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Anomalous transport of magnetic colloids in a
liquid crystal–magnetic colloid mixture

Gaurav P. Shrivastav * and Sabine H. L. Klapp*

We report an extensive molecular dynamics study on the translational dynamics of a hybrid system

composed of dipolar soft spheres (DSS), representing ferromagnetic particles, suspended in a liquid

crystal (LC) matrix. We observe that the LC matrix strongly modifies the dynamics of the DSS. In the

isotropic regime, the DSS show a crossover from subdiffusive to normal diffusive behavior at long times,

with an increase of the subdiffusive regime as the dipolar coupling strength is increased. In the nematic

regime, the LC matrix, due to the collective reorientation of LC particles, imposes a cylindrical

confinement on the DSS chains. This leads to a diffusive dynamics of DSS along the nematic director

and a subdiffusive dynamics (with an exponent of B0.5) in the perpendicular direction. The confinement

provided by the LC matrix is also reflected by the oscillatory behavior of the components of the velocity

autocorrelation function of the DSS in the nematic phase.

1 Introduction

Inclusions of nano-to-micro sized particles inside a liquid crystal
(LC) matrix have offered a new paradigm for hybrid material
design and applications of LCs beyond display materials.1–3 This
is one of the most propitious advances in materials science as the
self-organizing tendency of LCs provides numerous possibilities
of synthesizing fascinating bulk structured materials.4 In this
context, suspensions of magnetic particles inside a LC matrix
have attracted particular attention in the past few decades. These
systems, first introduced theoretically in a celebrated work by
Brochard and de Gennes,5 show a rich variety of self-assembled
structures and have a wide range of biomedical and technical
applications.6–8 The first experimental realization of such suspen-
sions was achieved by doping magnetic particles in a thermo-
tropic LC host.9 A further early experimental study was performed
by Lébert and Martinet who doped lyotropic LCs with a water-
based ferrofluid and observed that the magnetic field required to
align LCs is reduced by a factor of thousand.10

Moreover, these materials provide striking magneto-optical
properties due to the combination of the anisotropic optical
properties of LCs and the large magnetic susceptibility of the
magnetic particles. Many experiments have investigated the
effects of an external magnetic field on the host LC matrix.11–20

In particular, in a recent combined experimental and numerical
study, it has been shown that the presence of magnetic particles,
combined with an external magnetic field, can induce a nematic
phase in an isotropic LC phase.21

From a theoretical point of view, a standard model for
spherical ferromagnetic particles is the so-called dipolar soft
spheres (DSS), that is, spheres interacting via a steep isotropic
repulsion and anisotropic forces stemming from embedded
point dipoles. The equilibrium structure of DSS in a LC matrix
composed of Gay–Berne ellipsoids is well studied theoretically22–24

and via computer simulations for different sizes of the two
species.25–27 In particular, Monte Carlo (MC) simulations reveal
that in the absence of an external magnetic field the DSS form
chains along the director of the nematic LC matrix. Furthermore,
as the diameter of DSS is increased, the uniaxial spontaneous
ordering changes to a biaxial lamellar phase.26

In order to control and improve the flow properties of such
hybrid systems,28 it is important to develop a better under-
standing of the equilibrium dynamics of different species, in
particular, the translational mobility. In recent molecular dynamics
(MD) simulations,27 it has been observed that the DSS show normal
diffusion if their sizes are much smaller than the suspending LC
fluid. Nonetheless, the dynamics may become more complex when
the two components have comparable sizes. In fact, the smaller
size of the DSS leads to stark differences in the equilibrium self-
assembly and also in the translational dynamics of the DSS.27

The equilibrium self-assembly of a mixture with much smaller
DSS particles is characterized by a significant fraction of rings of
DSS appearing together with the chains. Here, we consider a
situation where the size of the DSS is comparable to the width of
the LCs. Then, the available free volume around the DSS is
smaller and, therefore, the ring formation is less feasible.

Our main focus is on the dynamics of the DSS, and we note
that, in the absence of a LC matrix, dilute dipolar fluids display a
subdiffusive behavior at intermediate times due to the formation
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of chains with head-to-tail ordering of the dipole moments.29

This subdiffusive regime increases as the strength of dipolar
coupling is increased. Also, at a dipolar coupling strength at
which dipolar particles start to form chains, the translational
diffusion coefficient shows a sudden decrease.30 Thus, the
chain-forming tendency of dipolar particles plays an important
role in their dynamics. We would therefore expect that the
situation gets even more complex in a hybrid system of DSS in
a LC host. Here, the LC matrix provides a dense anisotropic
environment which, as we will show, renders the dynamics of
magnetic particles anomalous. This finding is indeed consistent
with the behavior of a wide range of complex systems where a
dense environment or a complex geometry leads to a subdiffusive
motion of particles.31–34

In this work, we present a MD simulation study on the
translational dynamics of a mixture of LC and DSS, where the sizes
of both the species are comparable. We observe that the dynamics
of DSS is indeed highly influenced by the LC matrix. At low
densities at which the LC matrix is in an isotropic phase, the
mean square displacement (MSD) of DSS shows a subdiffusive
regime at intermediate times. The length of the subdiffusive
regime grows as the strength of dipolar coupling is increased.
Eventually it spans the entire simulation time window at high
values of the dipolar coupling. The effect of the LC matrix on the
dynamics of the DSS is particularly visible at high densities,
where the LC matrix undergoes an I–N transition and enforces,
in turn, an aligned state of the DSS.26 The DSS then show
diffusive behavior parallel to the nematic director but remain
subdiffusive in the perpendicular direction.

The rest of the paper is organized as follows. In Section 2 we
give the details of the model and simulation method. We present
our results in Section 3. The equilibrium phase diagram of the
mixture is discussed in Section 3.1. Using MSD (Section 3.2) and
velocity autocorrelation functions (VACF) (Section 3.3), we demon-
strate that the DSS show anomalous translational diffusion at low
temperatures while the LC matrix shows a normal diffusive behavior
at all densities and temperatures. Finally, in Section 4, we conclude
the paper with a summary.

2 Simulation details

We consider a binary mixture of LC and DSS with a composition
ratio of 80 : 20 and perform MD simulations in the NVT ensemble
using the LAMMPS package.35,36 The LCs are modeled by
ellipsoids which are characterized via a (diagonal) shape matrix
S = diag(sa,sb,sc) and a (diagonal) energy matrix E = diag(ea,eb,ec),
where sa,b,c are the lengths and ea,b,c are the relative well depths
of interaction along the three semiaxes of an ellipsoid. We note
that the model investigated here slightly differs from that
considered in Peroukidis et al.27 as the mixing parameters are
different.

The LCs interact via a generalized Gay–Berne (GB) potential
which is defined as36–38 (following the notations of Brown
et al.36)

U(Ai,Aj,rij) = Ur(Ai,Aj,rij)Zij(Ai,Aj)wij(Ai,Aj,r̂ij). (1)

Here Ai is the rotation matrix for a particle i, used for the
transformation from the lab frame to the body frame of reference.
Furthermore, rij is the center-to-center distance vector between
particles i and j, and r̂ij is the unit vector along rij.

The function Ur(Ai,Aj,rij), which controls the distance dependence
of the GB potential, is defined as

Ur Ai;Aj ; rij
� �

¼ 4e0
s0

hij þ gs0

� �12

� s0
hij þ gs0

� �6
" #

; (2)

where e0 and s0 set the units of energy and length, g is the shift

parameter and hij ¼ rij �
1

2
r̂TijGij r̂ij

� ��1=2
is the distance of the

closest approach between particles i, j with Gij = AT
i Si

2Ai +
AT

i Sj
2Aj. The second and third terms in eqn (1) are given by

Zij Ai;Aj

� �
¼ 2sisj

det Gij Ai;Aj

� �� 	
" #n=2

; (3)

wij(Ai,Aj,r̂ij) = [2r̂T
ijBij
�1(Ai, Aj)r̂ij]

m0. (4)

In eqn (3), si,j = [sai,j
sbi,j

+ sci,j
sci,j

][sai,j
sbi,j

]1/2 and Bij = AT
i Ei

2Ai +
AT

j Ej
2Aj with Si, j and Ei, j representing the shape and energy

matrices for particles i and j.
We consider uniaxial LCs with an aspect ratio of 3, i.e., se

a =
se

b = s0 and se
c = 3s0. The relative energy well depth for side-to-

side interaction is ee
a = ee

b = e0 and for end-to-end interaction is
ee

c = 0.2e0. For ellipsoids, these values of the energy parameters
yield the energy of the side-to-side configuration five times
stronger than that of the end-to-end configuration. The cut-off
radius is set to rGB

c = 4.0s0 and the empirical parameters of GB
potential are set to m0 = 1.0, n = 2.0 and g = 1.0. The parameter m0

is the same as m used for GB in Brown et al.36 Here, we have
changed the notation, as in our case, m is reserved for the dipole
moment of the DSS.

The interaction among the LC and DSS is also modeled by a
GB potential with shape and energy parameters for DSS taken
as ss

a = sb
s = sc

s = s0 and es
a = eb

s = ec
s = e0. The cutoff radius is

taken the same as rGB
c .

The DSS interact via a combination of a soft sphere potential
and dipolar interactions.39,40 The full potential for two DSS
particles i and j with dipole moments li and lj is defined as40

UðijÞ ¼ USR rij
� �
þ

li � lj

rij3
� 3

li � rij
� �

lj � rij

 �
rij5

; (5)

where USR(rij) is the shifted-force soft sphere interaction
given as

USR rij
� �

¼ USS rij
� �
�USS rSSc

� �
� rSSc � rij
� �dUSS

dr

����
r¼rSSc

: (6)

In eqn (6), the cutoff radius for soft sphere potential is set to
r SS

c = 2.5s0, and

USS(rij) = 4e0(s0/rij)
12. (7)

The long range dipolar interactions are treated with the three
dimensional Ewald sum.41,42
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The parameters that characterize the structure and phase
behavior of the mixture are the reduced temperature T* = kBT/e0,
the reduced number density r* = Ns0

3/V (where N and V are the
total number of particles and the total volume respectively), and
the reduced dipole moment m* = m2/e0s

3. Newton’s equations of
motion for force and torque are integrated in the NVT ensemble
using the velocity Verlet algorithm. A reduced MD time step

Dt� ¼ Dt
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ms02=e0
p

¼ 0:002 is chosen and simulations are

performed at fixed m* = 3.0, various r* and T*. The value of
T* ranges from 2.0 to 0.6, i.e., the range of dipolar coupling
parameter l = m2/kBTs0

3 is 4.5 to 15.0. We have set m* = 3.0,
therefore, a change in T* is equivalent to a change in l. We will
use l for DSS and the corresponding T* for LCs while discussing
our results.

Our simulated system consists of 3200 LC (Ne) and 800 DSS
particles (Ns). We start with a mixture equilibrated at low
density and high temperature and then quench it to desired T*.
Subsequently, we slowly compress the mixture keeping T* constant
by applying the Langevin thermostat.43 At each compression step,
the mixture is equilibrated for 4 � 106 time steps. For MSD
calculations at different r*, we performed additional production
runs in the NVT ensemble for 107 time steps after equilibration.
We took 100 time origins for averaging.

The self-diffusion constant D is obtained from the long-time
behavior of MSD. For VACF calculations, short production runs
up to 25 000 time steps are performed using temperature
rescaling at a frequency of 1000 time steps. It should be noted
that performing long production runs in the NVE ensemble is
quite difficult for the mixture. Also, the Langevin thermostat
affects the equilibrium fluctuations by applying random forces
on the particles. Therefore, we use temperature rescaling during
the VACF production runs in order to maintain the temperature.
The timescale for temperature rescaling is chosen such that the
VACF decays almost to zero in that time.

3 Results

In this section we first present our numerical results for the
equilibrium phase diagram of the LC–DSS mixture at the selected
dipole moment m* = 3.0. Second, we discuss the translational
dynamics of the two components. In particular, we investigate
the respective MSDs and normalized VACF.

3.1 Equilibrium phase diagram

First, we identify the I–N transition by calculating the nematic
order parameter S for the LC–DSS mixture. This order para-
meter is defined as the largest eigenvalue of the ordering
tensor Q. The components of the Q-tensor are given by

Qab ¼ 1=Nð Þ
PN
i¼1
ð1=2Þ 3û

i
aû

i
b � dab


 �
. Here, a, b = x,y,z and ûi is,

for LC, the orientation vector and for DSS, the unit dipole vector
l̂i. The nematic order parameters Se and Ss for individual
components, LC and DSS, are calculated separately using the
respective Q tensor. The eigenvectors corresponding to Se and
Ss define the directors n̂e and n̂s for LC and DSS respectively.

In Fig. 1, we plot Se for the LC matrix (shown by the color
axis) as a function of r* and T*. At low r* and high T*, the LC
matrix remains in an isotropic phase while it undergoes an I–N
transition at high r* and low T* values. The DSS chains follow
the LC matrix and undergo an I–N transition at the same values
of r* and T* (not shown here but visible in the snapshots in
Fig. 2). The dashed lines in the plot represent the contours of
different Se values. We consider the line corresponding to Se = 0.4 as
an approximate I–N transition line obtained via MD simulations.
We note here that, although the I–N phase transition is well
understood for pure LCs and also for mixtures of LCs and DSS, it
is difficult to obtain the precise location of the transition line via MD
simulations. This is due to the possible inadequacy of the MD
simulations to access the available phase space. One should, indeed,
use sophisticated multicanonical Monte Carlo schemes such as
histogram reweighting and successive umbrella sampling in
order to sample the phase space uniformly.

For the illustration of the actual structure, the snapshots of
the mixture corresponding to two state points (marked in red
squares) are plotted in Fig. 2. At r* = 0.36 and T* = 1.4, the mixture
is in an isotropic phase. As shown in Fig. 2(a), the LCs and the DSS
chains (shown in Fig. 2(c)) are randomly oriented. Furthermore,
Fig. 2(b) and (d) show that at r* = 0.36 and T* = 0.8, the LC matrix
and DSS chains are both in a nematic phase. Also, the two nematic
directors n̂e and n̂s are aligned almost parallel to each other which
is consistent with the previous MC simulations.25,26

3.2 Mean-square displacements

We, next, analyze the translational dynamics of the two components
of the mixture using MSD which is defined as

Dr2ðtÞ
� �

¼ 1

Ne;s

XNe;s

i¼1
ri tþ t0ð Þ � ri t0ð Þj j2

D E
; (8)

Fig. 1 The r*–T* phase diagram of the LC matrix. The color axis shows
the nematic order parameter Se, and dashed lines mark the contours of
different Se values. The dashed line corresponding to Se = 0.4 is considered
as the I–N phase transition line obtained via MD simulations. Red squares
represent state points (0.36, 1.4) and (0.36, 0.8) in the isotropic and
nematic phases, respectively. Snapshots corresponding to these two state
points are shown in Fig. 2.
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where ri(t) is the position of the particle at time t, t0 is the time origin
for MSD calculations, and angular bracket corresponds to the
averaging over the total number of particles of a species, time
origins and number of samples. To extract the longtime behavior
of MSD, we calculate the instantaneous slopes, f(t), of the MSD
curves which is defined as

f(t) = d{ln(hDr2(t)i)}/d{ln(t)}. (9)

The slope of MSD curves at long times is given by

a ¼ lim
t!1

fðtÞ: (10)

Diffusive behavior in the MSD is characterized by a = 1 while
subdiffusive and superdiffusive behaviors in the MSD correspond
to a o 1 and a 4 1 respectively.

In the nematic phase, the displacements of particles are
resolved in the components parallel, Dr||, and perpendicular,
Dr>, to the LC/DSS nematic director n̂e,s at t0 and the corres-
ponding MSDs (hDr||

2i and hDr>
2i) are calculated.45,46 For LCs

we can extract diffusion coefficients using the Stokes–Einstein
relation, which in three dimensions reads D ¼ 1=6tð Þ lim

t!1
Dr2ðtÞ
� �

.

The diffusion constants in the directions parallel and perpendi-
cular to the nematic director are defined as

Djj;? ¼ 1=2tð Þ lim
t!1

Drjj;?
2ðtÞ

� �
: (11)

3.2.1 Diffusional behavior of the dipolar particles. The
MSDs of the DSS in the isotropic phase are plotted in Fig. 3
for r* = 0.3 and various values of l. For all l o 11.25, the MSDs
show three different regimes, ballistic at short times, subdiffusive

at intermediate times and diffusive at long times. At low l, the
subdiffusive regime is rather short, however, as l is increased the
subdiffusive regime grows, and for l 4 9.0 at r* = 0.3, it spans
the entire simulation time window. The crossover from diffusion
to subdiffusion at long times with increasing l is more evident in
the inset of Fig. 3. Here f(t*) is plotted for different MSD curves
(shown in Fig. 3) as a function of t* at r* = 0.3. Clearly, at low l,
f(t*) saturates to 1 while it saturates to 0.6 at higher l at long
times. A region with a slope less than 1 exists at all l4 4.5 which
grows with increasing l and eventually extends over the entire
simulation time window.

In order to understand the longtime behavior of the MSD of
the DSS at different r* and l, we have obtained a state diagram
of a as a function of r* and l, see Fig. 4. Here, the color axis
represents a and a black solid line shows the I–N transition,
which appears at high r* and l. For l o 7.0, a remains close
to 1.0 for all considered r*, reflecting normal diffusive behavior
of MSDs. As l is increased, the longtime behavior becomes
subdiffusive at high densities and for l4 11.0, the dynamics of
DSS appears to be subdiffusive even at lower densities.

For a better understanding of the crossover of the longtime
behavior of MSDs, we explore a along the two black dashed
lines shown in Fig. 4. The vertical dashed line represents fixed
r* (= 0.3) and different l, while the horizontal dashed line
corresponds to fixed l (= 11.25) and different r*s.

The variation of a as a function of l at a fixed r* = 0.3 (along
the vertical dashed line in Fig. 4) is shown in Fig. 5(a). Clearly, a
shows a crossover from 1.0 to 0.6 as l is increased. A similar
crossover (Fig. 5(b)) is observed when r* is varied at fixed
l = 11.25. However, Fig. 4 suggests that l has to be large
(47.0) in order to see a crossover as a function of r*.

Fig. 2 Snapshots of the LC–DSS mixture at the state points marked by the
red squares in Fig. 1. (a) Snapshot of the LC–DSS mixture at r* = 0.36 and
T* = 1.4, (b) snapshot of the LC–DSS mixture at r* = 0.36 and T* = 0.8.
(c) and (d) The DSS chains in the absence of the LC matrix for the state
points considered in (a) and (b), respectively. All the snapshots are prepared
using software OVITO.44

Fig. 3 MSD of DSS in the isotropic regime for r* = 0.3 at l = 4.5, 6.43,
11.25, and 15.0. At low l, the MSD has a slope of 1.0 at large t (shown by a
black dashed line). At large l, subdiffusive behavior is observed with an
exponent of 0.6. The inset shows the instantaneous slope f of MSDs,
which saturates to 1.0 for low l while to 0.6 for large l at long times.
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In the case of pure DSS, at r* = 0.05 and l = 7.0 and in the
absence of an external magnetic field, a sublinear regime in the
MSDs is observed at intermediate times which later turns into a
diffusive behavior.29 Also, for pure DSS, the self-diffusion constant
decreases as l is increased. A sudden drop in the diffusion
constant at a critical l is observed which is due to the chain
formation of DSS.30 In both of these studies29,30 on the pure
dipolar fluids, the range of l is limited to 1–7.0 where the longtime
behavior is always diffusive. For the present LC–DSS mixture in the
isotropic phase, we observe a monotonic decrease of the self-
diffusion constant D* of the DSS as functions of both l and r*,
provided that the longtime behavior of the MSD of the DSS is
diffusive. This is illustrated in Fig. 6(a) and (b) respectively.

We also note that for pure dipolar soft core dumbbells,47 one
observes a crossover from longtime diffusive to subdiffusive
dynamics at very high dipolar couplings which can be attributed
to the network formation. In the present case (the LC–DSS
mixture), the subdiffusion at large l can also be attributed to
the chain forming tendency of DSS. As shown in Fig. 7(a), at low
l (i.e. at high T*), the DSS chains are very small. As l is increased

(Fig. 7(b) and (c)) the size of the DSS chains increases due to the
strong coupling among the DSS. For a long isotropically dis-
tributed DSS chain, its collective motion in a dense environment
(provided by the LC matrix) is difficult and, consequently, the
DSS show an anomalous transport.

In the nematic phase, we fix l = 11.25 (i.e. T* = 0.8) and
investigate the MSD for different r* in the direction parallel and
perpendicular to n̂s. The reason behind such a choice of l is that at
this value, the DSS remain subdiffusive during the entire simulation
time window and we expect the nematic ordering in the LC matrix to
alter the DSS dynamics parallel to n̂s. Fig. 8(a) shows hDr||

2i of DSS,
which has initial subdiffusive increase (reminiscent of the isotropic
phase) which crosses over to a normal diffusive behavior at long
times for all considered densities. The hDr>

2i for DSS, plotted in
Fig. 8(b), remains subdiffusive even at long times. The exponent of
subdiffusion is B0.5 which is slower than the observed exponent in
the isotropic regime for the total MSD at the same r* and l. The
inset in Fig. 8(b) shows the trapping of DSS chains in the transient
cylindrical cavities formed by the LC matrix in the nematic phase.
This leads to the slowing down of the translational dynamics of the
DSS in the direction perpendicular to the nematic director.

A possible mathematical model explaining the subdiffusion
of the DSS in the isotropic phase of the LC–DSS mixture would
be fractional Brownian motion.32,33 However, the situation
becomes complex in the nematic phase where an anisotropic
environment provided by the LC matrix imposes a normal
diffusion at long times in the direction parallel to the nematic
director, while in the perpendicular direction the DSS become
even slower. Taken together, for the present LC–DSS mixture, a
suitable mathematical model is still lacking.

3.2.2 Diffusional behavior of the LC matrix. In contrast to
the DSS, the LC matrix shows normal diffusive dynamics at all
densities in the isotropic phase. In Fig. 9(a), we plot the MSDs
of the LC matrix at fixed r* and for various T* (along the vertical
dashed line in Fig. 4). Furthermore, Fig. 9(b) shows the MSDs of
the LC matrix at fixed T* (= 0.8) and for different r* (along the
horizontal dashed line in Fig. 4). In both of these cases, the
longtime behavior of MSDs is normal diffusive for all r* and T*.
Also, the diffusion constant decreases monotonically in both
the cases, as can be seen in the insets of Fig. 9(a) and (b).

For the nematic phase, the hDr8
2i of the LC matrix is plotted

in Fig. 10(a). One observes a normal diffusion at long times for

Fig. 4 Contour map showing a (see eqn (10)), extracted from the long-
time MSD of DSS, as a function of l (corresponding T* can be obtained
using T* = 9.0/l) and r*. One observes a subdiffusive regime at large l in
the isotropic phase. The black solid line represents the I–N transition. The
vertical and horizontal dashed lines correspond to fixed r* (= 0.3) and fixed
l (= 11.25), respectively. The green squares, marked on the r = 0.3 (vertical)
line, show three state points l = 4.5, 6.43 and l = 11.25 at r* = 0.3.

Fig. 5 Longtime slopes, a, of MSDs of DSS, (a) data for r* = 0.3 as a
function of l and (b) data for l = 11.25 as a function of r*.

Fig. 6 Self-diffusion constants, D*, of the DSS, (a) data for r* = 0.3 as a
function of l and (b) data for l = 6.43 as a function of r*.
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all r* in the nematic regime. The inset in Fig. 10(a) shows the
self-diffusion constants D|| of the LC matrix parallel to n̂e,
which are extracted from the long time behavior of the hDr||

2i.
We find that D|| shows a non-monotonic behavior with increasing
r*, consistent with earlier studies of pure LCs.46,48 Initially, at the
onset of the I–N transition, LCs tend to align parallel to each other
as this is the entropically favored state.45,46 This results in the
enhanced diffusion of the LCs parallel to the nematic director.
However, at high densities (higher than the coexistence density)
when the nematic phase is established, the diffusion of LCs slows
down due to an increase of collisions with other LCs.

Fig. 10(b) shows the hDr>
2i for the LC matrix. The long time

behavior of hDr>
2i is also normal diffusive. The D>*, extracted

from hDr>
2i, plotted in the inset of Fig. 10(b), decreases

monotonically with increasing r* which is consistent with the
earlier observations.46,48

3.3 Velocity autocorrelation functions

To explore the local environment of particles, we study the
normalized VACF which is defined as Cv(t) = hv(t0)�v(t + t0)i/
hv(t0)�v(t0)i.43 The VACF resolved in the direction parallel and

perpendicular to n̂s, Cv8,>
(t), is defined similar to Cv(t), where

only the respective components of the velocity are considered.
The results for the VACF for the DSS in the isotropic regime

are plotted in Fig. 11(a) for l = 4.5, 6.43 and 11.25 at r* = 0.3
(along the vertical dashed line in Fig. 4). At low l, the VACF
decay smoothly without any oscillations. This indicates that the
particles move essentially as unbounded objects, that is, chains
are not yet formed. As l is increased oscillations in the VACF
are observed at short time scales which we attribute to chain
formation. The oscillatory behavior at short times appears due
to the rattling of DSS particles in the chain and indicates its
‘‘caging’’ due to strong dipolar coupling.

In the case of pure dipolar fluids in the isotropic phase at
comparable l,49 such an oscillatory behavior is not observed (cf.
the red curve in Fig. 11(a)). Also, for pure dipolar dumbbells,
the oscillatory behavior in VACF is observed only at a very large
l where dipolar particles form a percolating network.47 In our
case, we observe the oscillatory behavior at l B 6.43 where a
percolating network is not yet expected (see, e.g., Fig. 7(b),
where long but not system spanning chains are visible at l = 6.43).
We understand the difference between the present mixed system
and the pure system as follows: for pure dipolar fluids at l = 6.66 in
the isotropic phase,49 the dipolar chains are randomly distributed
and their collective motion is not hindered. Therefore, an
oscillatory behavior does not occur in the VACF of the DSS. In
the present system, the DSS chains experience a dense environ-
ment provided by the LC matrix, which is reflected in the form
of oscillations in the VACF of the DSS.

It should also be noted that in Fig. 11(a) at small l, where
DSS chains are much shorter (e.g., Fig. 7(a)), no negative lobe is
present in the VACF, which suggests that the short DSS chains
or single DSS particles do not feel the dense environment. As
the size of the chain grows upon an increase of l (for a fixed r*),
the role of the LC matrix becomes more evident in modi-
fying the dynamics. Fig. 11(b) shows the VACF of DSS at a fixed
T* = 0.8 and various r* (along the horizontal black dashed line
in Fig. 4). Here, the oscillatory behavior can be seen at all
considered r*.

Fig. 7 (a). Snapshots showing DSS chains in the absence of the LC matrix at (a) l = 4.5, (b) l = 6.43, (c) and l = 11.25 for r* = 0.3 (see the green square
points marked in the Fig. 4). At these values of l and r*, the mixture always remains in the isotropic phase, however, the length of the DSS chains
increases as l is increased.

Fig. 8 (a). The component of the MSD of the DSS parallel to n̂s at r* = 0.36,
0.37, 0.38 and l = 11.25. The black dashed lines show a slope of 1.0. (b) The
component of MSD perpendicular to n̂s for DSS at the same values of r* and
l as in (a). The inset shows a top view of the snapshot for r* = 0.37 and
l = 11.25. The MSD shows a subdiffusive behavior with an exponent of 0.5.
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In the nematic phase, Cv8(t) for the DSS chains, plotted in
Fig. 11(c) (shown by a red dashed line) decays faster than Cv>(t)
(represented by a green dot–dashed line). The oscillations after
the smooth initial decay are present in both the components.
This is contrary to earlier observations for pure DSS where
oscillations in Cv> are not found.49 The oscillations in the
parallel component arise due to the strong dipolar interactions
which force the particles to remain in the chain. In the present
case, the oscillations in the perpendicular component are
the result of the confinement of the DSS chains in a narrow
cylindrical channel formed by the LC matrix as shown in the

inset of Fig. 11(c). Such an oscillatory behavior is peculiar to the
dipolar fluids confined in a narrow space.50

We now turn to the VACF for the LC matrix. The results for
the isotropic phase along the two dashed lines shown in Fig. 4
are plotted in Fig. 12. Similar to the earlier observations,
Fig. 12(a) shows that the VACF do not show any negative lobe
for the whole range of T* considered in the isotropic phase at
r*= 0.3 (along the vertical black dashed line in Fig. 4). At lower
T*, a plateau appears which later converts into a minimum and
a maximum.46 A similar behavior is observed (Fig. 12(b)) at
fixed T* = 0.8 and various r* (along the horizontal black dashed
line in Fig. 4).

Fig. 9 (a) The MSD of the LC matrix in the isotropic phase. (a) The MSD of
the LC matrix at fixed r* = 0.3 (along the vertical black dashed line in Fig. 4)
for T* = 2.0, 1.4, 1.0, 0.8, and 0.6. The black dashed line shows a slope of
1.0. (b) The MSD of the LC matrix at a fixed T* = 0.8 (along the horizontal
black dashed line in Fig. 4) and r* = 0.1, 0.22 and 0.32. The inset in both the
figures shows the variation of self-diffusion constant as a function of 1/T*
and r* respectively.

Fig. 10 The MSD of the LC matrix in the nematic phase. (a) The component
of MSD parallel to n̂e for r* = 0.36, 0.37 and 0.38 at T* = 0.8. (b) The
component of MSD perpendicular to n̂e for the same r* and T* as in (a).
The longtime behavior of MSDs in all the three cases is diffusive as shown by
the black dashed line with a slope of 1.0. The insets in (a) and (b) show the
variation of D||* and D>* with r*.
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Finally, the VACF of the LCs in the nematic regime for
r* = 0.38 and T* = 0.8 is plotted in Fig. 12(c). The ‘‘shoulder’’
(the minimum and the subsequent maximum), which was
observed at higher isotropic densities (cf. Fig. 12(b)), becomes
more pronounced in the nematic regime. Furthermore, the
decay of Cv8(t) is slower than that of Cv>(t) consistent with the
larger value of D||*. We observe a small negative region in Cv8(t)
which is an indicator of the high density of the mixture. As
discussed in earlier studies,46 the oscillatory behavior in Cv>(t)
(shown by a green dot–dashed line in Fig. 12(c)) is due to
the periodic rebounds of the LC particles in the direction
perpendicular to n̂e.

3.3.1 Signature of the subdiffusion in the VACF. So far we
have analyzed the short-time behavior of the VACF of the DSS in
order to investigate the local environment around the DSS. We,
now, show that the subdiffusive behavior, observed in the MSD
of the DSS, is also reflected in the VACF. To this end, we start
with the Green–Kubo relation in three dimensions,51

D ¼ 1

3

ð1
0

v t 0ð Þ � vð0Þh idt 0: (12)

Here, t0 = t–t0 is the time elapsed from the time origin taken at
t0. The VACF is related to the MSD as,31,51

1

3
vðtÞ � vð0Þh i ¼ 1

6

d2

dt2
Dr2ðtÞ
� �

(13)

Inserting eqn (13) into eqn (12) we obtain,

D ¼ 1

3

ð1
0

v t 0ð Þ � vð0Þh idt 0 ¼ 1

6

d

dt 0
Dr2 t 0ð Þ
� �����

t 0!1
: (14)

In simulations, we need to consider a ‘‘sufficiently large’’ time
interval t up to which numerical integration is performed in
order to calculate the diffusion coefficient. Starting from this,
we define a time (interval) dependent diffusion coefficient D(t)
by rewriting eqn (14) as,

DðtÞ ¼ 1

3

ðt
0

v t 0ð Þ � vð0Þh idt 0 ¼ 1

6

d

dt 0
Dr2 t 0ð Þ
� �����

t 0!t
: (15)

Therefore, for a diffusive process, in the limit of large t, D(t)
saturates to the diffusion coefficient obtained via the Stokes–
Einstein relation hDr2(t0) = 6Dt0i. Whereas, in the cases where
the longtime behavior of the MSD is subdiffusive with an

Fig. 11 The VACF of the DSS in the isotropic phase (a) for l = 4.5, 6.43, and 11.25 at a fixed r* = 0.3 (along the vertical black dashed line in Fig. 4) and (b) for
r* = 0.25, 0.28, 0.3, and 0.32 at l = 11.25 (along the horizontal black dashed line in Fig. 4). (c) The VACF for DSS in the nematic regime at r* = 0.38 and l = 11.25.
The red dashed and green dot–dashed lines represent the functions Cv8

(t) and Cv>
(t). The inset shows a top view of the snapshot for r* = 0.37 and l = 11.25.

Fig. 12 The VACF of the LC matrix in the isotropic phase (a) for T* = 2.0, 1.4, and 0.8 at fixed r* = 0.3 (along the vertical black dashed line in Fig. 4) and (b)
for r* = 0.25, 0.28, 0.3, and 0.32 at T* = 0.8 (along the horizontal black dashed line in Fig. 4). (c) The VACF for LC in the nematic regime at the r* = 0.38
and T* = 0.8. The red dashed and green dot–dashed lines represent Cv8

(t) and Cv>
(t). The inset shows Cv8

(t) for r* = 0.34, 0.35, 0.36, and 0.38.
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exponent a, D(t) should show a power-law decay as a function of
t with an exponent (a � 1).

In Fig. 13, we plot D(t) as a function of t calculated from the
VACF of the DSS for l = 4.5, 6.43 and 11.25 at r* = 0.3 (the green
filled squares marked on the vertical dashed line in Fig. 4).
Clearly, for l = 4.5 and 6.43, D(t) saturates to D which is
calculated from the longtime behavior of the corresponding
MSD of the DSS (values of D are shown by dashed black lines in
Fig. 13). Furthermore, for l = 11.25, D(t) shows a power-law
decay with an exponent of �0.35, which is consistent with the
exponent of subdiffusion obtained from the corresponding
longtime behavior of the MSD of the DSS. Thus, our numerical
results confirm the relation between the VACF and the MSD in
the longtime limit. The slight discrepancy in the saturated value
of D(t) for l = 6.43 and the sudden drop in D(t) for l = 11.25 at
long times may be due to the lack of statistical averaging.

4 Summary and outlook

To summarize, we have presented a detailed MD simulation
study on the translational dynamics in a LC–DSS mixture, in
which both the species have comparable sizes. Our main finding
is that in such a mixture, the DSS show a crossover from normal
to anomalous translational dynamics in the isotropoic regime as
l is increased. At small l the DSS chain lengths are shorter and,
therefore, they can easily diffuse inside the LC matrix. However,
as l is increased, the lengths of the DSS chains increase and
eventually their translational dynamics become subdiffusive. In
this sense, the orientationally disordered LC matrix provides a
complex environment which strongly influences the diffusion of
host particles.

In the nematic regime, the LC particles, due to their cooperative
movement and reorientation in the direction parallel to n̂e, form a

cylindrical channel and force the DSS chains to align along the
channel. As a consequence, the DSS diffuse normally parallel to
n̂e while remain subdiffusive in the perpendicular direction. The
anisotropic translational dynamics of DSS in narrow slit pores is
well studied, and enhanced diffusion of DSS parallel to the
channel has been observed.50 The DSS chains in the present
case show similar behavior.

The strong confinement imposed by the LC matrix is also
reflected in the VACF of the DSS, which show an oscillatory
behavior not only in the isotropic regime but also in the nematic
regime. The VACF of the LC matrix show a minimum and
maximum at short times in the isotropic regime. In the nematic
regime, only the perpendicular component of the VACF of the
LC matrix shows an oscillatory behavior while the parallel
component decays smoothly at high nematic densities.

In this work, we have demonstrated that the LC matrix
strongly modifies the translational dynamics of the DSS whereas
the LC dynamics remains essentially unaffected. A further study
of the rotational dynamics of such mixtures is necessary in order
to develop a better understanding of the intrinsic timescles. Also,
it will be interesting to explore the effect of an external magnetic
field on the dynamics of different components of the mixture, as
it has been experimentally shown that a weak magnetic field
affects the ordering in these systems.21

We believe that the present study will be very helpful in
understanding the rheology of ferronematics as the interplay of
intrinsic and shear induced timescales gives rise to intriguing
behavior in these complex fluids. Work in these directions is
underway.
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