Boise State University ScholarWorks

2019 Graduate Student Showcase

Graduate Student Showcases

4-17-2019

Implementing AASHTO TP 110 for Alkali-Silica Reaction Potential Evaluation of Idaho Aggregates

Md Shahjalal Chowdhury Boise State University

Debakanta Mishra Boise State University

Implementing AASHTO TP 110 for Alkali-Silica Reaction Potential Evaluation of Idaho Aggregates

Principal Investigator: Dr. Deb Mishra, Ph.D., P.E. Presenter: Md Shahjalal Chowdhury, Research Assistant

INTRODUCTION

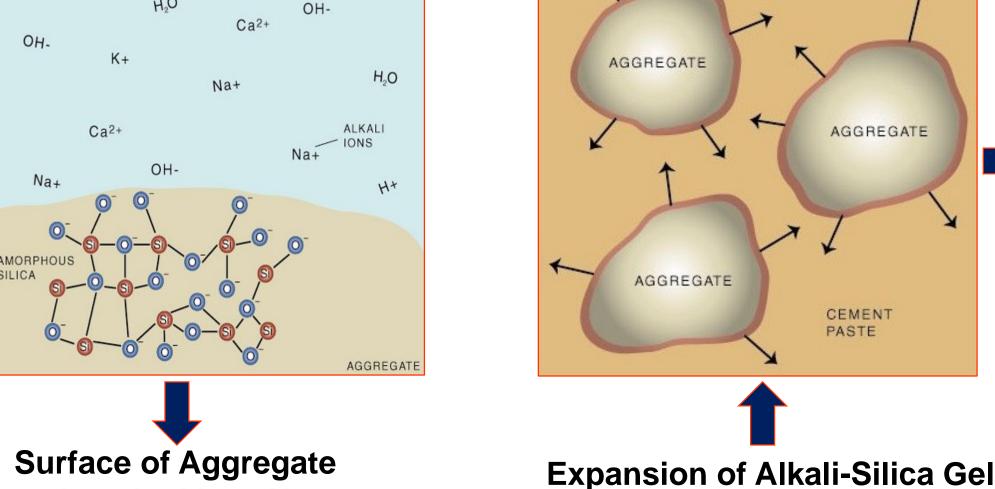
- The Alkali-Silica reaction (ASR) is a destructive chemical reaction that occurs between the active silica SiO₂ constituents (reactive minerals) of aggregate and alkalis (Sodium-Na and Potassium-K) in the cement and other pozzolanic materials causing a definite expansion in the presence of moisture or a pore solution of concrete.
- ASR forms a swelling gel, which can expand and cause internal stresses in cementitious materials leading to cracking, loss of strength, and eventually failure of concrete or concrete structures.
- Three essential conditions are necessary to create ASRinduced damage in concrete structures:
 - Presence of reactive siliceous components in aggregates
 - Sufficient availability of OH⁻ ions and alkalis (Na⁺ and/or K⁺)
 - Sufficient moisture (above 75% RH).

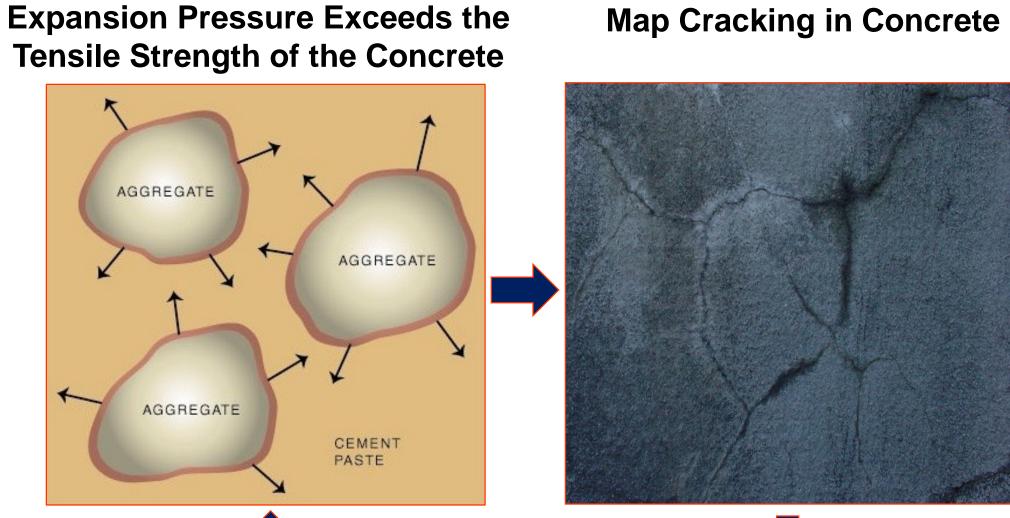
2. OBJECTIVE

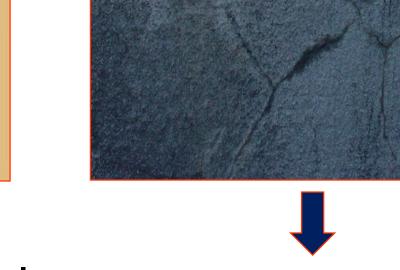
- Evaluate advantages (as compared to other test methods) associated with implementing AASHTO TP-110, a new test method to evaluate aggregate susceptibility to ASR within ITD specifications to better characterize the ASR potential of Idaho aggregates.
- The baseline ASR susceptibility for Idaho aggregates will be established. ASR potentials quantified through the AASHTO TP-110 procedure (MCPT) will be evaluated in light of ASTM C1293 and ASTM C 1260 (AASHTO T 303) test results.

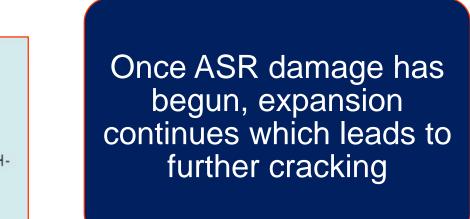
3. ASR IN IDAHO AGGREGATES

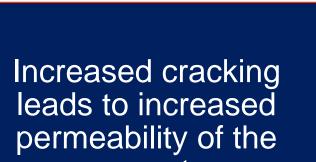
- Results from Idaho Transportation Department (ITD) research project RP 212 confirmed 80% of the aggregates used in Idaho are reactive, or highly reactive.
- The primary bases for determining the reactivity of Idaho aggregate are still ASSHTO T 303 or ASTM C 1260 and ASTM C 1293.
- According to RP 212, a very limited number of Idaho aggregate sources passed the ASTM C1260 test. Meanwhile, several aggregates that failed in ASTM C1260 passed the one-year ASTM C1293 test (Gillerman and Weppner, 2014).
- ASTM C 1260 gives false negative and false positive results for different aggregate samples of Idaho.

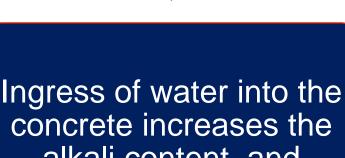

4. CHEMICAL REACTIONS INVOLVED


Siliceous aggregates get in contact with the solution


Attacked by OH-


OH- breakdown Silanol Groups (Si-


OH) into SiO⁻ Molecules



concrete

0.031-0.040 Low/Slow reactive 0.041-0.120 Moderately reactive 0.121-0.240 **Highly reactive** >0.240 alkali content, and therefore the ASR 7. IDENTIFIED AGGREGATE MATERIALS

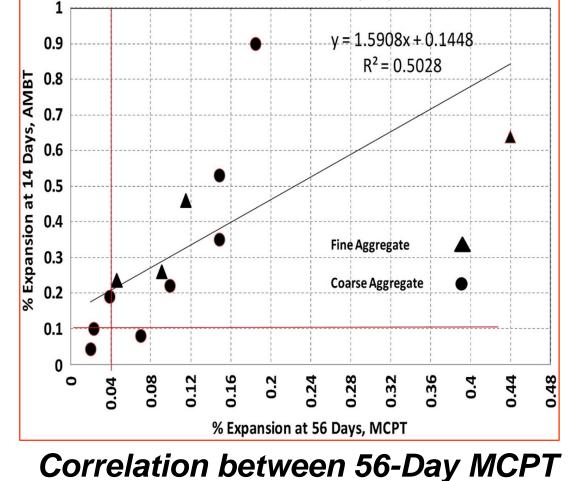
Non-reactive

6.CORRELATION OF MCPT WITH AMBT AND CPT

- During the development of MCPT, a total 33 aggregates sample were tested (19 coarse aggregate and 14 fine aggregates).
- Correlation of MCPT with AMBT and CPT are developed based on the results found for the selected aggregates.

Expansion Data for Selected Aggregates Determined using Different Test Methods

		%Expansion	Average %				
Aggregate Identity	MCPT 56 days (CV %)	ASTM C1293 (ASTM 2007a) 365 days	ASTM C 1260 (ASTM 2007b) 14 days	rate of expansion (8 to 12 weeks)	Field Experience		
SP	0.149 (4.08)	0.181	0.350	0.0152	Reactive		
SD	0.099 (4.97)	0.109	0.220	0.0043	Reactive		
NM	0.185 (3.43)	0.251	0.900	0.0231	Reactive		
NC	0.149 (1.16)	0.192	0.530	0.0092	Reactive		
ВВ	0.017 (8.81)	0.032	0.042	0.0047	Innocuous		
GLN	0.046 (4.34)	0.050	0.235	0.0122	Reactive		
QP	0.070 (3.01)	0.070	0.080	0.0193	Reactive		
SLC	0.039 (8.31)	0.030	0.190	0.0102	Low		
MSP	0.023 (2.47)	0.030	0.100	0.0070	Innocuous		
TX	0.440 (4.21)	0.590	0.640	0.0250	Reactive		
GI	0.091 (9.93)	0.090	0.260	0.0288	Reactive		
SB	0.115 (9.83)	0.150	0.460	0.0320	Reactive		
Proposed Criteria for Characterizing the							


Aggregate Reactivity in the MCPT Protocol

Days, %

0.031-0.040

Correlation between the 56-Day MCPT Data and the 365-Day CPT Data

 $R^2 = 0.9945$

Data and the 14-Day AMBT Data

Average 2-Week Rate

of Expansion from 8 to

<0.010% per 2 weeks

>0.010% per 2 weeks

- A total of 8 aggregate materials have been identified. Both coarse and fine parts will be tested for each aggregate type. Currently, twelve test set-ups are operating in our lab to expedite the total testing time required. The expected test completion date of our first aggregate is July 1st, 2019.
- Several AMBT (AASHTO T-303) tests were run on different aggregates to identify the non reactive reference aggregate types

AASHTO T-303 Test Results of Reference Aggregates

Name	Expansion at 16 Days, (%)	Reactivity (max expansion allowed 0.10%)			
Wn 56	0.616	Reactive			
Dolomite	0.187	Reactive			
Quartz	0.198	Reactive			
Lemhi	0.381	Reactive			
Granite L1	0.075	Non-reactive			
Granite L2	0.009	Non-reactive			

Identified Aggregates Sample Expansion at Reactivity (max expansion 16 Days. (%) allowed 0.10%)

AASHTO T-303 Test Results of

•			anonca 0.20/0/
insion)	EL 116c	0.50-0.59	Reactive
	ORE 8c	0.50-0.59	Reactive
	MD 45c	0.50-0.59	Reactive
	BG 111c	0.10-0.19	Reactive
	BN 155c	0.30-0.39	Reactive
	Ma 22c	>0.70	Reactive
	LN 80c	0.40-0.49	Reactive
	WN 56c	0.61	Reactive

8. SUMMARY

Implementing the MCPT test method into Idaho practice and mitigation of ASR reactivity will help increase the longevity of concrete structures.

5. MINIATURE CONCRETE PRISM TEST (MCPT)

The new test method Miniature Concrete Prism Test (MCPT) was developed at Clemson University in 2013. It was developed as an alternative to the existing standard test methods such as ASTM C1260 and ASTM C1293 to evaluate aggregate **ASR** reactivity.

Formation of Alkali-Silica Gel

(CaO-Na₂O/K₂O-SiO₂-H₂O)

Test duration: 8 weeks (56 days) or 12 weeks(84 days) for slow reactive aggregates

Test Temperature $60.0 \pm 1.7^{\circ}C (140 \pm 3^{\circ}F)$

Maximum coarse aggregate size 12.5 mm (½ in.).

Volume fraction coarse aggregate in concrete: 65% Non-Reactive: If expansion <0.030% at 56 days

Reactive: If expansion > 0.040% at 56 days.

- AASHTO, TP 110-14. 2014. "Standard Method of Test for Potential Alkali Reactivity of Aggregates and Effectiveness of ASR Mitigation Measures (Miniature Concrete Prism Test, MCPT)". American Association of State Highway and Transportation.org/ Gillerman V. S., and Weppner K. N. (2014), Lithologic Characterization of Active ITD Aggregate Sources and Implications for Aggregate, Idaho Geological Survey, University of Idaho, Moscow, Idaho
- Latifee, E. R., & Rangaraju, P. R. (2014). Miniature concrete prism test: rapid test method for evaluating alkali-silica reactivity of aggregates. Journal of Materials in Civil Engineering, 27(7), 04014215.