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Abstract

Resveratrol is a polyphenolic compound produced by plants which makes its way into the

human diet through plant-based foods. It has been shown to provide many health benefits,

helping to ward of age-related diseases and promoting cardiovascular health. Additionally,

resveratrol is a potent activator of the Notch signaling pathway. While resveratrol receives

the most attention as a polyphenolic nutraceutical, other compounds with similar structures

may be more potent regulators of specific cellular processes. Here, we compare resveratrol,

apigenin, chrysin, genistein, luteolin, myricetin, piceatannol, pterostilbene, and quercetin for

their ability to regulate Notch signaling. In addition, we compare the ability of these polyphe-

nolic compounds to regulate endothelial cell viability, proliferation, and migration. Out of

these compounds we found that resveratrol is the best activator of Notch signaling, how-

ever, other similar compounds are also capable of stimulating Notch. We also discovered

that several of these polyphenols were able to inhibit endothelial cell proliferation. Finally,

we found that many of these polyphenols are potent inhibitors of endothelial migration during

wound healing assays. These findings provide the first side-by-side comparison of the regu-

lation of Notch signaling, and endothelial cell proliferation and migration, by nine polypheno-

lic compounds.

Introduction

Our understanding of the role in which diet shapes human health is constantly evolving. A

nutraceutical is a compound found naturally in food which has medicinal benefits. The use of

nutraceuticals to combat disease and improve health is an ever-expanding area of research.

One class of molecules, known as polyphenols, are derived from various plants and are

renowned for their health benefits. Major sources of dietary polyphenols include tea, wine, cof-

fee, chocolate, vegetables, and beer [1]. However, the molecular mechanisms by which these

polyphenolic compounds affect human health are unclear.

Perhaps the best-studied polyphenol, trans-resveratrol (RSVT), has been characterized for

its anti-aging [2], anti-cancer [3,4], anti-oxidant [5], anti-inflammatory [6], and neuroprotec-

tive [7–9] properties. RSVT is a polyphenolic stilbene derived from plants, such as grapes and
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peanuts [10]. In plants, it acts as a phytoalexin, protecting plant tissues against pathogenic

assault [11]. Once ingested by humans, RSVT is thought to promote many favorable physio-

logical processes such as the maintenance of vascular health, prevention of atherosclerosis

[12,13], inhibition of tumor angiogenesis [14–18], and improvement of cardiovascular func-

tion [19–21]. While RSVT receives the most attention, many other polyphenols have been

found to have similar activities to RSVT. There exists a vast literature describing the molecular

mechanisms by which RSVT governs endothelial cell behavior, but little is known about how

other polyphenols perform similar roles.

RSVT, has been heavily-linked with the Notch cell signaling pathway [22–24]. Despite the

clear association between RSVT and Notch, conflicting results from different cell lines suggest

that RSVT can enhance [23,25] or suppress [26] Notch in a cell type dependent manner. Being a

form of juxtacrine cell communication, Notch signaling begins when the transmembrane Notch

receptor of one cell (i.e. signal receiving cell) is bound by a transmembrane ligand on an adjacent

cell (i.e. signal sending cell). A force of 4–12 pN [27] is applied to the Notch receptor through

ligand endocytosis in the signal sending cell. This pulling force exposes cleavage sites and facili-

tates proteolytic processing of the Notch receptor, first by ADAM (A Disintegrin and Metallopro-

teinase) and then by γ-secretase [28]. These cleavage events result in the release of the Notch

intracellular domain (NICD), which then travels to the nucleus where it induces transcription of

Notch target genes. Hairy and enhancer of split (HES) genes and hairy/enhancer of split related

with TYRPW motif (HEY) genes are well-known examples of Notch target genes [29].

Here, we compare RSVT and several other polyphenols for their ability to regulate Notch

signaling and endothelial cell proliferation and migration. We chose to compare the effects of

RSVT with apigenin, chrysin, genistein, luteolin, myricetin, piceatannol, pterostilbene, and

quercetin in order to see if these molecules, which share similar structures, behave similarly to

one another. We found that the majority of these polyphenols, but not all, enhanced Notch sig-

naling to varying degrees. Similarly, the majority of tested polyphenols, but not all, inhibited

cell proliferation and migration. These results should prove useful to other researchers seeking

to harness the biochemical properties of polyphenols for therapeutic uses.

Materials and methods

Cell culture

293T cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Mediatech) supple-

mented with 10% fetal bovine serum (FBS) and 1x pen-strep. Human Aortic Vascular Smooth

Muscle Cells (HAVSMC) were cultured in EBM2 basal media (Lonza) supplemented with EGM2

growth media and 10% FBS. Human Microvascular Endothelial Cells (HMEC-1) were cultured in

MCDB131 supplemented with 10% FBS, 10 ng/ml epidermal growth factor, and 1 μg/ml hydro-

cortisone. Cells were grown in 10 cm plates and passaged before reaching confluency.

Materials

Trans-RSVT was purchased from Caymen Chemicals. Apigenin, chrysin, luteolin, and querce-

tin were purchased from Alfa Aesar. Myricetin, piceatannol, and pterostilbene were purchased

from Enzo Life Sciences. Genistein and doxycycline were purchased from Tokyo Chemical

Industry. All drugs were dissolved in DMSO.

Plasmids

The N1ICD construct (Addgene #20183) was a gift from Raphael Kopan and contains amino

acids Val1744 to Lys2531 of the mouse Notch1 intracellular domain with a 3xFLAG N-
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terminal tag [30]. N1ICD was inserted into a doxycycline inducible lenti viral destination vector,

pCW57.1 (Addgene #41393, a gift from David Root) in order to construct a N1ICD lenti viral

expression vector. The 4xCSL luciferase construct (Addgene #41726) was a gift from Raphael

Kopan and contains 4 tandem repeats of the high affinity CSL binding sites (50CGTGGGAA30)

while transcribing for firefly luciferase [30]. The Hes1 luciferase construct was a gift from Jan

Jensen and consists of nucleotides -2553 to -201 relative to the murine Hes1 transcriptional start

site while transcribing for firefly luciferase. The Hes5 luciferase construct (Addgene #41724) was

a gift from Ryoichiro Kageyama and Raphael Kopan and contains the murine Hes5 promoter

(-800 to +73) relative to the Hes5 transcriptional start site while transcribing for firefly luciferase

[31].

Apoptosis assays

HMEC-1 cells were seeded into 6 well plates at a density of 150,000 cells/well and allowed to

grow for 24 hours. Cells were then treated with 0–100 μM concentrations of RSVT and/or

10 μM of the Notch inhibitor DAPT, and allowed to incubate for 24 hours. After incubation,

cell culture media was collected and cells were lysed in SDS page lysis buffer. Cell culture

media was pelleted and added to cell lysates. For a positive control for apoptosis, cells were

exposed to 15 minutes of ultraviolet (UV) light before lysing. Apoptosis was monitored

through western blotting for the presence of the apoptotic marker, cleaved caspase 3.

Luciferase assays

HMEC-1 and HAVSMC cells were seeded into 24-well plates at a density of 25,000 cells/well.

293T cells were seeded into 24-well plates at a density of 50,000 cells/well. The following day,

cells were transfected using LT-1 liposomes (Mirus). Cells were transfected with 100 ng/well

Hes1 luc, Hes5 luc, or 4xCSL luc plasmids which produce luciferase in response to Notch path-

way activation. Co-transfection with 30 ng/well of a CMV-Beta-Galactosidase construct was

used to normalize data for transfection efficiency and potential cell death/proliferation. Cells

were lysed 48 hours after transfection using passive lysis buffer (Promega) and lysates were

used to perform a luciferase reporter assay as per manufacturer’s protocol and analyzed using

a Promega Glomax Multi Detection System luminometer. Luciferase activity was normalized

to Beta-Galactosidase activity and values were reported as fold change to control. All condi-

tions were performed in triplicate for each independent experiment.

Cell viability assays

HMEC-1 cells were seeded into 96-well plates. Upon reaching confluency, cells were treated

with 0, 1, 10, and 100 μM polyphenols. After 24 hours, a triplicate of wells for each condition

was analyzed for cell viability using a WST-1 colorimetric assay. Absorbance spectra was mea-

sured at 410 nm using a BioTek Synergy Mx plate reader. Quantification of cell viability was

reported as a percentage of DMSO control (0 μM polyphenol).

Proliferation assays

HMEC-1 cells were lenti viral transduced with doxycycline inducible constructs that contain

WT N1ICD under the control of a CMV promoter. Cells were treated with 10 μM polyphenols

and seeded into 96-well plates at a density of 2,500 cells/well. Doxycycline was added to appro-

priate wells in order to induce N1ICD overexpression. After 24, 48, and 72 hours, a triplicate

of wells for each condition was analyzed for cell density using a WST-1 colorimetric assay.

Absorbance spectra was measured at 410 nm using a BioTek Synergy Mx plate reader.

Polyphenols regulate Notch
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Scratch assays

HMEC-1 cells were seeded into 24-well plates at a density of 25,000 cells/well. Upon reaching

confluency cells were treated with 10 μM and incubated for 24 hours. Wounds were made

using 200 μL pipette tips. Wells were washed 3 times with 1x PBS and media/polyphenol treat-

ments were replaced. Cells were placed in on on-stage incubator (5% CO2, 37˚C). Images were

captured using an EVOS FL auto microscope which automatically captured images every 30

minutes for 18 hours. After 18 hours, images were analyzed and wound area was calculated

using ImageJ. Percent area of wound closure was calculated using the following formula, (area

of wound at 0h - area of wound at 18h) / (area of wound at 0h X 100).

Western blotting

Cells were lysed in 1x SDS page lysis buffer and boiled for 5 minutes. Proteins were separated

through SDS page on 6%-15% polyacrylamide gels and blotted onto nitrocellulose membranes.

Membranes were blocked in TBS-T (140 mM NaCL, 25 mM Tris-HCL, pH 7.4, 0.1% Tween-

20) with 5% bovine serum albumin for 1 hour at room temperature. Membranes were incu-

bated with primary antibody (1:250, 1:500, or 1:1000) overnight on a rotator at 4˚C. After incu-

bation, membranes were washed 3 x 10 minutes in TBS-T before 1 hour incubation in

secondary antibodies at room temperature. Horseradish peroxidase conjugated secondary

antibodies were used at a concentration of 1:5000. After incubation with secondary antibodies,

proteins were detected by enhanced chemiluminescence. Primary antibodies against β-actin

(sc-47778) were purchased from Santa Cruz Biotechnology. Primary antibodies against cas-

pase 3 (#9662) were purchased from Cell Signaling Technology.

Results and discussion

RSVT induces Notch target gene transcription

A robust literature exists connecting RSVT with the Notch signaling pathway. The association

between Notch and RSVT was first established when Pinchot et al. employed a high through-

put chemical screening method to screen 7,264 compounds in order to identify Notch acti-

vating compounds [22]. Out of all the compounds screened in this study, RSVT was identified

as the strongest Notch activator. RSVT has been shown to induce apoptosis of endothelial

cells [32,33] and it was therefore important to first determine a sub-apoptotic concentration

of RSVT in which to examine Notch activation. Human Microvascular Endothelial Cells

(HMEC-1) were cultured in 1 (.23 μg/ml), 10 (2.3 μg/ml), or 100 (23 μg/ml) μM concentra-

tions of RSVT in the presence or absence of the Notch inhibitor DAPT and apoptosis was

monitored by western blot analysis of the apoptosis marker, cleaved caspase 3 (Fig 1A). Similar

to previous studies [32], we found that 100 μM solutions of RSVT induced caspase 3 cleavage,

but 1–10 μM RSVT showed no evidence of apoptosis. Notch inhibition did not induce apopto-

sis at 0–10 μM RSVT concentration, and did not reverse or enhance the stimulation of apopto-

sis by 100 μM RSVT treatments. To determine the effect of RSVT on Notch signaling, we

transfected HMEC-1 cells and Human Aortic Vascular Smooth Muscle Cells (HAVSMC) with

Notch responsive Hes1, Hes5, and 4xCSL luciferase constructs and incubated these cells in the

presence of 1–10 μM RSVT. In both cell types, and across all three Notch-responsive reporters,

RSVT activated Notch target gene transcription in a dose-dependent manner (Fig 1B and 1C).

These results demonstrated that RSVT controls Notch independent of apoptosis and estab-

lished a model on which we could examine additional polyphenols for Notch regulatory

activity.
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Polyphenols and endothelial cell viability

Having studied the effects of RSVT on apoptosis, we next compared cell viability upon treat-

ment with eight other polyphenolic compounds which share similar structures to RSVT. Api-

genin, chrysin, genistein, luteolin, myricetin, piceatannol, pterostilbene, and quercetin were

chosen based on their structural similarity to RSVT, compared to other polyphenols such as

epigallocatechin gallate (EGCG) or curcumin which are structurally less similar to RSVT. We

performed cell viability assays in HMEC-1 cells grown to confluency, then treated for 24 hours

with various concentrations of nine polyphenols (Fig 1D). With the exception of luteolin and

piceatannol, low concentrations (1 μM and 10 μM) of polyphenols did not significantly reduce

cell viability. For all the polyphenols tested, 100 μM concentrations significantly reduced cell

viability.

Fig 1. RSVT is a potent stimulator of Notch signaling. (A) RSVT does not induce HMEC apoptosis at 1–10 μM.

HMEC cells were treated with increasing concentrations of RSVT +/- DAPT. Cellular apoptosis was indirectly

examined by monitoring cleavage of cleaved caspase 3 from pro-caspase 3 by western blot. HMEC cells were treated

with UV light as a positive apoptosis control and protein loading was monitored by western blotting for α-actin. Data

shows that RSVT induces apoptosis at 100 μM. (B) Notch activation measured by three luciferase reporter constructs

in HAVSMC cells. Student’s t-test was performed to determine statistical significance compared to 0 μM RSVT

control. P-values are reported as � < .05, �� < .01, ��� < .001. Data represents n�5. Data shows that RSVT induces

Notch target gene transcription in HAVSMC cells. (C) Notch activation measured by three luciferase reporter

constructs in HMEC-1 cells. Student’s t-test was performed to determine statistical significance compared to 0 μM

RSVT control. P-values are reported as � < .05, �� < .01, ��� < .001. Data represents n�5. Data shows that RSVT

induces Notch target gene transcription in HMEC-1 cells. (D) Cell viability of HMEC-1 cells measured using WST-1

cell viability assay. Cell viability was quantified 24 hours after treatment with nine different polyphenolic compounds.

Cell viability as a percentage of DMSO control (0 μM) is graphed. Data represents the average of three replicate

experiments. Structures of each polyphenol are shown above respective graph. Bolded line depicts cell viability

measured for each polyphenol. Student’s t-test was performed to determine statistical significance compared to DMSO

control. P-values are reported as � < .05, �� < .01, ��� < .001. Data demonstrates that most polyphenols did not

drastically compromise cell viability when used at 1 μM and 10 μM concentrations. However, 100 μM polyphenol

concentrations significantly reduced cell viability for all nine polyphenols tested.

https://doi.org/10.1371/journal.pone.0210607.g001
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Other polyphenols induce Notch target gene transcription

Having confirmed RSVT activation of Notch signaling, we next made a direct comparison of

Notch induction by eight other polyphenols. In this assay, 293T cells were used because they

are easily transfectable compared to HMEC-1 and HAVSMC cells. Based on our cell viability

assays, we employed a 24 hour treatment of 10 μM polyphenols to study polyphenolic regula-

tion of Notch activity. We transfected 293T cells with the 4xCSL luciferase reporter and com-

pared luciferase signal in the absence or presence of various polyphenols. Since 293T cells

exhibit very low endogenous Notch activity, none of the polyphenols we tested demonstrated

any effect on endogenous Notch activity (compared to DMSO control) in these cells (Fig 2).

Therefore, we also examined the effect of polyphenols on Notch signaling in 293T cells that

were transfected with cDNA encoding the Notch1 intracellular domain (N1ICD) to activate

Notch. N1ICD co-transfection enhanced basal 4xCSL promoter activity, and treatment with

polyphenols elicited a variety of results (Fig 2). As demonstrated in HMEC-1 and HAVSMC

cells, RSVT enhances Notch signaling in 293T cells also. Of all the polyphenols we tested,

RSVT was the best inducer of Notch target gene transcription with a ~7-fold induction of

luciferase activity over DMSO/+N1ICD control. Apigenin, chrysin, genistein, and piceatannol

were also demonstrated to potentiate Notch target gene transcription to varying degrees less

than RSVT. Luteolin, myricetin, pterostilbene, and quercetin did not activate or repress Notch

Fig 2. Other polyphenolic compounds are Notch activators. Notch activation measured by 4xCSL luciferase assays

in 293T cells, by nine different polyphenols compared to DMSO (-) control, in the presence (+) or absence of N1ICD

(-) overexpression. Student’s t-test was performed to determine statistical significance. P-values are reported as � < .05,
�� < .01, ��� < .001. Data represents n�5. Data shows that resveratrol (RSVT), apigenin (APIG), chrysin (CHRY),

genistein (GENI), and piceatannol (PICE) activate Notch target gene transcription, but only in the presence of NICD.

Luteolin (LUTE), myricetin (MYRI), pterostilbene (PTER), and quercetin (QUER) do not activate Notch target gene

transcription.

https://doi.org/10.1371/journal.pone.0210607.g002

Polyphenols regulate Notch

PLOS ONE | https://doi.org/10.1371/journal.pone.0210607 January 17, 2019 6 / 14

https://doi.org/10.1371/journal.pone.0210607.g002
https://doi.org/10.1371/journal.pone.0210607


transcriptional activity. This result demonstrated that although these polyphenols have similar

chemistries, there are subtle and significant differences in their ability to activate Notch

signaling.

Polyphenolic regulation of endothelial cell proliferation

There are conflicting reports on the role RSVT plays in the regulation of cellular proliferation

[4,34] and there has not been a head-to-head comparison of polyphenol effects on endothelial

cell proliferation. Given our results that many polyphenols control Notch signaling, we next

compared the effect of RSVT and the other polyphenols on endothelial cell proliferation in the

presence or absence of elevated Notch signaling. For this study we used HMEC-1 cells which

had been transduced with lentiviral particles encoding N1ICD under the control of a doxycy-

cline inducible promoter (HMEC-1-N1ICD cells). Subconfluent HMEC-1-N1ICD cells were

treated with 10 μM polyphenolic compounds in the presence (i.e. high Notch activity) or

absence (i.e. basal Notch activity) of doxycycline and cell proliferation was monitored daily by

WST-1 over the course of 72 hours (Fig 3). In agreement with previous reports, overexpression

Fig 3. Polyphenolic regulation of endothelial cell proliferation. Proliferation of HMEC-1 cells measured by WST-1

proliferation assays. HMEC-1 cells which had been transduced with lentiviral particles encoding N1ICD under the

control of a doxycycline inducible promoter were used. One-way ANOVA followed by Bonferroni’s post-hoc tests was

performed to determine statistical significance. Differing letters represent statistical significant differences. Data

represents n = 6. Polyphenols which inhibit HMEC-1 proliferation in a Notch dependent manner include RSVT,

APIG, CHRY, MYRI and GENI. LUTE and PICE inhibit HMEC-1 proliferation during both basal and high Notch

activity. PTER and QUER do not alter HMEC-1 proliferation.

https://doi.org/10.1371/journal.pone.0210607.g003
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of N1ICD reduced cell proliferation [35,36]. Under conditions of basal Notch activity (i.e. no

doxycycline induction) only luteolin, and piceatannol were capable of inhibiting cellular pro-

liferation. However, in the presence of elevated Notch activity, all of the polyphenols, except

pterostilbene and quercetin, reduced cellular proliferation compared to DMSO control under

conditions of high Notch activity. Overall, RSVT reduced cellular proliferation by 22%, but

luteolin and piceatannol were the best inhibitors of proliferation, displaying a 42% and 46%

reduction in cellular proliferation respectively. From this evidence, we conclude Notch activity

is required for the inhibition of proliferation by RSVT, apigenin, chrysin, genistein, and myri-

cetin. Whereas, high Notch activity potentiates, but is not required for the inhibition of prolif-

eration by luteolin, and piceatannol. Finally, pterostilbene and quercetin did not significantly

affect proliferation in our model system.

Polyphenolic regulation of endothelial wound healing

RSVT and several other polyphenols have been shown to decrease endothelial migration, but a

head-to-head comparison of how these polyphenols affect cell migration has not been reported.

Therefore, we sought to compare the effect of various polyphenols on endothelial cell migration

using a wound closure scratch assay. To this end, HMEC-1 cells were grown to confluency and

treated with 10 μM concentrations of various polyphenols for 24 hours prior to monolayer

wounding. After wounding, cells were allotted 18 hours for migration, followed by subsequent

wound healing quantification as a percent area of wound closure. As previously observed [37],

we found that RSVT significantly decreased endothelial cell migration (Fig 4B). We also found

that apigenin, chrysin, genistein, luteolin, myricetin, and piceatannol also significantly inhibited

endothelial cell migration (Fig 4B & Supplemental). Of these compounds, luteolin had the larg-

est effect on migration, with only 30% wound closure after 18 hours (Fig 4A & 4B). Pterostil-

bene and quercetin did not reduce cell migration in a statistically significant manner.

Fig 4. Polyphenolic regulation of endothelial cell migration. Migration of endothelial cells measured through scratch assay analysis.

(A) HMEC-1 cells were grown in 10 μM luteolin or DMSO control for 24 hours prior to wounding. Micrograph images where taken at

0hrs and 18hrs after treatment. Area of wound is outlined. (B) HMEC-1 cells were grown to confluency and treated with 10 μM

polyphenols or DMSO control for 24 hours prior to wounding. Data depicts % wound closure after 18 hours. Student’s t-test was

performed to determine statistical significance. RSVT, APIG, CHRY, GENI, LUTE, MYRI, and PICE inhibit HMEC-1 cell migration,

whereas PTER and QUER do not alter migration. P-values are reported as � < .05, �� < .01, ��� < .001. Data represents n = 3.

https://doi.org/10.1371/journal.pone.0210607.g004
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Conclusions

Notch signaling, endothelial cell proliferation, and endothelial cell migration are collectively

important for angiogenesis and many polyphenolic compounds have been identified as regula-

tors of angiogenesis. However, there has been no direct comparison of polyphenols on these

cellular activities. Therefore, the goal of this study was to compare several polyphenolic com-

pounds for their ability to control Notch signaling, endothelial cell proliferation, and endothe-

lial cell migration. Throughout this study, we performed several side-by-side comparisons of

the biological potency of nine polyphenolic compounds. Despite the highly similar structures

of these polyphenols, we have found that some, but not all, of these natural products are

activators of Notch signaling or inhibitors of endothelial cell proliferation and migration.

Two of the polyphenolics (pterostilbene and quercetin) failed to show biological activity in

any of the experimental systems we examined, except that they reduce cell viability at high

concentrations.

Polyphenolic compounds fall into several categories according to their structure [38]. In

this work, we examined several polyphenolics with similar structures including the stilbenes

RSVT, piceatannol, and pterostilbene and the flavonoids apigenin, chrysin, genistein, luteolin,

myricetin, and quercetin. Many polyphenolic compounds have been shown to control Notch

signaling, however a direct comparison of the Notch regulating activities of these compounds

has not been performed. Compared to other polyphenols, RSVT has received the most atten-

tion for its role in regulating the Notch cell signaling pathway [23,24]. Through our analysis, it

is clear that RSVT warrants its attention as a robust polyphenolic activator of Notch as it dem-

onstrated the greatest Notch inducing activity. While RSVT was the most potent Notch activa-

tor out of the polyphenols we tested, apigenin, chrysin, genistein, and piceatannol were also

able to regulate Notch to lesser degrees. Our results are consistent with previous findings

showing that chrysin [39], and genistein [40] can control Notch, however the findings that api-

genin and piceatannol can also control Notch is novel. In contrast, two other polyphenols

which have been previously identified as Notch regulators, luteolin [41,42] and pterostilbene

[43], did not act as Notch regulators in the cell types we tested. Finally, myricetin and quercetin

have not been linked to Notch activity, and our data does not support a Notch regulatory role

for these polyphenols. Taken together, our results show that polyphenolic compounds are a

promising source of Notch regulators, but also provide a warning that cell-type specific

responses to polyphenols may account for conflicting data concerning these molecules.

While we found that RSVT works synergistically with Notch signaling to suppress endothe-

lial cell proliferation, apigenin, chrysin, genistein, luteolin, myricetin, and piceatannol also

demonstrated similar activity. In fact, out of the compounds we tested, luteolin and picea-

tannol were the most potent inhibitors of endothelial cell proliferation. Since luteolin and

piceatannol have previously been identified as an anti-angiogenic agents [44,45], our iden-

tification of these compounds as suppressors of endothelial cell proliferation may provide

mechanistic insight into their anti-angiogenic properties. Since Notch is known to induce

endothelial cell senescence [36,46], and we found that many of these polyphenols only acted as

anti-proliferative agents under conditions of high Notch activity, we speculate that these anti-

proliferative effects may be Notch-dependent. Additionally, the effects these molecules have

on cellular proliferation may expand beyond endothelium. Future work should assess the

effectiveness of these polyphenols for their ability to suppress tumor growth. Previous work

has found that luteolin [41,47] suppresses cell migration. In accordance, luteolin was the most

potent inhibitor of endothelial migration we tested. Notch activation has also been shown to

inhibit endothelial cell migration [48]. Additionally, genes working downstream of Notch acti-

vation, such as Hey1, are known to inhibit endothelial migration [49]. Thus, it is possible that
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polyphenolic-based stimulation of Notch signaling may be responsible for the anti-migratory

effects we observed. While our identification of these molecules as inhibitors of endothelial

migration is relevant to angiogenesis, future work should compare polyphenolic regulation of

cancer cell migration for their potential use as anti-metastatic agents. The observed polyphe-

nolic-based control over the endothelial cell behavior could be the result of crosstalk between

Notch and other signaling pathways. Integrin β3 is known to bear a RSVT receptor site [50],

and has been shown to be required for RSVT’s anti-angiogenic properties [14]. Our previous

work has shown that integrin β3 acts as a Notch regulator [51,52]. Based on this, it is tempting

to speculate that polyphenols modulate a Notch-integrin crosstalk mechanism to control

endothelial proliferation and migration. However, more work would be needed in order to

elucidate such a mechanism.

These results provide the first side-by-side comparison of nine polyphenolic compounds in

their ability to regulate Notch signaling, and endothelial cell proliferation and migration.

Angiogenic growth requires tight coordination of Notch signaling, endothelial cell prolifera-

tion, and migration in endothelial cells [53]. This study has demonstrated that polyphenols act

as modulators of angiogenic processes (Summarized in Table 1). Future work should expand

upon this analysis, comparing how polyphenols behave in more sophisticated angiogenic

models. Additionally, while angiogenesis is an essential step in tumor progression, performing

a comparative analysis of polyphenolic treatment in the context of cancer cell behavior is nec-

essary, and would complement this endothelial-based study, in order to gain a better scope of

the use of polyphenols as anti-cancer agents. More broadly, our findings have laid the ground-

work for the potential use of polyphenols as modulators of any developmental or disease pro-

cess in which Notch signaling, cellular proliferation, and/or cellular migration are involved.

While further exploration is necessary, we have shown that polyphenols are promising anti-

angiogenic compounds which may facilitate natural product based cancer-related therapies in

the future.

Supporting information

S1 Fig. Scratch assays. Migration of endothelial cells measured through scratch assay analysis.

HMEC-1 cells were grown to confluency and treated with 10 μM polyphenols or DMSO con-

trol for 24 hours prior to wounding. Micrograph images were taken at 0 hours and 18 hours

after wounding. Area of wound is outlined.

(TIF)

Table 1. Summary.

Notch activity Endothelial cell proliferation Endothelial cell migration

Resveratrol Enhancer Inhibitor Inhibitor

Apigenin Enhancer Inhibitor Inhibitor

Chrysin Enhancer Inhibitor Inhibitor

Genistein Enhancer Inhibitor Inhibitor

Luteolin Neutral Inhibitor Inhibitor

Myricetin Neutral Inhibitor Inhibitor

Piceatannol Enhancer Inhibitor Inhibitor

Pterostilbene Neutral Neutral Neutral

Quercetin Neutral Neutral Neutral

The summarization of the ability of individual polyphenols to regulate Notch activity, endothelial cell proliferation, and endothelial cell migration.

https://doi.org/10.1371/journal.pone.0210607.t001
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