shippers is to supply goods. Typical examples of shippers 

are manufacturers, wholesalers, and retailers. Succeeding suppliers are freight 
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carriers. Freight carriers perform the next task, which is to transport the goods. 

Some freight carriers are shippers because they transport their goods using their 

commercial vehicle fleets. Also, some freight carriers deliver goods by cooperating 

with Third-Party Logistics (3PL) providers. After that, receivers unload goods 

transported by the freight carriers. In urban areas, the primary receivers are the 

private households as well as the commercial receivers, such as shops, retail 

outlets, hotels, and restaurants. In addition to these three stakeholders from the 

perspective of supply chain, other stakeholders are the national/regional 

governments, urban motorway operators, city residents, and visitors (CIVITAS, 

2015; Ma, 2014; Taniguchi, Kawakatsu, & Tsuji, 2000; Teo, Taniguchi, & 

Qureshi, 2012) from the perspectives of public authorities, resource supply, and 

participants 

2.1.2 Urban Freight Transport Markets 

The receivers and their requirements, such as the type of goods and the number of 

deliveries, determine the delivery tasks of freight carriers in UFT. Regarding the  

differences underlying the delivery tasks, the UFT can be classified into five 

markets, which are (Abel & Karrer, 2005; CIVITAS, 2015; MDS Transmodal 

Limited, 2012): 

 Retail market: delivery of finished products mainly to shops and retail 

outlets;  

 Express/post market: transport of letters, parcels, and provides express 

services for households and companies; 

 Ho(tel)Re(staurant)Ca(tering) market: carry of food and beverage to hotels, 

bars, restaurants, canteens, and event catering; 

 Construction market: delivery of a wide range of building material to 

building sites for infrastructural projects and residential constructions; 

 Waste collection market: collection of municipal waste, industrial waste, 

hazardous waste, and construction waste to waste disposal facilities. 

The characteristics of these five markets are summarized in Table 1 (MDS 

Transmodal Limited, 2012; OECD, 2003).   
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Table 1: Characteristics of five markets  

UFT Markets Characteristics 

Retail Using own account medium/heavy-duty commercial vehicles (retail chains); 

Frequent deliveries and diverse suppliers (independent retail); 

Using light-duty commercial vehicles with many stops (e-commerce) 

Express/post 

  

National postal operators and using hub-and-spoke networks (letter post); 

The high number of receivers per delivery tour with heterogeneous loads 

(courier, parcels, express) 

HoReCa Just-in-time supplies; 

Centralized procurement and less frequent deliveries (HoReCa chains); 

Frequent deliveries (independent HoReCa) 

Construction A wide range of building material; 

Fragmented industry; 

Project-based construction activity 

Waste collection A wide variety of material; 

Many stops (household waste); 

Frequent collection (industrial waste) 

Retail market: The retail market contains retail chains, independent retail and e-

commerce (MDS Transmodal Limited, 2012). The retail chains distribute goods to 

their stores by operating their medium- or heavy-duty commercial vehicles to 

increase delivery efficiency. The independent retailers, on the other hand, are 

commonly small or medium stores, to whom, diverse suppliers supply goods at a 

rate of three to ten times a week. Another emerging retail market is e-commerce. 

The e-commerce is typically focused on home delivery (Teo et al., 2012) to 

transport goods purchased online to recipients (homes, offices, or pickup points) by 

using couriers and parcel services (Visser, Nemoto, & Browne, 2014). These 

services apply commonly light-duty commercial vehicles to and within residential 

areas with the conduct of many stops on their routes (OECD, 2003). 

Express/Post: The express/post market is constituted by the letter post-market as 

well as the courier, parcel, and express market. The national postal operators 

mainly conduct the letter post market in hub-and-spoke networks. The courier, 

parcel, and express market, similar to the home delivery in e-commerce, deliver 

heterogeneous goods to diverse receivers with many stops (70-90 deliveries per 

tour) (MDS Transmodal Limited, 2012). 

HoReCa: The HoReCa market comprises HoReCa chains and independent 

HoReCa. The typical characteristic of this market is just-in-time supplies, 

requested in small quantities and fresh. Such characteristic leads to frequent 

deliveries. Nevertheless, this frequent delivery is specific to the independent 
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HoReCa market, since the HoReCa chains (such as large hotel and restaurant 

chains) intend to achieve economies of scale through centralized procurement as 

well as more consolidated and less frequent deliveries (MDS Transmodal Limited, 

2012). 

Construction: The construction market is a fragmented industry, which delivers a 

wide range of building material to building sites for infrastructural projects and 

residential constructions. These construction activities are project-based. However, 

the fragmented industry and the project-based construction activities may results in 

commercial vehicles running either empty or part-loads as well as consuming long 

waiting time to gain access to construction sites (MDS Transmodal Limited, 2012).  

Waste Collection: The waste collection market in urban areas is mainly 

responsible for collecting municipal waste, manufacturing/industrial waste, 

hazardous waste, and construction waste. These wastes include a wide variety of 

materials, such as paper, food, glass, plastic, metal, medicaments, colors, batteries, 

and building material (Abel & Karrer, 2005). The delivery tasks in this market 

depend on the diverse types of waste. For instance, the collection of household 

waste is conducted weekly or every two weeks with many intermediate stops, 

whereas the collection of industrial waste is carried out daily and with less 

intermediate stops than the household waste collection (Abel & Karrer, 2005). 

In these five UFT markets, Internal Combustion Engine (ICE) vehicles are the 

primary means employed to complete the delivery tasks. Nevertheless, this 

employment of ICE vehicles in UFT raises some environmental issues, such as 

noise, air pollution, and energy consumption (Russo & Comi, 2012). The air 

pollution in UFT refers to GHG emissions (CO2, CH4, N2O, Hydrofluorocarbons, 

Perfluorocarbons, SF6), CO, NOx, Particulate Matter (PM) 10, PM2.5, and VOCx1. 

Among these elements of the air pollution, since the GHG emissions result in 

climate change (higher temperatures, rising sea levels, and more frequent weather 

extremes) and put many coastal communities, food security, human health, and 

ecosystems at risk (Eurostat, 2017), the attention regarding the air pollution is 

widely paid on the GHG emissions. Furthermore, due to the fact that the fossil fuel 

in ICE vehicles is non-renewable energy and the air pollution is generated by 

burning fossil fuels, reducing the energy consumption of ICE vehicles constitutes 

the environmental challenges in UFT.    

As claimed by the Eurostat Statistics Explained (Eurostat, 2015), the road transport 

accounts for 94.4% of total GHG emissions in 2012 and consumes 82.6% of total 

energy consumption in 2013 from all transport modes (road rail, domestic 

navigation, domestic aviation, and international aviation). These proportions reveal 

that road transport mode is the main origin of the air pollution and the energy 

consumption in the transport sector. To address these environmental challenges, 

the UFT as a segment of road transport is required for solutions.  
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2.2 Sustainable Urban Freight Transport 

This section introduces a concept called Sustainable Urban Freight Transport 

(sustainable UFT) for addressing the environmental challenges arisen in UFT. 

Section 2.2.1 focuses on introducing the definition of sustainable UFT. Section 

2.2.2 presents existing works for achieving sustainable UFT.  

2.2.1 Definition of Sustainable Urban Freight Transport  

The concept named sustainable UFT stems from the term - Sustainable 
Development (SD), which is defined as: 

“development that meets the needs of the present without compromising the ability 
of future generations to meet their own needs” (WCED, 1987) 

In order to achieve SD, the Sustainable Development Goals (2016) of the United 

Nations stated that it is crucial to harmonize three core elements: economic growth, 

social inclusion, and environmental protection. These three elements are also well-

known as three pillars (economic, social, and environmental) of SD to expand the 

aforementioned definition (Kates et al., 2005).  

Generally, the word economic means concerned with the organization of the 

money, industry, and trade of a country region, or society (Collins English 

Dictionary, 2017a); the word social means relating to society or to the way society 

is organized (Collins English Dictionary, 2017), and; the word environmental 

means concerned with the protection of the natural world of land, sea, air, plants, 

and animals (Collins English Dictionary, 2017b). On top of these basic 

explanations, there is a need for specifying the three dimensions to understand the 

SD in different perspectives.  

In the perspective of urban transport, the SD and its three pillars can be specified 

as sustainable urban transport. The European Commission defined objectives of 

sustainable urban transport through an expert working group. The specific 

objectives of a sustainable urban transport system include (Behrends, Lindholm, & 

Woxenius, 2008): 

 “Ensuring the accessibility offered by the transport system to all categories 

of inhabitants, commuters, visitors, and businesses, in line with the 
objectives below;  

 Reducing the negative impact of the transport system on the health, safety, 

and security of the citizens, in particular the most vulnerable ones;  

 Reducing air pollution and noise emissions, GHG emissions, and energy 

consumption;  
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 Improving the efficiency and cost-effectiveness of the transportation of 

person and goods, taking into account the external costs;  

 Contributing to the enhancement of the attractiveness and quality of the 

urban environment.” 

In this definition of sustainable urban transport, the purpose of the first item is to 

rephrase and specify the definition of SD for sustainable urban transport. The 

following items expand the description of the first item by specifying the three 

dimensions respectively. Given these points, the definition of sustainable urban 

transport involves the essential meaning of SD and specifies the three pillars to 

adapt to urban transport.  

With the knowledge of the definition of UFT, SD, and sustainable urban transport, 

the sustainable UFT in this research is defined to fulfill the following objectives:  

 prerequisite: ensuring the ability of UFT to meet the present and future 

needs of citizens; 

 from an economic perspective: improving the efficiency and cost-

effectiveness of the transportation of goods, taking into consideration the 
external costs; 

 from a social perspective: enhancing the attractiveness and quality of the 

urban environment, by avoiding accidents and ensuring the mobility and 
accessibility of citizens as well as goods; 

 from an environmental perspective: reducing air pollution, noise emissions, 

GHG emissions, and energy consumption to levels without negative impacts 
on the health of citizens and nature. 

This definition of sustainable UFT refers to the structure of the definition of 

sustainable urban transport. The first item in this definition is the prerequisite 

formed by synthesizing the definitions of UFT and SD. The following items are 

objectives of three dimensions that are specified for adapting to the perspective of 

UFT. In particular, the economic dimension of sustainable UFT is concerned with 

costs, including internal (vehicle costs of ownership, and traffic crash costs) and 

external costs (congestion costs and environmental costs), as well as the efficiency 

and cost-effectiveness of transporting goods. The social dimension of sustainable 

UFT is concerned with a livable urban environment, which comprises safety, 

security, equity, mobility, and accessibility for citizens and goods. The 

environmental dimension of sustainable UFT is concerned with the environmental 

protection of citizens and nature. To this end, the sustainable UFT and its three 
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dimensions are defined explicitly as the concept to address the environmental 

challenges arisen in UFT. 

2.2.2 Existing Works for Achieving Sustainable UFT 

There are some existing works conducted for achieving sustainable UFT. A White 

Paper published by the European Commission (2011) is one of the existing works. 

This White Paper is a roadmap to a single European transport area towards a 

competitive and resource efficient transport system. In this White Paper, three 

primary measures are proposed for achieving sustainable UFT. The measures 

include: a). Optimizing the performance of multimodal logistic chains by making 

greater use of more energy efficient modes; b). Increasing the efficiency of 

transport and of infrastructure use with the help of information systems and 

market-based incentives, and; c). Developing and deploying new and sustainable 

fuels and propulsion systems. The following existing works for achieving 

sustainable UFT are introduced in line with these three measures.  

Some existing works studied the issues related to the first two measures of the 

White Paper for achieving sustainable UFT. Taniguchi et al. (Taniguchi, 

Thompson, Yamada, & Duin, 2001) proposed a concept – city logistics. This is the 

process for entirely optimizing the logistics and transport activities by private 

companies with the support of advanced information systems in urban areas, while 

considering the traffic environment, congestion, safety, and energy savings within 

the framework of a market economy. Optimization and simulation are the main 

approaches for enhancing the practical applications of city logistics models 

(Taniguchi, Thompson, & Yamada, 2012). Besides, Figliozzi (2010) discussed the 

impacts of congestion on commercial vehicle tour characteristics and costs. Maden 

et al. (2009) applied traffic information with time-varying speeds to plan routes for 

reducing CO2 emissions and comparing plans in terms of constant speeds and a 

general contingency allowance. Furthermore, Urban Consolidation Centers (UCCs) 

as one type of logistics facilities has been proposed and frequently discussed in 

recent years. It is initiated to reduce goods vehicle traffic, vehicle-related GHG 

emissions, and local air pollution (Allen, Browne, Woodburn, & Leonardi, 2012).   

In addition to the studies regarding the first two measures, the third measure, which 

is replacing ICE vehicles with alternative fuel vehicles, has been studied in some 

existing works as well. For example, Tipagornwong et al. (2014) investigated the 

competitiveness of delivery services using electric-assisted trikes in urban areas. 

Besides, a number of regional and European Union (EU) projects have been 

initiated to investigate and demonstrate the feasibility of using alternative fuel 

vehicles in UFT, such as BESTUFS I II, CityMove, CityLog, DELIVER, 

FREVUE, FURBOT, MELODYS, SELECT, SMARTFUSION, SMILE, and V-

FEATHE (ALICE / ERTRAC Urban mobility WG, 2014). According to the results 

of the projects CityMove and CityLog, freight operators in these projects 
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emphasized the significance of using smart, efficient, environmentally friendly and 

reliable vehicles in urban areas (Welfers et al., 2012). On top of using alternative 

fuel vehicles, using trams to deliver goods in urban areas is also a solution 

proposed and demonstrated in recent years. In Dresden, cargo trams have been 

applied to transport automobile components to avoid intense lorry traffic within the 

city. Similarly, in Zurich, the cargo trams have provided waste disposal service for 

bulky refuse and electrical as well as electronic goods (MDS Transmodal, 2012; 

Ma, 2014).  

On the whole, to address the environmental challenges arisen in UFT, this section 

introduces the definition of sustainable UFT. Moreover, some theoretical and 

practical existing works are reviewed to present to what extent that sustainable 

UFT has been studied.   

2.3 Electric Commercial Vehicles 

Electric Commercial Vehicles (ECVs) constitute a means to achieve sustainable 

UFT. The ECVs are road vehicles, which involve electric propulsion systems for 

the carriage of goods (Chan, 2002; The European Parliament and of the Council, 

2007). The categorization of ECVs can rely on differences regarding the 

configurations, propulsion systems, and energy sources. On account of these 

differences, the ECVs can be categorized into Battery Electric Vehicles (BEVs), 

Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs) and 

Fuel Cell Electric Vehicles (FCEVs) (Table 2).  

Table 2: A summary of four types of ECVs (adapted from Chan et al., 2010) 

Types Characteristics Strengths Limitations 

BEVs Propulsion: electric motor 

drives; 

Energy storage: battery,  

supercapacitor; 

Infrastructure: charging 

stations 

Zero local emissions;  

High energy efficiency; 

Independent of fossil fuels; 

Commercially available 

Limited driving range;  

High initial cost;  

Insufficient charging  

infrastructures 

HEVs Propulsion: electric motor 

drives & internal 

combustion engines; 

Energy storage: battery,  

supercapacitor, fossil or 

alternative fuels; 

Infrastructure: gasoline 

stations 

Low local emissions; 

High fuel efficiency; 

Long driving range; 

Commercially available 

Dependent on fossil 

fuels;  Higher cost than 

ICE vehicles; 

Control, optimization, 

and management of 

multiple energy sources 
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Types Characteristics Strengths Limitations 

PHEVs Propulsion: electric motor 

drives,  internal 

combustion engines; 

Energy storage: battery,  

supercapacitor, fossil or 

alternative fuels; 

Infrastructure: gasoline 

stations, charging stations 

Low local emissions; 

High fuel efficiency;  

Long driving range; 

Commercially available 

Dependent on fossil 

fuels; 

Higher cost than ICE 

vehicles; 

Control, optimization, 

and management of 

multiple energy sources; 

Insufficient charging  

infrastructures 

FCEVs Propulsion: electric motor 

drives; 

Energy storage: hydrogen 

tank; Infrastructure: 

hydrogen filling stations 

Zero local emissions; 

High energy efficiency; 

Independent of fossil fuels; 

Satisfied driving range 

High fuel cell cost; 

Difficulty of storage and 

transport of hydrogen; 

Insufficient hydrogen 

filling stations 

The BEVs are powered entirely by electric energy stored in batteries. Electric 

motors convert the electric energy into mechanical energy to propel the vehicle 

wheels. Onboard batteries are rechargeable by plugging into an electric power 

source and regenerative braking energy (Alternative Fuels Data Center, 2018a). 

There are obvious strengths and limitations in the BEV. Without considering the 

raw material for producing electricity from the life cycle’s perspective, BEVs emit 

zero tailpipe emissions and are independent of fossil fuels. Additionally, since 

there are no ICEs onboard, the noise of BEVs dramatically decreases in 

comparison with ICE vehicles. On the contrary, as a consequence of the limited 

battery capacity and high battery cost, the anxiety over driving range, high initial 

cost, and insufficient charging infrastructures constitute the limitations of the 

BEVs.  

Inconsistent with the BEVs, the HEVs are powered by two propulsion devices, 

namely ICEs and electric motors. These two propulsion devices complicate the 

configuration of HEVs. Depending on the differences between the integration of 

the two propulsion devices, there are three basic configurations of HEVs including 

series hybrid, parallel hybrid, and series-parallel hybrid (Chan, 2007) (Figure 3). 

Among these configurations, the series hybrid vehicle is entirely powered by 

electric energy. The ICE in this configuration has no mechanical connection with 

the driveline. This decoupling indicates that the ICE mechanical output is 

exclusively converted into electricity by the generator. Then, the converted 

electricity can either charge the battery or directly propel the driveline. In 

comparison with the series hybrid, the parallel hybrid vehicle can be powered by 

ICE alone, by electric motors along, or by both of them. In this context, the 

mechanical connection between the ICE and the driveline replaces the connection 

between the ICE and electric motors. This replacement implies that the mechanical 

energy of the ICE can directly propel the driveline rather than converting this 
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mechanical energy into electric energy by generators. On top of these two 

configurations, the series-parallel hybrid vehicle is configured by integrating the 

two connections between ICE and drivelines as well as ICE and electric motors.  

 

Figure 3: Configurations of HEVs (adapted from Chan, 2007) 

On account of the two onboard propulsion devices, the HEVs may overcome some 

limitations of both ICE vehicles and BEVs (Chan, 2002). In comparison with ICE 

vehicles, the HEVs mitigate noise, tailpipe emissions, as well as energy 

consumption. By comparison with BEVs, the HEVs extend the driving range and 

have no demands on recharging by an external electric power source. Besides, on 

the basis of the optimized operation of the onboard ICE in the HEVs, the 

maintenance of the vehicle may be significantly reduced (Chan, 2007). 

Nevertheless, although the HEVs may improve some limitations of BEVs, since 

the ICE remains onboard, the HEVs still depend on fossil fuels. In addition, the 

cost of HEVs is higher than ICE vehicles because of the complex configurations 

and onboard energy storage systems. 

Similar to the HEVs, the PHEVs are also powered by the two propulsion systems. 

The primary difference between HEVs and PHEVs is whether the on-board 

batteries can be recharged by external electric power sources. In the HEVs, the 

onboard batteries are commonly recharged by absorbing the power from the ICE 

and converting the regenerative braking energy. In the PHEVs, apart from the two 

modes of recharging batteries in the HEVs, the onboard batteries of PHEVs can be 

recharged by external electric power sources as well. In addition to the difference 

regarding recharging batteries, the PHEVs also differ from the HEVs in the size of 

battery capacity. Commonly, the battery capacity of PHEVs is larger than HEVs. 

This difference presents that the battery of PHEVs can propel vehicles longer than 

HEVs without the assistance of the ICE. On top of these differences, the strengths 

and limitations of PHEVs are same as HEVs.  
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The FCEVs are fueled with pure hydrogen gas stored directly on the vehicle 

(Alternative Fuels Data Center, 2018c). Hydrogen in the FCEVs plays the same 

role as gasoline or diesel in ICE vehicles. Using hydrogen, the fuel cell produces 

electric energy. The electricity from the fuel cell is either used to drive the vehicle 

or is stored in the battery pack (Chan, 2007). Since the byproducts of hydrogen are 

water and heat, the FCEVs emit zero tailpipe emissions. Moreover, the filling time 

of hydrogen is much shorter than the battery charging time and similar to the 

filling time of ICE vehicles. For instance, as introduced in Fuel Cell Electric 

Vehicles (2018b), the FCEVs can fuel in less than 10 minutes and have a driving 

range of around 300 miles (≈483 km). Nevertheless, since the cost of fuel cells is 

high, the storage and transport of hydrogen are difficult, and the hydrogen filling 

infrastructures are insufficient, the FCEVs still present relatively low availability 

nowadays.  

In short, this section outlines four types of ECVs to in-depth illustrate to what 

extent that these types are available for being employed in UFT.  

2.4 Summary 

As introduced in this chapter, the relations between urbanization, UFT, ICE 

vehicles, ECVs, as well as sustainable UFT are portrayed in Figure 4. Since the 

urbanization determines the demands of goods in UFT, the rapid urbanization may 

stimulate the development of UFT. To pursue this development, the number of ICE 

vehicles is accordingly required to be expanded. Nevertheless, the ICE vehicles, 

which is powered by burning non-renewable fossil fuels, result in the 

environmental problems in UFT, such as air pollution and energy consumption. In 

this context, sustainable UFT is proposed to address these problems. The ECV is a 

measure for achieving sustainable UFT. As reviewed in Section 2.2.2, many 

studies and demonstration projects have considered the employment of ECVs to 

achieve sustainable UFT. In spite of this, the market penetration is relatively low 

underlying the intention of employing ECVs. According to the report of ICCT 

(International Council on Clean Transportation, 2017), in Europe, the light electric 

commercial vehicles (GVW < 3.5𝑡 ) including the BEVs, HEVs, and PHEVs, 

accounted for 0.7% of total sales of light commercial vehicles in 2016. In a related 

perspective, Navigant Research (Alexander & Jerram, 2017) forecasted that the 

market share of diesel medium – and heavy – duty trucks (gross vehicle weight≥
3.5𝑡 ) will remain the dominant in next decade. Overall, although there are 

environmental benefits of employing ECVs and supporting policies for 

commercializing the ECVs, the statistics reveal that the market penetration of 

ECVs in UFT is still low. 
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Figure 4: The conflict in employing ECVs to achieve sustainable UFT 

In comparison with the intention of employing ECVs to achieve sustainable UFT, 

the current market penetration of ECVs raises a question: why there is a conflict 

between the intention and the real market penetration. To answer this question, the 

state of the art in this research field is reviewed in Chapter 3 to identify the 

limitations of the employment of ECVs in UFT and explain this conflict.   
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3 Employment of ECVs in UFT: State of the Art 

This chapter focuses on reviewing the state of the art in the field of the 

employment of ECVs in UFT. The goal is to achieve in-depth knowledge in 

current studies so that to analyze and identify the limitations regarding such 

employment. Literature (Section 3.1) and existing tools (Section 3.2) as the current 

studies are reviewed in this chapter respectively. Moreover, the factors influencing 

the employment are extracted from the current studies and illustrated in Section 

3.3. Finally, the limitations of the employment are analyzed and identified in 

Section 3.4 based on gaining insight into the state of the art.  

3.1 Current Focus of Employing ECVs in UFT1 

This section presents the primary focus on the employment of ECVs in UFT. The 

role of this section is to answer the question: what has been considered in the 

literature to deal with such employment. A Systematic Literature Review (SLR) is 

applied following a sequence of activities: a. determining the objective of the SLR; 

b. selecting sources; c. selecting keywords; d. classifying the articles; e. 

summarizing the results. There are primarily four areas of focus appeared in the 

literature including the feasibility of ECVs, adaptations of logistics concepts, 

adaptations of vehicle concepts, and support of stakeholders. Subsequent 

subsections provide respective discussions about these four areas of focus. 

3.1.1 Feasibility 

In a standpoint of feasibility, the literature has identified the opportunities, 

limitations, and competitiveness of employing ECVs in UFT. The research 

methods in such literature mainly rely on surveys, case studies, and simulations. 

According to the identification of opportunities, there are environmental benefits 

(low emissions, noise, and energy consumption), social attitudes (drivers and 

freight operators) (Quak, & Nesterova, 2014; Quak, Nesterova, & Van Rooijen, 

2016; Quak, Nesterova, Van Rooijen, & Dong, 2016; Wang, & Thoben, 2017b), 

and financial (subsidies, tax exemption) as well as non-financial incentives 

(preferential parking for ECVs, initiating repair centers for ECVs, allowing ECVs 

to drive on high occupancy or bus lanes, and privileges of accessing to low 

emission zones in city centers) (Pelletier et al., 2016; Taefi et al., 2016) discussed 

in the literature. These identified opportunities render the employment of ECVs in 

UFT feasible.  

Besides such opportunities, the literature has also identified limitations, which 

hinder the employment of ECVs in UFT. The limitations include: 

                                                             
1 This section has been published in (Wang et al., 2018) 
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 Economic limitations, such as: high purchase price, battery price, and 

infrastructure costs (Iwan, Kijewska, & Kijewski, 2014; Quak, & Nesterova, 

2014; Quak, Nesterova, & Van Rooijen, 2016; Quak, Nesterova, Van 

Rooijen, et al., 2016; Wang, & Thoben, 2017b); 

 Technological limitations, such as: long charging time, limited driving 

range, payload capacity, and battery lifetimes (Iwan, Kijewska, et al., 2014; 

Morganti, & Browne, 2018; Quak, Nesterova, & Van Rooijen, 2016; Taefi, 

Kreutzfeldt, et al., 2015; Wang, & Thoben, 2017b), as well as; 

 Infrastructural limitations: networks, diverse types of charging stations 

(battery charging with cables, battery swapping, or battery wireless 

charging), compatibility, and grid issues (Juan, Mendez, Faulin, De Armas, 

& Grasman, 2016; Quak, Nesterova, & Van Rooijen, 2016). 

In addition to the outlined limitations, there are also other issues discussed in the 

literature. These issues comprise security, limited availability of vehicles, few 

proper business models and lack of a comprehensive understanding between 

freight operators and policymakers (Klumpp, Abidi, & Marner, 2014; Quak, 

Nesterova, & Van Rooijen, 2016; Quak, Nesterova, Van Rooijen, et al., 2016; 

Taefi, Kreutzfeldt, et al., 2016). 

Furthermore, in this area of focus, the literature evaluates competitive advantages 

to employ ECVs in UFT, as compared to diesel commercial vehicles. The 

evaluation of this competitiveness focuses mainly on the economic and 

environmental perspectives. The economic perspective discusses the impact of the 

purchase cost, battery cost, fuel cost, and financial incentives for competitiveness. 

The environmental perspective is concentrated in the performance, such as CO2 

emissions and energy consumption. The results of the evaluation show that the 

competitive advantages of ECVs depend on their powertrains and Gross Vehicle 

Weight (GVW). In general, the light-duty BEVs are the most competitive vehicles 

to operate in some parts of UFT, such as express/post market (Lebeau, Macharis, 

Van Mierlo, & Lebeau, 2015; Macharis, Lebeau, Mierlo, & Lebeau, 2014; Melo et 

al., 2014). For the medium-duty vehicles, diesel commercial vehicles remain the 

most interesting solution from the financial point of view (Lebeau, De Cauwer, et 

al., 2015; Taefi, Stütz, & Fink, 2017). In the segment of heavy-duty vehicles, 

HEVs are more competitive with running in city areas rather than highways (Daw 

et al., 2013; Lebeau, De Cauwer, et al., 2015). 

On the whole, the literature in the area of feasibility implies that the replacement of 

diesel commercial vehicles with ECVs in UFT appears possible. Additionally, 

some solutions and research perspectives have been suggested to address the issues 

raised by the studies on the feasibility. For example, from the economic point of 

view, the literature (Davis, & Figliozzi, 2013; Feng, & Figliozzi, 2013, 2012; 
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Lebeau, Macharis, Van Mierlo, et al., 2015; Taefi, Stütz, et al., 2017) proposes to 

reduce the battery cost and the purchase price; to raise the fuel price (diesel and 

petrol), and; increase vehicle utilization (traveled distance per year per vehicle). 

From the technological point of view, it is recommended to develop Information 

and Communications Technology (ICT), infrastructures (networks and inductive 

systems), as well as Electric Vehicle Routing Problem (EVRP) by taking into 

account fleet sizes and charging strategies (Iwan et al., 2014; Juan et al., 2016; 

Morganti & Browne, 2018; Pelletier et al., 2016; Quak, Nesterova, & Van Rooijen, 

2016). From the policies’ point of view, Taefie et al. (2016) suggest to implement a 

city toll on the long-term and allow drivers with a class B license to drive ECVs 

over 3.5t. In addition, Roumboutsos et al. (2014) suggest transferring leadership 

from central to municipal authorities for promoting the employment of ECVs in 

UFT. 

3.1.2 Adaptions of Logistics Concepts 

In order to fit characteristics of ECVs, some works in the literature have focused 

on adapting the existing logistics concepts, which are primarily designed for 

operating diesel commercial vehicles. The limited battery capacities of BEVs, as 

one of the characteristics, have been mainly discussed in this perspective of 

logistics. Schneider et al. (2014), Guo et al. (2017), and Panagiotis et al. (2016) 

have formulated the EVRP in the condition of recharging BEVs at depots and 

available charging stations en route. On the contrary, Conrad and Figliozzi (2011) 

as well as Aggoune-Mtalaa et al. (2015) proposed vehicle routing models to 

recharge BEVs at customer locations rather than recharging stations. In exclusion 

of these articles that focus on homogeneous fleets, Van Duin et al. (2013), 

Mirhedayatian and Yan (2018), as well as Rezgui et al. (2015) have investigated 

the EVRP with heterogeneous fleets. In addition to the literature addressing the 

EVRP, Deflorio and Castello (2017) studied a concept of charging-while-driving to 

assess traffic and energy performance of electric power systems for dynamically 

charging ECVs while driving. Schau et al. (2015) and Kretzschmar et al. (2016) 

adapted existing ICT systems to predict the range of BEVs for fitting the limitation 

of battery capacities. In short, to adapt the current logistics concepts to the limited 

battery capacities, the studies on the EVRP, the ICT, and the charging-while-

driving have been discussed in the literature. 

To further fit the characteristics of ECVs into UFT, some works focused on 

innovating logistics concept. The combinations of Urban Consolidation Centers 

(UCCs) and BEVs are one of the innovative logistics concepts. This concept 

suggested to constructing UCCs in relative proximity to the urban areas and 

replacing diesel commercial vehicles with BEVs to deliver goods in the cities 

(Browne et al., 2011; Leonardi, Browne, & Allen, 2012). In this context, the 

limited driving range of BEVs is not a restriction anymore, because the daily 

traveled distance is shorter than the driving range (Lebeau, Macharis, van Mierlo, 
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& Maes, 2013). Moreover, although the low payload capacity of BEVs led to more 

traffic, the total distance traveled, and CO2 emissions were reduced by conducting 

this concept (Browne et al., 2011; Daniela, Paolo, Gianfranco, & Graham, 2014; 

Lebeau et al., 2013; Leonardi et al., 2012). In addition to the concept of UCCs, 

Faccio and Gamberi (2015) introduced an innovative distribution network to 

integrate the distribution of goods in a cluster of linked small cities. Furthermore, 

to decrease the congestion resulting from the limited parking spaces, Boussier et al. 

(2009) modeled a management process of the parking places sharing between car 

drivers and dedicated areas of goods deliveries. Besides, to reduce the total cost 

and increase the utilization of ECVs, Taefi (2016) proposed an innovative 

combination of the day and night delivery by using BEVs. Given these points, to 

support the employment of ECVs in terms of their existing limitations, some works 

are contributing to this support by adapting the existing logistics concepts. 

3.1.3 Adaptions of Vehicle Concepts and Supporting Stakeholders 

To improve existing limitations of ECVs for satisfying the requirement of UFT, 

there are some works focused on the area of adapting vehicle concepts. For 

example, to fit the diverse delivery tasks in UFT, Andaloro et al. (2015) defined 

and developed a flexible and modular light-duty BEVs with high payload capacity 

and a rolling chassis, which allows the integration with different powertrains and 

different upper bodies (vans or box vans). Molfino et al. (2015) designed a new 

architecture for light-duty BEVs to autonomously load and unload palletized or 

boxed goods. Clarembaux et al. (2016) improved the perception and control system 

of light-duty BEVs for parking/docking process. In addition, to adapt medium-duty 

HEVs to the parcel and delivery service, Lewis et al. (2017) studied a fuel cell 

HEV to properly size the fuel cell and battery by using real-world operational data 

and duty cycles. On the whole, to improve the limitations of ECVs for efficiently 

delivering goods in diverse UFT, the flexible and modular BEVs, the autonomous 

loading and unloading, the intelligent parking/docking, the high payload capacity, 

and the proper size of fuel cell and battery in HEVs have been studied in the 

adaption of vehicle concepts.  

Besides the vehicle and logistics concept, the possible solutions for supporting 

stakeholders have been explored as well. For instance, to support authorities 

increasing their understanding on the limitations of adopting ECVs in UFT, 

Lebeau et al. (2015) investigated the choice behavior of transport companies for 

BEVs by applying survey and conjoint based choice analysis. To support transport 

companies selecting appropriate BEVs for UFT, Watróbski et al. (2017) proposed 

a unique approach in terms of multi-criteria analysis and discussed as well as 

ranked 36 available BEVs in the market. Furthermore, to support authorities 

employing ECVs in large scale, Cheng and Liu (2016) provided a business 

operating model, which respectively considered different practitioners (battery 

plants, energy supply companies, automobile companies) as individual operating 
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companies, to compare and discuss their advantages and disadvantages. To sum 

up, in the area of supporting stakeholders, the existing works studied the 

preferences of stakeholders for ECVs, proposed approaches of selecting proper 

ECVs, and discussed possible business models to facilitate the employment of 

ECVs in UFT. 

On the whole, there are mainly four areas of focus, fifteen issues, and seven 

approaches or methods considered in the literature to deal with the employment of 

ECVs in UFT (Table 3).  

Table 3: Four areas of focus 

Area of Focus Issue Addressed Approach/Method 

Feasibility 

Limitations and opportunities 
Review, survey, case study, the 

system of innovation 

Competitiveness of employing ECVs 

in UFT 
Simulation, case study 

Adapting 

logistics concept 

EVRP Simulation 

UCCs + BEVs Simulation, case study 

ICT Machine learning 

Charging-while-driving Simulation 

Multi-city urban logistic model Simulation 

Sharing parking places Simulation 

Day and night delivery Simulation 

Adapting 

vehicle concept 

New architecture Simulation 

Improvement of the control system Simulation 

Size of onboard energy for HEVs Simulation 

Supporting 

stakeholders 

Preferences of transport companies 

for ECVs 
Survey 

Business model - 

Proper choice of ECVs for UFT Multi-criteria analysis 

According to the number of articles in each area, there are 32 articles (53%) 

studied the feasibility of ECVs, 20 articles (33%) adapted logistics concepts, 4 

articles (7%) adapted vehicle concepts, and the rest of 4 articles (7%) explored 
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solutions for supporting stakeholders. These proportions reveal that many studies 

focus on addressing the feasibility of ECVs as the main area.     

3.2 Tools for Employing ECVs in UFT 

This section provides an analysis of existing tools regarding the employment of 

ECVs in UFT. The objective of this section is to identify which tools relate to such 

employment and what their purposes, strengths, and limitations are. The existing 

tools are examined by meeting the following criteria: a. the tools including 

alternative fuel commercial vehicles (light-, medium-, or heavy duty); b. taking 

into account the employment of these vehicles in UFT; c. assessing such 

employment in the economic, environmental, or social dimensions; d. running in 

English or German. In the end, six tools are selected for further analysis. Besides, 

in terms of the differences among the purposes of these six tools, the subsequent 

subsections present the tools from the vehicle-oriented and logistics-oriented point 

of view respectively.  

3.2.1 Vehicle-Oriented Tools 

AFLEET Tool 

Alternative Fuel Life-Cycle Environmental and Economic Transportation is 

abbreviated as AFLEET Tool. It was supported by the Vehicle Technologies 

Office, U.S. Department of Energy. This tool allows clean cities stakeholders to 

estimate life-cycle petroleum use, life-cycle greenhouse gas emissions, air 

pollutant emissions in vehicle operation, and costs of ownership for light-duty 

vehicles and heavy-duty vehicles (Burnham, 2016). They investigated three types 

of light-duty vehicles and seven types of heavy-duty vehicles with using 16 

available fuel types. Users can choose one or more vehicle categories and fuel 

types on the basis of their own cases.  

There are several advantages of the AFLEET Tool. First of all, this tool can 

estimate and compare multiple vehicle categories and fuel types from economic 

and environmental perspectives. This advantage provides diverse options for users, 

who are involved in clean cities stakeholders, to select appropriate vehicle and fuel 

types in accordance with their own cases. Secondly, this tool takes into account the 

years of planned ownership to estimate the economic and environmental 

performance in the entire service years. This advantage reveals that the AFLEET 

Tool is a time-dependent tool, which can present results in current and future 

scenarios. In addition, the AFLEET Tool can calculate life cycle petroleum use, 

GHGs, and air pollutant emissions. Besides, all of the calculations in the AFLEET 

Tool are supported by a relatively full database.  

On the other hand, there are two limitations for users to apply this tool. Firstly, this 
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tool estimates the petroleum use, GHGs, air pollutant emissions, and costs of 

ownership exclusive of considering the UFT and its logistical parameters. 

Secondly, the social dimension in sustainable UFT seems ignored in this tool. In 

this context, the conclusion of this tool cannot show the interaction between the 

calculated results (GHGs and TCO) and the changes of logistical parameters 

(transported weight and traveled distance). Moreover, the users of this tool cannot 

comprehensively understand their options from the sustainable point of view 

without considering the social dimension. 

Heavy Truck Benefits Analysis Models 

The Heavy Truck Benefits Analysis Models (HTBAMs) are developed by the 

Energy System Division at Argonne National Laboratory. It is applied for 

estimating energy, environmental, and economic benefits by using a market-based 

approach. The HTBAMs consists of three submodels. The Heavy Truck Energy 

Balance Dynamic (HTEBdyn) Model is one of the submodels. It calculates the fuel 

economy of medium-duty (Class 3-6) and heavy-duty (Class 7& 8) vehicles on the 

basis of vehicles’ and engines’ characteristics as well as drive cycles (Argonne 

National Laboratory, 2017). The intended purpose is to estimate the impact of 

technology improvements and innovations on heavy truck fuel consumption for a 

variety of duty cycles (TA Engineering, 2014). Therefore, hybrid electric trucks 

with integrating regenerative braking systems as one of the technology 

improvements and innovations are involved in this model. Furthermore, the rest of 

the models are the TRUCK model and the VISION model. The TRUCK model 

applies the results of HTEBdyn for estimating the market potential of associated 

technology changes and calculates the fuel economy of new truck fleets. The 

VISION model then uses sales projections and historical scrappage rates to project 

the future stock of heavy vehicle, the fuel economy of the in-use fleet, and total 

consumption of traditional as well as alternative transportation fuels (TA 

Engineering, 2012). 

There are three advantages to this model. Firstly, the model incorporates drive 

cycles to calculate fuel consumption. It implies that the fuel consumption varies 

with the velocity at each time step so that the accumulated results are closer to real 

life. Secondly, this model has the capability of predicting future market of heavy 

trucks to present a long-term view. Finally, the calculation of total carbon-

equivalent emissions covers the emissions from Well To Wheel (WTW). 

Nevertheless, several limitations to this model need to be noted. Although the fact 

that this model took into account the advanced technologies, the alternative fuel 

types and vehicle categories are fewer in number than the AFLEET Tool. In 

addition, the HTBAMs estimate the change in fuel costs by applying advanced 

technologies, whereas the total costs for employing these advanced technologies 

are overlooked. Finally, similar to the AFLEET Tool, this model concentrates on 
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estimating the economic and environmental benefits from the automotive point of 

view without involving the perspective of UFT and its logistical parameters as well 

as the social dimension. 

ADVISOR 

ADVISOR is the abbreviation of Advanced Vehicle Simulator. It is an open source 

simulation tool, which is written in the MATLAB/Simulink environment and 

developed by the National Renewable Energy Laboratory. The role of this tool is 

to provide the vehicle engineering community with an easy-to-use, flexible, yet 

robust and supported analysis package for advanced vehicle modeling (Markel et 

al., 2002). The fuel economy, the performance, and the emissions of passenger and 

commercial vehicles with using conventional and alternative fuels can be 

quantified in this tool. Fuel cells, batteries, and ICE in hybrid configurations are 

the alternative technologies included in this tool. 

Users can benefit from two advantages of this tool. First of all, same as the 

HTBAMs, this tool calculates the fuel economy in accordance with drive cycles, 

which constitutes a series of vehicle speeds as a function of time. Moreover, the 

regenerative braking system is integrated into this calculation of fuel economy. 

Secondly, ADVISOR contains a wide range of vehicle and fuel types so that some 

stakeholders, such as component suppliers, automobile manufacturers, future 

governments, and academic researchers, can benefit from the simulation results. 

In spite of this, users cannot directly apply this tool for simulating the employment 

of ECVs in UFT because of the following limitations. Firstly, this tool analyzes the 

various technologies simply from an environmental point of view. The expenditure 

and the social impact of using ECVs are paid no attention.  Secondly, the UFT and 

its logistical parameters are excluded from this tool. It results in a difficulty for 

users to employ appropriate types of ECVs to replace conventional vehicles in 

UFT.  

3.2.2 Logistics-Oriented Tools 

Calculating GHG Emissions for Freight Forwarding and Logistics Services 

This is a guidance, which is published by the European Association for 

Forwarding, Transport, Logistics and Customs Services (CLECAT). The purpose 

of this guide is to provide a practical tool for logistics service providers that seek to 

make use of the European standard EN 16258 “Methodology for calculation and 

declaration of energy consumption and greenhouse gas emissions of transport 

services”, in order to determine their environmental footprint and seek ways to 

reduce it (Schmied et al., 2012). The readers can calculate the energy consumption 

and GHG emissions in compliance with sample calculations by applying standard 



3.2   Tools for Employing ECVs in UFT

 

33 

 

values. The energy consumption of the lorries, trains, ships, aircraft as well as 

buildings, warehouses and handling are involved in this guide. 

This guide contributes to providing explicit methods for calculating the energy 

consumption and the GHG emissions by taking into consideration logistical 

parameters and diverse transport modes. The corresponding equations and WTW 

standard values are provided in accordance with the EN 16258. The role of these 

standard values is to transfer different units of energy consumption and GHG 

emissions into standardized unit mega joule (MJ) and CO2 equivalent kilogram 

(kg). In short, this guide supports the freight forwarding and logistics services to 

analyze their own cases from the environmental dimension easily and efficiently. 

Nonetheless, there are several limitations for readers to follow this guide. Firstly, 

although this guide involves logistical parameters and diverse transport modes, the 

UFT markets are unspecified. Secondly, in comparison with the vehicle-oriented 

tools, the total energy consumption and GHG emissions in this guide are calculated 

independent of the time (drive cycles or planned service years). Furthermore, the 

economic and social dimensions are not involved in this guide. This limitation 

leads to an incomprehensive assessment from a sustainable point of view. Finally, 

the electric vehicles, which has the capability of saving energy and reducing 

emissions to achieve sustainable UFT, are excluded from this guide. 

Calculation and Allocation of UFT 

Calculation and allocation of UFT (German original name Straßengüterverkehr 

Berechnung und Allokation: SBuA) is one module of a tool called CO2-Method 

Kit. This tool is developed by Institut für Transportlogistik at the Technical 

University of Dortmund. The objective of this tool is to help small and medium-

sized logistics enterprises with balancing their energy consumption, carbon dioxide 

emissions as well as GHG emissions (Institut für Transportlogistik TU Dortmund, 

2018). This module focuses on the commercial vehicles of using conventional 

diesel, biodiesel, biodiesel 4%, 5%, 6%, and 7% blend. The energy consumption, 

CO2 emissions, and CO2 equivalent emissions from TTW and WTW are calculated 

by inputting the goods types, vehicle categories, fuel types, gradient, running road, 

actual transported weight, and actual traveled distance. The methods of calculation 

and the standard values are applied in compliance with the guide introduced in the 

last subsection. 

There are two advantages in this module for supporting this dissertation. First of 

all, this module involves logistical parameters, such as goods types, transported 

weight, and traveled distance, to estimate the energy consumption and CO2 

equivalent emissions. Furthermore, this module takes into account the calculations 

from the perspective of TTW and WTW. This advantage may contribute to the 

users numerically and comprehensively understanding their transport operations 
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from the environmental point of view. 

However, several limitations render this module unsatisfied for users to employ 

ECVs in UFT from a sustainable point of view. Firstly, this module only examines 

the environmental parameters. The differences in the expenditure are unclear from 

the economic point of view. In addition, the social dimension is also lacking in this 

module. Secondly, the vehicle categories and the fuel types are fewer in number 

than the AFLEET Tool and the relevant automotive parameters are overlooked. 

The logistical parameters are involved in this module, but these parameters 

describe unspecified UFT markets. Finally, this module is time-independent. 

EcoTransIT 

EcoTransIT World is an abbreviation of Ecological Transport Information Tool – 

Worldwide. It is free of charge internet application, which shows the 

environmental impact of freight transport on any route in the world and any 

transport mode (ifeu Heidelberg et al., 2016). This application aims to support the 

forwarding companies, carriers, logistics providers, political decision-makers, 

consumers, and non-governmental organizations. The purpose is to assist them in 

calculating the corresponding environmental parameters and comparing them 

thoroughly from logistic concepts including all transport modes (road, rail, air, 

maritime, and so on). This application provides two input modes. The standard 

input mode allows users to estimate energy consumption and GHG emissions 

quickly and efficiently. The extended input mode provides users some options to 

adapt their own cases with standardized units, such as changing the goods types, 

running routes, transport modes, vehicle categories (light-, medium-, and heavy-

duty), fuel types (diesel, CNG, LNG, BEV), emission standards, load factors, and 

empty trip factors. 

This application transformed the standard EN 16258 into an effective tool. The 

diverse transport modes and logistical parameters assist the relevant stakeholders 

in calculating and comparing their own cases. Nevertheless, same as the limitations 

of the guide, this application is independent of the time factor. Besides, few fuel 

types, few automotive parameters, unspecified UFT markets, and lack of 

consideration about economic and social impacts hinder users to apply this tool. 

3.2.3 Benefits and Limitations of Existing Tools 

A summary of purposes, strengths, and limitations of the six tools are illustrated in 

Table 4. On observing the vehicle-oriented tools, the typical advantages present in 

the wide range of vehicle categories and fuel types, the time-dependent, as well as 

the estimation of the economic and environmental performance from WTW. In 

particular, the wide range of vehicle categories and fuel types provides users more 

options to determine their satisfactory employment of ECVs in UFT. Moreover, 
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the estimation with taking into account the time-dependent feature, the economic 

and environmental performance, as well as the perspective of WTW may support 

users to understand the different options more comprehensively. In spite of this, 

the unspecified UFT markets, lack of logistical parameters, and the little attention 

to the social dimension hinder the decisions of users to employ ECVs in UFT from 

a sustainable perspective. 

Table 4: Purposes, advantages, and limitations of existing tools 

 Tools  Purposes Advantages Limitations 

V
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-O
ri

en
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d
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o
o
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AFLEET To estimate and compare 

multiple vehicle 

categories and fuel types 

from economic and 

environmental 

perspectives for clean 

cities stakeholders 

Wide range of 

vehicle categories 

and fuel types; 

Time-dependent; 

Relatively full 

database; 

WTW 

No logistical 

parameters; 

No social dimension 

HTBAMS To estimate energy, 

environmental, and 

economic benefits for 

heavy trucks 

Time-dependent; 

Future market; 

WTW  

Few vehicle 

categories and fuel 

types; 

No logistical 

parameters; 

No social dimension 

ADVISOR To provide the vehicle 

engineering community 

an analysis package for 

advanced vehicle 

modeling 

Time-dependent; 

Wide range of 

vehicle categories 

and fuel types 

No logistical 

parameters; 

No social and 

economic dimension 

L
o
g
is

ti
cs

-O
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en
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d
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o
o
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CLECAT To provide a practical 

tool for logistics service 

providers to determine 

their environmental 

footprint and seek ways 

to reduce it 

Easy and clear 

methods; 

Logistical 

parameters; 

Diverse transport 

modes; 

WTW 

Time-independent; 

No social and 

economic dimension; 

Few vehicle 

categories and fuel 

types; 

Unspecified UFT 

markets 

SBuA To help small-and 

medium-sized logistic 

enterprises balancing 

their environmental 

parameters 

Logistical 

parameters; 

WTW 

Time-independent; 

No social and 

economic dimension; 

Few vehicle 

categories and fuel 

types; 

Unspecified UFT 

markets 

EcoTransIT To assist freight transport 

stakeholders calculating 

environmental 

parameters and 

comparing them from 

Logistical 

parameters; 

Diverse transport 

modes; 

WTW 

Time-independent;  

No social and 

economic dimension; 

Few fuel types; 

Unspecified UFT 
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 Tools  Purposes Advantages Limitations 

logistic concepts 

including all transport 

modes 

markets 

Furthermore, in comparison with the vehicle-oriented tools, the logistics-oriented 

tools benefit from the logistical parameters and the estimation of the environmental 

performance in a wide range of transport modes from WTW. However, few 

vehicle categories and fuel types, few automotive parameters, unspecified UFT 

markets, and exclusive of social as well as economic dimensions are limitations for 

the logistics-oriented tools. These limitations imply that a diversity in the 

employment of ECVs in UFT has been overlooked. Besides, the study of 

sustainable UFT is incomprehensive. In conclusion, since the existing tools are 

either vehicle- or logistics-oriented tools, no existing tools can completely illustrate 

the employment of ECVs in UFT from a sustainable point of view.  

3.3 Factors Influencing the Employment 

This section extracts the factors influencing the employment of ECVs in UFT with 

respect to the three dimensions (economic, social, and environmental) of 

sustainable UFT. These factors refine the opportunities and limitations in the 

existing works and specify potential parameters for supporting the development of 

the methodological concept in Chapter 4.  

3.3.1 Economic Factors 

The factors in the economic dimension primarily focus on costs. These costs 

influence the decisions of purchasing ECVs and expanding ECVs in use. 

Normally, freight carriers (users) estimate and compare the Total Costs of 

Ownership (TCO), including the purchase price, insurance, registrations fees, fuel 

costs, maintenance costs, and depreciation costs, to determine whether a freight 

vehicle is appropriate to be purchased in large. Additionally, specific to the 

employment of ECVs, the financial incentives provided by governments are also 

involved in this decision.  

In the economic perspective, the financial incentives, low energy costs, and low 

maintenance costs are considered as positive factors to facilitate the employment of 

ECVs in UFT. Specifically, the financial incentives are used to reduce the 

ownership costs of ECVs and their charging equipment (Pelletier et al., 2016). In 

addition, since the low energy and maintenance costs mitigate the high TCO, 

which results from the high purchase price, they constitute triggers for employing 

ECVs in UFT.  
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Financial Incentives 

There are three aspects supported by the financial incentives (Pelletier et al., 2016). 

The first aspect is the purchase of ECVs, which is incentivized by purchase 

subsidies granted on buying ECVs. The vehicle based and the battery energy based 

subsidies are two categories of the purchase subsidies (Hou, Wang, & Ouyang, 

2014). The vehicle based subsidies mean a constant amount of subsidy for buying 

one electric vehicle. For instance, the city of Amsterdam provides a 5,000 euro 

subsidy per vehicle for fully electric cars, delivery vans and taxis registered by 

companies (Tietge, Mock, Lutsey, & Campestrini, 2016). On the other hand, the 

battery energy based subsidies indicate that there is a constant amount of subsidy 

per kWh for buying one ECV. The total amount of subsidies depends on the 

traction battery capacity. For example, in China, an ECV, which has the traction 

battery capacity less than 30 kWh, receives 1,500 yuan (≈192€2) per kWh; an 

ECV, which has the traction battery capacity between 30 kWh and 50 kWh, 

receives 1,200 yuan (≈154€) per kWh, and; an ECV, which has the traction battery 

capacity more than 50 kWh, receives 1,000 yuan (≈128€) per kWh (MIIT of PRC, 

2016). In short, the purchase subsidy is a positive factor to reduce the TCO for 

users and to promote the consideration of employing ECVs from the economic 

point of view.  

The second aspect supported by the financial incentives is charging infrastructures. 

From 2007 to 2013, the TEN-T program of the EU invested more than 4 million 

euros funding in 155 fast charging stations along the main motorways in northern 

Europe (Tietge et al., 2016). In addition to the EU’s program, there are also 

specific subsidies of charging infrastructures in line with the regional and national 

policies. For instance, in the UK, the private chargers can apply for the Electric 

Vehicle Homecharge Scheme to cover a maximum of 75% of the total installation 

cost (Office for Low Emission Vehicles, 2016). In Poitou-Charentes, businesses 

with less than 500 employees and nonprofit organizations could receive a 50% 

subsidy of equipment and installation costs up to 20,000 euros in total (Tietge et 

al., 2016). These examples show that the subsidies of charging infrastructures are a 

positive factor in the economic dimension to mitigate the financial burden of 

charging ECVs.  

Besides, taxes are the third aspect supported by the financial incentives. These 

taxes may be exempted from the Value Added Tax (VAT), vehicle registration 

taxes, fuel consumption taxes, company car taxes, and so on (Pelletier et al., 2016). 

For example, in Germany, BEVs registered between 2016 and 2020 are exempted 

from the road tax for five years. Moreover, in Norway, the taxes of BEVs are 

exempted from registration taxes, VAT, and company car taxes (Tietge et al., 

2016). Given these points, these tax exemptions may support the reduction of the 

                                                             
2 1€=7.8yuan (02.01.2018) 
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TCO and facilitate the consideration of employing ECVs in UFT.  

Energy and Maintenance Costs 

In addition to the financial incentives, low energy and maintenance costs are also 

positive factors in the economic dimension. Nevertheless, these two positive 

factors are mainly of benefit to BEVs, since the reduction of energy and 

maintenance costs of HEVs, PHEVs, and FCEVs is not as dramatically as BEVs. 

As introduced in Section 2.3, HEVs and PHEVs are powered not only by on-board 

batteries but also by internal combustion engines. These two propulsion systems 

result in the energy costs of HEVs and PHEVs including fossil fuel costs and 

electricity costs. Hence, the energy costs of HEVs and PHEVs are not as low as 

BEVs. Furthermore, as studied by Melaina et al. (2014), total fuel costs per mile 

for BEVs and PHEVs are respectively 21% lower and 13% lower than that for 

FCEVs under the home-dominant scenario. It implies that the FCEVs have lower 

competitiveness in comparison with BEVs with regard to the energy costs. In the 

perspective of maintenance costs, BEVs have an advantage over HEVs, PHEVs, 

and FCEVs, since the configuration of BEVs is simplified and without using ICE. 

Consequently, the low energy and maintenance costs are mainly positive factors 

for promoting the employment of BEVs in UFT.  

Purchase Price 

Aside from the positive factors, there are some economic factors frequently 

discussed as negative factors in existing works (Iwan et al., 2014; Pelletier et al., 

2016; Sierzchula, 2014). High purchase costs are one of the negative factors in the 

economic dimension. Taking the BEVs as an example, the purchase price of one 

delivery step van, which is entirely powered by electricity, is $150,000, whereas a 

diesel delivery step van costs $65,000 (Burnham, 2016). In terms of the federal tax 

credits for all-electric vehicles in the U.S., this BEV can receive up to $7,500 

subsidy depending on its battery capacity (“Federal Tax Credits for All-Electric 

and Plug-in Hybrid Vehicles,” 2017). Nevertheless, despite the fact that the 

regional and national policies provide financial incentives, such as this subsidy, the 

purchase price of BEVs is still high in comparison with diesel commercial 

vehicles.  

Battery Costs 

Additionally, high battery costs is also a research focus on studying the 

employment of ECVs in UFT. As stated by Pelletier et al. (2016), the projections 

of lithium-Ion battery pack cost will reduce from $700/kWh in 2015 to $200/kWh 

in 2030. This reduction indicates that the battery costs currently still dominate the 

purchase price, since the on-board battery capacity of one battery electric truck is 

mostly equal to or greater than 80 kWh. Furthermore, the battery costs have also 



3.3   Factors Influencing the Employment

 

39 

 

influence on the TCO. Commonly, the ownership of a commercial vehicle is 

planned for more than ten years, whereas the battery life is between six to eight 

years (Electrification Coalition, 2010; Lebeau et al., 2015). This difference reveals 

that the battery pack needs to be replaced with a new one, if this battery electric 

truck is planned to be used more than eight years. In this case, high battery costs 

lead to high battery replacement costs. Moreover, high battery replacement costs 

increase the TCO of employing ECVs in UFT. On the whole, the high battery costs 

are a negative factor influence on the purchase price and the TCO. 

Charging Infrastructure Costs 

The costs of charging infrastructures is an extra expenditure for freight carriers, 

who intend to use ECVs in their fleets. For conventional commercial vehicles, the 

public fuel stations are the main approach to refuel vehicles. Nevertheless, on 

account of insufficient public charging infrastructures, the freight carriers need to 

install their own charging infrastructures. According to the database of AFLEET 

tool (Burnham, 2016), a public charger for recharging BEVs and PHEVs costs 

$5,500 and a public station for refueling FCEVs costs $1,353,401. Therefore, the 

costs of charging infrastructures as an extra cost become a negative factor in the 

employment of ECVs in UFT.  

In conclusion, on account of the high purchase price, battery replacement costs, 

and charging infrastructure costs, the positive factors in the economic dimension 

(financial incentives as well as low energy and maintenance costs) currently have 

limited contributions to the competitiveness of ECVs in comparison to diesel 

commercial vehicles. 

3.3.2 Social Factors 

The social dimension in sustainable UFT involves a wide range of factors. As 

defined in Section 2.2, the factors, which influence the attractiveness and quality of 

the urban environment, can be considered as social factors. In this perspective, 

social factors can relate to health, safety, security, mobility, and accessibility. 

Among these factors, the primary attention has been paid to the accessibility in the 

literature. In this research, the accessibility is considered as goods’ ability to reach 

required services and destinations (Litman & Burwell, 2006), namely the 

accessibility of using ECVs to deliver goods in UFT. To this effect, the studies on 

the accessibility in this dissertation have shifted to focus on the access incentives, 

driving range, as well as charging infrastructures of ECVs in UFT.  

Prioritized access incentives are a positive factor from the social point of view. The 

objective of these incentives is to encourage the use of freight ECVs. There are 

three types of prioritized access incentives (Pelletier et al., 2016). The first type of 

incentives grants freight BEVs access to high occupancy lanes or bus lanes, which 



3   Employment of ECVs in UFT: State of the Art

 

40 
 

has been done in Utrecht, Lisbon, and Trondheim. The second type of incentives 

proposes a concept - low emission zones in city centers. ECVs are allowed in the 

zone and have privileges, such as exempt from a charge, enter the city center at 

night, and exempt from restrictions on the maximum weight of vehicles allowed in 

city centers. The third type of incentives is preferential parking for ECVs either in 

allocating free spaces or designated loading and unloading. In conclusion, the 

prioritized access incentives improve the goods’ ability to reach the required 

services and destinations by giving privileges to the use of ECVs.  

Although the prioritized access incentives improve the accessibility, the driving 

range of ECVs, as well as the locations and the number of charging infrastructures, 

are still the issues for ECVs to reach required services and destinations. As stated 

by NOW (2013), BEVs’ driving range is normally between 150 and 250 km, 

FCEVs’ driving range is between 400 and 600 km, whereas ICE vehicles’ driving 

range is between 800 and 1200 km. Obviously, the driving range of ICE vehicles 

has an advantage over BEVs and FCEVs. This strength of ICE vehicles indicates 

that the accessibility of using BEVs and FCEVs to transport goods is not as good 

as the accessibility of ICE vehicles. Therefore, the limited driving range constitutes 

a negative factor leading to the low accessibility in the social dimension.  

To improve the driving range, the attention has been paid increasingly on the 

installation of public charging and hydrogen refueling infrastructures. The 

objective of installing the infrastructures is to mitigate the anxiety of the limited 

driving range and improve the low accessibility. The locations and the number of 

infrastructures are significant for freight carriers to plan their routes (Afroditi, 

Boile, Theofanis, Sdoukopoulos, & Margaritis, 2014; Conrad & Figliozzi, 2011; 

Schneider et al., 2014; Sevgi Erdog˘an, Miller-hooks, 2012). Nevertheless, the 

insufficient number of public infrastructures render the charging and refueling 

ECVs as well as the route plan difficult. For instance, in Norway, 2.4 public 

charging points on average are available for every 1,000 cars registered3 (Tietge et 

al., 2016). This data implies that the number of public charging infrastructures in 

Norway may not match the increasing number of electric vehicles in use. As a 

result, the insufficient number of infrastructures, which are applied to solve the 

limited driving range and to improve the accessibility, is considered as a negative 

factor in the social dimension.   

To summarize, although the regional and national policies support and facilitate 

the employment of ECVs in UFT by proposing the prioritized access incentives, 

the limited driving range of ECVs as well as the locations and number of charging 

infrastructures are still issues for improving accessibility in the social dimension.  

                                                             
3 Including ICE and electric passenger cars 
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3.3.3 Environmental Factors 

The factors in the environmental dimension, which have been studied in the 

literature and existing tools regarding the employment of ECVs in UFT, mainly 

focus on the issues of pollution and energy consumption. Among these factors, the 

pollution commonly refers to air pollution, noise pollution, as well as the 

production and disposal of batteries. The energy consumption includes the amount 

of consuming fossil fuels from Tank to Wheel (TTW) and from Well to Wheel 

(WTW).  

In the perspective of pollution, air pollution has been frequently discussed in the 

literature. The conventional commercial vehicles are the main source of the air 

pollution in urban areas. As stated in Section 2.1, air pollution involves many 

elements. Among these elements, the attention is widely paid to the GHG 

emissions. Employing ECVs in UFT has been recommended as a measure to 

reduce GHG emissions. For instance, according to the study of den Boer et al. 

(2013), in the scenario where 50% of total EU ton kilometers are transported by 

ECVs in 2050, GHG emissions would decrease by 8% compared to 2012 in the 

perspective of WTW. Furthermore, simplified configurations of ECVs without 

using internal combustion engines reduce the noise pollution not only for the urban 

areas but also for drivers.  

The low energy consumption of ECVs is a positive factor in the environmental 

dimension. As introduced in Section 2.3, the ECVs are partially or entirely 

powered by electric energy. This feature indicates that the ECVs may save more 

fossil fuels in comparison with diesel commercial vehicles from the perspective of 

TTW. The amount of energy saving by ECVs depends on vehicle types. For 

example, BEVs is independent of fossil fuels. It implies that there are no fossil 

fuels consumed on board. Additionally, since HEVs and PHEVs remain two 

propulsion systems on board (ICE and electric motors), they are then still 

dependent on fossil fuels and may save energy more than diesel commercial 

vehicles. Besides, the amount of energy saving of ECVs is also dependent on the 

load carried and the driving conditions (Alternative Fuels Data Center, 2018b). In 

short, the low energy consumption is a positive factor attracting the employment of 

ECVs in UFT.  

In addition to considering the on-board energy consumption and the GHG 

emissions from the tailpipe, the attention regarding the energy consumption and 

pollution of ECVs from the perspective of WTW has to be paid as well. In this 

perspective, energy consumption involves not only on-board fuel consumption but 

also the consumption of energy sources. For example, although the electric energy 

generated by batteries is regarded as the green energy used in ECVs, the electricity, 

which is provided for charging infrastructures, can be produced by petroleum, gas, 

coal, biomass fuel, or renewable energy. It indicates that the energy consumption 
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of ECVs from life cycle’s point of view may not as low as the consumption from 

the tank to wheel. Similarly, the total GHG emissions of employing ECVs would 

increase from well to wheel, if the electricity and hydrogen are produced by fossil 

fuels. Accordingly, the benefits of using ECVs, such as low energy consumption 

and GHG emissions, may reduce in the perspective of WTW. Likewise, as a 

significant component of ECVs, the life cycle assessment of batteries from the 

production to the disposal should be studied as well in the environmental 

dimension.  

Given these points, the low energy consumption, GHG emissions, and noise of 

ECVs may attract more attention for considering the employment of ECVs in UFT. 

Furthermore, the life cycle assessment of energy consumption, GHG emissions, as 

well as batteries is also worth being considered, particularly before the future 

commercialization of ECVs.  

In the end, exclusive of the factors in the three dimensions, there are several factors 

influence the employment of ECVs in UFT from the perspective of freight carriers, 

such as their corporate social responsibility, their public image, the pressure from 

government regulations, the first mover advantage, and testing new technologies 

(Sierzchula, 2014; Visser et al., 2014).  

To distinctly illustrate the factors considered in the existing works regarding the 

employment of ECVs in UFT, Table 5 shows a summary of these positive and 

negative factors respectively in economic, social, and environmental dimensions. 

There are two contributions to studying these factors. One contribution is to gain 

insight into the strengths and limitations of employing ECVs in UFT. Additionally, 

the study of the factors also contributes to exploring potential parameters for 

supporting the development of the methodological concept in Chapter 4.  

Table 5: A summary of factors in three dimensions 

Dimensions Positive Factors Negative Factors 

Economic  Financial incentives: 

 Purchase subsidies of ECVs; 

 Subsidies of charging infrastructures; 

 Tax exemptions; 

Low energy costs; 

Low maintenance costs  

High purchase costs; 

High battery costs; 

High costs of charging 

infrastructures; 

 

Social Prioritized access incentives Low accessibility 

Environmental  Environmentally friendly: 

 Low energy consumption; 

 Low GHG emissions; 

 Low noise 

Energy sources; 

Production and disposal of 

batteries 



3.4   Limitations of the Employment

 

43 

 

In conclusion, although a group of positive factors is supporting the employment, 

the negative factors summarized from the literature and existing tools are still the 

primary limitations for the employment of ECVs in UFT. In other words, although 

these limitations have been discussed to deal with the issues in the employment of 

ECVs in UFT, the market penetration of ECVs is still low in our daily life.  

3.4 Limitations of the Employment  

This section provides a different perspective to illustrate a potential limitation of 

the employment of ECVs in UFT. As stated in Section 2.4, there is a conflict 

between the intention of employing ECVs in UFT and the real market penetration 

of ECVs. To analyze the potential limitation leading to the conflict, this section 

introduces a feature in the employment of ECVs in UFT (Section 3.4.1) and 

reviews the corresponding state of the art (Section 3.4.2).  

3.4.1 Diversity in the Employment 

Oliveria et al. (2015) have stated that, towards increasing the market share of a 

product, it is crucial to obtain a satisfactory match between product characteristics 

and consumer preferences. Concordant to a context of this dissertation, increasing 

the number of ECVs employed in UFT requires satisfying the match between 

characteristics of ECVs and requirements of markets in UFT. As introduced in 

Section 2.1 and 2.3, there are five UFT markets and four types of ECVs. In this 

perspective, these diverse types of ECVs and various UFT markets complicate the 

process of obtaining a satisfactory match.  

This complication can be visualized as shown in Figure 5. The four types of ECVs 

(x1, x2, x3, x4) as the products have their own characteristics. The freight carriers in 

the five UFT markets (y1, y2, y3, y4) as consumers have their respective 

requirements. In this context, matching up the four types of ECVs and five UFT 

markets generates many possibilities. These possibilities present a diversity in the 

employment of ECVs in UFT. Accordingly, this diversity complicates the selection 

of a satisfactory match.  

 
Figure 5: The possibilities of employing ECVs in UFT 
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To further understand the diversity and figure out the number of possibilities, this 

dissertation denotes this diversity in employing ECVs in UFT as the ECV-UFT 

combinations. The set V is defined to hold the four types of ECVs: 

                                                                   V = {BEVs, HEVs, PHEVs, FCEVs}                                                    (1) 

The number of subsets in the set V is 16 (24) including the empty set and V itself. 

These subsets of set V are shown as follows: ∅, {BEVs}, {HEVs}, {PHEVs}, 

{FCEVs}, {BEVs, HEVs}, {BEVs, PHEVs}, {BEVs, FCEVs}, {HEVs, PHEVs}, 

{HEVs, FCEVs}, {PHEVs, FCEVs}, {BEVs, HEVs, PHEVs}, {BEVs, HEVs, 

FCEVs}, {BEVs, PHEVs, FCEVs}, {HEVs, PHEVs, FCEVs}, {BEVs, HEVs, 

PHEVs, FCEVs}.  

The set M is defined to hold the five markets in UFT: 

                                   M = {Retail, Express/Post, HoReCa, Construction, Waste}                     (2) 

The number of subsets of M is 32 (25). The formation of subsets in set M is the 

same as the set V. Among these subsets, the empty subsets of V and M indicate the 

unspecified types of ECVs and unspecified markets in UFT, respectively. Next, the 

set of the ECV-UFT combinations is given by the Cartesian product of the sets V 

and M as indicated in Eq. 3: 

                                               CECV-UFT = V x M = {(v, m) | v∈V, m∈M}                                           (3) 

Accordingly, the number of subsets in the set CECV-UFT, namely the total number of 

ECV-UFT combinations, is 512. This result is calculated by the product of the 

subsets’ numbers of V and M (24 ∙ 25). In consideration of the many subsets in 

CECV-UFT, Table 6 shows a group of subsets in the set CECV-UFT as an example to 

explain the formation of the ECV-UFT combinations. 

Table 6: Examples of the subsets in CECV-UFT 

Subsets in CECV-UFT Subsets in CECV-UFT 

BEVs – Unspecified (BEVs, HEVs) - Unspecified 

BEVs – Retail (BEVs, HEVs) - Retail 

BEVs - Express/post (BEVs, HEVs) - Express/post 

BEVs - (Retail, Express/post) (BEVs, HEVs) - (Retail, Express/post) 

HEVs - Unspecified Unspecified - Unspecified 

HEVs – Retail Unspecified - Retail 
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Subsets in CECV-UFT Subsets in CECV-UFT 

HEVs - Express/post Unspecified - Express/post 

HEVs - (Retail, Express/post) Unspecified - (Retail, Express/post) 

This group of subsets refers to all possibilities in the combinations between two 

types of vehicles (BEVs and HEVs) and two UFT markets (retail and express/post) 

including the empty set (unspecified). The total number of the subsets in this group 

is derived from the product of the subsets’ numbers of two vehicle types and two 

UFT markets (22 ∙ 22 = 16). The brackets in some subsets represent that the 

elements in the brackets are one subset. For instance, in the subset: (BEVs, HEVs) 

- Retail, the two vehicle types are considered as one subset in the set V and the 

retail market is the subset in the set M. This subset presents a situation that the two 

vehicle types can be simultaneously employed in the same UFT market. Following 

this example, the combinations between four types of ECVs and five UFT markets 

generate 512 possibilities in the set CECV-UFT. This number implies that obtaining a 

satisfactory match for increasing the market penetration of ECVs has to consider 

the diversity outlined in this subsection. 

There are 16 ECV-UFT combinations appeared in the literature (Table 7). The 

check marks in this table refer to the ECV-UFT combinations that were considered 

in the four areas of focus extracted in Section 3.1, whereas the cross marks refer to 

the ECV-UFT combinations excluded in these areas. This table can be read in two 

perspectives. In the perspective of combinations, some articles considered only one 

vehicle type in one UFT market, such as BEVs-Retail and HEVs-Express/post. On 

the contrary, some articles discussed diverse vehicle types in various UFT markets, 

such as (BEVs, HEVs, PHEVs)-(Retail, Express/post). In the perspective of the 

areas of focus, the study regarding the feasibility has considered the most number 

of the 16 ECV-UFT combinations (75%) appeared in the literature in comparison 

with the other three areas. 

Table 7: ECV-UFT combinations in four areas of focus 

ECV-UFT Combinations Feasibility Logistics Vehicles Stakeholders 

BEVs-Unspecified √ √ √ √ 

BEVs-Retail √ √  √ 

BEVs-Express/post  √   

BEVs-(Retail, Express/post) √ √ √  

HEVs-Unspecified √    
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ECV-UFT Combinations Feasibility Logistics Vehicles Stakeholders 

BEVs-(Retail, Express/post, HoReCa, 

Construction, Waste) 
√    

HEVs-Express/post   √  

BEVs-Waste √    

BEVs-(Retail, HoReCa)  √   

BEVs-(Retail, Express/post, 

Construction) 
√    

BEVs-(Retail, Express/post, HoReCa, 

Waste) 
√    

(BEVs, HEVs)-Unspecified √    

(BEVs, PHEVs)-Unspecified √    

(BEVs, HEVs, PHEVs)-(Retail, 

Express/post) 
 √   

(BEVs, HEVs, PHEVs)-(Retail, 

HoReCa) 
√    

(BEVs, HEVs, PHEVs, FCEVs)-

Unspecified 
√    

To render the 16 ECV-UFT combinations comparable with the number of total 

ECV-UFT combinations (512), the all possible subsets in these 16 ECV-UFT 

combinations are further derived. The procedure of deriving the subsets is the same 

as the formation of the 512 ECV-UFT combinations introduced below Eq.3. For 

instance, the combination of the three vehicle types (BEVs, HEVs, PHEVs) and 

the two UFT markets (Retail, Express/post) constitutes 32 ( 23 ∙ 22 ) possible 

subsets including empty sets. In total, there are 236 possibilities derived from the 

calculation of all possible subsets in each of the 16 ECV-UFT combinations. Since 

some subsets are repeatedly calculated, there are finally 82 possible ECV-UFT 

combinations derived from the existing 16 ECV-UFT combinations exclusive of 

the repeated subsets. The details of the 82 possible ECV-UFT combinations are 

shown in Appendix 1. In comparison with the total number of ECV-UFT 

combinations, the 82 possible ECV-UFT combinations account for only a small 

portion of this total number (16%). This percentage indicates that the literature has 

paid the least attention to many other possible ECV-UFT combinations 

(approximately 84%).  

The least attention paid by the literature may lead to the low market penetration of 

ECVs. In other words, the results derived from few specific ECV-UFT 

combinations in the literature may only contribute to understanding and solving 



3.4   Limitations of the Employment

 

47 

 

few specific scenarios. This limited understanding and few solutions about the 

ECV-UFT combinations hinder the decision-makers to obtain the satisfactory 

match. For instance, there were few ECV-UFT combinations examined in the area 

of feasibility. This few examinations lead to the limited understanding concerning 

the feasibility of the rest of ECV-UFT combinations. This shortage of 

comprehensive understanding may result in a difficulty for decision-makers to 

determine the satisfactory match.  

Given these points, the little diversity considered in the literature may constitute a 

challenge of obtaining a satisfactory match. In this perspective, Lebeau et al. 

(2015), Watróbski et al. (2017), and Christensen et al. (2017) in Table 3 have 

considered this challenge to emphasize the significance of taking into account such 

diversity. In particular, Lebeau et al. (2015) revealed the opportunities for reducing 

costs of UFT by including different fuel types of commercial vehicles in a fleet. 

Watróbski et al. (2017) stated the importance of considering the specificity of the 

delivery tasks in UFT to properly choose BEVs. Christensen et al. (2017) noticed 

the significance of the diversity and investigated the suitable commercial sectors of 

UFT to employ BEVs. In conclusion, the diversity is a feature in the employment 

of ECVs in UFT. However, little attention on this feature leads to a difficulty of 

obtaining a satisfactory match for increasing the market penetration of ECVs in 

UFT.  

3.4.2 Satisfactory Match 

This subsection focuses on the study of the satisfactory match in urban transport. 

The purpose is to gain insight into the state of the art about the satisfactory match 

and discuss the challenges of obtaining such a match. Besides, the methods of 

Multi-Criteria Decision Making (MCDM) are briefly reviewed in this section to 

support further understanding of the challenges regarding the satisfactory match in 

the perspective of methods.  

Due to the fact that the satisfactory match has been few considered in UFT, this 

subsection, therefore, focuses on increasing the understanding of the satisfactory 

match by extending the research field to Urban Passenger Transport (UPT). There 

are some literary works studied regarding the satisfactory match in the UPT 

systems. For instance, Zubaryeva et al. (2012) and Mohamadabadi et al. (2009) 

have addressed issues regarding the suitable choice of electric passenger cars. 

Tzeng et al. (2005) and Vahdani et al. (2011) have concentrated on investigating 

the proper choice of electric buses. In addition to the selection of vehicles, Oliveira 

et al. (2015) and Ziegler (2012) have studied customer preferences for electric 

passenger cars. Given these points, compared to the literature on the choice of 

vehicles and customer preferences in UPT, few studies have addressed the same 

topic in UFT (see Section 3.1).  
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Furthermore, to select proper vehicles, the study regarding the satisfactory match 

in urban transport prefers to apply MCDM. The MCDM is a branch of Operation 

Research (OR) models, which deal with decision problems under the presence of a 

number of decision criteria (Triantaphyllou et al., 1998). The MCDM is widely 

applied to solve various real-life decision problems, such as addressing issues in 

logistics, environment, manufacturing, architecture, marketing, service, industry, 

sports, tourism, health-care, and higher education (Ho, 2008; Ho, Xu, & Dey, 

2010; Pohekar & Ramachandran, 2004; Wong & Li, 2008). In the perspective of 

obtaining the satisfactory match, the decision problem refers to the selection of 

proper vehicle types, the alternatives for the decision refer to the different vehicle 

types, and the multiple criteria in the decision refer to the customer preferences.  

There are many methods in the MCDM to deal with decision problems. The 

Weighted Sum Model (WSM) is a commonly used method in single-dimensional 

cases. The score of the best alternative by applying this method is calculated by the 

following expression (Triantaphyllou et al., 1998):  

                                          𝐴𝑊𝑆𝑀 = 𝑚𝑎𝑥{∑ 𝑎𝑖𝑗 ∙ 𝑤𝑗  | 𝑖 = 1,2,3, … , 𝑀𝑁
𝑗=1 }                                      (4) 

where 𝐴𝑊𝑆𝑀 is the WSM score of the best alternative, 𝑁 is the number of decision 

criteria, 𝑀 is the number of alternatives, 𝑎𝑖𝑗 is the actual value of the ith alternative 

in terms of the jth criterion, and 𝑤𝑗 is the weight of the jth criterion. 

Similar to the WSM, the Weighted Product Model (WPM) is another MCDM 

method by replacing the addition in Eq.4 with multiplication (Eq.5) 

(Triantaphyllou et al., 1998).  

                                                          𝑅 (
𝐴𝑘

𝐴𝐿
) = ∏ (𝑎𝐾𝑗/𝑎𝐿𝑗)𝑤𝑗𝑁

𝑗=1                                                      (5) 

where 𝐴 is the score of each alternative, 𝑁  is the number of criteria, 𝑎𝑖𝑗  is the 

actual value of the ith alternative in terms of the jth criterion, and 𝑤𝑗 is the weight of 

importance of the jth criterion. 

On the basis of the structure in Eq. 5, the WPM can eliminate the units of the 

actual values to rank the alternatives in multi-dimensional decision-making cases. 

The better alternative can be identified by the result 𝑅(𝐴𝑘/𝐴𝐿).  If this result is 

greater than one, then the alternative 𝐴𝑘  is better than 𝐴𝐿  and vise versa. If this 

result is equal to one, the alternative 𝐴𝑘 and 𝐴𝐿 show identical performance.  

Analytic Hierarchy Process (AHP) is a method, which has the capability of solving 

the single- and multi-dimensional MCDM problems (Triantaphyllou et al., 1998). 

This method decomposes complex MCDM problems into hierarchical systems and 

ranks the priority of alternatives through pairwise comparisons. The priority scales 

that measure intangibles in relative terms are derived from the judgments of 
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experts (Saaty, 2008). There are four steps to generate priorities (Saaty, 2008). The 

first step is to define the MCDM problem and determine the kind of knowledge 

sought. Secondly, a hierarchical structure (Figure 6) is developed with the top level 

(the goal of the decision), the intermediate levels (a set of criteria and sub-criteria), 

and the lowest level (a set of alternatives).  

 

Figure 6: A hierarchical structure of AHP 

Thirdly, a set of pairwise comparison matrices is constructed with respect to the 

goal and the criteria. Each element in an upper level is used to compare the 

elements in the level immediately below with respect to this element in the upper 

level. A scale of numbers from 1 to 9 is used to indicate the importance of 

elements. The experts, who select the numbers, determine the priorities (Wang & 

Thoben, 2016). Finally, after comparing all of the elements, the weights of each 

element including the criteria and alternatives with respect to their parent elements 

are derived. The global priority, namely scores of each alternative, is then 

calculated by using the equations in the last column of Table 8. Consequently, the 

decision-makers may determine the ranking of alternatives depending on the 

calculated scores. 

Table 8: Decision matrix of AHP 

Alternatives 
Criteria 

Results 
C1 C2 … CN 

A1 a11 a12 … a1N 𝑟(𝐴1) = ∑ 𝑎1𝑗 ∙ 𝑤𝑗

𝑁

𝑗=1

 

A2 a21 a22 … a2N 𝑟(𝐴2) = ∑ 𝑎2𝑗 ∙ 𝑤𝑗

𝑁

𝑗=1

 

      

AM aM1 aM2 … aMN 𝑟(𝐴𝑀) = ∑ 𝑎𝑀𝑗 ∙ 𝑤𝑗

𝑁

𝑗=1

 

…
 

…
 

…
 

…
 

…
 

…
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In Table 8, Am represents the alternatives, M is the number of alternatives, Cn is the 

criteria, N is the number of criteria, aMN is the relative value of the alternative AM 

when it is considered in terms of decision criterion CN, 𝑤𝑗  is the weight of 

importance of the jth criterion, and r(AM) is the score of the alternative AM.  

On the whole, the AHP is a method, which constructs hierarchical structures to 

conduct pairwise comparisons by using a scale of numbers from 1 to 9 exclusive of 

units. The experts, who have the intuition, the experience, and the judgment with 

regard to the field of decision problems, subjectively select numbers from the scale 

and determine the ranking of alternatives.  

In addition to the aforementioned methods (WSM, WPM, and AHP), the 

Elimination and Choice Translating Reality (ELECTRE, French original name), 

the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), the 

Preference Ranking Organization Method for Enrichment Evaluation 

(PROMETHEE), and the multi-criteria optimization and compromise solution 

(VIKOR, Serbian original name), are also the methods commonly used in MCDM 

(Pohekar & Ramachandran, 2004; Triantaphyllou et al., 1998).  

The principle of MCDM and its methods have been applied and adapted in the 

studies about the satisfactory match in urban transport. For example, since there is 

a need to combine multiple criteria (demography, environment, economy, energy, 

and transport) to rank different potential EV market drivers, a Geographic 

Information System (GIS)-based multi-criteria decision support process with fuzzy 

measures was developed in Zubaryeva et al. (2012) to identify potential lead 

markets for electric passenger cars (BEVs and PHEVs) in Europe. Moreover, to 

evaluate the alternative-fuel buses (diesel, hydrogen, electric, hybrid electric) for 

the urban areas in Taiwan, Tzeng et al. (2005) applied the AHP to determine the 

relative weights of evaluation criteria (including social, economic, technological, 

and transportation aspects) and TOPSIS as well as VIKOR to determine the best 

compromise alternative fuel mode. Besides, in the perspective of UFT, Watróbski 

et al. (2017) applied PROMETHEEⅡand fuzzy TOPSIS to select proper vehicle 

types of available BEVs under the technical and economic criteria. Given these 

points, the MCDM has been considered to solve the decision problems regarding 

the satisfactory match in the literature.  

3.5 Summary 

This chapter illustrates the opportunities and the limitations of the employment of 

ECVs in UFT by reviewing the literature and existing tools (Section 3.1-3.3). 

Although these limitations discussed to deal with the issues in such employment, 

the market penetration of ECVs is still low. Accordingly, Section 3.4 provides a 

different perspective to analyze low market penetration. 
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On the basis of gaining insight into such employment, a feature – diversity in the 

employment of ECVs in UFT as the perspective was proposed and defined in this 

chapter. The potential limitation (exclusive of the limitations studied in the 

literature) leading to the low market penetration was analyzed. Since obtaining a 

satisfactory match between the characteristics of ECVs and the requirements of 

UFT is a solution to increase the market penetration, the many possibilities resulted 

from the diversity (512 ECV-UFT combinations) has become a limitation for 

decision-makers to select their satisfactory match. Moreover, in the literature and 

existing tools, little attention has been paid on the diversity and the satisfactory 

match. In other words, the decision-makers cannot derive appropriate and 

systematic solutions from academic studies to support themselves in better 

understanding the diversity. This incomprehensive understanding may result in a 

difficulty of determining the satisfactory match for increasing the market 

penetration of ECVs in UFT. Therefore, the potential limitation can be outlined 

that there is a need for a systematic solution to guide and support decision-makers 

in obtaining their satisfactory match based on a comprehensive understanding of 

the diversity.  

To deal with this limitation, the next chapter focuses on proposing a 

methodological concept by refining the challenges and the requirements of 

obtaining a satisfactory match.  
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4 Sustainable ECV-UFT Matching Concept 

A methodological concept named Sustainable ECV-UFT Matching Concept is 

proposed in this chapter to deal with the limitation identified in Chapter 3. Four 

sections constitute this chapter. In Section 4.1, the challenges of obtaining a 

satisfactory match are refined according to the state of the art reviewed in Chapter 

3. In Section 4.2, the main focus, the objective, and the requirements for the 

methodological concept are specified. Subsequently, to address the challenges and 

meet the requirements, the Sustainable ECV-UFT Matching Concept is 

accordingly proposed. In particular, two methodologies including the methodology 

of assessment (Section 4.3.1) and the methodology of determination (Section 

4.3.2) constitute this concept. Among them, the methodology of assessment is 

designed to assess diverse ECV-UFT combinations quantitatively under the 

economic, social, and environmental dimensions. The methodology of 

determination is proposed to support decision-makers to analyze the assessment 

results and determine the satisfactory match. By following this methodological 

concept, decision-makers may assess the ECV-UFT combinations that they are 

interested in under the three dimensions and determine their satisfactory match. 

Finally, a summary of this chapter is shown in Section 4.4.  

4.1 Challenges of Obtaining a Satisfactory Match 

This section refines the challenges of obtaining a satisfactory match according to 

the identified limitation of the employment of ECVs in UFT (Section 3.4). With 

gaining insight into this research field, such challenges mainly result from three 

elements, namely the diversity (many ECV-UFT combinations), the multiple 

criteria (economic, social, and environmental dimensions), and the multiple factors 

(see Section 3.3). Figure 7 provides an example to portray how the three elements 

cause challenges.  
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Figure 7: A tree diagram for explaining the formation of the challenges 

In this diagram, the three dimensions of sustainable UFT are considered as the 

criteria. The factors extracted from studies influence the determination of the 

satisfactory match. Moreover, the UFT markets are assumed identical. It means 

that the ECV-UFT combinations refer to the four vehicle types in this example. 

There are two groups of these vehicle types classified regarding the similarity of 

their characteristics. One group is constituted by HEVs and PHEVs using solid 

lines. The other group consists of BEVs and FCEVs using dashed lines. 

This tree diagram reveals a typical MCDM problem. The multiple criteria and 

factors complicate the determination of the satisfactory type of ECVs in an 

identical UFT market. Additionally, the objectives of the multiple criteria are 

conflicting (Wątróbski et al., 2017). For instance, reducing the TCO is one of the 

objectives in the economic criteria. However, the objective of replacing diesel 

commercial vehicles with ECVs to reduce GHG emissions in the environmental 

criteria may increase the TCO from the perspective of economic criteria. In this 

context, the complication and the conflict render the determination of the 

satisfactory match difficult. Moreover, this difficulty is formed in the condition of 

four ECV-UFT combinations. If conditions expand to including all ECV-UFT 

combinations (512), the extent of the difficulty will be more considerable. To this 
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effect, there is a need for a solution to support decision-makers assessing the 

diverse ECV-UFT combinations and determining the satisfactory match. 

Nevertheless, no existing tools have provided such solutions. First of all, as 

discussed in Section 3.2, to obtain a satisfactory match, it is crucial that the 

solution in the tools can involve all possibilities of ECV-UFT combinations. 

Moreover, since the satisfactory match refers to matching up the characteristics of 

ECVs and the requirements of UFT markets, the automotive and logistical 

parameters, which can represent the characteristics and the requirements, should be 

both considered in the existing tools. Furthermore, due to the fact that the 

employment of ECVs is an emerging measure for achieving the sustainable UFT, 

the time-dependent parameters are required to be taken into account in the existing 

tools for comprehensively understanding the future scenarios. Besides, there is also 

a need for including all three dimensions of sustainable UFT in the existing tools 

for determining the satisfactory match. However, few ECV-UFT combinations, 

lack of the automotive and logistical parameters as well as their connections, 

independent of time parameters, and little attention to the social dimension hinder 

the existing tools to accomplish the assessment and the determination of the 

satisfactory match.  

In addition, although the literature and existing tools provide some methodologies 

and different methods of MCDM are applied in urban transport to study the 

satisfactory match (see Section 3.4.2), there is still no methodology suitable to the 

task of obtaining the satisfactory match in the outlined context. For instance, the 

methodology applied in AFLLET Tool presents a procedure including choosing 

the vehicle and fuel types, which are intended to be assessed; calculating their 

TCO and life-cycle petroleum use as well as air pollution, and; graphically 

showing the outputs. The methodology of EcoTransIT shows a system of choosing 

the vehicle and fuel types; entering data of logistical parameters; calculating the 

TTW and WTW energy consumption and GHG emissions, and; graphically 

illustrating the results. In addition, the methodology in Watróbski et al. (2017) 

includes setting the criteria and alternatives of MCDM; determining and modeling 

preferences; applying PROMETHEEⅡand fuzzy TOPSIS method; ranking the 

vehicle types of BEVs under the technical and economic criteria, and; analyzing 

robustness and sensitivity of obtained solution. Using these three methodologies 

can partially complete the task of obtaining a satisfactory match, such as the 

acquisition of the satisfactory vehicle or fuel type, which has the best economic or 

environmental performance. Nevertheless, few ECV-UFT combinations, lack of 

the connection between the automotive and logistical parameters, as well as little 

attention to the social dimension are still the difficulty of obtaining the satisfactory 

match by using these methodologies.  

Given these points, the challenges of obtaining a satisfactory match are refined as 

follows: 
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There is no appropriate methodology conducted the assessment of the diverse 

ECV-UFT combinations and the determination of the satisfactory match by taking 
into consideration: 

 time-dependent parameters; 

 automotive and logistical parameters as well as their connections, and; 

 economic, social, as well as environmental dimensions, 

to increase the market penetration of ECVs for achieving sustainable UFT. 

4.2 Requirements for the Methodological Concept 

In this section, the main focus, the objective, and the requirements of the 

methodological concept are specified to support in addressing the refined 

challenges. There are two aspects of the main focus outlined from the challenges. 

One aspect is to assess the diverse ECV-UFT combinations, and the other aspect is 

to determine the satisfactory match from the diverse ECV-UFT combinations 

regarding the assessment results. In this perspective, the objective of developing 

the methodological concept is to propose appropriate methodologies for 

quantifying the assessment and numerically supporting decision-makers to 

determine the satisfactory match. Furthermore, to develop an explicit concept for 

addressing the challenges, the requirements are specified. Four phrases in the 

challenges are significant for specifying the requirements. These four phrases 

include diverse ECV-UFT combinations; time-dependent; automotive and 

logistical parameters; as well as the three dimensions. The details of these 

requirements are elaborated as follows. 

The first requirement is specified that the proposed concept should allow involving 

all of the ECV-UFT combinations. As defined in Section 3.4.1, there are a total of 

512 ECV-UFT combinations in consideration of the four vehicle types of ECVs 

and five UFT markets. However, the state of the art presents that the literature has 

paid attention only to a small portion of the ECV-UFT combinations, while many 

other possible ECV-UFT combinations have been overlooked. In this context, the 

least attention paid by the literature contributes to incomprehensive understanding 

and few specific solutions. This lack results in the difficulty for decision-makers to 

determine the satisfactory match. Therefore, the first requirement of developing the 

concept is to consider all the possibilities of the ECV-UFT combinations.   

The second requirement is specified to take into account the time-dependent 

parameters including the planned service years of ECVs and the drive cycles. The 

planned service years refer to the years of planned ownership of commercial 

vehicles for freight carriers. This parameter allows to assess and predict the current 
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as well as the future performance of the ECV-UFT combinations. In this context, 

the performance presents a clear view for supporting the decision-makers in 

determining the satisfactory match, which is suitable for current and future 

scenarios.   

Furthermore, drive cycles, which are applied for measuring fuel economy, also 

constitute a time-dependent parameter in the second requirement. Commonly, there 

are three ways, which comprise using chassis dynamometers, real-world data, and 

custom drive cycles, to measure the fuel economy. Applying the chassis 

dynamometer is a measurement to test the fuel economy according to a standard 

drive cycle in the laboratory. This test is exercised by a driver following a 

prescribed speed trace on the test aid monitor to calculate the fuel consumption by 

using gravimetric approach or the carbon balance method back-calculating 

(Lammert et al. , 2012). The second way of measuring fuel economy refers to the 

collection of real-world data, which is recorded from in-use vehicles. Among the 

data, the result of the division of total traveled distance by total used fuel is the fuel 

economy. Using custom drive cycles is the third way to measure the fuel economy. 

These custom drive cycles are generated by processing and aggregating real-world 

data. This data is collected by operating vehicles in a specific market of UFT for 

several weeks or months. Hence, the custom drive cycles present the typical 

characteristics of real operations in this specific market. The fuel economy in this 

context is derived by using the custom drive cycles into the chassis dynamometers 

or simulation models.  

The custom drive cycles as the time-dependent parameters are required in the 

development of the methodological concept to measure the fuel economy close to 

the real operation conditions. In comparison with the fuel economy measured by 

the standard drive cycle in the laboratory and real-world data, there is a significant 

difference (approximately 45%) between them (T. T. Taefi, 2016). In other words, 

the fuel economy measured in the real-world is commonly much higher than in the 

laboratory. This difference indicates that it is difficult to test fuel economy close to 

the real operation conditions by using the standard drive cycle. Accordingly, the 

fuel economy measured by the chassis dynamometers in the laboratory regarding 

the standard drive cycle is excluded from this research. Moreover, since the ECV is 

an emerging technology, the real-world data is scarce. In this context, the fuel 

economy measured by real-world data is also unfeasible. In this perspective, due to 

the custom drive cycles present the typical characteristics of specific UFT markets 

and may better reflect the real operation conditions to a certain extent in 

comparison to standard drive cycles, the custom drive cycles as the time-dependent 

parameters are considered in the second requirement.  

The third requirement for developing the methodological concept is specified to 

involve both automotive and logistical parameters. As discussed in Section 3.4, the 

existing tools either used automotive parameters to assess different types of ECVs 
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in vehicle-oriented tools or used logistical parameters to assess UFT in logistics-

oriented tools. Since none of these tools included both automotive and logistical 

parameters as well as their connections, this limitation results in the difficulty of 

assessing the ECV-UFT combinations by directly applying these existing tools. 

Moreover, these tools were not developed in identical conditions and the markets 

of UFT were unspecified. Hence, these existing tools cannot be synthesized to 

assess the ECV-UFT combinations. In spite of this, the principles for developing 

these tools are considered in developing the concept. To summarize, the 

methodological concept requires both automotive and logistical parameters.   

Furthermore, it is worth pointing out that the data, with regard to the time-

dependent, the automotive, and the logistical parameters, plays a significant role to 

assess the ECV-UFT combinations. Hence, the methodological concept should not 

only include the aforementioned parameters, but also provide a database, which 

contains corresponding data to support the quantitative assessment of the diverse 

ECV-UFT combinations. The data may be collected from published reports, 

articles, existing databases, or real-time measurements. On the whole, the fourth 

requirement for the methodological concept is specified to provide a database to 

quantify the assessment of ECV-UFT combinations.  

Finally, the three dimensions (economic, social, and environmental) and their 

harmonization are required to be considered as the final requirement for supporting 

the determination of the satisfactory match. As observed in Chapter 3, the majority 

of studies focused on economic and environmental dimensions. The parameters, 

such as the TCO from the economic perspective and the GHG emissions from the 

environmental perspective, are discussed frequently. However, little attention has 

been paid to the social dimension and its parameters. Hence, to determine the 

satisfactory match from a comprehensive view, all three dimensions are required in 

the methodological concept. Besides, since a harmonized development of the three 

dimensions is the path of achieving the sustainable UFT (United Nation, 2016), it 

is then crucial to harmonize the results of these three dimensions derived by 

assessing ECV-UFT combinations to determine the satisfactory match. Given these 

points, the final requirement for developing the methodological concept is 

specified to cover and harmonize the economic, social, and environmental 

dimensions.  

Synthesizing the main focus, the objective, and the requirements, the 

methodological concept is required to have the capability of assessing diverse 

ECV-UFT combinations including the time-dependent, the automotive, and the 

logistical parameters from the economic, social, and environmental dimensions. 

An available database is required in this methodological concept to support the 

assessment and the determination of the satisfactory match by harmonizing the 
results in the three dimensions. 
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4.3 Methodological Concept 

In this section, a methodological concept called Sustainable ECV-UFT Matching 

Concept is proposed to support decision-makers to obtain their satisfactory match. 

Figure 8 shows the process of obtaining a satisfactory match from the diverse 

ECV-UFT combinations by satisfying the outlined requirements. In particular, this 

concept is constituted by two methodologies, namely methodology of assessment 

and methodology of determination. 

 

Figure 8: The methodological concept 

Among these methodologies, the decision-maker plays an essential role. There are 

three groups of decision-makers considered in this methodological concept. These 

groups include users, automobile manufacturers, and regional as well as national 

governments. The users in this concept are primarily freight carriers, who conduct 

logistics business in urban areas. Since the market of UFT is commonly fixed for 

these freight carriers, the satisfactory match for these decision-makers mainly 

refers to assessing and determining a satisfactory type of ECVs to match their 

markets. The benefit of employing this satisfactory type may facilitate freight 

carriers to consider this type of ECVs in their own business. Accordingly, the 

market penetration of this type of ECVs may increase. Automobile manufacturers 

as the second group of decision-makers are commonly interested in the 

performance of employing their ECVs in different markets of UFT. This 

methodological concept contributes to the automobile manufacturers paying 
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attention to the differences regarding the performance of their products in different 

markets. These differences may help automobile manufacturers to adapt their 

products to be more suitable and competitive for specific UFT markets. Finally, the 

regional and national governments as a decision-maker may concern about the 

comprehensive understanding of the satisfactory match to make policies. In other 

words, this methodological concept supports governments to determine which type 

of ECVs is more suitable to be introduced into which UFT market from a short-

term and a long-term point of view. In the perspective of these decision-makers, 

the following subsections portray each step of the two methodologies respectively.  

4.3.1 Methodology of Assessment 

This subsection focuses on elaborating the process of assessing ECV-UFT 

combinations under the economic, social, and environmental criteria. There are 

three steps in this methodology of assessment. First of all, decision-makers are 

required to choose the ECV-UFT combinations, which they intend to assess 

regarding their conditions. Secondly, a set of complete data is accordingly 

generated to support the quantitative assessment of the chosen ECV-UFT 

combinations. Finally, the economic, social, and environmental performance of 

these chosen ECV-UFT combinations is assessed by using the complete data.  

The first step allows this methodological concept to assess all the possibilities of 

employing ECVs in UFT to meet the first requirement specified in Section 4.2. In 

other words, all ECV-UFT combinations are given in this step for the choice 

conducted by decision-makers. Regarding the different purposes and conditions, 

decision-makers can choose the ECV-UFT combinations, which they are interested 

in. For instance, the freight carrier, who transports goods purchased online to 

recipients (Express/post market), may intend to assess and compare the ECV-UFT 

combinations constituted by different types of ECVs, such as BEV-Express/post, 

HEV-Express/post, and PHEV-Express/post, to fit their business. On the contrary, 

the regional or national governments may intend to consider comprehensive ECV-

UFT combinations for making appropriate policies, such as BEV-Retail, HEV-

HoReCa, or PHEV-Waste collection. To this end, the first step is required to 

comprise all possibilities of the employment to give decision-makers the autonomy 

to explore different ECV-UFT combinations and decide their satisfactory match.  

The second step focuses on generating a set of complete data regarding the choice 

of decision-makers in the first step. The purpose of including this step is to support 

the quantitative assessment of the chosen ECV-UFT combinations. As stated in the 

requirements (Section 4.2), a database is required in this concept to generate 

complete data. This database should contain the data related to the time-dependent, 

the automotive, and the logistical parameters. Furthermore, since the data 

regarding the employment of ECVs in UFT is insufficient, the data sources may 

include a wide range of related publications. Besides, the decision-makers are also 
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considered as a data source to provide specific data. The database finally stores all 

this data from different sources. In this context, the complete data is generated 

from the database according to the chosen ECV-UFT combinations.  

By using the complete data, the assessment of the chosen ECV-UFT combinations 

under the economic, social, and environmental criteria is carried out in the third 

step. To address the challenges and satisfy the requirements specified in Section 

4.1 and 4.2, the economic, social, and environmental performance is quantified and 

the performance of each ECV-UFT combination is calculated as the results of the 

assessment. After deriving such results, a validation is then required to estimate the 

accuracy of the results and confirm a range in which the results are credible to 

support making trustworthy decisions. The validated results are then analyzed in 

the next methodology for determining the satisfactory match. Overall, the third 

step in this methodological concept allows decision-makers to assess the chosen 

ECV-UFT combinations by using the complete data from the economic, social, and 

environmental dimensions.  

The three steps of this methodology are summarized and visualized in Figure 9. 

This diagram mainly illustrates the outcomes after conducting each step. For 

instance, according to the choice conducted by decision-makers, the list of the 

chosen ECV-UFT combinations is the outcome of the first step. The complete data, 

which is generated regarding the choice, refers to the outcome of the second step. 

Using this complete data, the chosen ECV-UFT combinations are assessed under 

the economic, social, and environmental criteria. The table of the assessment 

results is the outcome of the third step.      

 

Figure 9: The methodology of assessment 
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On the whole, these three steps constitute the methodology of assessment and 

satisfy the requirements. The details of implementing this methodology, such as 

the user interface for the choice of ECV-UFT combinations, the methods applied 

for the assessment and validation, are introduced in Chapter 5.  

4.3.2 Methodology of Determination 

After assessing the performance of the chosen ECV-UFT combinations, the 

methodology of determination provides a system of methods to analyze the 

assessment results, determine the satisfactory match, and suggest future research. 

The requirement of harmonizing the economic, social, and environmental 

performance is satisfied in this methodology to support the determination from a 

sustainable perspective.   

The methodology of determination is comprised of three steps. The first step of 

this methodology focuses on analyzing the assessment results to narrow the range 

of available ECV-UFT combinations for simplifying the determination of the 

satisfactory match. In other words, the role of this step is to remove the ECV-UFT 

combinations, which are dominated by the others. The process of identifying the 

dominated ECV-UFT combination is adapted from Pareto optimal in Konak et al. 

(2006). For instance, there are two ECV-UFT combinations assessed in the last 

methodology. If the results show that the ECV-UFT1 expends more costs and 

consumes more energy in comparison to the ECV-UFT2, in this context, the ECV-

UFT1 with the worse performance under the three criteria is preliminarily 

considered to be dominated by the ECV-UFT2. Furthermore, it is crucial to analyze 

and establish whether the performance of this “dominated” ECV-UFT combination 

can be improved and better than the other one in any of the three criteria by 

changing the values of the parameters. If no, the ECV-UFT combination with the 

worse performance is said to be dominated by the other one. Then, this dominated 

ECV-UFT combination is removed from the available ECV-UFT combinations. In 

conclusion, this predetermination in the first step helps decision-makers to identify 

the available ECV-UFT combinations.  

The second step in the methodology of determination is to compare the available 

ECV-UFT combinations and support decision-makers in determining the 

satisfactory match. Three performance of each available ECV-UFT combination is 

required to be synthesized in this step. This synthesized performance of each 

available ECV-UFT combination is compared subsequently. Moreover, the 

synthesized performance can present the extent of harmonization of the three 

criteria in each of ECV-UFT combinations. This extent may help decision-makers 

to identify the extent of sustainability for each ECV-UFT combination. In other 

words, the higher the extent of harmonization is, the more sustainable the ECV-

UFT combinations will be. Furthermore, the rule in determining the satisfactory 

match depends on the decision-makers. This means that the most sustainable ECV-
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UFT combination may be or may not be the satisfactory match for decision-

makers. For example, if a decision-maker demands an ECV-UFT combination, 

which can harmonize the performance of the three criteria, the most sustainable 

ECV-UFT combination is then the satisfactory match for this decision-maker. If a 

decision-maker demands an ECV-UFT combination, which expends the least costs 

and has acceptable energy consumption, the ECV-UFT combination, in which the 

synthesized performance satisfies these demands, is the satisfactory match. In 

short, this step supports decision-makers in comparing the available ECV-UFT 

combinations. Moreover, according to the results in the comparison, the 

identification of the satisfactory match is determined by the demands of decision-

makers.  

The final step focuses on analyzing the potential improvements of the satisfactory 

match to suggest future research. The potential improvements in this step refer to 

the differences between the satisfactory match and the other available ECV-UFT 

combinations. For instance, the satisfactory match determined by decision-makers 

in the last step may have the best economic performance and normal 

environmental as well as social performance. To in-depth understand the 

limitations leading to such environmental and social performance, the differences 

in each parameter between this satisfactory match and the ECV-UFT combination, 

which has the best environmental and social performance, are analyzed. Finally, 

the potential improvements are suggested regarding the analyzed limitations.  

The outcomes of each step in this methodology of determination are outlined in 

Figure 10. The list of the available ECV-UFT combinations ( 𝑋 ≤ 𝑀 ) is the 

outcome of the first step after removing the dominated ECV-UFT combinations. 

The satisfactory match (ECV-UFTy
’) is the outcome of the second step after 

comparing the performance of the available ECV-UFT combinations. In the end, 

the potential improvements are the outcomes of the third step after analyzing the 

differences of each parameter between the satisfactory match and the other 

available ECV-UFT combinations.   
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Figure 10: The methodology of determination 

In short, the methodology of determination provides decision-makers with a 

process of analyzing the assessment results and determining the satisfactory match. 

The corresponding methods for implementing this methodology are introduced in 

Chapter 5. 

4.4 Summary 

This chapter has proposed a methodological concept - Sustainable ECV-UFT 

Matching Concept as a systematic solution to guide and support decision-makers in 

obtaining their satisfactory match. The challenges of obtaining such a satisfactory 

match were firstly identified to clarify what issues should be addressed in this 

methodological concept. Moreover, the main focus and the objective of the concept 

as well as the requirements for proposing the concept were specified to explicitly 

present how the concept was formed by meeting such requirements. To this end, 

two methodologies were proposed to constitute the Sustainable ECV-UFT 

Matching Concept.  

These two methodologies include the methodology of assessment and the 

methodology of determination. The methodology of assessment was developed to 

help decision-makers to understand the diversity in the employment by assessing 

the diverse ECV-UFT combinations quantitatively under the three dimensions. The 

methodology of determination was formed to analyze the assessment results and 

support decision-makers in determining their satisfactory match from the diverse 

ECV-UFT combinations.  

To convert the methodological concept from the theoretical to the practical 

guidance, a simulation platform is designed in the next chapter to implement the 

concept. 



 

65 

5 Implementation  

This chapter elaborates the implementation of the Sustainable ECV-UFT Matching 

Concept. Four sections constitute this chapter. Since the proposed methodological 

concept contains two methodologies, this chapter introduces the implementation of 

the methodology of assessment (Section 5.1) and the methodology of 

determination (Section 5.2) respectively. In Section 5.1, the primary goal is to 

provide feasible methods for decision-makers to assess diverse ECV-UFT 

combinations quantitatively under the three criteria. After deriving the assessment 

results from Section 5.1, Section 5.2 presents the methods to support decision-

makers to understand the assessment results better and determine the satisfactory 

match. Finally, a simulation platform is designed in Section 5.3 to implement this 

methodological concept holistically in the MATLAB environment. Decision-

makers as the users to apply this simulation platform may obtain their satisfactory 

match and explore the potential improvements for future research. A summary of 

this implementation is shown at the end of this chapter (Section 5.4).  

5.1 Implementation of the Methodology for Assessment 

This section focuses on implementing the methodology of assessment to help 

decision-makers to assess the diverse ECV-UFT combinations quantitatively in the 

economic, social, and environmental criteria. The methods for generating a set of 

complete data and assessing ECV-UFT combinations are introduced in subsequent 

subsection respectively.  

5.1.1 Generation of Complete Data 

This subsection illustrates the procedure of generating complete data for the chosen 

ECV-UFT combinations. Required parameters, data collection, and database are 

three essential elements in this procedure. The connections between the essential 

elements are shown in Figure 11. In the first step, before collecting the data, the 

parameters required for the assessment is identified. After this identification, the 

values of these parameters are collected from decision-makers or related 

publications. In this research, the data collected from the related publications is 

considered as a set of background data. A database, which is constituted by the 

required parameters and their values, is established by storing and processing the 

data from decision-makers and related publications to ultimately provide a set of 

complete data for the assessment.  
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Figure 11: Connections between required parameters, data collection, and database 

The required parameters are the basic elements of the procedure. According to the 

requirements summarized in Section 4.2, the parameters in this database should 

contain the time-dependent, the automotive, and the logistical parameters. 

Moreover, since the proposed concept intends to assess the ECV-UFT 

combinations with respect to the three dimensions, the economic, social, and 

environmental parameters are required for the assessment as well. To this effect, 

the required parameters in this database are a set of parameters, which can reveal 

the features of ECVs and UFT with the impact of time from the perspectives of 

three dimensions. The concrete required parameters are illustrated after 

formulating the assessment in the next section.  

Subsequently, the values of these required parameters are collected from decision-

makers or related publications. The decision-makers, who intend to assess the 

ECV-UFT combinations, should collect the corresponding values of parameters. 

However, since the ECV is an emerging product in UFT, the data collection seems 

difficult. In this context, a set of background data is organized by collecting the 

values from reports, articles, and existing databases. Decision-makers may fill the 

missing data by using the background data. Besides, as the values of related 

publications are partly trial data derived a few years ago, this set of background 

data can be updated by using the values collected from decision-makers.   

The complete data for the chosen ECV-UFT combinations is generated depending 

on the extent of data collection. In other words, the complete data may be 

generated from the data of decision-makers, related publications, or the 

combination of both sources (Figure 12).  
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Figure 12: Three situations in generating complete data 

The database separately stores the data from decision-makers and related 

publications. The required parameters and their values constitute this database. In 

this implementation, the background data, which is collected from the related 

publications, is essentially complete. It implies that the complete data generated in 

the database depends on the extent of data collection from the decision-makers. If 

the decision-makers provide complete data (Figure 12 (a)), the output then uses the 

complete data from decision-makers, since this data is specific to the conditions of 

users. If the decision-makers cannot provide any data (Figure 12 (b)), the 

background data is then the complete data. Finally, if the decision-makers provide 

partial data (Figure 12 (c)), the complete data is output by combining the data from 

both sources.  

5.1.2 Assessment of ECV-UFT Combinations 

In this subsection, the assessment of ECV-UFT combinations is concretely 

introduced. To implement this assessment, an adapted method, which can estimate 

the economic, social, and environmental performance of the diverse ECV-UFT 

combinations, is proposed. In addition, three mathematical expressions and a fuel 

economy simulation model are formulated to assist in quantifying this assessment. 

In the end, the method for validating the assessment results is presented.  
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5.1.2.1 Adapted Method 

After reviewing the widely used MCDM methods in Section 3.4.2, there is no 

appropriate method to support the assessment of ECV-UFT combinations and 

satisfy the requirements specified in Section 4.2. This is deduced from following 

limitations of MCDM methods. First of all, since the assessment of the 

performance under the three dimensions is a multi-dimensional decision-making 

case, the WSM, which is suitable for single-dimensional decision cases, is 

excluded from this research. Furthermore, although the WPM and the AHP can 

numerically analyze the multi-dimensional decision-making cases, they cannot be 

applied directly because of a large number of ECV-UFT combinations and the 

subjective values of the three criteria. For instance, to rank 512 ECV-UFT 

combinations by using AHP may result in 392,448 pairwise comparisons to 

thoroughly assess all of the ECV-UFT combinations in terms of the three criteria. 

Additionally, the values of conducting these pairwise comparisons are subjective. 

To this effect, the existing MCDM methods have to be adapted to this research.  

To adapt the methods and satisfy the requirements simultaneously, the 

mathematical expressions with respect to the three dimensions of sustainable UFT 

are suggested being introduced into this adaption (Figure 13). These three 

(economic, social, and environmental) mathematical expressions are formulated 

using time-dependent, automotive, and logistical parameters. The results of these 

mathematical expressions are calculated using the generated complete data.  

 

Figure 13: Adaption of the AHP by synthesizing mathematical expressions 

The principle of the AHP, namely the decision matrix (Table 5), is kept in this 

adaption. The results of the mathematical expressions replace the values, which are 

compared pairwise and derived from experts in Table 5. This replacement 

contributes to eliminating a large number of comparisons caused by the diverse 

ECV-FUT combinations. Moreover, to remove the impacts of units and normalize 

the actual values, the principle of WPM is considered in this adaption via   
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                                               𝑎𝑖𝑗 =
𝑏𝑖𝑗

∑ 𝑏𝑖𝑗
𝑀
𝑖=1

, 𝑗 = 1,2, … 𝑁                                                            (6) 

where 𝑎𝑖𝑗 is the relative values without units, 𝑏𝑖𝑗 is the actual values derived from 

mathematical expressions with units, M is the number of ECV-UFT combinations, 

and N is the number of criteria.  

On the whole, the principles of the AHP and the WPM, as well as the three 

mathematical expressions, constitute the adapted method.  

5.1.2.2 Mathematical Expressions4 

The three mathematical expressions of this assessment are formulated in terms of 

the requirements specified in Section 4.2. It indicates that the formulated 

mathematical expressions in this research: a) have the capability of being adapted 

to calculating diverse ECV-UFT combinations; b) include the time-dependent, the 

automotive, and the logistical parameters, and; c) can assess the economic, social, 

and environmental performance. In addition to meeting the requirements, it is 

assumed that the number of each type of commercial vehicles employed in UFT is 

considered as one in these mathematical expressions.  

Economic-Mathematical Expressions 

To assess the economic performance of ECV-UFT combinations, an economic-

mathematical expression is formulated. According to the factors outlined and 

discussed in Section 3.3, this economic-mathematical expression focuses on 

assessing a typical and measurable economic performance parameter, namely the 

Total Costs of Ownership (TCO). The role of this mathematical expression is to 

estimate the total expenditure of employing ECV-UFT combinations over the 

planned service years. Accordingly, the economic-mathematical expression, which 

is adapted from Davis and Figliozzi (2013) as well as Burnham (2016), is 

formulated as follows:  

𝐶𝑡𝑜𝑡,𝑖,𝑗(𝑁) = 𝐶𝑑𝑒𝑝,𝑗(𝑁) − 𝑏 ∙ 𝑐𝑆 + 𝑏 ∙ 𝑅(𝑁) ∙ 𝑐𝐵 ∙ (1 + 𝑟𝑑𝑖𝑠)−𝑁

+ ∑ 𝑑(𝑛) ∙ (1 + 𝑟𝑑𝑖𝑠)−𝑛 ∙ (𝑤(𝑛) ∙ 𝐶𝑖,𝑗(𝑛) + 𝐶𝑀,𝑗)

𝑁

𝑛=1

                                                (7) 

where 

𝐼 = set of markets in UFT, 𝑖 ∈ {𝑅𝑒𝑡𝑎𝑖𝑙, 𝐸𝑥𝑝𝑟𝑒𝑠𝑠/𝑃𝑜𝑠𝑡, 𝐻𝑜𝑅𝑒𝐶𝑎, 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛, 𝑊𝑎𝑠𝑡𝑒} 

𝐽 = set of vehicle types, 𝑗 ∈ {𝐷𝑖𝑒𝑠𝑒𝑙, 𝐵𝐸𝑉𝑠, 𝐻𝐸𝑉𝑠, 𝑃𝐻𝐸𝑉𝑠, 𝐹𝐶𝐸𝑉𝑠} 

𝑛 = planned service years, 𝑛 ∈ [1,2, … , 𝑁] 

𝐶𝑡𝑜𝑡,𝑖,𝑗(𝑁) = total cost of vehicle type 𝑗 operating in market 𝑖 𝑁 years 

                                                             
4 This section has been published in (Wang & Thoben, 2017a) 
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𝐶𝑑𝑒𝑝,𝑗(𝑁) = depreciation cost of vehicle type 𝑗 in year 𝑁 

𝑏 = whether the commercial vehicle is the BEV or the PHEV (0 or 1) 

𝑐𝑆 = subsidies for purchasing a new vehicle 

𝑅(𝑁) = whether the battery is replaced in year 𝑁 (0 or 1)  

𝑐𝐵 = battery price 

𝑟𝑑𝑖𝑠= discount rate 

𝑑(𝑛) = annual traveled distance in year 𝑛 

𝑤(𝑛) = annual transported weight in year 𝑛 

𝐶𝑖,𝑗(𝑛) = fuel cost of vehicle type 𝑗 𝑝𝑒𝑟 𝑡𝑜𝑛 ∙ 𝑘𝑚 (tkm) in market 𝑖 in year 𝑛 

𝐶𝑀,𝑗 = maintenance cost of vehicle type 𝑗 

In this mathematical expression, the TCO is calculated by taking into account the 

depreciation cost, the purchase subsidies, the battery replacement cost, the fuel 

cost, as well as the maintenance and repair cost. Exclusive of the purchase 

subsidies, the other costs are all relevant to the planned service years. On the basis 

of involving the planned service years, the result calculated from this mathematical 

expression is future value. To render this future value comparable to the present 

value, the discount rate is applied in this economic mathematical expression to 

convert the future value to the present value.   

Furthermore, to precisely assess the total expenditure, the depreciation cost and the 

fuel cost are suggested to be calculated in line with the Eq. 8-11. The depreciation 

cost is illustrated in Eq. 8. The purchase price and the resale value of the vehicle 

type j are its main components. In this equation, it is assumed that the commercial 

vehicle is purchased before the first planned service year. 

                                   𝐶𝑑𝑒𝑝,𝑗(𝑁) = 𝐶𝑃,𝑗 ∙ [1 − (1 − 𝑟𝑑𝑒𝑝)
𝑁

∙ (1 + 𝑟𝑑𝑖𝑠)−𝑁]                                    (8) 

where 

𝐶𝑃,𝑗 = purchase price of vehicle type 𝑗 

𝑟𝑑𝑒𝑝 = depreciation rate 

Subsequently, the fuel cost is calculated by using the Eq. 9-11. The role of these 

three equations is to introduce a calculation method for assessing the expenditure 

of onboard fuel consumption by taking into consideration the drive cycles and the 

fuel price inflation over the planned service years. The three equations are 

expressed as follows: 

                                               𝑐𝑗(𝑛) = 𝑐𝑗(1) ∙ (1 + 𝑟𝑗)
𝑛−1

                                                          (9) 

                                                                𝑃𝑇,𝑖,𝑗 =
𝑃𝑖,𝑗

𝑊𝑝,𝑗̅̅ ̅̅ ̅̅ ∙𝜂𝑐
                                                                     (10) 
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                                                                 𝐶𝑖,𝑗(𝑛) = 𝑃𝑇,𝑖,𝑗 ∙ 𝑐𝑗(𝑛)                                                              (11) 

where 

𝑐𝑗(𝑛) = fuel price of vehicle type 𝑗 in year 𝑛 

𝑟𝑗 = fuel price inflation rate of fuel type in vehicle type 𝑗 

𝑃𝑇,𝑖,𝑗= fuel consumption per tkm of vehicle type 𝑗 for market 𝑖 

𝑃𝑖,𝑗 = fuel economy of vehicle type 𝑗 for market 𝑖 

𝑊𝑝,𝑗
̅̅ ̅̅ ̅ = payload capacity of vehicle type 𝑗 

𝜂𝑐 = capacity utilization 

Additionally, to synthesize the logistical parameters into the economic-

mathematical expression, a parameter called fuel cost per ton kilometer (𝐶𝑖,𝑗(𝑛)) 

with the unit €/tkm is introduced and applied in the calculation of fuel cost. This 

parameter is the product of the fuel price in year n ( 𝑐𝑗(𝑛) ) and the fuel 

consumption per tkm (𝑃𝑇,𝑖,𝑗). The value of the fuel price in year n is forecasted by 

applying the fuel price inflation rate ( 𝑟𝑗 ) in Eq. 9. The value of the fuel 

consumption per tkm is calculated by using the fuel economy (𝑃𝑖,𝑗), the payload 

capacity (𝑊𝑝,𝑗
̅̅ ̅̅ ̅), and the capacity utilization (𝜂𝑐). This fuel economy of vehicle type 

𝑗 operating in the market 𝑖 is simulated by applying drive cycles (further discussed 

in Section 5.1.2.3). In short, the calculation of the fuel cost synthesizes the 

automotive parameters (fuel economy, payload capacity, etc.) and the logistical 

parameters (capacity utilization, fuel consumption per tkm, etc.) as well as the 

time-dependent parameters (planned service years and drive cycles). 

The purchase subsidies, the battery replacement costs, as well as the maintenance 

and the repair cost in Eq. 7 are introduced as follows. According to the economic 

factors discussed in Section 3.3, the purchase subsidies are grants for users (freight 

carriers) to purchase ECVs. The vehicle-based and the battery energy-based 

subsidies are two categories of the purchase subsidies. This economic- 

mathematical expression is feasible for both categories. In addition, since the 

HEVs have small-sized and irremovable battery systems, the purchase subsidies 

and the battery replacement cost, which is the expenditure of replacing the onboard 

battery with a new one, are only valid for the BEVs and the PHEVs. The 

maintenance and repair cost is a constant parameter in Eq. 7. This cost represents 

the expenditure of maintaining and repairing the commercial vehicles per 

kilometer. Despite the fact that this cost may increase with the vehicle age, in this 

economic-mathematical expression, it is assumed to be a constant. 

In the end, there are three costs excluded from this economic-mathematical 

expression. Since it is assumed that a new commercial vehicle is purchased without 

loans, therefore, the financing cost, which is calculated by vehicle interest payment 

in the event that there is a loan for purchasing a new vehicle, is excluded from this 
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mathematical expression. Moreover, the insurance cost as well as the license, and 

registration cost are excluded from this economic-mathematical expression, since 

there is no difference between conventional vehicles and electric vehicles in this 

regard (Lebeau et al., 2015).  

Social-Mathematical Expressions 

To assess the social performance of ECV-UFT combinations, a social-

mathematical expression is formulated. A measurable parameter called actual 

transport capacity is proposed in this social-mathematical expression. The purpose 

of introducing this parameter is to provide a calculation method for quantifying the 

social dimension in the context of assessing ECV-UFT combinations.  

The accessibility of using ECVs to deliver goods in UFT (Section 3.3) is the main 

focus of this social-mathematical expression. Commercial vehicles are the means 

to transport goods and have an influence on accessibility. In other words, the 

onboard energy capacity and the payload capacity of commercial vehicles are 

fixed. It implies that the number of goods transported per trip per vehicle and the 

total traveled distance per day are limited. In particular, these limitations are 

critical for the ECVs (see Section 3.1 & 3.3). In this case, the actual transport 

capacity, which is calculated by including the onboard energy capacity and the 

payload capacity, is significant to be estimated to illustrate the accessibility of each 

ECV-UFT combination. Accordingly, the social-mathematical expression is 

formulated by using the actual transport capacity in Eq. 12. 

                                                                      𝐸𝑇,𝑖,𝑗 =
𝐸̅𝑗

𝑃𝑇,𝑖,𝑗
                                                                 (12) 

where 

𝐸𝑇,𝑖,𝑗= actual transport capacity of vehicle type 𝑗 in market 𝑖 

𝐸̅𝑗 = on-board energy capacity of vehicle type 𝑗 

The on-board energy capacity indicates the amount of energy stored in the 

vehicles, such as the amount of fossil fuel in Diesel Commercial Vehicles (DCVs) 

or the amount of battery capacity in ECVs. Moreover, as formulated in Eq. 10, the 

fuel consumption per tkm indicates the actual fuel consumption for transporting a 

specific weight in a specific travel distance with taking into account the payload 

capacity and the capacity utilization. In summary, the social-mathematical 

expression formulated in this research contributes to providing a feasible 

perspective to quantify the social dimension.  

Environmental-Mathematical Expressions 

To assess the environmental performance of ECV-UFT combinations, two 

environmental-mathematical expressions are formulated. In line with the 
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environmental factors discussed in Section 3.5, these environmental-mathematical 

expressions mainly focus on assessing the energy consumption and the GHG 

emissions respectively. Furthermore, since the values of energy consumption and 

GHG emissions may change from the life cycle’s point of view, the assessment of 

the environmental performance involves a terminology called Well to Wheel 

(WTW). To this effect, the total energy consumption and the total GHG emissions 

from WTW are considered as the performance parameters under the environmental 

dimension to assess the diverse ECV-UFT combinations. The total energy 

consumption from WTW over the planned service years is formulated as: 

                                             𝐸𝑊𝑇𝑊,𝑖,𝑗(𝑁) = ∑ 𝑤(𝑛) ∙ 𝑑(𝑛) ∙ 𝑃𝑇,𝑖,𝑗 ∙ 𝑓𝑒
𝑁
𝑛=1                                     (13) 

where 

𝐸𝑊𝑇𝑊,𝑖,𝑗(𝑁) = total energy consumption of vehicle type 𝑗 for market 𝑖 in 𝑁 years 

𝑓𝑒 = WTW energy conversion factor 

This total energy consumption is a cumulative performance parameter. It is the 

sum of annual energy consumption. At the end of each year, annual energy 

consumption is calculated according to the annual transported weight, the annual 

traveled distance, and the fuel consumption per tkm. In addition, because of the 

diverse fuel types of ECVs and their different energy units, the energy conversion 

factor from WTW is considered to standardize the unit. 

The total GHG emissions from WTW over the planned service years is formulated 

as: 

                                           𝐺𝑊𝑇𝑊,𝑖,𝑗(𝑁) = ∑ 𝑤(𝑛) ∙ 𝑑(𝑛) ∙ 𝑃𝑇,𝑖,𝑗 ∙ 𝑓𝑔
𝑁
𝑛=1                                       (14) 

where 

𝐺𝑊𝑇𝑊,𝑖,𝑗(𝑁) = total GHG emissions of vehicle type 𝑗 for market 𝑖 in 𝑁 years 

𝑓𝑔 = WTW CO2 equivalents conversion factor 

The total GHG emissions are also a cumulative performance parameter. Eq. 14 is 

similar to the expression of Eq. 13. The difference between them is the conversion 

factor. The equation of calculating GHG emissions applies the factor for 

converting GHG emissions from WTW perspective. Since the CO2 has the most 

extensive effects for the public in comparison to the other emissions, the GHG 

emissions, which commonly include carbon dioxide (CO2), nitrous oxide (N2O), 

and methane (CH4) (Schmied et al., 2012; The Council of The European Union, 

2015), are denoted as CO2 equivalents in this conversion factor.  

The required parameters, which are the component of the database for generating 

complete data, are identified from these mathematical expressions (Table 9).  
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Table 9: Required parameters in the three mathematical expressions 

Parameters Meaning 

𝐶𝑃,𝑗  Purchase price of vehicle type 𝑗 

𝑐𝑆  Subsidies for purchasing a new vehicle 

𝑐𝐵  Battery price 

𝐶𝑀,𝑗  Maintenance cost of vehicle type 𝑗 

𝑐𝑗(1)  Fuel price of vehicle type 𝑗 in the first year 

𝑟𝑑𝑖𝑠  Discount rate 

𝑟𝑑𝑒𝑝  Depreciation rate 

𝑟𝑗  Fuel price inflation rate of fuel type in vehicle type 𝑗 

𝑃𝑖,𝑗  Fuel economy of vehicle type 𝑗 for market 𝑖 

𝑊𝑝,𝑗
̅̅ ̅̅ ̅  Payload capacity of vehicle type 𝑗 

𝐸̅𝑗  On-board energy capacity of vehicle type 𝑗 

𝜂𝑐  Capacity utilization 

𝑑(𝑛)  Annual traveled distance in year 𝑛 

𝑤(𝑛)  Annual transported weight in year 𝑛 

𝑓𝑒  WTW energy conversion factor 

𝑓𝑔  WTW CO2 equivalents conversion factor 

On the whole, the mathematical expressions of the adapted method are formulated 

in this subsection to quantify the assessment and meet the specified requirements. 

Additionally, the required parameters for generating complete data are also 

identified from these formulated mathematical expressions. However, since there is 

very little data concerning the fuel economy of ECVs and this little data are 

averaged values collected from specifications of automobile manufacturers, the 

value of the fuel economy needs to be further studied to render this assessment 

close to the real conditions.  

5.1.2.3 Simulation of Fuel Economy 

A simulation model for estimating the fuel economy is formulated in this 

assessment of ECV-UFT combinations to obtain a value close to the real 

conditions in the context of lacking real-world data. The custom drive cycles and 

the Monte-Carlo method are applied in this simulation model. In particular, the 

custom drive cycle provides a set of original time-velocity data. The Monte-Carlo 

method is applied to create numerous sets of stochastic time-velocity data by using 

this drive cycle. Finally, the simulation model computes the expected values of the 

fuel economy by using stochastic data.     

As specified in Section 4.2, this research is determined to use custom drive cycles 

for calculating the fuel economy. Normally, the fuel economy is tested by using 

standard drive cycles, such as the New European Driving Cycle (NEDC) in 

Europe, the Federal Test Procedure (FTP)-75 in the US, and the JC-08 in Japan. 

However, there is a significant difference between the fuel economy derived from 

the standard drive cycles and the real-world one. Additionally, the real-world data 
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of ECVs operating in UFT is scarce. Given these points, the custom drive cycles 

are applied in this simulation model for estimating the fuel economy.  

The custom drive cycles are generated by processing and aggregating specific real-

world data. This data is collected by operating vehicles in a specific market of UFT 

in several weeks or months. After deconstructing and reconstructing the collected 

drive cycles, the custom drive cycles are accordingly generated and present the 

typical characteristics of real operations in this specific UFT market. These typical 

characteristics, such as the velocity and the number of stops, support the simulation 

model to compute a representative fuel economy close to the real conditions.   

However, the custom drive cycle can provide only one set of time-velocity data. 

This leads to a situation that the driver will transport goods precisely following the 

time-velocity curve in the duration of the custom drive cycle. Apparently, this 

situation is impractical. Therefore, the Monte-Carlo method is applied in this 

simulation model to generate numerous sets of stochastic time-velocity data for 

presenting different possibilities of a drive cycle.  

The Monte-Carlo method is a statistical and numerical method. It generates a 

sequence of random numbers with given distribution probabilities (Jacoboni & 

Reggiani, 1983). Applying this method allows to estimate numerical quantities by 

repeating samplings and solve complicated optimization problems through 

randomized algorithms (Paltani, 2012). To perform the Monte-Carlo method, a 

random variable ( 𝑋 ) is firstly calculated by applying the probability density 

function of the normal distribution as follows:  

                                               𝑋 = √−2 ∙ ln 𝑈1 ∙ cos(2 ∙ 𝜋 ∙ 𝑈2) ∙ 𝜎 + 𝜇                                       (15) 

where  

𝑈1, 𝑈2 = uniform random numbers  

𝜎 = standard deviation of a normal distribution 

𝜇 = mean of a normal distribution 

The uniform random numbers denoted by 𝑈1, 𝑈2 are essential random numbers, 

which are generated by software such as Matlab. The standard deviation and the 

mean are the main components of the normal distribution. The values of these two 

components are given to calculate the random variable. In order to generate a 

sequence of random numbers, the Wiener Process is subsequently applied in the 

Monte-Carlo method. A number of paths are generated via a random process. Each 

path includes a set of random numbers derived from the random variable. Finally, 

this sequence of random numbers times the initial values of time-velocity data are 

the set of stochastic values. This set of stochastic values is denoted as a matrix (𝑡 ×
𝑝). 𝑡 is the size of the initial values, namely the length of time (seconds). 𝑝 is the 

length of the paths. In other words, there are in total 𝑝 sets of stochastic vehicle 
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speeds in 𝑡  seconds generated by the Monte-Carlo method. A flow chart for 

generating this matrix is shown in Figure 14: 

 

Figure 14: Flowchart for generating the stochastic values of drive cycles 

After generating the stochastic values of the custom drive cycle, the simulation 

model computes the expected value of the fuel economy. Commonly, the fuel 

economy is estimated by the energy, which is required to propel vehicles over a 

roadway. This energy is required to overcome aerodynamic drag, rolling 

resistance, acceleration, and gravitational potential energy. Nevertheless, as the 

custom drive cycles used in this research are exclusive of road grade values, the 

gravitational potential energy is excluded from the estimation of the fuel economy. 

The equations for the estimation (Gao, Chu, & Ehsani, 2007; TA Engineering, 

2014; Yu, 2009) are given by: 

                                         𝐸𝑎𝑒𝑟𝑜,𝑖,𝑗(𝐾) = ∑
𝜌∙𝑐𝐷∙𝐴𝑗∙𝑣𝑖̅

3(𝑘)∙∆𝑡(𝑘)

2

𝐾
𝑘=2                                                      (16) 

                                            𝐸𝑟𝑒𝑠,𝑖,𝑗(𝑘) = ∑ 𝑚𝑗 ∙ 𝑔 ∙ 𝑣𝑖̅(𝑘) ∙ 𝑐𝑟𝑒𝑠 ∙ ∆𝑡(𝑘)  𝐾
𝑘=2                                       (17) 

                                     𝐸𝑎𝑐𝑐,𝑖,𝑗(𝑘) = ∑ (1 + 𝑐𝑎𝑐𝑐) ∙ 𝑚𝑗 ∙ 𝑎𝑖 ∙ 𝑣𝑖̅(𝑘) ∙ ∆𝑡(𝑘) 𝐾
𝑘=2                                  (18) 

where 

𝑘 = scale of a driving cycle in market 𝑖, 𝑘 ∈ [1,2, … , 𝐾] 

𝐸𝑎𝑒𝑟𝑜,𝑖,𝑗(𝐾)  = energy required to overcome aerodynamic drag for vehicle type 𝑗  running in 

market 𝑖  

𝜌 = air density  
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𝑐𝐷 = coefficient of drag 

𝐴𝑗 = frontal area of vehicle type 𝑗 

𝐸𝑟𝑒𝑠,𝑖,𝑗(𝑘) = energy required to overcome rolling resistance for vehicle type 𝑗 running in market 𝑖 

𝑔 = gravitational acceleration 

𝑐𝑟𝑒𝑠 = rolling resistance coefficient 

𝐸𝑎𝑐𝑐,𝑖,𝑗(𝑘) = energy required to accelerate vehicle type 𝑗 running in market 𝑖 

𝑐𝑎𝑐𝑐 = rotational mass coefficient 

𝑎𝑖 = acceleration at each time step running in market 𝑖   

In these equations, 𝑣𝑖̅(𝑘) is an average velocity at each time step calculated by two 

adjacent velocities:   

                                                𝑣𝑖̅(𝑘) =  𝑣𝑖(𝑘 − 1) +
𝑣𝑖(𝑘)−𝑣𝑖(𝑘−1)

2
                                                  (19) 

Furthermore, ∆𝑡(𝑘) is the duration of time between two adjacent time points in a 

drive cycle: 

                                                       ∆𝑡(𝑘) = 𝑡(𝑘) − 𝑡(𝑘 − 1)                                                          (20) 

To reflect the real conditions, the total mass of vehicle type 𝑗 is considered as a 

variable, since the payload weight of this vehicle changes at each stop. In this 

context, it is assumed that the total mass of vehicle type 𝑗 increases (loading) or 

decreases (unloading) a constant mass 𝑎 at each stop. The stops are identified by 

the value of vehicle speeds. If the vehicle speed at the scale 𝑘 equal to 0 and the 

prior speed is a constant, it is then identified as a stop at the scale 𝑘.  

                     𝑚𝑗(𝑘) =  {
𝑚𝑗(𝑘 − 1),                 𝑖𝑓 𝑣𝑖(𝑘) ≠ 0                                     

𝑚𝑗(𝑘 − 1) ± 𝑎,        𝑖𝑓 𝑣𝑖(𝑘) = 0 𝑎𝑛𝑑 𝑣𝑖(𝑘 − 1) ≠ 0 
                         (21) 

The total energy consumption 𝐸𝑖,𝑗  is calculated by taking into account the vehicle 

efficiency (𝜂𝑣,𝑗). In line with the different types of vehicles, the efficiency may 

include engine efficiency, generator/electric motor efficiency, battery 

charge/discharge efficiency, driveline efficiency, and regenerative braking 

efficiency (the details introduced in Chapter 5). 

                                              𝐸𝑖,𝑗 =
𝐸𝑎𝑒𝑟𝑜,𝑖,𝑗(𝑘)+𝐸𝑟𝑒𝑠,𝑖,𝑗(𝑘)+𝐸𝑎𝑐𝑐,𝑖,𝑗(𝑘)

𝜂𝑣,𝑗
                                                   (22) 

The fuel economy is finally estimated by dividing the energy consumption by the 

total distance of a drive cycle (𝑑𝑑𝑐,𝑖).  

                                                                     𝑃𝑖,𝑗 =
𝐸𝑖,𝑗

𝑑𝑑𝑐,𝑖
                                                                     (23) 
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Synthesizing the stochastic values into this estimation, the expected value of fuel 

economy can be subsequently simulated. Each column of the matrix 𝑡 × 𝑝 is a set 

of time-velocity data. Accordingly, there are 𝑝 values of fuel economy estimated 

by 𝑝  sets of time-velocity data. At the end, the arithmetic mean is applied to 

calculate the expected value of fuel economy. This expected value of fuel economy 

is then input into the three mathematical expressions to calculate the expected 

values of the economic, social, and environmental performance.  

In this research, since the value of fuel economy is simulated rather than collected 

from the specifications, some parameters are further required in the simulation. To 

this end, the values of these parameters are considered as a part of the required 

parameters for generating complete data (Table 10).  

Table 10: Parameters required by the calculation of fuel economy 

Parameters Meaning 

𝜌  Air density 

𝑐𝐷  Coefficient of drag 

𝐴𝑗  Frontal area of vehicle type 𝑗 

𝑚𝑗  Total mass of vehicle type 𝑗 running in market 𝑖 
𝑔  Gravitational acceleration 

𝑐𝑟𝑒𝑠  Rolling resistance coefficient 

𝑐𝑎𝑐𝑐  Rotational mass coefficient 

𝜂𝑣,𝑗  Efficiency of vehicle type 𝑗 

𝑑𝑑𝑐  Total distance of the drive cycle in market 𝑖 
𝑣𝑖  Velocity of the drive cycle 

𝑡  Time of the drive cycle 

In summary, there are three mathematical expressions and a fuel economy 

simulation model formulated to implement the methodology of assessment. 

However, the credibility of the performance derived from this assessment is 

uncertain. It implies that the assessment results need to be validated. Therefore, the 

next subsection focuses on introducing the methods for conducting the validation 

in this research.  

5.1.2.4 Validation 

This subsection introduces 10-fold cross validation as the method to validate the 

results obtained from the assessment. Cross validation is an accuracy estimation 

method and applied in the context of data that is difficultly or costly collected 

(Kohavi, 1995; Safaei, 2014). 10-fold cross validation is a widely used technique 

in cross validation. The role of the 10-fold cross validation in this research is to 

estimate the accuracy of the expected values and confirm a range, in which the 

expected values are credible to support making trustworthy decisions.  
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The procedure of 10-fold cross validation is illustrated in Figure 15. A series of 

random numbers is an essential component to carry out the 10-fold cross 

validation. In this research, this series of random numbers is the 𝑝 sets of stochastic 

vehicle speeds of drive cycles generated from the Monte-Carlo method. These 𝑝 

sets are then randomly divided into 10 equal-sized sub samples. Nine of the ten sub 

samples are used as training data. The rest of one sub sample is test data. As 

illustrated in Figure 15, each of the sub samples is used exactly once as test data. 

To this end, there are 10 experiments created in this validation. In each of the 

experiments, there are 𝑝 sets of expected values computed by using the test and 

training data.  

 

Figure 15: Procedure for conducting the 10-fold cross validation 

To examine the accuracy of these expected values, their relative errors are 

calculated via: 

                                                             𝑟𝑒ℎ =
∑

|𝑒𝑥𝑝−𝑒𝑥|

𝑒𝑥
𝑃
𝑝=1

𝑝
                                                                (24) 

                                                                         𝑟𝑒 =
∑ 𝑟𝑒ℎ

10
ℎ=1

10
                                                                    (25) 
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where 

𝑝 = the number of sets of stochastic values generated in one experiment; 

ℎ = the number of experiments; 

𝑒𝑥 = the expected values derived from the assessment before the validation; 

𝑒𝑥𝑝 = the expected value calculated by using the pth set of stochastic values in the validation; 

𝑟𝑒ℎ = the hth relative error; 

𝑟𝑒 = the relative error of 10 experiments; 

After examining the accuracy, the ten experiments finally yield ten test and ten 

training expected values. According to these results, their arithmetic mean values 

and the standard deviations are calculated by using: 

                                                               𝑒𝑥̅̅ ̅ =
1

10
∑ 𝑒𝑥ℎ

10
ℎ=1                                                             (26) 

                                                            𝑠𝑑 = √
1

9
∑ (𝑒𝑥ℎ − 𝑒𝑥̅̅ ̅)210

ℎ=1                                                        (27) 

where 

𝑒𝑥̅̅ ̅ = the arithmetic mean of expected values; 

𝑒𝑥ℎ = the hth expected value; 

𝑠𝑑 = the standard deviation of expected values; 

The results of the arithmetic mean and the standard deviation are visualized as 

error bars (Figure 16) to show the dispersion of the expected values. The primary 

purpose is to use this dispersion for exploring the range, in which the expected 

values are credible to support making trustworthy decisions. These expected values 

refer to one of the economic, social, or environmental performance derived from 

different ECV-UFT combinations. For instance, in Figure 16, the expected values 

are the TCO of four ECV-UFT combinations. If there are non-overlapping error 

bars between two ECV-UFT combinations (see ECV-UFT3 & ECV-UFT4), it 

indicates that the minimum expected value of ECV-UFT4 is greater than the 

maximum expected value of ECV-UFT3 and this status remains constant. In this 

context, the expected values are validated as credible results. On the contrary, if 

there are overlapping error bars between ECV-UFT combinations (see ECV-UFT1 

& ECV-UFT2), it implies that the expected values of ECV-UFT1 may not always 

be greater than the ECV-UFT2 in the overlapping area. In this context, the 

conclusion deduced from these expected values is validated as undecidable.  
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Figure 16: Relations between error bars 

To avoid the undecidable status, a range, in which the error bars are constantly 

non-overlapping, is required to be identified. In this research, since the stochastic 

drive cycles are essentially generated by the normal distribution, this range is 

determined by the standard deviation of the normal distribution (𝜎 ). In other 

words, the value of the standard deviation of normal distribution impacts the 

dispersion of stochastic drive cycles and the expected values. Hence, the upper 

bound of  𝜎 is required to be identified so that the decisions deduced from the 

expected values are credible.  

The procedure of identifying the upper bound of  𝜎 is given as follows. Firstly, it is 

assumed that only the value of the standard deviation of the normal distribution 

impacts on the upper bound. Next, the expected values and their standard 

deviations are calculated by assigning an initial value to 𝜎. The error bars are then 

plotted accordingly. By observing the error bars, the dispersion of the expected 

values and the relation between error bars (non-overlapping or overlapping) are 

obtained. If the error bars are non-overlapping, 𝜎 is assigned a new value to repeat 

the procedure until the error bars is overlapping. The value of 𝜎 that causes the 

overlapping is identified as the upper bound. 

In summary, after assessing the ECV-UFT combinations, the validation provides 

the methods for examining the accuracy of the assessment results and identifying 

the range of credible expected values. These validated results are considered as 

input for the methodology of determination.  
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5.2 Implementation of the Methodology for Determination 

A procedure for analyzing the expected values is proposed to implement the 

methodology of determination. This procedure provides a sequence of methods to 

support decision-makers in understanding the expected values and determining the 

satisfactory match. Three methods, which are sensitivity analysis, ternary plot, as 

well as calculations of equivalent points, constitute this procedure (Figure 17).  

 
Figure 17: Procedure for analyzing the expected values 

These three methods are conducted in three steps respectively to implement the 

methodology of determination. Firstly, the sensitivity analysis is applied to remove 

the dominated ECV-UFT combinations. Secondly, the ternary plot is drawn to 

compare the ECV-UFT combinations and identify the satisfactory match. Finally, 

the calculations of equivalent points provide numerical analysis for in-depth 

understanding the potential improvements of the satisfactory match.  

5.2.1 Sensitivity Analysis 

This subsection focuses on the sensitivity analysis to remove the dominated ECV-

UFT combinations. As introduced in Section 4.3.2, the dominated ECV-UFT 

combinations are identified by the assessment results. Additionally, this 

identification also relies on whether these results can be improved and better than 

the other one in any of the three criteria by changing the values of the required 

parameters. In this context, the sensitivity analysis is applied to calculate the effect 

upon the expected values by changing the values of required parameters (Sargent, 

2013) for supporting the identification of the dominated ECV-UFT combinations.  
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There are four steps to conduct the sensitivity analysis. The first step is to 

determine the required parameters, whose sensitivity will be analyzed. Secondly, it 

is essential to define a reasonable range, which provides a scope to change the 

values of the required parameters. For instance, the reasonable range of the 

payload weight per trip is from 0 (empty load) to the value of the payload capacity. 

After defining the range, a set of values of the same required parameter is obtained. 

Thirdly, to analyze the sensitivity of this parameter on the assessment results, a 

series of expected values are calculated by using the set of values in the formulated 

mathematical expressions. In this calculation, it is assumed that the set of values in 

a reasonable range is variable. The obtained series of expected values are finally 

plotted as a trend line to illustrate the possible changes of the expected values in 

terms of the values of the required parameters in the defined range (Figure 18).  

 
Figure 18: An example of figures in the sensitivity analysis 

The sensitivity analysis allows decision-makers to compare the same performance 

of different ECV-UFT combinations visually and narrow the list of the available 

ECV-UFT combinations by plotting the trend lines (Figure 18). Decision-makers 

primarily observe the intersection points among trend lines of different ECV-UFT 

combinations. If there is an intersection point between two trend lines, it indicates 

that the expected value of one ECV-UFT combination may exceed the other ones 

in the context of changing values of required parameters in the defined range (see 

ECV-UFT3 & ECV-UFT4). If there is no intersection point between two trend 

lines, it implies that the expected value of one ECV-UFT combination remains 

greater or smaller than the other ECV-UFT combination’s expected value (see 

ECV-UFT1 & ECV-UFT2). In this context, the dominated ECV-UFT combination 

can be identified and excluded from the list of the available ECV-UFT 

combinations. This exclusion in the sensitivity analysis allows to shrink the 

number of ECV-UFT combinations thereby simplifying the determination of a 

satisfactory match. 
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5.2.2 Ternary Plot 

The method called ternary plot is applied in this subsection for supporting 

decision-makers in determining their satisfactory match. This method can illustrate 

the decision problem in an easy-to-understand graphical representation (Hofstetter, 

1998). In other words, the ternary plot allows to synthesize and visualize the 

expected values, which are calculated under the economic, social, and 

environmental criteria, in a triangle.  

The synthesized expected values are visualized as points in a two-dimensional 

graph (Figure 19). An equilateral triangle constitutes this 2D graph. The three sides 

of this triangle are the three axes, which respectively denote the economic, social, 

and environmental criteria. There are 11 numbers from 0 to 1 with an interval of 

0.1 on each axis. The number 0 stands for the bad performance in each criterion, 

while the number 1 represents the good performance. For instance, the number 0 

on the economic axis may refer to the high TCO, and the number 1 on the 

environmental axis may refer to the low energy consumption and GHG emissions. 

Additionally, these numbers are read in a clockwise direction. 

 

Figure 19: An example of a ternary plot 

As introduced in Section 4.3.2, this triangle presents the extent of harmonization of 

the three criteria in each of ECV-UFT combinations. The sustainable ECV-UFT 

combination is identified not only regarding the performance but also the extent of 

harmonization. In other words, a very good performance in one criterion, which is 

achieved by sacrificing the performance in the other two criteria, is regarded as 

unsustainable. In this triangle, the extent of harmonization refers to the distance 

between the point of synthesized expected values and the middle point. Since the 

middle point is mapped onto each of the axes in the same distance, it is considered 
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as the ideally sustainable ECV-UFT combination, which performs identically good 

in each criterion. The closer the point of synthesized expected values is to the 

middle point, the more sustainable the ECV-UFT combination will be (for 

instance, the ECV-UFT1 is more sustainable than the ECV-UFT2). 

Furthermore, it is crucial to normalize the expected values, which are calculated 

under the three criteria before plotting the triangle. The role of this normalization is 

to remove the units of expected values in the ternary plot. The normalization in this 

research uses the equations in Table 11 to plot the expected values in the triangle 

consistent with the meaning on each axis. This meaning of each axis refers to a 

rule that the higher the number is, the better the performance will be. Nevertheless, 

the greater the expected values in economic and environmental criteria are, the 

worse the performance will be. The expected value of TCO calculated in economic 

criteria is an example. Since freight carriers intend to achieve low TCO, the high 

TCO then implies bad economic performance. In this context, to plot the expected 

values of economic and environmental criteria consistent with the rule of axes, the 

difference between each expected value and their maximum expected value is 

calculated in this normalization. On the contrary, a higher expected value is better 

for social criteria. Hence, the difference between each expected value and their 

minimum expected value is calculated in this case. After normalizing the expected 

values from column two to four in Table 11, the proportions of normalized values 

in three criteria for the same ECV-UFT combination are calculated for the ternary 

plot. These proportions are finally visualized as points plotted in the triangle. 

Table 11: Normalization of expected values for the ternary plot 

ECV-UFT 
Criteria 

Ternary Plot 
𝑪𝒆𝒄𝒐 𝑪𝒆𝒏𝒗  𝑪𝒔𝒐𝒄  

ECV-UFT1
 

𝑎𝑚1

=
𝑏𝑚𝑎𝑥1 − 𝑏𝑚1

∑ (𝑏𝑚𝑎𝑥1 − 𝑏𝑚1)𝑚
𝑖=1

 

𝑎𝑚2

=
𝑏𝑚𝑎𝑥2 − 𝑏𝑚2

∑ (𝑏𝑚𝑎𝑥2 − 𝑏𝑚2)𝑚
𝑖=1

 

𝑎𝑚3

=
𝑏𝑚3 − 𝑏𝑚𝑖𝑛3

∑ (𝑏𝑚3 − 𝑏𝑚𝑖𝑛3)𝑚
𝑖=1

 

𝑡𝑝(𝐴𝑚)

=
𝑎𝑚𝑗

∑ 𝑎𝑚𝑗
3
𝑗=1

 
ECV-UFT2 

 

ECV-UFTm 

 

Where, 𝑎𝑖𝑗 is the normalized values without units, 𝑏𝑖𝑗 is the actual expected values 

calculated by mathematical expressions with units, 𝑏𝑚𝑎𝑥𝑗 is the maximum actual 

expected value under the 𝑗𝑡ℎ criterion, 𝑏𝑚𝑖𝑛𝑗 is the minimum actual expected value 

under the 𝑗𝑡ℎ criterion, m is the number of ECV-UFT combinations after removing 

the dominated ECV-UFT combinations in the sensitivity analysis.  

On the whole, the ternary plot provides a method for decision-makers to identify 

their satisfactory match. This means that the synthesized expected values in the 

triangle can distinctly illustrate the performance of each ECV-UFT combinations 

and their extent of harmonization. Decision-makers then determine the satisfactory 

match, which satisfies their conditions, by observing these points in the triangle.   

…
 



5   Implementation

 

86 
 

5.2.3 Calculation of Equivalent points 

In this subsection, the calculation of equivalent points is introduced to in-depth 

understand the identified satisfactory match. The differences between the 

satisfactory match and the ECV-UFT combinations, which have the best 

performance in a specific criterion, are calculated. For instance, Eq.28 shows the 

calculation of the equivalent point in environmental criteria. It is assumed that a 

required parameter, whose difference the decision-makers intend to quantify 

between two ECV-UFT combinations, is denoted as 𝑥 . ECV-UFT1 in Eq.28 is 

assumed as the combination, which has the best environmental performance. ECV-

UFT2 is assumed as the obtained satisfactory match. In this example, the 

equivalent point (annual transport weight) is solved by using the data of ECV-

UFT2 equal to the energy consumption of ECV-UFT1. As a result, this equivalent 

point may help decision-makers to discover the potential improvements regarding 

the satisfactory match that future research may work on.   

                                    𝐸𝑊𝑇𝑊,𝐸𝐶𝑉−𝑈𝐹𝑇1(𝑁) = ∑ 𝑥 ∙ 𝑑(𝑛) ∙ 𝑃𝑇,𝐸𝐶𝑉−𝑈𝐹𝑇2 ∙ 𝑓𝑒
𝑁
𝑛=1                            (28) 

In summary, this section provides a sequence of methods for decision-makers to 

implement the methodology of determination. On top of this, the next section 

focuses on combining the implementations of these two methodologies to establish 

connections between all the methods.  

5.3 Simulation Platform  

This section introduces a simulation platform to implement the Sustainable ECV-

UFT Matching Concept holistically. This platform consists of six modules, which 

transform the methodology of assessment and the methodology of determination 

into the computer (Figure 20). Since MATLAB provides an easy-to-use matrix-

based programming environment for performing calculations (Markel et al., 2002), 

these modules are implemented in the MATLAB environment. In this simulation 

platform, a set of complete data is firstly generated in the input module. This set of 

data is then read by the second module to simulate fuel economy. Subsequently, 

the simulated results of fuel economy are input into the economic-, social-, and 

environmental- mathematical expressions to calculate expected values. To confirm 

the accuracy and the credibility of these expected values, a validation is conducted 

in the fourth module. These validated expected values are then summarized in a 

table as an output. In addition, these expected values are further analyzed in the 

fifth module to support decision-makers to determine their satisfactory match. A 

triangle, which visualizes and synthesizes these expected values derived from the 

ternary plot in the fifth module, is considered as another output of this simulation 

platform. Besides, the potential improvements of the satisfactory match, which are 

deduced from the calculation of equivalent points, are the third output of this 

simulation platform. The details of each module are elaborated as follows.  
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Figure 20: Simulation platform for implementing the methodological concept 

The input module implements the generation of complete data in the methodology 

of assessment. As stated in Section 5.1.1, there are mainly two sources for 

collecting data. One source of the data collection is related publications. In this 

implementation, the values of required parameters that are collected from the 

related publications are stored as the background data in the database. Furthermore, 

users (decision-makers) are required to enter their data in the user interface 

designed in this simulation platform (Figure 21). The main business and the fuel 

type of vehicles in this interface determine which ECV-UFT combinations will be 

assessed in this simulation platform. Since the ECV is an emerging technology in 

UFT, three situations may happen after users input data. The first situation is that 

the users only fill the required fields. It indicates that the decision-makers lack 

corresponding data, although they intend to understand this emerging technology 

in UFT better. In this context, a set of complete data is generated from the 
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background data according to the information filled in the required fields. The 

second situation is that the users entirely fill the required fields and partly fill the 

optional fields. In this context, the set of complete data is generated by merging the 

data from the users and the background data. It means that the missing data of 

users is filled by the background data in the database. Moreover, the third situation 

is that the users fill all of the fields in the interface. In this context, the set of 

complete data is constituted by the input of users. In the end, the complete data 

generated in this module is considered as the input for the subsequent simulation, 

calculation, and validation.  

 

Figure 21: User interface for inputting data 

The assessment of ECV-UFT combinations is implemented in the next three 

modules, namely the simulation of fuel economy, the calculation of expected 

values, and the validation. In the module – simulation of fuel economy, a 

simulation model for computing the fuel economy is formulated by applying the 

Monte-Carlo method. The drive cycle determined by the main business in the last 

module is input as a part of the complete data in this module. According to this 

drive cycle, the Monte-Carlo method stochastically creates a number of similar 

drive cycles. The number of these drive cycles is decided by the sample size. This 

sample size is possible to be changed by the users. Since one fuel economy is 

computed by using one drive cycle, therefore, there are a number of fuel economy 
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derived from this simulation in terms of the sample size. This fuel economy is then 

inputted into the next module – calculation of expected values. Three mathematical 

expressions formulated in Section 5.1.2.2 constitute this module. TCO, actual 

transport capacity, energy consumption, and GHG emissions are the corresponding 

performance computed in this module. Each of the fuel economy derived from the 

last module is used once for computing the performance. To this effect, the number 

of times for computing the performance is equal to the sample size. In the end, the 

expected value of each performance is calculated by the arithmetic mean.  

Next, the fourth module implements the validation of expected values. The method 

10-fold cross validation is computerized to confirm the credibility of the expected 

values. As stated in Section 5.1.2.4, the stochastic drive cycles created in the 

Monte-Carlo method are randomly divided into ten equal-sized subsamples to 

calculate the expected values. The relative errors, the arithmetic mean, and the 

standard deviation of these expected values are computed as the results in this 

module. The relative errors show the extent of the accuracy of the expected values 

computed in this simulation platform. Additionally, the error bars plotted by using 

the arithmetic mean and the standard deviation illustrate the credibility of the 

expected values. The accuracy and the credibility of expected values determine the 

next step in this simulation platform. If the expected values are validated as 

accurate and credible values, these expected values will then summarized into a 

table as output and simultaneously input into the module – analysis of results. On 

the contrary, if the expected values are validated as low accuracy and credibility, 

this simulation platform will move back to the module – simulation of fuel 

economy to recalculate the expected values. 

The methodology of determination is implemented in the fifth module. It indicates 

that the sensitivity analysis, the ternary plot, and the calculation of equivalent 

points introduced in Section 5.2 are transformed into a computerized module. The 

triangle, which synthesizes the computed performance of each criterion by 

applying the ternary plot, is considered as a significant output in the final module. 

Combining this triangle and the potential improvements derived from the 

calculation of equivalent points, the output module in this simulation platform may 

ultimately present and provide constructive results for supporting decision-makers 

to determine their satisfactory match and explore the future research. 

5.4 Summary 

In this chapter, a simulation platform was designed to implement the proposed 

methodological concept. In particular, a simple database was established to support 

the quantitative assessment. Moreover, an adapted MCDM method was proposed 

and three mathematical expressions were accordingly formulated to implement the 

methodology of assessment. To analyze the results derived from the assessment, a 

sequence of methods was proposed (sensitivity analysis, ternary plot, and 
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calculation of equivalent points) for implementing the methodology of 

determination. In the end, the simulation platform was designed to integrate the 

methods, the database, and the mathematical expressions to convert the 

methodological concept from the theoretical to the practical guidance. 

To evaluate the proposed methodological concept, three scenarios are introduced 

as examples and assessed by applying the designed simulation platform in the next 

chapter.   
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6 Evaluation 

This chapter focuses on evaluating the proposed methodological concept by 

applying the proposed simulation platform. The objective is to confirm that this 

concept is feasible to assess the diverse ECV-UFT combinations and support 

decision-makers to determine their satisfactory match by addressing the identified 

challenges and meeting the specified requirements. There are three scenarios 

introduced in Section 6.1 to conduct this evaluation. The assumptions of this 

evaluation are defined in Section 6.2. In Section 6.3, the results, such as the 

expected values, the sensitivity analysis, and the equivalent points, are shown after 

carrying out the evaluation in the three scenarios. These results are then discussed 

in Section 6.4 to establish the feasibility of this methodological concept. Finally, 

the limitations of the methodological concept and a summary of this chapter are 

elaborated in Section 6.5 and 6.6.  

6.1 Scenarios in the Evaluation  

In this section, three scenarios, namely the Diesel Commercial Vehicle (DCV) - 

Express/post, the Battery Electric Vehicle (BEV) - Express/post, and the Hybrid 

Electric Vehicle (HEV) - Express/post, are introduced for the evaluation of the 

Sustainable ECV-UFT Matching Concept. The purpose of selecting these scenarios 

is to confirm the feasibility of the proposed methodological concept in the common 

and the emerging situations respectively. In particular, these three scenarios are 

constituted by the combinations of single vehicle type and single UFT market. In 

other words, the three scenarios were selected from the ECV-UFT combinations 

(Section 3.4).  

There are three reasons driven the selection of the express/post as the UFT market 

to constitute the scenarios for the evaluation. Firstly, on account of the rapid 

development of e-commerce over the recent decade, the express/post has become 

one of the markets, which appears frequently in the daily life of the citizens. It 

indicates that replacing conventional vehicles with ECVs in this express/post 

market may effectively demonstrate the applicability of ECVs to the citizens. 

Furthermore, on the basis of the stop-and-go feature in the express/post market, the 

ECVs, which have the on-board regenerative braking systems, benefit of this 

feature in this market. On top of these two reasons, the third reason is that the data 

of the express/post market is available to be extracted from the literature and the 

demonstration projects. Given these points, the express/post market was 

determined as the UFT market to constitute the three scenarios in this evaluation.   

Combining the express/post market with the three vehicle types (DCV, BEV, and 

HEV) respectively composes the three scenarios. Specifically, the role of using the 

DCV-Express/post is to represent a typical situation existing in the current urban 

freight transport for evaluating the proposed concept. Additionally, this scenario is 
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considered as a benchmark in this evaluation to distinctly compare the difference 

between the conventional vehicles (DCV) and the electric vehicles operating in an 

identical UFT market. Furthermore, the BEV- and the HEV-Express/post scenarios 

symbolize an emerging situation in the UFT for conducting the evaluation. 

According to the literature review in Section 3.4, the BEV and the HEV were 

observed as the main vehicle types studied frequently in the literature. This implies 

that the data of these two vehicle types is available to be collected for the 

evaluation. Moreover, since the powertrain of the BEV and the HEV are 

representative and differ from the DCV, these two vehicle types are considered in 

the scenarios of the evaluation to provide more options for examining the 

methodological concept.  

Following subsections focus on specifying the three scenarios respectively. Since 

the main difference between the scenarios is the powertrain of the vehicles, the 

characteristics of these powertrains are specified to adapt the corresponding 

equations in the simulation platform to the three scenarios. Additionally, the 

available data of each scenario for the evaluation is presented at the end of this 

section. 

6.1.1 Scenario Ⅰ: DCV – Express/Post  

Since the DCV consists of the conventional powertrain, the scenarioⅠDCV-

Express/post is considered as a benchmark firstly specified in this subsection. This 

specification mainly focuses on illustrating the characteristics of the powertrain in 

the DCV by applying an energy flow chart. Regarding the specified characteristics, 

the equations in the simulation platform are accordingly adapted to this scenario. 

To visualize the characteristics of the powertrains distinctly, Figure 22 shows the 

main components of the powertrain in the DCV and the energy flow between the 

components. In this figure, the energy provided by the fuel tank (𝐸𝑓𝑢𝑒𝑙𝑡𝑎𝑛𝑘) is the 

total energy consumption, which is used for simulating the fuel economy. To 

derive this total energy consumption, a backward simulation is required to be 

conducted in terms of this energy flow chart. The estimation of the energy to 

accelerate vehicles and to overcome the aerodynamic drag as well as the rolling 

resistance at wheels ( 𝐸𝑤ℎ𝑒𝑒𝑙𝑠 ) is the first step in this backward simulation. 

Subsequently, since there is energy loss in the driveline (𝐸𝑑𝑙𝑙𝑜𝑠𝑠) and the diesel 

engine (𝐸𝑒𝑛𝑔𝑙𝑜𝑠𝑠), the total energy consumption from the fuel tank is required not 

only to power the wheels but also to undertake the energy loss of the main 

components. To this end, the total energy consumption is backward computed to 

include the energy loss by using the engine (𝜂𝑒𝑛𝑔) and the driveline efficiency 

( 𝜂𝑑𝑙 ). Finally, the fuel economy is simulated by dividing the total energy 

consumption by the total distance of the drive cycle in the express/post market.  
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Figure 22: Energy flows in diesel commercial vehicles 

The Eq. 22 and 23 in Section 5.1.2.3, which is required to be adapted to the 

powertrain of the DCV, are shown as: 

              𝐸𝑓𝑢𝑒𝑙𝑡𝑎𝑛𝑘 = 𝐸𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙 =
𝐸𝑎𝑒𝑟𝑜,𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙+𝐸𝑟𝑒𝑠,𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙+𝐸𝑎𝑐𝑐,𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙

𝜂𝑑𝑙,𝑑𝑖𝑒𝑠𝑒𝑙∙𝜂𝑒𝑛𝑔,𝑑𝑖𝑒𝑠𝑒𝑙
                     (29)  

                                         𝑃𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙 =
𝐸𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙∙10−6

35.9∙𝑑𝑑𝑐,𝑒𝑥/𝑝𝑜
                                                                 (30)    

 

where 

𝐸𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙 = total energy consumption simulated in the DCV-Express/post combination 

𝐸𝑎𝑒𝑟𝑜,𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙  = energy required to overcome aerodynamic drag in the DCV-Express/post 

combination 

𝐸𝑟𝑒𝑠,𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙  = energy required to overcome rolling resistance in the DCV-Express/post 

combination 

𝐸𝑎𝑐𝑐,𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙 = energy required to accelerate the DCV running in express/post market 

𝜂𝑑𝑙,𝑑𝑖𝑒𝑠𝑒𝑙 = driveline efficiency of the DCV 

𝜂𝑒𝑛𝑔,𝑑𝑖𝑒𝑠𝑒𝑙 = engine efficiency of the DCV  

𝑃𝑒𝑥/𝑝𝑜,𝑑𝑖𝑒𝑠𝑒𝑙 = fuel economy simulated in the DCV-Express/post combination 

𝑑𝑑𝑐,𝑒𝑥/𝑝𝑜 = total distance of the drive cycle in the express/post market 

Since drive cycles commonly use seconds as the unit to denote the period of 

driving time, the total energy consumption in Eq.29 is therefore simulated with the 

unit watt-seconds (Ws). To obtain the fuel economy in the unit liter per kilometer 

(l/km), the total energy consumption is required to be converted from the unit Ws 
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to the unit megajoule (MJ) by multiplying by 10−6  (see Appendix 2). Besides, 

since the energy of one-liter diesel is equal to 35.9 MJ (see Appendix 2), the fuel 

economy in the unit l/km is then obtained by using this value in Eq.30. In short, 

this subsection specified the characteristics of the powertrain in the DCV by 

applying an energy flow chart. In addition, two equations formulated in the 

simulation of fuel economy were adapted to this scenario.  

6.1.2 Scenario Ⅱ: BEV – Express/Post 

This subsection focuses on specifying the powertrain of the BEV in scenario Ⅱ 
BEV-express/post. The purpose of specifying this powertrain is to adapt the 

equations in the simulation of fuel economy to this scenario. Similar to the last 

subsection, the powertrain of the BEV is specified by applying the energy flow 

chart. Figure 23 shows the energy flow chart in the powertrain of the BEV. In 

comparison with the energy flow chart of the DCV, the main components in the 

powertrain of the BEV are changed. In this powertrain, the battery pack and the 

electric motor replace the fuel tank and the diesel engine respectively. Moreover, 

since the electric motor has the capability of being used as a generator, the energy 

lost during braking at wheels can be captured by using the generator. This captured 

energy is called regenerative braking energy. After capturing this energy at wheels, 

it is finally stored in the battery pack. In this context, there are two energy flows 

formed in this powertrain of the BEV. As illustrated in Figure 23, one energy flow 

discharges the battery pack to propel the vehicles, whereas another energy flow 

captures the regenerative braking energy at wheels to recharge the battery pack by 

using the generator. To this effect, the simulation of fuel economy is required to be 

adapted by involving these two energy flows. 

 

Figure 23: Energy flows in battery electric commercial vehicles 
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The equations formulated in the simulation of fuel economy (Section 5.1.2.3) is 

accordingly adapted as:   

                          𝐸𝑟𝑏,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 = min (
𝐸𝑑𝑒𝑐,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉∙𝜂𝑟𝑏,𝐵𝐸𝑉

𝑡𝑑𝑐
,

𝑃𝑔𝑒𝑛,𝐵𝐸𝑉

𝜂𝑑𝑙,𝐵𝐸𝑉
) ∙ 𝑡𝑑𝑐                                      (31) 

where 

𝐸𝑟𝑏,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 = regenerative braking energy on the driveline in the BEV-Express/post 

𝐸𝑑𝑒𝑐,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 = energy required to decelerate the BEV running in express/post market 

𝜂𝑟𝑏,𝐵𝐸𝑉 = efficiency of regenerative braking energy captured at wheels 

𝑃𝑔𝑒𝑛,𝐵𝐸𝑉 = generator peak power in the BEV 

𝑡𝑑𝑐 = total driving time of the drive cycle in the express/post market 

On the basis of the restriction of the generator peak power, Eq. 31 limits and 

formulates the maximum regenerative braking energy on the driveline. The energy 

required to decelerate the BEV is computed by using the Eq.18 in the context of 

the acceleration less than 0. After deriving the available regenerative braking 

energy, the actual energy to recharge the battery pack (𝐸𝑐ℎ𝑎,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉) by taking into 

account the driveline (𝜂𝑑𝑙,𝐵𝐸𝑉) and the generator efficiency (𝜂𝑔𝑒𝑛,𝐵𝐸𝑉) is shown as: 

                           𝐸𝑐ℎ𝑎,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 = 𝐸𝑟𝑏,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 ∙ 𝜂𝑑𝑙,𝐵𝐸𝑉 ∙ 𝜂𝑔𝑒𝑛,𝐵𝐸𝑉                                               (32) 

Similar to Eq.29, the discharged energy from the battery pack (𝐸𝑑𝑖𝑠,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 ) is 

required to overcome the aerodynamic drag ( 𝐸𝑎𝑒𝑟𝑜,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 ) and the rolling 

resistance (𝐸𝑟𝑒𝑠,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉) as well as to accelerate the vehicles (𝐸𝑎𝑐𝑐,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉) in the 

BEV. Additionally, the energy loss in the electric motor (𝜂𝑒𝑚,𝐵𝐸𝑉) and the driveline 

(𝜂𝑑𝑙,𝐵𝐸𝑉) is taken into consideration as well. 

                             𝐸𝑑𝑖𝑠,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 =
𝐸𝑎𝑒𝑟𝑜,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉+𝐸𝑟𝑒𝑠,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉+𝐸𝑎𝑐𝑐,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉

𝜂𝑑𝑙,𝐵𝐸𝑉∙𝜂𝑒𝑚,𝐵𝐸𝑉
                                (33) 

Eq.34 shows the total energy consumption in the BEV-Express/post in terms of the 

discharged and recharged energy in the battery pack. 𝜂𝑑𝑖𝑠,𝐵𝐸𝑉  and 𝜂𝑐ℎ𝑎,𝐵𝐸𝑉  refer to 

the discharge and charge efficiency respectively.  

                              𝐸𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 =
𝐸𝑑𝑖𝑠,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉

𝜂𝑑𝑖𝑠,𝐵𝐸𝑉
− 𝐸𝑐ℎ𝑎,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 ∙ 𝜂𝑐ℎ𝑎,𝐵𝐸𝑉                                     (34) 

Based on the total energy consumption, the fuel economy of the BEV is computed 

with the unit kWh/km and the unit l/km, which are: 

                                         𝑃𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 =
𝐸𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉∙10−6

3.6∙𝑑𝑑𝑐,𝑒𝑥/𝑝𝑜
                                                                     (35) 

                                       𝑃𝑙𝑖𝑡𝑒𝑟,𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉 =
𝐸𝑒𝑥/𝑝𝑜,𝐵𝐸𝑉∙10−6

35.9∙𝑑𝑑𝑐,𝑒𝑥/𝑝𝑜
                                                                (36) 

Given these points, this section specified the powertrain of the BEV in the 

express/post market and adapted the equations for computing the fuel economy of 

the BEV-Express/post combination appropriately. 
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6.1.3 Scenario Ⅲ: HEV – Express/Post 

The HEV employed in the express/post market as scenario Ⅲ is specified in this 

subsection. Figure 24 illustrates the energy flow in the powertrain of the HEV. In 

this powertrain, two propulsion systems, namely the diesel engine and the electric 

motor, are involved in the HEV. As stated in Section 2.3, the configuration of this 

powertrain is the parallel HEV. In this context, the propulsion power may be 

supplied by the diesel engine, by the electric motor, or by both (Chan, 2007). To 

simulate the fuel economy of this HEV, the total energy consumption in this 

scenario is simply considered as the difference subtracting the total energy 

recharged in the battery pack from the total energy provided by the fuel tank. This 

difference indicates that the recharged energy captured from the regenerative 

braking energy is used to assist the diesel engine to propel the HEV. To this end, 

the discharged energy is assumed to be equal to the recharged energy. 

Accordingly, the equations in the simulation of the fuel economy (Section 5.1.2.3) 

are required to be adapted to this powertrain of the HEV.  

 

Figure 24: Energy flows in hybrid electric commercial vehicles 

The adaption of the equations is shown as follows: 

                                 𝐸𝑟𝑏,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉 = min (
𝐸𝑑𝑒𝑐,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉∙𝜂𝑟𝑏,𝐻𝐸𝑉

𝑡𝑑𝑐
,

𝑃𝑔𝑒𝑛,𝐻𝐸𝑉

𝜂𝑑𝑙,𝐻𝐸𝑉
) ∙ 𝑡𝑑𝑐                            (37) 

Similar to the Eq.31, the regenerative braking energy in the HEV (𝐸𝑟𝑏,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉) is 

formulated in terms of the generator peak power ( 𝑃𝑔𝑒𝑛,𝐻𝐸𝑉 ). Afterwards, this 

regenerative braking energy is stored in the battery pack (𝐸𝑐ℎ𝑎,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉) by taking 
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into account the efficiency of the driveline (𝜂𝑑𝑙,𝐻𝐸𝑉), the generator (𝜂𝑔𝑒𝑛,𝐻𝐸𝑉), and 

the recharging (𝜂𝑐ℎ𝑎,𝐻𝐸𝑉), which is expressed as: 

                          𝐸𝑐ℎ𝑎,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉 = 𝐸𝑟𝑏,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉 ∙ 𝜂𝑑𝑙,𝐻𝐸𝑉 ∙ 𝜂𝑔𝑒𝑛,𝐻𝐸𝑉 ∙ 𝜂𝑐ℎ𝑎,𝐻𝐸𝑉                             (38) 

Furthermore, the energy required to overcome the aerodynamic drag 

(𝐸𝑎𝑒𝑟𝑜,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉) and the rolling resistance (𝐸𝑟𝑒𝑠,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉) as well as to accelerate the 

HEV (𝐸𝑎𝑐𝑐,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉) is formulated as:  

                        𝐸𝑓𝑢𝑒𝑙𝑡𝑎𝑛𝑘,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉 =
𝐸𝑎𝑒𝑟𝑜,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉+𝐸𝑟𝑒𝑠,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉+𝐸𝑎𝑐𝑐,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉

𝜂𝑑𝑙,𝐻𝐸𝑉∙𝜂𝑒𝑛𝑔,𝐻𝐸𝑉
                            (39) 

To compute the total energy consumption in the fuel tank, the efficiency of the 

driveline and the diesel engine (𝜂𝑒𝑛𝑔,𝐻𝐸𝑉) are involved in Eq.39 as well. 

In the end, the total energy consumption and the fuel economy are shown as:  

                                   𝐸𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉 = 𝐸𝑓𝑢𝑒𝑙𝑡𝑎𝑛𝑘,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉 − 𝐸𝑐ℎ𝑎,𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉                                      (40) 

                                                       𝑃𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉 =
𝐸𝑒𝑥/𝑝𝑜,𝐻𝐸𝑉∙10−6

35.9∙𝑑𝑑𝑐,𝑒𝑥/𝑝𝑜
                                                       (41) 

The specification of these three scenarios has been completed so far. According to 

these specified scenarios, the data required by the adapted equations and the 

mathematical expressions in Section 5.1.2.2 is enumerated in Table 12. 

Table 12: Available data of three scenarios 

Parameters (Units) 
DCV-

express/post 

BEV-

express/post 

HEV-

express/post 

Specification of Vehicles 

Gross vehicle weight (kg)a 10433 9992 10433 

Payload capacity (kg)a 5384 4423 4840 

Onboard energy capacity (l, kWh) 113.562a 80b 113.562 

Electric motor peak power (kW) - 150b 44c 

Drag coefficient d 0.7 0.7 0.7 

Rolling resistance coefficient e 0.0094 0.0094 0.0094 

Rotational mass factor d 0.1 0.1 0.1 

Frontal area (m2) f 7.07 7.07 7.07 

Energy conversion factor TTW 

(MJ/l) g 
35.9 35.9 35.9 

Air density (kg/m3) e 1.23 1.23 1.23 

Engine efficiency (%)d 46 - 46 

Driveline efficiency (%)d 98 98 98 

Electric motor efficiency (%)d - 95 95 

Generator efficiency (%)d - 85 85 

Battery charge efficiency (%)h - 80 80 

Battery discharge efficiency (%)h - 80 80 

Regenerative braking efficiency (%)d - 75 75 

Costs 
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Parameters (Units) 
DCV-

express/post 

BEV-

express/post 

HEV-

express/post 

Purchase price (€)i 61100 141000 98700 

Fuel price (€/l, €/kWh)j 1.13 0.119 1.13 

Subsidy (€/kWh)i - 392 - 

Battery price (€/kWh)k - 376 - 

Depreciation rate in the first year 

(%)i 
23 23 23 

Depreciation rate in the rest of years 

(%)i 
15 15 15 

Discount rate (%)l 6 6 6 

Fuel price escalation (%)i 2.6 2.7 2.6 

Maintenance cost (€/km)i 0.3041 0.2103 0.239 

Logistics 

Annual traveled distance (km)i 26554 26554 26554 

Empty trip factor m 0.1 0.1 0.1 

Daily transported weight (kg)n 1814 1814 1814 

Drive Cycleo 

 
Baltimore Parcel 

Delivery 

Baltimore Parcel 

Delivery 

Baltimore Parcel 

Delivery 

Conversion Factor (WTW) g 

Energy conversion factor (MJ/l) 42.7 - 42.7 

CO2 equivalents conversion factor 

(kg/l) 
3.24 - 3.24 

aLammert et al., 2012, the on-board energy capacity is converted from 30 gallons. 
bProhaska et al., 2016 
cEnergy Efficiency & Renewable Energy, 2011 
dTA Engineering, 2014 
eMarkel et al., 2002 
fUPS, 2018 
gSchmied and Knörr, 2012 
hDavis and Figliozzi, 2012 
iBurnham, 2016, the price in euro is converted by 1 USD = 0.94 € (March 06, 2017). 
jEurostat Statistics Explained, 2017, the diesel price is at-the-pump price, the electricity price is the 

industry price (500 MWh < annual consumption < 2000 MWh; excluding VAT).  
kElectrification Coalition, 2010 
lHou et al., 2014 
mifeu Heidelberg et al., 2016, empty trip factor for volume goods 
nLammert, Burton, Sindler, & Duran, 2014 
oKelly et al., 2016 

Owing to the fact that the BEV and the HEV are still emerging technology in the 

UFT, the data for the three scenarios is therefore obtained chiefly from 

demonstration projects. The United Parcel Service (UPS) project conducted by the 

National Renewable Energy Laboratory (NREL) in the U.S. is considered as one 

data source. This project tracked and evaluated the in-service performance of the 

parallel HEV and the DCV (Lammert et al., 2012), which is consistent with the 

DCV- and the HEV- express/post scenario in this evaluation. The data appeared in 

this project, such as the specification of the DCV and the HEV as well as the daily 

transported weight in the parcel delivery, are available data for the scenarios. 
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Furthermore, the medium-duty vehicle is the category of vehicles demonstrated in 

this project. To compare the three scenarios fairly, the category of the BEV is 

required to be the medium-duty as well. In this context, the Ftiro-Lay project, 

which evaluated the performance of the medium-duty BEV conducted by the 

NREL, is involved as another data source. Since this project operated the BEV in a 

retail market, therefore, only the data regarding the specification of the BEV is 

extracted from this project.  

Furthermore, to be consistent with the three scenarios specified in this section, a 

custom drive cycle of the express/post market (Figure 25) is incorporated in each 

scenario. This drive cycle is created by the Drive Cycle Analysis Tool (DriveCAT) 

of the NREL (Kelly, Prohaska, Ragatz, & Konan, 2016).  

 

Figure 25: The custom drive cycle in the express/post market  

In addition to the UPS and the Ftiro-Lay projects, the data sources also include 

some tools (such as ADVISOR, AFLEET) and publications (such as Davis & 

Figliozzi, 2013; Hou et al., 2014). In the end, the available data for each scenario 

in Table 12 is stored in the simulation platform as the background data. 

6.2 Assumptions and Alternatives  

In this section, a group of assumptions is made before carrying out the evaluation 

of the Sustainable ECV-UFT Matching Concept. Since the available data is 

relatively little in these emerging scenarios, it is first assumed that the data used in 

this evaluation is the background data presented in Table 12. This assumption 

implies that only the panel of required fields in the user interface (Figure 21) is 

entirely filled, whereas the panel of optional fields remains empty in this 

evaluation. Additionally, this assumption also indicates that the category of 

commercial vehicles considered in this evaluation is the medium-duty vehicles. 
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Although the background data is assumed as the data source in this evaluation, the 

values of three required parameters are still missing in the background data. These 

three required parameters are annual transported weight, capacity utilization, and 

the initial total mass of vehicles. To obtain the values of these required parameters, 

three equations are formulated as follows by using the values stored in the 

background data.  

The annual transported weight is derived by involving the daily transported weight 

and the total operational days per year, which is formulated as:   

                                                    𝑤(𝑛) = 𝑊𝑝,𝑗 ∙ 𝑜𝑑(𝑛) ∙ 10−3                                                         (42) 

where 

𝑤(𝑛) = annual transported weight in year n 

𝑊𝑝,𝑗 = daily transported weight using vehicle type 𝑗 

𝑜𝑑(𝑛) = operational days in year n 

In this evaluation, the value of the daily transported weight is derived from the 

background data. Additionally, 260 days is considered as the operational days per 

year in this evaluation. Since the unit of the annual transported weight in Eq.7 is 

required to be tons, the unit of the Eq.42 is therefore converted from kilogram to 

tons to be consistent with the order of magnitudes in Eq.7. 

Next, to estimate the capacity utilization, the EcoTransIT (2016) suggests: 

                                                        𝜂𝑐 =
𝑊𝑝,𝑗

(1+𝑓𝑒𝑡)∙𝑊𝑝,𝑗̅̅ ̅̅ ̅̅
                                                                           (43) 

where 

𝜂𝑐  = capacity utilization 

𝑊𝑝,𝑗
̅̅ ̅̅ ̅ = payload capacity of vehicle type 𝑗 

𝑓𝑒𝑡 = empty trip factor 

The values of the daily transported weight, the empty trip factor, and the payload 

capacity are given by the background data. Among these values, since this 

evaluation focuses on the express/post market, the value of the empty trip factor is 

the value for volume goods. 

The initial total mass of vehicles is shown as: 

                                                  𝑚𝑗(1) = 𝑊𝐺𝑉𝑊,𝑗 − 𝑊𝑝,𝑗
̅̅ ̅̅ ̅ + 𝑊𝑝,𝑗                                                      (44) 

where 

𝑚𝑗(1) = the initial total mass of vehicle type 𝑗 
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𝑊𝐺𝑉𝑊,𝑗 = gross vehicle weight of vehicle type 𝑗 

The value of this total mass is determined by the gross vehicle weight, the payload 

capacity, and the daily transported weight. In this evaluation, it is assumed that the 

goods are transported once per day. To this effect, the daily transported weight is 

also the initial loading weight for the goods delivery. This initial total mass is a 

supplementary information for Eq.21. 

In addition to the aforementioned assumptions, in this evaluation, the planned 

service years is assumed as ten years (Davis & Figliozzi, 2013; Lebeau, Macharis, 

Van Mierlo, et al., 2015). Moreover, the battery life of the BEV is assumed as six 

years in terms of the cycle life of the lithium-ion batteries (Electrification 

Coalition, 2010; Lebeau, Macharis, Van Mierlo, et al., 2015). These two 

assumptions in this context convey that the on-board battery of the BEV is required 

to be replaced after six years in this evaluation. Moreover, the BEV is assumed to 

be recharged once a day at depots. Besides, it is also assumed that the BEV is fully 

charged at the start of the goods delivery per day. Finally, to conduct the Monte-

Carlo method, the standard deviation of the normal distribution is assumed to be 

equal to 0.01 and the mean of the normal distribution is assumed as 1. Under these 

assumptions, the evaluation of the methodological concept is then carried out by 

using the three scenarios in the simulation platform.  

Furthermore, to evaluate the methodological concept extensively, six alternatives 

are created in terms of the three scenarios specified in Section 6.1. The role of the 

alternatives is to compare not only the difference between scenarios but also the 

difference in the same scenario. Since the propulsion system is the main difference 

between the three scenarios, the alternatives are created accordingly by changing 

the efficiency of the engines or the electric motors (Table 13) based on the 

background data in the same scenario. For example, in scenario Ⅰ, two engine 

efficiency of the DCV constitute two alternatives, which represent two possibilities 

in the same scenario. Similarly, two alternatives in scenario Ⅱ are created by 

changing the electric motor efficiency of the BEV. To this end, six alternatives are 

created in the three scenarios and are applied to support the evaluation.  

Table 13: Alternatives for the evaluation 

Scenarios Alternatives Type of Vehicles UFT Markets 

ScenarioⅠ 
𝐴1 DCVs (46% engine efficiency) Express/post 

𝐴2 DCVs (41% engine efficiency) Express/post 

Scenario Ⅱ 
𝐴3 BEVs (95% electric motor efficiency) Express/post 

𝐴4 BEVs (90% electric motor efficiency) Express/post 

Scenario Ⅲ 
𝐴5 HEVs (46% engine efficiency) Express/post 

𝐴6 HEVs (41% engine efficiency) Express/post 
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On the whole, a group of assumptions and six alternatives were clarified in this 

section before evaluating the Sustainable ECV-UFT Matching Concept. In the next 

section, these assumptions and alternatives are entered into the simulation platform 

to conduct the evaluation and compute the results.  

6.3 Evaluation Results 

This subsection presents the results of evaluating the methodological concept. The 

expected values of the six alternatives, the accuracy of the results, the sensitivity 

analysis, the determination of the satisfactory match, and the exploration of the 

potential improvements constitute this subsection.   

6.3.1 Expected Values 

In this subsection, the expected values of the economic, the social, and the two 

environmental performance for the six alternatives are presented respectively. In 

each of the performance, the expected values of the six alternatives were compared 

to show the difference between scenarios and the difference in the same scenario. 

In particular, since all of the mathematical expressions contain the parameter – fuel 

economy, the expected values of the fuel economy for each alternative are also 

illustrated in this subsection.   

The scenario that combines the BEV with the express/post market consumed the 

least fuel according to the expected values of the fuel economy (Table 14). To 

render the fuel economy of the BEV comparable with the fuel economy of the 

DCV and the HEV, the unit of the fuel economy in the BEV was converted from 

kWh/km to the diesel equivalent l/km. As shown in Table 14, the HEV consumed 

more fuel than the BEV to deliver goods in the express/post market. On the 

contrary, the HEV consumed less fuel in comparison to the expected values of the 

fuel economy in the DCV. To this effect, the BEV had an advantage over the HEV 

and the DCV in the perspective of the fuel economy. This conclusion derived from 

the fuel economy in different scenarios is consistent with the results demonstrated 

in the UPS and Ftiro-Lay projects (Lammert et al., 2012; Prohaska, Ragatz, 

Simpson, & Kelly, 2016).  

Table 14: Expected values of fuel economy 

Alternatives Fuel economy (l/km) Fuel economy (kWh/km) 

𝐴1 (DCVs 46% - Express/post) 0.2076 - 

𝐴2 (DCVs 41% - Express/post) 0.2329 - 

𝐴3 (BEVs 95% - Express/post) 0.1046 1.0432 

𝐴4 (BEVs 90% - Express/post) 0.1120 1.1166 

𝐴5 (HEVs 46% - Express/post) 0.1919 - 

𝐴6 (HEVs 41% - Express/post) 0.2187 - 
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Furthermore, in terms of observing the expected values of the fuel economy in the 

same scenario, the alternatives with higher efficiency consumed less fuel. For 

example, since the engine efficiency of 𝐴1 and 𝐴5 are 5% higher than 𝐴2 and 𝐴6, 

the expected values of the fuel economy in 𝐴1  and 𝐴5  improved 11% - 12%. 

Likewise, the fuel economy of the BEV in 𝐴3 is 6.6% better than 𝐴4 on the basis 

of the higher electric motor efficiency. Given these points, a conclusion from the 

fuel economy in the same scenario is drawn that an economical commercial 

vehicle may benefit of the high engine or electric motor efficiency. 

The expected values of the four performance in the three criteria are illustrated in 

Table 15. In this table, the best alternative in each performance can be observed. 

Exclusive of the first column, the rest of columns refer to the TCO computed from 

the economic-mathematical expression, the total energy consumption and the total 

GHG emissions computed from the environmental-mathematical expression, as 

well as the actual transport capacity computed from the social-mathematical 

expression.  

Table 15: Expected values of the four performance 

Alternatives 
Criteria 

Ceco (€) Cenv,e (MJ) Cenv,g (t) Csoc (tkm) 

𝐴1 (DCVs 46% - Express/post) 1.7050 × 105 2.5886 × 106 196.4219 902.3221 

𝐴2 (DCVs 41% - Express/post) 1.7734 × 105 2.9044 × 106 220.3790 804.2313 

𝐴3 (BEVs 95% - Express/post) 2.0759 × 105 1.3044 × 106 98.9768 126.4972 

𝐴4 (BEVs 90% - Express/post) 2.0970 × 105 1.3966 × 106 105.9716  118.1476 

𝐴5 (HEVs 46% - Express/post) 1.8738 × 105 2.3922 × 106 181.5185  976.4040 

𝐴6 (HEVs 41% - Express/post) 1.9464 × 105 2.7274 × 106 206.9502  856.4153 

In the economic perspective, the scenario that combines the DCV with the 

express/post market expended the lowest total costs followed by the scenario HEV-

Express/post and the BEV-Express/post. This result indicates that the DCV 

remains the best performer and the HEV has an advantage over the BEV in this 

evaluation from the economic point of view. Furthermore, to compare the other 

alternatives in the same scenario, the alternative that has higher efficiency 

expended the lower total costs. To in-depth explore this economic performance, the 

expected values of the TCO were divided to illustrate the details.  

As formulated in the economic-mathematical expression, five elements 

(depreciation cost, subsidy, battery cost, fuel cost, and maintenance cost) constitute 

the TCO. The expected values of each element are illustrated in Table 16. 

Obviously, the main difference between these three scenarios is the depreciation 

cost. This cost in the scenario of the BEV is approximately an order of magnitude 

greater than the scenarios of the DCV. Moreover, since the battery life is shorter 

than the planned service years in this evaluation, there is an additional cost to 

replace the battery in the BEV. To this effect, although the BEV is incentivized by 
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purchase subsidies and has lower fuel cost as well as maintenance cost, these saved 

costs are insufficient to fill the gap of the TCO between the scenario of the BEV 

and the DCV. Furthermore, the main difference between the two alternatives in the 

same scenario is the fuel cost. As shown in Table 14, the alternative with the lower 

engine or electric motor efficiency consumed more fuel. In this context, more fuel 

consumption resulted in higher fuel cost.  

Table 16: Expected values of five elements in the TCO 

Alternatives Depreciation Subsidy Battery cost Fuel cost Maintenance  

𝐴1 (DCVs 46% - Express/post) 5.5015 × 104 0  0 5.6053 × 104 5.9433 × 104 

𝐴2 (DCVs 41% - Express/post) 5.5015 × 104 0  0 6.2891 × 104 5.9433 × 104 

𝐴3 (BEVs 95% - Express/post) 1.2696 × 105 7050 1.6797 × 104 2.9785 × 104 4.1101 × 104 

𝐴4 (BEVs 90% - Express/post) 1.2696 × 105 7050 1.6797 × 104 3.1891 × 104 4.1101 × 104 

𝐴5 (HEVs 46% - Express/post) 8.8871 × 104 0  0 5.1800 × 104 4.6710 × 104 

𝐴6 (HEVs 41% - Express/post) 8.8871 × 104 0  0 5.9059 × 104 4.6710 × 104 

In the environmental perspective, the scenario employing the BEV in the 

express/post market consumed the least amount of total energy consumption and 

emitted the least amount of total GHG emissions during the planned service years 

(Table 15). On the contrary, the total energy consumption and GHG emissions in 

the scenario of the DCV were the highest among the three scenarios. To explore 

the difference between these expected values in the three scenarios, the 

environmental-mathematical expressions (Eq.13 & 14) were analyzed. In this 

analysis, since the three scenarios operated in the same UFT market, the main 

difference leading to the expected values then presented in the fuel economy. Same 

as the expected values of the fuel economy shown in Table 14, the scenario of the 

BEV performed the best in the environmental perspective followed by the HEV 

and the DCV. In addition, on the basis of the fuel economy, the alternative with 

higher efficiency saved energy and reduced GHG emissions in comparison with 

the alternative with lower efficiency in the same scenario.  

Finally, in the social perspective, the scenario combining the HEV and the 

express/post market had the largest actual transport capacity (tkm), whereas the 

scenario of the BEV performed the worst in this perspective. According to the 

Eq.12, this difference between the three scenarios is mainly determined by the 

onboard energy capacity and the fuel economy. In this context, since the HEV 

consumed less fuel than the DCV and has the same size of the fuel tank as the 

DCV, the actual transport capacity in the scenario of the HEV was therefore better 

than the DCV. Similarly, although the BEV consumed the least fuel among the 

three scenarios, the energy provided by the battery capacity was much smaller than 

the fuel tank in the HEV and the DCV. Accordingly, the scenario of the BEV had 

the smallest actual transport capacity. Besides the comparisons in the scenarios, 

since the alternative with higher efficiency consumed less fuel, the actual transport 

capacity of this alternative was greater than the other one in the same scenario. 
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6.3.2 Validation 

The expected values derived from the evaluation are validated in this subsection. 

The accuracy of these expected values and the range, in which the expected values 

are credible to support making trustworthy decisions, are illustrated by using the 

10-fold cross validation (Section 5.1.2.4).  

The accuracy of the expected values was derived from the calculation of the 

relative errors (Table 17). The range of the accuracy for the six alternatives was 

between 98.33% and 99.80%. This range indicates that the expected values 

computed in the validation are 98.33%-99.80% accurate relative to the expected 

values in Table 15. Decision-makers may determine whether the validated 

accuracy satisfies their requirements for the accuracy of the expected values. In 

this evaluation, since there were minor changes of the expected values in the 

validation, the accuracy was considered as acceptable.   

Table 17: Accuracy of the expected values 

Alternatives TCO Energy consumption GHG emissions Accessibility 

𝐴1 (DCVs 46% - 

Express/post) 
99.45% 98.33% 98.33% 98.33% 

𝐴2 (DCVs 41% - 

Express/post) 
99.45% 98.45% 98.45% 98.45% 

𝐴3 (BEVs 95% - 

Express/post) 
99.80% 98.64% 98.64% 98.64% 

𝐴4 (BEVs 90% - 

Express/post) 
99.80% 98.71% 98.71% 98.71% 

𝐴5 (HEVs 46% - 

Express/post) 
99.58% 98.48% 98.48% 98.48% 

𝐴6 (HEVs 41% - 

Express/post) 
99.57% 98.57% 98.57% 98.57% 

Furthermore, the upper bound of the standard deviation of the normal distribution 

was identified. In this identification, three decimal places were considered for the 

upper bound. Following the procedure of identifying the upper bound portrayed in 

Section 5.1.2.4, the result shows that the upper bound of the normal distribution is 

0.047 (Figure 26) in this evaluation. Figure 26 (a) presents the expected values of 

the TCO in the six alternatives. Figure 26 (b) is the enlarged diagram of Figure 26 

(a) to illustrate the relation between the minimum TCO of A4 and the maximum 

TCO of A6. Apparently, the error bars of A4 and A6 are non-overlapping and the 

TCO of A4 is greater than A6.  
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Figure 26: Upper bound of standard deviation 

This upper bound was further confirmed by observing the changes of the TCO in 

the condition that the standard deviation exceeds 0.047 (Figure 27). Since the 

identification of the upper bound involved three decimal places, the standard 

deviation equal to 0.048 was subsequently validated. Figure 27 (c) shows that 

although there are non-overlapping error bars between A4 and A6, the TCO of A4 is 

smaller than A6. This change implies that an overlapping error bar between A4 and 

A6 has appeared between 0.047 and 0.048. In this perspective, the standard 

deviations from 0.0471 to 0.0479 were further validated. Figure 27 (b) illustrates 

that the first overlapping expected values appeared in the condition of the standard 

deviation equal to 0.0472. This result reveals that the relation between the TCO of 

A4 and A6 is not absolute and the conclusion deduced from the TCO is 

undecidable. Since this validation only considered three decimal places, the upper 

bound of the standard deviation was finally identified as 0.047. This identified 

upper bound indicates that the range of standard deviation, in which the assessed 

expected values are credible to support making trustworthy decisions, is between 0 

and 0.047 in this evaluation.  
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Figure 27: Changes of TCO exceeding the upper bound 

Overall, the expected values of this evaluation were accurate and credible in the 

range of standard deviation between 0 and 0.047. In subsequent subsections, these 

validated expected values are in-depth analyzed to evaluate the methodology of 

determination.  

6.3.3 Sensitivity Analysis 

The validated expected values are considered as input for evaluating the 

methodology of determination. This subsection focuses on the sensitivity analysis 

to observe the effect of changing the required parameters on the expected values. 

In addition, the dominated alternatives are identified and removed by using the 

observations derived from the sensitivity analysis.  

The sensitivity analysis of three required parameters is illustrated in this 

subsection. As formulated in Section 5.1.2.2, the fuel consumption per tkm is the 

only required parameter, which appears in all mathematical expressions. Moreover, 
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the fuel consumption per tkm is determined by the payload weight per trip, the 

empty trip factor, and the fuel economy by synthesizing the Eq. 10 and Eq.43. In 

other words, changing the values of these three required parameters in the 

sensitivity analysis affects all expected values under the three criteria. Hence, the 

following subsections mainly illustrate the sensitivity analysis of these three 

required parameters to provide examples for supporting decision-makers to analyze 

their results. Besides, the available alternatives are identified by removing the 

dominated alternatives deduced from the sensitivity analysis.    

6.3.3.1 Sensitivity Analysis: Payload Weight per Trip 

This subsection presents the sensitivity of the expected values under the changes of 

the payload weight per trip. The range of its value was defined depending on the 

payload capacity. This means that if the trip is a full load trip, the maximum 

payload weight per trip is equal to the value of the payload capacity. If the trip is 

an empty trip, the minimum payload weight per trip is then equal to 0 kg. Thus, the 

range of the payload weight per trip was defined between 0 kg and the payload 

capacity.  

The effect of changing the payload weight per trip on the four expected values is 

shown in Figure 28. The expected values of the TCO in the six alternatives are 

illustrated in Figure 28 (a). In comparison with the alternatives A1, A3, and A5, if 

the value of payload weight per trip is more than 907 kg, the expected values of 

TCO in operating BEVs in the express/post (A3) will be higher than the rest of two 

alternatives in 10 planned service years. Nonetheless, if the commercial vehicles 

transport goods between 362.8 to 907 kg per trip, the TCO of operating HEVs in 

the express/post (A5) will be the highest expenditure. In addition, if the value of 

payload weight per trip is less than 181.4 kg or empty trip, the DCV-Express/post 

(A1) will expend the most TCO. In this context, the sensitivity analysis of the 

payload weight per trip unveils that the alternative of using BEVs in the 

express/post market (A3) will not expend the most TCO in the condition of the 

payload weight per trip less than 907 kg. Furthermore, in comparison with the 

alternatives A2, A4, and A6, the results present that the BEVs (A4) will cost the 

most if the payload weight per trip equal and more than 1088.4 kg. On the 

contrary, the HEVs (A6) will expend the most TCO. Finally, this sensitivity 

analysis also illustrated that the alternatives A1, A3, and A5 expended lower TCO 

than A2, A4, and A6. 
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Figure 28: Sensitivity analysis in changing the payload weight per trip 

The effect of changing the payload weight per trip on energy consumption and 

GHG emissions is shown in Figure 28 (b) and (c). The results present that the low 

payload weight per trip induced a dramatic increase of energy consumption and 

GHG emissions. These changes indicate that increasing the payload weight per trip 

can reduce the amount of energy consumption and GHG emissions. Furthermore, it 

is worth pointing out that there are no intersection points in these two figures. It 

implies that the relations between the six alternatives regarding the environmental 

performance are constant. In other words, the environmental performance of 

BEVs-Express/post (scenario Ⅱ) remained the best in comparison with the other 

scenarios in the condition of changing the payload weight per trip. Besides, the 

alternatives with higher efficiency (A1, A3, and A5) were more environmentally 

friendly than the other alternatives (A2, A4, and A6) in the same scenario.   

The effect of changing the payload weight per trip on the actual transport capacity 

differs from the other three figures (Figure 28 (d)). This difference results from the 

mathematical expressions formulated in Section 5.1.2.2. This means that the actual 

transport capacity is directly proportional to the payload weight per trip, whereas 
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the TCO, energy consumption, and GHG emissions are inversely proportional to 

payload weight per trip. By observing Figure 28 (d), the slopes of the HEV 

scenario and the DCV scenario are greater than the BEV scenario. This result 

shows that the social performance in the HEV scenario was the best followed by 

the DCV scenario and the BEV scenarios. In addition, this result also reveals that 

the on-board energy capacity limits the social performance in the BEV scenario. 

Finally, in comparison with the two alternatives in the same scenario, the actual 

transport capacity performed better in the alternative with the higher efficiency.   

In conclusion, the higher the payload weight per trip is, the better the expected 

values in the three criteria can be derived. Besides this conclusion, it is also worth 

pointing out that the alternative with the relatively high efficiency performs better 

than the alternative with the low efficiency in the same scenario.  

6.3.3.2 Sensitivity Analysis: Empty Trip Factor 

The empty trip factor is one of the parameters influence on all expected values. 

The definition of the empty trip factor can be described as the division of the 

empty traveled distance by the loaded traveled distance (ifeu Heidelberg et al., 

2016). Since the data regarding the empty and the loaded traveled distance is 

scarce, the data of the empty trip factor is mainly collected from the existing tool, 

namely EcoTransIT, which summarized the data from transport statistics. The 

range of the empty trip factor in this sensitivity analysis was defined between 0 and 

1.  

The effect of changing the empty trip factor on the economic, social, and 

environmental performance is shown in Figure 29. In general, the greater the 

empty trip factor is, the worse the performance will be. In particular, the BEV 

scenario expended the most TCO in comparison with the other scenarios in the 

condition of the empty trip factor less than 0.6. This condition was deduced from 

the slopes of each scenario in Figure 29 (a). Additionally, this figure shows that the 

changes of the empty trip factor have less influence on the BEV scenario than the 

other scenarios. In this context, the result of this sensitivity analysis illustrates that 

if the empty trip factor is greater than 0.7, the TCO of the alternative A6 will 

replace the BEV scenario as the alternative with the highest costs. Besides, in the 

same scenario, the alternative with high efficiency can save costs.  
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Figure 29: Sensitivity analysis in changing the empty trip factor 

Furthermore, the effect of changing the empty trip factor on energy consumption 

and GHG emissions is shown in Figure (b) and (c). In general, the BEV scenario 

consumed the least amount of energy and emitted the least amount of GHG. In 

addition, since there are no intersection points between the expected values of the 

six alternatives in these two figures, the BEV scenario remained the best 

environmental performance in changing the empty trip factor. Moreover, the 

figures illustrate that the alternatives with low efficiency perform worse than the 

alternatives with the high efficiency in the environmental perspective. In particular, 

the alternative A6 (HEV scenario) consumed more energy and emitted more GHG 

emissions than the alternative A1 (DCV scenario).  

Finally, the actual transport capacity decreased with rising the empty trip factor for 

all alternatives (Figure 29 (d)). The alternative A5 (HEV scenario) had the 

maximum actual transport capacity. On the contrary, since the BEV scenario is 

limited by the on-board energy capacity, the alternative A4 (BEV scenario) had the 

minimum actual transport capacity. To observe this sensitivity analysis in the same 
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scenario, the alternatives with high efficiency contributed more actual transport 

capacity than the others.  

In conclusion, the smaller the empty trip factor is, the better the expected values 

can be derived. Additionally, the alternatives with high efficiency present better 

expected values than the alternatives with low efficiency. Besides these two 

observations, there is the least effect of changing the empty trip factor on the BEV 

scenarios in all three perspectives.  

6.3.3.3 Sensitivity Analysis: Fuel Economy 

The fuel economy is the main focus of the sensitivity analysis in this subsection. 

The range of the fuel economy in this sensitivity analysis was defined as ±10% of 

the fuel economy assessed in the simulation platform (Table 14). In addition, the 

units of the fuel economy in the three scenarios were unified to liter per km (l/km) 

by using the unit conversion table in Appendix 2.  

The effect of changing the fuel economy on the four performance in the three 

criteria is shown in Figure 30. In general, the four performance decreased with 

raising the fuel economy. In the economic perspective, the BEV scenario 

consumed the least amount of energy (liter) per km than the other scenarios in the 

condition of expending the same TCO (Figure 30 (a)). On the contrary, if the three 

scenarios consume the same amount of energy per km, the DCV scenario will 

expend the lowest TCO, whereas the BEV scenario will expend the highest. 

Furthermore, if the fuel economy of the BEV scenario is less than 0.09 l/km, the 

DCV scenario is greater than 0.27 l/km, or the HEV scenario is greater than 0.2 

l/km, the TCO of the BEV scenario will be less than the other two scenarios. In the 

same scenario, since the alternatives with the low efficiency consumed more 

energy, the TCO of these alternatives was higher than the alternatives with the high 

efficiency.  
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Figure 30: Sensitivity analysis in changing the fuel economy 

The effect of changing the fuel economy on environmental performance is 

illustrated in Figure 30 (b) and (c). Apparently, the BEV scenario has advantages 

over the rest of two scenarios in the environmental perspective. The low fuel 

economy in the BEV scenario resulted in this observation directly. Moreover, the 

slopes of the expected values in the three scenarios are the same. This observation 

implies that the DCV and the HEV scenarios may also be environmentally 

friendly, if their fuel economy is low enough. In addition, the alternatives with 

high efficiency may save more energy and emit less GHG than the alternatives 

with low efficiency.  

The effect of changing the fuel economy on social performance is shown in Figure 

30 (d). The actual transport capacity of the HEV scenario is in general the best than 

the others. In addition, there is a significant difference between the BEV scenario 

and the rest of two scenarios on account of the limited on-board energy capacity in 

BEVs. Moreover, similar to the results derived from the environmental 

perspective, the actual transport capacity of the DCV scenario may be better than 

the HEV scenario, if the fuel economy in the DCV scenario is low enough. Finally, 

since the alternatives with the low efficiency consumed more energy per km, the 

actual transport capacity of these alternatives is smaller than the alternatives with 

the high efficiency. In conclusion, the lower the fuel economy is, the better the 

expected values can be derived.  

In addition to the sensitivity analysis of these three parameters on the economic, 

social, and environmental performance, the rest of the required parameters in the 

mathematical expressions were also analyzed. The figures of the sensitivity 

analysis are presented in Appendix 3-7. 
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6.3.3.4 Available Alternatives 

This subsection provides a discussion of the results of the sensitivity analysis to 

deduce the available alternatives. According to the extent of the effect on the 

economic, social, and environmental performance, this discussion is divided into 

three groups. These three groups refer to the three sets of required parameters, in 

which the sensitivity analysis affects the performance in three dimensions, two 

dimensions, or one dimension respectively.   

The first group in this discussion focuses on the required parameters, which affect 

the performance in economic, social, and environmental dimensions. These 

required parameters are the payload weight per trip, the empty trip factor, and the 

fuel economy, which are illustrated in the last three subsections. In general, the 

results of the sensitivity analysis showed that the expected values in the three 

criteria can be improved by increasing the payload weight per trip and reducing the 

empty trip factor as well as the fuel economy. This unveils that reasonably 

planning the payload weight per trip, avoiding the empty trip, and decreasing the 

energy consumption per km may improve the economic, social, and environmental 

performance.  

The second group in this discussion presents the effect of changing the annual 

traveled distance, annual transported weight, and the planned service years on both 

economic and environmental performance (Appendix 3-5). The results illustrated 

that the smaller the three required parameters are, the better the expected values 

can be derived. Nevertheless, the short annual traveled distance, the low amount of 

annual transported weight, and the short planned service years are unavailable in 

practice. In this context, the slopes of each expected value were further analyzed to 

show the trends of these expected values by increasing the values of the required 

parameters. Obviously, since the slopes of the expected values in the BEV scenario 

are gentler than the other scenarios by increasing the annual traveled distance and 

the annual transported weight, the BEV scenario may have advantages over the 

DCV and the HEV scenarios, if the freight carriers transport goods in long distance 

and large amount of weight per year. On the contrary, since the battery life is 

shorter than the planned service years in this evaluation, the BEV scenario may 

expend more TCO in the long service years on account of the battery replacement 

costs.  

The third group concentrates on a set of required parameters (subsidies, battery 

price, purchase price, fuel price, and energy capacity), which affect only the 

performance in one dimension. The results of changing these parameters showed 

that reducing the battery price and purchase price as well as increasing the 

subsidies and the fuel price of fossil fuels may save the TCO. Besides, since the 

on-board energy capacity of BEVs is much smaller than the DCVs and HEVs, it is 
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difficult for the BEV scenario to improve the actual transport capacity in the social 

perspective.  

Furthermore, the dominated alternatives are identified by observing the trends in 

the sensitivity analysis. As explained in Section 4.3.2, the dominated alternatives 

commonly remain the worse performance in comparison with the other alternatives 

in the sensitivity analysis. The observations derived from the trends of expected 

values in the six alternatives reveal that the expected values of the alternatives with 

the low efficiency perform worse than the alternatives with the high efficiency in 

the same scenario. Therefore, A2, A4, and A6 are identified as the dominated 

alternatives in this evaluation. In other words, the alternatives A1, A3, and A5 are 

the available alternatives derived from this sensitivity analysis.  

6.3.4 Results in Ternary Plot 

This subsection shows the synthesized expected values of the available alternatives 

by applying the ternary plot for supporting decision-makers to determine their 

satisfactory match (Figure 31).  

 

Figure 31: Synthesized expected values of the available alternatives in a triangle 

The three sides of this triangle represent the economic, social, and environmental 

dimensions respectively. In particular, the economic axis refers to the TCO, the 

social axis stands for the actual transport capacity, and the environmental axis 

represents the energy consumption as well as GHG emissions in this evaluation.  
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To plot the assessed results in the triangle, the expected values of the available 

alternatives in Table 15 are firstly normalized by using the equations in Table 11. 

The normalized results are shown in Table 18. Since the expected values are 

subtracted from the maximum expected values in the same dimension, these 

normalized values are relative results rather than absolute results. For instance, the 

number 0 in the economic column means that the BEV scenario has the relatively 

highest total costs in comparison with the other two scenarios.  

Table 18: Normalization of the assessment results 

Alternatives Ceco  Cenv Csoc 

𝐴1 (DCVs 46% - Express/post) 0.58 0 0.42 

𝐴3 (BEVs 95% - Express/post) 0 1 0 

𝐴5 (HEVs 46% - Express/post) 0.35 0.13 0.52 

Three points are plotted by synthesizing the normalized values in the triangle. 

Mapping these points onto each axis can distinctly demonstrate the performance of 

each available alternative in three criteria. As defined in Section 5.2.2, since the 

middle point in the triangle is mapped onto each of axes in the same distance, this 

point is considered as the ideally sustainable ECV-UFT combination on account of 

the identically good performance under each criterion. In Figure 31, the solid lines 

refer to the distance between the points of alternatives (synthesized expected 

values) and the middle point. The shorter the solid line is, the more sustainable the 

alternatives will be. Overall, the ternary plot provides a direct and distinct picture 

for decision-makers to determine their satisfactory match. 

In Figure 31, the alternative of operating DCVs with 46% engine efficiency in 

express/post market presents the worst environmental performance, the best 

economic performance, and the medium social performance in comparison with 

the rest of two alternatives. This observation is consistent with the practical 

condition. In other words, the worst environmental performance is the motivation 

of developing the electric vehicles, whereas the best economic performance is one 

of the reasons that the DCVs are still dominant in UFT. In addition, since the 

DCVs show the sufficient actual transport capacity (medium social performance), 

little attention has been paid to the replacement of DCVs with ECVs in the UFT.  

The alternative of operating BEVs with 95% electric motor efficiency in 

express/post market shows the best environmental performance as well as the 

worst economic and social performance comparing with the rest of the alternatives. 

Similarly, this result reflects the practical condition and presents the advantages as 

well as the challenges of employing BEVs in UFT. In particular, the best 

environmental performance is the advantage of BEVs for decision-makers to 

consider replacing DCVs. Nonetheless, the worst economic performance prevents 

decision-makers from purchasing BEVs and using them in real life. Besides, since 
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the actual transport capacity of BEVs is much smaller than the benchmark of this 

evaluation (the DCV scenario), the worst social performance has become an 

obstacle to replace DCVs with BEVs. 

Finally, the alternative of operating HEVs with 46% engine efficiency in 

express/post market illustrates the best social performance as well as the medium 

economic and environmental performance in comparison to the alternatives of 

DCVs (A1) and BEVs (A5). The best social performance refers to the largest actual 

transport capacity in the alternative regarding the HEVs (A3). This best 

performance results from the additional battery systems in the HEVs. Furthermore, 

as a consequence of keeping engines and battery systems in the same 

configuration, HEVs expended lower TCO than BEVs and were more 

environmentally friendly than DCVs. In this context, the economic and 

environmental performance of HEVs is regarded as medium performance.  

In comparison with the distance between the synthesized expected values (the three 

points in Figure 31) and the middle point, the alternative regarding HEVs (A3) has 

advantages over the other alternatives. In other words, the length between the point 

of HEVs and the middle point is the shortest among the three alternatives. This 

result indicates that the HEV-Express/post is the combination closest to the ideally 

sustainable ECV-UFT combination in this evaluation. Depending on the 

performance and the distance, decision-makers can determine their satisfactory 

match. If the satisfactory match of decision-makers refers to the sustainable ECV-

UFT combination, the HEV-Express/post with the 46% engine efficiency can be 

identified as the satisfactory match derived from this evaluation. If decision-

makers demand an environmentally friendly combination without considering the 

TCO, the BEV-Express/post with the 95% electric motor efficiency can be the 

satisfactory match. On the whole, the satisfactory match is determined by the 

demands of decision-makers by using the ternary plot.  

A global triangle was extracted from this evaluation (Figure 32). This extracted 

triangle plays a role of supporting decision-makers to identify the features of the 

alternatives quickly. Three trapezoids constitute this global triangle by mapping the 

middle point onto each axis. In this dissertation, the trapezoids of the global 

triangle are defined as the weakly environmental (mapping with dotted line), 

economic (mapping with dashed line), and social zone (mapping with the dot-dash 

line). These three zones mean that the synthesized expected values plotted in these 

trapezoids perform badly under the corresponding economic, environmental, or 

social criteria.  



6   Evaluation

 

118 
 

 

Figure 32: Global triangle 

Taking the examples of the three points (A1, A3, and A5) in Figure 31, the 

alternatives regarding the DCVs and the HEVs appeared in the weakly 

environmental zone, while the alternative regarding the BEVs appeared in the 

weakly economic zone. These results indicated that the environmental performance 

of the points A1 and A3, as well as the economic performance of the point A5, were 

bad in the weakly environmental and economic zone. In this context, decision-

makers can accelerate the determination of the satisfactory match by using this 

global triangle.  

In short, this subsection shows the synthesized expected values of the available 

alternatives in a triangle for supporting decision-makers to determine their 

satisfactory match. Additionally, a global triangle is proposed to speed up and 

simplify the determination.   

6.3.5 Calculation of Equivalent Points 

This subsection focuses on calculating equivalent points to support decision-

makers to discover the potential improvements in the satisfactory match for future 

research. As formulated in Section 5.2.3, the equivalent points are calculated 

between the satisfactory match and the assessed ECV-UFT combination, which has 

the best performance in the specific criteria. In this evaluation, since the HEV-

Express/post (A3) is the alternative closest to the middle point in the triangle 

(Figure 31), the A3 is taken as an example to be the satisfactory match for the 
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calculation of equivalent points. In addition, since the DCV-Express/post (A1) 

expends the lowest TCO and the BEV-Express/post (A5) is the most 

environmentally friendly alternative in this evaluation, the potential improvements 

in the satisfactory match is in-depth analyzed by calculating the equivalent points 

between A1 and A3 in the economic perspective as well as between A3 and A5 in 

the environmental perspective.  

The equivalent points between the DCV-Express/post and the HEV-Express/post 

in the economic perspective are illustrated in Table 19. This table includes the 

original data of the main required parameters in the economic-mathematical 

expressions for assessing the HEV-Express/post and the difference between the 

original data and the equivalent points. According to the differences and the values 

of the equivalent points, the potential improvements may focus on reducing the 

purchase price, the maintenance costs, or the fuel economy to cut the TCO of the 

HEV-Express/post to the TCO of the DCV-Express/post. This conclusion implies 

that sacrificing the annual traveled distance, the annual transported weight, or the 

planned service years to cut the TCO may not be the potential improvements in 

consideration of the practical condition. Besides, although reducing the fossil fuel 

price can cut the TCO, since the fossil fuel is non-renewable energy, this reduction 

is uncertain in the future. Given these points, the purchase price, the maintenance 

costs, and the fuel economy of HEVs may be the main focus for future research to 

improve the TCO. 

Table 19: Equivalent points of A3 in the economic perspective 

Required parameters Unit Original data Equivalent points Differences 

Purchase price € 98700 79955.17491 -18.99% 

Annual distance Km 26554 22003.91547 -17.14% 

Maintenance cost €/km 0.239 0.1526 -36.13% 

Fuel price €/l 1.13 0.7619 -32.58% 

Fuel economy l/km 0.1918 0.1293 -32.58% 

Annual weight t 471.64 317.9873 -32.58% 

Planned service years Year 10 8.4221 -15.78% 

Furthermore, the equivalent points between the HEV-Express/post and the BEV-

Express/post in the environmental perspective are shown in Table 20. The results 

illustrate that increasing the payload capacity or the capacity utilization, or 

decreasing the fuel economy may improve the energy consumption and the GHG 

emissions of the HEV-Express/post to the same values of the environmental 

performance in the BEV-Express/post. Although the differences between the 

original data and the equivalent points are significant, these results unveil the 

potential improvements in the required parameters for future research. 
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Table 20: Equivalent points of A3 in the environmental perspective 

Required parameters Unit Original data Equivalent points Differences 

Payload capacity kg 4840 8876.4298 +83.40% 

Capacity utilization % 34.07 62.49 +83.41% 

Fuel economy l/km 0.1918 0.1046 -45.47% 

On the whole, this subsection gives an example to analyze the equivalent points 

regarding the results of this evaluation. Decision-makers may explore the potential 

improvements in their satisfactory match by using the calculation of the equivalent 

points provided in this subsection.  

6.4 Discussion 

This section focuses on discussing three questions proposed in Section 1.3 to 

interpret how the proposed methodological concept has answered the research 

question (How can decision-makers obtain a satisfactory match to increase the 

market penetration of ECVs for achieving sustainable UFT?) based on the 

evaluation results. This discussion constitutes three subsections to conduct the 

interpretation step by step.  

Question (Q) 1 

What are the challenges and requirements of obtaining the satisfactory match 
between the characteristics of ECVs and the preferences of UFT? 

The answers to this question (challenges in Section 4.1 & requirements in Section 

4.2) constitute the foundation of the methodological concept. The identification of 

challenges provides a specific research gap for supporting in answering the main 

research question. The specification of the requirements enumerates the significant 

items to fill the research gap.  

The methodological concept was inspired by addressing the challenges identified 

in Section 4.1. In particular, after reviewing the state of the art regarding the 

employment of ECVs in UFT, a limitation was outlined that there is a need for a 

systematic solution to guide and support decision-makers in obtaining their 

satisfactory match. Accordingly, how can decision-makers obtain their satisfactory 

match was reified by identifying the challenges. A specific research gap (there is 

no appropriate methodology to assess the diverse ECV-UFT combinations and 

determine the satisfactory match by taking into consideration: a. the time-

dependent parameters; b. the automotive and logistical parameters, and; c. the 

economic, social, as well as environmental dimensions) was summarized as the 
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challenges by analyzing the limitations of the literature and existing tools. The 

methodological concept was accordingly initiated by the identified challenges.  

Furthermore, the methodological concept was formulated based on meeting the 

requirements specified in Section 4.2. There are five requirements specified by 

extending the identified challenges. Among these requirements, the consideration 

of the three dimensions and the time-dependent, the automotive as well as 

logistical parameters were enumerated to cover the challenges. In addition, the 

requirements, such as involving diverse ECV-UFT combinations, providing a 

database, and synthesizing the results assessed under the three dimensions, were 

specified to support in proposing an explicit methodological concept.  

In summary, the discussion regarding the Q1 focuses on demonstrating the relation 

between the answers of the Q1 and the methodological concept. On top of this 

relation, the details regarding how the methodological concept has addressed these 

challenges and satisfied the requirements to obtain a satisfactory match are 

discussed in Q2 based on the evaluation results.  

Question (Q) 2 

How can decision-makers assess and determine the satisfactory match by 
addressing the challenges and satisfying the requirements? 

The methodological concept (Sustainable ECV-UFT Matching Concept) proposed 

in this dissertation is the answer of Q2. In general, the evaluation results confirmed 

that the proposed methodological concept can address the challenges and meet the 

requirements to support decision-makers to assess and determine the satisfactory 

match. In particular, how these challenges and requirements have been covered by 

the methodological concept is discussed respectively as follows.  

The expected values and the sensitivity analysis of the planned services years 

confirmed that the methodological concept can address the challenge regarding the 

time-dependent parameters. Additionally, these evaluation results established that 

it is critical to involve the time-dependent parameters to assess the ECV-UFT 

combinations. Concretely, the expected values of the economic and environmental 

criteria are the sum of the TCO, energy consumption, and GHG emissions in each 

year. This summation presents the future performance, which may support 

decision-makers to determine the satisfactory match suitable for not only the 

current but also the future scenarios. Furthermore, the expected values of the fuel 

economy stated that it is feasible to simulate the fuel economy by applying the 

custom drive cycles in this methodological concept. It indicates that the simulation 

of the fuel economy provides the available values close to the practical conditions 

for assessing the ECV-UFT combinations (Lammert et al., 2012; Prohaska et al., 

2016). Besides, the sensitivity analysis of the planned service years illustrates the 
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changes of the economic and environmental performance in 10 years (Appendix 

5). Since the battery life is shorter than the planned service years in this evaluation, 

the battery replacement costs render the TCO of the BEV scenario much higher 

than the other scenarios after the sixth year. On the contrary, the BEV scenario 

presents the advantages over the other scenarios in the environmental performance 

on the basis of its gentler slopes in the sensitivity analysis. Given these points, 

these changes demonstrate that it is significant to consider the time-dependent 

parameters to support decision-makers to determine the satisfactory match in a 

plain and comprehensive view.  

Next, the evaluation results confirmed that the methodological concept can meet 

the requirement of considering the automotive and the logistical parameters as well 

as their connections. The fuel consumption per tkm is a key parameter to connect 

the automotive and the logistical parameters in the formulation of the three 

mathematical expressions. The sensitivity analysis and the expected values 

calculated by using this key parameter are the evidence that this requirement has 

been satisfied. Moreover, since the fuel consumption per tkm is determined by 

payload weight per trip, the empty trip factor, and the fuel economy, the effect of 

changing these parameters on the economic, environmental, and social 

performance (Section 6.3.3) also demonstrated the significance of meeting this 

requirement. For instance, according to the sensitivity analysis of the empty trip 

factor, it is possible to observe that the BEV scenario may expend lower TCO than 

the HEV scenario in the condition of the empty trip factor greater than 0.7. This 

observation shows that the methodological concept has not only satisfied the 

requirement regarding the automotive and logistical parameters, but also provided 

potential improvements of these parameters for future research. 

Furthermore, the expected values of the three criteria (Table 15) and the points 

shown in the triangle (Figure 31) demonstrated that the methodological concept 

can assess the ECV-UFT combinations in the three dimensions of sustainable UFT 

and synthesize the expected values in the triangle. Among these evaluation results, 

the social performance confirmed that it is possible to quantify the social 

dimension. Moreover, the ternary plot presented that it is feasible to synthesize and 

visualize the expected values derived from the three criteria without using 

subjective data. This indicates that although the decision-makers determine the 

satisfactory match depending on their demands, the determination is made based 

on the facts (synthesized results in the triangle). On the whole, the methodological 

concept can meet the requirement regarding the three dimensions by discussing the 

evaluation results.     

Finally, the evaluation results established that the methodological concept can meet 

the requirements of assessing the diverse ECV-UFT combinations and providing 

the database. The assessment of the six alternatives in this evaluation is the 

evidence that the methodological concept can assess diverse ECV-UFT 
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combinations by adapting the corresponding equations in the simulation platform 

(Section 6.1). Besides, the database generated in this methodological concept, 

which stores a set of complete data of different alternatives, supports the 

assessment of the diverse ECV-UFT combinations.  

Synthesizing the discussion in this subsection, the methodological concept is 

confirmed as the answer of the Q2 to address the challenges and meet the 

requirements for supporting decision-makers to determine the satisfactory match.  

Question (Q) 3 

To what extent does the methodological concept support the decision-makers? 

The proposed methodological concept mainly plays an assistant role in the 

determination of a satisfactory match. In other words, this methodological concept 

provides assessment results of different ECV-UFT combinations and the guidance 

of analyzing the results. Decision-makers use these analyzed results to determine 

the satisfactory match depending on their demands. In particular, two perspectives 

(theoretical and practical) and three groups of decision-makers (freight carriers, 

automobile manufacturers, and regional/national governments) are considered to 

answer the Q3 concretely by discussing the evaluation results. 

In the theoretical perspective, the methodological concept contributes two 

methodologies to quantify the process of determining a satisfactory match. These 

methodologies outline the essential components including the corresponding 

methods and mathematical expressions. The academic researchers and the 

decision-makers (freight carriers, automobile manufacturers, and regional/national 

governments) may adapt, optimize, or extend these methodologies in terms of their 

conditions. For instance, the researchers may optimize the fuel economy by 

considering the vehicle routing problem with recharging stations. The freight 

carriers may add the insurance costs as well as the license and registration costs in 

the economic-mathematical expression. The automobile manufacturers may adapt 

the equations in the simulation of fuel economy to the other ECV-UFT 

combinations, such as PHEV-Express/post or FCEV-Express/post. Besides, the 

regional/national governments may extend the range of the social performance, 

such as including the number of accidents or human health impacts. In short, the 

methodological concept may fill the gap of lacking appropriate methodologies to 

assess diverse ECV-UFT combinations and determine the satisfactory match in the 

theoretical perspective.     

In the practical perspective, the simulation platform transformed from the 

methodological concept provides assessment results and analysis results for 

decision-makers to determine the satisfactory match. Decision-makers can 

optionally assess the ECV-UFT combinations by applying the simulation platform 
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in their practical conditions. The expected values, the sensitivity analysis, the 

synthesized points in the triangle, and the equivalent points are the bases for the 

determination. Taking these bases derived from this evaluation as an example, the 

discussion regarding to what extent the methodological concept support the 

decision-makers in the practical perspective is conducted as follows.  

The freight carriers in the express/post market can compare the DCV, the BEV, 

and the HEV by observing the synthesized results in the triangle. The observations 

include the positions of the synthesized points as well as the length between the 

synthesized points and the middle points. These observations can help the freight 

carriers to determine their satisfactory type of ECVs. Moreover, combining the 

sensitivity analysis and the equivalent points can suggest the areas of focus for 

improving the performance of the satisfactory match. For instance, according to 

combining the results of sensitivity analysis and equivalent points regarding the 

annual traveled distance, the increase of the annual traveled distance is suggested 

to cut the TCO of BEVs and HEVs. Similarly, the payload weight per trip, the 

maintenance costs, and the fuel consumption per tkm may also be the areas of 

focus for improving the performance of the satisfactory match deduced from this 

evaluation. 

Furthermore, the automobile manufacturers can benefit from this methodological 

concept to improve their products to adapt to the express/post market. For 

example, increasing the on-board energy capacity of BEVs may be a solution to 

improve the social performance and mitigate the “range anxiety” of users 

(Appendix 9). Additionally, the battery price, the maintenance costs, the gross 

vehicle weight, the payload capacity, and the fuel economy have also influence on 

the performance. To this effect, the methodological concept plays a role in 

suggesting the possible areas of focus for the automobile manufactures to adapt to 

the UFT markets by improving their products. 

In the end, the regional/national governments can make relevant policies based on 

the evaluation results. For instance, on account of the high TCO in the BEV 

scenario, the governments may consider providing appropriate financial subsidies 

for supporting the development of BEVs. Moreover, since the HEV scenario is the 

synthesized points closest to the middle point in the triangle, the governments may 

consider making the policy, which encourages the practitioners, such as freight 

carriers and automobile manufacturers, to focus on commercializing the HEVs in 

the express/post market. In short, the methodological concept provides the bases 

for the governments to make appropriate policies. 

On the whole, the methodological concept proposed in this dissertation is an 

assistant to help decision-makers to obtain a satisfactory match so that the market 

penetration of ECVs in UFT can be facilitated.  
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6.5 Limitations 

Four limitations of the methodological concept are elaborated in this section. The 

first limitation is relevant to the scenarios in the evaluation. There are three 

scenarios: DCV-Express/post, BEV-Express/post, and HEV-Express/post 

considered in the evaluation. These scenarios are determined mainly depending on 

the available data. The shortage of available and complete data regarding the 

PHEV, the FCEV, the retail, the HoReCa, the construction, and the waste 

collection market result in these three scenarios involved in the evaluation. To this 

effect, future research may focus on complementing the database in the 

methodological concept to overcome this limitation. 

The second limitation relates to the data used in the evaluation. As stated in 

Section 6.2, this data is the background data collected from related publications. 

This means that the data for evaluating the methodological concept is the 

theoretical or historical data, which can support the evaluation results close to the 

practical conditions. However, the practical data collected from the decision-

makers is lacking in the database and the evaluation. To this end, it is crucial to 

consider the practical data in the assessment of the ECV-UFT combinations to 

determine the satisfactory match closer to the practical conditions. 

The third limitation concerns the validation in the methodological concept. The 

expected values, which are validated as inaccurate results or excluded from the 

credible range, are required to be further considered in the validation. This means 

that there is a need for a closed loop in the methodological concept to deal with the 

unsatisfied validated results. Besides, it is significant to refine the definitions of the 

unsatisfied results for supporting decision-makers to obtain a more trustworthy 

satisfactory match.    

The fourth limitation focuses on the simulation of the fuel economy. As introduced 

in Section 6.1, there are adaptions of the equations to the different configurations 

of ECVs in the simulation. Since the DCV, the BEV, and the parallel HEV are 

considered in the evaluation, the adaptions are accordingly formulated in the 

simulation. Nevertheless, the equations adapting to the series HEV, the series-

parallel HEV, the PHEV, and the FCEV are missing in the simulation of the fuel 

economy. In this perspective, the methodological concept may need further update 

by including these adaptions.  

6.6 Summary 

This chapter has presented an evaluation of the methodological concept by using 

three scenarios. In addition, this chapter has discussed and confirmed that the 

proposed methodological concept can answer the research question. In other 
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words, the proposed methodological concept provides decision-makers with the 

guidance of obtaining their satisfactory match.  

Six alternatives were introduced into this evaluation. The corresponding adaptions 

and assumptions were made for conducting the evaluation. The results of these six 

alternatives have been analyzed and finally illustrated in a triangle. These results 

established that the methodological concept can address the challenges and meet 

the requirements of assessing the diverse ECV-UFT combinations. Besides, the 

conclusion of the discussion shows that the methodological concept plays an 

assistant role in the determination of the satisfactory match from not only the 

theoretical but also the practical point of view. 
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7 Conclusion and Outlook 

This chapter focuses on concluding the dissertation and proposing the outlook for 

future research. Section 7.1 recaps the challenges and the methodological concept 

as well as highlights the contributions of this dissertation. Section 7.2 provides four 

future topics as the outlook to end this chapter.  

7.1 Conclusion 

The environmental challenges of ICE vehicles motivate the development of 

electric vehicles. In this development, much attention has been paid to the electric 

passenger cars, whereas little attention has been paid to the electrification of 

commercial vehicles (ECVs) for addressing the environmental challenges in UFT. 

This little attention is reflected in the extent of the commercialization of ECVs. 

Although policies are supporting the employment of ECVs in UFT and the UFT 

provides suitable conditions for the employment, the extent of commercialization 

is still low. In other words, there is a low market penetration of ECVs in UFT. To 

this effect, four areas of focus (feasibility of ECVs, adaptations of logistics 

concepts, adaptations of vehicle concepts, and support of stakeholders) in the 

literature have been studied regarding the employment of ECVs in UFT to figure 

out the limitations leading to the low market penetration. Besides these areas, the 

related existing tools have been reviewed as well.  

According to the state of the art in the literature and existing tools, a feature of 

employing ECVs in UFT – diversity was extracted in this dissertation. Moreover, 

obtaining a satisfactory match between the characteristics of ECVs and the 

requirements of UFT has been noticed in this dissertation as a solution to increase 

market penetration. However, many possibilities resulted from the diversity (512 

ECV-UFT combinations) has become a limitation for decision-makers to select 

their satisfactory match. Additionally, since little attention has been paid on the 

diversity and the satisfactory match, decision-makers cannot derive appropriate 

and systematic solutions from academic studies to support themselves in better 

understanding the diversity and obtaining a satisfactory match.  

In particular, the challenges of obtaining a satisfactory match were refined from the 

literature and existing tools. Generally, there is no appropriate methodology, which 

can support decision-makers to assess the diverse ECV-UFT combinations and 

determine the satisfactory match. Concretely, in the assessment, some parameters, 

such as the time-dependent, the automotive, and the logistical parameters, as well 

as the connection between the parameters are missing. In the determination, the 

three dimensions of sustainable UFT are incompletely considered. Additionally, 

the available data or database of the diverse ECV-UFT combinations are scarce in 

the academic studies, the demonstration projects, and the related tools. Overall, the 

challenges can be outlined that there is a need for appropriate methodologies to 
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guide and support decision-makers in assessing the diverse ECV-UFT 

quantitatively and determining their satisfactory match.  

A methodological concept called Sustainable ECV-UFT Matching Concept was 

developed in this dissertation to address the outlined challenges. In particular, this 

concept is constituted by two methodologies (methodology of assessment and 

methodology of determination). The methodology of assessment helps decision-

makers to quantitatively assess the diverse ECV-UFT combinations including the 

time-dependent, the automotive, and the logistical parameters from the economic, 

social, and environmental dimensions. The methodology of determination provides 

a system of methods to analyze the assessment results and support decision-makers 

to determine their satisfactory match. A simulation platform, which contains an 

available database, three mathematical expressions, a simulation model of fuel 

economy, and three methods for analyzing the results, was designed to implement 

the methodological concept. 

Six alternatives in three scenarios (DCV-, BEV-, and HEV-Express/post) were 

entered into the simulation platform to evaluate the proposed methodological 

concept. The evaluation results confirmed that the Sustainable ECV-UFT Matching 

Concept provides decision-makers with the guidance of obtaining a satisfactory 

match. This guidance can address the outlined challenges to assess the diverse 

ECV-UFT combinations and plays an assistant role in the determination of the 

satisfactory match. In addition, this methodological concept also provides a 

possible solution for similar decision-making problems in UFT and support 

decision-makers to explore the potential improvements. In a practical perspective, 

the designed simulation platform in this dissertation was evaluated as a feasible 

approach to support in obtaining a satisfactory match.  

On the whole, this dissertation contributes to the commercialization of ECVs for 

achieving sustainable UFT by proposing the methodological concept. Decision-

makers can better understand the economic, social, and environmental performance 

of different ECV-UFT combinations by applying this concept. The synthesized 

results of the performance can support decision-makers to determine the 

satisfactory match in terms of their conditions. The benefits of employing this 

satisfactory match may inspire decision-makers to consider the corresponding 

ECVs using in their UFT markets. This consideration may facilitate the market 

penetration of ECVs for achieving sustainable UFT.  

7.2 Outlook 

Some topics, which are inspired by this dissertation, constitute the outlook. In other 

words, these topics are the extension of the limitations outlined in Section 6.5. Two 

perspectives, namely the theoretical and the practical perspectives, are applied to 

structure this outlook.  
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The extension of the ECV-UFT combinations in the methodological concept is 

considered as a topic for future research from the theoretical point of view. This 

extension refers to take into account more types of ECVs and UFT markets. Since 

the proposed methodological concept involves three scenarios (the DCV-, BEV-, 

and HEV-Express/post), the future research may widen the range of the scenarios 

to combine the PHEV and the FCEV with the retail, the HoReCa, the construction, 

as well as the waste collection markets. In this extension, the challenges of each 

scenario are required to be taken into account. For instance, the scenarios 

constituted by employing FCEVs may need to consider the challenges, such as 

high fuel cell costs, difficult to store and transport hydrogen, as well as insufficient 

hydrogen filling stations, into the methodological concept. In addition, it is crucial 

to complete the background data regarding the new scenarios. This indicates that 

there is a need to extend the database of the methodological concept in future 

research. This extended database may provide practitioners with a holistic view in 

the field of employing ECVs in UFT.  

The adaption of the simulation model of fuel economy is the second topic in the 

theoretical perspective. This adaption is attributed to the extension of ECV-UFT 

combinations. Since the equations in the simulation of the fuel economy are 

formulated depending on the configurations of ECVs, the adaption of the equations 

in the extended ECV-UFT combinations, which contain the PHEV and the FCEV, 

is considered as the topic for the future research. Besides the adaption of equations 

to the extended ECV-UFT combinations, the future research may also concern the 

improvement of the regenerative braking systems and the battery systems in this 

methodological concept. Additionally, the electric vehicle routing problem may 

also constitute the adaption of the simulation.  

The third topic in the theoretical perspective relates the validation. In particular, 

future research may focus on improving the validation of this methodological 

concept to support decision-makers to deal with the unsatisfied validated results. 

This means that there is a need for refining the definitions of the unsatisfied results 

to establish a closed loop in the methodological concept. To this end, decision-

makers may obtain more trustworthy results for determining the satisfactory match.  

Finally, from a practical perspective, the development of applicable tools is 

considered as a future topic. In this development, the future work may collect and 

use the practical data from users to customize the tools. Concretely, the tools may 

contain a function of creating the custom drive cycles for the users. The original 

data of the custom drive cycles is the practical data collected from users. In this 

context, some new concepts, such as Internet of Things and Industry 4.0, are 

suggested to be integrated into the methodological concept to help practitioners to 

achieve the data collection.  
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Appendix 

Appendix 1: 82 possible ECV-UFT combinations in the literature 

ECV – UFT combinations 

 

ECV – UFT combinations 

BEVs - Unspecified 

 

PHEVs - HoReCa 

BEVs - Retail 

 

PHEVs - (Retail, Express/post) 

BEVs - Express/post 

 

PHEVs - (Retail, HoReCa) 

BEVs - HoReCa 

 

FCEVs - Unspecified 

BEVs - Construction 

 

Unspecified - Unspecified 

BEVs - Waste 

 

Unspecified - Retail 

BEVs - (Retail, Express/post) 

 

Unspecified - Express/post 

BEVs - (Retail, HoReCa) 

 

Unspecified - HoReCa 

BEVs - (Retail, Construction) 

 

Unspecified - (Retail, Express/post) 

BEVs - (Retail, Waste) 

 

Unspecified - (Retail, HoReCa) 

BEVs - (Express/post, HoReCa) 

 

(BEVs, HEVs) - Unspecified 

BEVs - (Express/post, Construction) 

 

(BEVs, HEVs) - Retail 

BEVs - (Express/post, Waste) 

 

(BEVs, HEVs) - Express/post 

BEVs - (HoReCa, Construction) 

 

(BEVs, HEVs) - HoReCa 

BEVs - (HoReCa, Waste) 

 

(BEVs, HEVs) - (Retail, Express/post) 

BEVs - (Construction, Waste) 

 

(BEVs, HEVs) - (Retail, HoReCa) 

BEVs - (Retail, Express/post, HoReCa) 

 

(BEVs, PHEVs) - Unspecified 

BEVs - (Retail, Express/post, Construction) 

 

(BEVs, PHEVs) - Retail 

BEVs - (Retail, Express/post, Waste) 

 

(BEVs, PHEVs) - Express/post 

BEVs - (Retail, HoReCa, Construction) 

 

(BEVs, PHEVs) - HoReCa 

BEVs - (Retail, HoReCa, Waste) 

 

(BEVs, PHEVs) - (Retail, Express/post) 

BEVs - (Retail, Construction, Waste) 

 

(BEVs, PHEVs) - (Retail, HoReCa) 

BEVs - (Express/post, HoReCa, Construction) 

 

(BEVs, FCEVs) - Unspecified 

BEVs - (Express/post, HoReCa, Waste) 

 

(HEVs, PHEVs) - Unspecified 

BEVs - (Express/post, Construction, Waste) 

 

(HEVs, PHEVs) - Retail 

BEVs - (HoReCa, Construction, Waste) 

 

(HEVs, PHEVs) - Express/post 

BEVs - (Retail, Express/post, HoReCa, Construction) 

 

(HEVs, PHEVs) - HoReCa 

BEVs - (Retail, Express/post, HoReCa, Waste) 

 

(HEVs, PHEVs) - (Retail, Express/post) 

BEVs - (Retail, Express/post, Construction, Waste) 

 

(HEVs, PHEVs) - (Retail, HoReCa) 

BEVs - (Retail, HoReCa, Construction, Waste) 

 

(HEVs, FCEVs) - Unspecified 

BEVs - (Express/post, HoReCa, Construction, Waste) 

 

(PHEVs, FCEVs) - Unspecified 

BEVs - (Retail, Express/post, HoReCa, Construction, Waste) 

 

(BEVs, HEVs, PHEVs) - Retail 

HEVs - Unspecified 

 

(BEVs, HEVs, PHEVs) - Express/post 

HEVs - Express/post 

 

(BEVs, HEVs, PHEVs) - HoReCa 

HEVs - Retail 

 

(BEVs, HEVs, PHEVs) - (Retail, Express/post) 

HEVs - HoReCa 

 

(BEVs, HEVs, PHEVs) - (Retail, HoReCa) 

HEVs - (Retail, Express/post) 

 

(BEVs, HEVs, PHEVs) - Unspecified 
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ECV – UFT combinations 

 

ECV – UFT combinations 

HEVs - (Retail, HoReCa) 

 

(BEVs, HEVs, FCEVs) - Unspecified 

PHEVs - Unspecified 

 

(BEVs, PHEVs, FCEVs) - Unspecified 

PHEVs - Retail 

 

(HEVs, PHEVs, FCEVs) - Unspecified 

PHEVs - Express/post 

 

(BEVs, HEVs, PHEVs, FCEVs) - Unspecified 

Appendix 2: Unit conversion table 

1 MJ 0.2778 kWh 

1 MJ  0.0279 liter diesel 

1 kWh  3.6 MJ 

1 kWh  0.1004 liters diesel 

1 liter diesel (TTW) 35.9 MJ 

1 liter diesel (WTW)  42.7 MJ 

1 liter diesel (TTW)  2.67 kg CO2eq 

1 liter diesel (WTW)  3.24 kg CO2eq 

1 liter diesel  10 kWh 

1 mile  1.6093 km 

1 gallon  3.7854 liter 

Appendix 3: Sensitivity analysis in changing the annual traveled distance 
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Appendix 4: Sensitivity analysis in changing the annual transported weight 
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Appendix 5: Sensitivity analysis in changing the planned service years 

 

 
 

Appendix 6: Sensitivity analysis regarding the TCO 
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Appendix 7: Sensitivity analysis regarding the actual transport capacity 

 

Appendix 8: The equivalent point of A5 in the economic perspective 

Required parameters Unit Original data Equivalent points Differences 

Purchase price € 141000 99814.29438 -29.21% 

Subsidy € 392 551.6768 +40.73% 

Annual distance Km 26554 12661.71794 -52.32% 

Maintenance cost €/km 0.2103 0.0206 -90.20% 

Planned service years Year 10 6.2244 -37.76% 
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Appendix 9: The equivalent point of A5 in the social perspective 

Required parameters Unit Original data Equivalent points Differences 

Payload capacity kg 4423 34139.6428 +671.87% 

Capacity utilization % 37.28 287.79 +671.96% 

Fuel economy kWh/km 1.0431 0.1351 -87.04% 

Energy capacity kWh 80 617.493 +671.87% 
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