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Identification of plastic type for microplastic particles (size range 

of 0.001 mm – 5 mm) is vital to understand the sources and 

consequences of microplastics in the environment. Fourier-

transform infrared and Raman spectroscopy are two dominating 

techniques used to identify microplastics. The most common 

method to identify microplastics with spectroscopic data is library 

searching, a process that utilizes search algorithms against digital 

databases containing spectra of various plastics. Presented in this 

study is a new method to utilize spectroscopic data called fusion 

classification. Fusion classification consists of merging multiple 

non-optimized classification methods (classifiers) to assign 

samples into categories (classes). The purpose of this study is to 

demonstrate the applicability of fusion classification to identify 

microplastics.. 
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RAMAN SPECTROSCOPY AND FUSION CLASSIFICATION

TO IDENTIFY PLASTIC RECYCABLES

TARGETING MICROPLASTICS

Future Work

 Apply fusion classification to identify;

 Physically degraded colored microplastic using Micro-

Raman and Micro-FTIR.

 Microplastic particles in the Snake river

Background

Objective

 Identify plastic recyclables using fusion classification to 

improve microplastic identification accuracy

Approach

Fusion Classification

 Assigning a sample to a category (class) using classification 

methods (classifiers).

 17 classifier used in order to:

 Reduce risk misidentification.

 Improve classification accuracy.

 Overcome limitations of stand alone classifiers.

Table 1: Classifiers

Classifiers with Tuning Parameter

 Tuning parameter based on a number value:

 PLSDA - latent variables (LVs)

 kNN - number of nearest neighbors

 MD, Qres, DC, and Sine – eigenvectors

Classifiers with No Tuning Parameter

 Determine the degree of similarity for a target sample 

compared to each class mean.

 Threshold selection required.

Our Method

 No training (optimization) , weights, or threshold selection of 

each classifier:

 Uses raw values.

 Optimization based on a window of respective tuning 

parameter values:

 Simplifies classification ensemble

Tuning Parameter Window Selection

 Rule of thumb;

 99% information of class (X) is captured.

 LVs and eigenvectors are not excessively composed of 

noise.

 Maximum window size is based on the rank (k) of smallest 

class

Experimental Design 

Class # Plastic

Types

# of Samples # of 

Spectra

1 Polyethylene Terephthalate (PET) 28 40

2 High density polyethylene (HDPE) 23 38

3 Polyvinyl chloride (PVC) 4 17

4 Low density polyethylene (LDPE) 18 28

5 Polypropylene (PP) 11 28

6 Polystyrene (PS) 19 37

Data Sets

Classifiers with Tuning 

Parameter

Classifiers with No Tuning 

Parameter

 Mahalanobis distance (MD)

 Q-residual (Qres)

 Sine

 Divergence criterion (DC)

 Partial least squares discriminant 

analysis (PLS2-DA)

 k nearest neighbor (kNN)

 Euclidean distance

 Procrustes analysis 

unconstrained (PA)

 Inner product correlation

 Determinant

 Procrustes Analysis constrained 

(PAa)

 Cosine

 Extended inverted signal 

correction difference (EISCD)

Table 2: Sample information breakdown103 samples and 188

Allen, V., Kalivas, J. H., & Rodriguez, R. G. (1999). Post-Consumer Plastic Identification Using Raman 

Spectroscopy. Applied Spectroscopy, 53(6), 672-681.

Results

 Comparing fusion to frequently used stand alone classifiers

Limitations of Spectroscopic Analysis
Interference of spectroscopic data caused by:

Sediments 

Degree of degradation

Additives such as dyes, antioxidants, etc.

 > 4.5 billion metric tons of plastic produced in 2015.

 36.2 billion metric tons projected by 2050.

 4.8 – 12.7 million metric tons enter the ocean annually.

Primary Source
 Intentionally engineered:

Microbeads used in cosmetic products.

Other.

Secondary Source
Consequence of: 

 Photolytic, mechanical, thermal and biological 

degradation of any plastic goods.

Microplastics
(0.001-5 mm)

Interfere with 

aquatic ecosystem

Direct chemical toxicity to 

aquatic organism

Spectroscopy

Library 

Matching

(Common method)

Fusion

Classification

(New method)

% Performance

Parameter

No

Threshold

Threshold Cos θ ≥ 

0.70 0.75 0.85 0.90

Accuracy 96.3 92.3 89.9 58.7 0

Sensitivity 96.4 85.8 81.7 41.6 0

Specificity 50 100 100 100 0
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Example: Eigenvector based single classifier. Where k is the 

rank of the smallest class.

1st Window

2nd Window

kth Window

Classifier

1─5 PlS2-DA

6─10 kNN

11─ 5 MD

16─20 Sinθ

21─25 Q-res

26─30 DC

30 ─ 41 Non-

traditional 

classifiers
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Belong to Class Does not belong

to Class

Positive

Result

True Positive

(TP)

False Positive

(FP)

Negative

Result

False Negative

(FN)

True Negative

(TN)

Table 3: Overall (188) library matching results 

Fig. 1: Classification of a sample at the 

5th tuning parameter window

Fig. 2: Raman spectral data for each plastic type i.e. PET, HDPE, PVC, HDPE, 

PP and PS.

Fig.2: Each figure shows accuracy (red), sensitivity (blue) and specificity 

(green) 

Library Matching Fusion Classification

Threshold selection:

Value is subjective

 Too high─ risk not 

identifying samples.

 Too low─ risk 

misidentification of 

samples.

No threshold selection for 

individual classifiers:

Simplifies classification.

Window size is used instead 

based on;

 Class with lowest rank. 

Higher accuracy, sensitivity and 

specificity than standalone 

classifiers:

Reduces the risk of 

misclassifying abnormal 

samples.

Identification is based on 

available classes.

1i



Fusion Rule: SUM 

 Values normalized to unit length.

 Samples assigned to class with              

lowest sum.

Conclusion
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