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ABSTRACT

Volcanic eruptions are powerful natural phenomena that often occur unpredictably

in time and magnitude. Nearby communities are put at risk during volcanic unrest;

however, when hazards are well understood and clearly defined risk can be mitigated.

This thesis addresses the problem of forecasting the likelihood of future explosive

volcanic behavior by monitoring ongoing eruptive history with infrasound. I param-

eterize inter-event temporal behavior to distinguish between the eruption controlling

processes of material failure rate and magma and volatile supply.

I analyze data from Sakurajima, a type-example open volcano, using two local

(4 km from the vent) microphone arrays, which recorded infrasound continuously

from 18-25 July 2013. Both explosive and emergent degassing events are classified

using the infrasound data, along with the inter-eruptive quiescent periods. I use the

Fisher statistic to quantitatively measure acoustic signal coherency originating from

Sakurajimas active vent, Showa crater. This allows me to determine the statistics

associated with vent activity prior to 366 detected degassing events. All observed 366

repose intervals form a distribution that I compare with known exponential, gamma,

and Weibull probability distribution models. The entire set of repose interval lengths

is best fit by a gamma distribution model representative of a stationary Poisson

process, suggesting that events are controlled by material failure phenomenon rather

than a dynamic process such as changes in magma or volatile flux.
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Detected volcano infrasound is categorized based on recorded pressure amplitude

as either explosive (> 3.5 Pa) or passive degassing (< 3.5 Pa). By observing the sep-

arate distributions of repose interval lengths that precede the two eruptive modes, I

develop a forecasting variable, the Relative Squared Median Residual Sum (RSMRS)

that describes which mode is more likely to occur during an observed period of quies-

cence, based on past behavior. The forecasting reliability depends on the separation

and the peakedness of RSMRS distributions for each mode. A RSMRS threshold

value is used to anticipate either passive degassing or explosive degassing. Results

may differ for other volcanoes with different styles of eruption or for Sakurajima

activity during different periods.

The RSMRS forecaster is run coincident with signal detection and is capable of

operation in near real-time with the availability of telemetered data. The forecasting

algorithm is trained with enough data such that repose interval distribution for each

mode of activity begins to take shape. Consistent with Poisson process (gamma

distribution) assumptions, each eruptive mode converges on its respective arrival rate.

Explosion forecasting results in 76% true positive (anticipated explosion resulted in

explosion) rate at an RSMRS cutoff of 0.2998. The true negative rate was 97.5% and

is defined as correctly anticipating passive degassing following periods of quiescence.
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1

CHAPTER 1:

INTRODUCTION

“Those who do not remember the past are condemned to repeat it.”

-George Santayana

“History doesn’t repeat itself, but it does rhyme.”

-Mark Twain

The aphorisms above offer insight into the nature of historical pattern emergence

with the observation that no two sequence of events are exactly the same and high-

light the fact that understanding the past may allow for identification of a recurring

series of events. This motivates historical documentation of events as qualitative and

quantitative data. In a geophysical sense, natural phenomena and other measurable,

observable properties of nature serve as data that allow us to understand physical

Earth processes. Analysis of these processes may allow us to forecast future events

with some confidence.

Volcanic eruptions are powerful natural phenomena that often occur unpredictably

in time and magnitude. Even with timely warnings, volcanic eruptions present danger

locally as they produce explosions, lava flows, pyroclasts, and noxious gasses, putting

nearby communities and individuals at risk. When hazards such as explosive volcanic

eruptions are well understood and clearly defined, risk can be mitigated by lowering
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susceptibility to that hazard. This thesis addresses the problem of real-time risk

assessment during a period of sustained volcanic unrest through quantification of

the short term likelihood of future volcanic activity by analyzing recent and current

eruptive activity via infrasound recordings.

Chapter 1 is an introduction to Sakurajima Volcano, the Vulcanian style eruption,

and infrasound. Chapter 2 focuses on detecting infrasound activity at Sakurajima

Volcano using infrasound data recorded near the active vent in Showa Crater. I show

how this type of data is integral for volcano monitoring, in both the public safety and

scientific domains. In Chapter 3, the detected infrasound periods are used to build

an explosion forecasting model applicable in near-real-time. A statistical model of

observed wait times between individual events is constructed to describe the observed

activity. As activity is continuously monitored, changes in model parameters describe

temporal changes in surficial volcanic activity.

Various probability models have been used to describe observed volcano repose,

or quiescent, interval times to aid in eruption forecasting and help describe underly-

ing physical processes; often, multiple models provide a reasonable fit to the observed

inter-event time data, leading to ambiguity in expected behavior. Models are sensitive

to when, where, and how data is collected; for instance, seismic detection is often not

sensitive to the lower extremes of volcanogenic earthquakes, and historical eruptive

data is limited by observable evidence. This means intermediate length repose in-

tervals (and eruption events) are statistically more likely to be observed, introducing

bias into parameter estimation models. Continuous monitoring via infrasound micro-

phone arrays at volcanoes has the potential to reduce these observational flaws by

capturing a more complete record of surficial activity and temporal variations in ac-
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tivity. Eruption record completeness also depends on observation timescale. Richter

was among the first to describe the inverse relation between magnitude and frequency

that is observed for numerous natural phenomena, including earthquakes and volcanic

eruptions. At open-vent volcanoes degassing takes on various forms; gas can migrate

through pores in surrounding rock, bubbles can surface through lava lakes, or the

gas can pressurize resulting in explosive degassing. Often volcanoes exhibit multiple

styles of degassing in an eruptive sequence (eruption is defined as expulsion of gas, ash

or rock; sequence is defined as a set of related events). Sakurajima Volcano displayed

tremor-like degassing as well as explosive degassing during the recorded portion (18-

25 July) of the eruptive sequence. The significance of infrasound monitoring extends

to differentiating these types of events in order to assess the efficiency of simple ma-

chine learning algorithms as event type forecasters during the recording period. The

infrasound monitoring period used in this study captures 7 days of activity during a

period of sustained unrest at Sakurajima. Eruption activities at Sakurajima during

the observation period are limited to Showa Crater and, for the purposes of this study,

are assumed to be sourced from the same magma generating process, thus I refer to

this interval of activity as an eruptive sequence. Shifts between eruptive behavior

have been observed at Vulcan Villarrica, Karymski, and many other volcanoes.

1.1 Sakurajima Volcano

Sakurajima is an andesitic stratovolcano that rises from the Aira Caldera forming

Kagoshima Bay, Japan. The volcano has three craters (Minamidake, Kitedake and

Showa), two of which typically transition in activity (Minamidake and Showa). The

vent at Showa crater underwent a long dormancy from 1948 to 2006 when activity

resumed. Eruptions at Sakurajima Volcano are typically Vulcanian, characterized
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by short-lived, high-amplitude, impulsive explosions sometimes followed by vigorous

degassing lasting seconds to hours. Phreatic eruptions in 2006-2007 eventually tran-

sitioned to magmatic Vulcanian eruptions in Februaury of 2008. Activity levels at

Showa crater increased up to 2011 (Iguchi et al., 2013). Activity has been ongoing at

Showa crater with intermittence lasting up to months.

Tilt monitoring (Iguchi et al., 2008; Yokoo et al., 2014), precursory inflation ob-

served from infrasound (Yokoo & Ishihara, 2007; Uhira & Takeo, 1994), and repose

interval statistics (Varley et al., 2006) have proven useful in event detection (Ishihara,

1985) and forecasting (Garces, 2000) at Sakurajima. Given the historical trends of

ground inflation corresponding to increased eruption rates, it is believed that activity

at Sakurajima will continue as long as the shallow magma reservoir recharge con-

tinues (Iguchi et al., 2013). Recently, activity has resumed at Minamidake crater as

well as Showa (Venzke, 2015). In 2013 Showa was producing tens to hundreds of

small eruptions per month. This study focuses on a period of activity during 18-25

July 2013 when activity at Sakurajima was limited to Showa crater. Eruptive ac-

tivity was comprised of both intermittent, and sustained degassing events as well as

explosive eruptions with a wide range of amplitudes (Fig 1.1). Data were recorded

on infrasound microphone arrays nearby the Sakurajima′s active vent (Fig 1.2).
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Figure 1.1: Infrasound recordings of Vulcanian explosions at Sakurajima
recorded on array KUR July 18-25,2013.



6

Figure 1.2: Map showing Sakurajima Peninsula and infrasound array de-
ployment. The 2 arrays used in this study are circled in green; array orien-
tation at KUR is shown in detail. Topographic profiles are drawn from the
vent (left) to each array (right) (modified from Johnson & Miller 2016).
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1.2 The Vulcanian Eruption Process

Gas drives volcanic eruptions. As magma rises, lithostatic pressure (pressure

from weight of overlying rock) is reduced and gas bubbles grow in the magma. These

bubbles are much more buoyant than the surrounding magma, so they rise. Dur-

ing magma ascent, if there is no room for bubbles to grow, the magma becomes

over-pressurized. High viscosity magmas, such as the andesitic magma erupting from

Showa Crater, can easily become over-pressurized by hindering bubble growth. This

over-pressure often results in violent explosive eruptions, especially near (< 10 km

depth) the surface where over-pressures can reach high enough levels to cause spon-

taneous bubble nucleation. Alternatively, brittle failure of surrounding rock may in-

duce spontaneous bubble formation and growth. This instantaneous depressurization

drives gas exsolution/expansion and can cause magma fragmentation. Fragmentation

occurs when magma expands so quickly (typically due to rapid decompression) that

it reacts as a brittle solid rather than a viscous fluid, and tears apart to form ash

and pyroclasts (Alatorre-Ibargüengoitia et al., 2011; Mckee et al., 2014). Subsurface

magma movement and eruptions at the surface produce pressure waves that travel

through the solid earth (seismic) and the atmosphere (acoustic).

Vulcanian style explosions result from sudden depressurization of a shallow, erupt-

able, mixture of magma and gas that can result from failure of a viscous/solid cap at

the vent surface, stick-slip motion between the magma and conduit walls (Denlinger

& Hoblitt, 1999), preferential formation of large waves of gas-rich magma during

ascension (Michaut et al., 2013; Cassidy et al., 2015), or interaction with water. At

Showa Crater, Uhira & Takeo (1994) observed seismic data from 2 explosive eruptions

that lead them to propose a small shallow source of high pressure, presumably gas, as
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the explosive source. Local tilt monitoring and sulfur dioxide gas measurements also

support the hypothesis of a shallow, gas-rich, magma source. Infrasound monitoring

of volcanoes producing Vulcanian style eruptions can provide insight into and allows

us to answer questions about the conditions under which these types of explosions

occur (i.e. does the vent seal up prior to all explosions?).

1.3 Infrasound Wave Propagation

Material or gas erupted during a Vulcanian eruption rapidly displaces air, creating

pressure waves that propagate through the atmosphere in all directions as acoustic

waves. Low frequency (< 20Hz) acoustic microphones are sensitive to atmospheric

pressure waves produced during these types of explosions, thus are often used in

explosion source and wave propagation studies. Acoustic waves spread spherically as

they propagate away from a source. This geometric spreading reduces wave amplitude

inversely proportional to distance due to conservation of wavefront energy. At a large

(significantly greater than the aperture of a small array of sensors) distance from the

source, spherical spreading plays a minor role; the passing of the acoustic wave across

each array element can be approximated as a planar wave with no amplitude decay

(Rost & Thomas, 2002). It is advantageous to work with slowness (|~s|, reciprocal

of speed) instead of velocity for many calculations. The plane wave model of a

propagating disturbance recorded at a single location is given below (1.1).

φ(~x, t) = e(2πif(~s·~x−t)) (1.1)

φ(~x, t) represents a measurable quantity that is disturbed by a planar wavefront

perpendicular to ~s, at location ~x, with frequency f . The slowness vector, ~s, describes
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the direction and slowness (in s/m) of the wave. The plane wave approximation

simplifies calculations for expected arrival time differences from the source (Showa

Crater) to each receiver (1.2). Acoustic waves undergo frequency dependent disper-

sion, where high frequencies travel slower than low frequency components. This effect

is commonly ignored for low frequency waves in the atmosphere because the effect is

very slight.

With these simplifying assumptions, the only difference between volcano-acoustic

waves at each receiver is a time shift. To detect coherent energy, traces from each

microphone are shifted and stacked according to the expected plane wave arrival time

calculated from source-receiver geometry (1.2). Travel time (t) of an acoustic wave

from source to receiver can be calculated using equation 1.2, where ~s is slowness in

s/m and ~x is the position vector of the recording device relative to the source location.

t = ~s · ~x (1.2)

Expected travel time differences are calculated using a known source location,

array orientation, and slowness vector by subtracting travel times from one receiver

from another (1.3).

∆t = ~s · ~x1 − ~s · ~x2 (1.3)

Alternatively, travel time differences between array elements can then be used to
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calculate the slowness of incoming waves (Eq 1.4).

~s =
∆t

~x1 − ~x2
(1.4)

1.4 Volcano Infrasound Studies

Seismicity has been widely used for volcano monitoring (Kanamori et al., 1984;

Kawakatsu et al., 1992; Morrissey et al., 2008; Sanderson et al., 2010; Ichihara et al.,

2013; Miwa & Toramaru, 2013; Matoza et al., 2014; Ripepe et al., 2015; Lyons et al.,

2016). However, it is often the case that acoustic waves recorded on nearby micro-

phone arrays are more representative of the surface out-gassing process because waves

propagating through the atmosphere are less altered than waves traveling through the

subsurface (Garces, 2000). Acoustic waves propagate through a significantly more

homogeneous atmosphere and experience minimal scattering compared to the highly

heterogeneous layered subsurface that seismic waves travel through.

Volcanoes produce the majority of their acoustic energy in the infrasound (below

20Hz) frequency band (Johnson et al., 2004; Garces, 2000; Ripepe et al., 2007). In-

frasound microphones record a high-pass filtered version of atmospheric perturbations

produced by local or regional acoustic events, such as surficial volcanic activity, rock

fall, thunder, and ocean wave oscillations (Marcillo et al., 2012; Anderson et al., 2018).

Infrasound array processing techniques have been established for small-aperture mi-

crophone arrays, as well as regional microphone networks, similar to seismic array

processing. Acoustic wave properties such as speed and propagation direction can

be calculated from coincident microphone recordings using techniques such as cross-

correlation (Johnson, 2004; Matoza et al., 2018). This infrasound data has been used
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in previous research towards acoustic source localization and characterization (Kim

& Lees, 2014; Mckee et al., 2014; Yokoo et al., 2014), quantifying explosive volume

of erupted material (Johnson & Miller, 2014), and acoustic explosion characteriza-

tion (Matoza et al., 2014). Fee et al. (2014) composed a detailed introductory paper

focused on the open source dataset discussing how the data was collected, how the

infrasound microphones behave, and displaying event detections for highly correlated

(> 0.5 correlation coefficient) infrasound over 10 s windows.

Infrasound has been used to detect and catalog volcanic eruptions at many vol-

canoes (Matoza et al., 2014). Volcanic explosions are detectable from infrasound

recordings at local (<10km) and sometimes regional (<500km) distances. Important

statistics can be calculated from volcano infrasound, including event amplitude and

duration (Varley et al., 2006), acoustic signal frequency, and the rate at which events

occur over time. For the problem of event forecasting, the most useful statistic is the

arrival rate. The arrival rate is defined as the most probable number of events that

can be expected in a given amount of observation time. Inversely, we can use the

arrival rate to estimate the expected wait time between events. Data are typically

viewed as a histogram, or Probability Mass Function (PMF). The PMF shows the

relative probabilities of quiescent time lengths prior to events based on past records.

If an eruption sequence is monitored for long enough, the distribution of number of

events versus time will illuminate a probability model of what can be expected based

on previous observations. A more standard description of probability is the Prob-

ability Density Function (PDF), which takes the width of each bin into account to

estimate probability by dividing by the width of each bin.
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CHAPTER 2:

DETERMINATION OF VENT-SOURCED

INFRASOUND AT SAKURAJIMA VOLCANO

To robustly detect eruptive activity I use an objective, systematic, signal pro-

cessing algorithm capable of real-time application. Infrasound recordings from arrays

HAR and KUR are used to detect eruptive activity from Showa crater at Sakurajima

volcano by quantitatively measuring the similarity between microphone recordings in

a way that both highlights vent-sourced signals and identifies other possible sources

of correlated signals not sourced from the vent of interest (Showa Crater). Correlated

noise such as this is referred to as clutter.

Expected time shifts for acoustic waves sourced from Showa Crater are calculated

for each microphone according to Eq. 1.3 such that when the time shifts are applied

to the recordings, infrasound produced from the volcano arrives at the same instant

on all microphones. Under plane wave assumptions each microphone records the

same acoustic wave such that stacked recordings will sum constructively. Acoustic

waves that propagate across the microphones at different speeds or directions will

stack destructively. In order to quantitatively discriminate further against off-axis

infrasound waves, I calculate a ratio of constructive signal power to random noise

power using the Fisher statistic.
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2.1 Theory of the F Detector

2.1.1 The Fisher Statistic

The similarity of infrasound recordings is quantified using a test statistic called

the Fisher Statistic (F , Eq. 2.1).

F =
(J − 1)

∑n0+(N−1)
n=n0

[
∑J

j=1 xj(n+ lj)]
2

(J)
∑n0+(N−1)

n=n0
[
∑J

j=1 xj(n+ lj)− [ 1
J

∑J
m=1 xm(n+ lm)]]2

(2.1)

Derived from the analysis of variance, the Fisher Statistic measures the similarity of

multi-channel time series data as a ratio of stacked power over residual power. In

equation 2.1, J is the number of receivers used in the beam-stack, N is the number

of samples in each calculation interval, xj(n) is recorded amplitude of sensor j, and

n0 is the starting index for each interval. lj is a time shift applied to each trace to

achieve maximum stacking amplitude for signals of a desired slowness. If the source

location is unknown, slowness can be varied and the corresponding F statistic can be

used to determine the probability of a coherent signal propagating from a particular

direction. Once the recordings at each microphone are shifted according to a certain

slowness, signals coming from the correct azimuth and at the correct wave speed will

be more likely to produce a high F statistic. Signals from other sources will cross the

array with different speeds and azimuths; thus, calculated F statistic values will be

severely penalized due to the squared sum of the deviation about the mean signal in

the denominator.

A process can be parameterized by how often events occur. An informative way

to display this type of frequency data is in a histogram, or similarly a Probability

Density Function (PDF); a PDF is similar to a PMF, except a PDF takes each bin
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width into account when calculating the probability of observing a value in that

bin. An important aspect of the Fisher Statistic is the theoretical PDF described

by Fisher et al. (1943). Fisher’s logarithmic series distribution, the F distribution,

describes the probability of observing any F statistic score in the presence of random

Gaussian noise. The theoretical (background/expected) PDF can be constructed from

the known degrees of freedom (N1 = 2BT for the numerator and N2 = (J − 1)N1 for

the denominator) and noncentrality parameter λ = 2BT (SN)2 (Shumway, 1971). SN

is a (typically) unknown Signal-to-Noise Ratio (SNR), J is the number of channels,

B is the signal bandwidth, and T is the window length used for calculation. The

noncentrality parameter is used to shift the F distribution along the abscissa in order

to maintain the associated Type I error probability during periods of non-Gaussian

distributed background noise. In theory, this allows me to implement a cutoff value

of the test statistic F such that scores above the cutoff are considered volcanogenic

signals, while lower scores are indicative of noise not associated with the volcanic vent

(background noise).

The survival function (Eqn. 2.2) of expected Fisher statistics determines the

likelihood that the value represents signal other than random Gaussian noise as pro-

posed by the theoretical distribution. This curve provides statistical confidence (i.e.,

75%, 90%, 95%, 99%, etc.) that any observed F score indicates a source other than

random chance. Fisher et al. (1943) shows how the F distribution is related to the

Poisson distribution under certain simplifications. Both distribution models belong

to the exponential family.

Survival Function = 1− CDF (2.2)
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Table 2.1: Types of error

H0 True
False True

H0 Inference
False True Positive False Positive (ε1)
True False Negative (ε2) True Negative

2.1.2 Fisher Statistic Event Detection

Melton & Bailey (1957) first suggested the F statistic as a signal detector in 1957

where he used it to detect simulated seismic wave forms. Booker & Backus (1965)

first showed the mathematics in matrix form and proposed a robust automatic seismic

detection method using a statistically relevant threshold value of the F statistic to

differentiate scores indicative of signal from those that arise from random chance in

the presence of no source. He also described two parameters that describe Type I

(Eq. 2.3) and Type II (Eq. 2.4) errors, false positive detection and false negative

event detection, respectively which are used to measure the goodness of the signal

detector. Types of error are shown in Table 2.1, commonly referred to as the confusion

matrix. ε1 and ε2 are described in terms of signal detection using a threshold (F0) for

statistical significance.

ε1 = Prob{F > F0 | F ∈ I} (2.3)

ε2 = Prob{F < F0 | F ∈ II} (2.4)

F0 is a cutoff value typically chosen to represent the 95th or 99th confidence level

based on the calculated background F distribution.

The F statistic can be used in frequency-wavenumber (f-k) analysis, commonly re-
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ferred to as ‘beam forming’, which calculates the direction and speed of wave energy

that produces the highest F statistic value. Beam-forming is useful for differentiat-

ing between various sources if they differ in location, frequency, or wave speed; an

interested reader can find a detailed background on f-k analysis from Rost & Thomas

(2002). Beam forming calculates an F statistic value for various time shifts lj to sim-

ulate many slowness vectors that have an azimuth and wave speed associated with

them; for a visual representation refer to figure 2.1.

2.1.3 Detection in the Presence of Correlated Noise

The F detector is robust under the assumption of a constant noise level(Shumway,

1971)(Abramowitz & Stegun, 1972). A Gaussian background noise distribution is typ-

ically assumed for identifying signal using the F statistic. When background noise

is correlated across array elements the statistical likelihood that a high F statistic

(above F0) will be observed in the absence of signal of interest (vent-sourced infra-

sound) increases. Sources of correlated noise, also called clutter, include ocean waves,

industrial anthropogenic noise, vehicle noise, man-made explosions, etc. Correlated

noise shifts the background F distribution towards higher scores, inconsistent with

the theoretical background CDF (Fig. 2.2). Clutter may also impact the shape of

the F distribution, complicating the link to Fisher’s theoretical distribution of signal

coherence.

Douze & Laster (1979) modeled signal to correlated noise ratios and laid out

assumptions necessary to approximate the background F-statistic in the presence of

correlated noise. The results show expected false alarm rate for various signal to

correlated-noise ratios of the beam (time-shifted, stacked signal).
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Figure 2.1: Beamforming using Fisher statistic values calculated from 5
minutes of infrasound data at arrays HAR and KUR are plotted as rose
plots around each array. Colored rings denote the F statistic distribution
peaks for the associated azimuth; very low background scores have been
removed for clarity. Hot colors signify high F statistic value and a high
number of those values observed.
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Figure 2.2: a) Computed theoretical background cumulative distribution
functions for a range of numerator and denominator degrees of freedom.
The numerator degree of freedom is equal to 2BT , and denominator degree
of freedom equals 2(J − 1)BT ; B is the signal bandwidth [Hz], T is the
duration of the sample window [s], and J is the number of receivers used
to calculate F. b) F CDF has been shifted as an example of how a correlated
noise source can influence the observed background CDF by raising the
observed F values.
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Booker & Backus (1965) and Arrowsmith et al. (2009) displayed two methods

for adapting the detector to correlated noise in the signal band. Booker (1965) hy-

pothesized that simply raising the detection threshold will produce less false positives

during periods of correlated noise. This is intuitive, but raising the threshold (F0)

increases the likelihood of Type II errors for faint coherent signals. Arrowsmith et al.

(2009) used a moving adaptive window that encapsulates the entirety of the corre-

lated noise period and applies a scaling factor c (Eq. 2.5) to all coherency scores

in the observation window such that the peak associated with unwanted correlated

noise sources matches the peak of the theoretical background PDF with no correlated

noise source. A smaller moving window that runs inside the larger adaptive window

is used to detect F scores outside of the background PDF and count them as signal

(Arrowsmith et al., 2009).

c = (1 + J
Ps
Pn

) (2.5)

F statistics in the large adaptive window are scaled by c, where J is the number of

array elements, Ps is the signal power of the beam stack, and Pn is the noise power of

the beam stack. The Signal-to-Noise Ratio (SNR) Ps/Pn is often unknown in nature,

which is why other graphical and statistical methods have been explored (Blandford,

1974). Scaling the F statistic values to match the theoretical background pdf allows

for the statistical threshold value to remain unchanged throughout the observation

period; this is important for assessing the confidence of detections. A problem with

this method is that the F statistic probability distribution is assumed to have the

same shape as the observed F PDF with correlated noise sources, as displayed on the

right in figure 2.2. In my observed distribution of infrasound F scores at Sakurajima

this assumption is invalid; correlated noise F statistic distribution has a wider log-



20

normal distribution which would give rise to a high false positive rate using the peak

matching method.

The adaptive window used by Arrowsmith et al. (2009) also increases the likelihood

of Type II errors by scaling possible true signal F scores below the detection threshold

F0. Additionally, this approach has the potential for Type I errors (false positives) in

the case where correlated noise events are shorter than the adaptive window length.

In this scenario a short instance of correlated noise may be regarded as true signal.

Rigorous tuning would likely be required for each dataset for detection of specific

events.

The adaptive F detector that I employ operates on a null hypothesis that the

observed statistic comes from the empirically constructed background PDF, or scaled

‘clutter’ PDF. I apply a method similar to Arrowsmith et al. (2009) where calculated

F statistics are scaled to fit the theoretical background PDF. However, instead of

matching the peak of the theoretical background distribution to the observed clutter

F statistic probability distribution peak, I match the 99% confidence bound of the

expected F statistic background CDF to that of the observed CDF; this produces a

statistically robust threshold value for F that is largely independent of the observed

distribution shape.

The observed F statistic distribution shape can not be matched by a translation

of the expected background F scores. If this were the case then matching the peak

of the observed distribution to the theoretical one would be optimal because all sta-

tistical relevance would be maintained by the scaling of Fisher statistics. In the case

where the distribution shapes are not similar, peak matching will not ensure that the

percentiles of the observed distribution are statistically accurate when compared to
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the theoretical F distribution. This can be seen in Figure 2.4 where the distributions

associated with clutter are distributed log-normally. To maintain the the highest

level of statistical accuracy, the observed distribution should be scaled to match the

percentile of interest (statistical detection threshold). This will ensure the correct

confidence based upon Fisher’s theoretical distribution.

The theoretical CDF is used as a priori information to assess an initial F statistic

cutoff. As data is passed through the detection algorithm, the observed background

CDF is updated. A bias correction, necessary in the presence of correlated noise, is

applied to match the 99% confidence bound of the theoretical CDF. This automated

process uses only a selected confidence bound and the theoretically calculated F CDF

to self-regulate detections. Results can be computed for any necessary confidence

level. The Adaptive Bias Correction Coefficient (ABCC), ĉ99, is continually updated

as data is passed through the algorithm and takes the form

ĉ99 =
P99(CDFTheory)

P99(CDFObs)
(2.6)

This value is used to scale calculated F values such that F scores produced from

clutter are not counted as vent-sourced signal. As stated before, clutter will raise

all observed F statistic scores. The ABCC is updated as scores below the current F

cutoff value populate the observed background PDF, raising the 99% F value which

is analogous to raising the ABCC. Statistical significance is preserved at a known

confidence level. This is important because it does not require a known signal-to-

noise ratio or an expected level of clutter. It is only necessary that the experimental

setup (source-receiver geometry, setting, signal bandwidth, etc.) ensures that the
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signal of interest has the highest statistical likelihood for producing the highest F

statistic. There should also be a gap between the distribution of F scores produced

from clutter and those produced from the source to be monitored. This should be

achieved if the experimental setup is optimized for signals of interest, however may

not be achievable in circumstances of low signal power compared to background noise.

One extremely valuable feature of this routine is the discrimination between different

sources located in the same direction relative to an array. Since signal power is an

element of the F statistic, sources with different amplitudes will have their own F

statistic distribution, that may overlap, but should be distinct from each other. This

will be shown later on when I discuss F statistic distributions observed at array KUR.

The F ADAPT.m algorithm (Fig 2.3) does not use the detected F score values so

as to never limit the percentage of detections to total number of data; only sufficiently

low scores are used for constructing the empirical background PDF. The ABCC is

shown to quickly converge to an ideal scaling factor very close to one after a few

minutes of processing recordings that contain elevated background scores. A value

greater than one is expected to maintain statistical confidence in the observed back-

ground PDF. This value may continue to change depending on how populated the

observed background PDF becomes, the ABCC will vary accordingly. The scaling

factor is only applied to the next set of calculated F statistics. The value quickly

approaches, but does not reach, one because the F scores that populate the observed

F distribution are descaled (multiplied again by the ABCC). This allows for quick

convergence (Fig 2.4) and eventual redundancy of the ABCC, as the 99% is very

sensitive to high F scores in the distribution and remains fairly insensitive to low and

moderate values. Early on, when the ABCC is >> 1, the values that populate the
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background F distribution raise the 99% to its optimal value.

Figure 2.3: Flow of F ADAPT.m signal detection algorithm.

The ABCC can be considered the non-centrality parameter, as it described the

relationship between the theoretical and observed background PDFs as a linear shift

about the abscissa. The ABCC converges to a value necessary to uphold the statistical

confidence of signal detection, given clutter in the signal. If there is no clutter, the

value of ĉ99 should be one.
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Figure 2.4: The Adaptive Bias Correction Coefficient is used to scale F
statistic scores in the presence of clutter such that the observed 99% of the
scaled distribution matches the theoretical distribution. The value con-
verges to near 1 after about 3 hours for even extremely high confidence
thresholds. The value converges because scaled values less than F0 popu-
late the observed distribution, raising the 99% to a more optimal value.
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2.1.4 Synthetic Event Detection

The adaptive algorithm was tested on synthetic data. I constructed synthetic

recordings by convolving a characteristic Sakurajima eruption waveform with a time

series of spikes at semi-regular intervals; Gaussian noise was added to each synthetic

recording at a SNR of about 4, and 2.5Hz sine waves were added to the second half

of each trace to represent correlated noise. The synthetic time series and associated

F scores are shown in Figure (2.5), along with a Receiver Operating Characteristic

(ROC) curve that was constructed using the synthetic data. This curve shows the

true detection rate to the false detection rate for various statistical cutoff values;

the value I used was 0.99. The resulting 3.376% false positive detection rate aligns

with results from a study by Wirth et al. (1971), which modeled expected detection

statistics using the Fisher statistic for various beam stack Signal-to-Noise Ratios as a

function of the number of array elements and signal and ambient noise characteristics.



26

Figure 2.5: (Main) Receiver Operating Characteristic (ROC) curve dis-
playing the rate of true detections to that of false detections; optimal
detection rate is 100% true synthetic event detection with 3.376% false de-
tections. (Top, center) Time series of synthetic eruptions with algorithm
detections shown in green; background noise and clutter are shown in red.
(Bottom, left) PDF of separated F statistic scores. (Bottom, right) CDF
showing the theoretical and observed background F statistic scores; 30s
interval detections are shown for the last line of data as green stars.
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2.2 Application of the F Detector

2.2.1 Infrasound Data Collection and Pre-processing

Two infrasound microphone arrays (KUR and HAR) recorded quasi-continuously

on the eastern and western flanks of Sakurajima Volcano from July 18 - 25, 2013.

Both arrays were approximately 3.5km away from the active vent (Showa Crater).

Array KUR comprised six microphones on the eastern flank with line of sight of the

crater edifice. Array HAR comprised three microphones on the western flank be-

hind substantial topography. Both arrays were approximately 30m in diameter, all

instruments used in this study were InfraBSU infrasound microphones with a corner

frequency (3dB down) of 0.04Hz connected to 24-bit Omnirecs DATA-CUBEs record-

ing at 200 Hz (Fee et al., 2014). Microphone details are similar to those discussed in

Marcillo et al. (2012).

The recorded infrasound data contains signals from volcanic activity at Sakura-

jima, but also records pressure variations from ocean waves crashing on the shore,

wind, thunder, ambient temperature and pressure changes, anthropogenic (industrial

and vehicular) activity, and much more. One of the goals of the infrasound array

deployment was to test topographic effects on infrasound wave propagation, using

eruptive activity at Sakurajima as a source. In this study, I use the two infrasound

arrays to identify volcanic infrasound signal among other sources of infrasound to

determine when the vent at Showa Crater is actively producing infrasound.

In order to study the volcanogenic infrasound data, I filter the recordings between

0.5 and 3Hz using a 2-pole Butterworth filter. This helps remove signals unrelated

to the volcano that contaminate the data such that the data is representative of
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volcanic activity. However, there is still noticeable wind (and other) noise present in

the infrasound data within the frequency band of the volcano infrasound.

2.2.2 Event Detection at Showa Crater

In the theory of the F statistic, it is assumed that there exists a cutoff separat-

ing background noise (and clutter) from the signal of interest such that F statistics

indicative of signal are statistically identifiable. The separation of F statistics by

multiple sources is evident in the total observed F PDF (Fig 2.6) for the 7 days of

data, I regard these sources as random background noise, off-axis correlated noise

(clutter), and vent-sourced signal. A single F statistic is calculated at each sample

point of the infrasound recordings. Each calculation, however, represents the F statis-

tic from 15s of data (15s × 200 samples
s

= 3000 samples). The observed F statistic

PDF is trimodal, suggesting three signal contributions. I use beam-forming at array

HAR to differentiate acoustic energy associated with nearby Kagoshima city from the

acoustic signal from Showa Crater. These sources are in opposing directions at array

HAR, however at array KUR the active volcanic crater is in the same direction as the

city. Energy from these sources is indistinguishable from beam-forming calculations

at array KUR. Beam-forming results show that the central peak of the F distribution

is most likely associated with correlated noise from the direction of Kagoshima city.

To obtain the categorized F statistic results I use Temporal Context Event Detec-

tion (TCED). TCED places F statistic scores in temporal context, like a time-average.

Temporal analysis is necessary due to the impulsive nature of wind gusts and other

infrasound noise that produce intermittent detections during periods of probable,

sustained, low amplitude infrasound signals at Showa Crater. This low amplitude

volcanic infrasound interrupted by higher amplitude incoherent noise (wind) differs
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Figure 2.6: Infrasound detections for seven days at Sakurajima. Detected
events are shown in green, correlated noise pollution not associated with
the volcano is shown in yellow, and non-detections are shown in red. F
statistics computed at 15s intervals at array HAR.
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distinctly from periods of intermittent signal separated by extremely low amplitude

(negligible) ambient noise. Diurnal patterns of variable wind noise are noticeable in

the infrasound data. To combat this artifact, I look at the distribution of F statistics

over a short time window (30s) to get a better representation of the context of each F

score. Thus, a loss of loss of vent-sourced signal lasting less than 30s is disregarded,

yielding more plausible detection results during windy periods. Although wind noise

can produce short bursts of incoherent infrasound, F statistic scores for low amplitude

degassing events are still well above those produced from clutter. The inclusion of

intermittent low F values is displayed in figure 2.6 as the left tail of the vent signal

PDF extends into the background noise PDF. This rectification lowers the amount of

signal detection intervals from 726 down to 366.

2.3 Detection Results

Detections at each array are used in conjunction to determine coherent infra-

sound originating from the vent accounts for 54.4% of the acquisition duration at

99% confidence, using the adaptive bias correction coefficient scaling method. Ex-

plosive eruptions and degassing immediately following explosions take up one third

(1
3
) of the total open-vent duration. Repose intervals (quiet periods where no infra-

sound is detected) range from 1 to 400 minutes in duration. Prior to all 28 detected

explosions (defined here as an impulsive compression greater than 3.5 Pa recorded

peak amplitude followed by a subsequent rarefaction) the absence of vent-sourced

infrasound is observed on both arrays. Figure 2.7 shows the resulting 726 detections

from the adaptive F detector in green, and non-detections in red, for the week long

observation period. From the 3.376% false detection rate found from the ROC curve

constructed from synthetic data, I estimate a false alarm rate of approximately 2
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events/day for the 366 detections over 7 days (an estimated 14 total misdetections).

This estimate assumes that the Signal-to-Noise Ratio (SNR) remains around 4 to 1

for volcanic signal, according to work done by (Wirth et al., 1971).

One goal of this study was to determine when the volcanic vent is closed. Un-

fortunately, the presence of clutter hinders the ability to confidently determine all

periods of vent closure solely from infrasound data. Another problem with measuring

the F statistic to determine signal coherence is multipath affects, such as waveform

reflections that may propagate across the acoustic array at various apparent wave

speeds and direction. These reflections are a likely cause for intermittent reduction of

coherency scores during, or shortly after, an infrasonic event. An observation support-

ing this idea of interference is observed on array KUR when, just after an identified

explosion at Showa Crater, coherent signal is detected from an azimuth associated

with mountainous topography a few miles southeast of KUR. From this observation I

assume error in some of the short repose intervals, especially when distinct periods of

moderately high amplitude, tremor-like degassing are interrupted for brief (< 1 min)

periods while Root Mean Squared (RMS) amplitude is sustained (Fig 2.8). Theoret-

ically this affect would be minimized by the presence of two independent arrays, but

unfortunately array HAR is much less comprehensive in detections.

Figure 2.8 displays three explosions, each preceded by no detectable acoustic sig-

nal. I attribute the lack of coherent vent-sourced infrasound to a sealing of the vent

by a viscous cap at the surface, such as the model proposed by Woods (1995). High

frequency (0.5 − 1 Hz) transitions from open to close (and vice-versa) are observed

during supposed sustained volcanic degassing (Fig 2.9) that requires a fluid cutoff

value for event detection, less there be multiple detections per single out-gassing
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event. Rather than observing F statistics as independent values, uncorrelated with

neighboring values, I observe the distribution of other F values local to the each value

in question such that the value is put in a temporal context. This requires me to

choose a representative time duration to determine vent status (opened or closed) of

1 minute. From this time-based signal detection scheme I obtain F statistic catego-

rization results that reflect reality, opposed to an idealistic Gaussian Mixture Model

(GMM) result (Fig 2.10).

The correlated noise identified in the F statistic PDFs for each array is assumed

to be anthropogenic noise from Kagoshima, where a city and busy port are located

just 8km from the volcano. Array HAR, located on the eastern flank of Sakurajima,

between the city and volcano, allows for robust distinction between city- and vent-

sourced signals. At array KUR the Showa crater vent shares a common azimuth with

Kagoshima, introducing difficulties in differentiating clutter from vent-sourced signal

at array KUR using techniques like beam-forming or cross-correlation. However, the

magnitude of the F statistic can be used to differentiate between these two sources,

even in the instance of a shared azimuth relative to the microphone array.

Since I am focused on real-time, automated, volcano-acoustic event detection to

be used for forecasting, the value that the ABCC converges on is not enacted on

previously processed data. This means that early detections have a higher chance of

containing false positive detections until the ABCC converges to a statistically robust

value. In other words, if the detection algorithm started in the middle of the 7 day

dataset and then looped back to the first half, detection results may differ slightly,

however, figure 2.11 illustrates how minimal this affect is on detection precision. In

panel a) the adaptive detection algorithm is used on one hour of recorded infrasound;
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in panel b) the one hour infrasound time series is run through the algorithm starting

30 minutes in, and then ending with the first 30 minutes. Signal determined to be

sourced from Showa Crater is plotted in green for each time series, while clutter and

background noise are shown in red. ABCC convergence for each case is shown in panel

c). Convergence is quicker for the first case only because the second case contains

constant volcanic signal for about 18 minutes. The detection of coherent signal well

above the expected background pdf does not affect the bias correction coefficient.
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Figure 2.8: Three explosion events followed by degassing are identifiable
from both signal cross-correlation and calculation of the Fisher statistic.
Each explosion is preceded by the absence of detectable acoustic signal.
Infrasound waveforms are plotted in excess pressure (Pa), running nor-
malized cross-correlation scores range (-1, 1), and the Fisher statistic is
plotted on a loge scale.
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Figure 2.9: A close up of the second explosion tail in Figure 2.8 shows
very short duration, low amplitude, discrete events; this study regards
transient signals such as these as one single open-vent occurrence, as it is
unclear in the coherency scores of any loss of signal; the F statistic remains
elevated.
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Figure 2.10: On the left is an idealized F statistic categorization method
using hard cutoff values; while on the right, values are placed in temporal
context.



38

Figure 2.11: A randomly selected hour of infrasound is shown as a time
series in panels a) and b). In panel a), the detection algorithm starts at
time zero and moves through the hour at 15 seconds intervals. Panel b)
shows the same infrasound time series, but the detection algorithm starts
30 minutes in and loops back through the beginning. Panel c) shows
the Adaptive Bias Correction Coefficient (ABCC) value. Black arrows
illustrate the first loss of coherent volcano-sourced infrasound seen by the
detection algorithm.
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2.4 Discussion

Observed in the F statistic distributions calculated independently for each array

are slight translations of both the peak associated with clutter, and the peak repre-

sentative of volcanic infrasound produced from the vent at Showa Crater. I propose

that site location is responsible for the variations observed between the two F statistic

distributions (Figure 2.12). One of the goals in mind during this week-long infrasound

deployment was to observe the effects of topography on volcano infrasound; the two

arrays used in this study differ in their placement such that local topographic effects

can be observed.

Microphones at array KUR are situated on the Eastern flank of Sakurajima with

line of sight to Showa Crater rim, while array HAR is located on the Western flank

of Sakurajima on the leeward side of significant topography from Showa Crater. This

difference in site topography is evident as a shift of the F scores produced from

volcanic infrasound signal about the abscissa. The F statistic scores associated with

volcanic infrasound signal are greater at array KUR than at array HAR. This means

signal recorded on microphones at array KUR have a higher signal to noise ratio.

The background noise distribution is almost identically positioned at both arrays,

but the two higher-scoring peaks (denoting clutter and volcanogenic infrasound, re-

spectively) in the F statistic distributions are positioned differently for each array

(Fig. 2.12). Clutter is more coherent at array HAR, while calculated F statistics of

vent-sourced infrasound do not score as high at array HAR compared to array KUR.

I draw two conclusions from these observations:

• Volcano-sourced infrasound signal coherency scores are reduced at array HAR

due to signal distortion from local topography.
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Figure 2.12: Calculated F statistics for both arrays shown as histograms.
N is the number of samples used in each histogram.

• Clutter producing the central peak in each F score distribution is associated

with anthropogenic noise from Kagoshima Bay.

2.5 Summary

From the previously described array processing methods, I obtain a time series

record of volcanic infrasound activity that allows for quantitative categorization of

eruptive behavior and temporal behavior analysis. I have shown how the Fisher

statistic can be used as a statistic to differentiate a signal of interest from continuous

background signal (clutter) and random noise. This technique may be valuable in

scenarios where beamforming may fail, such as in the case where two signal generators

share a common azimuth from a single array of sensors.

I use the maximum recorded pressure amplitudes of Sakurajima infrasound to cat-

egorize detections into either emergent, tremor-like degassing events (< 3.5 Pa peak
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amplitude, recorded) or explosive eruptions (> 3.5 Pa peak amplitude, recorded). By

sorting events into two categories, I calculate statistics independently for both types

of activity for statistical eruption forecasting between event types.

Detection of coherent infrasound originating from the vent account for 54.4% of

the acquisition duration as determined by using independent infrasound detections

from arrays HAR and KUR. Explosive eruptions and associated degassing take up

nearly one third of the total open-vent duration. Repose intervals (quiet periods

where no infrasound is detected) range from 1 minute to approximately 6 hours in

duration. Prior to all 28 detected explosions the absence of vent-sourced infrasound

is observed at both arrays.
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CHAPTER 3:

INFRASOUND REPOSE INTERVAL

DISTRIBUTION MODELING AND

STATISTICAL EXPLOSION FORECASTING

This chapter applies probabilistic modeling and forecasting methods to the vol-

canic infrasound characterized in the previous chapter. Probabilistic models param-

eterize the the likelihood of a random variable taking on a certain value based upon

the distribution of past observed values; for example, the rate parameter of the Pois-

son probability distribution function controls the arrival rate of a random event. The

statistical model used here describes the probability of observing an inter-event time

(time from the end of one event to the beginning of another) in terms of the arrival

rate. The arrival rate is a parameter of the Poisson distribution that describes the

most probable number of events to be observed per unit time. Thus, parameterizing

the distribution of repose intervals between recorded volcanic infrasound events can

provide insight into how probable any number of events are to occur in a given time

interval.

Statistical probability models that have been employed on the distribution of

wait times between detected volcanic events include the exponential, Weibull, log-

logistic, log-normal, and gamma probability models (Varley et al., 2006). Each of
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these distributions allow for different parameterization of volcano behavior. The

single-parameter exponential distribution describes the rate at which the frequency

of observed events decreases as event magnitude increases. The Weibull and gamma

distributions are generalized versions of the exponential distribution and model non-

stationary and stationary time series, respectively. The two parameter Weibull distri-

bution (non-stationary process) can be used to describe whether probability of event

occurrence increases or decreases as time after a previous event increases. The two

parameter gamma distribution (stationary process) has been used to describe system

failures as a function of time. Both distributions have been used to model volcano

repose interval distributions.

Volcán de Colima (May 2002) and Karymsky (1997 and 1998) repose datasets have

been modeled by Weibull distributions (Varley et al., 2006). The Karymsky repose

model has a shape parameter greater than one, representing a non-stationary process

that has decreasing likelihood of event occurrence as time after a previous event

increases (Varley et al., 2006). The Volcán de Colima repose interval distribution

model has a shape parameter less than one, representing a non-stationary process

with increasing likelihood of event occurrence as time after a previous event increases.

Volcán de Colima (June-July 2003, and March-September 2004) repose interval data

were separated into two event types (explosive and degassing) that were best fit by

a gamma distribution model. Furthermore, a daily average repose interval length at

Colima over the six month period March-September 2004 was modeled as a log-logistic

distribution(Varley et al., 2006). This shows the sensitivity of statistical probability

models on processed data.

Three statistical probability models (exponential, Weibull, and gamma) are used
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to parameterize one week of infrasound data from Sakurajima. The data was pro-

cessed and characterized previously as Chapter 2 of this thesis. During periods of

persistent activity, such as the eruptive period from which the week long infrasound

recordings represent at Showa Crater July 18-25, 2018, the wide range of volcanic

behavior and structure of repose interval distribution of detected events can be used

to statistically determine probable future repose interval durations.

I make assumptions necessary to model the week long record of volcanic activity

at Sakurajima as a Poisson process (Table 3.1).

Table 3.1: Poisson Assumptions

Independence The occurrence of an event does not change the probability of
another event occurring.

Constant ar-
rival rate

Over a long enough observation period, the number of events per
unit time converges to a real value.

Sequentiation Two events cannot occur at the exact same time.

Proportionality The probability of an event occurring in an interval window is
proportional to the window length.

Under these assumptions, the probability of observing any number of events can

be modeled as a function of interval time τ , number of events K, and intensity λ as

P (K) = exp(−λτ)
(λτ)K

K!
for K = 1, ..., n (3.1)

This relation provides a quantitative statistical assessment of hazard (event) likeli-

hood based on previous observations. A constraint of this distribution model is the

discrete nature of K!, however, the gamma distribution model provides a continuous

analog to the Poisson distribution
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The gamma distribution model takes the form

P (X;α, β) =
βαxα−1e−βx

Γ(α)
for x, α, β > 0 (3.2)

where α is the shape parameter, β is the rate parameter, and Γ is the gamma

function evaluated at α. A continuous distribution is necessary to model a continuous

variable such as time. The gamma distribution is a two-parameter generalization

of the exponential distribution. For γ = 1 the gamma distribution reduces to the

exponential distribution.

The Weibull probability distribution (3.3) is also a generalization of the exponen-

tial distribution.

P (X; kw, λ) =
kw
λ

(
X

λ
)kw−1e−(X/λ)

kw
for X, kw, λ ≥ 0 (3.3)

Parameters kw and λ are the shape and scale parameters, respectively. The Weibull

distribution does not model a stationary process. Depending on the value of kw,

the rate at which events occur may either decrease over time (kw < 1, promoting

clustering of events), remain the same (kw = 1), or increase (kw > 1) as time after the

last occurrence increases. Changing probability with time violates the independence

of events required by the Poisson process. There is, however, evidence of explosion

clustering in time (Fig. 3.1). Large explosion events seem to occur in groups of 1

to 7 individual explosions followed by a few hours of emergent degassing activity.

This may be evidence that gas is not accumulating at a constant rate underneath

a viscous rock cap over the study period, suggesting that the explosion process is

non-stationary and best modeled with a Weibull distribution.
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3.1 Methods

3.1.1 Repose Interval Distribution Modeling

Various statistical models (gamma, Weibull, exponential, and log-logistic) have

been used to fit volcano repose interval distributions. The wait-time between events

have been best fit by these statistical models that describe a survival process, resulting

from failure of some component over time, rather than a renewal process (Varley et al.,

2006). The two models that best fit the observed repose interval data at Sakurajima

differ in the probability of observing an event as time passes. The gamma probability

model describes a process that has uniform likelihood of occurrence in any time

interval, and the occurrence of an event does not affect the probability of another the

next event. Such a process is considered stationary. The Weibull probability model

describes a process that becomes more or less likely to occur as time passes after an

event has occurred, thus represents a non-stationary process.

Best fit models are sensitive to when, where, and how data is collected. For

instance, seismic detection is typically not sensitive to the lower extremes of vol-

canogenic earthquakes, while historical eruptive history is limited by observable evi-

dence. This means intermediate repose intervals and eruption events are statistically

more likely to be observed, introducing bias into parameter estimation models. Con-

tinuous infrasound array monitoring at volcanoes has the potential to reduce these

observational errors. However, for this dataset, I use a method of random sampling

(Monte Carlo bootstrapping) the observed data many times to create a broader pop-

ulation of possible data subsets.
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Bootstrapping

Bootstrapping is a method of using a sample population to estimate parameters

of the total population. Monte Carlo Bootstrapping is performed by repeatedly sam-

pling subsets of the observed sample population. Each sub-population (realization)

becomes its own sample population which is used to estimate the parameters of inter-

est for an entire population. A normal distribution for each model parameter value

is constructed after many iterations of random sampling. The mean of each normal

distribution is used to describe the expected best fit for the entire population and the

variance of each parameter distribution is used to assess confidence in the value.

Under Poisson assumptions, the underlying process is stationary and the arrival

rate is fixed. For the week-long observation period, 366 transient infrasound events

were detected. The estimated arrival rate is about 2 events per hour. Thus, the data is

assumed to represent a dynamic range of the stochastic process, but is also assumed

to be incomplete. Robust modeling of the repose interval distribution requires a

comprehensive dataset. This is achieved by using the bootstrapping technique method

2 of Efron (1979).

Since events are considered independent random variables, each realization may

contain multiple instances of any observed data point (random sample with replace-

ment). The Monte Carlo process aims to develop a suite of possible observable out-

comes that act as an extension of the dataset. This method is validated by the

stationary Poisson process assumption. The Poisson process over the period which

data is used in modeling is considered to be constant, or stationary. Over long enough

periods of time, volcanic behavior is often not constant. In this week-long study of

eruptive activity at a single volcanic vent, it may be fair to assume that the controlling
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process is rather constant, thus representing a stationary Poisson process.

3.1.2 Likelihood and Confidence

I employ two goodness-of-fit tests to help determine whether observed data come

from a known distribution model, the Kolmogorov-Smirnov (KS) test and the Anderson-

Darling (AD) test. The KS test (Eq: KS) is a non-parametric hypothesis test that

tests two CDFs by calculating a test statistic, D∗, which is the maximum difference

of the proportion (F̂1 and F̂2) of each cdf that is less than or equal to x, where x

covers the range of data (Massey, 1951).

D∗ = maxx(abs(F̂1(x)− F̂2(x)) (3.4)

The Anderson-Darling test (Eq: AD) is more sensitive the the tail ends of each

distribution (Anderson & Darling, 1952). This test uses a weighting function w(x) =

[F (x)(1− F (x))]−1 to penalize departures from the distribution model at both tails.

The test statistic takes the form

A = n

∫ inf

−inf
(Fn(x)− F (x))2w(x)dF (x) (3.5)

Varley et al. (2006) used these two tests to assess statistical models of volcano re-

pose interval distributions at various volcanoes and found that log-logistic, gamma,

exponential, and Weibull distribution models were able to explain the observed dis-

tributions. The gamma and Weibull distribution models were not rejected by either

test for the repose interval data used in this study; computed test statistics for each

model and their significance level are given in Table (3.2). Distribution model fit

results are shown in Figure 3.2.
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Table 3.2: Goodness-of-fit Hypothesis Testing

Distribution Model KS test AD test

Gamma 0.228 (0.001) 5.330 (0.005)

Weibull 0.236 (0.001) 6.044 (0.001)

Test statistic results are accompanied by the significance level in parentheses.
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Figure 3.2: Weibull (orange), Gamma (blue), and Exponential (green)
probability distributions are fit to the repose interval data (black line).
(a) Empirical survival curve from data fitted with exponential and gamma
cdfs; shaded areas represent uncertainty out to σ (95% confidence) uncer-
tainty is estimated from the variance of µ and σ distributions produced
from 1000 Monte Carlo fits to a randomly selected 75% of the data. (b)
All repose intervals (black histogram) are compared with only the repose
intervals ending in explosion (grey histogram).
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3.2 Results

3.2.1 Probabilistic Explosion Forecasting

During the eruption sequence, or sustained period of high activity level, observed

the week of July 18-25, 2013 at Sakurajima Volcano, the relationship between vent-

sealing and explosive eruption is quantified and compared to non-explosive degassing

events. It is apparent in the results that long quiescent periods are more likely to

result in an explosive eruption (Fig 3.2).

Infrasound detection results at Sakurajima show correlation between quiescence

time duration and the type of activity at the vent (i.e. longer repose intervals are

more likely to result in explosions while shorter repose intervals most often lead to

emergent, tremor-like degassing events). Explosion likelihood is calculated from the

ratio of the survival functions of repose intervals leading up to explosions and the

survival of repose intervals resulting in passive degassing events (Fig 3.3).

3.2.2 Near-real-time Application

Cataloging events to build a statistical model is the basis of event forecasting.

Benefits increase if the method can be applied in real-time. Sakurajima volcano

displays a range of eruptive behavior; variations between the pre-eruptive observations

(such as vent closure time) are used to determine which type of event is most likely

to occur given the current status (of observed closure time).

Detected events are autonomously categorized as either explosions or emergent,

degassing events based on maximum recorded amplitude. Explosions commonly ex-

tend one or more orders of magnitude in maximum pressure amplitude (Pa) beyond

emergent, non-explosive, events thus differentiation based on amplitude is quite ac-
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Figure 3.3: Survival functions for observed repose intervals resulting in ex-
plosions (red) and emergent degassing events (blue). Green stars show the
observed percentage of explosions relative to the total number of events
that share similar repose interval times; note the logarithmically increasing
bin sizes for repose interval time. Explosion likelihood increases signifi-
cantly after about 45 minutes of infrasonic quiescence.

curate (Fig. 3.7).

Assuming deterministic (can be modeled by a single probability model through-

out) eruptive behavior, I use previously observed interval times and their resulting

eruption style to construct closure time distributions associated with both styles of

eruptive activity at Sakurajima. Since these distribution models are likely unknown

at many volcanoes and closure time can span multiple orders of magnitude (seconds

to hours), I use the median (µ̄N , µ̄X) of each distribution to describe the distribution

of closure times that result in non-explosive and explosive activity, respectively. Error

between the current closure time and each distribution median is used as an explosion
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forecasting variable. This function takes the form

RSMRSX(L) =
∑

(
nX
nN
· µ̄N − L
µ̄X − L

)2 (3.6)

The Relative Squared Median Residual Sum (RSMRSX) is a quantitative measure

of how likely a future event is to be explosive based on the distributions of prior

observations of quiescence preceding detected explosions and non-explosions. The

values µ̄X and µ̄N are the medians of repose interval times that precede explosions

(denoted by subscript X) and non-explosions (denoted by subscript N), respectively;

these median values are compared with observed repose interval time length (L) in

near-real-time. The RSMRSX ranges from zero to infinity and is best visualized on a

logarithmic scale. Since small values are produced when the numerator is very small

or the denominator is very large, values near zero suggest that the next event will

likely be non-explosive. This occurs when the observed repose time is either close to

the non-explosive median repose time, or not close to the explosive median repose

time length. Alternatively, high values of RSMRSX indicate a higher probability of

an explosive event, based on past behavior.

The range of RSMRSX values is infinite, thus the values do not represent absolute

probability of observing either type of eruptive behavior; to be useful for event style

forecasting, distributions of repose intervals for each event type must be distinguish-

able from one another. Such as with signal detection using the Fisher statistic the

distributions may overlap or share other similarities, but each event type is expected

to converge on a respective arrival rate that I assume can be characterized by the me-

dian repose interval time; the median is a robust statistic for comparing distributions

that range over miultiple orders of magnitude. The forecasting variable contains a
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normalization coefficient,
nX
nN

, which accounts for the number of each observed event

type; nX is the number of observed explosions and nN is the number of observed

non-explosions. Since statistical forecasting is based on information gathered from

previously observed activity, this normalization coefficient favors the more frequently

observed style of activity.

The value of RSMRSX does not have a physical meaning and must be interpreted

based on two parameters: 1) the peakedness of each distribution, which can be con-

sidered analogous to the variance for this application, and 2) the separation of the

distributions relative to each other. After a set of initial observations has been made,

an arbitrary value can be chosen to discriminate between whether an explosive or

non-explosive event is more likely to occur (Fig 3.4; Fig 3.5).

A Receiver Operating Characteristic (ROC) curve (Fig 3.6) is constructed for

explosion predictions and is used to assess a proper cutoff value. The cutoff value

should depend heavily upon whether or not the volcanic system displays deterministic

behavior, or whether each event type shows a preferred closure time that is distinct

from the other, such as is observed at Sakurajima over the study period. The large

area underneath the ROC curve suggests that the RSMRS is a good forecasting

variable (Zhang et al., 2016). Efficiency and effectiveness of the forecaster are based

on probability of false positive detection versus probability of true positive detection.

There are two cutoff values that present similar results in terms of area, however

each offers advantages and disadvantages. Table 3.2 displays these values and their

corresponding detection probabilities.

However, the cutoff 0.2998 maximizes the ratio of true positive predictions to false

positive predictions which ultimately is more important when dealing with eruption
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Table 3.3: Forecasting Probability Cutoff Values & Statistics

Cutoff PTP PFP Acc. Prec.

0.2998 92.86% 15.48% 85.04% 28.52%

0.3374 89.3% 52.8% 87.28% 31.17%

hazards (Tab 3.3). The fact that there are overwhelmingly more non-explosive events

biases the ROC results towards discounting the number of false positives relative to

true positives.
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Figure 3.4: The square of the relative error between each distribution
median and the current observed repose interval is used as an objective
function to predict explosion probability. The green boxed area repre-
sents the area where the observed repose interval is predicted to result in
explosive activity using 0.2998 as a cutoff.
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Figure 3.5: Probability density function shows calculated RSMRS values
prior to each detected infrasound event. The blue bars are for detected
explosions and orange bars are for non-explosive degassing events; the red
dashed line marks a cutoff value that separates 97.5% of non-explosions
from 74% of explosions.
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Figure 3.6: Receiver Operating Characteristic (ROC) curve displaying
explosion forecasting results from July 18-25 at Sakurajima Volcano using
the RSMRS forecasting variable at various cut-offs.
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3.3 Discussion

3.3.1 Sakurajima

At the onset of this research project, I expected to find a positive correlation

between the repose interval duration and the resulting explosion amplitude, how-

ever, analysis of infrasound detections reveals there is no clear relationship between

quiescence time and recorded explosion amplitude (Fig. 3.7).

The study observation period was very short (1 week), and the amount of explo-

sions (28 recorded on both arrays) used in this study do not allow for robust statistical

comparison of outlier events. This, in conjunction with incoherent (wind) noise and

correlated noise across each array during much of the recording period introduce un-

certainty in determination of whether the vent at Showa crater is sealed or not prior

to all explosions, however, analysis suggests that there is an absence of vent-sourced

infrasound prior to explosions.

Non-explosive degassing at Sakurajima produces a lower amplitude signal than

explosive eruptions. Coincidentally, the majority of short-duration repose intervals

are observed between emergent degassing events. Low-amplitude signal from the vent

is susceptible to interruption from wind (and other) noise. I used band-pass filtering

and beam-stacking to reduce the effect of wind on degassing signals, however, the

effect remains apparent in the results and may account for the short duration repose

intervals associated with many low amplitude degassing events.

3.3.2 Physical Processes

Characterization of the frequency at which volcanic events operate is important

for estimating timescales and rates of subsurface processes that drive eruptions, as
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Figure 3.7: Explosions are separated based on both recorded pressure
amplitude and quiescent time leading up to the event. Explosions are
outlined by red boxes.

well as for understanding the statistical likelihood of encountering an explosion during

periods of sustained unrest.

A number of studies suggest Vulcanian eruptions are a result of material failure

(Woods, 1995; Connor et al., 2003). Activity at Volcan de Colima, which exhibits

similar behavior to Sakurajima Volcano, has been modeled as a material failure phe-

nomenon (De la Cruz-Reyna & Reyes-Dávila, 2001). Varley et al. (2006) found that
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for different periods of activity in 2002, both Weibull and gamma distribution mod-

els describe volcanic repose interval durations at Colima. I have obtained a gamma

best fit model for the observed repose interval durations at Sakurajima during 18-25

July 2013. Infrasound data used in a study by Uhira & Takeo (1994) showed a clear

inflationary phase just prior to the onset of each eruption at Sakurajima. I support

the claims of Michaut et al. (2013) and Cassidy et al. (2015), in that the observed

inflation may be an observation of gas accumulating inside the conduit immediately

prior to material failure of a viscous cap, leading to explosion onset.

Explosions appear to be clustered in time. Kmeans clustering algorithm separated

out 8 clusters with a mean 18.32 hour interval between cluster centers. Kmeans takes

an input of maximum number of clusters to assign while minimizing the distances

from the cluster means.

3.4 Conclusion

In Chapter 2 I have developed a strategy to identify when a particular volcanic

vent is openly emitting infrasound. From this analysis I obtain a time series record

of open vent activity as well periods of no detectable signal above the background

infrasound noise level. Although background noise Fisher statistics are elevated from

the presence of clutter, according to Wirth et al. (1971) low amplitude signal from

Showa Crater would still be detectable given the observed SNR, thus I determine the

vent to be closed (not degassing) during detected quiet periods longer than the min-

imal 1 minute. This analysis allows for precise distribution modeling and statistical

forecasting of repose interval durations.

In Chapter 3 I have shown that infrasound repose interval times at Showa Crater

may be modeled as a Poisson process with a gamma probability distribution over
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the week long recording period. Furthermore, repose interval time can be used as a

predictor variable for explosive Vulcanian eruptions at Sakurajima during periods of

sustained volcanic unrest. This analysis may be applicable to other silicic volcanic

systems that exhibit intermittent activity. At Showa Crater, the single-variable fore-

casting algorithm operates with a true detection rate of 93% and a false positive rate

of 15%. Although this might seem like an ideal forecaster, the large number of non-

explosive events drives down the false positive percentage. If we examine the ratio

of true positives to predicted positives, the forecaster operates with 72% of predicted

explosions ending in non-explosive behavior.

Arguably, at Sakurajima Volcano, a 72% false alarm rate is acceptable. The

main danger associated with these small explosive eruptions are ejecta and small

ash clouds that can affect nearby tourists and aircraft. However, this false alarm

rate is problematic if extensive societal disruption occurs for nearby communities in

anticipation of explosive eruption. Closing public areas and relocating people costs

time, effort, and money. These more drastic measures would not work feasibly with

such a high false alarm rate. Furthermore, any institution that uses a zero risk policy

approach may suffer from this forecasting attempt.

Fortunately, the false alarm rate can be reduced at the cost of training the algo-

rithm with a few hours of data prior to forecasting. The ABCC converges after a

few minutes of observed background (determined from theoretical Fisher statistics).

Discarding forecasting results until after the ABCC has converged yields only a 26%

false alarm rate for the rest of the entire dataset (147 hours).
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