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Urbanisation modulates plant-
pollinator interactions in invasive 
vs. native plant species
sascha Buchholz  1,2 & Ingo Kowarik  1,2

Pollination is a key ecological process, and invasive alien plant species have been shown to significantly 
affect plant-pollinator interactions. Yet, the role of the environmental context in modulating such 
processes is understudied. As urbanisation is a major component of global change, being associated 
with a range of stressors (e.g. heat, pollution, habitat isolation), we tested whether the attractiveness 
of a common invasive alien plant (Robinia pseudoacacia, black locust) vs. a common native plant (Cytisus 
scoparius, common broom) for pollinators changes with increasing urbanisation. We exposed blossoms 
of both species along an urbanisation gradient and quantified different types of pollinator interaction 
with the flowers. Both species attracted a broad range of pollinators, with significantly more visits for 
R. pseudoacacia, but without significant differences in numbers of insects that immediately accessed 
the flowers. However, compared to native Cytisus, more pollinators only hovered in front of flowers of 
invasive Robinia without visiting those subsequently. The decision rate to enter flowers of the invasive 
species decreased with increasing urbanisation. this suggests that while invasive Robinia still attracts 
many pollinators in urban settings attractiveness may decrease with increasing urban stressors. Results 
indicated future directions to deconstruct the role of different stressors in modulating plant-pollinator 
interactions, and they have implications for urban development since Robinia can be still considered as a 
“pollinator-friendly” tree for certain urban settings.

Invasive alien plant species have been reported to be a major driver of change in altering biodiversity patterns1–3. 
By contrast, a recent meta-analysis reveals largely reducing or neutral effects of invasive plants on animal abun-
dance, diversity, fitness, and ecosystem processes4. Responses of native insects to invasive plants are mostly 
ambiguous5, and include negative6,7 as well as positive effects8,9. By modulating plant-pollinator networks10–12, 
invasive plants can also affect key ecological processes with a high relevance for plant reproduction and thus for 
agriculture, food production and food security13–15, even in urban environments16,17.

Plant-pollinator interactions comprise several interlinked processes that result in different levels (Fig. 1)18,19. 
The first is, from the pollinator perspective, the selection of a plant as a floral resource, followed by access to the 
flower, either immediately or after a period of hovering around the florescence (Fig. 1). After accessing the flower, 
pollen or nectar can then be collected and carried to its nest or another plant.

Previous studies showed that alien plant species can significantly modulate important components within 
plant-pollinator interactions and networks20–22. For example, plant selection and blossom access can differ 
between invasive and native plants19,23–25, with multidirectional patterns as pollinators preferring either native 
or invasive plants18, or in some cases neither26. Studies on pollen and nectar collection found that food resources 
of invasive plants can be either neglected by native pollinators27,28 or accepted as new foraging alternatives29,30. 
Due to competition for pollinators, the presence of invasive plants can affect flower visits10,31 and the pollination 
success of native plants, again with different outcomes22,32.

Given the multidirectional effects of invasive plants on plant-pollinator networks18,22,33, understanding the 
underlying mechanisms is a key challenge. Previous studies revealed a range of mechanisms related, for example, 
to flower morphology34, nectar chemistry and pollen quality35, spatial scale36, and biological plasticity of polli-
nating species9.

However, effects of different environmental settings on pollinator interactions have received less attention37. 
This is an important research question as recent studies increasingly evidence the role of stressors related to 
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climate change38,39, land-use changes40,41 or urbanisation42–44 in modulating plant-pollinator interactions and net-
works45. Whether varying levels of urbanisation and associated stressors (e.g. heat, pollution, habitat isolation) 
affect the attractiveness of native vs. alien plants for pollinators could be revealed by applying a standardised study 
design with pairwise alien/native comparisons. To the best of our knowledge, such studies are missing thus far. 
This is a vital knowledge gap as cities are hotspots of alien plant species46,47. At the same time, cities have increased 
in importance as habitats for pollinators48,49 with a conspicuous decline in rural settings50,51. A better under-
standing of interactions between invasive plants, urbanisation and pollinators will shed light on understudied 
mechanisms in plant-pollinator networks22 and could support pollinator-friendly urban conservation policies52.

Therefore, we tested whether urbanisation modulated the attractiveness of an invasive vs. a native plant spe-
cies for pollinators at different interaction levels, as indicated in Fig. 1. In a standardised pair-wise approach, we 
exposed blossoms of Robinia pseudoacacia L. (black locust; henceforth Robinia) and Cytisus scoparius (L.) (com-
mon broom; henceforth Cytisus) to the same type of ecosystem along an urbanisation gradient in Berlin. While 
the first species is native to North America and has been classified as invasive in Europe53, the latter is native to 
Europe, but invasive elsewhere54. Both species share biological features that are relevant for pollinators, such as 
flower morphology and attractive flower colour34. We quantified plant choice and accessing of flowers by native 
pollinators through direct observation. We differentiated between: (i) immediate blossom access, (ii) hovering 
around flowers without blossom access, and (iii) blossom access after hovering (Fig. 1). Environmental conditions 
regarding plant community, flower coverage and maintenance were similar at each study site, except that the 
location was different in relation to levels of urbanisation (Appendix 1).

We hypothesised that the native and alien plants did not differ in their attractiveness for pollinators since they 
shared the same flower morphology, flowering time, and both had highly attractive flower colours. We therefore 
expected no significant differences in plant contact of any type, immediate blossom access, only hovering around 
flowers, or blossom access after hovering. Since urbanisation and related environmental stressors might affect 
plant-pollinator interactions, we also hypothesised that the attractiveness of the invasive plant for pollinators will 
decrease with increasing urbanisation. Extent of green area within the city positively affects plant-pollinator inter-
actions in terms of bee visitation which implies adverse effects due to an increased amount of impervious area43. 
Mutualisms that have evolved over long evolutionary time scales – as in the case of native plants and native polli-
nators – might be more resilient to anthropogenic disturbances or stressors than younger ones55–57. We therefore 
expect that younger mutualisms – for example between native pollinators and alien plants – might have a lower 
resilience and a more prone to disturbance which in turn should result in reduced interactions such as visitation 
rates. Consequently, we expected pollinators to select Robinia less frequently with urban than non-urban sites.

Results
General results. A broad range of pollinator taxa visited flowers of both the native and the alien plant spe-
cies. Pollinators included, with decreasing abundance Diptera s. l. (147), Hymenoptera s. l. (114), bumblebees 
(24), honey bees (17), and beetles (12), while hoverflies, wild bees, butterflies and wasps played a minor role 
(Appendix 2).

Figure 1. Generalised sequence of plant-pollinator interaction in relation to decisions between using native vs. 
alien plant resources and potential interactions with different levels of urbanisation. Levels in filled boxes were 
addressed in this study.
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Attractiveness of Robinia and Cytisus for pollinators. Robinia attracted significantly more pollinators 
than Cytisus (Chi2 = 5.0, df = 1, P = 0.03; generalised linear mixed model, GLMM; Fig. 2a). However, the number 
of immediate flower access attempts was the same for both species (Chi2 = 0.6, df = 1, P = 0.44; GLMM; Fig. 2b). 
In contrast, the number of pollinators that only hovered around a flower without directly contacting it was signif-
icantly higher for Robinia than for Cytisus (Chi2 = 18.1, df = 1, P < 0.001; GLMM; Fig. 2c). The decision rate for 
contact with flowers after hovering was significantly higher for Cytisus compared to Robinia (Chi2 = 6.6, df = 1, 
P = 0.01; GLMM; Fig. 2d).

Urbanisation and attractiveness of Robinia. Urbanisation was not correlated with total flower vis-
its, immediate blossom access and hovering around flowers. Yet, we found a significant urbanisation effect on 
plant-pollinator interactions as the decision to visit flowers of Robinia after hovering decreased with increasing 
percentage of impervious area around the study site (t = 2.8, P = 0.04; generalised linear model, GLM; Fig. 3). No 
other environmental variable affected any of the response variables.

Discussion
Cities are important habitats for pollinators49,58, and previous research has revealed urbanisation effects on the 
composition of wild bee populations59–63. Moreover, it has been suggested that the high presence of alien plant 
species in cities46,47 negatively affects native pollinators due to problems of accessibility with novel flower types 
or because of differences in the quality of nectar or pollen18,35. However, to what extent urbanisation modu-
lates interactions of native pollinators with alien vs. native plants remains a critical knowledge gap37,64. Pollinator 
observations in urban environments have yielded important insights into plant-pollinator interactions29,43,44,65–68, 
although these studies did not directly compare native vs. invasive species. This study took a step forward by ana-
lysing the interacting effects of biological invasion and urbanisation on plant-pollinator interactions.

Attractiveness of Robinia to native pollinators. Alien plant species have been demonstrated to provide 
valuable floral resources for pollinators in urban environments30,33, including Robinia in Berlin44 and Paris29 and 
Cytisus in its non-native North American range69. A previous study found weak negative effects of R. pseudoaca-
cia on urban insect communities70. Yet, Robinia strongly invests in reproductive organs, producing a large flower 
crop and valuable nectar resource29,71. However, the capacity of an invasive species to provide suitable resources 
can be different in native and novel landscapes72. While honeybees had been reported as major pollinators53, a 
recent study reveals a range of wild bee species also visits flowers of urban Robinia trees44. Our study documented 
that floral resources of Robinia attracted an even broader range of pollinator taxa in urban settings, including wild 

Figure 2. Total flower visits (=summation of the following categories b, c, and d) differed significantly between 
the invasive Robinia pseudoacacia and the native Cytisus scoparia (a); while immediate flower access was not 
significantly different (b). Hovering around flowers was more frequent in the presence of R. pseudoacacia (c); 
but pollinators decided upon contact with C. scoparia more often after hovering (d; GLMM with Gaussian 
distribution).
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bees and flies, as well as honey bees (Appendix 2). In addition to the attractiveness of its floral resources, the long 
presence of Robinia in Europe over a period of >350 years53 might have helped to integrate the alien plant into 
native pollinator communities, as has been shown in other cases5,73.

Due to its large flower crop, Robinia provided abundant nectar resources which attracted different native 
pollinators among the Diptera and Hymenoptera. The number of total flower visits was significantly higher for 
Robinia compared to Cytisus (Fig. 2a), while there was not a significant difference in immediate flower access 
(Fig. 2b). Acceptance of invasive plants as food resource in the presence of a native alternative has been docu-
mented previously for urban habitats29,33,44. However, as a surprising result of our study, more pollinators hovered 
significantly longer in front of Robinia flowers (Fig. 2c), and significantly less decided to visit the alien flowers 
after hovering compared to those that hovered in front of native Cytisus flowers (Fig. 2d). Both species were 
presented in an array that ensured free plant choice and easy access. Given that Robinia and Cytisus shared a 
similar floral morphology and blossom colours, that are very attractive and easily recognized by pollinators, these 
results might indicate a trade-off behaviour. This means that pollinators have to make economic choices about 
what type of flowers they visit to increase benefits (energy intake) compared to costs (energy consumption)74. 
Due to these energetic requirements nutrient availability in nectar or pollen plays a vital role30,35. Therefore, one 
reason for lower decision rates for Robinia might be related to quality and suitability of the nectar which might 
be superior in Cytisus compared to Robinia. Although honey bees successfully process nectar of Robinia75 other 
non-domesticated and more specialised pollinators could be more sensitive in their nutritional requirements30. In 
that case, longer hovering in front of Robinia flowers without subsequent flower visits could hint at an ecological 
trap76, since this behaviour could disrupt the metabolic cost/benefit balance, energy expended for no reward77. 
However, analysis of Robinia nectar and pollen quality did not support this hypothesis, revealing high contents 
of suitable amino acids, phytosterol and sugar29. Apart from energetic requirements that affect flower selection, 
pollinators are faced with other economic choices when choosing a species or not such as risk-sensitivity to 
predators, mate searching, nest provisioning, distance to nest, floral landscape features and flower handling74. For 
example, despite obvious similar floral morphology foraging for nectar and pollen on alien Robinia might result 
in lower load sizes or longer handling times making that species less attractive in harsher environments due to 
higher costs.

Urbanisation and plant-pollinator interaction. It is well established that urbanisation modulates biodi-
versity patterns across a range of taxa78,79, including pollinators61,80–82. Our results suggest that biological invasion 
and urbanisation might jointly affect plant-pollinator interactions. While Robinia did attract a broad range of 
pollinators in urban settings, similar to an attractive native plant (Appendix 2), decisions of pollinators to visit 
Robinia flowers after hovering in front of the florescence decreased significantly with increasing levels of urbani-
sation (Fig. 3), unlike for the native Cytisus (results not shown). This was consistent with Hausmann et al.44, who 
generally found fewer flower visits at trees (including Robinia) in urban settings; however, they did not differen-
tiate between alien and native species in pairwise comparisons.

Why might increasing urbanisation make a generally highly attractive alien plant species less attractive to 
pollinators? Urbanisation related stressors, such as heat, pollution and habitat fragmentation38, might combine 
to produce harsher environmental conditions for pollinators that could translate into changes in biotic interac-
tions83,84, including feeding behaviour and food choice along rural-urban gradients85. For example, urbanisation 
and related higher amount of impervious area might generally reduce bee visitation rates in cities43. Our study 

Figure 3. Decision to visit flowers of Robinia pseudoacacia after hovering in front of the florescence 
significantly decreased with increasing levels of urbanisation (GLMM with Gaussian distribution).
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detected some negative effects of urbanization in flower visitation in the invasive plant species, but not in its 
native counterpart. This might be explained by a shorter time of co-evolution between alien vs. native plants and 
native pollinators making interactions less resilient against environmental stress - in line with theories of Sachs & 
Simms55 and Kiers et al.56 on mutualisms in a changing world. These authors assume that mutualisms that have 
evolved over long time scales are more resilient to anthropogenic impacts compared to more recently established 
mutualisms. At first appearance, Robinia might be attractive by offering large flower crops which resulted in 
higher numbers of hovering. Yet a shorter evolutionary experience in using food resources of the alien vs. the 
native species might translate to lower decision rates to visit the alien plant.

As the community structure of wild bees can change with urbanisation59–62, different pollinators with dif-
ferent food preferences might be present in rural vs. urban settings. Such changes might affect plant-pollinator 
interactions. However, we assume a low effect of species turnover, since the percentage of more common and less 
specialised species usually increases with urbanisation59,68,86. In our study, environmental constraints (i.e. heavy 
rainfalls) reduced the flowering time of Robinia which led to a relatively low number of replications. We addressed 
that by maximising the observation periods per site to increase the validity of our data.

Our study has implications for future initiatives. While we found a significant relationship between urbani-
sation and changes in interaction between a native pollinator and a common alien invasive plant, the roles of the 
different urban stressors were not determined. Unlike many native tree species that might not grow successfully 
in harsh urban environments87, Robinia is well adapted to such conditions and a warmer climate88. Despite a 
decreasing attractiveness of Robinia along with increasing urbanisation, this alien tree species still remained 
attractive for many pollinators. Robinia can thus be considered as a “pollinator-friendly” tree for urban settings – 
particularly when native alternatives are excluded by harsh urban environments.

Material and Methods
study area and study system. The study was performed in Berlin, Germany, which has an area of 892 km² 
and about 3.6 million inhabitants. The climate was temperate, with an annual mean temperature of 9.9 °C and a 
mean precipitation of 576 mm (reference period: 1981–2010)89. Berlin represented a complex urban matrix with 
a variety of land uses, consisting of roughly 54% built-up areas, 21% woodland, 12% green space, 6% water, 5% 
grassland and 2% arable fields90. We used urban grasslands as the study system, as these ecosystems are known as 
important habitats for wild bees49,61,91 and represent a major component of Berlin’s greenspace system92.

To test for effects of urbanisation on the attractiveness of invasive vs. native species for pollinators, we chose 
Robinia as a model of an invasive plant as it has abundantly colonized a range of ecosystem types in central 
Europe, including cities53,93. In Berlin, Robinia was present in a range of habitats across the city, also forming 
extensive stands78,94.

As different flower symmetry could mask other effects, such as different flower accessibility, and therefore 
hamper pair-wise comparisons34,95, we chose Cytisus as a native reference species for the comparative plot-design. 
Cytisus and Robinia were both members of the Fabaceae, and shared similar flower morphology, blooming period, 
and flower colour (i.e., yellow and white), that usually attracted many pollinators (see Galloni et al.96 for Cytisus). 
Both species have been present in Berlin over a period of >300 years and have colonized a range of ecosystem 
types94, sometimes co-habiting vacant land and transition zones between pioneer forests and dry grassland.

study design. The study was conducted at 10 sites (Appendix 1) that were all located in urban dry grassland, 
within a minimal distance of 1 km to avoid nestedness. Ten study sites have been demonstrated to be a meaningful 
sample size for direct pollinator observations44. To assess the effect of urbanisation on pollinator-plant contacts, 
grassland sites were assigned to different levels of urbanisation. This was determined by the amount of impervi-
ous surface, the human population density and the density of roads in a radius of 100 m and 500 m around the 
sampling site. Correlating these measures with specific sites quantified urbanisation more precisely than using a 
spatial gradient from an urban core to the outskirts97. Measurements of impervious surface, human population 
density and density of roads were taken from the Senate Department for Urban Development and Housing98 
using a geographic information system (GIS). As all three variables, and both radii, were highly correlated 
(r > 0.9), we used the amount of impervious surface in a 500 m radius as the urbanisation measure (min = 1.19%, 
max = 62.78%). To test for potentially confounding effects of vegetation related parameters, we assessed coverage 
of herbal layer, total and alien plant species richness; the latter parameter included species introduced (neophytes) 
since 1492. Vegetation data were sampled in vegetation relevés (4 × 4 m), following the standard approach of 
Braun-Blanquet99.

We applied a standard method for investigating plant-pollinator interactions by exposing vases with flowering 
branches to potential pollinators18. To reduce wilting, flowering branches of both species were taken from plants 
from one donor site close to the study sites and immediately placed into water-filled flower vases. Four vases with 
equal numbers of flowering branches of Robinia and Cytisus (8 vases in total) were alternately placed 90 cm apart 
from one another in a square, with observers located nearby. After counting pollinators, blossoms per vase were 
counted to ensure standardisation for statistical analyses.

Data collection. In June 2017, pollinator counts were carried out under good weather conditions100, with 
clear skies, wind speed at 1–1.4 m/s and warm temperatures (≥22 °C). We measured air temperature, air humid-
ity and wind speed using a hand anemometer (M0198652 Handheld USB Thermo-Hygro-Anemometer). The 
observations started around noon. While observation periods of 15 minutes have led to reasonable results in a 
comparable study44, we extended the time to 45 minutes to enhance accuracy of data. We were only able to sample 
each site once because optimal sampling conditions were limited to 4 days, due to a period of heavy rainfall, and 
because of rapid wilting of Robinia flowers.
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Flower visits were differentiated into 3 categories (Fig. 1): immediate flower access, hovering around flowers 
with subsequent flower access, and hovering without flower access. Summation of these categories provided the 
total number of flower visits. Based on flower access after hovering, we also determined a decision rate for visits 
to a particular species by dividing the number of times flowers were accessed after hovering by the hovering 
count. During pollinator counting we distinguished optically between the following pollinator taxa: honey bees 
(Apis mellifera), bumblebees (Bombus spp.), wild bees (Apidae, but not members of the genera Apis and Bombus), 
wasps (Apocrita), hoverflies (Syrphidae), other flies, mosquitoes (Diptera), beetles (Coleoptera), and butterflies 
(Lepidoptera). When honey bees and wild bees could not be distinguished correctly both taxa were merged as 
Hymenoptera s. l. This is a method for assessing pollinator visits to plants that has previously been used101.

statistical analysis. Prior to analyses, we standardised pollinator counts and calculated contacts or hover-
ing, respectively, per 100 blossoms. To determine the relative attractiveness of Robinia or Cytisus we compared 
the number of direct contacts, the number of hovering instances and the decision rate using GLMM (R function 
lmer) taking a Gaussian distribution. Data were log-transformed before and distribution was checked graphically 
using diagnostic plots102. Location was considered a random effect to meet the requirements for testing paired 
samples. To test, if attractiveness of the alien vs. native plant for pollinators changed along an urbanisation gra-
dient, we first calculated the ratio for direct contacts, hovering and decision ratio between Robinia and Cytisus. 
Smaller ratios indicated a higher attractiveness for Robinia blossoms, and vice versa. We analysed effects of urban-
isation (% impervious area in a 500 m radius) and vegetation variables (number of plant species and of neophytes) 
on immediate blossom access, only hovering around flowers, and decision ratios using a GLM with Gaussian 
distribution. Backward selection of variables was based on Akaike information criterion (AIC) values, where the 
lowest AIC denoted the best model.

Data Availability
The supplementary data is included as an appendix.
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