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Introduction
Deep learning, i.e., the use of deep convolutional neural networks (DCNN
), is a powerful tool for pattern recognition (image classification) and natu-
ral language (speech) processing. Deep convolutional networks use multiple
convolution layers to learn the input data. They have been used to classify the
large data set Imagenet with an accuracy of 96.6%. Spiking neural networks
are biologically inspired in that the communication and learning algorithms
are biologically plausible. In this work deep spiking networks are consid-
ered.
Spike Timing Dependant Plasticity (STDP)

Figure 1: A simple fully connected spiking network.

• Spike timing dependant plasticity (STDP) has been shown to be able to
detect hidden (in noise) patterns in spiking data [3]. Figure 1 shows a sim-
ple 2 layer fully connected network with N input (pre-synaptic) neurons
and 1 output neuron.
• The spike signals si(t) are modelled as being either 0 or 1 in one millisec-

ond increments. That is, 1 msec pulse of unit amplitude represents a spike
while a value of 0 represents no spike present. See the left side of the
Figure 1.

The potentials are then summed as

V (t) =

N∑
i=1

wksk(t). (1)

Figure 2: Spike generation by the output neuron.

• V (t) is called the membrane potential of the output neuron. At any time
t if the membrane potential V (t) is greater than a specified threshold γ,
then the output neuron spikes. By this we mean that the output neuron
produces a 1 msec pulse of unit amplitude.
• The idea here is that the weights can be updated according to an unsuper-

vised learning rule that results in the output spiking if and only if the fixed
pattern is present. This weight update is called STDP. [1]

wi← wi + ∆wi, ∆wi =

{
+a+wi(1− wi), if tout − ti ≤ 0

−a−wi(1− wi), if tout − ti > 0.
(2)

Here ti and tout are the spike times of the pre-synaptic (input) and the post-
synaptic (output) neuron, respectively. That is, if the ith input neuron spikes
before the output neuron spikes then the weight wi is increased otherwise the
weight is decreased.1

Network and Features extracted

Figure 3: Deep spiking convolutional network architecture for classification of the MNIST
data set.

Images in the MNIST are converted to spatio temporal spikes using rank or-
der coding (ROC). N-MNIST data set is a recorded set images in the MNIST
data set using ATIS, a silicon retina that detects changes in the pixel intensity.

Figure 4: Spikes per map per digit. Headings for each of the sub-plots indicate the dominant
(most spiking) digit for respective features.

Training algorithms for L4 layer
We used a simple two layer back propagation algorithm to perform classifi-
cation of the spike vectors collected in layer L3. The gradient of a quadratic
cost C =

∑n0ut
i=1(y − aL4)2 gives the error from the last layer as

δL4 =
∂C

∂aL4
σ′(zL4) (3)

aL is the activation of the neurons in the output layer, σ is the activation
function and z is the net input to the output layer. The weights and biases of
the last layer (L4) are updated as follows:

∂C

∂bLj
= δL4

j (4)

∂C

∂WL4
jk

= aL3
k δL4

j (5)

A simple two layer backprop is a linear classifier and it achieved an accu-
racy of 88% [2] on the MNIST data set. We show in the later sections that
a spiking convolutional network combined with a two layer backprop can
achieve a classification accuracy of 98.4% on the MNIST data set.

Catastrophic forgetting

Figure 5: Catastrophic forgetting in a convolutional network while revising a fraction of the
previously trained classes. Note that epoch -1 indicates that the network was tested for vali-
dation accuracy before training of the classes 5-9 started. Brackets in the legend shows the
fraction of previously trained classes that were used to revise the weights from the previous
classes.

Figure 6: Catastrophic forgetting in a spiking convolutional neural networks. Note that the
solid red line in this plot indicates that he forgetting in spiking networks is not catastrophic.

Figure 7: Note that as the number of training images for the classes 5-9 increases the total
accuracy drops.

Results

Saeed et al [1] used a linear SVM and an additional convolution layer in the
Figure 3 and achieved an accuracy of 98.3%. Our research indicates that us-
ing a simpler two layer back propagation and a single convolution/pool layer
is enough to achieve an accuracy of 98.4% on the MNIST data set.

Classifier Test Acc. Val Acc. Data set

2 layer FCN 98.4% 98.5% MNIST
SVM (RBF) 98.8% 98.87% MNIST
SVM (linear) 98.41% 98.31% MNIST
2 layer FCN 97.45% 97.62% N-MNIST
SVM (RBF) 98.32% 98.40% N-MNIST
SVM (linear) 97.64% 97.71% N-MNIST

Table 1: Classification accuracy on the MNIST
data set

Stromatias et al reported
an accuracy of 97.23% ac-
curacy by using artificially
generated features for the
kernels of the first convolu-
tional layer and training a 3
layer fully connected neural
network classifier on spikes
collected at the first pooling
layer [4]. Results for the
MNIST and N-MNIST data
sets are presented in the Ta-

ble 1.

Conclusions
•We have shown that combining feature extraction in spiking networks

when combined with a simple two layer backprop can result in 98.4%
accuracy and we have also shown that training the features of the L2 layer
instead of artificially generating them results in an accuracy of 97.45%.

•We have shown that spiking convolutional networks can retain up to 91%
test accuracy when trained with disjoint sets.

Forthcoming Research
We plan to test our network using bigger data sets like EMNIST, Caltech 101
etc.

References

[1] Saeed Reza Kheradpisheh, Mohammad Ganjtabesh, Simon J. Thorpe,
and Timothée Masquelier. STDP-based spiking deep convolutional neu-
ral networks for object recognition. Neural Networks, 99:56 – 67, 2018.

[2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, Nov 1998.

[3] Timothée Masquelier, Rudy Guyonneau, and Simon J. Thorpe. Spike
timing dependent plasticity finds the start of repeating patterns in contin-
uous spike trains. PLOS ONE, 3(1):1–9, 01 2008.

[4] Evangelos Stromatias, Miguel Soto, Teresa Serrano-Gotarredona, and
Bernab Linares-Barranco. An event-driven classifier for spiking neural
networks fed with synthetic or dynamic vision sensor data. Frontiers in
Neuroscience, 11:350, 2017.

Acknowledgements
We would like to express our deep gratitude to Professor Timothe Masque-
lier and Dr. Saeed Reza Kheradpisheh for answering our many questions
about their work [1].

1The input neuron is assumed to have spiked after the output neuron spiked.
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