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Glyco-biomarkers: Potential determinants of
cellular physiology and pathology1
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Abstract. Once dismissed as just the icing on the cake, sugar molecules are emerging as vital components in life’s intricate
machinery. Our understanding of their function within the context of the proteins and lipids to which they are attached has
matured rapidly, and with it the far reaching clinical implications are becoming understood.
Recent advances in high-throughput glycomic techniques, glyco biomarker profiling, glyco-bioinformatics and development of
increasingly sophisticated glyco-arrays, combined with our increased understanding of the molecular details of glycosylation
have facilitated the linkage between aberrant glycosylation and human diseases, and highlighted the possibility of using glyco-
biomarkers as potential determinants of disease and its progression.
The focus of this review is to give an insight into the biological significance of these glycomodifications, highlight some specific
examples of glyco-biomarkers in relation to autoimmunity and in particular rheumatoid arthritis, and to explore the exciting
possibility of exploiting these for diagnostic and prognostic strategies.
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1. Introduction

The recent surge of interest in glycomics and the
search for glyco-biomarkers of disease stems from the
fact that glycosylation has, finally, gained recognition
for the pivotal role that it plays in virtually all aspects of
our system; from embryogenesis to pathogenesis [1–6].
This comes as no surprise, since the surface of our entire
cellular network, as well as those of pathogens, and
the backbone of most proteins and lipids, is decorated
with a dense complement of either linear or intricately
branched complex sugar structures [3,5,7].

These glycans constitute the most abundant and di-
verse of the post-translation modifications in our sys-
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tem and are therefore an integral feature of almost all
biomolecules including nearly all cell surface and over
70% of secretory proteins, as well as glycolipids, gly-
cosphingolipids (such as the ABO histo-blood group
antigens), lipopolysaccharides, and glycosaminogly-
cans (GAGs; such as heparin). In the majority of these
examples the glycan moiety constitutes a substantial
portion of the mass, size and charge of the glycoconju-
gate, and can thus exert considerable inter- and intra-
molecular effects. As such glycans have the potential
to generate extensive physical and biochemical diver-
sity (through the formation of large numbers of glyco-
forms), and therefore confer considerable coding ca-
pacity for relay of biospecific information. And so,
in addition to performing a structural and protective
role, a large number of glycans have important func-
tional roles as specific information tags or recognition
epitopes [3,8].

The information coded into these, spatially accessi-
ble, sugar epitopes is decoded by a sophisticated recog-
nition system, which is comprised of a large cohort
of carbohydrate binding proteins that include lectins,
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Table 1
A list of some of the endogenous lectins/carbohydrate-recognizing proteins expressed in our system. Depending on their structure and mode
of action, lectins are subdivided in several groups. These lectins contain one or more carbohydrate recognition domains that determine their
specificity.

Endogenous lectins Function
Annexins Functions include binding to carbohydrate moieties of sialoglycoproteins and GAGs. Examples include annexin

IV, in kidney and pancreas. May be important apical sorting (secretory vesicles) and exocrine-type neurotrophic
activity and in cell-adhesion (or inhibition of cell-adhesion).

C-type lectins: calcium-
dependent Soluble/
transmembrane

Collectins; soluble lectins such as C- reactive protein (CRP), mannose binding lectin (MBL), surfactants SP-A
and SP-D and ficolins, which have the capacity to activate complement and thus play an important role in innate
immunity as well as autoimmunity
Selectins; membrane bound with specific function in leukocyte adhesion to endothelial cells through sialyl-
LewisX recognition; therefore important in both normal physiology and in inflammation and immunity to tumor
and virally infected cells.
The selectin on the leukocyte side is L-selectin while those on the endothelial side are E- and P-selectins
Type I receptors; includes cell surface mannose receptors on macrophages and other types of cells, and DEC-205
on dendritic cells. Involved in molecular uptake into cells.
Type II receptors; typical examples are sialoglycoprotein receptor of hepatocytes, macrophage galactose/N-
acetylgalactosamine specific lectin, natural killer cell receptors and low affinity IgE receptor (CD23). These are
either involved in the molecular uptake into cells through the endocytic pathway or in the signal transduction
based on cell-cell recognition.

I- type lectins I (immunoglobulin)-type lectins, have 2 domains; carbohydrate-binding and an Ig-like domain. Examples
include siglecs, which recognize sialic acid, and are expressed on specific subsets of tissue-phase or activated
macrophages

P-type lectins Involved in trafficking of lysosomal enzymes

S-type lectins; also
known as Galectins

A rapidly growing family of metal-independent lectins with diverse histological localization, in cytoplasm,
nuclei, cell surfaces and extracellular spaces; depending on the galectin species.
They share galactose-specificity and display potent biological activities, such as the ability to induce apoptosis,
or metabolic changes, such as cellular activation and mitosis. Examples include galectin 1 which induces T cell
apoptosis and galectin 3, associated with tumours, which inhibits apoptosis

collectins, adhesion molecules, and anti-carbohydrate
antibodies (Table 1) [8–12]. This versatile carbohy-
drate recognition system combined with our extensive
glycome are key players in orchestrating the complex
functional network of bimolecular interactions that co-
ordinate molecular and cellular function in relation to
innate and adaptive immunity [13–19].

Given the diversity of structures and functions, and
the potential for conveying information essential to
maintenance of immune homeostasis, it is not surpris-
ing that the role of glycosylation in the development,
regulation, and progression of disease has come under
increased scrutiny [6].

2. Physiological diversity and function of glycans

As might be imagined from their ubiquitous nature,
and their ability to convey information, the biological
roles of glycans are formidable and span the complete
spectrum, from those that are relatively subtle (e.g.
structural) to those that are critical (e.g. crucial for the
development, function and survival of an organism).

However, the elucidation of a specific physiolog-
ical role for a given glycan modification(s) poses a

formidable challenge. This is because glycan struc-
tures can play different roles in different cells/tissues,
at different times [3,20–22], and also because in some
instances what is deemed structural under normal phys-
iological conditions may be rendered antigenic in cer-
tain disease conditions. Examples of these include 1)
the developmentally regulated expression and distribu-
tion of the ABO histo-blood group antigens [23], and 2)
the glycosylation changes that render certain collagen
epitopes arthrogenic [24].

The plethora of biological functions ascribed to
glycans include mechanisms of protein folding and
turnover [25], trafficking and distribution [26,27], phar-
macokinetics [28], as well as immunogenicity; where
glycomodifications may lead to unmasking of antigenic
epitopes in the glyconcjugate backbone (e.g. antigenic
peptide sequences) or reveal/create glyco-antigenic de-
terminants (through aberrant exposure of certain termi-
nal sugar residues e.g. N -acetylglucosamine, or via
aberrant changes to the core structure e.g. unusual
chain elongation/branching) [29,30].

Other functions ascribed to glycans include their role
as ligands for specific receptors in areas such as signal-
ing [31], immuno-modulation [32,33], cell communi-
cation and adhesion [34–36], including those involved
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in tumor progression and metastasis [11], and as points
of attachment for pathogens [8,37–40].

The latter may be of particular relevance as it adds
credence to the emerging, sometimes controversial,
linkage between blood group antigen expression and
disease [41–46], in which certain ABO antigens are
implicated because of their role as microbial glycan re-
ceptors, as tumor antigens and as ligands for important
immunologic reactions [5,47,48].

Glycans are also important components of cytosolic
and nuclear proteins. An important example of this
is the dynamic modification of these proteins with O-
linked β-N -acetylglucosamine (O-GlcNAc). The co-
valent attachment of this O-GlcNAc (to serine or thre-
onine residues) has been shown to be a regulatory post-
translational modification that is responsive to various
stimuli. Its main function is that of a regulatory switch
in the metabolic control of signal transduction, tran-
scription, stress response, apoptosis, as well as T- and
B-lymphocytes activation [17,49]. O-GlcNAc glyco-
sylation is also critical in both neuronal function and
dysfunction (neuronal signaling and synaptic plastici-
ty) and may have a crucial impact on the nervous sys-
tem and consequently various neurodegenerative dis-
eases [50].

An appreciation of the importance of glycans and
their multidimensional roles in various physiological
and pathological circumstances would be incomplete
without some degree of insight into their biosynthesis
and the factors that determine their structural complex-
ity and diversity, as discussed below.

3. Determinants of cellular physiology/pathology

A unique feature of glycosylation is the fact that de-
spite its complexity and precise nature the biosynthe-
sis of glycans can not be directly predicted from the
DNA template [Fig. 1], but is instead governed by an
elaborate mechanism that utilizes a multitude of glyco-
enzymes [21]. These enzymes, which display exquisite
biological specificity, are expressed in a cell/tissue-
specific, and temporally regulated manner. Their ex-
pression is controlled by multiple tissue-specific pro-
moters that may be activated/suppressed under differ-
ent physiological circumstances (e.g. expressed at dis-
crete points in lymphocyte development and peripher-
al activation) [35]. Examples of this include the way
in which pro-inflammatory or anti-inflammatory cy-
tokines alter the expression of specific glycosyltrans-
ferases; that in turn regulate the conversion of activated

T cells into memory cells, or the differentiation of Th
cells into Th1 and Th2 subsets and thereby influence
disease outcome [18,51].

It is therefore not surprising that the glyco-profile
of a given cell/tissue (including serum) can alter in
response to a whole host of physiological [40,52,53]
or pathological situations e.g. angiogenesis, immune
challenge, inflammation or oncogenic transformation
and metastasis [3,8,11,54].

An understanding of this code as it relates to disease
states, at both molecular and functional levels can help
unravel disease mechanisms and thus pathology.

4. Glycosylation and disease

In accord with the above observations, aberrant
changes in cellular processes, such as those that ac-
company disease, are therefore likely to result in alter-
ations of the glycan profiles of the cell surface and/or
secreted glycoconjugates, in particular glycoproteins.
And so, not surprisingly, most major diseases, when
probed, are found to be directly/indirectly associated
with a change in the glycosylation pattern of at least
one central structure.

This has led to the novel concept of glyco-biomarkers
and “Sugar profiling”, which was first introduced by
our group in relation to the study of IgG glycosylation
changes in rheumatoid arthritis (RA) [55–58] and other
rheumatological diseases such as systemic lupus ery-
thematosus (SLE), but can now be extended to study
diseases as diverse as asthma, acute respiratory dis-
tress syndrome, cystic fibrosis [40,59], neuropatholo-
gy (including Creutzfeldt-Jakob disease) [60,61], mus-
cular dystrophy [62], cardiovascular disorders such as
atherosclerosis [63], endocrinology and diabetes [64],
inflammatory bowel disease [65], IgA nephropathy
(IgAN) [66,67], nephrolithiasis [68], and last but not
least, almost all forms of malignancy [69–71].

The glycosylation changes in relation to these and
many other diseases, not covered here, range from the
subtle to the palpable and can be acquired/inherited.

4.1. Inherited glycosylation diseases; rare or under
diagnosed?

Given the critical role of glycosylation, all the inher-
ited glycosylation diseases detected so far are autoso-
mal recessive disorders that are due to polymorphisms
and minor mutations and never the result of gross mu-
tations (which are unlikely to occur as they would be
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Fig. 1. The biosynthesis of glycans can not be directly predicted from the DNA template, but is instead governed by a complex glyco-enzyme
directed mechanism.

fatal at the early stages of fertilization/embryogenesis).
Those that occur are relatively rare, and give rise to ei-
ther severe phenotypic consequences (sometimes with
neonatal death) or very minor ones; which are likely to
be asymptomatic. The underdiagnosis of this group of
diseases is further compounded by ascertainment bias,
due to pleiotropic or unpredictable phenotypes.

The plethora of different mutations detected results
in a diverse group of diseases including leukocyte ad-
hesion deficiency syndrome II, congenital dyserythro-
poietic anemia type II (also known as HEMPAS), and
an emerging varied group of disorders (> 20 separate
genes and more than 100 allelic variants since the first
report in 1980, the majority of which were identified
in the past few years) collectively known as congenital
disorders of glycosylation (CDGs) [72].

By far the most frequent of these is CDG-
Ia. This group of diseases (> 60 mutations in
phosphomannomutase-2) have a variable clinical spec-
trum, ranging from disorders restricted to specific or-
gans to severe multisystemic disorders, including cen-
tral nervous system phenotypes [72], suggesting that
the brain is particularly susceptible to perturbations in
glycosylation.

As these glycosylation disorders are likely to target
and affect a large set of proteins/lipids, it is not hard to
see how glycosylation enzymes might act as modifiers
of other gene defects and thus modulate the severity
and nature of diseases such as various neuropsychi-
atric conditions including Alzheimers and Schizophre-
nia [61].

The diseases discovered so far, however, may repre-
sent only the “tip of the iceberg” [72,73], as it is es-
timated that defects in any of the well over 50–100,
critical glycosylation genes will cause diseases such as
those described above, and many of these can only be
detectable by sugar profiling [74].

4.2. Acquired glycosylation diseases

Aberrant, non-inherited, glycomodifications are ex-
tensive and invariably found to be associated with, or
a pre-requisite for, a wide-ranging myriad of disease
phenotype [2–4,6].

The most obvious of these are changes that accom-
pany angiogenesis or disease associated immune pro-
cesses such as cellular activation, recruitment and in-
flammation; all of which encompass sugar changes of
one type/another e.g. glycomodification of various
activation/co-stimultory cell surface molecules on cy-
totoxic/helper T cells, as well as various ligands such
as sLex [40], which act as tissue specific zip codes reg-
ulating lymphocyte traffic to a given site/organ [3,75,
76].

However, in addition to these, there is also a cata-
logue of “disease specific glycosylation changes” that
play a key role in the actual disease mechanism, and
are thus of pathophysiological significance [3,33,58,
77,78].

These fall into two categories: In some instances, as
for example cancer, altered glycosylation is a universal
feature that reflects significant changes in certain spe-
cific glyco-enzymatic pathways and thus closely corre-
lates with critical aspects of the disease, whilst in others
the glycomodifications may be more subtle, acting as a
trigger that could instigate biological effects that may
initiate or, in certain circumstances, alter the course of
disease.

The impact of these glycosylation changes in rela-
tion to autoimmunity and in particular RA pathology
will be the main focus of this section, followed by a
brief overview of a few select examples of other au-
toimmune diseases/disease mechanisms where specific
glycosylation changes play a critical role.
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G2F, G2 (bis), G2F(bis) 

 

a1(3)G2, a1(3)G2F 

a1(3)G2(bis), a1(3)G2F(bis) 

 

a1(6)G2, a1(6)G2F 

a1(6)G2(bis), a1(6)G2F(bis) 

 

a2G2, a2G2F 

a2G2(bis), a2G2F(bis) 

 

 

G1 (alpha 1-6) 
 

G1F, G1(bis), G1F(bis) 

 

a1(6)G1, a1(6)G1F 

a1(6)G1(bis), a1(6)G1F(bis) 

 
 

IgG1, IgG4 & polyclonal 

IgG 
 

G1 (alpha 1-3) 
 

G1F, G1(bis), G1F(bis) 

 

a1(3)G1, a1(3)G1F 

a1(3)G1(bis), a1(3)G1F(bis) 

 

IgG2 and some IgG3 

 

G0 
 

G0F, G0(bis), G0F(bis)

Sialylated, outer arm fucosylated, biantennary N-glycan: alpha-Neu5Ac-(2g6)-beta-Gal-(1g4)-beta-GlcNAc-(1g2)-alpha-Man-(1g6)-[alpha-Neu5Ac-(2g6)-beta-

Gal-(1g4)-beta-GlcNAc-(1g2)-alpha-Man-(1g3)]-beta-Man-(1g4)-beta-GlcNAc-(1g4)-[alpha-Fuc-(1g6)]-beta-GlcNAc. 

Fig. 2. The 36 complex biantennary N-glycan variants associated with the single glycosylation site on the Fc moiety of IgG. Glycans are
designated as G2, G1 and G0 (according to the number of terminal galactose residues), followed by bis (bisecting N -acetylglucosamine and/F
(Fucose), and a1 and or a2 (according to the number of terminal sialic acid residues). Monosialylation and monogalactosylation may occur in
either α-6/alpha 1–3 configurations. Key for glycan structures: �; N -acetylglucosamine (GlcNAc), ©; mannose (Man), ♦; galactose (Gal),

�; N-acetylneuraminic acid (NeuNAc), ; fucose (Fuc), —; beta linkage, and; - - -; alpha-linkage.

5. Glyco-biomarkers and autoimmunity

Glycomodification may represent one way in which
immune tolerance can be bypassed. Some post-
translational modifications can create new self antigens
(Ags) or even mask Ags normally recognized by the
immune system [24,30,79–82]. The former is of par-
ticular relevance since even subtle changes may lead
to immune activation resulting from recognition of the
glyco-Ags by the naturally occurring anti-glycan auto
antibodies (AutoAbs); directed against a vast repertoire
of non-self glycan structures [83] existing on bacterial,
fungal and parasite cells.

As such the link between glycomodifications and
autoimmunity is complex and includes:

(i) Cross-reactivity: Unlike classical peptide epi-
topes, glyco epitopes (glycotopes) can share
significant structural homologies. As such

they can display extensive cross-reactivity and
thus behave as “panepitopes”, which may, in
some contexts, be implicated in autoimmu-
nity. A classic example of this is the pos-
sible recognition of abnormally exposed N -
Acetylglucosamine (GlcNAc) in our system (re-
sulting from aberrant hypogalactosylation; as
seen in RA IgG) by pathogen associated molec-
ular pattern receptors of innate immunity such
as mannose binding lectin (MBL), which may
result in immune dysregulation [9].

(ii) Neo-expression: Expression of glycans normal-
ly restricted to other tissues or molecules [84]
or incorporation of immunogenic non-human
dietary glycans e.g. N -Glycolyneuraminic
acid [85], which could generate xenoreactive,
and potentially autoreactive Ab responses and
cause long-term inflammatory reactions.
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(iii) Inappropriate processing and presentation: In
some instances glycan changes can lead to
altered processing and presentation of self-
antigens to T cells via major histocompatibili-
ty complex (MHC). An interesting example of
this is the role of collagen derived remnant gly-
cotopes in autoimmune arthritis [24].

(iv) Conformational changes/unmasking of possi-
ble antigenic epitopes: Glycomodifications can
result in the exposure of possible antigenic
peptide sequences that would have otherwise
been masked by the sugar moiety, or give rise
to localized conformational changes in both
the glycan moiety and the polypeptide, which
could render the molecule antigenic; as in
immunoglobulin A (IgA)/immunoglobulin G
(IgG) in IgA nephropathy and RA respective-
ly [2,3,58,66,86].

The latter has been the focus of extensive studies as
will be discussed below.

5.1. IgG glyco-biomarkers and rheumatoid arthritis

The N -linked glycans at the single, highly con-
served, glycosylation site in the constant domain of IgG
Fc region (which can be present in any one of 30 varia-
tions depending on the presence/absence of absence of
galactose, sialic acid, bisecting N -acetylglucosamine
[bis-GlcNAc] and fucose; Fig. 2) are critical features,
which have far reaching structural and functional im-
pact. Affecting both the innate and adaptive arms of
the immune response [33,87,88].

During the past two decades particular emphasis has
been placed on the aberrant glycosylation of IgG and its
role in RA pathogenesis [3,57,58,89–94]. The research
in this field has been extensive and has drawn together
all aspects of aberrant IgG glycosylation, including the
structural anatomy of the IgG, the clinical implications
in both human disease and animal models, the glyco-
sylation enzymes and the genes that encode and regu-
late these enzymes, and the possible pathogenic mech-
anisms of glyco-modified IgG [3,21,24,57,58,86].

The enormous volume of data generated suggests
that RA may be a dysregulated glycosylation disease in
which IgG glycomodifications may play a pivotal role.
These glycomodifications have been shown to be far
more complex than previously thought, encompassing
not only galactosylation, but also fucosylation and sia-
lylation, as well as the additional microheterogeneity
of both symmetrical and asymmetrical pairing of the
Fc glycans [3,58,95].

The loss of galactose and the increased levels of
core fucosylation affect the interface between IgG-Fc
fragments and its interaction with other molecules and
consequently interfere with Fc receptor binding and
effector activities [88] causing defective/altered effec-
tor/regulatory mechanisms of the immune and thus in-
flammatory response [3,24,58].

5.1.1. IgG Glyco-biomarkers as useful diagnostic
tools for RA

The rheumatic diseases are heterogeneous (Fig. 3),
and overlapping disease syndromes may be found [57].
At present there is no single diagnostic test capable
of differentiating one disease from another. Increased
levels of IgG-G0 have proven to be useful biomarkers
of RA. Their presence in serum predates the onset of
RA by at least 10 years, and in early synovitis has been
found to be associated with the development of RA;
such that when combined with RF it has 90% sensi-
tivity, 95% specificity and 94% positive predictive val-
ue [3]. This has prompted the use of sugar printing for
the differentiation of rheumatic diseases [55–57]. Sug-
ar printing of serum IgG can differentiate early rheuma-
toid arthritis (ERA) and RA from each other and from
other rheumatic diseases and hence may constitute a
relatively rapid diagnostic test for patients presenting
with arthritis [57]. In the case of RA, it was found that
ERA/RA are distinguished from other diseases by their
IgG-G0 and -G0F (the most abundant G0 structure in
RA), but differ from each other by their monogalacto-
syl (G1) and sialylated sugar profiles. Undifferentiat-
ed arthritis, in contrast, had no specific distinguishing
features, as one would expect from what is probably a
heterogeneous group of pathologies. The strength of
the association with RA is confirmed by the fact that
G0 and G0F can be used to predict RA from the pool
of patients with a broad spectrum of disease. Although
the study was not designed for the purpose of evaluat-
ing the diagnostic utility of IgG-G0/-G0F per-se, over
75% of RA patients were correctly identified as having
the disease and the test was shown to have a sensitivity
of 50%, and a specificity of 84% [57].

Structural studies on IgG oligosaccharides have also
proved useful in unraveling some of the clinical over-
lap in patients with primary Sjogren’s syndrome (SS);
whereby the appearance of IgG-G0 in primary SS may
be related to future complication with RA [96].

Clinical studies in this field strongly support the pro-
posed relationship between IgG glycosylation, immune
complex formation, increased rheumatoid factor (RF)
avidity, as well as MBL binding and pathology in RA.
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Rheumatoid Arthritis 
 (RA) 

Ankylosing Spondylitis 
 (AS) 

Systemic Lupus 
Erythematosus 

 (SLE)  

Systemic Sclerosis
(SS) 

Psoriatic Arthritis  
(PsA) 

Fig. 3. The rheumatic diseases are heterogeneous, and overlapping disease syndromes may be found. Many patients diagnosed with autoimmune
rheumatic disease cannot be categorized easily into one of the established clinical entities such as SLE or systemic sclerosis. IgG glyco-biomarkers
may be useful in terms of clarifying diagnosis and prognosis, and facilitating disease management.

They demonstrate that increased IgG-G0 (circulating in
the serum and/or in immune complexes in the synovial
fluid), correlate with increased RF avidity, with higher
tender joint score, and a higher frequency and number
of subcutaneous nodules in RA patients [90,97–99].

5.1.2. IgG Glyco-biomarkers as useful prognostic
tools for RA

In addition, IgG-G0 has also proved to be a good
prognostic indicator of RA. High incidence of serum
IgG-G0 is related to disease activity and the progres-
sion to erosive articular changes, as determined in a
well-characterized cohort of 127 female RA patients
who were followed for a mean duration of 6 years.
IgG-G0 values correlated with the number of erosions,
disease activity and served as an indicator for disease
progression [3,57,58,98].

IgG-G0 not only correlates with severity and dura-
tion of disease [90], but has also been shown to re-
turn to normal levels following treatment e.g. with
anti-TNF [100]. The latter observation is in-line with
changes observed in pregnancy where the decrease in
IgG-G0 levels is associated with a remission in the dis-
ease, and where a rapid rebound increase in IgG-G0,
post partum, is associated with disease flares in RA
patients [91]. The latter is of particular importance as
it further supports the notion that IgG-G0 may be a
susceptibility factor in the development of RA.

In this respect IgG glyco-biomarkers may be very
useful in determining the clinical efficacy of im-

munotherapeutic agents such as the new biolog-
ics [100], which are revolutionizing the way that we
treat autoimmune diseases such as RA and SLE [3].

5.2. IgG glyco-biomarkers in other rheumatological
diseases

The appearance of IgG-G0 is also a general feature
of other unrelated chronic granulomatous diseases e.g.
Crohn’s disease (CD) and Mycobacterium tuberculo-
sis, as well as a restricted group of other rheumatolog-
ical diseases such as SLE, SS, psoriatic arthritis and
juvenile idiopathic arthritis (JIA) [56]. However, de-
tailed sugar profiling of these diseases has demonstrat-
ed differential patterns of Fc-glycomodifications; en-
compassing Gal, Fuc, Bis-GlcNAc and sialic acid; and
supports the notion that each disease may be associated
with a distinct pattern of IgG glycosylation [3,55–58].

Glycosylation-related pathology is not unique to
IgG, and can include other immunoglobulins (e.g. IgA)
and other immunologically pertinent molecules such as
the acute phase proteins, as well as mucins, as summa-
rized below.

5.3. IgA glyco-biomarkers in IgAN and
Henoch-Schönlein Purpura (HSP)

IgAN is defined by the deposition of IgA1 in the
glomerular mesangium, whilst HSP is a form of sys-
temic vasculitis characterized by tissue deposition of
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IgA. Nephritis with IgA1 deposition is a common fea-
ture of HSP and histologically indistinguishable from
IgAN. Analysis of serum IgA1 from patients with
the IgA nephropathy showed decreased galactosylation
(and hence sialylation) of the O-glycans in the hinge
region of IgA1 (IgA1 has 5 sets of closely located O-
glycans in this region). This hypogalactosylation cor-
responds to decreased B cell β1 3-galactosyltransferase
activity, which may be altered due to increased produc-
tion of Th2 cytokines [66,101].

Altered glycosylation of IgA1 results in a loss of con-
formational rigidity, which may explain the increased
formation of aggregates, and the glomerular accumu-
lation of IgA1 [66].

5.4. Glyco-biomarkers in Inflammatory Bowel
Disease (IBD)

IBD is a chronic intestinal disorder comprising two
major types: ulcerative colitis (UC) and CD; with con-
siderable overlap. The diagnosis and the differentiation
between UC and CD is therefore invariably dependent
on a combination of clinical, serological, endoscopic,
histopathologic and radiological characteristics; with
> 15% of patients being diagnosed with indeterminate
colitis. The degree of glycosylation of the mucins is
central to their role in IBD. It has been demonstrated
that the degree of sulphation and sialylation and the
length of the oligosaccharide chains can vary, and thus
affect the function of mucins as a protective barrier. The
changes are different in UC compared to CD. In UC, the
sialic acids of the colonic mucosa, which are normal-
ly heavily O-acetylated, lose this modification [102].
This may have pathogenic significance as these mod-
ifications do render the sialic acids more resistant to
bacterial sialidases.

5.5. Anti-glycan Auto-antibodies (AutoAbs) as
biomarkers of disease

As already pointed out glycan structures share sig-
nificant structural homologies and can act as cross reac-
tive panepitopes. These may in certain circumstances
be highly antigenic and instigate the activation and
increased production of naturally occurring autoAbs,
which may result in inflammation and autoimmunity.

5.5.1. Auto-abs against IgG-G0 as biomarkers in RA
and JIA

The increased IgG-G0 in RA has been shown to be
associated with presence of increased levels of anti IgG-
G0 auto-Abs. Studies examining the diagnostic value
of anti IgG-G0 auto-Abs, in 266 Japanese patients with
systemic autoimmune diseases, including 60 with RA,
suggests that anti IgG-G0 Abs may be a more specific
marker for RA than conventional IgM RF [97], which
is the current biomarker of choice for the diagnosis of
RA.

These anti IgG-G0 autoAbs, show a significant cor-
relation with C reactive protein levels and have a higher
sensitivity in detecting immunological disorders in JIA
and juvenile onset Sjogren’s syndrome when compared
with RF [97,103].

5.5.2. Auto-abs against neuronal glycans in certain
neuropathies

A number of neuropathies are associated with cir-
culating auto-Abs directed against certain glycan epi-
topes that are highly expressed in the nervous sys-
tem (e.g. the sugar chains of gangliosides), resulting
in autoimmune nerve damage [78]. Anti-ganglioside
IgM Abs can cause leakage of the blood-nerve bar-
rier in a concentration-dependent and complement-
independent manner, and can also bind to neuronal gan-
gliosides (to create a neuromuscular block) and serve
as a marker of axonal damage in neuropathies such as
multiple sclerosis [104].

The majority of these auto-Abs originate either from
our naturally occurring pool of anti-glycan Abs (B cell
clones; usually germ-line encoded), or are the result of
exposure to bacterial antigens. Examples include:

i) Monoclonal IgM or IgA Abs; highly specific
for either ganglio-series gangliosides, or sulfat-
ed glucuronosyl glycans (the so-called HNK-1
epitope), secreted by benign or malignant B-cell
neoplasms [105]. The presence of these Abs is
associated with the onset of symptoms of a de-
myelinating neuropathy involving the peripher-
al and central nervous systems: the Guillain-
Barre and Miller-Fisher syndromes, respective-
ly.

ii) Cross reactive AutoAbs; directed against gan-
gliosides structures such as GM1 and GQ1b,
which occur following infection with bacteria
such as Campylobacter jejuni, which mimic
ganglioside structures [106].
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5.5.3. Auto-Abs against Tn antigen in
Tn-Polyagglutinin Syndrome

Anti-Tn Abs are yet another example of naturally oc-
curring anti-glycan Abs present in our sera. Tn polyag-
glutinability syndrome is an acquired condition where
the blood cells made by the bone marrow express the Tn
antigen; O-linked N-acetylgalactosamine (GalNAcα1-
O-Ser/Thr) and the sialylated-Tn (SA α2,6 GalNAcα1-
O-Ser/Thr), thus becoming susceptible to hemaggluti-
nation by the naturally occurring anti-Tn Abs [107].
This change appears to be due to acquired stem-cell-
based loss of expression of the O-glycan Core 1 β1–3
galactosyltransferase activity, which occurs despite the
fact that there may be as many as at least five distinct
gene loci encoding additional copies of this enzyme.
Patients with this syndrome show a wide range of symp-
toms. Some have varying degrees of hemolytic anemia
and/or decreases in other blood cell types, whilst others
have no detectable symptoms and are only picked up
through blood typing. Although the mechanisms are
unclear, the presence of this syndrome is, in some pa-
tients, associated with an increased risk of developing
subsequent leukemia.

5.6. Future developments

Recent developments in the use of glycan arrays for
systematic screening of blood samples has lead to the
discovery of a panel of anti-glycan antibodies which
may prove useful as biomarkers enabling better diag-
nosis and prognosis of diseases such as Crohn’s disease
and multiple sclerosis (MS).

5.6.1. Anti-Glycan Abs as biomarkers for CD
One of the major serological markers for CD is

anti-Sacharomyces cerevisiae Abs, which is directed
against oligomannosidic residues on the polysaccha-
ride mannan in the cell walls of the yeast S. cerevisi-
ae. Recent systematic screening for anti-glycan an-
tibodies in CD using glycan array have lead to the
discovery of novel anti-glycan abs [83]. These in-
clude anti-laminaribioside (Glc(β1,3)Glc(β)) and anti-
mannobioside (Man(α1,3)Man(α)) glycan IgG Abs, as
well as anti-chitobioside (GlcNAc(β 1,4)GlcNAc(β))
glycan IgA Abs; with the latter demonstrating the
highest discriminative capability between CD and UC.
Combination of these anti-glycan biomarkers have been
shown to be useful prognostic tool; predicting severe
and complicated CD (presence of strictures or fistulas)
and the need for surgical intervention.

5.6.2. Anti-Glycan Abs as biomarkers for diagnosis of
MS

MS is an inflammatory demyelinating disease of
the central nervous system. The disease is autoim-
mune in nature and is driven by a primary T-cell-
driven aberrant immune response, as well as an anti-
gen driven B-cell responses. The panel of antibod-
ies include a notable number of anti glycan antibodies,
anti-galactocerebroside IgG and anti-Glc(α1,4)Glc(α)
IgM auto-Abs. The levels of the latter were found to
be significantly elevated in MS patients in comparison
to other neurological diseases (with a 57% sensitivity
and 85% specificity) [83]. These anti-glyco auto-Abs
maybe particularly useful for the early diagnosis and
prognosis of the relapsing – remitting form of MS.

6. Conclusion

There is a pressing need to develop new biomarkers
that will serve as more sensitive diagnostic and prog-
nostic tools which could be used to discriminate be-
tween different forms/stages of disease and to monitor
the efficacy of various new treatment options. Glyco-
biomarkers have the potential to fulfill this need by
providing better link between specific mRNAs, their
corresponding polypeptides, glycoforms and cell func-
tion, and may thus provide a better insight into cellular
and molecular interactions and therefore disease mech-
anisms; promising a new era in the interpretation of
data relevant to immunotherapy and the design of new
oligosaccharide-based diagnostics and therapeutics.

Abbreviations

ABO antigens: ABO histo-blood group antigens
AutoAbs: Auto antibodies
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