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Supplementary Material 

Optimal and Objective Placement of Sensors in Water Distribution Systems Using 
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Mohammad S. Khorshidi, Mohammad Reza Nikoo, Mojtaba Sadegh, 

A Numerical Example for Calculation of VOI 

A numerical example is provided here to illustrate the calculation of . Assume that, a 

decision maker placed a sensor at node  and would like to determine the detection states of node 

 which is without a sensor. Two detection states are determined for the entire WDS, i.e.  and  

for detection of a contamination before and after 60 minutes, respectively. Also, two sets of data 

are available for calculation. The first data set is the records of 2,000 contamination injection 

scenarios which include the time that the contamination is detectable at every node in WDS. This 

set is interpreted as prior belief dataset which could be either the real data from pilot tests or the 

result from simulation of random scenarios. Here, we used the results of simulation of random 

scenarios. The second data set is the simulation results of 500 possible scenarios (random 

scenarios) which will be used for updating prior belief (evidence dataset). The number of scenarios 

in which the contamination is detectable in the detection states at node  and  are provided in table 

S1. For each detection state at node , there would be message , from the sensor at node  and an 

action  from the WDS’s utility. Hence, a cost ,  matrix can be defined considering the 

consequences of the time lag between contamination reaching node  and released warning by 

utility manager based on the received message from sensor at node  (Table S1).  

Table S1. Number of scenarios detectable in detection states at node  and  for both sets of data 

and their associated consequences. 
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Detection 
state of 
node  

Number of 
scenarios in 

“prior belief” 
dataset 

Number of scenarios in “evidence” 
dataset, in which contamination is 

detectable at node  

Associated consequences of action  
based on received message from 

node  
    

 247 62 3 0 -500 
 1753 50 385 -500 0 

 

The second column in Table S1, shows the number of scenarios in prior belief dataset in which 

contamination is detectable at node  in detection states,  and , respectively. The third and 

fourth columns, shows the number of scenarios in evidence dataset in which the contamination is 

detectable at node  in detection state , while the sensor at node  has also detected the 

contamination in  minutes from injection. For example in column 3, 62 refers to the 62 

scenarios in evidence dataset that are detected before 60 minutes from injection by the sensor at 

node , while, the contamination in the same scenarios is also detectable before 60 minutes at node 

. The fifth and sixth columns also show the cost of performing action , (releasing no 

consumption warning for node ) while the detection state at node  is . It is obvious that if 

contamination is detectable at node , for example, in less than 60 minutes from its injection 

(detection state ), and the WDS’s utility releases warning to consumers of node  in less than 60 

minutes (action ) from injection of contamination, there would be no damage to consumers’ 

health. If the WDS’s utility perform action , which means release warning for consumers of 

node , any time after 60 minutes, while the contamination was detectable at node  in the first 60 

minutes from its injection ( ), consumers would be exposed to contamination and hence a fraction 

of consumers would be affected. A value of -500 is assigned to such action in the cost matrix to 

account for affected population. 
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To calculate the updated belief, |  in eq.1, one have to calculate prior probability of having 

detection states at node , , from prior belief dataset, |  and  from evidence dataset 

as follows: 

62 50 /500
3 385 /500

0.1235
0.8765

 (s1) 

|
62/ 62 3 3/ 62 3
50/ 50 385 385/ 50 385

0.9538 0.0462
0.1149 0.8851

 (s2) 

247/2000
1753/2000

0.224
0.776

 (s3) 

Now, the updated belief from eq.1 can be easily calculated as follows: 

|
0.9538 0.1235/0.224 0.0462 0.1235/0.776
0.1149 0.8765/0.225 0.8851 0.8765/0.776

0.5259 0.0073
0.4498 0.9997

 (s4) 

Hence,  and  (eqs.2) can be calculated as follows: 

0 0.5259 500 0.4498 500 0.5259 0 0.4498
0 0.0073 500 0.9997 500 0.0073 0 0.9997

224.88 262.95
499.84 3.67

 (s5) 

0 0.1235 500 0.8765
500 0.1235 0 0.8765

438.25
61.75

 (s6) 

So,  from eq.3 would be: 

0.224 max 224.88, 262.95 max 438.25, 61.75 0.776

max 499.84, 3.67 max	 438.25, 61.75 36.54 45.068

8.5264 

(s7) 

 

Evaluating Performance of Proposed Model against TEVA-SPOT 

Threat Ensemble Vulnerability Assessment-Sensor Placement Optimization Tool or briefly 

TEVA-SPOT, is a sensor placement optimization model which was under development from the 

early 2000s (Berry et al. 2008) by US Environmental Protection Agency (EPA), Sandia National 

Laboratories, Argonne National Laboratory, and the University of Cincinnati (Janke et al. 2017). 
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Its latest major release was in 2008 (Berry et al. 2008). Although, minor upgrades were released 

since then and the latest minor release of the model dates back to 2011 (Berry et al. 2012). Also, 

the latest release of the Graphical User Interface (GUI) of the model was in September 2017 (Janke 

et al. 2017), which is TEVA-SPOT GUI version 2.3.2. The development of this model is funded 

by US Environmental Protection Agency (EPA) as conformance to Presidential Directives for 

addressing critical needs for homeland security following the terrorist attacks of September 11, 

2001. Like other models, it consists of three main modules, i.e. simulation module, impact 

assessment module and optimization module. TEVA-SPOT (TS model) is the most well-known 

and proven model among the researchers.  

In previous sections of the paper, we have compared the results of Value of Information and 

Transinformation Entropy optimization model (VT model) for the case study of Lamerd WDS 

with two previous studies on the same case study (i.e. Bazargan-Lari, 2014; Naserizade et al. 

2018). The results show that the efficiency of VT model has provided the capability of enhancing 

the decision space, and hence, more objective approach to sensor placement optimization. 

Therefore, the resulted CWS designs are more safe than those of the previous studies from time to 

detection ( ), affected population ( ) and probability of detecting contamination ( ) 

viewpoint. Also, a comparison between VT and TS models’ performances for design of CWS in 

Lamerd WDS is briefly provided in the paper. In this section, more detailed report regarding this 

comparison is provided. This comparison is based on memory requirements and runtime 

(computational efficiency) and also results accuracy.  

Table S2 shows some basic features of the models. The green cells indicate the advantage of the 

corresponding model compared to the other model. The comparisons are based on the discussions 

provided in Murray et al. (2010) and Janke et al. (2017) and the experience of the authors which 
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will be discussed later. In simulation modules, both models use the same version of EPANET 

(Rossman 2000; EPANET v2). Also, its latest extension (EPANET-MSX) is included in TS model 

for simulation of multi-species contamination events, while, this extension is not included in VT 

model currently and multi-species contamination events are not considered in this study.  

According to TS model’s Users’ Manual (Janke et al. 2017), the memory requirements of this 

model is relatively high as shown in the later part of this report, while, memory requirements of 

VT model is significantly low compared to TS model. Also, the optimization module of TS model 

uses single-objective optimization algorithm, however, according to Janke et al. (2017), the model 

offers constrained optimization to achieve designs considering multi-criteria. Also, the designer 

should specify the number of sensors to be placed in WDS. Hence, the designer should perform 

multiple optimizations in an iterative manner to find the most suitable number of sensors which 

satisfies different criteria. On the other hand, VT model uses a multi-objective optimization 

algorithm (NSGA-II), and hence, the designer does not have to perform multiple optimizations nor 

specify the exact number of sensors. Instead, the designer could specify an upper bound on number 

of sensors to be placed in WDS and trade multiple criteria against each other after a single-time 

execution of optimization module. Also, based on discussion that provided in introduction and 

methodology section, VT model optimizes the whole probability distribution functions (pdfs) of 

both  and  by means of optimizing VOI of selected nodes for placement of sensors. Also, it 

uses TE to maximize , however, TS model optimizes only a signature of those pdfs at a time. 
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Table S2. Comparison between the basic features of TS and VT models. The green color 

indicates the advantage of the corresponding model compared to the other model. 

Feature TS model VT model 
Memory requirements High Low 

Multi-species simulation Yes No* 
Flexible number of sensors No Yes 

Multi-objective optimization No Yes 
Constrained optimization Yes Yes 
Type of optimization; i.e. 
consideration of pdfs in 

optimization module 

Mean of pdfs and 
Robust optimization 
(there is no option to 

perform both 
simultaneously) 

Whole pdfs (the 
discussion provided 
in introduction and 

methodology 
sections). 

* Multi-species simulation of multiple toxin or biological species has not considered in this 
study, however, it can be included in the simulation module of VT model with little 
modifications.  

 

The following is the report of our comparison. Beforehand, it is worth mentioning that, as we have 

expected, VT model has outperformed TS model, both from computational efficiency and 

accuracy viewpoint. Please note that, Lamerd WDS is very smaller than WDS of large cities. So, 

we expect VT model to be significantly faster and more accurate than TS model for very large 

WDSs.  

Both models were executed on a desktop PC (CPU: Intel® Core™ i7-4500U; RAM: 12GB 

DDR3). At the first instance, we decided to simulate a large number of scenarios (more than 

270000 scenarios). The simulation module of VT model, had well performed the simulations and 

the results were ready to use in its other modules, however, it was not the case for TS model. When 

we defined the simulation scenarios, the PC became unresponsive and after a few moments, its 

operating system crashed. However, we managed to capture a few screenshots before the crash of 

the operating system (Figs. S1). 
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Figs. S1. Two screenshots from the desktop PC after defining over 270000 simulation scenarios. 

The Microsoft Windows ® Task Manager shows significant load on the CPU of the PC. 

 

According to TS model’s Users’ Manual (Janke et al. 2017), when the number of simulation 

scenarios and/or size of WDS are large, the CWS design by TS model could not be performed on 
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a typical computer, instead Workstations with sufficient resources should be used (Janke et al. 

2017). Even, the same problem occurred for 100000 and 75000 number of simulation scenarios.  

After some iterations, we have managed to find a suitable number of scenarios for TS model (about 

12000 scenarios) and used those simulations scenarios for VT model, too, to make fair comparison. 

To compare the two models and since TS uses a single-objective optimization module and requires 

the user to specify the number of sensors to be placed in WDS, the 3rd objective of VT models’ 

optimization module (i.e. minimization of number of sensors) is removed and the module 

constrained to place a fixed number of sensors into WDS. Also, the optimization modules of both 

models were constrained to provide at least 80% probability of detection of contamination events 

(i.e. 0.8). To fairly compare the models, the model parameters of EPANET are specified for 

both models as same as each other. Hence, the results of the simulation modules would be the 

same. Also, Arsenic is considered as the contamination to be injected in WDS. Furthermore, four 

injection mass with four different injection durations beginning at 5 AM are considered for 

generation of simulation scenarios. Also, 26 nodes (23 hydrants, 2 reservoirs and the tank in WDS) 

are considered for the location of injections. Single-node injection and simultaneous injection from 

two and three nodes are considered as contamination injection scenarios. Therefore, the number 

of simulation scenarios is four times the summation of combination of 1, 2 and 3 nodes from 26 

nodes which result in 11804 unique injection scenarios. Then, the contamination injection 

scenarios were simulated by both models. The characteristics of the contamination scenarios and 

the parameters of the simulation modules are provided in Table S3. 
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Table S3. Characteristics of scenarios and parameters of simulation modules. 

Parameter Values 

Time of injection 0500AM 

Mass of injection 277 mg/sec, 352 mg/sec, 410 mg/sec, and 425 mg/sec 

Duration of injection 78 min, 62 min, 46 min, and 76 min 

Locations of injection 26 nodes: 23 hydrants, 2 reservoirs and a tank 

Number of injections Simultaneously from 1, 2 and 3 points 

Total number of scenarios 4 11804 scenarios 

Simulation duration 2 days 

Quality, hydraulic and 
Reporting time-step 

1 min 

 

Also, the optimization modules of both models were configured for optimal location design of 3, 

4, 5, 6, 7, 8 and 9 sensors. To evaluate the robustness and accuracy of the solutions of VT model 

against TS model, two objectives were defined for the optimization module of TS model; i.e. 

minimization of the Value-at-Risk (VaR) of time to detection ( ) for robustness and 

minimization of average of time to detection ( ). VaR of a pdf is the point in pdf where 

cumulative probability of the pdf exceeds a certain level. Interested readers are referred to 

Sarykalin et al. (2008) for more information.  

The optimization module of TS model is single-objective, hence, it should be executed for every 

objective separately, providing a single solution for each objective. Hence, for each number of 

sensors to be placed in the WDS, there would be two solutions from the TS model, one for  

and the other for  which are denoted by TSM and TSV, respectively. On the other hand, the 

multi-objective optimization module of VT model was executed only once for each number of 

sensors to be placed in the WDS and will provide more than one solution (a pareto front) which 

are denoted by VT followed by a number. Then, the results were compared considering the 

following four criteria: 1. minimum time to detection ( ), 2. maximum time to detection 
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( ),  and, 3. average time to detection ( ), and, 4. probability of detection in the first 60 

minutes from the injection ( ). The mean runtime of both models’ modules are provided in 

Table S4.  

 

Table S4. The mean runtime of TS and VT models’ modules. 

TS Model VT Model 

Module Run-time 
(sec) 

Module Run-time 
(sec) 

Simulation 2356 Simulation 2894 

Health Impact Assessment 168 VOI+TE 37 

Optimization* 297 Optimization* 107 

* The values are the mean run-time for the design of the seven sets of sensors. 

 

The table shows that, the simulation module of VT model is 23% slower than that of TS model, 

however, the VOI+TE and optimization modules of VT model are 350% and 177% faster than 

those of TS model, respectively.  

To compare the memory requirements of the two models, the size of data which are generated by 

the models and are essential for their modules to work properly are compared. Fig. S2 (a) shows 

an screenshot from Collection Management feature of TS model, which indicates that TS model 

consumed 5 Giga Bytes of the disk space (5 Giga Bytes is equal to 5120 Mega Bytes). Fig. S2 (b) 

shows that all the scripts and data of VT model only consumed 244 Mega Bytes. Please note that 

when we execute the optimization modules of both models, the modules would transfer all of their 

respective data to PC’s RAM and use them as inputs. In other words, the disk space and RAM 

usage of VT model are 1/20 those of TS model.  
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Figs. S2. (a) An screenshot from Ensemble Management of TS model, which shows the model 

occupied 5 Giga Byes (5120 Mega Bytes) of disk space, while, (b) VT model only occupied 244 

Mega Bytes of the PC’s disk space. 
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As mentioned earlier, we have identified four criteria for comparing accuracy and robustness of 

VT model against TS model; i.e. 1. minimum time to detection ( ), 2. maximum time to 

detection ( ),  and, 3. average time to detection ( ), and, 4. probability of detection in 

the first 60 minutes from the injection ( ). In TS model’s Users’ Manual (Janke et al. 2017), it 

is recommended that the designers perform multiple optimizations with different objectives and 

then trade them off against each other to find the best CWS design which satisfies multiple criteria 

of interest. Here, we have adopted the same approach for comparing TS and VT models’ designs 

by using a well-known multi-criteria decision making method named Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS; the interested readers are referred to Yoon 

and Hwang, (1981)). Although, in some cases, superiority of a certain solution is obvious, we use 

TOPSIS for ranking of the solutions for all cases. The results are provided in Table S5 including 

the labels of the selected nodes for placement of sensors and other parameters such as VOI, TE 

and probability of detection under 2 minutes from the injection ( ) are provided for further 

comparison.  
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Table S5. The results of the TS and VT models for design of CWS with 3, 4, 5, 6, 7, 8 and 9 sensors in Lamerd WDS. 

Set Name Selected Nodes Objective(s) VOI TE  
(min) 

 
(min) 

 
(min) 

  TOPSIS 
Ranking 

3 
S

en
so

rs
 

TSM {28,31,44} Td_ave 16.77397 0.116832 9 63.75493 344 0.542712 0 13 

TSV {28,40,61} Td_VaR 11.10297 0.156512 3 83.81239 267 0.306441 0 8 

VT1 {18,31,64} VOI & TE 25.48452 0.122934 1 65.54063 292 0.542712 0.110508 7 

VT2 {18,31,63} VOI & TE 24.64656 0.119514 1 66.71381 265 0.542712 0.110508 5 

VT3 {18,31,65} VOI & TE 24.64656 0.119514 1 62.2566 247 0.542712 0.110508 3 

VT4 {18,31,66} VOI & TE 22.56917 0.11754 1 49.8007 159 0.542712 0.212542 1 

VT5 {19,87,89} VOI & TE 22.44865 0.085355 1 63.25495 221 0.392542 0.110508 4 

VT6 {19,87,90} VOI & TE 21.38294 0.064692 1 64.53241 221 0.306441 0.110508 6 

VT7 {19,31,64} VOI & TE 19.72907 0.062808 10 67.95901 292 0.471186 0 14 

VT8 {19,31,65} VOI & TE 18.89111 0.055969 10 64.73605 247 0.471186 0 12 

VT9 {19,31,66} VOI & TE 16.81372 0.05202 1 52.25952 159 0.471186 0.110508 2 

VT10 {19,31,67} VOI & TE 15.45981 0.04363 10 55.03707 136 0.471186 0 9 

VT11 {19,31,76} VOI & TE 14.44758 0.038036 10 58.80829 135 0.392542 0 10 

VT12 {19,31,78} VOI & TE 14.10689 0.037917 10 62.14184 165 0.392542 0 11 

4 
S

en
so

rs
 

TSM {28,31,44,124} Td_ave 18.24201 0.224353 3 49.10105 192 0.607458 0 3 

TSV {28,31,44,124} Td_VaR 18.24201 0.224353 3 49.10105 192 0.607458 0 4 

VT1 {18,22,57,66} VOI & TE 30.71849 0.752208 1 55.2399 159 0.471186 0.212542 2 

VT2 {11,15,57,67} VOI & TE 30.57802 0.711998 2 47.61755 155 0.607458 0.110508 1 

VT3 {11,18,57,68} VOI & TE 30.3124 0.528481 1 57.09333 222 0.542712 0.212542 5 

VT4 {11,15,56,68} VOI & TE 30.02987 0.523254 2 52.6665 220 0.542712 0.110508 7 

VT5 {11,15,57,71} VOI & TE 29.96395 0.38461 2 57.2738 222 0.607458 0.110508 8 

VT6 {55,89,99,106} VOI & TE 29.74604 0.38403 17 62.78485 208 0.471186 0 21 

VT7 {56,89,99,106} VOI & TE 29.74604 0.38403 17 65.70085 220 0.471186 0 22 

VT8 {56,89,100,106} VOI & TE 29.74604 0.38403 10 57.07182 220 0.542712 0 15 

VT9 {15,33,54,72} VOI & TE 29.57123 0.314161 10 66.93583 214 0.471186 0 17 

VT10 {20,31,73,93} VOI & TE 29.31856 0.289813 10 62.11038 267 0.607458 0 16 

VT11 {19,27,43,66} VOI & TE 29.20461 0.272117 1 68.32313 252 0.471186 0.110508 13 
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VT12 {15,33,45,72} VOI & TE 28.90496 0.223586 1 62.48566 238 0.471186 0.110508 10 

VT13 {15,33,45,68} VOI & TE 28.57965 0.217159 1 66.13566 238 0.392542 0.110508 14 

VT14 {15,31,45,73} VOI & TE 28.17426 0.216015 1 47.427 238 0.607458 0.110508 6 

VT15 {15,31,45,75} VOI & TE 27.84895 0.215119 1 49.64511 238 0.542712 0.110508 9 

VT16 {18,31,76,93} VOI & TE 27.74108 0.130337 1 62.59843 267 0.542712 0.110508 12 

VT17 {15,31,46,76} VOI & TE 24.36887 0.123996 10 59.75062 274 0.542712 0 18 

VT18 {15,31,46,78} VOI & TE 24.02818 0.123877 10 61.53012 274 0.542712 0 19 

VT19 {15,39,45,71} VOI & TE 22.32514 0.094929 1 69.97525 224 0.471186 0.110508 11 

VT20 {19,31,76,93} VOI & TE 21.98563 0.067669 10 64.95794 267 0.471186 0 20 

5 
S

en
so

rs
 

TSM {28,31,40,45,124} Td_ave 21.98782 0.538974 1 41.30393 192 0.665763 0.110508 5 

TSV {28,31,44,100,124} Td_VaR 25.15394 0.481675 3 40.19056 179 0.717966 0 10 

VT1 {1,18,27,55,100} VOI & TE 32.97153 0.77858 1 40.84188 208 0.764407 0.212542 6 

VT2 {1,18,22,55,100} VOI & TE 32.7322 0.777733 1 42.8885 208 0.764407 0.212542 7 

VT3 {1,18,27,45,100} VOI & TE 32.45831 0.70688 1 39.94704 238 0.764407 0.306441 8 

VT4 {1,18,27,100,115} VOI & TE 32.15561 0.700669 1 42.78421 250 0.764407 0.212542 9 

VT5 {1,18,55,100,124} VOI & TE 29.89716 0.65432 1 39.02978 145 0.764407 0.212542 1 

VT6 {1,18,45,100,124} VOI & TE 29.53036 0.599084 1 36.91048 171 0.764407 0.306441 2 

VT7 {1,28,45,100,124} VOI & TE 28.54408 0.483117 1 38.78212 171 0.764407 0.212542 3 

VT8 {1,18,35,87,124} VOI & TE 26.768 0.411585 1 41.70506 192 0.764407 0.306441 4 

6 
S

en
so

rs
 

TSM {15,28,31,40,45,124} Td_ave 23.79646 1.604539 1 31.9749 192 0.764407 0.110508 12 

TSV {18,28,31,44,100,124} Td_VaR 27.40366 0.934921 1 32.94888 179 0.805424 0.110508 11 

VT1 {1,18,27,45,87,100} VOI & TE 35.06979 1.288535 1 26.28882 128 0.805424 0.392542 2 

VT2 {1,18,22,45,87,100} VOI & TE 34.83047 1.287688 1 27.95901 128 0.805424 0.392542 4 

VT3 {1,18,27,87,100,115} VOI & TE 34.18355 1.171758 1 27.70684 128 0.805424 0.306441 3 

VT4 {1,11,18,87,100,115} VOI & TE 34.18355 1.171758 1 24.79165 128 0.805424 0.392542 1 

VT5 {1,11,18,28,55,100} VOI & TE 34.10453 1.104395 1 32.42444 208 0.841356 0.306441 13 

VT6 {1,18,27,55,100,124} VOI & TE 33.71156 0.928516 1 35.4176 145 0.805424 0.212542 5 

VT7 {1,18,27,45,100,124} VOI & TE 33.34476 0.873281 1 33.27915 171 0.805424 0.306441 7 

VT8 {1,18,22,45,100,124} VOI & TE 33.10543 0.872433 1 34.84931 171 0.805424 0.306441 10 

VT9 {1,28,30,45,100,124} VOI & TE 31.65157 0.830272 1 33.50954 171 0.805424 0.212542 8 
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VT10 {1,18,35,45,100,124} VOI & TE 30.53476 0.668333 1 33.7242 171 0.841356 0.306441 6 

VT11 {1,28,35,45,100,124} VOI & TE 29.54848 0.552365 1 34.92695 171 0.841356 0.212542 9 
7 

S
en

so
rs

 

TSM {11,15,28,31,40,45,124} Td_ave 30.85925 1.859207 1 25.57259 192 0.841356 0.212542 12 

TSV {1,15,28,31,45,59,100} Td_VaR 33.46646 2.126152 1 27.40483 191 0.899322 0.212542 13 

VT1 {1,18,28,30,45,87,100} VOI & TE 35.54986 1.6227 1 23.07601 128 0.872542 0.392542 1 

VT2 {1,18,28,30,31,55,100} VOI & TE 35.09893 1.568615 1 28.61704 208 0.899322 0.212542 14 

VT3 {1,18,26,28,87,100,115} VOI & TE 34.89492 1.544809 1 24.45821 128 0.841356 0.306441 3 

VT4 {1,18,28,30,87,100,115} VOI & TE 34.66362 1.505923 1 24.2422 128 0.872542 0.306441 2 

VT5 {1,18,28,30,31,45,100} VOI & TE 34.58571 1.499641 1 26.46572 238 0.899322 0.306441 15 

VT6 {18,28,30,31,47,87,100} VOI & TE 34.51669 1.384422 1 29.45584 128 0.841356 0.212542 7 

VT7 {1,18,30,87,100,115,124} VOI & TE 34.20664 1.330044 1 25.44552 145 0.841356 0.306441 4 

VT8 {1,18,28,30,55,100,124} VOI & TE 34.19163 1.262681 1 29.22057 145 0.872542 0.212542 8 

VT9 {1,18,28,30,45,100,124} VOI & TE 33.82483 1.207446 1 26.85911 171 0.872542 0.306441 10 

VT10 {1,18,26,35,87,100,124} VOI & TE 32.05739 1.168561 1 27.00576 145 0.841356 0.306441 5 

VT11 {1,18,35,87,100,115,124} VOI & TE 32.02934 1.116746 1 27.69377 145 0.872542 0.306441 6 

VT12 {1,18,28,35,64,100,124} VOI & TE 31.84224 1.100618 1 29.91366 145 0.899322 0.212542 9 

VT13 {1,18,28,35,100,115,124} VOI & TE 31.39324 0.998635 1 29.91422 182 0.899322 0.212542 11 

8 
S

en
so

rs
 

TSM {11,15,28,30,31,40,45,124} Td_ave 31.18343 2.196131 1 21.59754 192 0.872542 0.212542 7 

TSV {1,15,28,31,45,59,100,109} Td_VaR 34.34404 2.798189 1 25.97404 191 0.922034 0.212542 8 

VT1 {1,18,28,30,31,54,87,100} VOI & TE 36.47583 2.371481 1 22.98052 128 0.922034 0.306441 1 

VT2 {1,18,28,30,31,47,87,100} VOI & TE 36.31095 1.961793 1 23.70095 128 0.922034 0.306441 3 

VT3 {1,18,28,29,31,87,100,115} VOI & TE 35.43734 1.932197 1 24.50129 128 0.922034 0.306441 4 

VT4 {1,14,18,28,31,44,87,100} VOI & TE 35.2513 1.887083 1 24.37449 342 0.922034 0.306441 9 

VT5 {1,18,28,30,31,87,100,124} VOI & TE 33.60202 1.830869 1 21.34715 145 0.922034 0.306441 2 

VT6 {1,18,28,35,87,100,115,124} VOI & TE 33.21632 1.44256 1 24.23847 145 0.922034 0.306441 5 

VT7 {1,18,28,35,40,87,100,124} VOI & TE 30.36928 1.39501 1 24.40986 152 0.922034 0.306441 6 

9 
S

en
so

rs
 TSM {11,15,28,30,31,40,45,87,124} Td_ave 34.87522 2.793573 1 17.385 192 0.899322 0.306441 3 

TSV {1,15,28,31,45,54,59,100,110} Td_VaR 35.25736 3.605313 1 23.89879 191 0.941017 0.212542 4 

VT1 {1,11,18,28,31,35,45,66,87} VOI & TE 38.93832 2.82791 1 21.77335 286 0.922034 0.542712 6 

VT2 {1,11,15,18,31,35,45,87,100} VOI & TE 38.67842 2.47531 1 22.7441 286 0.922034 0.471186 7 
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VT3 {1,11,18,28,31,35,45,87,100} VOI & TE 38.668 2.19986 1 20.92077 286 0.941017 0.471186 5 

VT4 {1,8,18,28,30,31,35,45,87} VOI & TE 38.57406 2.161198 1 22.75907 286 0.922034 0.471186 8 

VT5 {1,11,18,31,35,45,87,100,124} VOI & TE 38.18134 2.024099 1 19.22225 145 0.922034 0.471186 2 

VT6 {1,11,18,28,35,45,87,100,124} VOI & TE 37.85354 1.833534 1 18.94578 145 0.941017 0.471186 1 
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Fig. S3. Probability distribution of time to detection for CWS with 3 sensors designed by TS 

(left) and VT (right). 

 

Fig. S4. Probability distribution of time to detection for CWS with 4 sensors designed by TS 

(left) and VT (right). 
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Fig. S5. Probability distribution of time to detection for CWS with 5 sensors designed by TS 

(left) and VT (right). 

 

Fig. S6. Probability distribution of time to detection for CWS with 6 sensors designed by TS 

(left) and VT (right). 
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Fig. S7. Probability distribution of time to detection for CWS with 7 sensors designed by TS 

(left) and VT (right). 

 

Fig. S8. Probability distribution of time to detection for CWS with 8 sensors designed by TS 

(left) and VT (right). 
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Fig. S9. Probability distribution of time to detection for CWS with 9 sensors designed by TS 

(left) and VT (right). 

 

According to the TOPSIS rankings of the both models’ results (Table S5), there are at least two 

CWS designs from VT model which have better performance with respect to the defined criteria 

compared to those of TS model (i.e. the best ranks of TS model’s designs are 3rd for CWSs with 4 

and 9 sensors). For CWSs with 3, 4, 5 and 6 sensors, the TS model’s designs (TSM and TSV) are 

clearly dominated by VT4, VT2, VT5 and VT4 designs from VT model, respectively. Also, for 

CWSs with 7, 8 and 9 sensors, the TSMs or TSVs have only one criteria better than that of VTs, 

while the other criteria of VTs are better than those of TSMs and TSVs. For example, TSM design 

for CWS with 9 sensors have better  than that of VT6, while VT6 would perform better than 

TSM with respect to  and . It is also worth mentioning that there is a clear relationship 

between the rank, performance and the values of VOI of the designs. So that, TSMs and TSVs 

have lower values of VOI compared to VTs, while in most cases, TSMs and TSVs fall short in the 
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preference order (TOPSIS rankings). It may seem that TSMs should at least provide superior 

 to VTs, because TS model is single-objective and should indeed find the optimal . 

The reason is that, according to TS’s Users’ Manuals (Berry et al. 2008, Berry et al. 2012, Janke 

et al. 2017) the only available optimization algorithm in GUI version of TS model is GRASP 

algorithm. According to the Users’ Manuals, Although, Mixed-Integer Programming (MIP) 

algorithm which is developed by TS’s developers (Berry et al. 2006) is more accurate than Greedy 

Randomized Adaptive Search Procedure (GRASP) algorithm, it has huge memory requirements 

and is very slower compared to GRASP. Also, the developers have proved that GRASP provides 

“good” near-optimal solutions with less memory and in the quickest way possible compared to 

MIP (Berry et al. 2008, Berry et al. 2012, Janke et al. 2017). Therefore, the MIP algorithm is 

omitted from latest release of TS model in September 2017, which is TEVA-SPOT GUI v2.3.2.  

To conclude our discussion, the results show that VT model is not only quicker, more efficient and 

more accurate than GRASP aided TS model in meeting different criteria, but also it is more 

accurate from optimality point of view.  
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